

### Bay Area Air Quality Management District

BAY AREA AIRQUALITY MANAGEMENT DISTRICT

### CEQA Guidelines Update Public Workshop, Oakland April 26, 2010

Planning and Research Division Bay Area Air Quality Management District

# Why Update the CEQA Guidelines?

- Attain health-based State and national ambient air quality standards for ozone and fine particulate matter
  - Recent more stringent standards
  - Public health impacts, especially from fine PM
  - Noncompliance threatens federal transportation funding
- Public health impacts associated with toxic air contaminants
  - Highest exposures to toxics & fine PM occur near roadways, heavy industry
  - Pre-term & early childhood exposures to carcinogens 10 times more important than previous estimates
  - Adverse health outcomes of near-roadway exposures: cardiovascular disease, asthma, reduced birth weight, mortality
- GHG reductions needed to achieve SB 375, AB 32, Governor's Executive Order
- Local land use decisions influence transportation emissions

## Transportation, Land Use and Air Quality

- Motor vehicles are largest source of air pollution in Bay Area - ozone, PM, toxics, GHGs
- Region still exceeds health based AQ standards
- Low hanging fruit is long gone need emissions reductions from all sources
- California vehicle fleet is very clean-need to reduce vehicle use
- More efficient land use will be critical to improve air quality, reduce GHGs



## Air District Land Use Goals

- Promote strategies that support livable communities
  - Support mixed-use, infill, transit-oriented development
  - Minimize greenfield development
  - Increase transit use, walking, cycling
- Reinforce MTC, ABAG, and local programs
  - FOCUS/PDAs, MTC TOD policy, SB 375 are critical to AQ and GHG improvements
  - Seek to coordinate local AQ studies with local planning processes
- Use caution planning residential, schools, sensitive uses near areas with high emissions – busy freeways, ports, refineries, etc.
- Potential conflicts may often be resolved through site specific analysis and mitigation
  - Site planning/setbacks, project phasing, diesel retrofits, idling limits, truck routes, HVAC, etc.



- 14 month process with public workshops held in:
  - April 2010
  - Dec 2009
  - Sept/Oct 2009
  - April 2009
  - Feb 2009
- Additional meetings with stakeholders
- Board Hearings – Nov 18, Dec 2, and Jan 6
- Draft documents available
  - Draft CEQA Guidelines
  - Draft Thresholds Report
  - Public comments and responses

# Workshop Purpose

- Address concerns raised during update process:
  - Hinders infill development and PDAs
  - Need further developed methodologies and tools
  - Guidance needed on community risk reduction plans and GHG reduction strategies
- Focus on GHG and risk assessments, methodologies, and mitigation strategies
- Provide county-specific case studies for applying proposed thresholds
- Address specific local issues



- Address critical void
  - No guidance on GHGs in CEQA currently exists
  - Legal scrutiny by AG, others
- Based on AB 32 and Scoping Plan
- Thresholds options land use projects
  - Plan based consistency with GHG reduction strategy OR
  - "Bright line" 1,100 metric tons/yr OR
  - Efficiency based 4.6 tons/service population/year (residents & employees)
- Take credit for lower vehicle/efficiencies of infill, mixed use projects
- Thresholds will be revisited if/when State guidance available

## Importance of GHG Thresholds

- Consistent with State CEQA Guidelines (SCG)
  - SCG encourages addressing GHG in CEQA docs, but does not recommend threshold
  - Significance determination must still be made even without significance thresholds
  - SCG "encourage lead agencies to rely on thresholds established by local air quality management districts"
- Guidelines provide certainty in determining significance of impacts and consistency in mitigation
  - Provide legally defensible approach to analyzing GHG impacts
  - Provide level playing field throughout Bay Area
  - Supported by AG and major environmental groups

# **GHG Tools & Resources**

- GHG Off-Model Spreadsheet Calculator for Projects
  - Imports URBEMIS results
  - Estimates additional GHG emissions from transportation and electricity use
  - Covers additional GHG mitigation measures
  - Will be available June 2010
- GHG Reduction Strategy Guidance
  - Interpretation of State CEQA Guidelines
  - GHG Methodology Guidance will offer recommended data sources, resources, and tools for quantifying GHG emissions and inventories; will address key issues such as, emission factors, forecasting, and VMT

# **GHG Tools** & Resources

- GHG Mitigation Measure Quantification
  - Developed through CAPCOA by Environ
  - Provides GHG range of effectiveness estimates for measures and guidance on how to interpret/assign effectiveness
  - Offers quantification assumptions, methodologies, and data sources and references for quantifying mitigation measures
  - Will be available June 2010
- Potential Offsite Mitigation Program
  - Allow project developers to mitigate their project emissions offsite to a less than significant level after all available onsite mitigation measures have been considered
- URBEMIS/GHG off-model training classes
- Technical assistance during project review



Similar to ICLEI approach:

- A) Community baseline inventory
- B) Forecast of future emissions
- C) Target consistent with AB 32
- D) Quantified GHG reductions from policies/measures
- E) Implementation strategy
- F) Environmental review
- G) Demonstrate new projects are consistent



- Purpose: to address questions and issues raised by local governments
- Draws from existing, established methods and standards
- Discusses key issues related to community inventories, forecasting, mitigation measures and implementation strategies
- Will be continuously updated seeking input from local government staff, stakeholders



### **Project characteristics**:

- Located in downtown Oakland
- 700 multi-family units
- 14,500 sq. ft. retail
- Excellent public transit





## Case Study: The Uptown, Oakland

| URBEMIS Measures                     | BAAQMD Methodology                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mix of Uses                          | Yes                                                                                                                                                                                                                                                                                                                                                                                           |
| Local serving retail within 1/2 mile | yes                                                                                                                                                                                                                                                                                                                                                                                           |
| Transit Service                      | Yes                                                                                                                                                                                                                                                                                                                                                                                           |
| Bike & Pedestrian                    | Yes                                                                                                                                                                                                                                                                                                                                                                                           |
| Affordable Housing                   |                                                                                                                                                                                                                                                                                                                                                                                               |
| Free Transit Passes                  |                                                                                                                                                                                                                                                                                                                                                                                               |
| Secure Bike Parking                  |                                                                                                                                                                                                                                                                                                                                                                                               |
| Guaranteed Ride Home Program         |                                                                                                                                                                                                                                                                                                                                                                                               |
| Car-Sharing                          |                                                                                                                                                                                                                                                                                                                                                                                               |
| Info on Transportation Alternatives  |                                                                                                                                                                                                                                                                                                                                                                                               |
| Carpool Matching Program             |                                                                                                                                                                                                                                                                                                                                                                                               |
| Preferred Carpool/Vanpool Parking    |                                                                                                                                                                                                                                                                                                                                                                                               |
| Reduced Parking Supply               |                                                                                                                                                                                                                                                                                                                                                                                               |
| Double Counting Credit               |                                                                                                                                                                                                                                                                                                                                                                                               |
| GHG Model Measures                   |                                                                                                                                                                                                                                                                                                                                                                                               |
| Drought tolerant landscaping         |                                                                                                                                                                                                                                                                                                                                                                                               |
| Tankless water heaters               |                                                                                                                                                                                                                                                                                                                                                                                               |
| 10% waste reduction                  |                                                                                                                                                                                                                                                                                                                                                                                               |
| Efficient toilets                    |                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      | URBEMIS MeasuresMix of UsesLocal serving retail within 1/2 mileTransit ServiceBike & PedestrianAffordable HousingFree Transit PassesSecure Bike ParkingGuaranteed Ride Home ProgramCar-SharingInfo on Transportation AlternativesCarpool Matching ProgramPreferred Carpool/Vanpool ParkingReduced Parking SupplyDouble Counting CreditGHG Model MeasuresInfo waste reductionEfficient toilets |

# Case Study: The Uptown, Oakland

| Residents: 1,736<br>Employees: 41<br>Service Pop: 1,777 | BAAQMD Methodology |  |  |  |
|---------------------------------------------------------|--------------------|--|--|--|
| CO2e Emissions in Metric Tons                           |                    |  |  |  |
| Transportation                                          | 3,200              |  |  |  |
| Electricity                                             | 1,041              |  |  |  |
| Other (NG, water, waste)                                | 1,525              |  |  |  |
| Total Emissions                                         | 5,766              |  |  |  |
| Metric Tons/Service Population                          | 3.2                |  |  |  |

## Case Study: North Richmond Specific Plan, Contra Costa County

### **Project Characteristics**:

- 2,100 dwelling units
- ~290,000 sq. ft. of retail center
- ~785,000 sq. ft. of office space
- 71 acres of park/open space
- Several bus stops in Project area





Case Study: North Richmond Specific Plan, Contra Costa County

| URBEMIS Measures                     | BAAQMD Methodology |  |  |  |
|--------------------------------------|--------------------|--|--|--|
| Mix of Uses                          | Yes                |  |  |  |
| Local serving retail within 1/2 mile | yes                |  |  |  |
| Transit Service                      | Yes                |  |  |  |
| Bike & Pedestrian                    | Yes                |  |  |  |
| Affordable Housing                   | Yes                |  |  |  |
| Free Transit Passes                  |                    |  |  |  |
| Secure Bike Parking                  | Yes                |  |  |  |
| Guaranteed Ride Home Program         |                    |  |  |  |
| Car-Sharing                          |                    |  |  |  |
| Info on Transportation Alternatives  | Yes                |  |  |  |
| Carpool Matching Program             |                    |  |  |  |
| Preferred Carpool/Vanpool Parking    |                    |  |  |  |
| Parking charge                       | Yes                |  |  |  |
| Passby Trip Reduction                | Yes                |  |  |  |
| GHG Model Measures                   |                    |  |  |  |
| Drought tolerant landscaping         | Yes                |  |  |  |
| Tankless water heaters               | Yes                |  |  |  |
| 10% waste reduction                  | Yes                |  |  |  |
| Efficient toilets                    | Yes                |  |  |  |

# **Case Study:** North Richmond Specific Plan, Contra Costa County

| Residents: 5,768<br>Employees: 3,672<br>Service Pop: 9,440 | BAAQMD Methodology |  |  |  |
|------------------------------------------------------------|--------------------|--|--|--|
| CO2e Emissions in Metric Tons                              |                    |  |  |  |
| Transportation                                             | 24,536             |  |  |  |
| Electricity                                                | 9,126              |  |  |  |
| Other (NG, water, waste)                                   | 10,668             |  |  |  |
| Total Emissions                                            | 44,332             |  |  |  |
| Metric Ton/Service Population                              | 4.6                |  |  |  |



## **Questions or Comments?**

# **Purpose of Community Risks** and Hazards Thresholds

- CARE program identifies 6 priority communities in Bay Area
  - High emissions, concentrations of toxics, PM
  - Vulnerable populations
- Seek to reduce impacts from land use, transportation decisions
- Promote infill, while protecting residents
- Address new sources of pollution and new receptors near existing sources (eg, freeways)



# **Emissions and Modeled** Air Toxics (2005)

#### **Risk-weighted Emissions**

### Modeled Air Toxics Risk



## **Proposed Local Community Risks and Hazards** Thresholds

| Single source<br>(Source or<br>Receptor) | <ul> <li>Compliance with Qualified Risk Reduction Plan OR</li> <li>Increased cancer risk &gt;10.0 in a million</li> <li>Increased non-cancer risk &gt; 1.0 Hazard Index (Chronic or Acute)</li> <li>Ambient PM<sub>2.5</sub> increase: &gt; 0.3 µg/m<sup>3</sup> annual average</li> <li>Zone of Influence: 1,000-foot radius from proposed project</li> </ul>                        |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cumulative<br>(Source or<br>Receptor)    | <ul> <li>Compliance with Qualified Risk Reduction Plan OR</li> <li>Cancer: &gt; 100 in a million (from all local sources)</li> <li>Non-cancer: &gt; 10.0* Hazard Index (from all local sources) (Chronic)</li> <li>PM<sub>2.5</sub>: &gt; 0.8 µg/m<sup>3</sup> annual average (from all local sources)</li> <li>Zone of Influence: 1,000-foot radius from proposed project</li> </ul> |

\* Threshold proposal revised since December 7, 2009 draft Guidelines

# Community Reduction Plans

- Supports community wide planning approach to reduce cumulative impacts
- Collaborative effort between local governments and Air District
- CRRP Elements:
  - 1. Defined CRRP Planning Area
  - 2. Emission Inventories
  - 3. Risk Modeling
  - 4. Goal or Reduction Target, e.g.,
    - a) No Net Increase/Net Reduction
    - b) Percent Reduction from Baseline Conditions
    - c) Equivalent to Regional Average Risk
  - 5. Emission Reduction Measures
  - 6. Monitoring and Updating Mechanism
  - 7. Public Involvement and CEQA Process

# **Developing** CRRPs/Support Local Planning Activities

- District staff to work closely with local government staff
  - District:
    - Template for plans and methodology for developing targets and mitigations
    - Emissions inventory & modeling
    - Identify areas with high emissions and exposures
    - Assist with mitigation
  - -Local government
    - Planning/policy framework
    - Public outreach
    - Assist with mitigation
- Initiate pilot projects San Jose, San Francisco
- Integrate with and assist local planning
  - Support FOCUS, PDAs, infill
  - Coordinate CRRPs with general plan updates, specific plans, etc.
  - District budget funds for local government assistance for plans

# Risk & Hazards Tools & Resources

- Construction risk screening spreadsheet
  - User defined equipment list
  - Estimates risk and  $PM_{2.5}$  concentration near site
- Stationary source risk screening tables
  - Database of District permitted sources including location, type of source, emissions, and risks
  - Google map application
- Roadway risk screening tables
  - Risks based on distance from all California highways
  - Surface street risks based on vehicle volumes
- Detailed Phased Modeling Methodology
  - Use of site specific inputs in more complex, sophisticated models





- Case Studies for
  - The Uptown, Oakland
  - North Richmond Specific Plan, Contra Costa County
- Demonstrate Use of Screening Tables
  - California Highways
  - Surface Streets
  - Permitted Stationary Sources
  - Railroads

### **Case Study: The Uptown, Oakland**



Step 1 – Determine 1,000 foot radius

Step 2 – Identify local roads (>10,000 vehicles/day) and freeways to be evaluated

Step 3 – Identify local permitted sources

Step 4 – Identify other sources

## Permitted Source Application through Google Earth

| Fly To   | Find Businesses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Directions                                                                                       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Fly to e | g., 37 25 19.1°N, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 05' 06'W                                                                                       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | × Q                                                                                              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| ▼ Place  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Add Content                                                                                      |
|          | F68 F68_Infa Japantown Red Japantown Red Japantown Red Japantown Red Japantown Berkeley Exported 1000 foot buffe 1000 foot buffe Downtown Berke Downtown Be | evelopment<br>evelopment<br>w<br>n Plan,<br>with ET<br>r_Info<br>eley_Info<br>es<br>ent, Oakland |
|          | Permitted source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EB                                                                                               |
| -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| ▼ Laye   | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |
|          | Primary Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  |
|          | Borders and Labels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |
|          | Panoramio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  |
| - 🗹 🖬    | Roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  |
| = 🗆 🖸    | 3D Buildings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                  |
|          | Осеал                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  |
|          | Street View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |
|          | Collocut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |
|          | Gobal Awareness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 8 00     | More                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |
| - 🗌 Те   | rrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |



## Construction Risk Screening Spreadsheet

|    | A1 - 🐔 USER INPUTS                          | 5              |          |                   |                                       |                  |              |        |         |                                |             |               |         |
|----|---------------------------------------------|----------------|----------|-------------------|---------------------------------------|------------------|--------------|--------|---------|--------------------------------|-------------|---------------|---------|
|    | A                                           | В              | С        | D                 | E                                     | F                | G            | н      | 1       | J                              | K           | L             | M       |
| 1  | USER INPUTS                                 | l              |          |                   |                                       |                  |              | 4.0    | 8.0     | 4.0                            | 8.0         | 12.0          | 4.0     |
| 2  |                                             | -              |          |                   |                                       |                  |              |        | Maximu  | m Distance from Fence Line whe | e threshold | d is exceeded |         |
| 3  | General Options                             |                |          |                   |                                       |                  | Scenario     | DP     | M       | PM2.5                          |             | Acrolein      |         |
| 4  | Construction site acreage:                  | total acres    |          |                   |                                       |                  |              | Cancer | Chronic | Annual Average Concentration   | Acute       | 8-hr          | Chronic |
| 5  | Age Sensitivity Factors                     | OFF            |          |                   |                                       |                  | Residential  |        |         |                                |             |               |         |
| 6  | Minimum Construction Duration:              | NA             |          |                   |                                       |                  | 5_SFR        | 7.0    | -       | 75.0                           | 50.0        | 175.0         | -       |
| 7  | Residential Project Type                    | single family  |          |                   |                                       |                  | 10_SFR       | 1.0    | -       | 70.0                           | 19.0        | 150.0         |         |
| 8  | Emission Sources Included:                  |                |          |                   |                                       |                  | 25_SFR       | -      | -       | 80.0                           | 9.0         | 125.0         | -       |
| 9  | Area Source                                 |                |          |                   |                                       |                  | 50_SFR       | -      | -       | 85.0                           | -           | 75.0          | -       |
| 10 |                                             |                |          |                   |                                       |                  | 100_SFR      | -      | -       | 90.0                           | -           | 25.0          | -       |
| 11 | Mobile Source                               |                |          |                   |                                       |                  | 250_SFR      | -      | -       | 150.0                          | -           | 9.0           | -       |
| 12 |                                             |                |          |                   |                                       |                  | 500_SFR      | -      | -       | 150.0                          | -           | -             | -       |
| 13 |                                             |                |          |                   |                                       |                  | 1000_SFR     | -      | -       | 80.0                           | -           | -             | -       |
| 14 |                                             |                |          |                   |                                       |                  | 2000_SFR     | 3.0    | -       | 55.0                           | -           | -             | -       |
| 15 | Soil Exportation Factors (mobile s          | ource only)    |          |                   |                                       |                  | 5000_SFR     | 4.0    | -       | 40.0                           | -           | -             | -       |
| 16 | cu. yds/acre residential                    | 1,500.00000    |          |                   |                                       |                  | Commercial   |        |         |                                |             |               |         |
| 17 | cu. yds/acre commercial/industrial          | 1,500.00000    |          |                   |                                       |                  | 5_TSF_Com    | 25.0   | 11.0    | 90.0                           | 125.0       | 225.0         | 3.0     |
| 18 | Truck Capacity (cu. yds)                    | 20.00000       |          |                   |                                       |                  | 10_TSF_Com   | 19.0   | 6.0     | 85.0                           | 100.0       | 225.0         | -       |
| 19 | Phasing Apportionment                       | t              |          |                   |                                       |                  | 30_TSF_Com   | 11.0   | 1.0     | 90.0                           | 65.0        | 225.0         | -       |
| 20 | Grading Length fraction of total duration   | 0.50000        |          |                   |                                       |                  | 60_TSF_Com   | 5.0    | -       | 95.0                           | 30.0        | 200.0         | -       |
| 21 | Paving Length fraction of total duration    | 0.50000        |          |                   |                                       |                  | 100_TSF_Com  | 9.0    | -       | 100.0                          | 30.0        | 200.0         | -       |
| 22 | Construction Start Dates for All            | Scenarios      |          |                   |                                       |                  | 300_TSF_Com  | 8.0    | -       | 200.0                          | 2.0         | 100.0         | -       |
| 23 | Grading Start Date                          | 1/1/2010       |          |                   |                                       |                  | 500_TSF_Com  | 6.0    | -       | 150.0                          | -           | 40.0          | -       |
| 24 | Paving Start Date                           | 2/1/2010       |          |                   |                                       |                  | 1000_TSF_Com | 8.0    | -       | 150.0                          | -           | 8.0           | -       |
| 25 | Construction Start Date                     | 3/1/2010       |          |                   |                                       |                  | 3000_TSF_Com | 45.0   | -       | 150.0                          | -           | -             | -       |
| 26 |                                             |                |          | Author            |                                       | i i              | 7000_TSF_Com | 20.0   | -       | 30.0                           | -           | -             | -       |
| 27 | Total Construction Durati                   | ion Equations  |          | Relates the tota  | l acreage of                          |                  | Industrial   |        |         |                                |             |               |         |
| 28 | Duration (work days) = a * units/sq.ft. + b |                |          | each construction | on site to the                        |                  | 5_TSF_Ind    | 25.0   | 12.0    | 95.0                           | 125.0       | 225.0         | 4.0     |
| 29 | Category                                    | a              | b        | the file "URBEM   | IS Data_v2                            |                  | 10_TSF_Ind   | 20.0   | 7.0     | 90.0                           | 100.0       | 225.0         | -       |
| 30 | Residential                                 | 1.10000        | 90.00000 |                   | -                                     | I                | 30_TSF_Ind   | 13.0   | 1.0     | 95.0                           | 65.0        | 225.0         | -       |
| 31 | Commercial                                  | 0.00060        | 82.00000 |                   |                                       |                  | 60_TSF_Ind   | 6.0    | -       | 100.0                          | 30.0        | 200.0         | -       |
| 32 | Industrial                                  | 0.00060        | 90.00000 |                   |                                       |                  | 100_TSF_Ind  | 11.0   | -       | 100.0                          | 30.0        | 200.0         | -       |
| 33 |                                             |                |          | Author            |                                       |                  | 300_TSF_Ind  | 9.0    | -       | 200.0                          | 2.0         | 100.0         | -       |
| 34 | Persistence Factors (mobil                  | e Source Only) |          | The ISC value is  | the persistence I                     | factor of        | 500_TSF_Ind  | 7.0    | -       | 150.0                          | -           | 40.0          | -       |
| 35 | Conversion Type                             | ISC or Default | Value    | the ISC area sou  | irce modeling (se<br>work sheet). The | e ISC<br>defaulc | 1000_TSF_Ind | 8.0    | -       | 150.0                          | -           | 8.0           | -       |
| 36 | 1-hour> 8 hr conversion                     | ISC Value      | 0.996    | value is the BAA  | worksneet). The<br>\QMD's recomm      | nended           | 3000_TSF_Ind | 45.0   | -       | 150.0                          | -           | -             | -       |
| 37 | 1-hour> annual conversion                   | ISC Value      | 0.312    | persistence fact  | or.                                   |                  | 6000_TSF_Ind | 25.0   | -       | 40.0                           | -           | -             | -       |
| 38 |                                             |                |          |                   |                                       |                  |              |        |         |                                |             |               |         |

#### Alameda County Screening Tables Particulate Matter less than 2.5 microns (ug/m<sup>3</sup>) Generated from Roadways



Southern Alameda County includes:

- Highway 84 (Dumbarton Bridge)
- Highway 92 (San Mateo-Hayward Bridge)
- Highway 205
- Highway 238
- Highway 262



#### Alameda County Screening Tables Particulate Matter less than 2.5 microns (ug/m<sup>3</sup>) Generated from Roadways

#### How to use the screening tables:

- Distance is from the edge of the nearest highway travel lane to the facility or development
- When two or more highways are within the influence area, sum the contribution from each freeway

| Alameda County State Highways                            |                                                          |                                                                       |                                                               |  |  |  |  |
|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|
| Highway Number                                           | Average Daily 2-Way<br>Traffic Volumes<br>(vehicles/day) | Start Location                                                        | End Location                                                  |  |  |  |  |
| 13 (Ashby Avenue)                                        | 74,000                                                   | Oakland, Highway 580                                                  | Berkeley, Highway 80                                          |  |  |  |  |
| 24                                                       | 158,000                                                  | Oakland, Highways 580 and 980                                         | Caldecott Tunnel                                              |  |  |  |  |
| 61                                                       | 27,000                                                   | San Leandro, Highway 112                                              | Alameda, Highway 260 North (Central<br>Avenue/Webster Street) |  |  |  |  |
| 77                                                       | 20,000                                                   | Oakland, Highway 880                                                  | Oakland, East 14th Street                                     |  |  |  |  |
| 80                                                       | 294,000                                                  | San Francisco - Oakland Bay<br>BridgeToll Plaza                       | ,<br>Albany, Highway 580, Buchanan Street                     |  |  |  |  |
| 84                                                       | 74,000                                                   | Fremont, Dumbarton Bridge<br>Toll Plaza                               | Highway 580                                                   |  |  |  |  |
| 92                                                       | 109,000                                                  | Hayward, San Mateo-<br>Hayward Bridge Toll Plaza                      | Hayward, Highway 185 and 238, Mission<br>Boulevard            |  |  |  |  |
| 123 (San Pablo<br>Avenue)                                | 30,500                                                   | Oakland, Highway 580                                                  | Albany, Solano Avenue                                         |  |  |  |  |
| 185 (International<br>Boulevard and East<br>14th Street) | 27,500                                                   | Hayward, Highways 92 and<br>238, Jackson Street/Foothill<br>Boulevard | Oakland, High and 12th Streets                                |  |  |  |  |
| 205                                                      | 112,000                                                  | Highway 580                                                           | San Joaquin County Line                                       |  |  |  |  |
| 238                                                      | 131,000                                                  | Fremont, Highway 680,<br>Mission Boulevard                            | San Leandro, Highway 880, Nimitz<br>Freeway                   |  |  |  |  |
| 260                                                      | 56,000                                                   | Alameda, Atlantic Avenue                                              | Alameda Posey Tube to Oakland,<br>Highway 880                 |  |  |  |  |
| 262                                                      | 90,000                                                   | Fremont, Highway 880                                                  | Fremont, Highway 680                                          |  |  |  |  |
| 580                                                      | 218,000                                                  | Highway 205 East                                                      | Albany, Highway 80 North                                      |  |  |  |  |
| 680                                                      | 266,000                                                  | Fremont, Scott Creek Road                                             | Pleasanton, Highway 580                                       |  |  |  |  |
| 880                                                      | 264,000                                                  | Fremont, Highway 262 East                                             | Oakland, Highway 80 West                                      |  |  |  |  |
| 980                                                      | 97.000                                                   | Oakland, Highway 880                                                  | Oakland, Highway 580                                          |  |  |  |  |

|         | Distance North or South of freeway - PM2.5 Concentrations (ug/m <sup>3</sup> ) |          |          |          |            |  |  |  |  |
|---------|--------------------------------------------------------------------------------|----------|----------|----------|------------|--|--|--|--|
| Highway | 100 feet                                                                       | 200 feet | 500 feet | 700 feet | 1,000 feet |  |  |  |  |
| 13      | 0.40                                                                           | 0.28     | 0.13     | 0.10     | 0.074      |  |  |  |  |
| 24      | 0.90                                                                           | 0.60     | 0.28     | 0.20     | 0.14       |  |  |  |  |
| 61      | 0.20                                                                           | 0.11     | 0.056    | 0.038    | 0.032      |  |  |  |  |
| 77      | 0.064                                                                          | 0.046    | 0.024    | 0        | 0          |  |  |  |  |
| 80      | 0.70                                                                           | 0.60     | 0.36     | 0.26     | 0.19       |  |  |  |  |
| 84      | 0.34                                                                           | 0.30     | 0.17     | 0.12     | 0.080      |  |  |  |  |
| 92      | 0.50                                                                           | 0.42     | 0.26     | 0.18     | 0.12       |  |  |  |  |
| 123     | 0.22                                                                           | 0.13     | 0.064    | 0.052    | 0.036      |  |  |  |  |
| 185     | 0.19                                                                           | 0.11     | 0.056    | 0.038    | 0.032      |  |  |  |  |
| 205     | 0.80                                                                           | 0.48     | 0.24     | 0.16     | 0.084      |  |  |  |  |
| 238     | 1.2                                                                            | 0.50     | 0.24     | 0.15     | 0.10       |  |  |  |  |
| 260     | 0.30                                                                           | 0.10     | 0.046    | 0.034    | 0.024      |  |  |  |  |
| 262     | 0.76                                                                           | 0.36     | 0.17     | 0.11     | 0.076      |  |  |  |  |
| 580     | 0.80                                                                           | 0.60     | 0.32     | 0.22     | 0.16       |  |  |  |  |
| 680     | 2.0                                                                            | 0.90     | 0.40     | 0.30     | 0.19       |  |  |  |  |
| 880     | 0.80                                                                           | 0.64     | 0.34     | 0.28     | 0.18       |  |  |  |  |
| 980     | 0.54                                                                           | 0.36     | 0.15     | 0.11     | 0.076      |  |  |  |  |

NORTH OR SOUTH OF ALAMEDA COUNTY HIGHWAY

| EAST OR WEST OF ALAMEDA COUNTY HIGHWAY |                                                                              |          |          |          |            |  |  |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------|----------|----------|----------|------------|--|--|--|--|--|--|
|                                        | Distance East or West of freeway - PM2.5 Concentrations (ug/m <sup>3</sup> ) |          |          |          |            |  |  |  |  |  |  |
| Highway                                | 100 feet                                                                     | 200 feet | 500 feet | 700 feet | 1,000 feet |  |  |  |  |  |  |
| 13                                     | 0.76                                                                         | 0.44     | 0.20     | 0.16     | 0.11       |  |  |  |  |  |  |
| 24                                     | 1.6                                                                          | 1.2      | 0.44     | 0.34     | 0.22       |  |  |  |  |  |  |
| 61                                     | 0.30                                                                         | 0.17     | 0.068    | 0.036    | 0.026      |  |  |  |  |  |  |
| 77                                     | 0.050                                                                        | 0.040    | 0.016    | 0        | 0          |  |  |  |  |  |  |
| 80                                     | 0.90                                                                         | 0.84     | 0.60     | 0.48     | 0.34       |  |  |  |  |  |  |
| 84                                     | 0.34                                                                         | 0.30     | 0.20     | 0.15     | 0.11       |  |  |  |  |  |  |
| 92                                     | 0.50                                                                         | 0.44     | 0.30     | 0.22     | 0.16       |  |  |  |  |  |  |
| 123                                    | 0.30                                                                         | 0.20     | 0.080    | 0.060    | 0.036      |  |  |  |  |  |  |
| 185                                    | 0.38                                                                         | 0.24     | 0.060    | 0.036    | 0.030      |  |  |  |  |  |  |
| 205                                    | 0.90                                                                         | 0.60     | 0.26     | 0.18     | 0.13       |  |  |  |  |  |  |
| 238                                    | 1.2                                                                          | 0.50     | 0.24     | 0.18     | 0.12       |  |  |  |  |  |  |
| 260                                    | 0.22                                                                         | 0.14     | 0.044    | 0.032    | 0.020      |  |  |  |  |  |  |
| 262                                    | 0.96                                                                         | 0.40     | 0.18     | 0.15     | 0.096      |  |  |  |  |  |  |
| 580                                    | 1.1                                                                          | 0.96     | 0.58     | 0.44     | 0.34       |  |  |  |  |  |  |
| 680                                    | 2.8                                                                          | 2.0      | 0.76     | 0.56     | 0.38       |  |  |  |  |  |  |
| 880                                    | 0.90                                                                         | 0.84     | 0.56     | 0.40     | 0.32       |  |  |  |  |  |  |
| 980                                    | 0.84                                                                         | 0.60     | 0.26     | 0.18     | 0.12       |  |  |  |  |  |  |

• Screening tables based on meteorological data collected from Oakland Sewage Treatment Plant in 2000 (Highways 13, 24, 61, 77, 80, 123, 185, 238, 260, 880, and 980), Pleasanton in 2005 (Highways 580 and 680), Union City in 1996 (Highway 84, 92, 238, and 262), and Livermore Laboratory in 2005 (Highway 205).

# **Roadway Screening Tables**

#### Surface Streets Screening Tables Particulate Matter less than 2.5 microns (ug/m3) Generated from Roadways

#### How to use the screening tables:

- Distance is from the edge of the nearest highway travel lane to the facility or development
- When two or more highways are within the influence area, sum the contribution from each freeway

| NORTH-SOUTH DIRECTIONAL ROADWAY |                                                                              |          |          |          |            |  |  |  |
|---------------------------------|------------------------------------------------------------------------------|----------|----------|----------|------------|--|--|--|
|                                 | Distance East or West of Roadway - PM2.5 Concentrations (ug/m <sup>3</sup> ) |          |          |          |            |  |  |  |
| Average Annual<br>Daily Traffic | 100 feet                                                                     | 200 feet | 500 feet | 700 feet | 1,000 feet |  |  |  |
| 1,000                           |                                                                              |          |          |          |            |  |  |  |
| 5,000                           | No analysis required                                                         |          |          |          |            |  |  |  |
| 10,000                          |                                                                              |          |          |          |            |  |  |  |
| 20,000                          | 0.14                                                                         | 0.090    | 0.037    | 0.029    | 0.021      |  |  |  |
| 30,000                          | 0.21                                                                         | 0.14     | 0.056    | 0.043    | 0.032      |  |  |  |
| 40,000                          | 0.28                                                                         | 0.18     | 0.074    | 0.057    | 0.042      |  |  |  |
| 50,000                          | 0.35                                                                         | 0.23     | 0.093    | 0.071    | 0.053      |  |  |  |
| 60,000                          | 0.42                                                                         | 0.27     | 0.11     | 0.086    | 0.063      |  |  |  |
| 70,000                          | 0.49                                                                         | 0.32     | 0.13     | 0.10     | 0.074      |  |  |  |
| 80,000                          | 0.56                                                                         | 0.36     | 0.15     | 0.11     | 0.084      |  |  |  |
| 90,000                          | 0.63                                                                         | 0.41     | 0.17     | 0.13     | 0.095      |  |  |  |
| 100,000                         | 0.70                                                                         | 0.45     | 0.19     | 0.14     | 0.11       |  |  |  |

| EAST-WEST DIRECTIONAL ROADWAY |                                                                                |          |          |          |            |  |  |  |
|-------------------------------|--------------------------------------------------------------------------------|----------|----------|----------|------------|--|--|--|
| Average Annual                | Distance North or South of Roadway - PM2.5 Concentrations (ug/m <sup>3</sup> ) |          |          |          |            |  |  |  |
| Daily Traffic                 | 100 feet                                                                       | 200 feet | 500 feet | 700 feet | 1,000 feet |  |  |  |
| 1,000                         |                                                                                |          |          |          |            |  |  |  |
| 5,000                         | No analysis required                                                           |          |          |          |            |  |  |  |
| 10,000                        |                                                                                |          |          |          |            |  |  |  |
| 20,000                        | 0.16                                                                           | 0.10     | 0.040    | 0.030    | 0.018      |  |  |  |
| 30,000                        | 0.25                                                                           | 0.17     | 0.075    | 0.048    | 0.028      |  |  |  |
| 40,000                        | 0.28                                                                           | 0.21     | 0.092    | 0.072    | 0.046      |  |  |  |
| 50,000                        | 0.35                                                                           | 0.26     | 0.12     | 0.090    | 0.070      |  |  |  |
| 60,000                        | 0.42                                                                           | 0.31     | 0.14     | 0.11     | 0.084      |  |  |  |
| 70,000                        | 0.49                                                                           | 0.36     | 0.17     | 0.13     | 0.10       |  |  |  |
| 80,000                        | 0.56                                                                           | 0.42     | 0.19     | 0.14     | 0.11       |  |  |  |
| 90,000                        | 0.63                                                                           | 0.47     | 0.22     | 0.16     | 0.13       |  |  |  |
| 100,000                       | 0.70                                                                           | 0.52     | 0.24     | 0.18     | 0,14       |  |  |  |
|                               |                                                                                |          |          |          |            |  |  |  |

### **Roadway Impacts Near The Uptown**

| Highway 980 @ 700 feet                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | West Grand Avenue @                           |                     |                                  |                   |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------|----------------------------------|-------------------|
| PM2.5 = 0.096 ug/m3<br>Cancer = 10 in a million |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 850 feet<br>PM2.5 = 0.03 ug/m3                | Roads               | PM2.5<br>(ug/m3)                 | CEQA<br>Threshold |
| Jan Start                                       | 0-8-1-24th St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               | Highway 980         | 0.10                             | 0.30              |
|                                                 | 199 Aler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               | Highway 123         | 0.08                             |                   |
| Castro Street @ 500 feet                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | Castro St           | 0.05                             |                   |
| PM2.5 = 0.05                                    | Common 1 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Telegraph Ave @                               | W Grand             | 0.03                             |                   |
| Cancer = 2.4 in a                               | ISP STORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 feet                                      | Telegraph           | 0.13                             |                   |
| million                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cancer Risk = 7 in a                          | 20 <sup>th</sup> St | 0.13                             |                   |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | million                                       | Broadway            | 0.03                             |                   |
| 2001 00                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Doth Street @ 100 feet                        |                     |                                  |                   |
| 0                                               | and and a set of the s | PM2.5 = 0.13 ug/m3<br>Cancer = 7 in a million | Roads               | Cancer<br>(cases per<br>million) | CEQA<br>Threshold |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STIM BAN                                      | Highway 980         | 10                               | 10                |
|                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Broadway St @ 400 ft                          | Highway 123         | 4                                |                   |
|                                                 | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PM2.5 = 0.03 ug/m3                            | Castro St           | 2.4                              |                   |
| San Pablo Ave (Highway                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cancer = 1.6 in a million                     | W Grand             | 1.4                              |                   |
| PM2.5 = 0.08 ug/m3                              | ©2010 Goögle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               | Telegraph           | 7                                |                   |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                     |                                  | _                 |
| Hazard = 0.02                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | 20 <sup>th</sup> St | 7                                |                   |

### **Permitted Sources Near The Uptown**



### **Cumulative Impacts Near The Uptown**



| Sources               | PM2.5<br>(ug/m3) | CEQA<br>Threshold |
|-----------------------|------------------|-------------------|
| Highway               | 0.18             | 0.80              |
| Surface Street        | 0.37             |                   |
| Stationary<br>Sources | 0.16             |                   |
| CUMULATIVE            | 0.71             |                   |

| Source                | Cancer<br>(cases<br>per<br>million) | CEQA<br>Threshold |
|-----------------------|-------------------------------------|-------------------|
| Highway               | 14                                  | 100               |
| Surface Street        | 19                                  |                   |
| Stationary<br>Sources | 16                                  |                   |
| CUMULATIVE            | 49                                  |                   |

## Case Study: North Richmond Specific Plan, Contra Costa County



Step 1 – Determine 1,000 foot radius

- Step 2 Identify local roads (>10,000 vehicles/day) and freeways to be evaluated
- Richmond Parkway
   (30,000 vehicles/day)
- Step 3 Identify local permitted sources
- Step 4 Identify other sources:
- Passenger/Freight rail lines (9 locomotives/hr)

### Preliminary Screening, Conservative Assumptions: North Richmond Specific Plan

![](_page_37_Picture_1.jpeg)

**Stationary Sources:** 

| Туре  | Backup<br>Generator | CEQA<br>Threshold |
|-------|---------------------|-------------------|
| PM2.5 | 0.04                | 0.3               |
| Risk  | 24                  | 10                |

#### Roadway:

| Туре  | Richmond<br>Parkway | CEQA<br>Threshold |
|-------|---------------------|-------------------|
| PM2.5 | 0.25                | 0.3               |
| Risk  | 13                  | 10                |

#### Railroad:

| Туре  | Rail | CEQA<br>Threshold |
|-------|------|-------------------|
| PM2.5 | 0.17 | 0.30              |
| Risk  | 81   | 10                |

## Site Specific Analysis: North Richmond Specific Plan

![](_page_38_Picture_1.jpeg)

Roadway:

| Туре  | Richmond<br>Parkway | CEQA<br>Threshold |
|-------|---------------------|-------------------|
| PM2.5 | 0.25                | 0.3               |
| Risk  | 10                  | 10                |

#### Railroad:

| Туре  | Rail | CEQA<br>Threshold |
|-------|------|-------------------|
| PM2.5 | 0.02 | 0.30              |
| Risk  | 10   | 10                |

![](_page_39_Picture_0.jpeg)

![](_page_40_Picture_0.jpeg)

![](_page_40_Picture_1.jpeg)

- Workshops in each county with local staff April
- Public workshops for interested stakeholders April
- CAPCOA HRA/Land Use Workshop May 3
- URBEMIS/GHG off-model training May
- Seek Air District Board approval of significance thresholds in June 2010

![](_page_41_Picture_0.jpeg)

## **Questions or Comments?**