Newby Island Landfill 1601 Dixon Landing Road, Milpitas, CA 95035 o 408.586.2263 c 510.298.7892 republicservices.com

TV Tracking #: 567

1. D RECEIVED IN 08/31/2022 ENFORCEMENT:

Direction of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V Reports Director of the Air Division, USEPA Region IX 75 Hawthorne Street San Francisco, CA 94105 Attn: Air-3

Subject:

Combined NESHAP Semi-Annual Report, Report, 8-34 Semi-Annual Report, Title V

Semi-Annual Monitoring Report and SSM Plan Report

Newby Island Landfill, Milpitas, California (Title V Facility No. A9013)

Dear Sir or Madam:

International Disposal Corp of CA (IDCC) is pleased to submit the enclosed combined National Emission Standards for Hazardous Air Pollutants (NESHAP) Semi-Annual Report, Bay Area Air Quality Management District (BAAQMD), Regulation 8, Rule 34 Semi-Annual Report, Semi-Annual Startup, Shutdown and Malfunction (SSM) Plan Report, and Title V Semi-Annual Monitoring Report to the BAAQMD and the U.S. Environmental Protection Agency (USEPA) Region IX for the Newby Island Landfill (Newby). The NESHAP report, Title V Semi-Annual Monitoring Report, the BAAQMD Rule 8-34 Semi-Annual Report, and the SSM Plan Report covers the period from February 1, 2022 through July 31, 2022.

The Title V reports meet the requirements specified in the Title V Permit, BAAQMD guidance on Title V report submittals, and BAAQMD Regulation 2, Rule 6. The BAAQMD Rule 8-34 report includes the information required by BAAQMD Rule 8-34-411 and also satisfies the requirements under the New Source Performance Standards (NSPS) for municipal solid waste landfills (40 Code Federal of Regulations [CFR] Part 60, Subpart WWW), including 40 CFR 60.757(f). This report also satisfies the reporting requirements under NESHAP AAAA. The Semi-Annual SSM Plan Report satisfies the requirements under the NESHAP rule for semi-annual reporting of SSM Plan implementation including 40 CFR 63.10(d)(S). The Title V reports and the SSM Plan report each includes a certification by the responsible official for Newby. Please note, the updated NESHAP rule went into effect on September 27, 2021, removing SSM Plan requirements. As there are still SSM Plan references in Newby's Title V Permit, Newby will comply with the SSM reporting requirements.

If you have any questions regarding this submittal, please do not hesitate to call me at (408) 586-2263 or email me at RHuber2@republicservices.com.

Sincerely,

Rachelle Huber Environmental Manager Newby Island Landfill

cc: Josh Mills, IDCC

Kevin Divincenzo, IDCC Maria Bowen, SCS Engineers Pat Sullivan, SCS Engineers Anne Liu, SCS Engineers NESHAP/NSPS/BAAQMD Rule 8-34 Semi-Annual Report, SSM Plan Semi-Annual Report, and Title V Semi-Annual Report Newby Island Landfill Milpitas, California (Facility No. 9013)

Prepared for:

International Disposal Corporation of California 1601 Dixon Landing Road Milpitas, CA 95035

For Submittal to:

Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

SCS ENGINEERS

01205162.04 Task 7 | August 2022

4683 Chabot Drive, Suite 200 Pleasanton, CA 94588 562-426-9544 This submittal consisting of the National Emission Standards for Hazardous Air Pollutants (NESHAP)/New Source Performance Standards (NSPS)/Bay Area Air Quality Management District (BAAQMD) Rule 8-34 Semi-Annual Report, the Semi-Annual Startup, Shutdown, and Malfunction Plan Report, and the Title V Semi-Annual Monitoring Report for the Newby Island Landfill in Milpitas, California, dated August 2022, was prepared and reviewed by the following:

Anne Liu

Staff Professional

SCS ENGINEERS

Maria Bowen Project Manager

SCS ENGINEERS

Patrick S. Sullivan, REA, CPP, BCES Senior Vice President

Pater & Sulley

SCS ENGINEERS

Table of Contents

Secti	on		F	Page
SECTI	ON I.	NES	HAP/NSPS/BAAQMD Rule 8-34 Semi-Annual Report	1
1.0	Introd	luction .		1
2.0	Site E	Backgro	und Information	2
	2.1	Existing	g Air Permits	2
	2.2	Existing	g Landfill Gas Collection and Control System	3
3.0	Monit	oring a	nd Records	3
	3.1	Continu	uously Monitored Parameters	4
		3.1.1	Gas Extraction System Downtime	4
		3.1.2	Emission Control System Downtime	5
		3.1.3	Individual Well Downtime	5
		3.1.4	Flow Meter and Temperature Gauge Downtime	6
		3.1.5	Flare Combustion Zone Temperature	6
	3.2	Compo	nent Leak Quarterly Monitoring	6
		3.2.1	First Quarter 2022 Monitoring	7
		3.2.2	Second Quarter 2022 Monitoring	7
	3.3	Control	l Efficiency	7
	3.4	Landfill	I Surface Emissions Monitoring	7
		3.4.1	First Quarter 2022 Monitoring	7
		3.4.1	Second Quarter 2022 Monitoring	8
	3.5	Wellhe	ad Monthly Monitoring	8
		3.5.1	Pressure	8
		3.5.2	Oxygen	9
		3.5.3	Temperature	9
		3.5.4	Corrective Action Analysis	10
		3.5.5	Enhanced Monitoring	10
	3.6	Cover I	ntegrity Monitoring	10
	3.7	Gas Ge	eneration Estimate and Monthly Landfill Gas Flow Rates	11
	3.8	Annual	Waste Acceptance Rate and Refuse In Place	11
		3.8.1	Non-Degradable Waste Areas	11
SECT	ON II.	SSM	l Plan Report	12
SECTI	ON III	. Title	V Semi-Annual Report	13

Tables

Table 1a - GCCS Downtime

Table 1b - Flare A-2 Downtime

Table 1c - Flare A-3 Downtime

Table 2 - Individual Well Startups, Shutdowns and Decommissions

Table 3 - Wells with Positive Pressure

Table 4 – Wells with Oxygen Exceedances

Table 5 - Wells with Temperature Exceedances

Appendices

Appendix A – Responsible Official Certification Form

Appendix B - Existing GCCS Layout

Appendix C – Surface Emission and GCCS Component Leak Monitoring Results

Appendix D – Flare Source Test Excerpt (Issued March 25, 2022)

Appendix E – Well Exceedance Documentation

Appendix F - Title V Semi-Annual Report

SECTION I. NESHAP/NSPS/BAAQMD RULE 8-34 SEMI-ANNUAL REPORT

1.0 INTRODUCTION

On behalf of the International Disposal Corporation of California (IDCC), SCS Engineers (SCS) hereby submits this Semi-Annual National Emission Standards for Hazardous Air Pollutants (NESHAP) Report, New Source Performance Standard (NSPS), 40 Code of Federal Regulations (CFR) Part 60, Subpart WWW)/Bay Area Air Quality Management District (BAAQMD or District) Rule 8-34 Semi-Annual Report and Semi-Annual Start-up, Shutdown, and Malfunction (SSM) Plan Report for the period of February 1, 2022 through July 31, 2022 to the BAAQMD for the Newby Island Sanitary Landfill and Recyclery (Newby).

This Semi-Annual report also meets the requirements of the NESHAP for MSW landfills, 40 CFR 63, Subpart AAAA and complies with the requirements specified in Newby's Title V permit.

Due to the site's permitted design capacity being over the 2.5 million Megagram/2.5 million cubic meter limits and having an uncontrolled non-methane organic compound (NMOC) content exceeding 50 Megagrams per year, the major compliance provisions of Subparts XXX and WWW were replaced as of September 27, 2021 by the NESHAP 40 CFR 63, Subpart AAAA requirements, which essentially implement and enhance provisions of 40 CFR 60, Subpart XXX (which were updated NSPS for Municipal Solid Waste (MSW) landfills promulgated in 2016) as well as removing the SSM Plan requirements. However, because the Title V Permit references Subpart WWW and SSM requirements, this semi-annual report will continue to include Subpart WWW and an SSM Plan report. A separate annual Subpart XXX report will also be submitted. References to Subpart WWW and SSM will be removed from all reports after a new Title V Permit is issued removing references to Subpart WWW and updating applicable regulations, or we otherwise obtain approval from the BAAQMD to only comply with the new requirements.

This Semi-Annual report includes a certification signed by a Responsible Official which is provided in **Appendix A**. In accordance with the NESHAP for Landfills, this report is submitted semi-annually.

The Semi-Annual Report pertains to the landfill gas (LFG) collection and control system (GCCS) operated at Newby.

This report includes the following information, as required by BAAQMD Rule 8-34-411:

- All collection system and/or component downtime and reasons for the shutdown (8-34-501.1).
- All emission control system downtime and reason for the shutdown (8-34-501.2).
- Continuous temperature monitoring and dates of any excesses (8-34-501.3 and 507).
- Testing performed to satisfy of the requirements of this Rule (8-34-501.4).
- Monthly LFG flow rates and excesses (8-34-501.5).

- Collection and emission control system leak testing and any excesses, action taken to correct excesses, and re-monitored concentrations (8-34-501.6 and 503).
- Landfill surface monitoring, location of excesses, excess concentration, date discovered, actions taken to repair the excess, and re-monitored concentrations (8-34-501.6 and 506).
- Annual waste acceptance rate and the current amount of waste in-place (8-34-501.7).
- Records of non-degradable waste if area is excluded from LFG collection (8-34-501.8).
- Well head monitoring including gauge pressure, LFG temperature, and LFG oxygen concentration (8-34-501.9 and 505).
- Continuous flow monitoring (8-34-501.10).

Information summarizing the monitoring activities associated with the above-listed items is provided in the following sections.

2.0 SITE BACKGROUND INFORMATION

Newby is a MSW landfill located in Milpitas, California and is owned and operated by IDCC. The municipal refuse disposal site is located in Santa Clara County on the western terminus of Dixon Landing Road. The 342-acre landfill began accepting waste circa 1930 and is currently in operation.

Newby is subject to NSPS Subpart XXX since it commenced construction, reconstruction, or modification after July 17, 2014. Pursuant to NSPS Subpart XXX, Newby was required to initiate GCCS operations, including associated monitoring, recordkeeping, and reporting, on September 4, 2019 (30 months after the submittal of the NMOC Emissions Rate Report). For ease of recordkeeping, Newby elected to begin reporting effective September 1, 2019. However, due to potentially overlapping requirement, Newby is continuing to report semi-annually under the existing Title V which includes NSPS Subpart WWW requirements and Rule 8-34.

2.1 EXISTING AIR PERMITS

Newby maintains a BAAQMD Permit to Operate (PTO) (Plant No. 9013), which includes conditions for the wellfield, collection system, and A-2 and A-3 Flare stations (Condition No. 10423). This condition incorporates all applicable requirements from NSPS Subpart WWW and from BAAQMD Rule 8-34, which are addressed in this report. Newby also maintains a Title V Permit (Facility No. A9013), which expired on December 20, 2017. On June 20, 2017, a Title V Renewal Application was submitted to the BAAQMD. The site currently operates under an application shield. On November 30, 2021, Mr. Dennis Jang with the BAAQMD informed IDCC that the renewal application (A/N 28723) is open and in process and another renewal application will not be needed.

A GCCS Design Plan was prepared for the site to review and determine the adequacy of the existing LFG system. The current design of the system was determined to be adequate to comply with both NSPS and BAAQMD Rule 8-34 requirements. The system design is based on the density of wells calculated to sufficiently extract the maximum flow of LFG generated, according to the United States (U.S.) Environmental Protection Agency (USEPA) LFG emissions model (LandGEM). The GCCS is

designed to control surface emissions, as well as to minimize subsurface lateral migration of LFG. Both the perimeter of the landfill and the landfill surface are monitored on a quarterly basis.

Additional details regarding the GCCS are in the GCCS Design Plan that was previously submitted to the BAAQMD. A drawing showing the existing GCCS is provided in **Appendix B**.

2.2 EXISTING LANDFILL GAS COLLECTION AND CONTROL SYSTEM

The GCCS at Newby consists of extraction wells used to collect the LFG from within the landfill (the "wellfield") and a piping system (the "collection system") used to convey the collected LFG to the control systems for destruction. The LFG is extracted from the landfill through a combination of vertical gas extraction wells and horizontal gas extraction trenches/pipes, as well as leachate collection system components. All landfill gas is controlled by one of more of the following means: The A-2 and A-3 Flares or the IC engine power generators operated by the San Jose/Santa Clara Water Pollution Control Plant (Facility #A778).

A diagram of the GCCS displaying system component locations is shown in the site plan(s) provided in **Appendix B**.

3.0 MONITORING AND RECORDS

This NSPS Semi-Annual Report for Newby is being submitted to the BAAQMD and USEPA in compliance with 40 CFR Subpart WWW ("NSPS"), including 40 CFR 60.757(f), which describe the items to be submitted in an annual report for landfills seeking to comply with NSPS using an active collection system. In compliance with 40 CFR 63, Subpart AAAA (NESHAP for MSW Landfills), this report is submitted semi-annually.

Please note, the Newby is subject to the 40 CFR Subpart XXX (New NSPS) by commencing construction on its approved expansion. The references in this report notes Subpart WWW and Subpart XXX.

Newby is also subject to the new 40 CFR Subpart AAAA (NESHAPs), which went into effect on September 27, 2021, at which time the SSM reporting requirements no longer apply. However, as the SSM requirements are still noted in the Title V Permit, the SSM report has not been closed out as of the submittal of this report.

This section of the report represents the Semi-Annual Monitoring Report and covers the items required to be reported in the applicable rules under 40 CFR Part 60, Subpart WWW, 40 CFR Part 60, Subpart XXX, and 40 CFR Part 63, Subpart AAAA. The reporting period is from February 1, 2022 through July 31, 2022. The table below summarizes the corresponding sections for the regulatory references addressed in this report:

Corresponding Regulatory References

Section	Emission Guideline Subpart Cc (NSPS Subpart WWW)	NSPS Subpart XXX	Updated NESHAP Subpart AAAA
Pressure Requirements	40 CFR 60.753(b)	40 CFR 60.763(b)	40 CFR 63.1958(b)
Temperature and Oxygen Requirements	40 CFR 60.753(c)	40 CFR 60.763(c)	40 CFR 63.1958(c)
Corrective Action Analysis		40 CFR 60.767(g)(7)	40 CFR 63.1981(h)(7)
Enhanced Monitoring			40 CFR 63.1981 (h) (8)

Section	Emission Guideline Subpart Cc (NSPS Subpart WWW)	NSPS Subpart XXX	Updated NESHAP Subpart AAAA
Surface Emissions Monitoring	40 CFR 60.753(d)	40 CFR 60.763(d)	40 CFR 63.1958(d)
Venting to Control System	40 CFR 60.753(e)	40 CFR 60,763(e)	40 CFR 63.1958(e)
Cover Integrity	40 CFR 60.755(c)(5)	40 CFR 60.765(c)(5)	40 CFR 63.1960(c)(5)
Enclosed Flare	40 CFR 60.756(b)	40 CFR 60.766(b)	40 CFR 63.1961(b)
Open Flare	40 CFR 60.756(c)	40 CFR 60.766(c)	40 CFR 63.1961(c)
Other Control Device	40 CFR 60.756(d)	40 CFR 60.766(d)	40 CFR 63.1961(d)
Exceedances	40 CFR 60.757(f)(1)	40 CFR 60.767(g)(1)	40 CFR 63.1981(h)(1)
Gas Stream Diverted	40 CFR 60.757(f)(2)	40 CFR 60.767(g)(2)	40 CFR 63.1981(h)(2)
Control Device Downtime	40 CFR 60.757(f)(3)	40 CFR 60.767(g)(3)	40 CFR 63.1981(h)(3)
Collection System Downtime	40 CFR 60.757(f)(4)	40 CFR 60.767(g)(4)	40 CFR 63.1981(h)(4)
3-Hour Temperature	40 CFR 60.758(c)(1)(i)	40 CFR 60.768(c)(1)(i)	40 CFR 63.1983(c)(1)(i)
Additional Surface Emissions Monitoring	40 CFR 60.757(f)(5)	40 CFR 60.767(g)(5)	40 CFR 63.1981(h)(5)
Well Expansion	40 CFR 60.757(f)(6)	40 CFR 60.767(g)(6)	40 CFR 63.1981(h)(6)
Source Test			
Liquids Reporting		40 CFR 60.767(k)	
24-Hour High Temperature			40 CFR 63.1981(k)

3.1 CONTINUOUSLY MONITORED PARAMETERS

According to BAAQMD Rule 8-34-301.1, the GCCS must be operated continuously. To comply with this requirement, the landfill owner/operator is required to maintain full-time operation of the LFG collection system and control devices, as well as individual extraction wells. Downtime for any of these components must be reported in the Rule 8-34 Semi-Annual Report. This information is summarized below and in the attached tables. Records of continuously monitored parameters are available for review at the site.

3.1.1 Gas Extraction System Downtime

All collected gases were conveyed to the flare station control system. The flare station is equipped with an automatic shutdown and alarm system that powers down the specific blower whenever a flare shuts down to ensure that no collected LFG is vented to the atmosphere untreated.

During the reporting period, the LFG extraction system was off-line on several occasions for a total of 53.37 hours. Shutdowns involved pre-programmed or manual system shutdowns prior to non-compliant operation or equipment failure, and involved inspection, maintenance and/or repair of the GCCS, and thus meet the criteria for allowed GCCS downtime, as specified in Rule 8-34-113 and in accordance with the BAAQMD November 5, 2018 Compliance Advisory, with the exception of nine events. These events occurred on the following dates:

- February 10, 2022 (IDs 08F38 and 08F39 low temperature);
- February 22, 2022 (IDs 08F64 and 08F65 pump work);
- March 21, 2022 (IDs 08G42 and 08G43 sump maintenance);
- April 6, 2022 (IDs 08G88 and 08G89 routine quarterly sump jetting maintenance);

- May 1, 2022 (IDs 08H21 and 08H22 utility outage);
- May 4, 2022 (IDs 08H34 and 08H35 programmable logic controller [PLC] malfunction);
- May 18, 2022 (IDs 08H81 and 08H82 main blower variable Frequency Drive [VFD] malfunction);
- June 15, 2022 (IDs 08J42 and 08J43 Pacific Gas and Energy [PG&E] power outage); and
- July 27, 2022 (IDs 08K52 and 08K53 flame failure).

Reportable Compliance Activity (RCA) forms and combined 10/30-Day Title V Reports and Notifications for the respective RCA IDs were submitted to the BAAQMD within the required time frames.

On July 14, 2022, Ms. Aleah Zapf issued Notice of Violation (NOV) A61610 for an alleged failure to operate the GCCS continuously during RCA event Breakdown ID 08J42 and Excess Excursion ID 08J43, which was due to an unplanned utility power outage from PG&E. For additional information, including corrective actions taken, please refer to the July 22, 2022 10-Day Deviation Letter and NOV Response Letter.

A summary of the GCCS downtime for this reporting period is provided in **Table 1a**, including the date, reason for the downtime, description of the corrective measure(s) implemented to resume GCCS operation, and the total elapsed time for each event. Gas extraction system downtime records are available for review at the site.

3.1.2 Emission Control System Downtime

During the reporting period, the A-2 and A-3 Flares were off-line on several occasions. Summaries of the A-2 and A-3 Flares downtime are provided in **Table 1b and 1c**, including the date, reason for the downtime, and the total elapsed time for each event. During the reporting period, downtime for the A-2 Flare occurred over a cumulative period of approximately 100.80 hours and for the A-3 Flare over a cumulative period of approximately 91.60 hours. Emission control system downtime records are available for review at the site.

3.1.3 Individual Well Downtime

In some instances, the entire GCCS may not go off-line, but individual extraction wells may be taken off-line for inspection, maintenance, and/or repair, and active filling in the vicinity of the well, as well as for other unforeseen circumstances. These are generally planned events, although such events can occur without notice. During the reporting period, several wells were temporarily taken offline or were taken offline during a previous reporting period and remained offline for a portion of the reporting period due to active filling and construction activities occurring in their vicinity.

On February 14, 2022, IDCC submitted a Request for Limited Exemption from the requirements of BAAQMD Regulation 8-34 117.1 through 117.6 and 118 Construction Plan (118 Plan) for construction activities to the BAAQMD.

NILEW741, NILEW465, NILEW674, NILEW733, NILEW744, NILEW745, NILEW066, NILEW499, NILEW501, NILEW511, NILEW667, NILEW688, NILEW691, NILMW017, NILMW019, NILMW020, NILMW021, NILEW476, NILEW786, NILEW725, NIL3EW31, NILEW479, NILEW690, NILEW787, NILEW752, NILEW483, NILEW110, NILEW00E, NILMW023, and NILMW024 remained offline at the end of the reporting period and will be reported as a startup once the filling operations around each

well cease and the wells are brought back online. These wells were taken off-line in accordance with the requirements of Rule 8-34. Details of the well SSMs can be found in **Table 2**.

Pursuant to Permit Condition No. 10423, Part 6, the owner/operator must notify the District of expected installation or decommissioning dates. During the reporting period, a combined Well Decommissioning and Startup Notification Letter was submitted to the BAAQMD on April 5, 2022. A subsequent notification will be submitted for construction events in 2022.

Details of individual well shutdown and well startups occurring during the reporting period are provided in **Table 2**. Compliance with or exemption from Rule 8-34 was met during each of these events. Please see the SSM Report included in this submittal for additional details.

3.1.4 Flow Meter and Temperature Gauge Downtime

The continuous operation of the GCCS is measured through the continuous measurement of LFG flow to each flare and flare combustion temperature. As required by Rule 8-34, each flare at Newby is equipped with flow measuring devices and temperature gauges that provide continuous readout displays using digital chart recorders. During the reporting period, the flow meter(s) and temperature gauge(s)/recorders at the flare station did not go out of operation due to malfunction or other breakdown conditions. Continuous monitoring and calibration information are available for review at the site.

3.1.5 Flare Combustion Zone Temperature

Newby is required by permit condition No. 10423, Part 9 to operate the A-2 and A-3 Flares in such a manner that the combustion zone temperature of the flares does not drop below the permitted limit of 1,400 and 1,501 degrees Fahrenheit (°F), respectively, (averaged over a 3-hour period) or a higher or lower temperature based on the most recent source test.

During the reporting period, the minimum temperature at which the A-2 flare was required to operate was 1,454°F (1,504 °F minus 50 °F), based on the February 9, 2022 source test performed by Blue Sky Environmental, Inc. (final report issued on March 25, 2022). During the reporting period, the minimum temperature at which the A-3 flare was required to operate was 1,459°F (1,509 °F minus 82 °F), based on the February 9, 2022 source test performed by Blue Sky Environmental, Inc. (final report issued on March 25, 2022). Please note that under the updated NESHAP rules, the requirement is the source test temperature minus 82°F, but as BAAQMD Rule 8-34 and NSPS WWW are still in Newby's permit, we will continue to comply with the source test temperature minus 50°F temperature limit.

During the reporting period, the A-2 and A-3 Flares operated above the minimum established 3-hour average temperature limit at all times, except during periods of SSM.

Flare temperature records are available for review at the site.

3.2 COMPONENT LEAK QUARTERLY MONITORING

During the reporting period, quarterly testing of the GCCS components for any leaks with a methane concentration of greater than 1,000 parts per million by volume (ppmv), as required by BAAQMD Rule 8-34-503, was conducted. Testing in the wellfield and at the flare station was performed using

a flame ionization detector (FID) which was calibrated on the same day as the testing. Monitoring results and calibration records are provided in **Appendix C** and are available for review at the site.

3.2.1 First Quarter 2022 Monitoring

SCS Field Services (SCSFS) conducted the component leak testing of the wellfield and flare station on January 20, 2022. No component leaks above 1,000 ppmv were detected in the wellfield or at the flare station during the First Quarter 2022 monitoring event.

3.2.2 Second Quarter 2022 Monitoring

SCSFS conducted the component leak testing of the flare station and wellfield on May 23, 2022. No component leaks above 1,000 ppmv were detected in the wellfield or at the flare station during the Second Quarter 2022 monitoring event.

3.3 CONTROL EFFICIENCY

LFG Flares A-2 and A-3 was also tested on February 23, 2021 to demonstrate compliance with the control efficiency standard of 98 percent NMOC destruction efficiency or outlet concentration of 30 ppmv of NMOC as methane (for flares) as required by BAAQMD Rules 8-34-301.3, 8-34-412, 8-34-501.4, and Condition # 10423, Part 11. The NMOC destruction efficiency for the A-2 Flare during the February 2022 source test was measured to be >98.76 percent by weight, and the NMOC as methane concentration in the flare outlet was <5.1 ppmv. The NMOC destruction efficiency for the A-3 Flare during the February 2022 source test was measured to be >98.59 percent by weight, and the NMOC as methane concentration in the flare outlet was <4.9 ppmv. As such, Flares A-2 and A-3 is in compliance with the aforementioned rules and permit condition by meeting the ppmv limit.

Excerpts from the February 2022 source test report dated March 25, 2022, summarizing the test results, are provided in **Appendix D**.

3.4 LANDFILL SURFACE EMISSIONS MONITORING

Surface emissions monitoring (SEM) was conducted at Newby on a quarterly basis during the reporting period, in accordance with BAAQMD Rule 8-34-303 and 8-34-506. The SEM events were conducted in accordance with the SEM plan in the landfill's GCCS Design Plan. Testing was performed using a Trimble SiteFID Landfill Gas Monitor Portable FID, which was calibrated the same day as the testing. The results of this monitoring are summarized below. Reports for each quarterly monitoring event are provided in **Appendix C**. Records of SEM are available for review at the site.

3.4.1 First Quarter 2022 Monitoring

SCSFS field technicians monitored the landfill surface for leaks with a methane concentration of greater than 500 ppmv above background on January 17, 18, 19, 26, 27, and 28, February 2 and 16, 2022. Surface emissions in excess of 500 ppmv were detected at twenty-two (22) locations during the first quarter 2022 monitoring event. The locations with the exceedances and associated methane concentrations are provided in the First Quarter 2022 SEM report (Appendix C).

SCSFS field technicians performed appropriate corrective actions, including flow increases to the surrounding extraction wells, cover repairs, and installation of borehole emission control systems.

SCSFS completed the 10-day re-monitoring events for these locations on January 27 and 28, 2022 and the 30-day re-monitoring event on February 16, 2022. Not all the locations were under the 500 ppmv threshold. As such, an expansion of the collection system was required within 120 days, by May 17, 2022. In March 2022, 20 new wells were started up, fulfilling the 120-day requirement.

3.4.1 Second Quarter 2022 Monitoring

SCSFS monitored the landfill surface for leaks with a methane concentration of greater than 500 ppmv above background on May 23, 24, 25, and 26, 2022. Surface emissions in excess of 500 ppmv were detected at sixteen (16) locations during the second quarter 2022 monitoring event. The locations with the exceedances and associated methane concentrations are provided in the second quarter 2022 SEM report (**Appendix C**).

SCSFS field technicians performed appropriate corrective actions, including flow increases to the surrounding extraction wells and borehole repairs. SCSFS completed the 10-day re-monitoring events for these locations on June 2 and 10, 2022 and performed the 1-month re-monitoring event, as required by NSPS, on June 22, 2022. All the locations were under the 500 ppmv threshold. Based on these monitoring results no additional follow up testing was required at this time.

3.5 WELLHEAD MONTHLY MONITORING

Monthly wellhead monitoring for pressure, temperature, and oxygen content was conducted by SCSFS to comply with BAAQMD Rule 8-34-305 and 9-34-414. The results of this monitoring are summarized below. Wellhead exceedances are provided in **Table 3. 4. and 5.**

Please note that during the reporting period, all active wells were monitored.

3.5.1 Pressure

The majority of the operational extraction wells were under negative pressure during the monitoring events conducted during the reporting period, in accordance with BAAQMD Rule 8-34-305 and 8-34-414. For any wells that exhibited positive pressure during this reporting period, the identification number and dates that each well was operating with positive pressure are provided in **Table 3**. The table also includes corrective action and re-monitoring results. In all instances, corrective action and re-monitoring were performed in accordance with the 5- and 15-day requirements specified in the NSPS regulations and in Rule 8-34.

Wells NILEW644 and NILEW787 demonstrated a positive pressure reading at the end of the reporting period. These wells will be returned under negative pressure by the applicable compliance dates, as specified in BAAQMD Rule 8-34-414, and compliance will be documented in the next semi-annual report.

As of the end of the previous reporting period, wells NILEW066, NILEW451, NILEW464, NILEW465, NILEW496, NILEW497, NILEW626, NILEW628, NILEW664, NILEW665, NILEW674, NILEW699, NILEW707, NILEW711, NILEW726, NILEW733, NILEW744, NILEW745, NILHC246, NILHC247, NILHC248, NILHC249, and NILHC250 were operating under positive pressure. These wells were returned under negative pressure, taken offline, or decommissioned by the applicable compliance dates.

Per 40 CFR 63.1960(a)(3)(i), a "root cause analysis" (RCA) is required if pressure exceedances cannot be corrected in 15 days. An additional "corrective action analysis" (CAA) and notification is required for corrective actions that require more than 60 days to complete. See Section 3.5.4 for

discussion of those additional corrective action requirements and **Appendix E** for RCA forms, CAA forms, and 75-day notifications.

3.5.2 Oxygen

Newby has elected to use oxygen as its compliance standard under Rule 8-34-305, rather than nitrogen. Per Newby's PTO Condition No. 10423, Part 6(c), the oxygen concentration limit does not apply to the wells listed below, provided that the oxygen concentration in the LFG at the main header does not exceed five percent oxygen by volume (dry basis) and the methane concentration in the LFG at the main header is greater than 35 percent by volume (dry basis). The oxygen Higher Operating Value (HOV) of 15% is approved for wells: 30RR, EW-13, IOIR, HC- 201. The oxygen HOV of 20% is approved for wells: HC-231, HC- 232, HC- 235, HC-237, and HC- 241.

The majority of the wells were operating within the regulatory limit of five (5) percent oxygen or their respective oxygen HOVs during the monitoring events conducted during the reporting period. The dates when wells were operating with excessive oxygen, and the well identification number, corrective actions, and re-monitoring results for these wells are provided in **Table 4**.

As of the end of the reporting period, all of the operating wells were operating with an oxygen concentration below the 5 percent limit or their respective oxygen HOVs except for wells: NILEW461, NILEW566, NILEW687, NILEW802, NILEW805, NILMW011, NILW728A, NLCR0910, and NLCRST05. The wells will be returned to below the 5 percent limit as specified in BAAQMD Rule 8-34-414, and compliance will be documented in the next semi-annual report.

As of the end of the previous reporting period, wells NIHC227A, NILEW035, NILEW228, NILEW491, NILEW604, NILEW620, NILEW668, NILEW672, NILEW677, NILEW684, NILEW695, NILEW704, NILEW723, NILEW763, NILEW769, NILMW005, NILMW008, NILMW011, NILMW020, NILMW031, NILMW034, and NILW728A were operating with an oxygen concentration above the 5 percent limit. The wells were back in compliance, taken offline, or decommissioned within the timeline specified in 8-34-414.

Please note, the oxygen limit has been removed from Subparts XXX and AAAA; however, Newby complied with the oxygen limit during the reporting period per Rule 8-34 and its Title V permit.

3.5.3 Temperature

BAAQMD Rule 8-34-305 requires the landfill gas temperature in each wellhead to measure less than 55 degrees Celsius (°C) or 131°F. However, Condition No. 10423, Part 6(d) in Newby's BAAQMD PTO allows Newby to operate wells EW-39R, EW-40R, EW-14, EW-37, EW-005, EW-00A, EW-00D, EW-00E, EW-019, EW-025, EW-106, EW-218, EW-224, EW-243, EW-51R, EW-54R, NI3EW07R, NI3EW31, NILEW106, NILEW464, NILEW466, NILEW479, NILEW481, NILEW482, NILEW488, NILEW489, NILEW497, NILEW511, NILEW568, NILEW570, NILEW599, NILEW601, NILEW604, NILEW617, NILEW621, NILEW622, NILEW623, NILEW626, NILEW628, NILEW663, NILEW664, NILEW665, NILEW666, and NILEW667 at an alternative temperature of 145°F and well EW-07R at an alternative temperature of 150°F. Please note, Subpart AAAA allows wells to be operated in compliance up to 145°F.

The majority of wells were operating within their respective limits of 131°F, 145°F, and 150°F during the monitoring events conducted during the reporting period. The dates when wells were operating above their respective temperature limits, and the well identification number, correction actions, and re-monitoring results for these wells are provided in **Table 5.**

As of the end of the previous reporting period, wells NILEW690 and NILEW752 were operating with a temperature higher than 131 °F. These wells returned to compliance within the timelines specified in 8-34-414.

As of the end of this reporting period, wells NILEW511, NILEW664, NILEW665, and NILEW701 were operating with a temperature higher than 131 °F. The wells will be returned to below the 131 °F limit as specified in BAAQMD Rule 8-34-414, and compliance will be documented in the next semi-annual report.

An HOV application to request an increase of the allowable wellhead temperature limit from 131°F to 145°F for wells NILEW690, NILEW691, NILEW701, and NILEW703 was submitted to the USEPA and BAAQMD on February 6, 2020. Addendums requesting an increase of the allowable wellhead temperature limit from 131°F to 145°F for wells NILEW476, NILEW642, NILEW703, NILEW707, and NILEW752 were submitted in April 2020 and August 2021. The BAAQMD has provided approval of these HOV limits pending approval from the USEPA.

IDCC has followed up with the USEPA regarding the application in August 2020, September 2020, October 2020, April 2021, and August 2021 but no response has been received. IDCC is currently awaiting a response to the HOV requests.

Per 40 CFR 63.1960(a)(4)(i), an RCA is required if temperature exceedances cannot be corrected in 15 days. An additional CAA and notification is required for corrective actions that require more than 60 days to complete. See Section 3.5.4 for discussion of those additional corrective action requirements and **Appendix E** for RCA forms, CAA forms, and 75-day notifications.

3.5.4 Corrective Action Analysis

RCAs were conducted for wells with temperature and pressure exceedances past 15 days. CAAs were performed for wells not corrected within 60 days. Moreover, 75-day notifications were submitted for any wells that could not be corrected within 60 days. The RCA and CAA forms and 75-day notifications are included in **Appendix E**.

3.5.5 Enhanced Monitoring

Per §63.1961(a)(5), enhanced monitoring is required at each well with a measurement of landfill gas temperature greater than 145 °F. During the reporting period, enhanced monitoring was not required at any wells pursuant to Subpart AAAA.

There were no wells greater than 170 °F during the reporting period.

3.6 COVER INTEGRITY MONITORING

Under BAAQMD Rule 8-34-510 and the NSPS, the landfill surface must be monitored at least monthly for evidence of cracks or other surface integrity issues, which could allow for surface emissions. During the reporting period, cover integrity monitoring was conducted by SCSFS

personnel in conjunction with the wellhead monitoring on February 25, March 30, April 29, May 30, June 29, July 30, 2022 using procedures specified in the GCCS Design Plan. The observations during these monitoring events indicated the landfill surface was in good condition. In the event visual evidence suggested otherwise, the surface will be promptly repaired. Records of cover integrity monitoring are available for review upon request.

3.7 GAS GENERATION ESTIMATE AND MONTHLY LANDFILL GAS FLOW RATES

The Newby is not subject to Rule 8-34-404 because the Landfill does not operate less than continuously. Therefore, monthly flow data are not required to be reported.

3.8 ANNUAL WASTE ACCEPTANCE RATE AND REFUSE IN PLACE

Newby is an active landfill that continues to accept refuse for disposal. From February 1, 2022 through July 31, 2022, the site accepted 702,939.25 tons of decomposable waste and cover material, resulting in a cumulative waste-in-place total of 37,974,164.73 tons as of July 31, 2022.

3.8.1 Non-Degradable Waste Areas

No areas of non-degradable waste deposition are known to exist. There are no landfill areas that are excluded from the collection system requirements.

SECTION II. SSM PLAN REPORT

As mentioned previously, Newby is subject to 40 CFR Part 63, Subpart AAAA, the NESHAPS for MSW Landfills. Newby maintains a SSM Plan which documents the procedures for operating and maintaining the affected elements of the GCCS during startup, shutdown, and malfunction (SSM). The SSM events that occurred during the reporting period of February 1, 2022 through July 31, 2022 are documented in this section. SSM requirements per the updated NESHAP ended on September 27, 2021. However, because SSM reporting requirements are still in the Title V permit, we will continue to report until the conditions are removed.

During the reporting period, there were forty-three (43) SSM events involving shutdown of the entire GCCS. Twenty (20) of these events were planned startups/shutdowns and twenty-three (23) of these startup/shutdown events were associated with a malfunction of the GCCS.

During the reporting period, there were one hundred (100) SSM events involving the wellfield. Additional wells were offline from previous reporting periods and remained offline for all or a portion of the reporting period. These events involved planned shutdowns of several wells on various dates due to active landfilling in the vicinity of these wells or construction activities. Wells NILEW741, NILEW465, NILEW674, NILEW733, NILEW744, NILEW745, NILEW066, NILEW499, NILEW501, NILEW511, NILEW667, NILEW688, NILEW691, NILMW017, NILMW019, NILMW020, NILMW021, NILEW476, NILEW786, NILEW725, NILSEW31, NILEW479, NILEW690, NILEW787, NILEW752, NILEW483, NILEW110, NILEW00E, NILMW023, and NILMW024 remained offline as of the end of the reporting period and will be reported as startups once the landfilling activities in the vicinity of these wells cease and the wells are brought back online. There were no malfunctions of any of the wellfield components during the reporting period.

During the reporting period, there were no planned startups/shutdowns or known malfunctions of LFG monitoring equipment (e.g. flow measuring/recording device, temperature measuring/recording device).

In each case described above, the SSM Plan was successfully implemented. Specific information regarding these SSMs are included in **Tables 1a (entire GCCS)**, **1b (flares)**, **and 2 (wells)**.

No revisions were made to the SSM Plan during this reporting period. A copy of the SSM Plan and all revisions/addenda are kept on file at the facility for at least five (5) years and are available to appropriate regulatory agency personnel for inspection.

SECTION III. TITLE V SEMI-ANNUAL REPORT

As specified in 40 CFR Part 70, reports of any required monitoring must be submitted at least every 6 months. All instances of deviations from permit requirements for the semi-annual reporting period, specified in the Landfill's Initial Title V Permit as August 1 through January 31 and February 1 through July 31, must be clearly identified in each report. This Title V Report covers the February 1, 2022 through July 31, 2022 reporting period.

This report has been prepared based on Table VII (Applicable Limits and Compliance Monitoring Requirements) of the Landfill's MFR Permit. The report includes a certification by a responsible official, consistent with §70.5(d).

The full Title V Semi-Annual Report, including certification by a responsible official, is provided as **Appendix F**.

Tables

Newby Island Landfill <u>www.scsengineers.com</u>

Table 1a. GCCS Downtime Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Shutdown	Startup	Downtime Hours	Reason for Downtime	BAAQMD Exemption	Corrective Actions Taken
2/7/2022 13:26	2/7/2022 14:10	0.73	Air Combustion Blower Filter Cleaning (113)	8-34-113, Inspection & Maintenance	Operations & Maintenance (O&M) personnel completed inspection then restarted the flares.
2/10/2022 2:34	2/10/2022 2:42	0.13	Low temperature shutdown (RCA submitted)	RCA Submitted for this event (IDs 08F38 and 08F39)	O&M personnel completed inspection then restarted the flares.
2/22/2022 14:18	2/22/2022 14:24	0.10	Pump Work (RCA Submitted)	RCA Submitted for this event (IDs 08F64 and 08F65)	O&M personnel completed inspection then restarted the flares. O&M personnel will ensure isolation valves are in place prior to conducting pump work.
3/4/2022 17:26	3/4/2022 17:34	0.13	Low Gas Flow from Construction Activities (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/14/2022 10:02	3/14/2022 10:10	0.13	Air Blower and Gas Blower Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/21/2022 11:04	3/21/2022 11:12	0.13	Sump Maintenance (RCA Submitted)	RCA Submitted for this event (IDs 08G42 and 08G43)	O&M personnel completed inspection then restarted the flares. O&M personnel will ensure caps are in place prior to conducting sump maintenance.
3/31/2022 13:30	3/31/2022 13:38	0.13	Gas Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
4/6/2022 14:58	4/6/2022 15:58	1.00	Routine Quarterly Sump Jetting Maintenance (RCA Submitted)	RCA Submitted for this event (IDs 08G88 and 08G89)	O&M personnel completed inspection then restarted the flares. O&M personnel will ensure caps are in place prior to conducting sump maintenance.
4/7/2022 9:06	4/7/2022 13:48	4.70	Air Combustion Blower Filter Cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
4/7/2022 15:52	4/7/2022 17:28	1.60	Flare Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
4/8/2022 13:12	4/8/2022 13:38	0.43	Flare Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/1/2022 0:44	5/2/2022 7:06	30.37	Utility outage (RCA submitted)	RCA Submitted for this event (IDs 08H21 and 08H22)	O&M personnel completed inspection then restarted the flares once power was restored.
5/2/2022 8:42	5/2/2022 8:50	0.13	Flare Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/4/2022 10:02	5/4/2022 10:08	0.10	Programmable Logic Controller (PLC) Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 10:30	5/4/2022 10:36	0.10	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 10:58	5/4/2022 11:04	0.10	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 12:20	5/4/2022 12:28	0.13	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 12:48	5/4/2022 12:54	0.10	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 13:06	5/4/2022 13:14	0.13	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 13:28	5/4/2022 13:34	0.10	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 13:46	5/4/2022 13:52	0.10	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personner restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 14:04	5/4/2022 14:12	0.13	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 14:24	5/4/2022 14:30	0.10	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 14:44	5/4/2022 14:50	0.10	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.

Table 1a. GCCS Downtime Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Shutdown	Startup	Downtime Hours	Reason for Downtime	BAAQMD Exemption	Corrective Actions Taken
5/4/2022 15:04	5/4/2022 15:10	0.10	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 15:38	5/4/2022 15:44	0.10	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 17:30	5/4/2022 17:38	0.13	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/4/2022 18:12	5/4/2022 18:32	0.33	PLC Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H34 and 08H35)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/18/2022 12:28	5/18/2022 12:36	0.13	Main Blower Variable Frequency Drive (VFD) Malfunction (RCA Submitted)	RCA Submitted for this event (IDs 08H81 and 08H82)	O&M personnel restarted the PLC and scheduled the manufacturer, John Zink, to inspect the flares.
5/18/2022 13:02	5/18/2022 13:08	0.10	Flare Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/18/2022 13:24	5/18/2022 13:30	0.10	Flare Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/18/2022 13:46	5/18/2022 14:18	0.53	Flare Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
6/8/2022 10:18	6/8/2022 11:18	1.00	Flare Manufacturer Flare Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
6/14/2022 6:58	6/14/2022 7:40	0.70	Air Combustion Blower Filter Cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
6/15/2022 3:06	6/15/2022 7:06	4.00	PG&E Power Outage (RCA Submitted)	RCA Submitted for this event (IDs 08J42 and 08J43)	O&M personnel completed inspection then restarted the flares once power was restored.
6/16/2022 14:00	6/16/2022 14:46	0.77	Manual Shutdown for construction activities (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
6/27/2022 0:54	6/27/2022 1:02	0.13	Low Gas Flow Shutdown (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/5/2022 9:14	7/5/2022 9:50	0.60	Flare Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/7/2022 10:08	7/7/2022 10:16	0.13	Flare Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/21/2022 11:38	7/21/2022 11:44	0.10	Flare Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/26/2022 8:50	7/26/2022 10:58	2.13	Air Combustion Blower Filter Cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/27/2022 23:36	7/27/2022 23:50	0.23	Flame Failure (RCA Submitted)	RCA Submitted for this event (IDs 08K52 and 08K53)	O&M personnel completed inspection then restarted the flares.
7/28/2022 8:20	7/28/2022 9:26	1.10	Flare Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
	Total:	53.37			

Notes:

Events in bold type denotes Malfunction Events

Downtimes listed represent periods when all landfill gas combustion devices were offline concurrently (no gas flow from the collection system).

All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113 requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018, with the exception of the events that occurred on February 10, 22, March 21, April 6, May 1, 4, 18, June 15, July 27, 2022 which involved a low temperature shutdown, sump maintenance, PG&E outages, PLC malfunction, VFD malfunction, flame failure alarm, and high flow alarms. These events were considered reportable compliance activities (RCA) and breakdown relief was requested.

Table 1b. Flare (A-2) Downtime Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Shutdown	Startup	Downtime Hours	Reason for Downtime and BAAQMD Exemption
2/7/2022 13:26	2/8/2022 8:54	19.47	Thermocouple Replacement (113)
2/10/2022 2:34	2/10/2022 2:42	0.13	Low temperature shutdown (RCA submitted, IDs 08F38 and 08F39)
2/22/2022 14:18	2/22/2022 14:24	0.10	Pump Maintenance at Sump CS02 (RCA Submitted, IDs 08F64 and 08F65)
3/4/2022 17:26	3/4/2022 17:34	0.13	Low Gas Flow from Construction Activities (113)
3/14/2022 10:02	3/14/2022 10:10	0.13	Air Blower and Gas Blower Maintenance and
			Troubleshooting (113)
3/21/2022 11:04	3/21/2022 11:12	0.13	Sump Maintenance (RCA submitted, IDs 08G42 and 08G43)
3/31/2022 13:30	3/31/2022 13:38	0.13	Gas Blower Maintenance and troubleshooting (113)
4/6/2022 14:58	4/6/2022 16:14	1.27	Routine Quarterly Sump Jetting Maintenance (RCA Submitted, IDs 08G88 and 08G89)
4/7/2022 7:00	4/7/2022 17:28	10.47	Air Combustion Blower Filter Cleaning (113)
4/8/2022 7:02	4/8/2022 9:00	1.97	Flare Maintenance and Troubleshooting (113)
4/8/2022 13:12	4/8/2022 13:38	0.43	Flare Maintenance and Troubleshooting (113)
5/1/2022 0:44	5/2/2022 8:32	31.80	Utility outage (RCA submitted, IDs 08H21 and 08H22)
5/2/2022 8:42	5/2/2022 8:50	0.13	Flare Maintenance and Troubleshooting (113)
5/4/2022 10:02	5/4/2022 10:08	0.10	Programmable Logic Controller (PLC) Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 10:30	5/4/2022 10:36	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 10:58	5/4/2022 11:06	0.13	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 12:20	5/4/2022 12:28	0.13	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 12:48	5/4/2022 12:56	0.13	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 13:06	5/4/2022 13:14	0.13	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 13:28	5/4/2022 13:36	0.13	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 13:46	5/4/2022 13:52	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 14:04	5/4/2022 14:12	0.13	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 14:24	5/4/2022 14:30	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 14:44	5/4/2022 14:50	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 15:04	5/4/2022 15:10	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 15:38	5/4/2022 15:46	0.13	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 17:30	5/4/2022 17:38	0.13	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 18:12	5/4/2022 18:32	0.33	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/18/2022 12:28	5/18/2022 12:36	0.13	
			Main Blower Variable Frequency Drive (VFD) Malfunction (RCA Submitted, IDs 08H81 and 08H82)
5/18/2022 13:02	5/18/2022 13:08	0.10	Flare Maintenance and Troubleshooting (113)
5/18/2022 13:24	5/18/2022 13:30	0.10	Flare Maintenance and Troubleshooting (113)
5/18/2022 13:46	5/18/2022 14:48	1.03	Flare Maintenance and Troubleshooting (113)
6/8/2022 10:18	6/8/2022 11:18	1.00	Flare Manufacturer Flare Maintenance and Troubleshooting (113)

Table 1b. Flare (A-2) Downtime Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Shutdown	Startup	Downtime Hours	Reason for Downtime and BAAQMD Exemption
6/14/2022 6:58	6/14/2022 7:40	0.70	Air Combustion Blower Filter Cleaning (113)
6/15/2022 3:06	6/15/2022 7:06	4.00	PG&E Power Outage (RCA Submitted, IDs 08J42 and 08J43)
6/16/2022 14:00	6/16/2022 14:46	0.77	Manual Shutdown for construction activities (113)
6/27/2022 0:54	6/27/2022 1:02	0.13	Low Gas Flow Shutdown (113)
7/5/2022 9:14	7/5/2022 9:50	0.60	Flare Maintenance and Troubleshooting (113)
7/7/2022 10:08	7/7/2022 10:16	0.13	Flare Maintenance and Troubleshooting (113)
7/18/2022 8:50	7/18/2022 10:54	2.07	Flow Meter Calibration Event (113)
7/21/2022 11:38	7/21/2022 11:44	0.10	Flare Maintenance and Troubleshooting (113)
7/21/2022 11:58	7/21/2022 12:18	0.33	Flare Maintenance and Troubleshooting (113)
7/26/2022 8:50	7/26/2022 11:00	2.17	Air Combustion Blower Filter Cleaning (113)
7/27/2022 23:36	7/27/2022 23:50	0.23	Flame Failure (RCA Submitted, IDs 08K52 and 08K53)
7/28/2022 8:20	7/28/2022 9:28	1.13	Flare Maintenance and Troubleshooting (113)
7/28/2022 19:42	7/29/2022 13:28	17.77	Flare Maintenance and Troubleshooting (113)
То	tal	100.80	

Notes:

Events in bold type denotes Malfunction Events

All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113 requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018, with the exception of the events that occurred on February 10, 22, March 21, April 6, May 1, 4, 18, June 15, July 27, 2022 which involved a low temperature shutdown, sump maintenance, PG&E outages, PLC malfunction, VFD malfunction, flame failure alarm, and high flow alarms. These events were considered reportable compliance activities (RCA) and breakdown relief was requested.

Table 1c. Flare (A-3) Downtime Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Shutdown	Startup	Downtime Hours	Reason for Downtime and BAAQMD Exemption
2/7/2022 13:24	2/7/2022 14:10	0.77	Air Combustion Blower Filter Cleaning (113)
2/10/2022 2:34	2/10/2022 6:02	3.47	Low temperature shutdown (RCA submitted, IDs 08F38 and 08F39)
2/21/2022 13:56	2/21/2022 14:08	0.20	Air Combustion Blower Filter Cleaning (113)
2/21/2022 15:36	2/21/2022 16:14	0.63	Air Combustion Blower Filter Cleaning (113)
2/22/2022 14:16	2/22/2022 14:28	0.20	Pump Maintenance at Sump CS02 (RCA Submitted, IDs 08F64 and 08F65)
3/4/2022 17:26	3/4/2022 17:38	0.20	Low Gas Flow from Construction Activities (113)
3/9/2022 16:10	3/9/2022 16:20	0.17	Low Gas Flow from Construction Activities (113)
3/11/2022 17:00	3/11/2022 17:12	0.20	Low Gas Flow from Construction Activities (113)
3/14/2022 10:02	3/14/2022 11:44	1.70	Air Combustion Blower Filter Cleaning (113)
3/14/2022 13:18	3/14/2022 13:36	0.30	Air Blower and Gas Blower Maintenance and Troubleshooting (113)
3/21/2022 11:04	3/21/2022 11:16	0.20	Sump Maintenance (RCA submitted, IDs 08G42 and 08G43)
3/31/2022 13:30	3/31/2022 13:40	0.17	Gas Blower Maintenance and troubleshooting (113)
4/6/2022 14:58	4/6/2022 15:58	1.00	Routine Quarterly Sump Jetting Maintenance (RCA Submitted, IDs 08G88 and 08G89)
4/6/2022 16:40	4/6/2022 16:46	0.10	Low Gas Flow from Construction Activities (113)
4/6/2022 17:06	4/6/2022 17:12	0.10	Low Gas Flow from Construction Activities (113)
4/7/2022 9:06	4/7/2022 13:48	4.70	Air Combustion Blower Filter Cleaning (113)
4/7/2022 15:52	4/7/2022 17:32	1.67	Flare Maintenance and Troubleshooting (113)
4/8/2022 13:12	4/8/2022 13:42	0.50	Flare Maintenance and Troubleshooting (113)
4/13/2022 19:18	4/13/2022 19:30	0.20	Low Gas Flow from Construction Activities (113)
4/13/2022 20:10	4/13/2022 20:16	0.10	Low Gas Flow from Construction Activities (113)
4/19/2022 14:20	4/19/2022 14:40	0.33	Low Gas Flow from Construction Activities (113)
5/1/2022 0:44	5/2/2022 7:06	30.37	Utility outage (RCA submitted, IDs 08H21 and 08H22)
5/2/2022 8:42	5/2/2022 8:54	0.20	Flare Maintenance and Troubleshooting (113)
5/4/2022 10:02	5/4/2022 10:12	0.17	Programmable Logic Controller (PLC) Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 10:30	5/4/2022 10:36	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 10:58	5/4/2022 11:04	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 12:20	5/4/2022 12:32	0.20	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 12:48	5/4/2022 12:54	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 13:06	5/4/2022 13:14	0.13	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 13:28	5/4/2022 13:34	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 13:46	5/4/2022 13:52	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 14:04	5/4/2022 14:12	0.13	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 14:24	5/4/2022 14:30	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 14:44	5/4/2022 14:50	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 15:04	5/4/2022 15:10	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 15:38	5/4/2022 15:44	0.10	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)

Table 1c. Flare (A-3) Downtime Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Shutdown	Startup	Downtime Hours	Reason for Downtime and BAAQMD Exemption
5/4/2022 17:30	5/4/2022 17:42	0.20	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/4/2022 18:12	5/4/2022 18:32	0.33	PLC Malfunction (RCA Submitted, IDs 08H34 and 08H35)
5/6/2022 9:16	5/6/2022 9:56	0.67	Air Combustion Blower Filter Cleaning (113)
5/9/2022 13:38	5/9/2022 13:58	0.33	Flare Flow Meter Maintenance and Troubleshooting (113)
5/13/2022 12:12	5/13/2022 12:22	0.17	Low Gas Flow due to construction activities (113)
5/17/2022 8:26	5/17/2022 8:38	0.20	Air Combustion Blower Filter Cleaning (113)
5/18/2022 12:28	5/18/2022 12:40	0.20	Main Blower Variable Frequency Drive (VFD) Malfunction (RCA Submitted, IDs 08H81 and 08H82)
5/18/2022 13:02	5/18/2022 13:08	0.10	Flare Maintenance and Troubleshooting (113)
5/18/2022 13:24	5/18/2022 13:30	0.10	Flare Maintenance and Troubleshooting (113)
5/18/2022 13:44	5/18/2022 14:18	0.57	Flare Maintenance and Troubleshooting (113)
5/21/2022 9:36	5/21/2022 12:14	2.63	Air Combustion Blower Filter Cleaning (113)
5/21/2022 20:42	5/21/2022 20:54	0.20	Flare Maintenance and Troubleshooting (113)
5/26/2022 9:08	5/26/2022 12:14	3.10	Flares shutdown for 12-inch header work by SCS (113)
5/27/2022 1:36	5/27/2022 1:46	0.17	Low Gas Flow due to construction activities (113)
5/31/2022 0:32	5/31/2022 0:44	0.20	Low Gas Flow due to construction activities (113)
6/2/2022 23:42	6/2/2022 23:54	0.20	Low Gas Flow Shutdown due to construction (113)
6/4/2022 5:40	6/4/2022 8:14	2.57	High Burner Tip Temperature Shutdown (113)
6/4/2022 9:06	6/4/2022 9:40	0.57	Flare Maintenance and Troubleshooting (113)
6/8/2022 10:08	6/8/2022 11:18	1.17	Flare Manufacturer Flare Maintenance and Troubleshooting (113)
6/14/2022 6:58	6/14/2022 14:12	7.23	Air Combustion Blower Filter Cleaning (113)
6/15/2022 3:06	6/15/2022 7:24	4.30	PG&E Power Outage (RCA Submitted, IDs 08J42 and 08J43)
6/16/2022 14:00	6/16/2022 16:10	2.17	Manual Shutdown for construction activities (113)
6/27/2022 0:54	6/27/2022 1:06	0.20	Low Gas Flow Shutdown (113)
6/27/2022 13:34	6/27/2022 14:16	0.70	Air Combustion Blower Filter Cleaning (113)
7/5/2022 9:14	7/5/2022 9:54	0.67	Flare Maintenance and Troubleshooting (113)
7/7/2022 10:08	7/7/2022 10:20	0.20	Flare Maintenance and Troubleshooting (113)
7/18/2022 10:56	7/18/2022 12:40	1.73	Flow Meter Calibration Event (113)
7/18/2022 12:44	7/18/2022 13:08	0.40	Flow Meter Calibration Event (113)
7/19/2022 9:22	7/19/2022 9:34	0.20	Low Gas Flow due to construction activities (113)
7/19/2022 10:50	7/19/2022 10:56	0.10	Low Gas Flow due to construction activities (113)
7/21/2022 3:46	7/21/2022 3:58	0.20	Flare Maintenance and Troubleshooting (113)
7/21/2022 11:38	7/21/2022 12:26	0.80	Flare Maintenance and Troubleshooting (113)
7/23/2022 3:58	7/23/2022 4:10	0.20	Low Gas Flow due to construction activities (113)
7/24/2022 4:00	7/24/2022 4:14	0.23	Low Gas Flow due to construction activities (113)
7/24/2022 21:06	7/24/2022 21:18	0.20	Low Gas Flow due to construction activities (113)
7/24/2022 23:00	7/24/2022 23:12	0.20	Low Gas Flow due to construction activities (113)

Table 1c. Flare (A-3) Downtime Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Shutdown	Startup	Downtime Hours	Reason for Downtime and BAAQMD Exemption
7/26/2022 8:40	7/26/2022 10:58	2.30	Air Combustion Blower Filter Cleaning (113)
7/26/2022 11:42	7/26/2022 11:50	0.13	Low Gas Flow due to construction activities (113)
7/27/2022 23:36	7/27/2022 23:54	0.30	Flame Failure (RCA Submitted, IDs 08K52 and 08K53)
7/28/2022 8:20	7/28/2022 9:26	1.10	Flare Maintenance and Troubleshooting (113)
7/29/2022 7:48	7/29/2022 12:38	4.83	Air Combustion Blower Filter Cleaning (113)
7/29/2022 13:26	7/29/2022 13:46	0.33	Low Gas Flow due to construction activities (113)
7/29/2022 21:28	7/29/2022 21:40	0.20	Low Gas Flow due to construction activities (113)
To	otal	91.60	

Notes:

Events in bold type denotes Malfunction Events

All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113 requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018, with the exception of the events that occurred on February 10, 22, March 21, April 6, May 1, 4, 18, June 15, July 27, 2022 which involved a low temperature shutdown, sump maintenance, PG&E outages, PLC malfunction, VFD malfunction, flame failure alarm, and high flow alarms. These events were considered reportable compliance activities (RCA) and breakdown relief was requested.

Table 2. Individual Well Startups, Shutdowns and Decommissions Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Shutdown	Start-up	Days Offline	Reason for Shutdown/Startup
NILEW741*	7/14/2021		382.33	Well Temporarily Offline Due to Filling (actively offline)
NILEW726	9/14/2021	2/10/2022	149.00	Well Temporarily Offline Due to Filling
NILEW664	10/19/2021	7/7/2022	260.37	Well Temporarily Offline due to Construction Activities
NILEW451	11/3/2021	7/7/2022	245.28	Well Temporarily Offline due to Construction Activities
NILEW464	11/3/2021	7/7/2022	245.30	Well Temporarily Offline due to Construction Activities
NILEW465*	11/3/2021		270.29	Well Temporarily Offline due to Construction Activities (actively offline)
NILEW496	11/3/2021	7/7/2022	245.35	Well Temporarily Offline due to Construction Activities
NILEW497	11/3/2021	7/12/2022	250.28	Well Temporarily Offline due to Construction Activities
NILEW626	11/3/2021	7/7/2022	245.29	Well Temporarily Offline due to Construction Activities
NILEW665	11/3/2021	7/7/2022	245.30	Well Temporarily Offline due to Construction Activities
NILEW674*	11/3/2021		270.29	Well Temporarily Offline due to Construction Activities (actively offline)
NILEW711	11/3/2021	7/7/2022	245.30	Well Temporarily Offline due to Construction Activities
NILEW733*	11/3/2021		270.29	Well Temporarily Offline due to Construction Activities (actively offline)
NILEW744*	11/3/2021		270.29	Well Temporarily Offline due to Construction Activities (actively offline)
NILEW745*	11/3/2021		270.28	Well Temporarily Offline due to Construction Activities (actively offline)
NILEW066*	11/11/2021		262.45	Well Temporarily Offline due to Construction Activities (actively offline)
NILEW707	11/24/2021	7/7/2022	224.52	Well Temporarily Offline due to Construction Activities
NILEW491	2/24/2022	N/A	N/A	Vertical Well Decommissioning
NILEW00A	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW035	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW053	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW057	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW106	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW114	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW228	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW232	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW441	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW466	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW500	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW510	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW604	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW607	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW609	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW610	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW611	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW618	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW628	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW648	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW651	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW653	3/3/2022	N/A	N/A	Vertical Well Decommissioning

Table 2. Individual Well Startups, Shutdowns and Decommissions Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Shutdown	Start-up	Days Offline	Reason for Shutdown/Startup
NILEW655	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW666	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW668	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW677	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW682	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW683	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW684	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW695	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW699	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW714	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW717	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW723	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW742	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW747	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILEW769	3/3/2022	N/A	N/A	Vertical Well Decommissioning
NILW627A	3/7/2022	N/A	N/A	Vertical Well Decommissioning
NILEW796	N/A	3/4/2022	N/A	Vertical Well Start Up
NILEW797	N/A	3/4/2022	N/A	Vertical Well Start Up
NILEW798	N/A	3/7/2022	N/A	Vertical Well Start Up
NILEW799	N/A	3/8/2022	N/A	Vertical Well Start Up
NILEW790	N/A	3/9/2022	N/A	Vertical Well Start Up
NILEW792	N/A	3/9/2022	N/A	Vertical Well Start Up
NILEW793	N/A	3/10/2022	N/A	Vertical Well Start Up
NILEW794	N/A	3/10/2022	N/A	Vertical Well Start Up
NILEW499*	3/11/2022		143.00	Well Temporarily Offline due to Construction Activities (actively offline)
NILEW501*	3/11/2022		143.00	Well Temporarily Offline due to Construction Activities (actively offline)
NILEW511*	3/11/2022		143.00	Well Temporarily Offline due to Construction Activities (actively offline)
NILEW667*	3/11/2022		143.00	Well Temporarily Offline due to Construction Activities (actively offline)
NILEW688*	3/11/2022		143.00	Well Temporarily Offline due to Construction Activities (actively offline)
NILEW691*	3/11/2022		143.00	Well Temporarily Offline due to Construction Activities (actively offline)
NILMW017*	3/11/2022		143.00	Well Temporarily Offline due to Construction Activities (actively offline)
NILMW019*	3/11/2022		143.00	Well Temporarily Offline due to Construction Activities (actively offline)
NILMW020*	3/11/2022		143.00	Well Temporarily Offline due to Construction Activities (actively offline)
NILMW021*	3/11/2022		143.00	Well Temporarily Offline due to Construction Activities (actively offline)
NILEW803	N/A	3/11/2022	N/A	Vertical Well Start Up
NILEW804	N/A	3/11/2022	N/A	Vertical Well Start Up
NILEW805	N/A	3/11/2022	N/A	Vertical Well Start Up
NILEW692	3/14/2022	4/1/2022	18.58	Well Temporarily Offline Due to Filling
NILEW693	3/14/2022	4/1/2022	18.56	Well Temporarily Offline Due to Filling
NILEW740	3/14/2022	4/1/2022	18.56	Well Temporarily Offline Due to Filling

Table 2. Individual Well Startups, Shutdowns and Decommissions Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Shutdown	Start-up	Days Offline	Reason for Shutdown/Startup	
NILEW795	N/A	3/14/2022	N/A	Vertical Well Start Up	
NILEW806	N/A	3/14/2022	N/A	Vertical Well Start Up	
NILEW788	N/A	3/15/2022	N/A	Vertical Well Start Up	
NILEW789	N/A	3/15/2022	N/A	Vertical Well Start Up	
NILEW802	N/A	3/16/2022	N/A	Vertical Well Start Up	
NILEW775	N/A	3/22/2022	N/A	Vertical Well Start Up	
NILEW791	N/A	3/22/2022	N/A	Vertical Well Start Up	
NILEW800	N/A	3/23/2022	N/A	Vertical Well Start Up	
NILEW476*	4/26/2022		97.00	Well Temporarily Offline due to Construction Activities (actively offline)	
NILEW786*	4/26/2022		97.00	Well Temporarily Offline due to Construction Activities (actively offline)	
NILEW725*	4/28/2022		95.00	Well Temporarily Offline due to Construction Activities (actively offline)	
NIL3EW31*	5/5/2022		88.00	Well Temporarily Offline due to Construction Activities (actively offline)	
NILEW479*	5/5/2022		88.00	Well Temporarily Offline due to Construction Activities (actively offline)	
NILEW690*	5/5/2022		88.00	Well Temporarily Offline due to Construction Activities (actively offline)	
NILEW659	5/11/2022	N/A	N/A	Vertical Well Decommissioning	
NILEW787*	5/11/2022		82.00	Well Temporarily Offline due to Construction Activities (actively offline)	
NILEW752*	5/23/2022		70.00	Well Temporarily Offline due to Construction Activities (actively offline)	
NILEW218	5/25/2022	N/A	N/A	Vertical Well Decommissioning	
NILEW483*	6/1/2022		60.96	Well Temporarily Offline due to Construction Activities (actively offline)	
NILEW110*	6/23/2022		38.40	Well Temporarily Offline due to Construction Activities (actively offline)	
NILEW772	N/A	7/7/2022	N/A	Vertical Well Start Up	
NILEW00E*	7/15/2022		16.56	Well Temporarily Offline due to Construction Activities (actively offline)	
NILMW023*	7/15/2022		16.56	Well Temporarily Offline due to Construction Activities (actively offline)	
NILMW024*	7/15/2022		16.56	Well Temporarily Offline due to Construction Activities (actively offline)	

^{*}Well was offline at the end of the reporting period. For reporting purposes, the startup time is calculated as of August 1, 2022 at 00:00.

Note: All well downtime events listed are consistent with applicable Rule 8-34 provisions and BAAQMD permit conditions.

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NIHC227A	2/3/2022 14:28	4.3	-0.04	Adjusted Valve, In Compliance
NILCW001	3/22/2022 13:20	1.7	-0.32	Adjusted Valve, In Compliance
NILCW002	6/17/2022 15:37	0.02	-0.01	Adjusted Valve, In Compliance
NILCW003	6/17/2022 15:41	0.02	-0.01	Adjusted Valve, In Compliance
NILEW430	7/6/2022 14:36	0.24	-0.13	Adjusted Valve, In Compliance
NILEW430	7/21/2022 14:38	0.42	-0.3	Adjusted Valve, In Compliance
NILEW451	7/6/2022 16:11	27.33	17.99	(Initial Exceedance was on 7/30/21 and was previously taken offline) Well taken online; Adjusted Valve
NILEW451	7/6/2022 16:13	16.19	16.21	Second Reading
NILEW451	7/12/2022 12:10	-39.28	-39.28	In Compliance
NILEW464	7/6/2022 15:46	-12.42	-12.29	(Initial Exceedance was on 9/22/21 and was previously taken offline) Well taken online; In Compliance
NILEW496	7/6/2022 15:20	0.85	-0.17	(Initial Exceedance was on 10/22/21 and was previously taken offline) Well taken online; Adjusted Valve, In Compliance
NILEW497	7/12/2022 12:07	-41.49	-41.99	(Initial Exceedance was on 7/30/21 and was previously taken offline) Well taken online; Adjusted Valve
NILEW514	2/7/2022 15:41	7.84	-24.23	Adjusted Valve, In Compliance
NILEW593	3/1/2022 12:46	6.08	-11.77	Adjusted Valve, In Compliance
NILEW593	6/1/2022 13:20	1.04	-4.36	Adjusted Valve, In Compliance
NILEW595	3/17/2022 10:45	25.41	-28.85	Adjusted Valve, In Compliance
NILEW609	3/3/2022 15:28	1.06	1.07	Adjusted Valve
NILEW609	3/3/2022 15:31	0.89	0.9	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW620	2/11/2022 14:27	16.43	16.45	Adjusted Valve
NILEW620	2/11/2022 14:32	16.71	17.41	Second Reading
NILEW620	2/21/2022 14:48	-6.31	-6.73	In Compliance

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW620	3/3/2022 15:39	7.82	-0.14	Adjusted Valve, In Compliance
NILEW625	5/3/2022 11:15	0.82	-0.33	Adjusted Valve, In Compliance
NILEW626 NILEW626 NILEW626	7/6/2022 16:03 7/6/2022 16:04 7/12/2022 12:01	13.39 7.09 -4.01	7.8 7.12 -7.44	(Initial Exceedance was on 7/30/21 and was previously taken offline) Well taken online; Adjusted Valve Second Reading In Compliance
	· ·			·
NILEW628	2/7/2022 11:28	12.88	12.88	(Initial Exceedance was on 12/13/21) Adjusted Valve
NILEW628	3/3/2022 10:06	12.75	12.75	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW639	3/30/2022 13:38	29.58	-3.91	Adjusted Valve, In Compliance
NILEW644	7/22/2022 13:51	1.72	1.61	Adjusted Valve
NILEW644	7/22/2022 13:55	1.56	1.57	Second Reading; Well remains in exceedance and compliance will be documented in the next report before its 120-day deadline, by November 19, 2022.
NILEW648	2/10/2022 17:16	15.95	-1.22	Adjusted Valve, In Compliance
NILEW648	2/14/2022 14:50	2.91	-54.66	Adjusted Valve, In Compliance
NILEW650	2/25/2022 16:31	1.11	-0.43	Adjusted Valve, In Compliance
NILEW650	6/2/2022 15:18	3.07	-0.41	Adjusted Valve, In Compliance
NILEW650	6/8/2022 12:07	0.27	-4.47	Adjusted Valve, In Compliance
NILEW664	7/6/2022 16:23	3.65	-2.31	(Initial Exceedance was on 8/10/21 and was previously taken offline) Well taken online; Adjusted Valve, In Compliance
NILEW665	7/6/2022 15:53	0.9	-0.13	(Initial Exceedance was on 8/10/21 and was previously taken offline) Well taken online; Adjusted Valve, In Compliance
NILEW666	3/3/2022 9:58	0.8	0.82	Adjusted Valve
NILEW666	3/3/2022 10:05	1.42	1.43	Adjusted Valve, In Compliance

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW679	5/2/2022 11:08	3.17	-1.17	Adjusted Valve, In Compliance
NILEW693	4/1/2022 13:31	0.37	-0.03	Adjusted Valve, In Compliance
NILEW699	2/10/2022 16:17	-41.72	-42.01	(Initial Exceedance was on 1/13/22) In Compliance
NILEW704	3/17/2022 13:40	0.27	-0.01	Adjusted Valve, In Compliance*
NILEW704	7/28/2022 11:31	0.2	-0.1	Adjusted Valve, In Compliance*
NILEW707	7/6/2022 15:12	-7.12	-7.14	(Initial Exceedance was on 11/11/21 and was previously taken offline) Well taken online; In Compliance
NILEW711	7/6/2022 15:39	-1.58	-1.56	(Initial Exceedance was on 8/10/21 and was previously taken offline) Well taken online; In Compliance
NILEW712	3/22/2022 14:39	0.03	-1.38	Adjusted Valve, In Compliance
NILEW712	4/11/2022 13:34	1.58	-0.32	Adjusted Valve, In Compliance
NILEW712	6/21/2022 14:38	0.27	-0.55	Adjusted Valve, In Compliance
NILEW714 NILEW714	2/11/2022 11:28 2/11/2022 13:18	0.65 1.32	0.65 -0.15	Adjusted Valve Adjusted Valve, In Compliance
NILEW714	3/3/2022 9:15	0.07	0.16	Adjusted Valve Well Permanently Decommissioned Due to
NILEW714 NILEW719	3/3/2022 9:29 3/16/2022 10:35	57.27	1.15 -7.28	Poor Gas Quality Adjusted Valve, In Compliance
NILEW720	3/16/2022 10:44	11.25	-5.08	Adjusted Valve, In Compliance
NILEW722	3/16/2022 10:19	2.72	-2.28	Adjusted Valve, In Compliance
NILEW722	5/10/2022 14:48	1.67	-0.74	Adjusted Valve, In Compliance
NILEW726	2/10/2022 16:11	10.03	-1.05	(Initial Exceedance was on 7/14/21 and was previously taken offline) Well taken online; Adjusted Valve, In Compliance
NILEW739	4/25/2022 11:59	4.98	-1.5	Adjusted Valve, In Compliance

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW757	3/9/2022 14:40	0.66	-5.03	Adjusted Valve, In Compliance
NILEW757	5/19/2022 17:09	4.88	-1.77	Adjusted Valve, In Compliance
NILEW759	2/25/2022 17:26	1.49	-2.15	Adjusted Valve, In Compliance
NILEW759	3/3/2022 14:16	52.69	-6.37	Adjusted Valve, In Compliance
NILEW759	3/21/2022 14:15	2.66	-1.68	Adjusted Valve, In Compliance
NILEW759	3/29/2022 12:46	2.06	-1.19	Adjusted Valve, In Compliance
NILEW759	6/21/2022 14:51	1.82	-0.21	Adjusted Valve, In Compliance
NILEW760	5/19/2022 15:32	0.44	-0.13	Adjusted Valve, In Compliance
NILEW761	5/26/2022 14:25	0.3	-0.14	Adjusted Valve, In Compliance
NILEW762	2/14/2022 10:30	0.08	-0.04	Adjusted Valve, In Compliance
NILEW762	7/22/2022 14:20	0.04	-0.41	Adjusted Valve, In Compliance
NILEW764	4/25/2022 12:42	0.78	-17.79	Adjusted Valve, In Compliance
NILEW768	3/11/2022 15:51	1.21	-1.88	Adjusted Valve, In Compliance
NILEW768	6/20/2022 11:03	0.09	-0.49	Adjusted Valve, In Compliance
NILEW768	7/12/2022 15:07	0.24	-0.4	Adjusted Valve, In Compliance
NILEW772	7/7/2022 11:57 7/7/2022 12:01	15.93	15.93	Adjusted Valve Second Reading
NILEW772 NILEW772	7/7/2022 12:01	16.25 8.75	8.76 8.81	Third Reading
NILEW772	7/12/2022 12:38	-6.44	-8.42	In Compliance
NILEW775	3/22/2022 10:29	4.27	4.27	Adjusted Valve
NILEW775	3/22/2022 10:37	4.25	2.35	Second Reading
NILEW775	3/22/2022 10:38	2.22	2.26	Third Reading
NILEW775	3/22/2022 15:25	1.1	0.55	Fourth Reading
NILEW775	3/22/2022 15:27	0.48	0.5	Fifth Reading
NILEW775	3/23/2022 16:03	-1.55	-1.54	In Compliance
NILEW775	4/1/2022 13:38	5.63	-0.95	Adjusted Valve, In Compliance

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW775	4/25/2022 14:08	6.89	-0.32	Adjusted Valve, In Compliance
NILEW786	3/29/2022 10:56	3.89	3.89	Adjusted Valve
NILEW786	3/29/2022 10:59	3.9	1.95	Second Reading
NILEW786	3/29/2022 11:00	1.65	1.65	Third Reading
NILEW786	3/29/2022 13:15	2.32	1.15	Fourth Reading
NILEW786	3/29/2022 13:16	0.81	0.81	Fifth Reading
NILEW786	3/30/2022 8:45	1.26	-0.1	In Compliance
NILEW787	3/29/2022 9:26	6.19	6.44	Adjusted Valve
NILEW787	3/29/2022 9:28	6.2	6.24	Second Reading
NILEW787	3/29/2022 9:29	6.27	6.44	Third Reading
NILEW787	4/13/2022 14:36	5.76	5.81	Adjusted Valve
NILEW787	4/26/2022 14:48	7.58	7.56	Adjusted Valve; Well was temporarily taken offline.
NILEW789	3/15/2022 14:32	0.22	0.21	Adjusted Valve
NILEW789	3/15/2022 15:35	0.29	0.14	Second Reading
NILEW789	3/15/2022 15:37	0.1	0.11	Third Reading
NILEW789	3/16/2022 13:16	0.36	-0.12	In Compliance
NILEW789	3/21/2022 15:04	0.02	-0.24	Adjusted Valve, In Compliance
NILEW790	3/9/2022 13:35	5.12	5.16	Adjusted Valve
NILEW790	3/9/2022 13:38	5.08	2.55	Second Reading
NILEW790	3/9/2022 13:40	2.52	2.52	Third Reading
NILEW790	3/9/2022 15:38	1.72	0.85	Fourth Reading
NILEW790	3/9/2022 15:39	0.61	0.59	Fifth Reading
NILEW790	3/10/2022 13:54	-0.05	-0.31	In Compliance
NILEW791	3/22/2022 14:04	4.4	4.34	Adjusted Valve
NILEW791	3/22/2022 14:08	4.35	2.68	Second Reading
NILEW791	3/22/2022 14:09	2.86	2.9	Third Reading
NILEW791	3/22/2022 15:39	3.28	1.64	Fourth Reading
NILEW791	3/22/2022 15:40	1.41	1.41	Fifth Reading
NILEW791	3/23/2022 16:19	1.12	-0.1	In Compliance
NILEW791	3/31/2022 16:23	0.03	-0.05	Adjusted Valve, In Compliance
NILEW792	3/9/2022 14:14	7.12	7.12	Adjusted Valve
NILEW792	3/9/2022 14:22	7.12	3.52	Second Reading
NILEW792	3/9/2022 14:23	3.44	3.44	Third Reading
NILEW792	3/9/2022 15:45	2.78	1.39	Fourth Reading
NILEW792	3/9/2022 15:46	1.28	1.29	Fifth Reading
NILEW792	3/10/2022 10:35	1.15	0.49	Adjusted Valve

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW792	3/10/2022 10:37	-0.15	-0.16	In Compliance
NILEW792	3/11/2022 14:07	0.44	-0.07	Adjusted Valve, In Compliance
NILEW792	4/13/2022 11:30	0.37	-0.1	Adjusted Valve, In Compliance
NILEW793	3/10/2022 15:57	1.3	1.11	Adjusted Valve
NILEW793	3/10/2022 15:59	0.75	0.76	Second Reading
NILEW793	3/11/2022 14:19	0.98	0.97	Adjusted Valve
NILEW793	3/11/2022 14:21	0.75	0.74	Second Reading
NILEW793	3/21/2022 10:11	0.5	-0.25	Adjusted Valve, In Compliance
NILEW795	3/14/2022 14:05	1.78	1.79	Adjusted Valve
NILEW795	3/14/2022 14:10	1.77	0.88	Second Reading
NILEW795	3/14/2022 14:12	0.88	0.91	Third Reading
NILEW795	3/14/2022 15:12	0.87	0.36	Fourth Reading
NILEW795	3/14/2022 15:13	0.35	0.3	Fifth Reading
NILEW795	3/15/2022 13:04	0.14	-0.14	Adjusted Valve, In Compliance
NILEW795	3/21/2022 10:23	1.01	-1.02	Adjusted Valve, In Compliance
NILEW795	4/14/2022 15:22	2.69	-27.94	Adjusted Valve, In Compliance
NILEW795	5/20/2022 15:28	2.67	-0.41	Adjusted Valve, In Compliance
NILEW796	3/4/2022 11:00	1.92	1.98	Adjusted Valve
NILEW796	3/4/2022 14:48	2.22	2.37	Second Reading
NILEW796	3/7/2022 9:22	2.47	2.41	Adjusted Valve
NILEW796	3/7/2022 9:30	1.84	1.86	Second Reading
NILEW796	3/8/2022 10:08	1.82	1.06	Adjusted Valve
NILEW796	3/8/2022 10:09	0.78	0.78	Second Reading
NILEW796	3/10/2022 12:39	0.63	-0.02	Adjusted Valve, In Compliance
NILEW796	3/29/2022 10:34	0.48	-0.16	Adjusted Valve, In Compliance
NILEW796	4/13/2022 11:41	1.78	-0.2	Adjusted Valve, In Compliance
NILEW796	5/11/2022 11:19	2.4	2.4	Adjusted Valve
NILEW796	5/11/2022 11:19	2.4	2.39	Second Reading
NILEW796	5/12/2022 13:00	-4.25	-5.34	In Compliance
NILEW797	3/4/2022 10:54	1.08	1.06	Adjusted Valve
NILEW797	3/4/2022 10:54	2.86	2.79	Second Reading
NILEW797	3/7/2022 14.34	2.9	2.88	Adjusted Valve
. VILL VV / J/	3/7/2022 9:19	2.61	2.61	Second Reading

Table 3. Wells with Positive Pressure Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW797	3/8/2022 9:51	2.62	1.93	Adjusted Valve
NILEW797	3/8/2022 9:52	1.86	1.89	Second Reading
NILEW797	3/10/2022 12:33	1.62	1.5	Adjusted Valve
NILEW797	3/10/2022 12:35	1.27	1.26	Second Reading
NILEW797	3/11/2022 15:14	1.55	1.02	Adjusted Valve
NILEW797	3/11/2022 15:16	0.93	0.92	Second Reading
NILEW797	3/29/2022 10:27	-3.37	-3.43	In Compliance
	-, -, -			, , , , , , , , , , , , , , , , , , ,
NILEW798	3/7/2022 9:39	2.54	2.09	Adjusted Valve
NILEW798	3/7/2022 9:43	1.82	1.83	Second Reading
NILEW798	3/8/2022 10:00	1.5	0.81	Adjusted Valve
NILEW798	3/8/2022 10:02	0.58	0.58	Second Reading
NILEW798	3/10/2022 12:22	0.03	-0.1	Adjusted Valve, In Compliance
	5, -5, -5	0.00		
NILEW798	4/13/2022 11:15	3.33	-0.99	Adjusted Valve, In Compliance
NILEW798	4/19/2022 12:06	0.3	-2.92	Adjusted Valve, In Compliance
NILEW799	3/8/2022 10:58	3.11	3.13	Adjusted Valve
NILEW799	3/8/2022 11:06	3.2	2.99	Second Reading
NILEW799	3/8/2022 11:07	2.88	2.88	Third Reading
NILEW799	3/8/2022 13:23	2.84	2.85	Fourth Reading
NILEW799	3/9/2022 8:37	2.47	-0.13	Adjusted Valve, In Compliance
NILEW799	3/10/2022 12:15	0.62	0.47	Adjusted Valve
NILEW799	3/10/2022 12:18	-0.07	-0.07	In Compliance
NILEW800	3/23/2022 13:53	2.15	2.19	Adjusted Valve
NILEW800	3/23/2022 13:58	2.25	1.12	Second Reading
NILEW800	3/23/2022 14:00	0.95	0.94	Third Reading
NILEW800	3/23/2022 16:09	0.29	0.15	Fourth Reading
NILEW800	3/23/2022 16:11	0.13	0.12	Fifth Reading
NILEW800	4/14/2022 15:12	-26.44	-26.44	In Compliance
NILEW803	3/11/2022 14:51	3.11	3.11	Adjusted Valve
NILEW803	3/11/2022 15:02	3.1	1.54	Second Reading
NILEW803	3/11/2022 15:04	1.3	1.29	Third Reading
NILEW803	3/14/2022 14:55	1.9	0.95	Adjusted Valve
NILEW803	3/14/2022 14:56	0.82	0.83	Second Reading
NILEW803	3/16/2022 10:58	1.41	-1.08	In Compliance
NILEW804	3/11/2022 13:58	18.64	18.64	Adjusted Valve
NILEW804	3/11/2022 14:01	18.37	9.23	Second Reading
NILEW804	3/11/2022 14:05	9.75	9.53	Third Reading
NILEW804	3/14/2022 14:36	2.84	1.12	Adjusted Valve

Table 3. Wells with Positive Pressure Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW804	3/14/2022 14:41	0.32	0.31	Second Reading
NILEW804	3/17/2022 14:44	-4.98	-10.69	In Compliance
NILEW804	7/13/2022 14:14	11.6	-0.3	Adjusted Valve, In Compliance
NILEW805	3/11/2022 16:06	39.26	39.28	Adjusted Valve
NILEW805	3/11/2022 16:24	34.56	17.67	Second Reading
NILEW805	3/14/2022 15:02	-5.83	-5.82	In Compliance
NILEW806	3/14/2022 12:36	1.02	1.03	Adjusted Valve
NILEW806	3/14/2022 12:57	1.48	0.76	Second Reading
NILEW806	3/14/2022 14:29	0.79	0.4	Third Reading
NILEW806	3/14/2022 14:32	0.39	0.35	Fourth Reading
NILEW806	3/15/2022 12:30	-1.51	-1.5	In Compliance
NILEW806	7/21/2022 14:24	0.15	-0.45	Adjusted Valve, In Compliance
NILHC246	2/4/2022 13:09	-0.06	-0.09	(Initial Exceedance was on 1/20/22) In Compliance
NILHC246	5/20/2022 13:03	0.07	-0.57	Adjusted Valve, In Compliance
NILHC247	2/4/2022 13:13	-0.11	-0.1	(Initial Exceedance was on 1/20/22) In Compliance
NILHC247	2/10/2022 13:44	0.07	0.08	Adjusted Valve
NILHC247	2/10/2022 13:46	0.06	0.06	Second Reading
NILHC247	2/17/2022 11:31	-1.1	-1.9	In Compliance
NILHC248	2/3/2022 15:12	-10.44	-10.43	(Initial Exceedance was on 1/20/22) In Compliance
NILHC248	2/10/2022 13:55	0.04	0.04	Adjusted Valve
NILHC248	2/10/2022 13:57	0.03	0.05	Second Reading
NILHC248	2/17/2022 11:39	-1.17	-2.15	In Compliance
NILHC249	2/4/2022 13:23	-0.21	-0.19	(Initial Exceedance was on 1/20/22) In Compliance
NILHC249	2/10/2022 13:59	0.06	0.07	Adjusted Valve
NILHC249	2/10/2022 14:04	0.03	0.04	Second Reading
NILHC249	2/17/2022 11:48	-1.5	-3.03	In Compliance
NILHC250	2/4/2022 13:29	-0.09	-0.18	(Initial Exceedance was on 1/20/22) In Compliance

Table 3. Wells with Positive Pressure Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

	Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
5/20/2022 12:21	0.08	-0.37	Adjusted Valve, In Compliance
5/20/2022 12:14	1.03	-3.48	Adjusted Valve, In Compliance
3/17/2022 13:02	14.93	-0.68	Adjusted Valve, In Compliance
3/17/2022 13:04 4/1/2022 10:20	-0.55 -42.6	0.06	Adjusted Valve In Compliance
6/17/2022 10:48	0.1	0.11	Adjusted Valve
6/17/2022 10:49	-0.01	-0.03	In Compliance
7/7/2022 12:24	0.01	-0.67	Adjusted Valve, In Compliance
2/3/2022 15:38	1.52	-0.31	Adjusted Valve, In Compliance
5/16/2022 13:06	0.45	-0.48	Adjusted Valve, In Compliance
2/4/2022 15:24	0.29	-0.31	Adjusted Valve, In Compliance
5/16/2022 13:19	0.03	-0.02	Adjusted Valve, In Compliance
5/26/2022 14:05	20.78	-0.25	Adjusted Valve, In Compliance
2/10/2022 13:31	2.83	2.83	Adjusted Valve
2/10/2022 13:37 2/25/2022 15:37	4.14 0.83	4.15 -3.09	Second Reading In Compliance
5/17/2022 12:21	13.48	-0.14	Adjusted Valve, In Compliance
2/10/2022 9:30	17.54	-2.94	Adjusted Valve, In Compliance
5/17/2022 12:16	10.08	-5.27	Adjusted Valve, In Compliance
5/17/2022 12:10	16.4	2.85	Adjusted Valve In Compliance
	5/20/2022 12:14 3/17/2022 13:02 3/17/2022 13:04 4/1/2022 10:20 5/17/2022 10:49 7/7/2022 12:24 2/3/2022 15:38 5/16/2022 13:06 2/4/2022 15:24 5/16/2022 13:19 5/26/2022 14:05 2/10/2022 13:31 2/10/2022 13:37 2/25/2022 15:37 5/17/2022 12:21 2/10/2022 9:30 5/17/2022 12:16 5/17/2022 12:10 5/17/2022 12:11	5/20/2022 12:14	5/20/2022 12:14

Note: All required corrective action and remonitoring was completed in accordance with Rule 8-34 and NSPS timelines. All pressure exceedance were corrected within 15 days except for the wells noted in **bold italics**. Root cause analysis forms were completed for these wells.

^{*}Wells noted in **bold italics with an asterick** indicates wells with pressure exceedances that exceeded 60 days. Corrective action analysis and 75-day notifications were completed for these wells.

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Oxygen (%)	Comments
NILCW004	2/25/2022 14:58	7.1	Adjusted Valve
NILCW004	2/25/2022 15:00	5.6	Second Reading
NILCW004	3/2/2022 14:26	4.9	In Compliance
NILCW004	3/9/2022 9:10	9	Adjusted Valve
NILCW004	3/9/2022 9:12	6.1	Second Reading
NILCW004	3/14/2022 13:09	4.3	In Compliance
NILCW004	4/11/2022 15:13	6.5	Adjusted Valve
NILCW004	4/11/2022 15:14	6.5	Second Reading
NILCW004	4/20/2022 15:13	0.4	In Compliance
NILCW004	5/19/2022 17:25	16.2	Adjusted Valve
NILCW004	5/19/2022 17:27	15.8	Second Reading
NILCW004	5/26/2022 13:47	3.5	In Compliance
NILCW004	6/17/2022 15:44	12.2	Adjusted Valve
NILCW004	6/17/2022 15:45	12.2	Second Reading
NILCW004	7/1/2022 15:27	0.7	In Compliance
NIHC227A	2/3/2022 14:28	0.1	(Initial Exceedance was on 1/21/22) In Compliance
NILEW035	2/4/2022 15:41	10.7	(Initial Exceedance was on 1/21/22) Adjusted Valve
NILEW035	2/18/2022 17:18	8.1	Adjusted Valve
NILEW035	2/18/2022 17:21	8.1	Second Reading
NILEW035	3/3/2022 18:13	6.5	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW228	2/7/2022 12:39	17	(Initial Exceedance was on 12/9/21) Adjusted Valve
NILEW228	2/25/2022 12:44	12.8	Adjusted Valve
NILEW228	2/25/2022 12:46	9.4	Second Reading
NILEW228	3/2/2022 11:45	11.4	Adjusted Valve
NILEW228	3/3/2022 17:00	12	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW461	7/21/2022 14:35	20.8	Adjusted Valve
NILEW461	7/21/2022 14:36	20.8	Second Reading; Well remains in exceedance and compliance will be documented in the next report.

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Oxygen (%)	Comments
NILEW491	2/11/2022 15:15	7.3	(Initial Exceedance was on 10/26/21) Well Permanently Decommissioned Due to Poor Gas Quality
NILEW514	2/7/2022 15:45	10	Adjusted Valve
NILEW514	2/7/2022 15:52	9.7	Second Reading
NILEW514	2/21/2022 15:02	4.8	In Compliance
NILEW514	3/3/2022 11:17	11.7	Adjusted Valve
NILEW514	3/3/2022 11:19	6.8	Second Reading
NILEW514	3/18/2022 14:40	2	In Compliance
NILEW514	5/10/2022 15:59	7.5	Adjusted Valve
NILEW514	5/10/2022 16:00	8.2	Second Reading
NILEW514	5/23/2022 12:03	4.2	In Compliance
NILEW566	7/21/2022 15:44	19	Adjusted Valve
NILEW566	7/21/2022 15:46	19.1	Second Reading; Well remains in exceedance and compliance will be documented in the next report before its 120-day deadline, by November 18, 2022.
NILEW597	5/18/2022 10:09	10.5	Adjusted Valve
NILEW597	5/18/2022 10:12	10.5	Second Reading
NILEW597	5/26/2022 15:08	4.9	In Compliance
NILEW601	3/7/2022 10:50	10.5	Adjusted Valve
NILEW601	3/7/2022 10:59	11.2	Second Reading
NILEW601	3/18/2022 14:23	11.2	Adjusted Valve
NILEW601	4/1/2022 12:56	4.1	In Compliance
NILEW604	2/10/2022 17:13	19.4	(Initial Exceedance was on 11/17/21) Adjusted Valve
NILEW604	2/28/2022 9:21	20.6	Adjusted Valve
NILEW604	3/3/2022 15:17	20.2	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW620	2/11/2022 14:27	16.5	(Initial Exceedance was on 1/28/22) Adjusted Valve
NILEW620	2/11/2022 14:32	16.4	Second Reading
NILEW620	2/21/2022 14:48	16.3	Adjusted Valve
NILEW620	2/21/2022 14:52	16.6	Second Reading
	3/3/2022 15:39	0	In Compliance

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad	Well ID	Date and Time	Oxygen (%)	Comments
NILEW639 3/30/2022 13:38 0 In Compliance NILEW639 5/17/2022 11:49 9.5 Adjusted Valve NILEW639 5/17/2022 11:50 9.2 Second Reading NILEW639 5/25/2022 12:55 3.9 In Compliance NILEW639 6/6/2022 15:17 20.6 Adjusted Valve NILEW639 6/6/2022 15:21 20.5 Second Reading NILEW639 6/10/2022 13:27 0 In Compliance NILEW639 6/17/2022 13:27 0 In Compliance NILEW650 2/11/2022 13:33 19 Adjusted Valve NILEW650 2/11/2022 11:35 0.6 In Compliance NILEW659 4/12/2022 15:05 9.5 Adjusted Valve NILEW659 4/12/2022 15:06 9.4 Second Reading NILEW659 4/19/2022 11:55 8.1 Adjusted Valve NILEW659 5/11/2022 11:23 0 In Compliance NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 3/3/2022 13:43 12.1	NILEW639	3/17/2022 10:51	6.8	Adjusted Valve
NILEW639 5/17/2022 11:49 9.5 Adjusted Valve	NILEW639	3/17/2022 10:52	6.9	Second Reading
NILEW639 5/17/2022 11:50 9.2 Second Reading	NILEW639	3/30/2022 13:38	0	In Compliance
NILEW639 5/17/2022 11:50 9.2 Second Reading				
NILEW639 5/25/2022 12:55 3.9 In Compliance	NILEW639	5/17/2022 11:49	9.5	Adjusted Valve
NILEW639 6/6/2022 15:17 20.6 Adjusted Valve	NILEW639	5/17/2022 11:50	9.2	Second Reading
NILEW639 6/6/2022 15:21 20.5 Second Reading	NILEW639	5/25/2022 12:55	3.9	In Compliance
NILEW639 6/6/2022 15:21 20.5 Second Reading				
NILEW639 6/10/2022 11:56 8.1 Adjusted Valve NILEW639 6/17/2022 13:27 0 In Compliance NILEW650 2/11/2022 11:33 19 Adjusted Valve NILEW650 2/11/2022 11:35 0.6 In Compliance NILEW659 4/12/2022 15:05 9.5 Adjusted Valve NILEW659 4/12/2022 15:06 9.4 Second Reading NILEW659 5/11/2022 11:23 0 In Compliance NILEW659 5/11/2022 11:23 0 In Compliance NILEW668 2/10/2022 16:22 17.8 (Initial Exceedance was on 11/11/21) Ad NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 3/2/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669	NILEW639	6/6/2022 15:17	20.6	Adjusted Valve
NILEW639 6/17/2022 13:27 0 In Compliance NILEW650 2/11/2022 11:33 19 Adjusted Valve NILEW650 2/11/2022 11:35 0.6 In Compliance NILEW659 4/12/2022 15:05 9.5 Adjusted Valve NILEW659 4/12/2022 15:06 9.4 Second Reading NILEW659 4/19/2022 11:55 8.1 Adjusted Valve NILEW659 5/11/2022 11:23 0 In Compliance NILEW668 2/10/2022 16:22 17.8 (Initial Exceedance was on 11/11/21) Ad NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW668 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 6/22/2022 13:51 6.6 Adjusted Valve NILEW669	NILEW639	6/6/2022 15:21	20.5	Second Reading
NILEW650 2/11/2022 11:33 19 Adjusted Valve NILEW650 2/11/2022 11:35 0.6 In Compliance NILEW659 4/12/2022 15:05 9.5 Adjusted Valve NILEW659 4/12/2022 15:06 9.4 Second Reading NILEW659 4/19/2022 11:55 8.1 Adjusted Valve NILEW659 5/11/2022 11:23 0 In Compliance NILEW668 2/10/2022 16:22 17.8 (Initial Exceedance was on 11/11/21) Ad NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:51 6.6 Adjusted Valve NILEW669 6/62/2022 13:51 6.6 Adjusted Valve NILEW669<	NILEW639	6/10/2022 11:56	8.1	Adjusted Valve
NILEW650 2/11/2022 11:35 0.6 In Compliance NILEW659 4/12/2022 15:05 9.5 Adjusted Valve NILEW659 4/12/2022 15:06 9.4 Second Reading NILEW659 4/19/2022 11:55 8.1 Adjusted Valve NILEW659 5/11/2022 11:23 0 In Compliance NILEW668 2/10/2022 16:22 17.8 (Initial Exceedance was on 11/11/21) Ad NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 13:51 6.6 Adjusted Valve NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669<	NILEW639	6/17/2022 13:27	0	In Compliance
NILEW650 2/11/2022 11:35 0.6 In Compliance NILEW659 4/12/2022 15:05 9.5 Adjusted Valve NILEW659 4/12/2022 15:06 9.4 Second Reading NILEW659 4/19/2022 11:55 8.1 Adjusted Valve NILEW659 5/11/2022 11:23 0 In Compliance NILEW668 2/10/2022 16:22 17.8 (Initial Exceedance was on 11/11/21) Ad NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 13:51 6.6 Adjusted Valve NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669<				
NILEW659 4/12/2022 15:05 9.5 Adjusted Valve NILEW659 4/12/2022 15:06 9.4 Second Reading NILEW659 4/19/2022 11:55 8.1 Adjusted Valve NILEW659 5/11/2022 11:23 0 In Compliance NILEW668 2/10/2022 16:22 17.8 (Initial Exceedance was on 11/11/21) Ad NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/6/2022 13:43 4.6 In Compliance NILEW669 <td>NILEW650</td> <td>2/11/2022 11:33</td> <td>19</td> <td>Adjusted Valve</td>	NILEW650	2/11/2022 11:33	19	Adjusted Valve
NILEW659 4/12/2022 15:06 9.4 Second Reading NILEW659 4/19/2022 11:55 8.1 Adjusted Valve NILEW659 5/11/2022 11:23 0 In Compliance NILEW668 2/10/2022 16:22 17.8 (Initial Exceedance was on 11/11/21) Ad NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 <td>NILEW650</td> <td>2/11/2022 11:35</td> <td>0.6</td> <td>In Compliance</td>	NILEW650	2/11/2022 11:35	0.6	In Compliance
NILEW659 4/12/2022 15:06 9.4 Second Reading NILEW659 4/19/2022 11:55 8.1 Adjusted Valve NILEW659 5/11/2022 11:23 0 In Compliance NILEW668 2/10/2022 16:22 17.8 (Initial Exceedance was on 11/11/21) Ad NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 <td></td> <td></td> <td></td> <td></td>				
NILEW659 4/19/2022 11:55 8.1 Adjusted Valve NILEW659 5/11/2022 11:23 0 In Compliance NILEW668 2/10/2022 16:22 17.8 (Initial Exceedance was on 11/11/21) Ad NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad <td>NILEW659</td> <td>4/12/2022 15:05</td> <td>9.5</td> <td>Adjusted Valve</td>	NILEW659	4/12/2022 15:05	9.5	Adjusted Valve
NILEW659 5/11/2022 11:23 0 In Compliance NILEW668 2/10/2022 16:22 17.8 (Initial Exceedance was on 11/11/21) Ad NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad	NILEW659	4/12/2022 15:06	9.4	Second Reading
NILEW668 2/10/2022 16:22 17.8 (Initial Exceedance was on 11/11/21) Ad NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad	NILEW659	4/19/2022 11:55	8.1	Adjusted Valve
NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad	NILEW659	5/11/2022 11:23	0	In Compliance
NILEW668 2/18/2022 15:14 17 Adjusted Valve NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad				
NILEW668 2/28/2022 11:08 12.1 Adjusted Valve NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad	NILEW668	2/10/2022 16:22	17.8	(Initial Exceedance was on 11/11/21) Adjusted Valve
NILEW668 3/3/2022 13:03 19.7 Well Permanently Decommissioned Due Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad	NILEW668	2/18/2022 15:14	17	Adjusted Valve
NILEW668 3/3/2022 13:03 19.7 Quality NILEW669 3/23/2022 13:43 6.4 Adjusted Valve NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad	NILEW668	2/28/2022 11:08	12.1	·
NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad	NILEW668	3/3/2022 13:03	19.7	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW669 3/23/2022 13:44 6.3 Second Reading NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad	NII FW669	3/23/2022 13:43	6.4	Adjusted Valve
NILEW669 4/11/2022 14:45 4.9 In Compliance NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad				·
NILEW669 5/23/2022 13:03 9.5 Adjusted Valve NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Add				
NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Add	IVILLAVOOS	7/11/2022 17.73	7.5	теотрианее
NILEW669 5/23/2022 14:13 9 Second Reading NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Add	NII FW669	5/23/2022 13:03	9.5	Adjusted Valve
NILEW669 6/6/2022 13:51 6.6 Adjusted Valve NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad				·
NILEW669 6/22/2022 12:49 5.3 Adjusted Valve NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Add		· · ·		
NILEW669 7/13/2022 13:43 4.6 In Compliance NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad				·
NILEW672 2/7/2022 16:06 14.5 (Initial Exceedance was on 11/11/21) Ad				·
	INILLANGOS	// 13/ 2022 13.43	4.0	in compliance
NII FW672 2/25/2022 17:40 0.9 In Compliance	NILEW672	2/7/2022 16:06	14.5	(Initial Exceedance was on 11/11/21) Adjusted Valve
	NILEW672	2/25/2022 17:40	0.9	In Compliance
NILEW677 2/14/2022 15:17 11.6 (Initial Exceedance was on 1/13/22) Adj	NII FW677	2/14/2022 15:17	11 6	(Initial Exceedance was on 1/13/22) Adjusted Valve

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Oxygen (%)	Comments
NILEW677	2/28/2022 11:26	18.9	Adjusted Valve
NILEW677	3/3/2022 14:07	20.7	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW683	2/14/2022 11:40	15.6	Adjusted Valve
NILEW683	2/14/2022 11:48	15.6	Second Reading
NILEW683	2/25/2022 17:16	1.8	In Compliance
NILEW683	3/3/2022 16:14	16.9	Adjusted Valve
NILEW683	3/3/2022 16:14	16.9	Second Reading
NILEW683	3/3/2022 16:14	17	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW684	3/3/2022 14:00	6.8	(Initial Exceedance was on 1/24/22) Adjusted Valve
NILEW684	3/3/2022 14:02	5.3	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW687	7/14/2022 14:56	18.8	Adjusted Valve
NILEW687	7/14/2022 14:59	18.7	Second Reading
NILEW687	7/26/2022 16:03	20.1	Second Reading; Well remains in exceedance and compliance will be documented in the next report before its 120-day deadline, by November 11, 2022.
NILEW695	2/10/2022 16:33	11.7	(Initial Exceedance was on 12/13/21) Adjusted Valve
NILEW695	2/28/2022 11:03	14.9	Adjusted Valve
NILEW695	3/3/2022 12:26	7.1	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW699	2/10/2022 16:17	10.8	Adjusted Valve
NILEW699	2/10/2022 16:19	10.3	Second Reading
NILEW699	2/18/2022 15:11	13.5	Adjusted Valve
NILEW699	3/3/2022 12:34	12.6	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW704	2/4/2022 14:27	18.9	(Initial Exceedance was on 1/21/22) Adjusted Valve
NILEW704	2/16/2022 13:54	19.2	Adjusted Valve
NILEW704	3/4/2022 14:31	18.4	Adjusted Valve
NILEW704	3/17/2022 13:40	0.2	In Compliance
NILEW704	4/1/2022 10:37	6.2	Adjusted Valve

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Oxygen (%)	Comments
NILEW704	4/1/2022 10:41	6.2	Second Reading
NILEW704	4/14/2022 10:55	5.1	Adjusted Valve
NILEW704	4/24/2022 12:24	5.9	Adjusted Valve
NILEW704	4/24/2022 12:29	5.9	Second Reading
NILEW704	5/7/2022 13:42	8	Adjusted Valve
NILEW704	5/7/2022 13:45	8	Second Reading
NILEW704	5/19/2022 15:27	4.2	In Compliance
NILEW704	6/2/2022 11:36	5.5	Adjusted Valve
NILEW704	6/2/2022 11:38	5.5	Second Reading
NILEW704	6/10/2022 12:24	3.7	In Compliance
NILEW704	6/17/2022 15:01	20.3	Adjusted Valve
NILEW704	6/17/2022 15:03	20.1	Second Reading
NILEW704	7/1/2022 14:43	4.8	In Compliance
NILEW714	2/21/2022 9:57	6.7	Adjusted Valve
NILEW714	2/21/2022 10:01	10.5	Second Reading
NILEW714	3/3/2022 9:15	0	In Compliance
NILEW715	6/6/2022 13:05	10.4	Adjusted Valve
NILEW715	6/6/2022 13:07	15.4	Second Reading
NILEW715	6/20/2022 11:55	0.5	In Compliance
			·
NILEW720	2/28/2022 11:46	8.9	Adjusted Valve
NILEW720	2/28/2022 11:47	9	Second Reading
NILEW720	3/3/2022 13:54	3.2	In Compliance
			·
NILEW720	5/10/2022 14:42	8.2	Adjusted Valve
NILEW720	5/10/2022 14:43	8.2	Second Reading
NILEW720	5/19/2022 14:14	16.3	Adjusted Valve
NILEW720	5/19/2022 14:25	9.7	Second Reading
NILEW720	5/26/2022 14:42	0	In Compliance
			·
NILEW720	6/21/2022 13:02	11.9	Adjusted Valve
NILEW720	6/21/2022 13:03	12.8	Second Reading
NILEW720	7/6/2022 16:33	4.9	In Compliance
	· ·		·
NILEW720	7/12/2022 14:09	7	Adjusted Valve
NILEW720	7/12/2022 14:10	9.1	Second Reading
NILEW720	7/22/2022 15:11	0	In Compliance
NILEW723	2/11/2022 15:10	18.3	(Initial Exceedance was on 12/2/21) Adjusted Valve

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Oxygen (%)	Comments
NILEW723	2/25/2022 16:37	0.1	In Compliance
			·
NILEW726	7/14/2022 14:48	6.5	Adjusted Valve
NILEW726	7/14/2022 14:52	7.6	Second Reading
NILEW726	7/26/2022 15:55	3.1	In Compliance
NILEW740	3/31/2022 12:39	5.3	Adjusted Valve
NILEW740	3/31/2022 12:41	5.3	Second Reading
NILEW740	4/14/2022 10:36	4.1	In Compliance
NILEW749	2/10/2022 15:16	7.5	Adjusted Valve
NILEW749	2/10/2022 15:20	1.1	In Compliance
NILEW753	2/4/2022 16:52	6.9	Adjusted Valve
NILEW753	2/4/2022 16:54	6.9	Second Reading
NILEW753	2/14/2022 14:25	0.1	In Compliance
NILEW753	2/17/2022 16:06	5.3	Adjusted Valve
NILEW753	2/17/2022 16:07	5.3	Second Reading
NILEW753	3/4/2022 14:04	4.5	In Compliance
NILEW753	4/4/2022 16:34	10.6	Adjusted Valve
NILEW753	4/4/2022 16:36	11.1	Second Reading
NILEW753	4/19/2022 15:12	4.9	In Compliance
NILEW753	6/2/2022 12:20	5.8	Adjusted Valve
NILEW753	6/2/2022 12:22	5.8	Second Reading
NILEW753	6/10/2022 13:59	4.5	In Compliance
NILEW753	6/17/2022 12:07	6.8	Adjusted Valve
NILEW753	6/17/2022 12:09	6.8	Second Reading
NILEW753	7/1/2022 13:31	4.9	In Compliance
NILEW759	6/7/2022 10:33	6	Adjusted Valve
NILEW759	6/7/2022 10:40	4.8	In Compliance
NILEW761	3/3/2022 11:55	6.4	Adjusted Valve
NILEW761	3/3/2022 11:57	6.4	Second Reading
NILEW761	3/3/2022 12:00	1	In Compliance
NILEW761	5/19/2022 15:26	5.8	Adjusted Valve
NILEW761	5/19/2022 15:28	5.9	Second Reading
NILEW761	5/26/2022 14:25	0	In Compliance

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Oxygen (%)	Comments
NILEW761	6/21/2022 14:43	7.3	Adjusted Valve
NILEW761	6/21/2022 14:45	7.3	Second Reading
NILEW761	7/6/2022 16:37	0	In Compliance
NILEW762	4/12/2022 14:18	9.2	Adjusted Valve
NILEW762	4/12/2022 14:19	9.6	Second Reading
NILEW762	4/25/2022 11:40	7.1	Adjusted Valve
NILEW762	5/10/2022 11:25	4.7	In Compliance
NILEW762	7/13/2022 12:29	7.6	Adjusted Valve
NILEW762	7/13/2022 12:31	7.9	Second Reading
NILEW762	7/22/2022 14:20	0	In Compliance
NILEW763	2/7/2022 15:28	0	(Initial Exceedance was on 12/6/21) In Compliance
NILEW769	2/7/2022 12:24	9.5	(Initial Exceedance was on 12/30/21) Adjusted Valve
NILEW769	2/25/2022 12:55	9.1	Adjusted Valve
NILEW769	3/2/2022 11:53	9.2	Adjusted Valve
NILEW769	3/3/2022 17:11	9	Well Permanently Decommissioned Due to Poor Gas
INILL W/03	3/3/2022 17.11		Quality
NILEW795	4/24/2022 16:06	8.6	Adjusted Valve
NILEW795	4/24/2022 16:09	9.1	Second Reading
NILEW795	5/10/2022 10:52	9.9	Adjusted Valve
NILEW795	5/10/2022 10:54	9.1	Second Reading
NILEW795	5/20/2022 15:28	0	In Compliance
NILEW802	4/26/2022 15:05	10.6	Adjusted Valve
NILEW802	4/28/2022 14:56	11.2	Adjusted Valve Adjusted Valve
NILEW802	5/10/2022 14:32	12.4	Adjusted Valve Adjusted Valve
NILEW802	5/19/2022 14:39	14.2	Adjusted Valve Adjusted Valve
NILEW802	6/3/2022 13:20	14.4	Adjusted Valve
NILEW802	6/21/2022 13:10	18.2	Adjusted Valve
NILEW802	7/12/2022 14:18	20	Adjusted Valve
NILEW802	7/12/2022 14:18	19.9	Second Reading; Well remains in exceedance and compliance will be documented in the next report before its 120-day deadline, by August 24, 2022.
			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
NILEW803	6/6/2022 15:04	15.2	Adjusted Valve
NILEW803	6/6/2022 15:06	15.2	Second Reading
NILEW803	6/7/2022 14:23	0.7	In Compliance

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Oxygen (%)	Comments
NILEW804	6/6/2022 14:43	17	Adjusted Valve
NILEW804	6/6/2022 14:49	16.9	Second Reading
NILEW804	6/22/2022 14:25	18.9	Adjusted Valve
NILEW804	7/13/2022 14:14	0	In Compliance
NILEW805	5/23/2022 12:41	8.9	Adjusted Valve
NILEW805	5/23/2022 12:42	8.4	Second Reading
NILEW805	6/6/2022 14:38	0.1	In Compliance
	, ,		·
NILEW805	6/22/2022 14:20	6.4	Adjusted Valve
NILEW805	6/22/2022 14:21	6.3	Second Reading
NILEW805	7/13/2022 14:09	0	In Compliance
			·
NILEW805	7/26/2022 14:54	10	Adjusted Valve
NILEW805	7/26/2022 14:55	9.9	Second Reading; Well remains in exceedance and compliance will be documented in the next report before its 120-day deadline, by November 23, 2022.
NILHC250	4/4/2022 12:51	5.1	Adjusted Valve
NILHC250	4/4/2022 12:53	5	In Compliance
METICZSO	7/ 7/ 2022 12:55	<u>J</u>	теотринес
NILHC251	2/4/2022 13:36	8.1	Adjusted Valve
NILHC251	2/4/2022 13:37	8.1	Second Reading
NILHC251	2/10/2022 14:16	2.7	In Compliance
NILHC251	2/17/2022 12:02	18.3	Adjusted Valve
NILHC251	2/17/2022 12:13	18.2	Second Reading
NILHC251	2/18/2022 12:15	19.4	Adjusted Valve
NILHC251	2/21/2022 12:01	18.6	Adjusted Valve
NILHC251	2/25/2022 13:08	14.6	Adjusted Valve
NILHC251	2/28/2022 8:35	18.1	Adjusted Valve
NILHC251	3/4/2022 12:44	13.3	Adjusted Valve
NILHC251	3/7/2022 13:54	14.3	Adjusted Valve
NILHC251	3/21/2022 13:13	9.2	Adjusted Valve
NILHC251	4/4/2022 12:57	19.3	Adjusted Valve
NILHC251	4/25/2022 13:07	4.3	In Compliance
NILHC251	5/6/2022 14:26	8.2	Adjusted Valve
NILHC251	5/6/2022 14:27	8.5	Second Reading
NILHC251	5/20/2022 12:21	0	In Compliance
NILHC251	6/16/2022 11:51	13.9	Adjusted Valve

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Oxygen (%)	Comments
NILHC251	6/16/2022 11:53	14	Second Reading
NILHC251	7/1/2022 14:54	14.3	Adjusted Valve
NILHC251	7/18/2022 15:19	4.3	In Compliance
NILLEW16	2/28/2022 7:59	17.6	Adjusted Valve
NILLEW16	2/28/2022 8:00	17.6	Second Reading
NILLEW16	3/4/2022 12:12	19.5	Adjusted Valve
NILLEW16	3/4/2022 12:14	19.6	Second Reading
NILLEW16	3/17/2022 13:02	20.8	Adjusted Valve
NILLEW16	3/17/2022 13:04	20.6	Second Reading
NILLEW16	4/1/2022 10:20	2.3	In Compliance
NILLEW16	5/16/2022 12:19	20.8	Adjusted Valve
NILLEW16	5/16/2022 12:23	20.8	Second Reading
NILLEW16	5/31/2022 13:28	21.7	Adjusted Valve
NILLEW16	6/2/2022 11:24	20.9	Adjusted Valve
NILLEW16	6/17/2022 10:48	20.6	Adjusted Valve
NILLEW16	6/17/2022 10:49	20.6	Second Reading
NILLEW16	7/7/2022 12:24	0.3	In Compliance
NILLEW16	7/16/2022 12:47	15.2	Adjusted Valve
NILLEW16	7/16/2022 12:51	15.1	Second Reading
NILLEW16	7/29/2022 15:16	3.9	In Compliance
NILMW005	2/3/2022 16:25	9.1	(Initial Exceedance was on 12/28/21) Adjusted Valve
NILMW005	2/17/2022 13:58	7.2	Adjusted Valve
NILMW005	3/4/2022 10:21	7.2	Adjusted Valve
NILMW005	3/21/2022 9:47	4.5	In Compliance
NILMW005	7/21/2022 15:24	20.7	Adjusted Valve
NILMW005	7/21/2022 15:25	20.7	Second Reading
NILMW006	2/3/2022 16:30	5.9	Adjusted Valve
NILMW006	2/3/2022 16:31	5.5	Second Reading
NILMW006	2/14/2022 14:14	4.9	In Compliance
NILMW006	2/17/2022 13:51	5.7	Adjusted Valve
NILMW006	2/17/2022 13:53	5	In Compliance
NILMW008	2/2/2022 19:24	21.2	(Initial Exceedance was on 1/10/22) Adjusted Valve
NILMW008	2/4/2022 11:37	20.4	Adjusted Valve
NILMW008	2/17/2022 14:12	20.6	Adjusted Valve
NILMW008	3/4/2022 9:36	0.1	In Compliance

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Oxygen (%)	Comments			
NILMW011	2/2/2022 10:26	18.3	(Initial Exceedance was on 12/28/21) Adjusted Valv			
MILIVIVVOII	2/2/2022 19:36	16.5	(Initial Exceedance was on 12/28/21) Adjusted Valv			
NILMW011	2/17/2022 14:16	7.3	Adjusted Valve			
NILMW011	3/4/2022 9:54	0.7	In Compliance			
NILMW011	7/21/2022 15:12	20	Adjusted Valve			
NILMW011	7/21/2022 15:13	20	Second Reading; Well remains in exceedance and compliance will be documented in the next report before its 120-day deadline, by November 18, 2022.			
NILMW019	2/18/2022 13:54	6.9	Adjusted Valve			
NILMW019	2/18/2022 13:34	6.3	Second Reading			
NILMW019	3/3/2022 10:22	10.3	Adjusted Valve			
NILMW019	3/11/2022 13:07	6.8	Adjusted Valve Adjusted Valve			
NILMW019	3/11/2022 13:11	9.3	Second Reading (Well was temporarily taken offline due to construction activities)			
NILMW020	2/18/2022 11:59	5.7	(Initial Exceedance was on 1/21/22) Adjusted Valve			
NILMW020	2/18/2022 12:03	5.7	Second Reading			
NILMW020	3/3/2022 10:39	4.1	In Compliance			
NILMW024	4/11/2022 13:25	11.7	Adjusted Valve			
NILMW024	4/11/2022 13:27	12	Second Reading			
NILMW024	4/24/2022 13:19	0	In Compliance			
NILMW031	2/4/2022 15:31	6.8	(Initial Exceedance was on 1/21/22) Adjusted Valv			
NILMW031	2/16/2022 11:37	7	Adjusted Valve			
NILMW031	2/16/2022 11:52	7.1	Second Reading			
NILMW031	3/4/2022 13:34	6.8	Adjusted Valve			
NILMW031	3/21/2022 13:59	2.4	In Compliance			
NILMW031	5/7/2022 13:19	6.3	Adjusted Valve			
NILMW031	5/7/2022 13:21	6.4	Second Reading			
NILMW031	5/11/2022 14:46	3	In Compliance			
NILMW031	7/16/2022 15:07	20.8	Adjusted Valve			
NILMW031	7/16/2022 15:09	9.3	Second Reading			
NILMW031	7/29/2022 15:24	3.3	In Compliance			
NILMW032	3/4/2022 13:37	6.9	Adjusted Valve			

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Oxygen (%)	Comments			
NILMW032	3/4/2022 13:39	6.9	Second Reading			
NILMW032	3/18/2022 14:55	5.9	Adjusted Valve			
NILMW032	4/4/2022 15:07	20.6	Adjusted Valve			
NILMW032	4/22/2022 14:53	20.9	Adjusted Valve			
NILMW032	5/7/2022 13:16	20.8	Adjusted Valve			
NILMW032	5/16/2022 13:03	20.9	Adjusted Valve			
NILMW032	6/2/2022 13:27	20.9	Adjusted Valve			
NILMW032	6/15/2022 14:46	3.9	In Compliance			
NILMW033	4/4/2022 14:57	5.1	Adjusted Valve			
NILMW033	4/4/2022 14:58	5.1	Second Reading			
NILMW033	4/19/2022 15:03	1.2	In Compliance			
NILMW034	2/4/2022 15:22	7.5	(Initial Exceedance was on 1/21/22) Adjusted Valve			
NILMW034	2/18/2022 9:06	9.3	Adjusted Valve			
NILMW034	3/4/2022 13:26	10.2	Adjusted Valve			
NILMW034	3/21/2022 13:51	10.6	Adjusted Valve			
NILMW034	4/4/2022 14:54	11	Adjusted Valve			
NILMW034	4/22/2022 14:41	11.5	Adjusted Valve			
NILMW034	5/7/2022 13:06	10.6	Adjusted Valve			
NILMW034	5/13/2022 9:54	4.9	In Compliance			
NILMW034	6/2/2022 13:36	9.9	Adjusted Valve			
NILMW034	6/2/2022 13:39	9.8	Second Reading			
NILMW034	6/17/2022 14:36	0.3	In Compliance			
NILW481A	3/17/2022 13:17	20.8	Adjusted Valve			
NILW481A	3/17/2022 13:20	20.8	Well Permanently Decommissioned Due to Poor Gas Quality			
NILW632A	4/18/2022 11:30	6	Adjusted Valve			
NILW632A	4/18/2022 11:33	4.9	In Compliance			
MILWOJZA	+/ 10/2022 11.55	7.5	in compliance			
NILW632A	5/23/2022 11:47	15.3	Adjusted Valve			
NILW632A	5/23/2022 11:49	15.4	Second Reading			
NILW632A	5/26/2022 14:05	0.6	In Compliance			
	-,,	3.0	compliance			
NILW728A	2/7/2022 15:35	19.6	(Initial Exceedance was on 1/28/22) Adjusted Valve			
NILW728A	2/28/2022 13:35	0	In Compliance			
	, ,	-	F			
NILW728A	3/25/2022 14:57	10.3	Adjusted Valve			
NILW728A	3/25/2022 14:59	10.2	Second Reading			

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

Well ID	Date and Time	Oxygen (%)	Comments			
NILW728A	4/11/2022 13:05	10.6	Adjusted Valve			
NILW728A	4/25/2022 13:02	15.3	Adjusted Valve			
NILW728A	5/10/2022 15:50	6.9	Adjusted Valve			
NILW728A	5/23/2022 12:53	1.9	In Compliance			
NILW728A	6/6/2022 13:32	13.2	Adjusted Valve			
NILW728A	6/6/2022 13:36	14.3	Second Reading			
NILW728A	6/10/2022 13:46	1	In Compliance			
NILW728A	7/22/2022 12:51	12.3	Adjusted Valve			
NILW728A	7/22/2022 13:27	6.8	Second Reading			
NILW728A	7/22/2022 13:28	6.8	Third Reading; Well remains in exceedance and compliance will be documented in the next report before its 120-day deadline, by November 19, 2022.			
NLCR0910	2/10/2022 13:31	9.4	Adjusted Valve			
NLCR0910	2/10/2022 13:37	9.4	Second Reading			
NLCR0910	2/25/2022 15:37	0	In Compliance			
	-1:-1					
NLCR0910	5/17/2022 13:10	13.5	Adjusted Valve			
NLCR0910	5/17/2022 13:11	14.2	Second Reading			
NLCR0910	6/1/2022 13:57	21.2	Adjusted Valve			
NLCR0910	6/20/2022 13:09	19.4	Adjusted Valve			
NLCR0910	7/6/2022 14:31	20.5	Adjusted Valve			
NLCR0910	7/19/2022 15:11	19.7	Adjusted Valve; Well remains in exceedance and compliance will be documented in the next report before its 120-day deadline, by September 14, 2022.			
NLCR1112	2/28/2022 14:56	5.5	Adjusted Valve			
NLCR1112	2/28/2022 14:57	5.5	Second Reading			
NLCR1112	3/1/2022 12:24	5.5	Adjusted Valve			
NLCR1112	3/17/2022 11:06	0.7	In Compliance			
	3, = 1, = 2 = 2 = 2 = 2	2				
NLCRST05	4/1/2022 11:49	20.1	Adjusted Valve			
NLCRST05	4/1/2022 11:52	20.8	Second Reading			
NLCRST05	4/24/2022 15:44	19.7	Adjusted Valve			
NLCRST05	5/10/2022 13:41	0	In Compliance			
	, ,	-	p			
NLCRST05	7/14/2022 15:14	19.5	Adjusted Valve			
NLCRST05	7/14/2022 15:26	20.1	Second Reading			

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

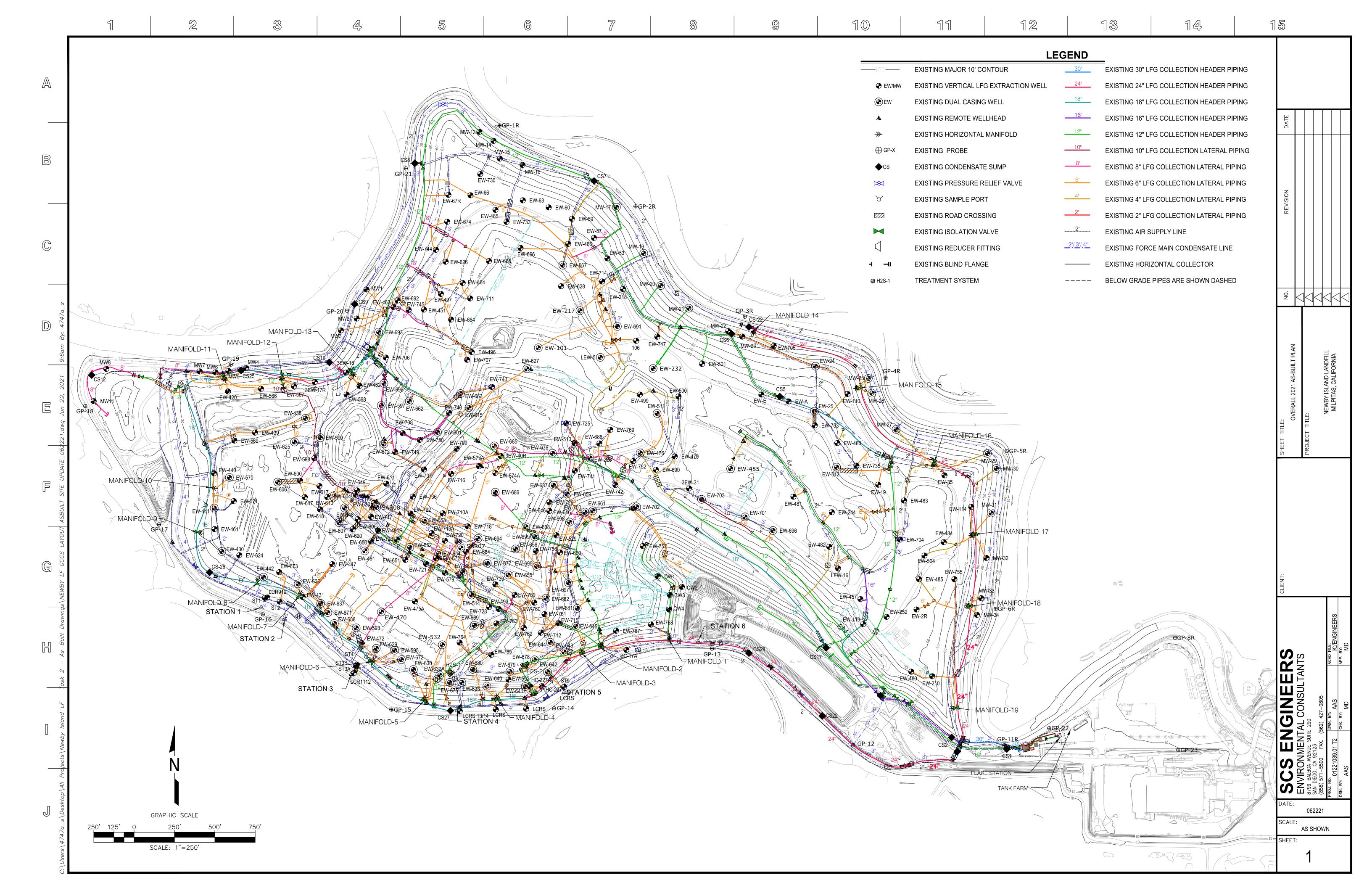
Well ID	Date and Time	Oxygen (%)	Comments	
NLCRST05	7/19/2022 12:52	19.7	Second Reading; Well remains in exceedance and compliance will be documented in the next report before its 120-day deadline, by November 11, 2022.	
NII CDCT2 A	2/20/2022 44.52	0.4	Adiuska d Volus	
NLCRST3A	2/28/2022 14:52	9.4	Adjusted Valve	
NLCRST3A	2/28/2022 14:53	9.6	Second Reading	
NLCRST3A	3/1/2022 12:21	7.2	Adjusted Valve	
NLCRST3A	3/17/2022 11:03	1	In Compliance	
NLCRST3A	4/18/2022 14:04	5.8	Adjusted Valve	
NLCRST3A	5/2/2022 13:30	4.2	In Compliance	
NLCRST3B	2/28/2022 14:45	9.6	Adjusted Valve	
NLCRST3B	2/28/2022 14:49	10.2	Second Reading	
NLCRST3B	3/1/2022 12:19	7.3	Adjusted Valve	
NLCRST3B	3/17/2022 11:01	1	In Compliance	
NLCRST3B	4/18/2022 14:02	5.7	Adjusted Valve	
NLCRST3B	5/2/2022 13:28	4.3	In Compliance	

Note: All required corrective action and monitoring was completed in accordance with Rule 8-34 and NSPS timelines

Table 5. Wells with Temperature Exceedances Newby Island Landfill, Milpitas, California (February 1, 2022 through July 31, 2022)

W-II IB	Data and Time	Initial Tanas (OP)	Adjusted Temp	
Well ID	Date and Time	Initial Temp [°F]	[°F]	Comments
				(Initial Exceedance was on 1/17/22) Adjusted
NILEW690*	2/7/2022 11:50	132.3	132.9	Valve
NILEW690*	2/7/2022 11:57	132.3	132.4	Second Reading
NILEW690*	2/25/2022 11:26	134.9	134.9	Adjusted Valve
NILEW690*	2/25/2022 11:28	134.8	134.8	Second Reading
NILEW690*	3/2/2022 11:03	134.9	134.9	Adjusted Valve
NILEW690*	3/2/2022 11:05	135	135	Second Reading
NILEW690*	3/22/2022 12:02	135.3	135.3	Adjusted Valve
NILEW690*	3/31/2022 14:41	132.2	132.3	Adjusted Valve
NILEW690*	3/31/2022 14:43	131.2	131.6	Second Reading
NILEW690*	4/4/2022 17:46	131.9	131.8	Adjusted Valve
NILEW690*	4/21/2022 14:39	131.7	130.4	Adjusted Valve, In Compliance
NILEW701*	2/25/2022 11:10	134.7	134.4	Adjusted Valve
NILEW701*	2/25/2022 11:12	134	133.9	Second Reading
NILEW701*	3/2/2022 10:50	133.9	134.4	Adjusted Valve
NILEW701*	3/2/2022 10:52	135.1	135	Second Reading
NILEW701*	3/11/2022 16:33	131.6	132.1	Adjusted Valve
NILEW701*	3/11/2022 16:35	131.3	131.8	Second Reading
NILEW701*	3/22/2022 11:54	136.6	136.6	Adjusted Valve
NILEW701*	3/31/2022 14:48	133	133.5	Adjusted Valve
NILEW701*	3/31/2022 14:49	132.9	133.1	Second Reading
NILEW701*	4/4/2022 17:14	133.4	133.4	Adjusted Valve
NILEW701*	4/21/2022 14:20	136.1	136.1	Adjusted Valve
NILEW701*	5/7/2022 16:18	133.4	133.4	Adjusted Valve
NILEW701*	5/16/2022 15:08	131.7	131.7	Adjusted Valve
NILEW701*	6/2/2022 15:06	133.8	133.8	Adjusted Valve
NILEW701*	6/8/2022 14:10	133.7	130.4	Adjusted Valve, In Compliance
AU 514/704	6/20/2022 4 4:40	124.4	124.2	Adicate d Males
NILEW701	6/20/2022 14:48	134.1	134.2	Adjusted Valve
NILEW701	6/20/2022 14:50	134.2	134.2	Second Reading
NILEW701	7/7/2022 12:40	131.3	131.3	Adjusted Valve
NILEW701 NILEW701	7/15/2022 12:33	131.3 133.2	132.6 133.3	Adjusted Valve Second Reading
INILEVV/UI	7/15/2022 12:35	155.2	155.5	Second Reading
				Second Reading; Well remains in exceedance
				and compliance will be documented in the
				next report before its 120-day deadline, by
NILEW701	7/16/2022 13:08	134.2	134.2	October 18, 2022.
WILLWYOI	7/10/2022 13.00	154.2	134.2	
				(Initial Exceedance was on 1/7/22) Adjusted
NILEW752*	2/7/2022 12:01	135.2	135	Valve
NILEW752*	2/7/2022 12:01	134.8	134.8	Second Reading
NILEW752*	2/25/2022 13:18	135.4	135.5	Adjusted Valve
NILEW752*	2/25/2022 13:19	136.4	136.4	Second Reading
NILEW752*	3/2/2022 13:12	137.4	137.4	Adjusted Valve
NILEW752*	3/22/2022 12:10	137.3	137.3	Adjusted Valve
NILEW752*	3/31/2022 14:34	133	133.4	Adjusted Valve
NILEW752*	3/31/2022 14:36	133.3	133.4	Second Reading
NILEW752*	4/4/2022 17:51	131.3	131.4	Adjusted Valve
NILEW752*	5/5/2022 12:39	132.1	130.3	Adjusted Valve Adjusted Valve Adjusted Valve
	5/5/2022 12.33	152.1	130.3	Aujusteu valve, ili compilance

Note: All required corrective action and remonitoring was completed in accordance with Rule 8-34 and NSPS timelines. All temperature exceedance were corrected within 15 days except for the wells noted in *bold italics*. Root cause analysis forms were completed for these wells.


^{*}Wells noted in **bold italics with an asterick** indicates wells with temperature exceedances that exceeded 60 days. Corrective action analysis and 75-day notifications were completed for these wells.

Appendix A – Responsible Official Certification Form

I certify the following:	
Based on the information and belief formed a document are true, accurate, and complete:	fter reasonable inquiry, the information in this
kevin divincenzo	08/31/2022
Signature of Responsible Official	Date
Kevin Divincenzo	
Name of Responsible Official	

Certification of Truth and Accuracy and Completeness:

Appendix B – Existing GCCS Layout

Appendix C – Surface Emission and GCCS Component Leak Monitoring Results

SCS FIELD SERVICES

April 30, 2022 File No. 07221077.00

Ms. Rachelle Huber Republic Services – Newby Island Landfill 1601 Dixon Landing Road Milpitas, California 95035

Subject: Newby Island Landfill - Milpitas, California

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS)

Surface Emissions Monitoring for First Quarter 2022.

Dear Ms. Huber:

SCS Field Services (SCS) is pleased to provide the Republic Services, with the enclosed report summarizing the surface emissions monitoring services provided at the Newby Island Landfill (Site) during the First Quarter 2022. This report includes the results of surface scan, component emissions and blower/flare station emissions monitoring for the Site for this monitoring period.

SCS appreciates the opportunity to be of assistance to Republic Services on this project. As you review the enclosed information, please contact Michael Flanagan at (510) 363-7796 or Whitney Stackhouse at (209) 338-7990 if you have any questions or comments.

Sincerely,

Whitney Stackhouse Project Manager SCS Field Services Michael Flanagan Project Manager SCS Field Services

Encl.

Sean Bass, SCS Field Services Art Jones, SCS Field Services

Newby Island Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring

First Quarter 2022

Presented to:

Ms. Rachelle Huber Republic Services – Newby Island 1601 Dixon Landing Road Milpitas, California 95035

SCS FIELD SERVICES

File No. 07221077.00 Task 01 | April 30, 2022

SCS FIELD SERVICES 4730 Enterprise Way Suite A Modesto, CA 95356

Newby Island Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring First Quarter 2022

INTRODUCTION

This letter provides results of the January 17, 18, 19, 26, 27, and 28, 2022 and February 2, and 16, 2022, LMR and NSPS landfill surface emissions monitoring (SEM) performed by SCS Field Services (SCS) at the subject site. All work was performed in accordance with our approved Work Scope dated December 23, 2020, and the LMR requirements.

SUMMARY AND CONCLUSIONS

As stipulated in LMR, if uncorrectable exceedances within the 10-day limitation are detected or emissions are discovered during an inspection by Regulatory Agencies, the landfill must perform monitoring on a 25-foot pathway on a quarterly basis for active disposal sites. Upon completion of four consecutive SEM events without an uncorrectable exceedance of the 25 ppmv or 500 ppmv standards, other than non-repeatable momentary readings, the landfill may perform the monitoring on a 100-foot spacing on an annual basis for closed landfills or quarterly for active disposal sites. Therefore, based on the previous monitoring events, in which exceedances were observed, the monitoring at the Newby Island Landfill was performed on 25-foot pathways in accordance with the LMR.

On, January 17, 18, 19, 26, 27, and 28, 2022 and February 2, and 16, 2022, SCS performed first quarter 2022 SEM as required by the Bay Area Air Quality Management District (BAAQMD). Instantaneous surface emissions monitoring results indicated that twenty-two (22) locations exceeded the 500 ppmv maximum concentration during the initial monitoring event (Table 1 in Attachment 3). The required first and second 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring indicated that not all areas return to below regulatory compliance limits following system adjustments and remediation (well field adjustments and . Based on these monitoring results, and in accordance with the NSPS, the site is required to perform a system expansion within 120-days of the initial detected exceedance which will be due on May 17, 2022. These results are discussed in a subsequent section of this report.

Also, during the instantaneous monitoring event, SCS performed concurrent integrated monitoring of the landfill surface. As required by the LMR, the landfill was divided into 50,000 square foot areas. The Newby Island Landfill surface area was therefore divided into 233 grids, as shown on Figure 1 in Attachment 1. During this monitoring event, several grids were not monitored, in accordance with the regulations, due to ongoing active landfilling activities, unsafe conditions, or there was no waste in place prior to the monitoring event.

During the monitoring event, there were thirty-nine (39) grid areas observed to exceed the 25 ppmv LMR integrated average threshold (Table 2 in Attachment 4). The required first and second 10-day

LMR follow-up monitoring indicated that all areas did not return to compliance following system adjustments and remediation by SCS and site personnel. Based on these monitoring results, and in accordance with the LMR, the site is required to perform a system expansion within 120-days of the third observed exceedance which will be due on June 2, 2022. However, since the NSPS timeline will become due first, the May 17, 2022 deadline should be adhered to for complying with the NSPS and LMR exceedances.

In addition, quarterly monitoring of the pressurized piping or components of the Gas Collection and Control System (GCCS) that are under positive pressure must be performed. Results of the testing of the landfill gas (LFG) Blower Flare Station (BFS) pressurized piping and components indicated that all test locations were in compliance with the 500 ppmv requirement.

Further, as required under the LMR, any location on the landfill that has an observed instantaneous methane concentration above 200 ppmv, must be stake-marked and Global Positioning System (GPS) located on a site figure. During this reporting period, two (2) locations were observed to exceed the 200 ppmv, reporting threshold. When these readings are observed, the locations are reported to site personnel for tracking and/or remediation and will be reported in the next submittal of the annual LMR report.

Finally, to help prevent potential future exceedances, SCS recommends that the landfill surface be routinely inspected and any observed surface erosion be routinely repaired.

BACKGROUND

The Newby Island Landfill is an active organic refuse disposal site. By way of background, organic materials buried in a landfill decompose anaerobically (in the absence of oxygen) producing a combustible gas which contains approximately 50 to 60 percent methane gas, 40 to 50 percent carbon dioxide, and trace amount of various other gases, some of which are odorous. The Newby Island property contains a system to control the combustible gases generated in the landfill.

SURFACE EMISSIONS MONITORING

On January 17, 18, 19, 26, 27, and 28, 2022 and February 2, and 16, 2022, the instantaneous and integrated SEM was performed over the surface of the subject site. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring in the 50,000 square foot grids as required under the LMR. During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rules as required.

EMISSIONS TESTING INSTRUMENTATION/CALIBRATION

Instruments used to perform the landfill surface emission testing consisted of the following:

Thermo Scientific TVA 2020 portable Flame Ionization Detector (FID). This instrument
measures methane in air over a range of 1 to 50,000 ppmv. The TVA 2020 meets the State
of California Air Resources Board (CARB) requirements for combined instantaneous and
integrated monitoring and was calibrated in accordance with United States Environmental
Protection Agency (US EPA) Method 21.

• Weather Anemometer with continuous recorder for meteorological conditions in accordance with the LMR.

Instrument calibration logs and weather information are shown in Attachments 5 and 6.

SURFACE EMISSIONS MONITORING PROCEDURES

Surface emissions monitoring was conducted in accordance with the LMR and NSPS requirements. Monitoring was performed with the FID inlet held within 3-inches of the landfill surface while a technician walked a grid in parallel paths not more than 25 -feet apart over the surface of the landfill. Cracks, holes and other cover penetrations in the surface were also tested. Surface emissions readings were monitored continuously and recorded every 5 seconds. Any areas in exceedance of the 200 or 500 ppmv standards (reporting and compliance levels, respectively) would be GPS tagged and stake-marked for on-site personnel to perform remediation or repairs.

The integrated average is based on the readings stored on the instrument, which are recorded every 5 seconds. The readings are then downloaded and the averages are calculated for each grid using SCS eTools®. All readings are maintained in this secure SCS Database. The readings are not provided in the report due to the volume of readings, but can be furnished upon request.

Recorded wind speed results are shown in Attachment 6. Wind speed averages were observed to remain below the alternative threshold of 10 miles per hour, and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within 72 hours of the monitoring events. Therefore, site meteorological conditions were within the alternatives of the LMR requirements on the above mentioned dates.

TESTING RESULTS

During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rule as required under the LMR and NSPS. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR or NSPS threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring (LMR).

On January 17, 18, 19, 26, 27, and 28, 2022 and February 2, and 16, 2022, SCS performed first quarter 2022 instantaneous emissions monitoring testing as required by the BAAQMD. During this monitoring, surface emissions results indicated that twenty-two (22) locations exceeded the 500 ppmv maximum concentration. The required first and second 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring performed on January 27, and 28, 2022 and February 16, 2022, respectively, indicated that not all locations returned below compliance limits as required, following system adjustments and remediation (wellfield adjustment and borehole repairs using bentonite and soil) performed by SCS and site personnel. In accordance with NSPS requirements for expansion and remediation, the exceedance locations need to be remediated and returned to compliance in accordance with the rule (expansion of the collection system or an alternative compliance option if approved by the BAAQMD) within 120 days of the detected initial instantaneous exceedance, which will be due by May 17, 2022. Results of the initial and follow up monitoring are shown in Attachments 2 and 3 (Table 1).

Additionally, calculated integrated grid monitoring indicated thirty-nine (39) integrated exceedances of the 25-ppmv requirement on January 17, 18, and 19, 2022. The required first and second 10-day LMR follow-up monitoring performed on January 27, 28 and February 2, 2022, indicated that all

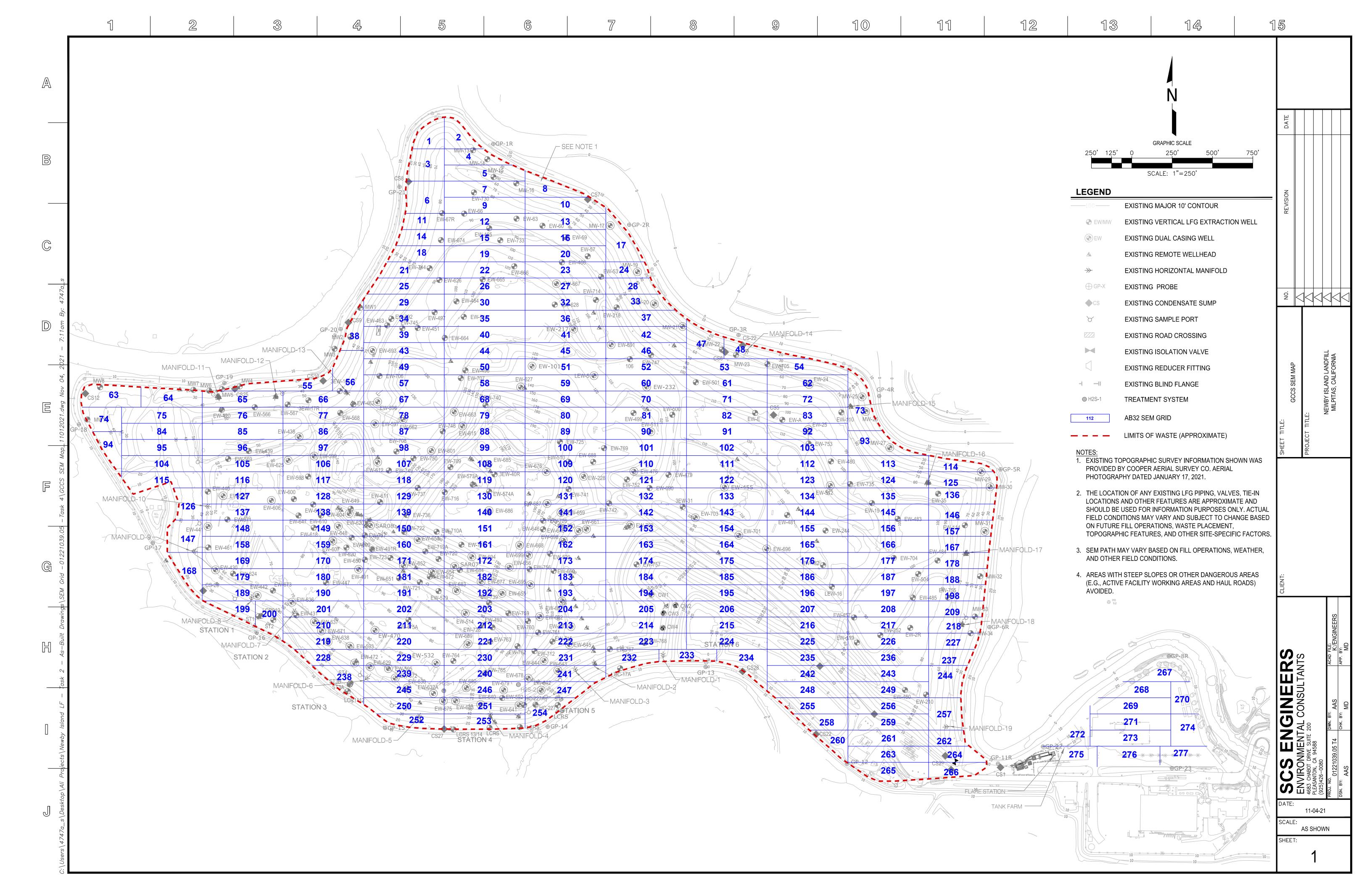
areas had not returned to compliance following system adjustments and remediation by site personnel. In accordance with LMR requirements for expansion and remediation, the exceedance locations need to be remediated and returned to compliance in accordance with the rule (expansion of the collection system or an alternative compliance option if approved by the BAAQMD) within 120 days of the third observed integrated exceedance, which will be due by June 2, 2022. However, since the NSPS timeline will become due first, the May 17, 2022 deadline should be adhered to for complying with the NSPS and LMR exceedances. Results of the initial and follow up monitoring are shown in Attachment 4 (Table 2). Calibration logs for the monitoring equipment are provided in Attachment 5.

During this monitoring event, several grids were not monitored, in accordance with the LMR, due to active landfilling activities, unsafe conditions or no waste in place. SCS will continue to monitor all accessible locations during the second quarter 2022.

PRESSURIZED PIPE AND COMPONENT LEAK MONITORING

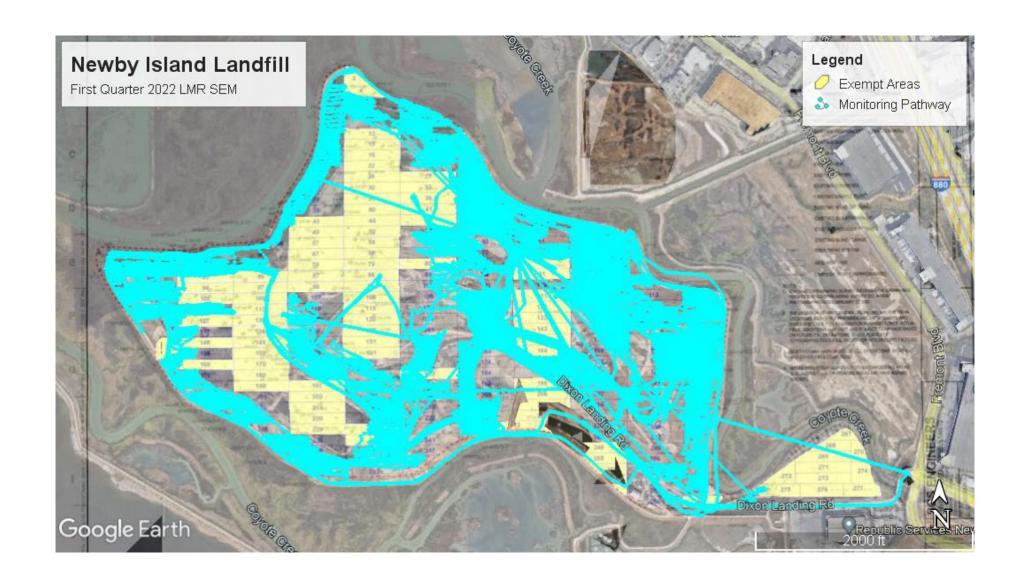
On January 20, 2022, quarterly leak monitoring was performed in accordance with the LMR. SCS performed LFG pressurized pipe and component leak monitoring at the BFS. Monitoring was performed with the detector inlet held one-half of an inch from pressurized pipe and associated components. No locations exceeding the 500 ppmv threshold were observed during our monitoring event. The maximum reading, which was 12 ppmv, was below the maximum threshold (see Table 1 for component results). Therefore, all pressurized piping and components located at the LFG BFS were in compliance at the time of our testing.

PROJECT SCHEDULE


According to the LMR and NSPS, surface emissions monitoring at active landfills is required to be performed on a quarterly basis. Therefore, in accordance with our approved Work Scope, the second quarter 2022 (April through June) surface emissions testing event is scheduled to be performed by the end of May 2022 in accordance with the Republic SOP unless an alternative timeline is requested by site personnel.

STANDARD PROVISIONS

This report addresses conditions of the subject site during the testing dates only. Accordingly, we assume no responsibility for any changes that may occur subsequent to our testing which could affect the surface emissions at the subject site or adjacent properties.


Attachment 1

Landfill Grid

Attachment 2

Surface Pathway

First Quarter 2022

LMR Surface Emissions Monitoring Pathway

Newby Island Landfill, Milpitas, California

Attachment 3

Instantaneous and Component Emissions Monitoring Results

First Quarter 2022

Table 1. LMR Instantaneous Surface and Component Emissions Monitoring Results Newby Island Sanitary Landfill, Milpitas, California

Instantaneous Data Report for January 17, 18, 19, 26, and 27, 2022 and February 2, and 16, 2022.

Location	Initial	Initial	Initial	Initial NOV	First 10-Day	Second 10- Day	30-Day	120-Day Clock
	1/17/2022	1/18/2022	1/19/2022	1/26/2022	1/26/2022 1/27/2022	2/2/2022	2/16/2022	2022 Due
629	1,500				369	NA	8,054	5/17/2022
SS17-2		27,100			186	NA	147	NA
SS17-5		2,016			1,365	712	4,699	5/18/2022
683		580			1,704	475	445	NA
654		1,000			1,607	408	6,036	5/18/2022
659			1,000		931	132	1,413	5/19/2022
Surface BS1 (Grid 214)			871		285	NA	381	NA
Surface BS2 (Grid 214)			792		1,609	114	871	5/19/2022
Surface BS3 (Grid 194)			538		844	232	532	5/19/2022
Surface BS4 (Grid 184)			1,832		1,657	514	883	5/19/2022
Surface BS5 (Grid 174)			560		650	469	545	5/19/2022
Surface BS6 (Grid 163)			946		1,146	694	245	5/19/2022
Surface BS61 (Grid 142)			638		290	NA	64	NA
Surface BS7 (Grid 142)			529		544	107	228	NA
Surface BS8 (Grid 132)			510		172	NA	247	NA
Surface GRID 213			938		170	NA	644	5/19/2022
671	275							NA
PUMP	282							NA
702				AQMD	350	NA	16,700	5/26/2022
742				AQMD	430	NA	126	NA
690				AQMD	147	NA	57	NA
752				AQMD	25	NA	16	NA

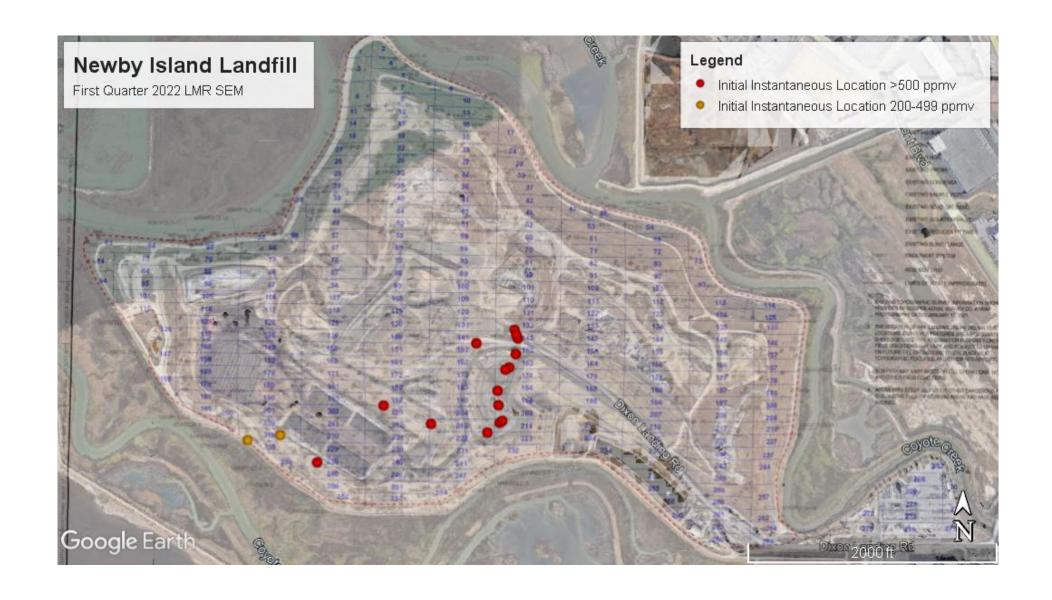

First Quarter 2022

Table 1. LMR Instantaneous Surface and Component Emissions Monitoring Results Newby Island Sanitary Landfill, Milpitas, California

Pressurized Pipe

Location	Initial Concentration (ppmv) Jan 20, 2022	Latitude	Latitude	
Flare Station	12.00	37.45492	-121.93176	

No other exceedances of the 500 ppm threshold observed during the LMR/NSPS monitoring performed during the first quarter 2022.

First Quarter 2022
Initial Emissions Monitoring Locations Greater Than 200 ppmv
Newby Island Landfill Milpitas, California

Attachment 4

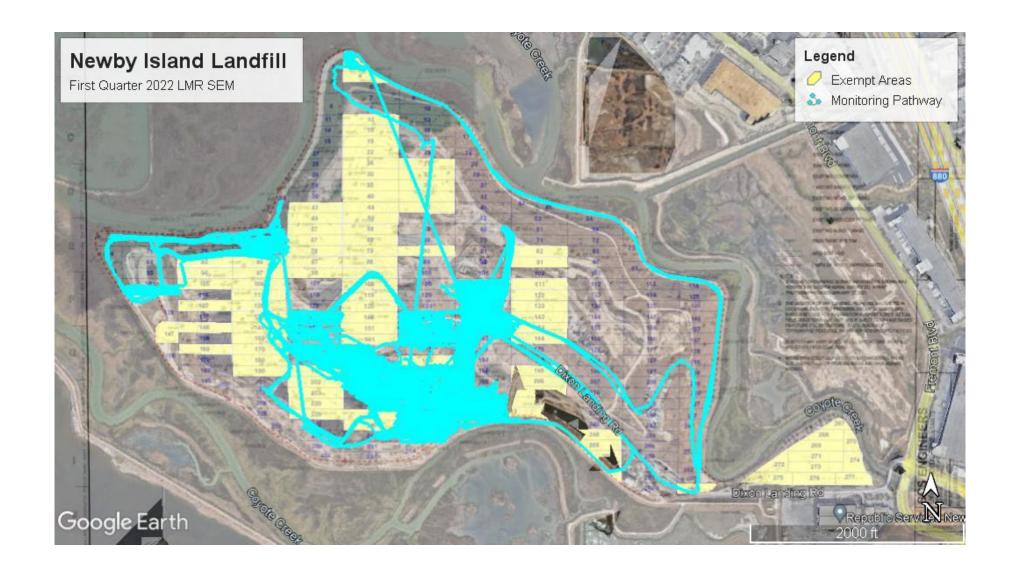
Integrated Monitoring Results

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-001	1/18/2022	78.75	Initial Monitoring
NIL-001	1/28/2022	7.48	First 10-Day Follow Up Monitoring
NIL-002			Exempted
NIL-003	1/20/2022	16.01	
NIL-004			Exempted
NIL-005	1/20/2022	16.24	
NIL-006	1/20/2022	9.48	
NIL-007	1/20/2022	18.47	
NIL-008	1/20/2022	3.21	
NIL-009	1/20/2022	12.05	
NIL-010	1/20/2022	6.59	
NIL-011	1/20/2022	21.93	
NIL-012			Exempted
NIL-013	1/19/2022	15.25	
NIL-014	1/20/2022	13.24	
NIL-015			Exempted
NIL-016	1/19/2022	14.69	
NIL-017	1/19/2022	9.39	
NIL-018	1/20/2022	15.24	
NIL-019			Exempted
NIL-020	1/19/2022	8.86	
NIL-021	1/20/2022	20.91	
NIL-022			Exempted
NIL-023	1/19/2022	13.46	
NIL-024	1/19/2022	10.83	
NIL-025			Exempted
NIL-026			Exempted
NIL-027			Exempted
NIL-028	1/19/2022	6.28	
NIL-029	1/20/2022	7.83	
NIL-030			Exempted
NIL-031			Not on Grid Map
NIL-032			Exempted
NIL-033	1/19/2022	3.27	
NIL-034	1/20/2022	9.72	
NIL-035			Exempted
NIL-036			Exempted
NIL-037	1/19/2022	5.01	
NIL-038	1/20/2022	3.67	
NIL-039	1/20/2022	6.23	
NIL-040			Exempted
NIL-041			Exempted
NIL-042	1/19/2022	5.60	<u> </u>

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-043			Exempted
NIL-044			Exempted
NIL-045			Exempted
NIL-046	1/19/2022	2.90	
NIL-047	1/19/2022	4.42	
NIL-048	1/19/2022	2.68	
NIL-049			Exempted
NIL-050			Exempted
NIL-051			Exempted
NIL-052	1/19/2022	1.36	
NIL-053	1/19/2022	4.37	
NIL-054	1/19/2022	2.76	
NIL-055	1/17/2022	41.42	Initial Monitoring
NIL-055	1/27/2022	2.86	First 10-Day Follow Up Monitoring
NIL-056	1/17/2022	17.96	
NIL-057			Exempted
NIL-058			Exempted
NIL-059	1/19/2022	13.22	
NIL-060	1/19/2022	7.44	
NIL-061	1/19/2022	2.80	
NIL-062	1/19/2022	3.04	
NIL-063	1/17/2022	33.73	Initial Monitoring
NIL-063	1/27/2022	9.20	First 10-Day Follow Up Monitoring
NIL-064	1/17/2022	32.05	Initial Monitoring
NIL-064	1/27/2022	11.10	First 10-Day Follow Up Monitoring
NIL-065	1/17/2022	37.68	Initial Monitoring
NIL-065	1/27/2022	14.88	First 10-Day Follow Up Monitoring
NIL-066	1/17/2022	50.51	Initial Monitoring
NIL-066	1/27/2022	12.85	First 10-Day Follow Up Monitoring
NIL-067			Exempted
NIL-068			Exempted
NIL-069	1/19/2022	17.23	
NIL-070	1/19/2022	17.51	
NIL-071	1/19/2022	2.13	
NIL-072	1/19/2022	2.14	
NIL-073			Exempted
NIL-074	1/17/2022	18.39	
NIL-075	1/17/2022	9.51	
NIL-076	1/17/2022	13.78	
NIL-077	1/17/2022	39.35	Initial Monitoring
NIL-077	1/27/2022	3.50	First 10-Day Follow Up Monitoring
NIL-078			Exempted
NIL-079			Exempted

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-080			Exempted
NIL-081	1/19/2022	11.03	
NIL-082			Exempted
NIL-083	1/19/2022	2.00	
NIL-084	1/17/2022	9.07	
NIL-085	1/17/2022	6.75	
NIL-086	1/17/2022	8.13	
NIL-087			Exempted
NIL-088			Exempted
NIL-089	1/19/2022	20.02	
NIL-090	1/19/2022	19.96	
NIL-091			Exempted
NIL-092	1/19/2022	1.84	
NIL-093			Exempted
NIL-094	1/20/2022	9.27	
NIL-095	1/17/2022	7.64	
NIL-096			Leachate Pond
NIL-097			Exempted
NIL-098			Exempted
NIL-099			Exempted
NIL-100	1/19/2022	9.43	
NIL-101	1/19/2022	2.59	
NIL-102			Exempted
NIL-103	1/19/2022	2.48	
NIL-104	1/17/2022	8.03	
NIL-105	1/17/2022	8.46	
NIL-106			Leachate Pond
NIL-107	1/19/2022	6.68	
NIL-108			Exempted
NIL-109	1/19/2022	5.04	
NIL-110	1/18/2022	6.41	
NIL-111	1/19/2022	2.26	
NIL-112	1/19/2022	1.82	
NIL-113			Exempted
NIL-114	1/20/2022	3.20	
NIL-115	1/17/2022	25.19	Initial Monitoring
NIL-115	1/27/2022	12.78	First 10-Day Follow Up Monitoring
NIL-116	1/17/2022	10.60	
NIL-117			Exempted
NIL-118	1/19/2022	6.40	
NIL-119			Exempted
NIL-120			Exempted
NIL-121	1/18/2022	13.61	

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-122			Exempted
NIL-123	1/19/2022	1.43	
NIL-124			Exempted
NIL-125	1/20/2022	3.45	
NIL-126	1/17/2022	8.89	
NIL-127	1/17/2022	20.84	
NIL-128	1/17/2022	7.13	
NIL-129	1/19/2022	7.43	
NIL-130			Exempted
NIL-131			Exempted
NIL-132	1/18/2022	37.89	Initial Monitoring
NIL-132	1/27/2022	38.32	First 10-Day Follow Up Monitoring
NIL-132	2/2/2022	24.66	Second 10-Day Follow Up Monitoring
NIL-133			Exempted
NIL-134	1/19/2022	1.20	
NIL-135			Exempted
NIL-136	1/20/2022	3.45	
NIL-137	1/17/2022	4.62	
NIL-138			Exempted
NIL-139	1/19/2022	36.27	Initial Monitoring
NIL-139	1/28/2022	26.73	First 10-Day Follow Up Monitoring
NIL-139	2/7/2022	25.59	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 7, 2022
NIL-140			Exempted
NIL-141	1/19/2022	70.74	Initial Monitoring
NIL-141	1/28/2022	91.33	First 10-Day Follow Up Monitoring
NIL-141	2/7/2022	27.95	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 7, 2022
NIL-142	1/18/2022	65.36	Initial Monitoring
NIL-142	1/27/2022	57.50	First 10-Day Follow Up Monitoring
NIL-142	2/2/2022	29.39	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-143			Exempted
NIL-144	1/19/2022	1.42	
NIL-145			Exempted
NIL-146	1/20/2022	2.65	
NIL-147			Leachate Pond
NIL-148	1/17/2022	15.66	
NIL-149			Exempted
NIL-150	1/18/2022	19.63	
NIL-151			Exempted
NIL-152	1/19/2022	76.61	Initial Monitoring
NIL-152	1/28/2022	87.58	First 10-Day Follow Up Monitoring
NIL-152	2/7/2022	64.48	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 7, 2022


Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-153	1/18/2022	45.25	Initial Monitoring
NIL-153	1/27/2022	87.54	First 10-Day Follow Up Monitoring
NIL-153	2/2/2022	33.39	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-154			Exempted
NIL-155	1/19/2022	3.87	
NIL-156			Exempted
NIL-157	1/20/2022	3.66	
NIL-158	1/17/2022	9.05	
NIL-159			Exempted
NIL-160	1/18/2022	31.16	Initial Monitoring
NIL-160	1/27/2022	20.06	First 10-Day Follow Up Monitoring
NIL-161	1/18/2022	12.96	
NIL-162	1/18/2022	43.19	Initial Monitoring
NIL-162	1/27/2022	64.74	First 10-Day Follow Up Monitoring
NIL-162	2/2/2022	108.49	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-163	1/18/2022	112.31	Initial Monitoring
NIL-163	1/27/2022	157.22	First 10-Day Follow Up Monitoring
NIL-163	2/2/2022	106.72	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-164			Exempted
NIL-165	1/19/2022	3.91	
NIL-166			Exempted
NIL-167	1/20/2022	2.50	
NIL-168			Exempted
NIL-169	1/17/2022	15.50	
NIL-170			Exempted
NIL-171	1/18/2022	59.34	Initial Monitoring
NIL-171	1/28/2022	43.72	First 10-Day Follow Up Monitoring
NIL-171	2/7/2022	36.31	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 7, 2022
NIL-172	1/18/2022	35.24	Initial Monitoring
NIL-172	1/28/2022	32.17	First 10-Day Follow Up Monitoring
NIL-172	2/7/2022	28.13	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 7, 2022
NIL-173	1/18/2022	22.24	
NIL-174	1/18/2022	143.53	Initial Monitoring
NIL-174	1/27/2022	128.74	First 10-Day Follow Up Monitoring
NIL-174	2/2/2022	87.52	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-175	1/20/2022	3.85	
NIL-176			Exempted
NIL-177			Exempted
NIL-178	1/20/2022	4.53	
NIL-179	1/17/2022	11.41	
NIL-180			Exempted

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-181	1/18/2022	31.38	Initial Monitoring
NIL-181	1/27/2022	28.40	First 10-Day Follow Up Monitoring
NIL-181	2/2/2022	35.47	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-182	1/18/2022	82.98	Initial Monitoring
NIL-182	1/27/2022	37.00	First 10-Day Follow Up Monitoring
NIL-182	2/2/2022	48.40	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-183			Exempted
NIL-184	1/18/2022	144.92	Initial Monitoring
NIL-184	1/27/2022	171.73	First 10-Day Follow Up Monitoring
NIL-184	2/2/2022	93.95	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-185	1/20/2022	8.33	
NIL-186			Exempted
NIL-187			Exempted
NIL-188			Exempted
NIL-189	1/17/2022	14.62	
NIL-190	1/17/2022	8.42	
NIL-191			Exempted
NIL-192	1/18/2022	55.66	Initial Monitoring
NIL-192	1/28/2022	54.37	First 10-Day Follow Up Monitoring
NIL-192	2/7/2022	51.34	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 7, 2022
NIL-193	1/18/2022	77.94	Initial Monitoring
NIL-193	1/27/2022	86.41	First 10-Day Follow Up Monitoring
NIL-193	2/2/2022	77.26	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-194	1/18/2022	82.72	Initial Monitoring
NIL-194	1/27/2022	106.95	First 10-Day Follow Up Monitoring
NIL-194	2/2/2022	57.78	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-195			Exempted
NIL-196			Exempted
NIL-197			Exempted
NIL-198	1/20/2022	2.18	
NIL-199	1/17/2022	14.08	
NIL-200	1/17/2022	8.98	
NIL-201	1/17/2022	11.52	
NIL-202			Exempted
NIL-203	1/18/2022	86.53	Initial Monitoring
NIL-203	1/27/2022	26.85	First 10-Day Follow Up Monitoring
NIL-203	2/2/2022	45.14	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-204	1/18/2022	59.35	Initial Monitoring
NIL-204	1/28/2022	186.47	First 10-Day Follow Up Monitoring
NIL-204	2/7/2022	64.29	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 7, 2022
NIL-205	1/18/2022	155.65	Initial Monitoring
NIL-205	1/27/2022	80.46	First 10-Day Follow Up Monitoring
	2/2/2022	1	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-206			Exempted
NIL-207			Exempted
NIL-208			Exempted
NIL-209	1/20/2022	2.89	
NIL-210	1/17/2022	10.57	
NIL-211	1/17/2022	12.17	
NIL-212	1/18/2022	108.99	Initial Monitoring
NIL-212	1/27/2022	41.47	First 10-Day Follow Up Monitoring
NIL-212	2/2/2022	77.99	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-213	1/18/2022	138.81	Initial Monitoring
NIL-213	1/28/2022	163.27	First 10-Day Follow Up Monitoring
NIL-213	2/7/2022	74.16	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 7, 2022
NIL-214	1/18/2022	40.31	Initial Monitoring
NIL-214	1/27/2022	14.48	First 10-Day Follow Up Monitoring
NIL-215			Exempted
NIL-216			Exempted
NIL-217			Exempted
NIL-218	1/20/2022	3.34	
NIL-219	1/17/2022	16.80	
NIL-220			Exempted
NIL-221	1/18/2022	72.30	Initial Monitoring
NIL-221	1/27/2022	34.25	First 10-Day Follow Up Monitoring
NIL-221	2/2/2022	33.02	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-222	1/18/2022	31.40	Initial Monitoring
NIL-222	1/27/2022	77.71	First 10-Day Follow Up Monitoring
NIL-222	2/2/2022	65.83	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-223	1/18/2022	34.98	Initial Monitoring
NIL-223	1/27/2022	16.46	First 10-Day Follow Up Monitoring
NIL-224			Exempted
NIL-225			Exempted
NIL-226			Exempted
NIL-227	1/20/2022	3.59	
NIL-228	1/17/2022	8.06	
NIL-229			Exempted
NIL-230			Exempted
NIL-231	1/18/2022	55.05	Initial Monitoring
NIL-231	1/27/2022	45.83	First 10-Day Follow Up Monitoring
NIL-231	2/2/2022	19.90	Second 10-Day Follow Up Monitoring
NIL-232	1/18/2022	28.54	Initial Monitoring
NIL-232	1/27/2022	54.04	First 10-Day Follow Up Monitoring
NIL-232	2/2/2022	29.59	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-233			Exempted
NIL-234			Exempted

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-235			Exempted
NIL-236			Exempted
NIL-237	1/20/2022	4.39	
NIL-238	1/17/2022	20.97	
NIL-239	1/17/2022	7.11	
NIL-240			Exempted
NIL-241	1/18/2022	50.10	Initial Monitoring
NIL-241	1/27/2022	28.08	First 10-Day Follow Up Monitoring
NIL-241	2/2/2022	36.16	Second 10-Day Follow Up Monitoring; 120-Day Clock Due June 2, 2022
NIL-242			Exempted
NIL-243			Exempted
NIL-244	1/20/2022	5.70	
NIL-245	1/17/2022	18.85	
NIL-246	1/17/2022	11.57	
NIL-247	1/18/2022	28.37	Initial Monitoring
NIL-247	1/27/2022	24.42	First 10-Day Follow Up Monitoring
NIL-248			Exempted
NIL-249			Exempted
NIL-250	1/17/2022	10.52	
NIL-251	1/17/2022	14.52	
NIL-252	1/17/2022	8.97	
NIL-253	1/17/2022	13.96	
NIL-254	1/17/2022	11.74	
NIL-255			Exempted
NIL-256			Exempted
NIL-257	1/20/2022	5.19	
NIL-258			Exempted
NIL-259			Exempted
NIL-260			Exempted
NIL-261			Exempted
NIL-262	1/20/2022	2.33	
NIL-263			Exempted
NIL-264	1/20/2022	2.24	
NIL-265			Exempted
NIL-266			Exempted
NIL-267			Exempted
NIL-268			Exempted
NIL-269			Exempted
NIL-270			Exempted
NIL-271			Exempted
NIL-272			Exempted
NIL-273			Exempted
NIL-274			Exempted

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-275	-1		Exempted
NIL-276			Exempted
NIL-277			Exempted

First Quarter 2022

LMR Surface Emissions Monitoring First and Second 10-Day Pathways

Newby Island Landfill, Milpitas, California

Attachment 5

Calibration Logs

CALIBRATION AND PERTINENT DATA Michael M Site Name: Inspector(s): WEATHER OBSERVATIONS Wind FSE Wind Speed: Temperature: 47 CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument, Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Cal Gas Concentration Instrument Serial Number: Trial Zero Air Reading Cal Gas Reading | Cal Gas Conc.-Cal Gas Reading | Response Time (seconds) 2 Average Difference: *Perform recalibration average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% Span Sensitivity: Trial 1: Counts Observed for the Span= (32) 34 Counts Observed for the Span= Counters Observed for the Zero= Counters Observed for the Zero= Trial 2: Counts Observed for the Span= Counters Observed for the Zero= Post Monitoring Calibration Check Zero Air Reading: **BACKGROUND CONCENTRATIONS CHECKS**

Upwind Location Description:

Reading: ppn

Downwind Location Description:

Reading: ppm

Notes:

CALIBRATION AND PERTINENT DATA 91-17-22 Liam M Site Name: Inspector(s) WEATHER OBSERVATIONS Wind Speed: General Weather Temperature: CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration Trial Zero Air Reading Cal Gas Reading | Cal Gas Conc.-Cal Gas Reading | Response Time (seconds) 1 .0 2 Average Difference: *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% ____/500 x 100% Span Sensitivity: Trial 1: Trial 3: Counts Observed for the Span=1357-68 Counts Observed for the Span= Counters Observed for the Zero= 4802 Counters Observed for the Zero= Trial 2: Counts Observed for the Span= Counters Observed for the Zero= Post Monitoring Calibration Check Zero Air Cal Gas Reading: Reading: ppm

BACKGROUND CONCENTRATIONS CHECKS

Upwind Location Description:

Reading:

Downwind Location Description:

Reading:

Notes:

CALIBRATION AND PERTINENT DATA Inspector(s): Instrument: WEATHER OBSERVATIONS Wind Speed General Weather Conditions: Temperature: CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration: 500 Trial Zero Air Reading Cal Gas Reading Cal Gas Conc.-Cal Gas Reading Response Time (seconds) -0. Average Difference: Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% 100%- /500 x 100% = 99,6 % Span Sensitivity: Trial 1: Counts Observed for the Span= 142596 Counts Observed for the Span= Counters Observed for the Zero= 653 Counters Observed for the Zero= Trial 2: Counters Observed for the Zero= 5496 Post Monitoring Calibration Check Zero Air Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Downwind Location Description: Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

CALIBRATION AND PERTINENT DATA Site Name: Inspector(s): WEATHER OBSERVATIONS Wind Direction: Barometric 30.13 Wind Speed: Conditions: CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration: 500 Trial Zero Air Reading Cal Gas Reading |Cal Gas Conc.-Cal Gas Reading| Response Time (seconds) Average Difference: *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% 100%-/500 x 100% Span Sensitivity: Trial 1: Trial 3: Counts Observed for the Span= 162949 Counts Observed for the Span= Counters Observed for the Zero= 39 Counters Observed for the Zero= Trial 2: Counters Observed for the Zero= Post Monitoring Calibration Check Zero Air Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description:

Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

Reading

Downwind Location Description:

Notes:

CALIBRATION AND PERTINENT DATA 118/22 Lian McGinn Site Name: Instrument: WEATHER OBSERVATIONS Direction: NE CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration 500 Zero Air Reading Cal Gas Reading Cal Gas Conc.-Cal Gas Reading Response Time (seconds) .0 Average Difference: Calibration Precision= Average Difference/Cal Gas Conc. X 100% 100%-= 99,8 % Counts Observed for the Span= 140 666 Trial 3: Counts Observed for the Span Counters Observed for the Zero= Cal Gas Reading:

Counters Observed for the Zero= 5 Trial 2: Counts Observed for the Span= 137380 Counters Observed for the Zero= 3680 Post Monitoring Calibration Check Zero Air Reading: BACKGROUND CONCENTRATIONS CHECKS Entrance Upwind Location Description: Downwind Location Description: Notes:

Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

Wind Speed:

Trial

Span Sensitivity:

Trial 1:

1		SURFACE EMISSION	INOM SNC	ORING	
	1.10	CALIBRATION ANI	D PERTINEN	IT DATA	
Date:	1-14-22		Site Name:	Newby	
Inspector(s):	Brians		Instrument:	TVA 2020	
WEATHER OF	BSERVATIONS			(4)	
Wind Speed	d:MPH	Wind Sirection:	-	Barometric Pressure:	"Hg
A Temperature	air	General Weather Conditions		<u>l</u> y	,
CALIBRATION	INFORMATION	*			
Pre-monitoring	g Calibration Precision Check				
and calculate t	ibrate the instrument. Make a the average algebraic difference be less than or equal to 10% of	e between the instrument i			
Instrument Ser	rial Number:			Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds)
1		449			
3	.0	507		2	
	cision= Average Difference/Cal	Gas Conc. X 100% = 100%-	495.7	/500 x 100%	
Span Sensitivity Trial 1:	/:	McMan	Trial 3:		10000
	Counts Observed for the Span=	2016		ints Observed for the Span=	126080
	unters Observed for the Zero=	3818	Coun	ters Observed for the Zero=	2000
<u>Trial 2:</u>	Counts Observed for the Span=	132804			
Co	unters Observed for the Zero=	3793			
Post Monitoring	g Calibration Check		- (11		
Zero Air Reading:	-0.3 ppm	Cal Gas Reading:	547	_ppm	
BACKGROUND	CONCENTRATIONS CHECKS				
Upwind Locatio	n Description:		e.	Reading:	ppm
Downwind Loca	ation Description:		in.	Reading:	ppm
Notes:	Wind speed averages were ob exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	ithin the previo	us 24 hours of the monitoring	ng event. Therefore, site

SCS DataServices - Secure Environmental Data

į .		SURFACE EMISSI	ONS MONITOR	ING	
	1 10 00	CALIBRATION AN	D PERTINENT D	ATA .	
Date:	1-19-22		Site Name:	Jewh	4
Inspector(s):	BYANO		Instrument:T\	/A 2020	
WEATHER OB	SERVATIONS			ş:	
Wind Speed	:МРН	Wind SE		Pressure: 30	"Hg
Ai Temperature		General Weathe Conditions	Cloudy		
CALIBRATION	INFORMATION		Ų		
Pre-monitoring	Calibration Precision Check				
and calculate th precision must b	orate the instrument. Make a t be average algebraic difference be less than or equal to 10% of	between the instrument	reading and the calibr	air and the calibratior ation gas as a percente	n gas. Record the readings age. The calibration
Instrument Seria	al Number:		Ca	Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Conc(Cal Gas Reading	Response Time (seconds)
2	.0	601	7		
3	.0	499			
Calibration Preci	sion= Average Difference/Cal C	= 100% = 297	<u>498.7</u> /500	x 100%	
pan Sensitivity:					
Cour	unts Observed for the Span=	123324 4766		oserved for the Span=_	4767
	unts Observed for the Span=	240SZ			
	nters Observed for the Zero=	-(10)			-
ost Monitoring (Calibration Check	9	0000		
ero Air eading:	D ppm	Cal Gas Reading:	455 ppm		
ACKGROUND C	CONCENTRATIONS CHECKS				
pwind Location	Description:		Readi	ng:	opm
ownwind Locatio	on Description:		Readi	ng:r	ppm
_ e	Vind speed averages were obs exceeded 20 miles per hour. N	o rainfall had occurred w	ithin the previous 24 h	ours of the monitoring	g event. Therefore, site

SCS DataServices - Secure Environmental Data

SURFACE EMISSIONS MONITORING **CALIBRATION AND PERTINENT DATA** Date: Site Name: Inspector(s): Instrument: WEATHER OBSERVATIONS Wind /\subseteq Wind Speed: MPH General Weather Conditions: Temperature: CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. 1215 Instrument Serial Number: Cal Gas Concentration: 500ppm Trial Zero Air Reading Cal Gas Reading |Cal Gas Conc.-Cal Gas Reading| Response Time (seconds) 2 3 Average Difference: *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% /500 x 100% 100%-Span Sensitivity: Trial 1: Trial 3: Counts Observed for the Span= 126180 Counts Observed for the Span= \23380 Counters Observed for the Zero= 2 8 391 Counters Observed for the Zero= 785 Trial 2: Counts Observed for the Span= 17577 Counters Observed for the Zero= Post Monitoring Calibration Check Zero Air Cal Gas Reading: ppm Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Reading: Downwind Location Description: Reading:

Notes:

Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site

CALIBRATION AND PERTINENT DATA Site Name: Inspector(s): WEATHER OBSERVATIONS Barometric 30 Wind Speed: General Weather Conditions Temperature CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument, Make a total of three measurements by alternating zero air and the calibration gas, Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration: 500 Trial Zero Air Reading Cal Gas Reading |Cal Gas Conc.-Cal Gas Reading| Response Time (seconds) .0 0 Average Difference: *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% /500 x 100% Span Sensitivity: Counts Observed for the Span= 134484 Trial 1: Counts Observed for the Span= Counters Observed for the Zero=536 Counters Observed for the Zero-Trial 2: Counts Observed for the Span= 135200 Counters Observed for the Zero= 5764 Post Monitoring Calibration Check Zero Air Cal Gas Reading: Reading: BACKGROUND CONCENTRATIONS CHECKS Entrance Grid71 Upwind Location Description:

Downwind Location Description:

Reading:

Notes:

CALIBRATION AND PERTINENT DATA Site Name: Instrument: Pressure: 30 "Hg Direction: General Weather Conditions CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Cal Gas Concentration: 500 Zero Air Reading Cal Gas Reading | Cal Gas Conc.-Cal Gas Reading | Response Time (seconds) Average Difference: Calibration Precision= Average Difference/Cal Gas Conc. X 100% 100%- 500 x 100% Trial 3: Counts Observed for the Span= $\sqrt{22}$ Counts Observed for the Span= Counters Observed for the Zero= Counters Observed for the Zero=

Trial 2:

Trial 1:

Span Sensitivity:

Trial

Counts Observed for the Span=

Counters Observed for the Zero=1

Post Monitoring Calibration Check

Inspector(s):

Temperature:

Instrument Serial Number:

WEATHER OBSERVATIONS

Zero Air

Reading:

BACKGROUND CONCENTRATIONS CHECKS

Upwind Location Description:

entrance Gnd71

Reading: 1.3 ppm

Downwind Location Description:

Reading:

Notes:

CALIBRATION AND PERTINENT DATA Site Name: WEATHER OBSERVATIONS Temperature CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration: Trial | Cal Gas Conc.-Cal Gas Reading | Response, Time (seconds) Average Difference: *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% /500 x 100% Span Sensitivity: Trial 1: Trial 3: Counts Observed for the Span= 139 Counts Observed for the Span= Counters Observed for the Zero= Counters Observed for the Zero= Trial 2: Counts Observed for the Span= Counters Observed for the Zero= Post Monitoring Calibration Check Zero Air Cal Gas Reading: mod Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Reading: Downwind Location Description: Reading: Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

CALIBRATION AND PERTINENT DATA Date: Site Name: Inspector(s): Instrument: WEATHER OBSERVATIONS General Weather Temperature Conditions CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. 4106 Instrument Serial Number: Cal Gas Concentration Trial Zero Air Reading Cal Gas Reading | Cal Gas Conc.-Cal Gas Reading | Response Time (seconds) 501 Average Difference: *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% Span Sensitivity: Trial 1: Trial 3: Counts Observed for the Span= 144100 Counts Observed for the Span= 147084 Counters Observed for the Zero= Counters Observed for the Zero= Trial 2: Counts Observed for the Span= 147600 505 Counters Observed for the Zero= Post Monitoring Calibration Check Zero Air Cal Gas Reading: mod BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Downwind Location Description: Reading: Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

CALIBRATION AND PERTINENT DATA Site Name: WEATHER OBSERVATIONS Direction: General Weather Conditions: CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration: 500 Trial Zero Air Reading |Cal Gas Conc.-Cal Gas Reading| Response Time (seconds) Average Difference: Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% 100%- - 3 /500 x 100% Span Sensitivity: Trial 1: Counts Observed for the Span= Counters Observed for the Zero= Counters Observed for the Zero= Trial 2: Counts Observed for the Span= Counters Observed for the Zero= Post Monitoring Calibration Check Zero Air Cal Gas 444 Reading: 444 Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description:

Reading:

Downwind Location Description:

Reading:

Notes:

CALIBRATION AND PERTINENT DATA Site Name: WEATHER OBSERVATIONS Direction: Temperature CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration: 500 Trial Zero Air Reading Cal Gas Reading | Cal Gas Conc.-Cal Gas Reading | Response Time (seconds) Average Difference: *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% Span Sensitivity: Trial 1: Trial 3: Counts Observed for the Span= Counters Observed for the Zero= Trial 2: Counts Observed for the Span= Counters Observed for the Zero= Post Monitoring Calibration Check Zero Air Cal Gas 466
Reading: Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Downwind Location Description: Reading:

Notes:

CALIBRATION AND PERTINENT DATA Site Name: Inspector(s): Instrument: WEATHER OBSERVATIONS Direction: Temperature: CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration: 500 Trial Zero Air Reading Cal Gas Reading | Cal Gas Conc.-Cal Gas Reading | Response Time (seconds) Average Difference: Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% Span Sensitivity: Trial 1: Counts Observed for the Span= (44348 Counts Observed for the Span= Counters Observed for the Zero= Counters Observed for the Zero= Trial 2: Counts Observed for the Span= Counters Observed for the Zero= Post Monitoring Calibration Check Zero Air Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description:

Downwind Location Description:

Notes:

1		CALIBRATION AND	D PERTINENT DA	TA	ti.
Date:	01-27-22	?	Site Name:	ney	
Inspector(s):			Instrument: TVA	2020	
WEATHER OB	SERVATIONS			29	
Wind Speed	d:MPH	Wind ESE		metric ssure: 36	≥ "Hg
Ai Temperature	11	General Weather Conditions:	-111		
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	brate the instrument. Make a the average algebraic difference the less than or equal to 10% o al Number:	ce between the instrument r	eading and the calibration	and the calibration gas as a percent	n gas. Record the readings tage. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal	Gas Reading	Response Time (seconds
1	20	500	0	- 01	5.
2	10	500	0		5.
3		500	The state of the s		15
	ision= Average Difference/Cal	= 100%-	/500 x 1	.00%	
5 E		= 4191.89	%		
Span Sensitivity: Frial 1:		11/10/20			
	unts Observed for the Span=	140880	Frial 3: Counts Obser	ved for the Span=	99528
	nters Observed for the Zero=	5976	Counters Obse	rved for the Zero=	5252
Co	unts Observed for the Span=	(40816			
Cour	nters Observed for the Zero=	53(0			
ost Monitoring (Calibration Check				
ero Air		Cal Gas			
eading:	ppm	Reading:	ppm		
ACKGROUND C	CONCENTRATIONS CHECKS	21. 11.			
pwind Location I	Description:	911961	Reading:	9.8	ppm
ownwind Locatio	on Description:	nthohile	Reading:	2.3	ppm
otes: V	Vind speed averages were ob	served to remain below the	alternative requested 10) miles per hour an	d no instantaneous speeds

exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

SURFACE EMISSIONS MONITORING

- Japan

			ONS MONITORING O PERTINENT DATA	
Date:	01-77-2	2	Site Name: Now64	
Inspector(s):	Nickh		Instrument: TVA 2020	
WEATHER OB	SERVATIONS		.2	
Wind Speed		Direction Season Weather	Barometric Pressure:	7 - "Hg
Temperature	141	General Weather Conditions	CRON	
CALIBRATION	INFORMATION			
Pre-monitoring	Calibration Precision Check			
and calculate the precision must be instrument Seria	ne average algebraic difference be less than or equal to 10% of al Number:	e between the instrument r	ts by alternating zero air and the calibration eading and the calibration gas as a percent Cal Gas Concentration:	n gas. Record the readings age. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1	00	203		5
3	16	200		-5
Calibration Preci	ision= Average Difference/Cal	Gas Conc. X 100% = 100%	1.6 /500 x 100%	
Enga Familiai di		= 99.68		
Span Sensitivity: Trial 1:		10112 11	Frial 3:	
	unts Observed for the Span=	(34304	Counts Observed for the Span=	196992
	nters Observed for the Zero=	4/99	Counters Observed for the Zero=	4664
Trial 2: Co	unts Observed for the Span=	(36684		,
Cour	nters Observed for the Zero=	4690		
Post Monitoring (Calibration Check			
Zero Air		Cal Gas		
Reading: -	mqqppm	Reading:	ppm	
BACKGROUND (CONCENTRATIONS CHECKS	Calc 1 and	100	
Jpwind Location	Description:	11(0 6)	Reading: 28	ppm
ownwind Location	on Description: ${\cal J}$	MyVance	Reading: 2.2	ppm

Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

Notes:

		SURFACE EMISSI	ONS MONIT	TORING	
		CALIBRATION ANI	D PERTINEN	NT DATA	
Date:	01-27-7	2	Site Name:	Newby	
Inspector(s)			Instrument:	TVA 2020	
WEATHER	OBSERVATIONS				
Wind Sp	eed:MPH	Wind EST	=	Barometric Pressure:	"Hg
Temperat	Air ure: 40 °F	General Weather Conditions:			
CALIBRATIC	ON INFORMATION				
Pre-monitor	ing Calibration Precision Check				
and calculate precision mu	Talibrate the instrument. Make a se the average algebraic difference set be less than or equal to 10% of serial Number:	e between the instrument r	its by alternating reading and the o	g zero air and the calibration calibration gas as a percention. Cal Gas Concentration:	n gas. Record the readings age. The calibration 500ppm
Frial	Zoro Air Bondina	6-16 8 #	10.10		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds
1				0	~
1	100	750		9	-3
1 2 3	is	499		9	3
2 3	recision= Average Difference/Cal			n if average difference is greater than 1	3
2 3 Calibration Pr					.0
2 3 Calibration Pr		Gas Conc. X 100% = 100%- = QCL-94	0.3 %		3
2 3 Calibration Pr		Gas Conc. X 100% = 100%- = QCL-94	0.3 % Trial 3:		157324
2 3 Calibration Properties of the particular of	ity:	Gas Conc. X 100% = 100%- = QCL-94	O.3 % Trial 3:	/500 x 100%	157324 2655
2 3 Calibration Properties of the part Sensitive rial 1:	ity: Counts Observed for the Span=	Gas Conc. X 100% = 100%- = QCL-94	O.3 % Trial 3:	/500 x 100% nts Observed for the Span=	157324 2655
2 3 Calibration Properties Pan Sensitive rial 1:	ity: Counts Observed for the Span= Counters Observed for the Zero=	Gas Conc. X 100% = 100%- = QCL-94	O.3 % Trial 3:	/500 x 100% nts Observed for the Span=	157324 2655
2 3 Calibration Properties Pan Sensitivi rial 1: Crial 2:	Counts Observed for the Spane Counters Observed for the Zero Counts Observed for the Spane Counts Observed for the Spane	Gas Conc. X 100% = 100%- = QCL-94	O.3 % Trial 3:	/500 x 100% nts Observed for the Span=	157324 2655
2 3 Calibration Properties Pan Sensitivi rial 1: Crial 2:	Counts Observed for the Span= Counters Observed for the Zero= Counts Observed for the Span= counters Observed for the Zero=	Gas Conc. X 100% = 100%- = QCL-94	O.3 % Trial 3:	/500 x 100% nts Observed for the Span=	157324 2655

Upwind Location Description:

Downwind Location Description:

Reading:

ppm

Notes:

ı		CALIBRATION AND	PERTINE	NT DATA	94.1	
Date:	01-27-2	2	Site Name:	Newsy		
Inspector(s):	Brian S		Instrument:	TVA 2020		=
WEATHER OB	SERVATIONS			(90)		
Wind Speed	:MPH	Wine SE		Barometric Pressure:	<i>○</i> "Hg	
Ai Temperature	£40°F	General Weather Conditions:	(Cary			
CALIBRATION	INFORMATION					
Pre-monitoring	Calibration Precision Check					
and calculate th	ne average algebraic differen oe less than or equal to 10% (a total of three measurement ce between the instrument re of the calibration gas value.	s by alternatin eading and the	g zero air and the calib calibration gas as a pe Cal Gas Concentrat	ercentage. The calib	the readings ration Oppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas (Conc. Cal Gas Reading	Response Ti	gne (seconds)
11	00,	205		5	5	
3	-:/	50%		2	5	
Calibration Preci	sion= Average Difference/Ca	Gas Conc. X 100%	2.6	_/500 x 100%		
Span Sensitivity:		- 99.48				
Trial 1:		1147011	rial 3:		1010	D
	unts Observed for the Span=			nts Observed for the Sp	pan= 1486	771
Cour	nters Observed for the Zero=	9670	Count	ers Observed for the Z	ero= 7/2	25
	unts Observed for the Span=	(7/896				
Cour	nters Observed for the Zero=	1145				
Post Monitoring (Calibration Check					
Zero Air		Cal Gas				
Reading: _	ppm	Reading:		ppm		
BACKGROUND C	CONCENTRATIONS CHECKS	whil 17		- 0		
Jpwind Location I	Description:	114 61		Reading: 28	ppm	
Downwind Location	on Description: \mathcal{J}	ENTVANCE		Reading: 20	2 ppm	
lotes: V	Vind speed averages were of	hserved to remain below the	altornativo roo	uested 10 miles nee be		

exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

SURFACE EMISSIONS MONITORING

- Harding Tolland

CALIBRATION AND PERTINENT DATA Site Name: Inspector(s): Instrument: WEATHER OBSERVATIONS Wind Speed: General Weather Conditions CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration Trial Zero Air Reading |Cal Gas Conc.-Cal Gas Reading| Response Time (seconds) 2 Average Difference: Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% 100%- 3.3 /500 x 100% Span Sensitivity: Trial 1: Trial 3: Counts Observed for the Span= Counts Observed for the Span= / Counters Observed for the Zero= Counters Observed for the Zero= Trial 2: Counts Observed for the Span= Counters Observed for the Zero= Post Monitoring Calibration Check Zero Air Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Reading: Downwind Location Description: Reading: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds Notes:

exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

CALIBRATION AND PERTINENT DATA Date: Site Name: Inspector(s): Instrument: WEATHER OBSERVATIONS General Weather Conditions: <u>lartly</u> Cloudy Temperature: CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration: Trial Zero Air Reading Cal Gas Reading | Cal Gas Conc.-Cal Gas Reading | Response Time (seconds) Average Difference: 2-6 *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% 100%- 2.6 /500 x 100% = 99,48 % Span Sensitivity: Trial 1: Trial 3: Counts Observed for the Span= 131196 Counts Observed for the Span= Counters Observed for the Zero= 1700 Counters Observed for the Zero= Trial 2: 12680813317A Counts Observed for the Span= 150 47% Counters Observed for the Zero= Post Monitoring Calibration Check Zero Air Reading: BACKGROUND CONCENTRATIONS CHECKS Entrance Upwind Location Description: Reading Downwind Location Description: Reading: Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site

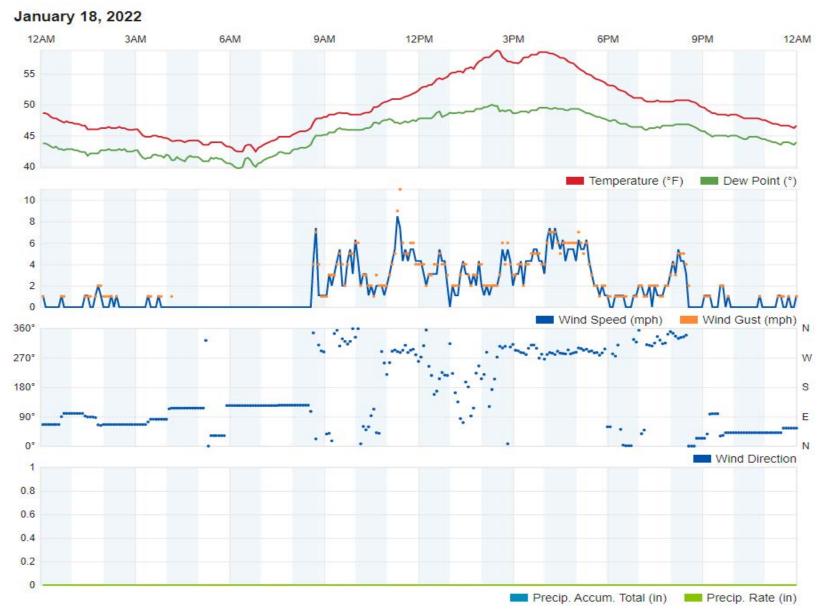

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

1		CALIBRATION AN	20 1 FILLINGE	II DAIA		
Date:	1-28-	22	Site Name	News		
Inspector(s):	Lann	1	Instrument:	TVAZO	050	
WEATHER O	OBSERVATIONS					
Wind Spe	еd: МРН	Wind Direction: NE	-	Barometric Pressure:	30	"Hg
Temperatu	Air 65 *F	General Weather Conditions	Partly,			
CALIBRATIO	N INFORMATION		Cloudy			
Pre-monitorir	ng Calibration Precision Chec	k				
and calculate	the average algebraic differ t be less than or equal to 109	re a total of three measuremen ence between the instrument r % of the calibration gas value.	its by alternating reading and the c	zero air and the calibration gas a Cal Gas Conce	is a percento	gas. Record the reading
			- N.			700
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Rea	ading	Response Time (second
2	-1	502		2-		
3	cision= Average Difference/	Average Difference:	*Perform recalibration	2	is greater tnan 1	0
3	cision≃ Average Difference/d	Average Difference:	2	2	is greater tnan 1	0
3		Average Difference:	2	2 if average difference i	is greater tnan 1	0
3 alibration Pre pan Sensitivity rial 1:		Average Difference: Cal Gas Conc. X 100% = 100%- = 99.4	% Trial 3:	2 if average difference i		14/70 A
alibration Pre Dan Sensitivity rial 1: Co	<i>(</i> :	Average Difference: Cal Gas Conc. X 100% = 100%- = 99, 4	% Trial 3:	2 if average difference in the second of the	the Span=_	14/70 A
alibration Pre pan Sensitivity rial 1: Co rial 2:	/: Counts Observed for the Spa	Average Difference: Cal Gas Conc. X 100% = 100%- = 99.4 n= 154100 D= 1113	% Trial 3:	2 if average difference is /500 x 100% ts Observed for	the Span=_	14/70 A
alibration Pre pan Sensitivity rial 1: Co rial 2:	/: Counts Observed for the Spar unters Observed for the Zero	Average Difference: Cal Gas Conc. X 100% = 100%- = 99, \$\int \frac{157100}{150978} = 150978	% Trial 3:	2 if average difference is /500 x 100% ts Observed for	the Span=_	14/70 A
alibration Pre pan Sensitivity rial 1: Co tal 2: Co Co Co	counts Observed for the Spanunters Observed for the Zero Counts Observed for the Zero Counts Observed for the Span	Average Difference: Cal Gas Conc. X 100% = 100%- = 99, \$\int \frac{157100}{150978} = 150978	% Trial 3:	2 if average difference is /500 x 100% ts Observed for	the Span=_	14/70 A
alibration Pre pan Sensitivity rial 1: Co rial 2: Coulst Monitoring	Counts Observed for the Span unters Observed for the Zero Counts Observed for the Span unters Observed for the Zero	Average Difference: Cal Gas Conc. X 100% = 100%- = 99, \$\int \frac{157100}{150978} = 150978	77 Counte	2 if average difference is /500 x 100% ts Observed for	the Span=_	14/70 A
alibration Pre pan Sensitivity rial 1: Co rial 2: Co cost Monitoring ro Air rading:	Counts Observed for the Span unters Observed for the Zero Counts Observed for the Span unters Observed for the Zero g Calibration Check	Average Difference: Cal Gas Conc. X 100% = 100%- = 99.4 n= 157100 The 150978 cal Gas Reading:	77 Counte	2 if average difference is /500 x 100% ts Observed for irs Observed for	the Span=_	14/70 A
alibration President Sensitivity rial 1: Co rial 2: Co cost Monitoring ro Air rading:	Counts Observed for the Spanunters Observed for the Zero Counts Observed for the Spanunters Observed for the Zero Calibration Check	Average Difference: Cal Gas Conc. X 100% = 100%- = 99.4 n= 157100 The 150978 cal Gas Reading:	2 % Trial 3: Counte	2 if average difference is /500 x 100% ts Observed for irs Observed for	the Span=_ the Zero=	14/70 A

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

Attachment 6

Weather Data

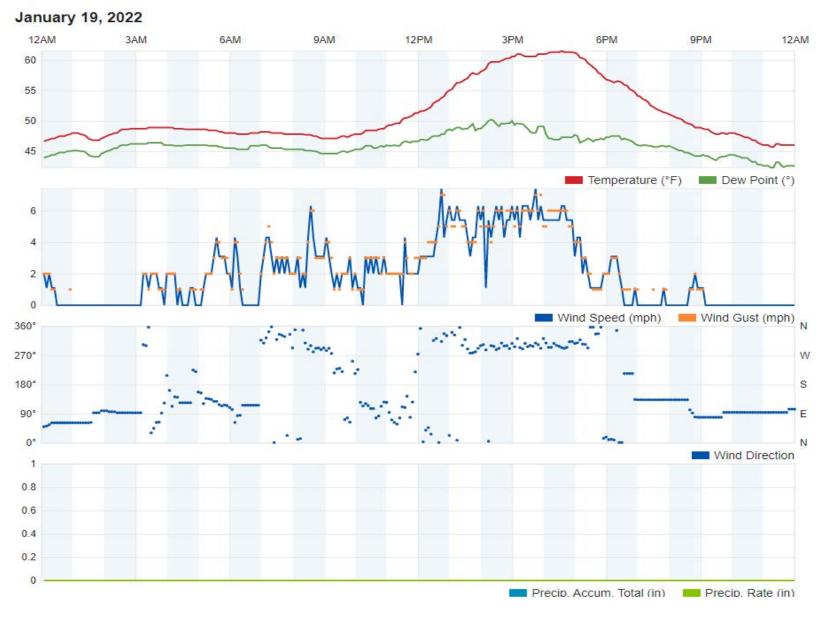


First Quarter 2022

LMR Surface Emissions Monitoring Weather Data

January 17, 2022

Newby Island Landfill, Milpitas, California



First Quarter 2022

LMR Surface Emissions Monitoring Weather

Data January 18, 2022

Newby Island Landfill, Milpitas, California

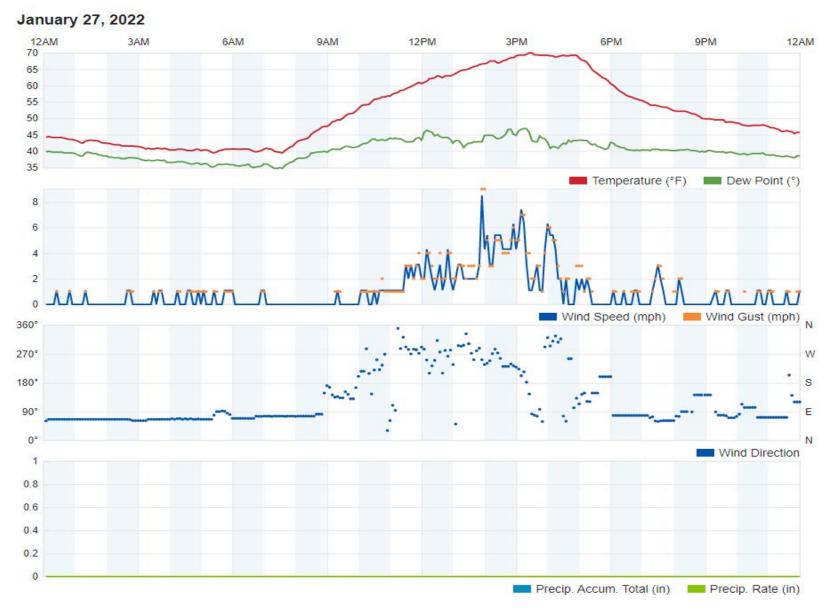


First Quarter 2022

LMR Surface Emissions Monitoring Weather

Data January 19, 2022

Newby Island Landfill, Milpitas, California



First Quarter 2022

LMR Surface Emissions Monitoring Weather

Data January 26, 2022

Newby Island Landfill, Milpitas, California

First Quarter 2022

LMR Surface Emissions Monitoring Weather

Data January 27, 2022

Newby Island Landfill, Milpitas, California



First Quarter 2022

LMR Surface Emissions Monitoring Weather

Data January 28, 2022

Newby Island Landfill, Milpitas, California

First Quarter 2022

LMR Surface Emissions Monitoring Weather

Data February 16, 2022

Newby Island Landfill, Milpitas, California

SCS FIELD SERVICES

August 25, 2022 File No. 07221077.00

Ms. Rachelle Huber Republic Services – Newby Island Landfill 1601 Dixon Landing Road Milpitas, California 95035

Subject: Newby Island Landfill - Milpitas, California

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS)

Surface Emissions Monitoring for Second Quarter 2022.

Dear Ms. Huber:

SCS Field Services (SCS) is pleased to provide the Republic Services, with the enclosed report summarizing the surface emissions monitoring services provided at the Newby Island Landfill (Site) during the Second Quarter 2022. This report includes the results of surface scan, component emissions and blower/flare station emissions monitoring for the Site for this monitoring period.

SCS appreciates the opportunity to be of assistance to Republic Services on this project. As you review the enclosed information, please contact Sean Bass at (209) 2458 or Whitney Stackhouse at (209) 338-7990 if you have any questions or comments.

Sincerely,

Whitney Stackhouse Project Manager SCS Field Services Sean T. Bass Senior Project Manager SCS Field Services

Encl.

Mike Flanagan, SCS Field Services

Newby Island Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring

Second Quarter 2022

Presented to:

Ms. Rachelle Huber Republic Services – Newby Island 1601 Dixon Landing Road Milpitas, California 95035

SCS FIELD SERVICES

File No. 07221077.00 Task 01 | August 25, 2022

SCS FIELD SERVICES 4730 Enterprise Way Suite A Modesto, CA 95356

Newby Island Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring Second Quarter 2022

INTRODUCTION

This letter provides results of the May 23, 24, 25 and 26, 2022 and June 2, 10 and 22, 2022, LMR and NSPS landfill surface emissions monitoring (SEM) performed by SCS Field Services (SCS) at the subject site. All work was performed in accordance with our approved Work Scope dated December 23, 2020, and the LMR requirements.

SUMMARY AND CONCLUSIONS

As stipulated in LMR, if uncorrectable exceedances within the 10-day limitation are detected or emissions are discovered during an inspection by Regulatory Agencies, the landfill must perform monitoring on a 25-foot pathway on a quarterly basis for active disposal sites. Upon completion of four consecutive SEM events without an uncorrectable exceedance of the 25 ppmv or 500 ppmv standards, other than non-repeatable momentary readings, the landfill may perform the monitoring on a 100-foot spacing on an annual basis for closed landfills or quarterly for active disposal sites. Therefore, based on the previous monitoring events, in which exceedances were observed, the monitoring at the Newby Island Landfill was performed on 25-foot pathways in accordance with the LMR.

On May 23, 24, 25 and 26, 2022 and June 2, 10 and 22, 2022, SCS performed second quarter 2022 SEM as required by the Bay Area Air Quality Management District (BAAQMD). Instantaneous surface emissions monitoring results indicated that sixteen (16) locations exceeded the 500 ppmv maximum concentration during the initial monitoring event (Table 1 in Attachment 3). The required first and second 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring indicated that all areas return to below regulatory compliance limits following system adjustments and remediation (well field adjustments and installation of new bentonite plugs) by site personnel. Based on these monitoring results no additional follow up testing was required at this time. These results are discussed in a subsequent section of this report.

Also, during the instantaneous monitoring event, SCS performed concurrent integrated monitoring of the landfill surface. As required by the LMR, the landfill was divided into 50,000 square foot areas. The Newby Island Landfill surface area was therefore divided into 233 grids, as shown on Figure 1 in Attachment 1. During this monitoring event, several grids were not monitored, in accordance with the regulations, due to ongoing active landfilling activities, unsafe conditions, or there was no waste in place prior to the monitoring event.

During the monitoring event, there were twelve (12) grid areas observed to exceed the 25 ppmv LMR integrated average threshold (Table 2 in Attachment 4). The required first and second 10-day LMR follow-up monitoring indicated that all areas did not return to compliance following system

adjustments and remediation by SCS and site personnel. Based on these monitoring results, and in accordance with the LMR, the site is required to perform a system expansion within 120-days of the third observed exceedance which will be due on October 8, 2022.

In addition, quarterly monitoring of the pressurized piping or components of the Gas Collection and Control System (GCCS) that are under positive pressure must be performed. Results of the testing of the landfill gas (LFG) Blower Flare Station (BFS) pressurized piping and components indicated that all test locations were in compliance with the 500 ppmv requirement.

Further, as required under the LMR, any location on the landfill that has an observed instantaneous methane concentration above 200 ppmv, must be stake-marked and Global Positioning System (GPS) located on a site figure. During this reporting period, twenty-nine (29) locations were observed to exceed the 200 ppmv, reporting threshold. When these readings are observed, the locations are reported to site personnel for tracking and/or remediation and will be reported in the next submittal of the annual LMR report.

Finally, to help prevent potential future exceedances, SCS recommends that the landfill surface be routinely inspected and any observed surface erosion be routinely repaired.

BACKGROUND

The Newby Island Landfill is an active organic refuse disposal site. By way of background, organic materials buried in a landfill decompose anaerobically (in the absence of oxygen) producing a combustible gas which contains approximately 50 to 60 percent methane gas, 40 to 50 percent carbon dioxide, and trace amount of various other gases, some of which are odorous. The Newby Island property contains a system to control the combustible gases generated in the landfill.

SURFACE EMISSIONS MONITORING

On May 23, 24, 25 and 26, 2022 and June 2, 10 and 22, 2022, the instantaneous and integrated SEM was performed over the surface of the subject site. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring in the 50,000 square foot grids as required under the LMR. During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rules as required.

EMISSIONS TESTING INSTRUMENTATION/CALIBRATION

Instruments used to perform the landfill surface emission testing consisted of the following:

- Thermo Scientific TVA 2020 portable Flame Ionization Detector (FID). This instrument
 measures methane in air over a range of 1 to 50,000 ppmv. The TVA 2020 meets the State
 of California Air Resources Board (CARB) requirements for combined instantaneous and
 integrated monitoring and was calibrated in accordance with United States Environmental
 Protection Agency (US EPA) Method 21.
- Weather Anemometer with continuous recorder for meteorological conditions in accordance with the LMR.

Instrument calibration logs and weather information are shown in Attachments 5 and 6.

SURFACE EMISSIONS MONITORING PROCEDURES

Surface emissions monitoring was conducted in accordance with the LMR and NSPS requirements. Monitoring was performed with the FID inlet held within 3-inches of the landfill surface while a technician walked a grid in parallel paths not more than 25 -feet apart over the surface of the landfill. Cracks, holes and other cover penetrations in the surface were also tested. Surface emissions readings were monitored continuously and recorded every 5 seconds. Any areas in exceedance of the 200 or 500 ppmv standards (reporting and compliance levels, respectively) would be GPS tagged and stake-marked for on-site personnel to perform remediation or repairs.

The integrated average is based on the readings stored on the instrument, which are recorded every 5 seconds. The readings are then downloaded and the averages are calculated for each grid using SCS eTools®. All readings are maintained in this secure SCS Database. The readings are not provided in the report due to the volume of readings, but can be furnished upon request.

Recorded wind speed results are shown in Attachment 6. Wind speed averages were observed to remain below the alternative threshold of 10 miles per hour, and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within 72 hours of the monitoring events. Therefore, site meteorological conditions were within the alternatives of the LMR requirements on the above mentioned dates.

TESTING RESULTS

During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rule as required under the LMR and NSPS. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR or NSPS threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring (LMR).

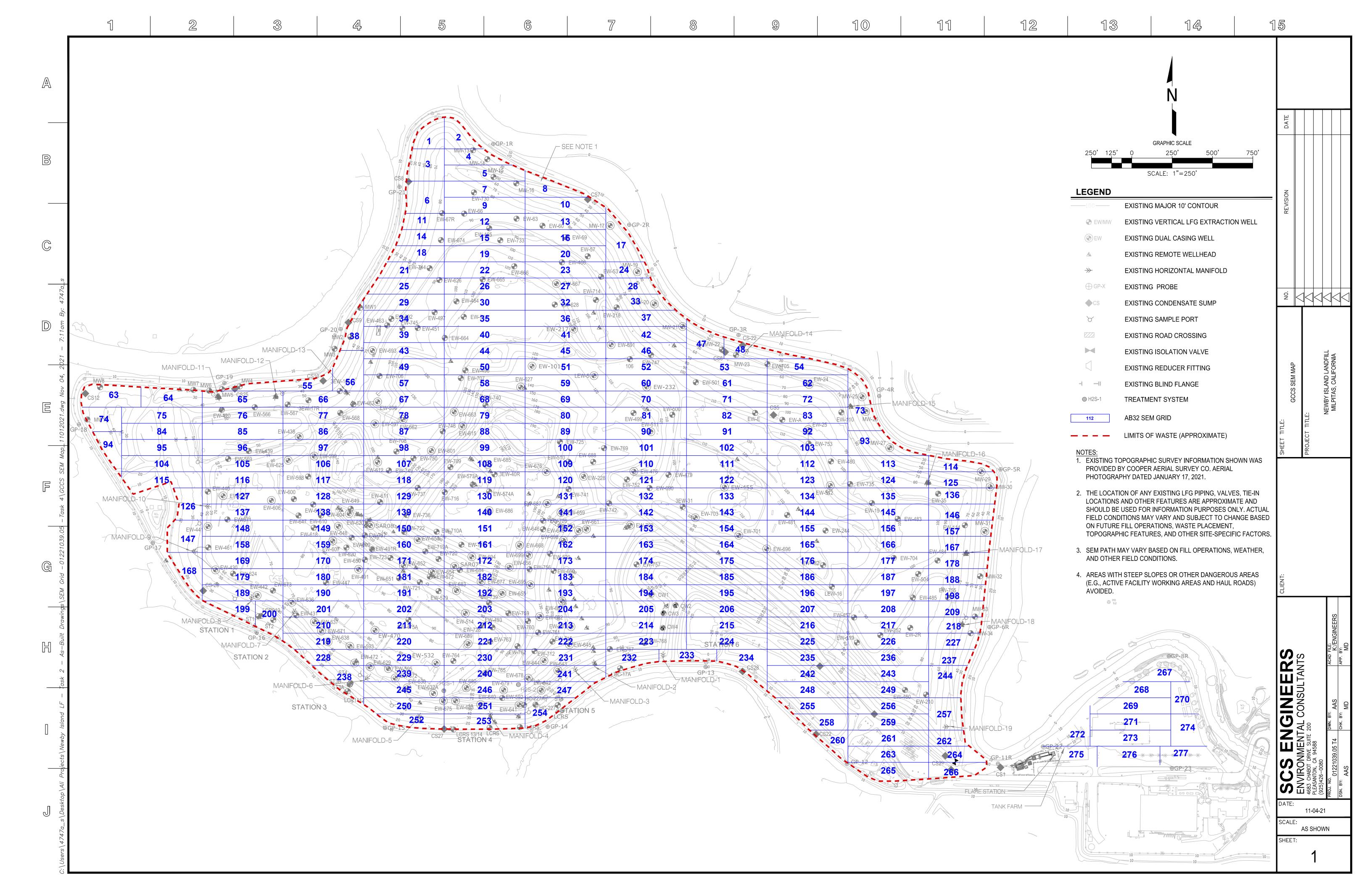
On May 23, 24, 25 and 26, 2022 and June 2, 10 and 22, 2022, SCS performed second quarter 2022 instantaneous emissions monitoring testing as required by the BAAQMD. During this monitoring, surface emissions results indicated that sixteen (16) locations exceeded the 500 ppmv maximum concentration. The required first and second 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring performed on June 2, 10, and 22, 2022, respectively, indicated that all locations returned to below compliance limits as required, following system adjustments and remediation (wellfield adjustment and borehole repairs using bentonite and soil) performed by SCS and site personnel. Based on these monitoring results no additional follow up testing was required at this time. Results of the initial and follow up monitoring are shown in Attachments 2 and 3 (Table 1).

Additionally, calculated integrated grid monitoring indicated twelve (12) integrated exceedances of the 25-ppmv requirement on May 23, 24, 25, and 26, 2022. The required first and second 10-day LMR follow-up monitoring performed on June 2, and 10, 2022, indicated that all areas had not returned to compliance following system adjustments and remediation by site personnel. In accordance with LMR requirements for expansion and remediation, the exceedance locations need to be remediated and returned to compliance in accordance with the rule (expansion of the collection system or an alternative compliance option if approved by the BAAQMD) within 120 days of the third observed integrated exceedance, which will be due by October 8, 2022. Results of the initial and follow up monitoring are shown in Attachment 4 (Table 2). Calibration logs for the monitoring equipment are provided in Attachment 5.

During this monitoring event, several grids were not monitored, in accordance with the LMR, due to active landfilling activities, unsafe conditions or no waste in place. SCS will continue to monitor all accessible locations during the third quarter 2022.

PRESSURIZED PIPE AND COMPONENT LEAK MONITORING

On May 23, 2022, quarterly leak monitoring was performed in accordance with the LMR. SCS performed LFG pressurized pipe and component leak monitoring at the BFS. Monitoring was performed with the detector inlet held one-half of an inch from pressurized pipe and associated components. No locations exceeding the 500 ppmv threshold were observed during our monitoring event. The maximum reading, which was 83.00 ppmv, was below the maximum threshold (see Table 1 for component results). Therefore, all pressurized piping and components located at the LFG BFS were in compliance at the time of our testing.


PROJECT SCHEDULE

According to the LMR and NSPS, surface emissions monitoring at active landfills is required to be performed on a quarterly basis. Therefore, in accordance with our approved Work Scope, the third quarter 2022 (July through September) surface emissions testing event is scheduled to be performed by the end of August 2022 in accordance with the Republic SOP unless an alternative timeline is requested by site personnel.

STANDARD PROVISIONS

This report addresses conditions of the subject site during the testing dates only. Accordingly, we assume no responsibility for any changes that may occur subsequent to our testing which could affect the surface emissions at the subject site or adjacent properties.

Landfill Grid

Surface Pathway

Second Quarter 2022

LMR Surface Emissions Monitoring Pathway

Newby Island Landfill, Milpitas, California

Instantaneous and Component Emissions Monitoring Results

Table 1. LMR Instantaneous Surface and Component Emissions Monitoring Results Newby Island Sanitary Landfill, Milpitas, California

Instantaneous Data Report for May 23, 24, 25, 2022 and June 2, 10, and 22, 2022.

Location Well ID or	Initial Monitoring (ppmv)	Initial Monitoring (ppmv)	Initial Monitoring (ppmv)	10-Day Follow Up Monitoring (ppmv)	Second 10-Day Follow Up Monitoring (ppmv)	30-Day Follow Up Monitoring (ppmv)	Location
Grid Number	23-May	24-May	25-May	2-Jun	10-Jun	22-Jun	
598	2,000	-	-	757	35.8	32.4	N37° 27.569' W121° 56.864'
601 (P) (HOV Temp)	3,000	-	-	932	20.5	54.4	N37° 27.598' W121° 56.707'
615 (P)	2,600	-	-	1441	11.2	5.6	N37° 27.623' W121° 56.667'
712 (P)	6,617	-	-	13.7	NA	1.8	N37° 27.394' W121° 56.571'
720 (P)	20,000(BH)/1,200	-	-	583	60.5	28.5	N37° 27.487' W121° 56.699'
740 (P)	3,000 (flange)	-	-	94.4	NA	8.4	N37° 27.645' W121° 56.642'
748 (P)	20,000	-	-	1244	13.7	40	N37° 27.620' W121° 56.691'
749 (P)	1,300	-	-	1775	17.5	12.6	N37° 27.580' W121° 56.759'
761 (P)	971	-	-	1059	12.2	72.4	N37° 27.414' W121° 56.568'
BLACK PIPE	910	-	-	1975	22.2	32.2	N37° 27.333' W121° 56.577'
DGTPOST1	600	-	-	216	NA	75.4	N37° 27.642' W121° 56.648'
NIHC-245	513	2500	-	513	55.9	17.5	N37° 27.464' W121° 56.643'
RWRB1	1,999	-	-	6008	170	84.9	N37° 27.386' W121° 56.537'
706	-	5,000	-	216	NA	13.8	N37° 27.676' W121° 56.773'
756	-	900	-	813	15.2	113	N37° 27.478' W121° 56.582'
BO11 (Surface Reading Grid 213)	-	-	953	607	94.2	137	N37° 27.433' W121° 56.583'
462	200 (WH)	-	-	-	-	-	N37° 27.644' W121° 56.808'
684	461	-	-	-	-	-	N37° 27.476' W121° 56.669'
798	-	-	475(WH)	-	-	-	N37° 27.467' W121° 56.545'
800	209	-	-	-	-	-	N37° 27.450' W121° 56.609'
568 (HOV Temp)	345(BH)/250(WH)	-	-	-	-	-	N37° 27.635' W121° 56.824'
739 (P)	391	-	-	-	-	-	N37° 27.443' W121° 56.631'
759 (P)	200	-	-	-	-	-	N37° 27.433' W121° 56.606'

Table 1. LMR Instantaneous Surface and Component Emissions Monitoring Results

Newby Island Sanitary Landfill, Milpitas, California

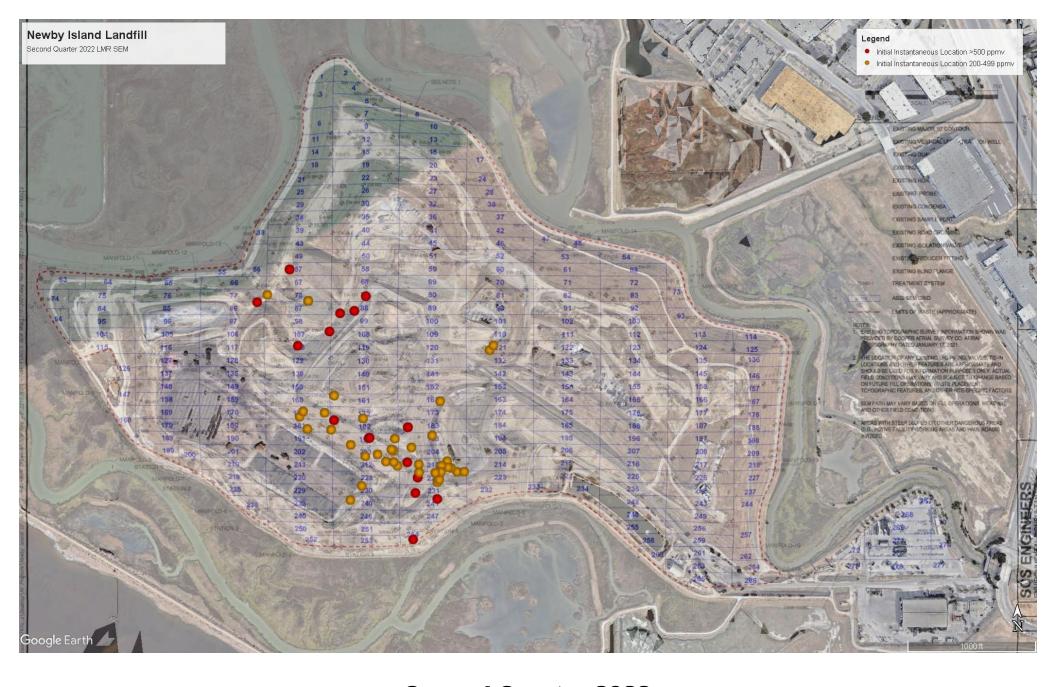

Location Well ID or	Initial Monitoring (ppmv)	Initial Monitoring (ppmv)	Initial Monitoring (ppmv)	10-Day Follow Up Monitoring (ppmv)	Second 10-Day Follow Up Monitoring (ppmv)	30-Day Follow Up Monitoring (ppmv)	Location
Grid Number	23-May	24-May	25-May	2-Jun	10-Jun	22-Jun	
797 (P)	-	-	345	-	-	-	N37° 27.510' W121° 56.532'
BO (Surface Reading Grid 213)	-	-	213	-	-	-	N37° 27.421' W121° 56.565'
BO10 (Surface Reading Grid 213)	-	-	200	-	-	-	N37° 27.434' W121° 56.522'
BO12 (Surface Reading Grid 203)	-	-	480	-	-	-	N37° 27.440' W121° 56.651'
BO13 (Surface Reading Grid 203)	-	-	200	-	-	-	N37° 27.448' W121° 56.606'
BO14 (Surface Reading Grid 204)	-	-	297	-	-	-	N37° 27.452' W121° 56.577'
BO15 (Surface Reading Grid 192)	-	-	200	-	-	-	N37° 27.464' W121° 56.603'
BO2 (Surface Reading Grid 213)	-	-	486	-	-	-	N37° 27.421' W121° 56.531'
BO3 (Surface Reading Grid 213)	-	-	207	-	-	-	N37° 27.420' W121° 56.495'
BO4 (Surface Reading Grid 213)	-	-	322	-	-	-	N37° 27.425' W121° 56.516'
BO5 (Surface Reading Grid 213)	-	-	315	-	-	-	N37° 27.426' W121° 56.520'
BO6 (Surface Reading Grid 212)	-	-	480	-	-	-	N37° 27.429' W121° 56.600'
BO7 (Surface Reading Grid 213)	-	-	200	-	-	-	N37° 27.431' W121° 56.566'
BO8 (Surface Reading Grid 213)	-	-	296	-	-	-	N37° 27.428' W121° 56.530'
BO9 (Surface Reading Grid 212)	-	-	256	-	-	-	N37° 27.434' W121° 56.618'
BOFL1	479	-	-	-	-	-	N37° 27.443' W121° 56.591'
BOLRB	377	-	-	-	-	-	N37° 27.497' W121° 56.749'
JS SR2	-	-	277	-	-	-	N37° 27.420' W121° 56.540'
JS SR	-	-	227	-	-	-	N37° 27.420' W121° 56.506'
JS SR3	-	-	280	-	-	-	N37° 27.411' W121° 56.534'
JS SR4	-	-	234	-	-	-	N37° 27.408' W121° 56.537'
NILHC244	200	-	-	-	-	-	N37° 27.489' W121° 56.652'

Table 1. LMR Instantaneous Surface and Component Emissions Monitoring Results Newby Island Sanitary Landfill, Milpitas, California

Pressurized Pipe

Location	Initial Concentration (ppmv) Nov 29, 2021	Latitude	Latitude
Flare Station	83.00	37.455070°	121.950284°

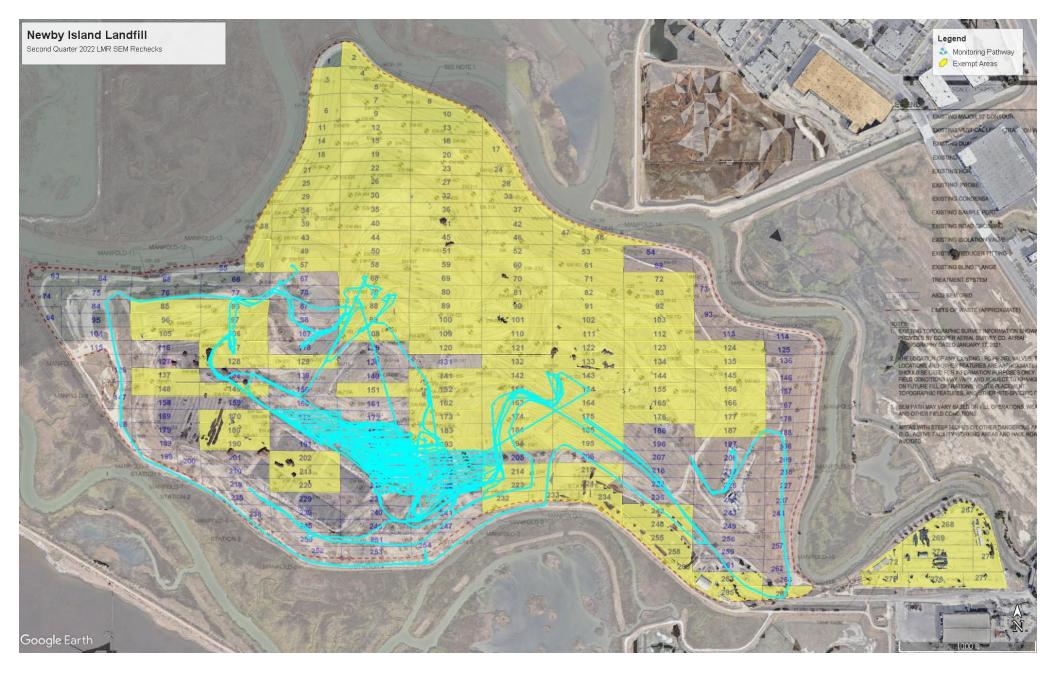
No other exceedances of the 500 ppm threshold observed during the LMR/NSPS monitoring performed during the second quarter 2022.

Second Quarter 2022
Initial Emissions Monitoring Locations Greater Than 200 ppmv
Newby Island Landfill Milpitas, California

Integrated Monitoring Results

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-001	5/25/2022 15:33	24.60	
NIL-002			Exempted
NIL-003			Exempted
NIL-004			Exempted
NIL-005			Exempted
NIL-006			Exempted
NIL-007			Exempted
NIL-008			Exempted
NIL-009			Exempted
NIL-010			Exempted
NIL-011			Exempted
NIL-012			Exempted
NIL-013			Exempted
NIL-014			Exempted
NIL-015			Exempted
NIL-016			Exempted
NIL-017			Exempted
NIL-018			Exempted
NIL-019			Exempted
NIL-020			Exempted
NIL-021			Exempted
NIL-022			Exempted
NIL-023			Exempted
NIL-024			Exempted
NIL-025			Exempted
NIL-026			Exempted
NIL-027			Exempted
NIL-028			Exempted
NIL-029			Exempted
NIL-030			Exempted
NIL-031			Exempted
NIL-032			Exempted
NIL-033			Exempted
NIL-034			Exempted
NIL-035			Exempted
NIL-036			Exempted
NIL-037			Exempted
NIL-038			Exempted
NIL-039			Exempted
NIL-040			Exempted
NIL-041			Exempted
NIL-042			Exempted
NIL-043			Exempted

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-044			Exempted
NIL-045			Exempted
NIL-046			Exempted
NIL-047			Exempted
NIL-048			Exempted
NIL-049			Exempted
NIL-050			Exempted
NIL-051			Exempted
NIL-052			Exempted
NIL-053			Exempted
NIL-054	5/25/2022 09:09	3.70	
NIL-055	5/25/2022 08:55	2.19	
NIL-056			Exempted
NIL-057			Exempted
NIL-058			Exempted
NIL-059			Exempted
NIL-060			Exempted
NIL-061			Exempted
NIL-062	5/25/2022 09:29	4.38	
NIL-063	5/25/2022 08:37	4.15	
NIL-064	5/25/2022 08:43	4.14	
NIL-065	5/25/2022 09:07	3.54	
NIL-066	5/25/2022 11:02	6.01	
NIL-067			Exempted
NIL-068			Exempted
NIL-069			Exempted
NIL-070			Exempted
NIL-071			Exempted
NIL-072			Exempted
NIL-073			Exempted
NIL-074	5/25/2022 09:21	2.23	
NIL-075			Exempted
NIL-076			Exempted
NIL-077			Exempted
NIL-078			Exempted
NIL-079			Exempted
NIL-080			Exempted
NIL-081			Exempted
NIL-082			Exempted
NIL-083			Exempted
NIL-084	5/25/2022 09:43	3.12	
NIL-085			Exempted
NIL-086			Exempted


Point Name	Record Date	FID Concentration	Comments
NIL-087		(ppm) 	Exempted
NIL-088			Exempted
NIL-089			Exempted
NIL-090			Exempted
NIL-091			Exempted
NIL-092			Exempted
NIL-093			Exempted
NIL-094	5/25/2022 09:29	2.53	·
NIL-095	5/24/2022 14:00	2.99	
NIL-096			Exempted
NIL-097			Exempted
NIL-098			Exempted
NIL-099			Exempted
NIL-100			Exempted
NIL-101			Exempted
NIL-102			Exempted
NIL-103			Exempted
NIL-104	5/24/2022 13:32	3.94	
NIL-105			Exempted
NIL-106			Exempted
NIL-107			Exempted
NIL-108			Exempted
NIL-109			Exempted
NIL-110			Exempted
NIL-111			Exempted
NIL-112			Exempted
NIL-113			Exempted
NIL-114	5/25/2022 10:17	3.43	
NIL-115	5/24/2022 13:30	5.60	
NIL-116	5/24/2022 13:28	4.25	
NIL-117			Exempted
NIL-118			Exempted
NIL-119			Exempted
NIL-120			Exempted
NIL-121	5/25/2022 09:58	16.19	
NIL-122	5/25/2022 09:54	26.82	Initial Monitoring
NIL-122	6/2/2022 00:00		Active
NIL-123			Exempted
NIL-124			Exempted
NIL-125	5/25/2022 08:21	2.40	
NIL-126	5/24/2022 13:54	14.06	
NIL-127	5/24/2022 14:08	5.62	
NIL-128			Exempted

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-129			Exempted
NIL-130	5/25/2022 10:44	10.07	
NIL-131	5/25/2022 10:24	19.92	
NIL-132			Exempted
NIL-133			Exempted
NIL-134			Exempted
NIL-135			Exempted
NIL-136	5/25/2022 08:10	2.00	
NIL-137			Exempted
NIL-138	5/24/2022 13:24	3.02	
NIL-139	5/24/2022 14:53	3.95	
NIL-140	5/24/2022 14:57	9.72	
NIL-141			Exempted
NIL-142			Exempted
NIL-143			Exempted
NIL-144			Exempted
NIL-145			Exempted
NIL-146			Exempted
NIL-147			Exempted
NIL-148			Exempted
NIL-149			Exempted
NIL-150	5/25/2022 12:16	11.24	
NIL-151			Exempted
NIL-152			Exempted
NIL-153			Exempted
NIL-154			Exempted
NIL-155			Exempted
NIL-156			Exempted
NIL-157			Exempted
NIL-158	5/24/2022 14:55	1.88	
NIL-159	5/25/2022 12:50	11.48	
NIL-160	5/25/2022 12:49	10.84	
NIL-161	5/25/2022 12:46	17.80	
NIL-162			Exempted
NIL-163			Exempted
NIL-164			Exempted
NIL-165			Exempted
NIL-166			Exempted
NIL-167	5/24/2022 11:03	3.34	
NIL-168	5/24/2022 14:35	2.04	
NIL-169	5/24/2022 15:03	2.52	
NIL-170			Exempted

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-171	5/25/2022 12:21	25.11	Initial Monitoring
NIL-171	6/2/2022 11:59	18.30	First 10-Day Follow Up Monitoring
NIL-172	5/25/2022 12:21	19.12	
NIL-173			Exempted
NIL-174			Exempted
NIL-175			Exempted
NIL-176			Exempted
NIL-177			Exempted
NIL-178	5/24/2022 10:49	3.43	
NIL-179	5/24/2022 14:58	3.27	
NIL-180			Exempted
NIL-181	5/25/2022 11:22	30.84	Initial Monitoring
NIL-181	6/2/2022 11:48	26.36	First 10-Day Follow Up Monitoring
NIL-181	6/10/2022 14:02	17.06	Second 10-Day Follow Up Monitoring
NIL-182	5/25/2022 10:55	30.55	Initial Monitoring
NIL-182	6/2/2022 10:22	25.62	First 10-Day Follow Up Monitoring
NIL-182	6/10/2022 13:46	16.36	Second 10-Day Follow Up Monitoring
NIL-183			Exempted
NIL-184			Exempted
NIL-185			Exempted
NIL-186	5/24/2022 11:01	6.41	
NIL-187			Exempted
NIL-188	5/25/2022 13:34	3.64	
NIL-189	5/24/2022 15:14	2.52	
NIL-190			Exempted
NIL-191	5/25/2022 10:13	36.22	Initial Monitoring
NIL-191	6/2/2022 11:42	21.76	First 10-Day Follow Up Monitoring
NIL-192	5/25/2022 10:09	37.39	Initial Monitoring
NIL-192	6/2/2022 10:01	33.41	First 10-Day Follow Up Monitoring
NIL-192	6/10/2022 13:22	18.26	Second 10-Day Follow Up Monitoring
NIL-193			Exempted
NIL-194			Exempted
NIL-195			Exempted
NIL-196	5/24/2022 10:54	4.44	
NIL-197	5/24/2022 10:26	3.55	
NIL-198	5/24/2022 10:25	2.18	
NIL-199	5/24/2022 15:23	3.97	
NIL-200			Exempted
NIL-201	5/24/2022 15:18	4.61	
NIL-202			Exempted
NIL-203	5/25/2022 09:40	47.01	Initial Monitoring
NIL-203	6/2/2022 09:45	36.10	First 10-Day Follow Up Monitoring
NIL-203	6/10/2022 13:09	20.02	Second 10-Day Follow Up Monitoring

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-204	5/25/2022 09:39	45.42	Initial Monitoring
NIL-204	6/2/2022 08:57	46.60	First 10-Day Follow Up Monitoring
NIL-204	6/10/2022 14:02	25.69	Second 10-Day Follow Up Monitoring
NIL-205	5/25/2022 09:30	54.01	Initial Monitoring
NIL-205	6/2/2022 09:09	73.15	First 10-Day Follow Up Monitoring
NIL-205	6/10/2022 14:03	41.69	Second 10-Day Follow Up Monitoring
NIL-206	5/24/2022 09:04	4.37	
NIL-207	5/24/2022 09:31	4.60	
NIL-208	5/24/2022 09:34	2.53	
NIL-209	5/24/2022 09:49	2.37	
NIL-210	5/24/2022 15:27	5.77	
NIL-211			Exempted
NIL-212	5/25/2022 10:08	40.80	Initial Monitoring
NIL-212	6/2/2022 09:32	51.72	First 10-Day Follow Up Monitoring
NIL-212	6/10/2022 12:54	20.88	Second 10-Day Follow Up Monitoring
NIL-213	5/25/2022 10:08	74.24	Initial Monitoring
NIL-213	6/2/2022 08:39	84.09	First 10-Day Follow Up Monitoring
NIL-213	6/10/2022 13:28	48.37	Second 10-Day Follow Up Monitoring
NIL-214			Exempted
NIL-215			Exempted
NIL-216	5/24/2022 11:09	4.78	
NIL-217	5/24/2022 11:03	4.28	
NIL-218	5/24/2022 11:10	3.34	
NIL-219	5/24/2022 15:36	6.77	
NIL-220			Exempted
NIL-221	5/25/2022 09:05	18.55	
NIL-222	5/25/2022 09:13	39.59	Initial Monitoring
NIL-222	6/2/2022 08:22	57.22	First 10-Day Follow Up Monitoring
NIL-222	6/10/2022 13:00	15.99	Second 10-Day Follow Up Monitoring
NIL-223			Exempted
NIL-224			Exempted
NIL-225	5/24/2022 09:30	3.80	
NIL-226	5/24/2022 09:37	3.43	
NIL-227	5/24/2022 09:01	2.54	
NIL-228	5/24/2022 15:50	5.50	
NIL-229	5/24/2022 15:59	5.56	
NIL-230			Exempted
NIL-231			Exempted
NIL-232			Exempted
NIL-233			Exempted
NIL-234			Exempted
NIL-235	5/24/2022 10:10	4.14	
NIL-236	5/24/2022 10:09	2.33	

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-237	5/24/2022 10:06	2.77	
NIL-238			Exempted
NIL-239	5/24/2022 16:04	6.30	
NIL-240	5/25/2022 12:03	7.74	
NIL-241	5/25/2022 11:58	15.45	
NIL-242			Exempted
NIL-243	5/24/2022 11:01	3.33	
NIL-244	5/24/2022 09:37	3.12	
NIL-245			Exempted
NIL-246			Exempted
NIL-247			Exempted
NIL-248			Exempted
NIL-249	5/24/2022 11:43	4.18	
NIL-250			Exempted
NIL-251			Exempted
NIL-252	5/24/2022 15:47	9.46	
NIL-253			Exempted
NIL-254			Exempted
NIL-255			Exempted
NIL-256			Exempted
NIL-257	5/24/2022 10:38	3.61	
NIL-258			Exempted
NIL-259			Exempted
NIL-260			Exempted
NIL-261	5/25/2022 12:43	0.75	
NIL-262	5/24/2022 10:28	2.75	
NIL-263			Exempted
NIL-264	5/25/2022 12:21	2.73	
NIL-265			Exempted
NIL-266			Exempted
NIL-267			Exempted
NIL-268			Exempted
NIL-269			Exempted
NIL-270			Exempted
NIL-271			Exempted
NIL-272			Exempted
NIL-273			Exempted
NIL-274			Exempted
NIL-275			Exempted
NIL-276			Exempted
NIL-277			Exempted

Second Quarter 2022

LMR Surface Emissions Monitoring First and Second 10-Day Pathways

Newby Island Landfill, Milpitas, California

Calibration Logs

		CALIBRATION AN	ND PERTINEN	IT DATA	1
Date:	5-23-2 Ruggeren	2	Site Name	Newby	;
Inspector(s	R, hypren		Instrument:	TVA 2020	
WEATHER	OBSERVATIONS			ž.	
Wind Sp	MPH	Wind SE		Barometric 30.0	₽ / "Hg
Temperat	Air 60° °F	General Weathe Condition	er Clear	-	
CALIBRATIO	ON INFORMATION		1		
Pre-monitor	ing Calibration Precision Check				
and calculat precision mu	Calibrate the instrument. Make a set the average algebraic difference ast be less than or equal to 10% of the less than be serial Number:	e between the instrument	reading and the o	zero air and the calibratio calibration gas as a percent Cal Gas Concentration:	n gas. Record the readings tage. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
1	0	302	2		
3	0	500	0		1
Calibration Pr	recision= Average Difference/Cal		D.Ce %	/500 x 100%	
Span Sensitivi	ty:				
Trial 1:	Counts Observed for the Span=	13/728	Trial 3: Coun	ts Observed for the Span=	135692
	ounters Observed for the Zero=	3497	Counte	rs Observed for the Zero=	2339
Trial 2:	Counts Observed for the Span=	34528			
Co	ounters Observed for the Zero=	3423			
Post Monitorin	ng Calibration Check				
Zero Air Reading:	- O / ppm	Cal Gas Reading:	500	ppm	
BACKGROUNI	D CONCENTRATIONS CHECKS	1			
Upwind Location	on Description:	lowe	F	Reading: UH	ppm
Downwind Loca	ation Description.	G 186	F	Reading: Z	ppm
Notes:	Wind speed averages were observed averages averages averages were observed averages averages averages averages average	Io rainfall had occurred wi	ithin the previous	24 hours of the monitoring	g event. Therefore, site

SES Demos mind limes and source of services of the

SURFACE EMISSIONS MONITORING

		CALIBRATION AN	D PERTINEN	T DATA	
Date:	5.23.22		Site Name:	nzuby	
Inspector(s):	J. Dove	100	Instrument:	TVA 2020	
WEATHER O	BSERVATIONS			Q	
1	ed: MPH	Wind Direction:	=	Barometric So. 01	"Hg
Temperatur	Air 60° °F	General Weathe Conditions	Clear	-	
CALIBRATION	INFORMATION				
Pre-monitoring	g Calibration Precision Chec	ck			
and calculate t	the average algebraic differ be less than or equal to 10	ke a total of three measuremen rence between the instrument % of the calibration gas value.	reading and the c	zero air and the calibration alibration gas as a percent Cal Gas Concentration:	n gas. Record the readings age. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading		oncCal Gas Reading	Response Time (seconds
1.	0	. 564	4		2
2	Q	496	2		
3	1 0	447	3		
Calibration Prec	ision= Average Difference/		3	/500 x 100%	
Span Sensitivity:	:	,			
Trial 1:			Trial 3:		
Co	ounts Observed for the Spa	n=131928	Count	s Observed for the Span=	134656
Cou	inters Observed for the Zer	0= 4159	Counte	rs Observed for the Zero=	4029
Trial 2:	ounts Observed for the Spa	n= /34700			
Cou	nters Observed for the Zero	0= 4092			
Post Monitoring	Calibration Check				
Zero Air Reading:	— \ ppm	Cal Gas Reading:	498	pm	
BACKGROUND	CONCENTRATIONS CHEC	:KS			
Upwind Location	Description:	Plane	R	eading: 24	ppm
Downwind Locati	on Description:	Gn 156	R	eading: 7.(p	ppm
		observed to remain below the			

SURFACE EMISSIONS MONITORING

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

1		CALIBRATION A	SIONS MONIT	- · · · · -	
1		CALIDNATIONA	MAD BEKLIMEN	HUAIA	
Date:	5-23-22		Site Name:	1)36by	
Inspector(s):	J. Sor;9		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			4	
Wind Speed	н: мрн	Wind Direction: 5C		Barometric Pressure:	"Hg
Ai Temperature	. <u>60</u> *F	General Weat Conditio	her ons: <u>Clego</u>	_	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	orate the instrument. Make of the average algebraic difference and the second second to 10% of the second s	ce between the instrume	nt reading and the d	zero air and the calibration calibration gas as a percent Cal Gas Concentration:	n gas. Record the readin age. The calibration 500ppm
rial	Zero Air Reading	Cal Gas Reading		oncCal Gas Reading	Response Time (secon
1	~ 0.1	499			Z
3	- 0.1	499	3		7
		Average Difference:	1.3		
alibration Precis	sion= Average Difference/Cal			if average difference is greater than 1	a
alibration Precis	sion= Average Difference/Cal	Gas Conc. X 100%	*Perform recalibration	if average difference is greater than 1	0
alibration Precis	sion= Average Difference/Cal	Gas Conc. X 100%	*Perform recalibration		.0
an Sensitivity:	sion= Average Difference/Cal	Gas Conc. X 100%	*Perform recalibration %- 1, 7		.0
an Sensitivity:	sion= Average Difference/Cal	Gas Conc. X 100% = 1009 = 99 , 7 ⁴	*Perform recalibration %- 1, 7 1 % Trial 3:		
an Sensiti vity: ial 1: Cou Coun	.,	Gas Conc. X 100% = 1009 = 99 , 7 ⁴	*Perform recalibration %	/500 x 100%	
oan Sensitivity: ial 1: Cou Coun	unts Observed for the Span=	Gas Conc. X 100% = 1009 = 99, 7 ⁶ 13446 4754	*Perform recalibration %	/500 x 100% ts Observed for the Span=	132212
an Sensitivity: ial 1: Cou Coun al 2:	unts Observed for the Span= ters Observed for the Zero=	Gas Conc. X 100% = 1009 = 99, 7 ⁶ 13446 4754	*Perform recalibration %	/500 x 100% ts Observed for the Span=	132212
can Sensitivity: ial 1: Countial 2: Count	unts Observed for the Span= ters Observed for the Zero= unts Observed for the Span=	Gas Conc. X 100% = 1009 = 99,74 13446 4756 135444	*Perform recalibration %	/500 x 100% ts Observed for the Span=	132212
can Sensitivity: ial 1: Countial 2: Count	unts Observed for the Span= ters Observed for the Zero= unts Observed for the Span= ters Observed for the Zero=	Gas Conc. X 100% = 1009 = 99,74 13446 4756 135444	*Perform recalibration %- 1, 7 1 % Trial 3: Counted 4 \$55	/500 x 100% ts Observed for the Span=	132212
Country: Countr	unts Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Zero= alibration Check	Gas Conc. X 100% = 1009 = 99,74 13446 4756 135444 4697 Cal Gas	*Perform recalibration %- 1, 7 1 % Trial 3: Counted 4 \$55	/500 x 100% ts Observed for the Span= rs Observed for the Zero=	132212

Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

Downwind Location Description:

Notes:

Reading:

		CALIBRATION AN	ID PERTINEN	IT DATA	W.
Date:	5-23-27	2	Site Name:	Memby	
Inspector(s):	Don Gyb	Son	Instrument:		
WEATHER OB	SERVATIONS			*	
Wind Speed	:МРН	Wind Direction: WWW	_	Barometric Pressure:	
Ai Temperature	A /	General Weathe Conditions		, -	
CALIBRATION	INFORMATION		/		
Pre-monitoring	Calibration Precision Check				
and calculate th	orate the instrument. Make a se average algebraic difference se less than or equal to 10% o al Number:	e between the instrument	reading and the o	zero air and the calibratio calibration gas as a percent Cal Gas Concentration:	n gas. Record the readings tage. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (seconds
11	-0_	503	5		3
2	0	503	5		3
3		SCO			
Calibration Precis	sion= Average Difference/Cal		7	/500 x 100%	
Span Sensitivity:		1 103			
Trial 1:			Trial 3:		5 CT 20 NO
1	unts Observed for the Span=	125892		ts Observed for the Span=	124436
Coun	ters Observed for the Zero=	4523	Counte	rs Observed for the Zero=	4400
Trial 2: Cou	ints Observed for the Span=	123672			
Coun	ters Observed for the Zero=	4430			
Post Monitoring C	alibration Check				
Zero Air Reading:	ppm	Cal Gas Reading:	478,	ppm	
BACKGROUND C	ONCENTRATIONS CHECKS				
Upwind Location D	Description:	Flave C150	F	Reading: 23	opm
Downwind Locatio	n Description:	G156	R	Reading: 18	ppm
Notes: W	ind speed averages were ob	served to remain below the	e alternative requ	ested 10 miles per hour ar	nd no instantaneous speeds

exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

SURFACE EMISSIONS MONITORING

SCS 15. Maria Constitues - Service Torons in the 10 states - 15 states - 15 states

		SURFACE EMISSI	ONIC BROBLE	TODIALC		
1						
i	and the second s	CALIBRATION AN	ID PERTINE	NT DATA	ř.	
Date:	5-23-2	7	Site Name:	Newby		
Inspector(s)	Bryan	Ochen	Instrument:	TVA 2020		
WEATHER	OBSERVATIONS			ė		
Wind Spe	eed:MPH	Wind Direction: WWW	_	Barometric Pressure:	"Hg	
Temperati	Air ure:°F	General Weathe Conditions	Sun	17		
CALIBRATIC	IN INFORMATION			/		
Pre-monitori	ng Calibration Precision Check				e e	
Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration: 500ppm						
T.:-1					Y	
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds)	
2	- 22	499	1	,		
3	1 2	50(, (7	
		1301	/			
Span Sensitivit	ecision= Average Difference/Ca	= 100%- = 100%-	%	_/500 x 100%		
Trial 1:		111-2110	Trial 3:		10110	
	Counts Observed for the Span= unters Observed for the Zero=	~ 1		ers Observed for the Spane	5097	
	ounts Observed for the Span= unters Observed for the Zero=					
ost Monitoring	g Calibration Check					
ero Air eading:	<u>1.8</u> ppm	Cal Gas Reading:	187	ppm		
ACKGROUND	CONCENTRATIONS CHECKS	5				
pwind Locatior	n Description:	r-lare		Reading:	ppm	
ownwind Locat	tion Description:	G186		Reading: 14 p	ppm	
otes:	Wind speed averages were of exceeded 20 miles per hour.	bserved to remain below the No rainfall had occurred wit	e alternative required the alternative requirements and the previous	uested 10 miles per hour an 24 hours of the monitoring	d no instantaneous speeds event. Therefore, site	

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

- 1			SURFACE EMISS	ONIC RAONII	TADIALA	
- 1			CALIBRATION AN		-	
Dat	te:	5-13-2		Site Name	Mewby	
Ins	pector(s):	5-23-2 Juniar Valo	alet	Instrument:	TVA 2020	
WE	EATHER OB	SERVATIONS			8	
	Wind Speed		Wind Direction: WWW		Barometric Pressure: 30	- "Hg
T	Air emperature:	VA: 2	General Weathe Conditions	Sunne	4	
CAL	IBRATION	INFORMATION		٧)	
Pre-	monitoring (Calibration Precision Chec	sk			
preci	calculate the	e average algebraic differ e less than or equal to 10:	ke a total of three measurement rence between the instrument i % of the calibration gas value.	reading and the	g zero air and the calibration calibration gas as a percent Cal Gas Concentration:	n gas. Record the readings age. The calibration 500ppm
Trial		Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (seconds
	1		497	3		7
-	2		499			7
	3	\mathcal{O}	498	2		3
Calibr	ation Precis	ion= Average Difference/(Cal Gas Conc. X 100% = 100%-	-	if average difference is greater than 1 $^{\prime}$	0
Snan S	Sensitivity;		- 1/45	76		
Trial 1			0.0 me	Trial 3:		
	Cou	nts Observed for the Spar	= 162504		its Observed for the Span=	15/132
Trial 2		ers Observed for the Zero	= 4683	Counte	ers Observed for the Zero=	1578
Trial 2:		nts Observed for the Spar	153936			8
	Count	ers Observed for the Zero	= 4627			
Post Mo	onitoring Ca	libration Check				
Zero Air Reading		ppm	Cal Gas Reading:	498	opm	
BACKG	ROUND CO	INCENTRATIONS CHECH	< S			
Upwind	Location De	escription:	Hare	F	Reading: 23 p	om
Downwi	nd Location	Description:	G156	В	Reading: \\ \ \ \ p_p	om

Notes:

Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

1		CALIBRATION AN	ID PERTINENT DA	ATA	
Date:	5-24-27	2	Site Name:	ve w bu	
Inspector(s):	Bryan C	thoo	Instrument:	VAZOZO	
WEATHER O	BSERVATIONS Jona	than Sovia			
Wind Spee	d:МРН	Wind Direction:		ometric essure: 29	"Hg
Temperatur	Air e:°F	General Weathe Conditions			
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
dira carcarate tr	brate the instrument, Make a the average algebraic difference the less than or equal to 10% o al Number:	e between the instrument if the calibration gas value.	reading and the calibrat	ion gas as a percent	n gas. Record the readings age. The calibration
Trial	Zero Air Reading	7		as Concentration	500
1	Zero Air Keading	Cal Gas Reading	Cal Gas ConcCal	Gas Reading	Response Time (seconds
2	0	500	- 4		5
3	0	500	a)		9
Span Sensitivity:		= 100%- = 99.5°		100%	×
Trial 1:	unts Observed for the Span=	149924	Trial 3: Counts Obser	ved for the Span=	146720
Coun	ters Observed for the Zero=	3931		rved for the Zero=	
Trial 2:	nts Observed for the Span=_	147480	7.		3641
1	ers Observed for the Zero=				
Post Monitoring Ca	alibration Check				
Zero Air Reading:	ppm	Cal Gas Reading:	196 ppm		
BACKGROUND CO	DNCENTRATIONS CHECKS	V.			
Upwind Location De	escription:	Yare	Reading:	23 pp	om
Downwind Location	Description:	4156	Reading:	1, cf pp	om
EXC	nd speed averages were obse eeded 20 miles per hour. No teorological conditions were	rainfall had occurred with	in the previous 24 hours	of the monitoring a	event. Therefore site

CALIBRATION AND PERTINENT DATA Site Name: Instrument: Wind Direction: Pressure: 29 General Weather eral Weather
Conditions: Sanny CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number Cal Gas Concentration: Trial Zero Air Reading Cal Gas Reading |Cal Gas Conc.-Cal Gas Reading| Response Time (seconds) Average Difference: *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% =998% Span Sensitivity: Trial 1: Trial 3: Counts Observed for the Span= \\27952 Counts Observed for the Span= Counters Observed for the Zero= 5031 Counters Observed for the Zero= Trial 2: Counts Observed for the Span= 1799348 Counters Observed for the Zero= 4867 Post Monitoring Calibration Check Zero Air Cal Gas Reading: 528 ppm Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Downwind Location Description: Reading: Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

	CALIBRATION AT	ND PERTINENT DAT	A	
Date: 5 - 2	4-22	Site Name:	embe	\
Inspector(s): Juni	ov valadez	Instrument: TVA 2	020	
WEATHER OBSERVATIONS			8	
Wind Speed:	Wind MPH Direction:	Baron Pres	netric sure: 29	"Hg
Air Temperature: 56	General Weath F Condition	and the second s		
CALIBRATION INFORMATION				
Pre-monitoring Calibration Prec	ision Check			
and calculate the average algeb	nent. Make a total of three measureme raic difference between the instrument qual to 10% of the calibration gas value	t reading and the calibration	and the calibration n gas as a percenta	gas. Record the readings ge. The calibration
Instrument Serial Number:	5419	Cal Ga	s Concentration	500ppm
Trial Zero Air F		Cal Gas ConcCal (Gas Reading	Response Time (seconds
2	1/9/9	2		4
3	501			3
Calibration Precision= Average D		*Perform recalibration if average di		,
	=99,7) _%		
Span Sensitivity:				£
Trial 1: Counts Observed fo	or the Span= 183956	Trial 3: Counts Observ	ved for the Span=	180500
Counters Observed for	or the Zero= 5144	Counters Observ	ved for the Zero=	4932
Trial 2: Counts Observed fo	r the Span= 18234Cf			
Counters Observed for	or the Zero= 5017			
Post Monitoring Calibration Check				
Zero Air Reading:p	Cal Gas pm Reading:	525 ppm		
BACKGROUND CONCENTRATIO	NS CHECKS			
Upwind Location Description:	Hare	Reading:	23 pp	om
Downwind Location Description:	G156	Reading:	18 pp	om
Notes: Wind speed avera exceeded 20 mile	ges were observed to remain below the per hour. No rainfall had occurred w	ne alternative requested 10 ithin the previous 24 hours	miles per hour and of the monitoring	no instantaneous speeds event. Therefore, site

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

- West of the second of the se

SURFACE EMISSIONS MONITORING

		SURFACE EMISS	IONS MONIT	TORING	
	. 1	CALIBRATION AN	ID PERTINEN	IT DATA	a .
Date:	5/24/22		Site Name:	newby	
Inspector(s);	Don Gilbs	en	Instrument:	TVA 2020	
WEATHER O	BSERVATIONS			*	
Wind Spe	ed:MPH	Wind Direction:	_	Barometric Pressure: 29.8	6 "Hg
Temperatu	Air re:	_General Weathe Condition:	s: Sunny	_	
CALIBRATIO	N INFORMATION				
Pre-monitorin	g Calibration Precision Check				
and calculate	librate the instrument. Make the average algebraic differei t be less than or equal to 10% rial Number:	nce between the instrument	reading and the d	zero air and the calibrationalicalibration gas as a percental	on gas. Record the readings tage. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	ICal Gas Co	oncCal Gas Reading	
1	Q	502	2	onccar das keading	Response Time (seconds)
3	1 2	501			1
3		500	0		
Calibration Pred	cision= Average Difference/Ca	al Gas Conc. X 100% = 100%- = 99.%	,	if average difference is greater than $/500 imes 100\%$	10
Span Sensitivity	•: •:				
Trial 1:	ounts Observed for the Span=		Trial 3: Coun	ts Observed for the Span=	130756
	unters Observed for the Zero=	4028	Counte	rs Observed for the Zero=	4018
Trial 2:	ounts Observed for the Span	128552			
Cou	inters Observed for the Zero=	4017			
Post Monitoring	Calibration Check				
Zero Air	1	Cal Gas			
Reading:	ррт	Reading:	466	ppm	
BACKGROUND	CONCENTRATIONS CHECK	5			
Upwind Location	Description:	Have	R	leading: 76	ppm
Downwind Locati	on Description:	OKU	R	eading: Cl	ppm
6	Wind speed averages were o exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred wi	thin the previous	24 hours of the monitoring	g event. Therefore, site

		CALIBRATION ANI	D PERTINEN	IT DATA	
Date:	5-24-22		Site Name:	Newby	
Inspector(s):	Bryon C)	Instrument:	TVA 2020	
WEATHER C	DBSERVATIONS			25	
Wind Spe	ed:MPH	Wind Sirection:		Barometric Pressure: 29.8	6 "Hg
Temperatu	Air ıre: <u>56 °</u> F	General Weather Conditions:	Sunny	<u> </u>	
CALIBRATIO	NINFORMATION		,		
Pre-monitorir	ng Calibration Precision Check				
and calculate	alibrate the instrument. Make the average algebraic differe It be less than or equal to 10%	nce between the instrument <mark>r</mark>	reading and the o		
Instrument Se	rial Number: 410)6		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
2	8.1	50		(Ž
3	0	501)	1
	ecision= Average Difference/C		3	/500 x 100%	
Span Sensitivit Frial 1:	/4		Trial 3:		-4100
	Counts Observed for the Span	= 154 156		its Observed for the Span=	
	unters Observed for the Zero	5941	Counte	ers Observed for the Zero=	5888
rial 2:	Counts Observed for the Span-				
Со	unters Observed for the Zero-	5917			
ost Monitoring	g Calibration Check				
ero Air eading:	ppm	Cal Gas Reading:	485	ppm	
ACKGROUND	CONCENTRATIONS CHECK	.'S			
pwind Location	n Description:	lare		Reading:	ppm
ownwind Loca	tion Description:	GIELE	÷-	Reading: Z	ppm
otes:		observed to remain below the No rainfall had occurred wit			

SURFACE EMISSIONS MONITORING

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

The form of the second of the second second

		SURFACE EMISS CALIBRATION AN			
Date:	5-24-22		Site Name:	nempy	
Inspector(s):	5-24-22 Rashad	Warren	instrument:	TVA 2020	
WEATHER OF				٨	TI- == == == == == == == == == == == == ==
Wind Speed	d: <u>2</u> мрн	Wind Direction:	= ;	Barometric 29.8	6 "Hg
Ai Temperature	ir =:_56°F	General Weathe Conditions	Sunny	¥	ž
CALIBRATION	INFORMATION		,		
Pre-monitoring	Calibration Precision Check				
precision must be	- WEE			calibration gas as a percent Cal Gas Concentration:	age. The calibration 500ppm
Trial 1	Zero Air Reading	Cal Gas Reading		oncCal Gas Reading	Response Time (seconds
2	0	503		3	'2
3	0	499			l l
Calibration Preci	sion= Average Difference/Cal			n if average difference is greater than 1	.0
		= 100%- = 99.6	2	/500 x 100%	
Span Sensitivity:		- 91.0	76		
Trial 1:	unts Observed for the Span=	126592	Trial 3:	nts Observed for the Span≈	130524
	nters Observed for the Zero=	3464	Counte	ers Observed for the Zero=	3426
Trial 2:	unts Observed for the Span=	126536			- ·
Coun	ters Observed for the Zero=	3444			
Post Monitoring C	Calibration Check	,			v.
Zero Air Reading:	J d ppm	Cal Gas Reading:	478	ppm	
	ONCENTRATIONS CHECKS	1			
Upwind Location [Description:	Jare	F	Reading: 200 p	ppm
Downwind Locatio	on Description:	7 56	F	Reading: ZJ p	pm

Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

Notes:

Date:	-25.55		Site Name:	Newby	
Inspector(s):	Junior Vala	et	Instrument	TVAZOZO	
WEATHER OB	SERVATIONS			1,	
Wind Speed	: мрн	Wind Direction: W (V		Barometric Pressure: 29: 6	Ь "Нg
Air Temperature:		General Weat Conditio	her Ins: Supply		
CALIBRATION I	NFORMATION				
Pre-monitoring (Calibration Precision Check				
and culculate the	rate the instrument. Make of average algebraic difference less than or equal to 10% of Number.	ce between the instrumer	it readina and the c	zero air and the calibrati alibration gas as a percer Cal Gas Concentration:	ntage. The calibration
rial	Zero Air Reading	Cal Gas Reading	ICal Gas Co	ncCal Gas Reading	Posnopea Time (accord
1	O	499	1001 003 00	riccar das neading	Response Time (second
2	0	603	3		
3		501			2
an Sensitivity:		= qq. 6	%	500 x 100%	
al 1: Cour	its Observed for the Span=	1822 16	Trial 3:	observed for the Span=	1737 12
	ers Observed for the Zero=	4944			
12:			Counter	s Observed for the Zero=	4169
	ts Observed for the Span=		-		
	rs Observed for the Zero=	4835]		
t Monitoring Cal	ibration Check				
o Air ding:	∂. ppm	Cal Gas Reading:	480 pp	om	٠
KGROUND CO	NCENTRATIONS CHECKS	^ -			
ind Location Des	scription:	lare	Re	ading: 1, 9	ррт
nwind Location	Description:	1765	Re	ading: 7	ppm
exce	d speed averages were obsected 20 miles per hour. Necorological conditions were	o rainfall had occurred w	ithin the previous 2	4 hours of the monitoring	g event. Therefore, site

1		CALIBRATION A	ND PERTINENT	DATA	
Date:	5.25-22		Site Name:	Newsy	
Inspector(s)	5.25-22 Bryan	ochoa	Instrument:	TVAZOZO	
WEATHER	OBSERVATIONS				
Wind Spe	eed: 7° МРН	Wind Direction:	→	Barometric Pressure: <u>29/2</u>	• "Hg
Temperatu	Air ure: 57 °F	General Weath Condition	er Sunny		
CALIBRATIO	IN INFORMATION				
Pre-monitorii	ng Calibration Precision Check				
una carcarate	alibrate the instrument. Make a the average algebraic difference to be less than or equal to 10% of the less than or equal to 10% of the less than be less than b	te between the instrument	reading and the calib	to air and the calibration pration gas as a percent al Gas Concentration	n gas. Record the readings age. The calibration
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas Conc	-Cal Gas Reading	Posposes Time (see al.
1	0	498	2	car das ricadnig)	Response Time (seconds
3	0.1	499			2
	0	505	3		
Span Sensitivity	:	= 79.6	<u></u>	0 x 100%	
Trial 1:	ounts Observed for the Span=_	132484	Trial 3: Counts Of	bserved for the Span=	32516
	inters Observed for the Zero=	2456		bserved for the Zero=	
Trial 2:	ounts Observed for the Span=_	131456			
Cou	nters Observed for the Zero=	278			
Post Monitoring	Calibration Check				
Zero Air Reading:	ppm	Cal Gas Reading:	19 49 Sppm		
BACKGROUND (CONCENTRATIONS CHECKS	Ω_{I}		A1 A1 .	
Upwind Location	Description:	Plane	Readi	ing: 19p	om -
Downwind Location	on Description:	G 65	Readi	ing: 2, 1_pp	om
е	Wind speed averages were obse exceeded 20 miles per hour. No neteorological conditions were	o rainfall had occurred wit	thin the previous 24 h	ours of the monitoring	event. Therefore site

SCS DataServices — Secure Environmental Data

A CONTRACTOR

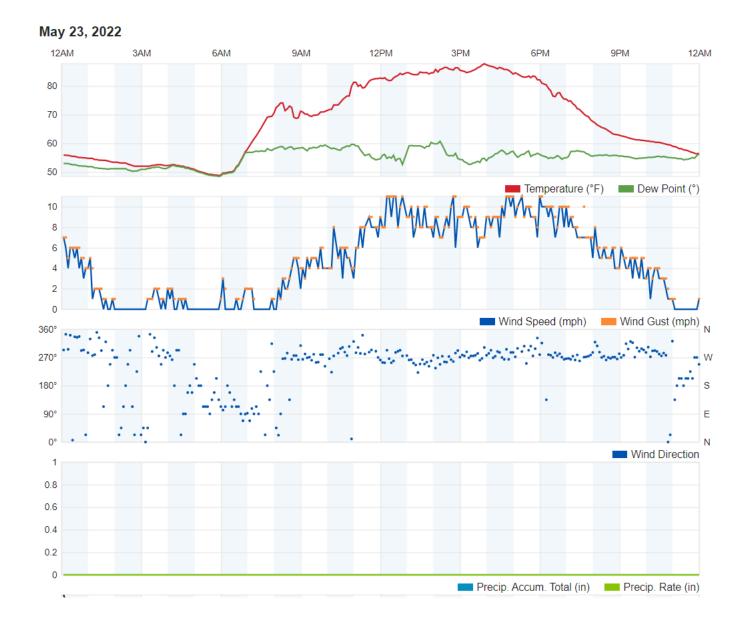
CALIBRATION AND PERTINENT DATA Date: Site Name: Inspector(s): Instrument: WEATHER OBSERVATIONS Wind Speed: Pressure: General Weather Conditions: Sunny Temperature: CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number Cal Gas Concentration Trial Zero Air Reading Cal Gas Reading | Cal Gas Conc.-Cal Gas Reading | Response Jime (seconds) Average Difference: *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% = 99.8 % Span Sensitivity: Trial 1: Counts Observed for the Span= 179128 Counters Observed for the Zero= \$577 Counters Observed for the Zero= Trial 2: Counts Observed for the Span= 137274 Counters Observed for the Zero= 3532 Post Monitoring Calibration Check Zero Air Cal Gas Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Downwind Location Description: Reading: Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

CALIBRATION AND PERTINENT DATA Date: Site Name: Inspector(s): Instrument: WEATHER OBSERVATIONS Direction ESE Wind Speed: Pressure: General Weather
Conditions: Sum Temperature: CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration: Trial Zero Air Reading Cal Gas Reading Cal Gas Conc.-Cal Gas Reading Response Time (seconds) Average Difference: Calibration Precision= Average Difference/Cal Gas Conc. X 100% /500 x 100% 998% Span Sensitivity: Trial 1: Counts Observed for the Span= 136225 Counts Observed for the Span= 155436 Counters Observed for the Zero= Counters Observed for the Zero= Trial 2: Counts Observed for the Span= / 74 774 Counters Observed for the Zero= 3536Post Monitoring Calibration Check Zero Air Reading: Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Reading: Downwind Location Description: Reading: Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

CALIBRATION AND PERTINENT DATA S-25-22 Site Name: Inspector(s): WEATHER OBSERVATIONS Direction: 559 Wind Speed: Pressure: /C General Weather Conditions: SUMAY Temperature: CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration Trial Zero Air Reading Cal Gas Reading |Cal Gas Conc,-Cal Gas Reading| Response Time (seconds) Average Difference: *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% = 99.8 % Counts Observed for the Span= 146012 Span Sensitivity: Trial 1: Counts Observed for the Span= 1 4 0140 Counters Observed for the Zero= 3823 Counters Observed for the Zero= Trial 2: Counts Observed for the Span= 146817 Counters Observed for the Zero= 373 6 Post Monitoring Calibration Check Zero Air Cal Gas Reading: Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Downwind Location Description: Reading: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds Notes: exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event, Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

CALIBRATION AND PERTINENT DATA Site Name: Inspector(s): Instrument: WEATHER OBSERVATIONS Barometric Direction: ESS Wind Speed: Pressure: General Weather
Conditions: Suny Temperature: CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration: Trial Zero Air Reading Cal Gas Reading |Cal Gas Conc.-Cal Gas Reading| Response Time (seconds) Average Difference: Calibration Precision≃ Average Difference/Cal Gas Conc. X 100% Span Sensitivity: Trial 1: Trial 3: Counts Observed for the Span= 160040 Counts Observed for the Span= 158304 Counters Observed for the Zero= \$ 136 Counters Observed for the Zero= 5887 Trial 2: Counts Observed for the Span= / 584(6) Counters Observed for the Zero= 5120 Post Monitoring Calibration Check Zero Air Cal Gas Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description Reading: Downwind Location Description: Reading: Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

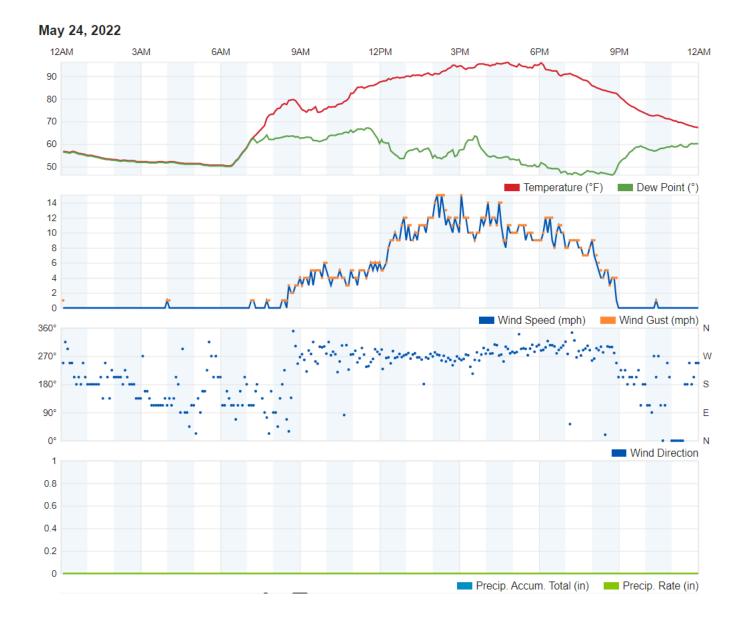

CALIBRATION AND PERTINENT DATA Site Name: WEATHER OBSERVATIONS Wind Direction: SSE Barometric Pressure: Wind Speed: General Weather
Conditions: Sunny Temperature: CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: Cal Gas Concentration: Trial Zero Air Reading Cal, Gas Reading |Cal Gas Conc.-Cal Gas Reading| Response Time (seconds) Average Difference: Calibration Precision= Average Difference/Cal Gas Conc. X 100% Span Sensitivity: Trial 1: Trial 3: Counts Observed for the Span= 172960 Counters Observed for the Zero= 4519 Counters Observed for the Zero= Trial 2: Counts Observed for the Span= / 186/7 Counters Observed for the Zero= 4472 Post Monitoring Calibration Check Zero Air Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Downwind Location Description: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds Notes: exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

CALIBRATION AND PERTINENT DATA Site Name: Inspector(s) Instrument: WEATHER OBSERVATIONS Barometric Wind Speed Direction: (V) Pressure: 299 General Weather Conditions: SONNY Temperature CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: 5421 Cal Gas Concentration Trial Zero Air Reading Cal Gas Reading | Cal Gas Conc.-Cal Gas Reading | Response Time (seconds) O Average Difference: *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% /500 x 100% Span Sensitivity: Trial 1: Trial 3: Counts Observed for the Span= 192099 Counts Observed for the Span= 197440 Counters Observed for the Zero= 4908 Counters Observed for the Zero= 🧳 🔾 Trial 2: Counts Observed for the Span= 141532 Counters Observed for the Zero= 4962 Post Monitoring Calibration Check Zero Air Cal Gas Reading: Reading: BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Reading: Downwind Location Description: Reading: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds Notes: exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date. SCS DataServices — Secure Environmental Pata

Attachment 6

Weather Data

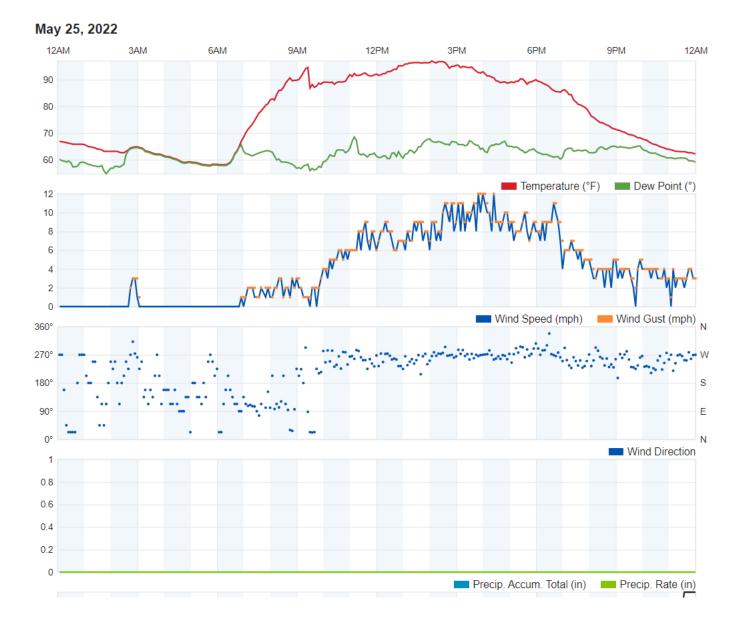


Second Quarter 2022

LMR Surface Emissions Monitoring Weather Data

May 23, 2022

Newby Island Landfill, Milpitas, California

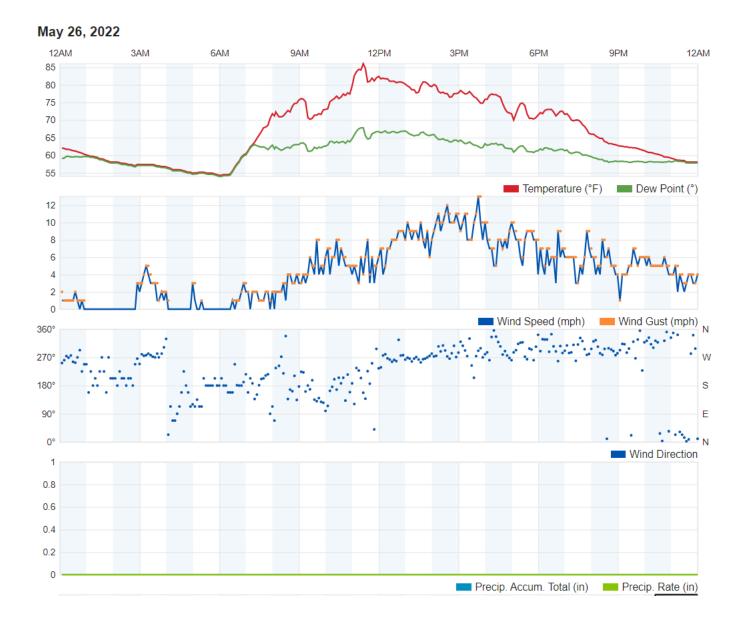


Second Quarter 2022

LMR Surface Emissions Monitoring Weather Data

May 24, 2022

Newby Island Landfill, Milpitas, California



Second Quarter 2022

LMR Surface Emissions Monitoring Weather Data

May 25, 2022

Newby Island Landfill, Milpitas, California

Second Quarter 2022

LMR Surface Emissions Monitoring Weather Data

May 26, 2022

Newby Island Landfill, Milpitas, California

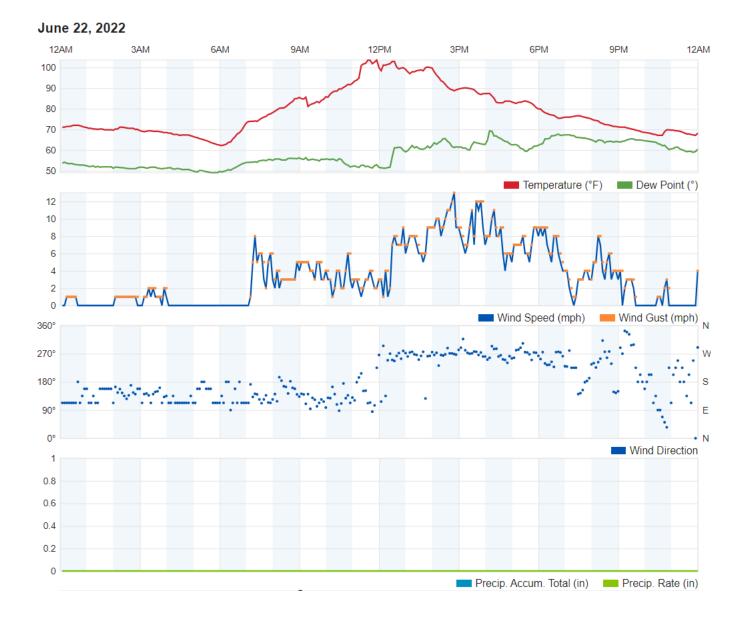


Second Quarter 2022

LMR Surface Emissions Monitoring Weather Data

June 2, 2022

Newby Island Landfill, Milpitas, California



Second Quarter 2022

LMR Surface Emissions Monitoring Weather Data

June 10, 2022

Newby Island Landfill, Milpitas, California

Second Quarter 2022

LMR Surface Emissions Monitoring Weather Data

June 22, 2022

Newby Island Landfill, Milpitas, California

Appendix D - Flare Source Test Excerpt (Issued March 25, 2022)

Newby Island Landfill <u>www.scsengineers.com</u>

International Disposal Corporation of California

BAAQMD Plant No: 9013

Compliance Emissions Test Report #22040

Flare (A-2) FL-150 Flare (A-3) FL-100

Located at:

Newby Island Landfill

1601 W Dixon Landing Road Milpitas, CA 95035

Prepared for:

Republic Services Newby Island Landfill

1601 W Dixon Landing Road Milpitas, CA 95035

Attn: Rachelle Huber RHuber2@republicservices.com

For Submittal to:

The Bay Area Air Quality Management District

375 Beale Street, Suite 600 San Francisco, CA 94105

Attn: Marco Hernandez and Gloria Espena mhernandez@baaqmd.gov / gespena@baaaqmd.gov

Testing Performed on: **February 9th, 2022**

Final Report Submitted on: March 25th, 2022

Performed and Reported by: **Blue Sky Environmental, Inc.**624 San Gabriel Avenue

Albany, CA 94706

Oblueskyenyironmental

bluesky@blueskyenvironmental.com (510) 525 1261 office / (510) 508 3469 cell

Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706 Office (510) 525 1261 Cell (510) 508 3469

bluesky@blueskyenvironmental.com

March 25th, 2022

Newby Island Landfill 1601 Dixon Landing Road Milpitas, CA 95035

Attn.: Rachelle Huber

<u>Subject:</u> Compliance emission test report for Flares A-2 and A-3 located at Newby Island Landfill in Milpitas, California, to demonstrate compliance with condition 10423 of the Bay Area Air Quality Management District (BAAQMD) permit to operate for Facility #9013.

Flare A-2 - 75 MMBtu/hr John Zink landfill gas flare

Flare A-3 – 152 MMBtu/hr John Zink enclosed landfill gas flare with ultra-low emissions

Test Date: Sampling was conducted on February 9th, 2022.

<u>Sampling Location</u>: Sampling was conducted at the exhaust stack of each flare through ports that were accessible using a 40-foot boom lift. Sampling ports were available that met EPA Method 1 minimum criteria of 2 stack diameters downstream from the nearest disturbance and 0.5 stack diameters upstream from the nearest disturbance or exhaust.

Blue Sky Environmental conducted an eight-point traverse of each stack at each port to check for the presence of cyclonic flow. Flare A-2, with a 92-inch ID exhaust stack, had only one suitable test port; therefore, this port was traversed twice. Flare A-3, with a 144-inch ID exhaust stack and two sampling ports was traversed at each port, 90° apart. Stratification in both stacks was greater than 10%; therefore, subsequent CEM sampling was conducted using the same traverse points.

<u>Sampling Personnel:</u> Sampling was performed by Jeramie Richardson and Timothy Eandi of Blue Sky Environmental, Inc.

Observing Personnel: BAAQMD was notified of the scheduled testing in a source test protocol submitted on January 27th, 2022 (NST 7174 and 7175). There were no agency observers from BAAQMD present during the test program. Mike Flannigan of SCS Engineers was on-site to operate the flares and provide operating records of fuel flow and combustion temperatures.

<u>Process Description</u>: Newby Island Landfill is a multi-material landfill with gas collection system operated by International Disposal Corp of California. The system is abated by two John Zink landfill gas flares (A-2 and A-3). Flare A-2 is maintained at a setpoint of 1,400 °F. Flare A-3 is maintained at a setpoint of 1,501 °F.

<u>Test Program</u>: Testing was conducted to demonstrate compliance of Flares A-2 and A-3 with nitrogen oxide (NO_x) and carbon monoxide (CO) emission limits stated in condition 10423 of the BAAQMD permit to operate for Plant #9013.

Three consecutive 30-minute tests were performed for NO_x, CO, carbon dioxide (CO₂) and oxygen (O₂) at each flare exhaust stack. The sampling system was checked for leaks before the start of the

testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. The temperatures of the heated sample line between the probe and sample conditioner/condenser and the condenser exhaust temperatures were maintained within limits during each test run. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. Any drift or bias was corrected using equation 100-3 from CARB 100.

A NO_x analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky Environmental collected a total of six LFG samples (three samples from each flare) in 6-L Silco SUMMA canisters for off-site analysis by Atmospheric Analysis & Consulting, Inc., located in Ventura, California. The samples were analyzed for HHV, F-factor, fixed gases, methane, non-methane organic compounds (NMOC) by EPA Method 25C and ASTM D-1945, and total reduced sulfurs (TRS) by ASTM D-5504.

One of the integrated landfill gas samples collected from each flare was also analyzed by EPA Method TO-15 to determine the VOC Species Landfill Gas Characterization.

<u>Sampling and Analysis Methods</u>: The following U.S. Environmental Protection Agency (EPA) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample	e 'I	Travers	Po	oint	Deter	mina	ition

EPA Method 3A O₂, CO₂ Emissions
EPA Method 7E NO_X Emissions
EPA Method 10 CO Emissions

EPA Method 25A THC/CH₄/NMHC Emissions

EPA Method 4, part 16.4 Stack Moisture
EPA Method 19 Stack Gas Flowrate

EPA Method 25C Analysis of landfill gas for TNMHC (NMOC)

ASTM D-1945/3588 Fuel Analysis for BTU and F-Factors & Fixed Gases
ASTM D-5504 Total Reduced Sulfur Compounds (TRS) in Fuel
EPA Method TO-15 Volatile Organic Compounds (VOC) in Fuel

The sampling and analysis methods are summarized below:

EPA Method 1 – Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. A small portion of the sample is passed through a fuel cell type paramagnetic oxygen analyzer which measures the electrical current generated by the oxidation reaction at the

gas/fuel cell interface. Carbon dioxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon dioxide absorbs infrared radiation.

EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Nitric oxide is determined by passing the sample through a chemiluminescent analyzer. The chemiluminescent process is based on the light given off when nitric oxide and ozone react. Nitrogen dioxide (NO_2) concentrations are determined by passing the sample through a catalyst which reduces the NO_2 to NO. The total oxides of nitrogen concentration ($NO_2 + NO$) is then determined by chemiluminescence.

Section 16.2.2 of the method is used to determine the NO_X analyzer NO₂ to NO conversion efficiency.

EPA Method 10 - Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Carbon monoxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon monoxide absorbs infrared radiation.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glassfiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 psi is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 6C, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of a Honeywell DPR3000 strip chart recorder supported by a Data Acquisition System (DAS).

EPA Method 25A – Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This method is used to measure total hydrocarbons, methane, and non-methane hydrocarbons in stationary source emissions using a gas chromatograph with a flame ionization detector (GC/FID). Heated Teflon sample gas transfer lines are used to provide a continuous sample to the heated

GC/FID hydrocarbon analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. All data is corrected according to the method.

EPA Method 4 – Determination of Moisture Content in Stack Gas

This method is used to determine the moisture content of stack gas. The sample is extracted and condensed in Greenburg-Smith impingers immersed in an ice bath and in a final impinger silica gel trap. The moisture is condensed in a solution of de-ionized water, or solutions of another type of sampling train if the moisture is being determined as part of another sampling method, such as EPA Method 5, SCAQMD Method 201.7 or BAAQMD ST-32. The moisture gain in the impinger solutions and silica gel is determined volumetrically and gravimetrically respectively.

QA/QC procedures require that a minimum of 21 cubic feet of sample is pulled using a leak tight pump. The sample volume is measured with a calibrated dry gas meter. The impingers are immersed in an ice bath to maintain a gas outlet temperature of less than 68°F. Pre-test leak checks are performed for each run using a minimum 15 inches of mercury vacuum. Post-test leak checks are performed at the highest sample vacuum or greater. The leak test is acceptable if the leak rate is less than 0.02 cubic feet per minute or 4% of the average sampling rate, whichever is less. If the final leak check exceeds the criteria, either the volume is corrected based on the leak rate or the run is voided and repeated.

EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D-1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates.

EPA Method 25C – Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. Gases are collected in a pre-evacuated 6-Liter SUMMA® passivated canisters allow holding times up to 14 days. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consists of capillary orifice tubing designed to sample for a pre-set duration of 0.5 hrs. The sample is injected into a GC column where the methane and CO₂ are flushed through and removed then the NMOC (ROC) fraction is oxidized to form CO₂ then reduced to methane and analyzed.

ASTM D-1945 – Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are

analyzed by GC/FID. Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75hrs.

ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed within 72 hours.

EPA Compendium Method TO-15 – Determination of Toxic Organic Compounds in Ambient Air

This method is used to measure volatile organic compounds that are included in the hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990 by GC/MS (gas chromatography/mass spectroscopy). Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75hrs.

<u>Instrumentation</u>: The following continuous emissions analyzers were used:

Instrument	Analyte	Principle
Servomex Model 1400	O_2	Paramagnetic
Servomex Model 1400	CO_2	Infrared (IR)
TECO Model 42C	NO / NO ₂ / NO _X	Chemiluminescence
TECO Model 48C	CO	Gas Filter Correlation/IR
TECO Model 55C	THC/CH ₄ /VOC	Flame Ionization (FID)

<u>Test Results</u>: Emission results derived from the source test complied with permit conditions and are summarized below. Detailed results for individual test runs and Landfill Characterization results are provided in Tables 1 through 4.

Emission Parameter	Average Results Flare A-2	Permit Limits	Compliance Status
NO _x ppmvd @ 15% O ₂	10.6	12	In Compliance
NO _X , lb/MMBtu	0.0424	0.05	In Compliance
CO ppmvd @ 15% O ₂	2.5	81	In Compliance
CO, lb/MMBtu	0.0061	0.20	In Compliance
NMOC, ppmvd @ 3% O2 as CH4	<5.1	30	In Compliance
NMOC Destruction Efficiency, %	>98.76	or >98%	In Compliance
CH ₄ Destruction Efficiency, %	>99.97	>99%	In Compliance
THC Destruction Efficiency, %	>99.97	>98%	In Compliance
TRS, ppmvd in LFG	280	1,300	In Compliance

Emission Parameter	Average Results Flare A-3	Permit Limits	Compliance Status
NO _x ppmvd @ 15% O ₂	5.7	6	In Compliance
NO _x , lb/MMBtu	0.023	0.025	In Compliance
CO ppmvd @ 15% O ₂	0.5	24	In Compliance
CO, lb/MMBtu	0.001	0.060	In Compliance
NMOC, ppmvd @ 3% O ₂ as CH ₄	<4.9	30	In Compliance
NMOC Destruction Efficiency, %	>98.59	or >98%	In Compliance
CH ₄ Destruction Efficiency, %	>99.97	>99%	In Compliance
THC Destruction Efficiency, %	>99.97	>98%	In Compliance
TRS, ppmvd in LFG	439	1,300	In Compliance

The appendices are organized as follows:

<u>Calculations</u>

Calculations performed on the continuous emissions monitoring (CEM) data and flow rate calculations.

<u>Laboratory Reports</u>

All laboratory reports and chain-of-custody documents.

Field Data Sheets

CEMS data and any transcribed data from the strip charts.

Process Data

Relevant and available facility process operating documentation.

Calibration Gas Certificates

Certificates for the instrument calibration gas standards.

Stack Diagram

Sketch or photograph of the stack.

Sample System Diagram

Schematic of the sampling system configuration.

Permit to Operate / ATC

Facility permits to operate or authority to construct.

Source Test Plan

Sampling protocols submitted to BAAQMD prior to testing.

<u>Comments:</u> This source test was performed in accordance with the protocol submitted to BAAQMD. No deviations from the protocol or anomalies were observed during testing. No process interruptions were encountered, and no operational changes were required during the test program. The measured emissions met permit-required limits.

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report is authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for compliance purposes, it should only be reproduced in its entirety. If there are any questions concerning this report, please contact Jeramie Richardson at (810) 923-3181 or Guy Worthington at (510) 508-3469.

Prepared by,

Anne Richardson

Reviewed by,

Julie Wose-Jennings

TABLE #1

Newby Island Landfill Flare (A-2)

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	2/9/22	2/9/22	2/9/22		
Test Time	1211-1258	1311-1356	1407-1452		
Standard Temperature, °F	70	70	70	70	
Fuel:					
Flare Temperature, °F	1,504	1,504	1,504	1,504	
Fuel Flow Rate, DSCFM	1,387	1,413	1,416	1,405	
Fuel Heat Input, MMBtu/hr	40.6	39.4	41.2	40.4	
Inlet Hydrogen Sulfide (H ₂ S), ppmv (ASTM D5504)	282	356	172	270	
Inlet TRS, ppmv as H ₂ S (ASTM D5504)	293	365	183	280	1,300
Stack Gas:	•	•			
Exhaust Flow Rate, DSCFM (EPA Method 19)	17,291	17,280	18,508	17,693	
Oxygen (O2), % volume dry	13.1	13.3	13.5	13.3	
Carbon Dioxide (CO ₂), % volume dry	6.7	6.6	6.4	6.6	
CO ₂ , lb/hr	7,947	7,770	8,089	7,935	
Water Vapor (H ₂ O), % volume (EPA Method 4)	7.2	7.2	8.5	7.6	
SO ₂ , ppm (calculated)	0.69	0.83	0.41	0.64	
NO _x Emissions (reported as NO ₂):	J.07		1	,	
NOx, ppmvd	14.4	13.3	13.1	13.6	
NOx, ppmvd @ 15% O ₂	10.9	10.3	10.5	10.6	12
NOx, lb/hr	1.78	1.63	1.73	1.71	12
NOx, lb/day	42.7	39.2	41.5	41.1	
NOx, lb/MMBtu	0.0438	0.0415	0.0419	0.0424	0.05
CO Emissions:	0.0430	0.0413	0.0417	0.0424	0.03
CO, ppmvd	3.9	2.9	2.9	3.2	
CO, ppmvd @ 15% O ₂	3.0	2.2	2.3	2.5	81
CO, lb/hr	0.29	0.22	0.23	0.25	01
CO, lb/day	7.1	5.2	5.5	5.9	
CO, lb/MMBtu	0.0073	0.0055	0.0056	0.0061	0.20
THC Emissions (reported as CH ₄):	0.0073	0.0055	0.0030	0.0001	0.20
THC, ppmv wet (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
***	+	1		1	
THC, ppmvd THC, lb/hr	<10.8	<10.8	<10.9	<10.8	
Methane (CH ₄) Emissions:	< 0.46	<0.46	< 0.50	< 0.48	
CH ₄ , ppmv wet (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
***	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd	<10.8	<10.8	<10.9	<10.8	
CH ₄ , lb/hr NMOC Emissions (reported as CH ₄):	< 0.463	< 0.462	< 0.502	< 0.476	
* * * * * * * * * * * * * * * * * * * *	<2.0	<2.0	<2.0	<2.0	
NMOC, ppmv wet (EPA Method 25A)	<2.0	<2.0	<2.0	<2.0	
NMOC, ppmvd NMOC, ppmvd @ 3% O ₂	<2.2	<2.2	<2.2	<2.2	20
	<5.0	<5.1	<5.3	<5.1	30
NMOC, lb/hr	< 0.093	< 0.092	< 0.10	< 0.10	
Inlet Hydrocarbons:					
Inlet NMOC, ppmvd (EPA Method 25C)	2,064	2.393	2,121	2,193	
Inlet NMOC, lb/hr	7.11	8.39	7.46	7.65	
NMOC Destruction Efficiency, %	>98.70%	>98.90%	>98.65%	>98.76%	>98%
Inlet CH ₄ ppmvd (ASTM D-1945)	489,000	466,000	487,000	480,667	. 2070
Inlet CH ₄ , lb/hr	1,684	1,634	1,712	1,677	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>99%
Inlet THC (TOC), ppmvd	491,064	468,393	489,121	482,859	~ JJ/0
Inlet THC (TOC), lb/hr	1,691	1,643	1,719	1,684	
THC (TOC), B/III THC (TOC) Destruction Efficiency, %	99.97%	99.97%	99.97%	99.97%	>98%

ppmvd = parts per million concentration by volume expressed on a dry gas basis

lb/hr = pound per hour emission rateTstd. = standard temperature (°R = °F+460)

MW = molecular weight

DSCFM = dry standard cubic feet per minute

 $\mathrm{NO_X}$ = oxides of nitrogen, reported as $\mathrm{NO_2}$ (MW = 46)

CO = carbon monoxide (MW = 28)

 CH_4 = methane (MW = 16)

TOC = THC = total organic compounds, reported as CH_4 (MW = 16)

THC = total hydrocarbons, reported as CH₄ (MW = 16)

NMOC = non-methane organic compounds, reported as CH_4 (MW = 16)

CALCULATIONS,

15% $\mathrm{O_2}$ Correction = ppm \cdot 5.9 / (20.9 - %O $_2$) $3\% O_2 Correction = ppm \cdot 17.9 / (20.9 - \%O_2)$

 $lb/hr = ppm \cdot 8.223 \text{ E-05} \cdot DSCFM \cdot MW / Tstd. ^\circR$ $lb/day = lb/hr \cdot 24$

lb/MMBtu = Fd · MW · ppm · 2.59E-9 · 20.9/(20.9 - %O $_2)$ $Destruction \ Efficiency = (inlet, lb/hr - outlet, lb/hr) \ / \ inlet, lb/hr$

<value = 2% of analyzer range

TABLE #2 AP42 2.4-1 - Landfill Gas Samples

Newby Island Landfill Flare (A-2)

			Results 2/9/22 A-2 LFG Run 2	
Constituent	Method	Units		
1,1,1-Trichloroethane	EPA TO-15	ppb	<81.0	
1,1,2,2-Tetrachloroethane	EPA TO-15	ppb	<81.0	
1,1-Dichloroethane (Ethylidene Dichloride)	EPA TO-15	ppb	<81.0	
1,1-Dichloroethene (1,1-Dichloroethylene)	EPA TO-15	ppb	<81.0	
1,2-Dichloroethane (Ethylene Dichloride)	EPA TO-15	ppb	<81.0	
1,2-Dichloropropane	EPA TO-15	ppb	<81.0	
2-Propanol (Isopropyl Alcohol, IPA)	EPA TO-15	ppb	9,080	
Acrylonitrile	EPA TO-15	ppb	<324	
Bromodichloromethane	EPA TO-15	ppb	<81.0	
Butane (C4)	EPA 18/ASTM 1945	ppm	7.3	
Carbon Disulfide	EPA TO-15	ppb	<324	
Carbon Monoxide	EPA 3C/ASTM 1945	%	<0.2	
Carbon Tetrachloride	EPA TO-15	ppb	<81.0	
Carbonyl sulfide (COS)	ASTM D-5504	ррт	1.18*	
Chlorobenzene	EPA TO-15	pph	<93.9	
Chlorodifluoromethane	EPA TO-15	ppb	134	
Chloroethane	EPA TO-15	ppb	<81.0	
Chloroform	EPA TO-15	ppb	<81.0	
Chloromethane	EPA TO-15	ppb	<81.0	
1,3-Dichlorobenzene	EPA TO-15	ppb	<81.0	
1,4-Dichlorobenzene	EPA TO-15	ppb	560	
1,2-Dichlorobenzene	EPA TO-15	• • •	<81.0	
Dichlorodifluoromethane	EPA TO-15	ppb	88	
		ppb		
Dichlorofluoromethane	EPA TO 15	ppb	<162.0	
Dichloromethane (Methylene Chloride)	EPA TO-15	ppb	<1,490	
Dimethyl Sulfide	ASTM D-5504	ppm	1.927*	
Ethane (C2) Ethanol	EPA 18/ASTM 1945	ppm	<4.0	
	EPA TO-15	ppb	21,100	
Ethyl Mercaptan	ASTM D-5504	ppm	0.210*	
Ethyl Benzene	EPA TO-15	ppb	4,200	
1,2 Dibromoethane (Ethylene Dibromide)	EPA TO-15	ppb	<81.0	
Trichlorofluoromethane (Fluorotrichloromethane)	EPA TO-15	ppb	<81.0	
Hexane	EPA TO-15	ppb	227	
Hydrogen sulfide	ASTM D-5504	ppm	270*	
2-Butanone (MEK)	EPA TO-15	ppb	12,100	
Methyl isoButyl Ketone (MiBK)	EPA TO-15	ppb	878	
Pentane (C5)	EPA 18/ASTM 1945	ppm	7.3	
Tetrachloroethylene (Perchloroethylene)	EPA TO-15	ppb	<81.0	
Propane (C3)	EPA 18/ASTM 1945	ppm	16.4	
trans-1,2-Dichloroethene (t-1,2-Dichloroethylene)	EPA TO-15	ppb	<81.0	
Trichloroethylene (Trichloroethene)	EPA TO-15	ppb	<81.0	
Vinyl Chloride	EPA TO-15	ppb	<81.0	
m,p-Xylene	EPA TO-15	ppb	5,820	
o-Xylene	EPA TO-15	ppb	1,920	
Benzene	EPA TO-15	ppb	1,700	
Toluene	EPA TO-15	ppb	9,610	

^{*} Results are the average of three samples

< = less than the method reporting limit

TABLE #3

Newby Island Landfill Flare (A-3)

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	2/9/22	2/9/22	2/9/22		
Test Time	0816-0904	0921-1007	1023-1110		
Standard Temperature, °F	70	70	70	70	
Fuel:	•		•	•	
Flare Temperature, °F (Mid TC)	1,510	1,509	1,508	1,509	
Fuel Flow Rate, DSCFM	2,376	2,398	2,420	2,398	
Fuel Heat Input, MMBtu/hr	68.32	66.64	66.66	67.21	
Inlet Hydrogen Sulfide (H ₂ S), ppmv (ASTM D5504)	429	391	466	429	
Inlet TRS, ppmv as H ₂ S (ASTM D5504)	440	401	477	439	1,300
Stack Gas:	110	101	177	137	1,500
Exhaust Flow Rate, DSCFM (EPA Method 19)	28,705	28,468	27,600	28,258	
Oxygen (O ₂), % volume dry	13.0	13.1	12.8	13.0	
Carbon Dioxide (CO ₂), % volume dry	6.9	6.8	6.9	6.9	
CO ₂ , lb/hr					
Water Vapor (H ₂ O), % volume (EPA Method 4)	13,468 7.8	13,227 8.0	13,012 9.1	13,236 8.3	
* * - /:	7.0	6.0	9.1	0.5	
SO ₂ Emissions:			1	,	
SO ₂ , ppmvd (calculated)	1.05	0.94	1.15	1.05	
SO ₂ , ppmvd @ 15% O ₂	0.78	0.71	0.84	0.78	
SO ₂ , lb/hr	0.21	0.22	0.26	0.23	
NO _x Emissions (reported as NO ₂):					
NOx, ppmvd	7.6	7.5	8.1	7.7	
NOx, ppmvd @ 15% O ₂	5.7	5.7	5.9	5.7	6
NOx, lb/hr	1.6	1.5	1.6	1.6	
NOx, lb/day	37.4	36.7	38.1	37.4	
NOx, lb/MMBtu	0.023	0.023	0.024	0.023	0.025
CO Emissions:					
CO, ppmvd	0.5	1.1	< 0.5	0.7	
CO, ppmvd @ 15% O ₂	0.4	0.8	<0.4	0.5	24
CO, lb/hr	0.07	0.1	<0.06	0.09	
CO, lb/day	1.6	3.3	<1.4	2.1	
CO, lb/MMBtu	0.001	0.002	<0.001	0.001	0.060
THC Emissions (reported as CH ₄):	0.001	0.002	10.001	0.001	0.000
THC, ppmv wet (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
THC, ppmvd	<10.8	<10.9	<11.0	<10.9	
THC, lb/hr					
Methane (CH ₄) Emissions:	< 0.773	< 0.768	< 0.754	< 0.765	
CH ₄ , ppmv wet (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd	<10.8	<10.9	<11.0	<10.9	
CH ₄ , lb/hr	< 0.773	< 0.768	< 0.754	< 0.765	
NMOC Emissions (reported as CH ₄):	-20	-00	-20		
NMOC, ppmv wet (EPA Method 25A)	<2.0	<2.0	<2.0	<2.0	
NMOC, ppmvd	<2.2	<2.2	<2.2	<2.2	
NMOC, ppmvd @ 3% O ₂	<4.9	<5.0	<4.9	<4.9	30
NMOC, lb/hr	< 0.15	< 0.15	< 0.15	< 0.15	
Inlet:		T			
Inlet NMOC, ppmvd (EPA Method 25C)	1,693	1,843	1,926	1,821	
Inlet NMOC, lb/hr	9.98	10.97	11.57	10.84	
NMOC Destruction Efficiency, %	>98.45%	>98.60%	>98.70%	>98.59%	>98%
Inlet CH ₄ , ppmvd (ASTM D-1945)	481,000	464,000	460,000	468,333	
Inlet CH ₄ , lb/hr	2,837	2,762	2,764	2,788	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>99%
Inlet THC (TOC), ppmvd	482,693	465,843	461,926	470,154	
Inlet THC (TOC), lb/hr	2,847	2,773	2,775	2,799	
THC (TOC) Destruction Efficiency, %	99.97%	99.97%	99.97%	99.97%	>98%

WHERE,

ppmvd = parts per million concentration by volume expressed on a dry gas basis

lb/hr = pound per hour emission rate
Tstd. = standard temperature (°R = °F+460)

MW = molecular weight

DSCFM = dry standard cubic feet per minute

 NO_{X} = oxides of nitrogen, reported as NO_{2} (MW = 46)

CO = carbon monoxide (MW = 28)

 CH_4 = methane (MW = 16)

TOC = THC = total organic compounds, reported as CH_4 (MW = 16)

THC = total hydrocarbons, reported as $\mathrm{CH_4}\ (\mathrm{MW} = 16)$

NMOC = non-methane organic compounds, reported as CH₄ (MW = 16)

CALCULATIONS,

15% $\mathrm{O_2}$ Correction = ppm \cdot 5.9 / (20.9 - %O₂)

13/w O₂ Correction = ppm · 13.7 / (20.9 - %O₂)
3/w O₂ Correction = ppm · 17.9 / (20.9 - %O₂)
1b/hr = ppm · 8.223 E-05 · DSCFM · MW / Tstd. °R
1b/day = lb/hr · 24

lb/MMBtu = Fd · MW · ppm · 2.59E-9 · 20.9/(20.9 - %O₂)

Destruction Efficiency = (inlet, lb/hr - outlet, lb/hr) / inlet, lb/hr

<value = 2% of analyzer range

TABLE #4

AP42 2.4-1 - Landfill Gas Samples

Newby Island Landfill Flare (A-3)

			Results	
Constituent	Method	Units	2/9/22 A-3 LFG Run 2	
1,1,1-Trichloroethane	EPA TO-15	ppb	<84.3	
1.1.2.2-Tetrachloroethane	EPA TO-15	ppb	<84.3	
1,1-Dichloroethane (Ethylidene Dichloride)	EPA TO-15	ppb	<84.3	
1,1-Dichloroethene (1,1-Dichloroethylene)	EPA TO-15	ppb	<84.3	
1,2-Dichloroethane (Ethylene Dichloride)	EPA TO-15	ppb	<84.3	
1,2-Dichloropropane	EPA TO-15	ppb	<84.3	
2-Propanol (Isopropyl Alcohol, IPA)	EPA TO-15	ppb	8,100	
Acrylonitrile	EPA TO-15	ppb	<337	
Bromodichloromethane	EPA TO-15	ppb	<84.3	
Butane (C4)	EPA 18/ASTM 1945	ppm	6.8	
Carbon Disulfide	EPA TO-15	ppb	<337	
Carbon Monoxide	EPA 3C/ASTM 1945	%	<0.2	
Carbon Tetrachloride	EPA TO-15	ppb	<84.3	
Carbonyl sulfide (COS)	ASTM D-5504	ррт	1.29*	
Chlorobenzene	EPA TO-15	ppb	<84.3	
Chlorodifluoromethane	EPA TO-15	ppb	180	
Chloroethane	EPA TO-15	ppb	<84.3	
Chloroform	EPA TO-15	ppb	<84.3	
Chloromethane	EPA TO-15	ppb	<84.3	
1,3-Dichlorobenzene	EPA TO-15	ppb	<84.3	
1,4-Dichlorobenzene	EPA TO-15	ppb	657	
1,2-Dichlorobenzene	EPA TO-15	ppb	<84.3	
Dichlorodifluoromethane	EPA TO-15	ppb	120	
Dichlorofluoromethane	EPA TO-15	ppb	<84.3	
Dichloromethane (Methylene Chloride)	EPA TO-15	ppb	<169	
Dimethyl Sulfide	ASTM D-5504	ppm	1.99*	
Ethane (C2)	EPA 18/ASTM 1945	ppm	<4.2	
Ethanol	EPA TO-15	ppb	20,600	
Ethyl Mercaptan	ASTM D-5504	ppm	0.247*	
Ethyl Benzene	EPA TO-15	ppb	4,220	
1,2 Dibromoethane (Ethylene Dibromide)	EPA TO-15	ppb	<84.3	
Trichlorofluoromethane (Fluorotrichloromethane)	EPA TO-15	ppb	<84.3	
Hexane	EPA TO-15	ppb	194	
Hydrogen sulfide	ASTM D-5504	ppm	428.7*	
2-Butanone (MEK)	EPA TO-15	ppb	16,500	
Methyl isoButyl Ketone (MiBK)	EPA TO-15	ppb	787	
Pentane (C5)	EPA 18/ASTM 1945	ppm	25.2	
Tetrachloroethylene (Perchloroethylene)	EPA TO-15	ppb	<84.3	
Propane (C3)	EPA 18/ASTM 1945	ppm	16.4	
trans-1,2-Dichloroethene (t-1,2-Dichloroethylene)	EPA TO-15	ppb	<84.3	
Trichloroethylene (Trichloroethene)	EPA TO-15	ppb	<84.3	
Vinyl Chloride	EPA TO-15	ppb	<84.3	
m,p-Xylene	EPA TO-15	ppb	6,000	
o-Xylene	EPA TO-15	ppb	1,990	
Benzene	EPA TO-15	ppb	1,590	
Toluene	EPA TO-15	ppb	8,470	

^{*} Results are the average of three samples

< = less than the method reporting limit

Appendix E – Well Exceedance Documentation

Newby Island Landfill <u>www.scsengineers.com</u>

Root Cause Analysis and Corrective Action Analysis Forms

Newby Island Landfill <u>www.scsengineers.com</u>

Date of Initial Exceedance:	1/7/2022
Collection Device ID:	NILEW752
Temperature Reading:	132.4

Root Cause Analysis		
Has the owner/operator received approval from the state		
agency to operate at a temperature higher than 55°C (131°F)	□ Yes	\boxtimes No
for this well?		
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).	
• If NO, continue the form.		
Describe what was inspected.		
Gas Sample and de-watering system.		
Describe what was determined to be the root cause of the exce	edance.	
Elevated microbial activity		
Determine the required next steps.		
Was the temperature exceedance remediated within 60 days \square Yes \bowtie No		
since the initial exceedance?	□ res	△ NO
• If YES, keep records of Root Cause Analysis. No reporting re	equired.	
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit		and submit
Notification to state agency within 75 days of initial exceed	ance.	

Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	1/7/2022
Collection Device ID:	NILEW752
Temperature Reading:	132.4

Corrective Action Analysis
Describe the corrective actions taken to remediate exceedance.
O&M to reduced applied vacuum to well
HOV letter sent to air district. Awaiting approval.

Implementation Schedule	
Expected Start Date:	1/1/2022
Expected Completion Date:	5/2/2022
Provide a description of pro-	roposed repairs and/or remedial action required and
supporting information for im	plementation timeframe.
Reduce vacuum/gas extraction	n. Application for temperature HOV pending approval

Final Steps		
Determine the required next steps.		
Is the remediation expected to take <u>less than 120 days</u> since	⊠ Yes	□No
initial exceedance per implementation schedule?	△ res	

- If YES, send notification to state agency within 75 days of initial exceedance. Include Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule in the next Annual Report.
- If NO, send Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule to state agency within 75 days for approval and include in next Annual Report.

Date of Initial Exceedance:	1/13/2022
Collection Device ID:	NILEW699
Pressure Reading:	0.01

Root Cause Analysis		
Was the reason for the positive pressure due to one of the follo	wing:	
A fire or increased well temperature.	☐ Yes	⊠ No
Use of a geomembrane or synthetic cover.	☐ Yes	⊠ No
A decommissioned well.	☐ Yes	⊠ No
• If YES to ANY of the above, exempt as per 40 CFR 62.16720	(a)(3)(iii)/ 40 C	FR §63.1958(b).
• If NO to <u>ALL</u> of the above, continue the form.		
Describe what was inspected.		
Vacuum source at wellhead (lateral is buried/inaccessible)		
Describe what was determined to be the root cause of the exce	edance.	
Lack of vacuum on lateral riser, due to construction		
Determine the required next steps.		
Was the positive pressure remediated within 60 days since	⊠ Yes	□ No
the initial exceedance?	△ res	□ NO
If YES, keep records of Root Cause Analysis. No reporting r	equired.	
• If NO, continue with Corrective Action Analysis and Implem	ientation Plan a	nd submit
Notification to state agency within 75 days of initial exceed	ance.	

Date of Initial Exceedance:	1/17/2022
Collection Device ID:	NILEW690
Temperature Reading:	133.4

Root Cause Analysis		
Has the owner/operator received approval from the state		
agency to operate at a temperature higher than 55°C (131°F)	□ Yes	\boxtimes No
for this well?		
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).	
• If NO, continue the form.		
Describe what was inspected.		
Gas Sample and de-watering system.		
Describe what was determined to be the root cause of the exce	edance.	
Elevated microbial activity		
Determine the required next steps.		
Was the temperature exceedance remediated within 60 days	☐ Yes	⊠ No
since the initial exceedance?	□ res	△ NO
• If YES, keep records of Root Cause Analysis. No reporting re	equired.	
• If NO, continue with Corrective Action Analysis and Implem	entation Plan	and submit
Notification to state agency within 75 days of initial exceed	ance.	

Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	1/17/2022
Collection Device ID:	NILEW690
Temperature Reading:	133.4

Corrective Action Analysis
Describe the corrective actions taken to remediate exceedance.
O&M to reduced applied vacuum to well
HOV letter sent to air district. Awaiting approval.

Implementation Schedule		
Expected Start Date:	1/1/2022	
Expected Completion Date:	5/2/2022	
Provide a description of pr	roposed repairs and/or remedial action required and	
supporting information for implementation timeframe.		
Reduce vacuum/gas extraction. Application for temperature HOV pending approval		

Final Steps		
Determine the required next steps.		
Is the remediation expected to take <u>less than 120 days</u> since	⊠ Yes	□No
initial exceedance per implementation schedule?	⊠ res	

- If YES, send notification to state agency within 75 days of initial exceedance. Include Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule in the next Annual Report.
- If NO, send Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule to state agency within 75 days for approval and include in next Annual Report.

Date of Initial Exceedance:	1/20/2022
Collection Device ID:	NILHC246
Pressure Reading:	1.34

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature. \Box Yes \boxtimes No			
Use of a geomembrane or synthetic cover.	☐ Yes	⊠ No	
A decommissioned well.	☐ Yes	⊠ No	
• If YES to ANY of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Vacuum source at wellhead (lateral is buried/inaccessible)			
Describe what was determined to be the root cause of the exceedance.			
Lack of vacuum on lateral riser, due to construction			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since	⊠ Yes	□ No	
the initial exceedance?			
 If YES, keep records of Root Cause Analysis. No reporting required. 			
 If NO, continue with Corrective Action Analysis and Implementation Plan and submit 			
Notification to state agency within 75 days of initial exceedance.			

Date of Initial Exceedance:	1/20/2022
Collection Device ID:	NILHC247
Pressure Reading:	1.31

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature. \Box Yes \boxtimes No			
Use of a geomembrane or synthetic cover.	☐ Yes	⊠ No	
A decommissioned well.	☐ Yes	⊠ No	
• If YES to ANY of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Vacuum source at wellhead (lateral is buried/inaccessible)			
Describe what was determined to be the root cause of the exceedance.			
Lack of vacuum on lateral riser, due to construction			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since	⊠ Yes	□ No	
the initial exceedance?			
 If YES, keep records of Root Cause Analysis. No reporting required. 			
 If NO, continue with Corrective Action Analysis and Implementation Plan and submit 			
Notification to state agency within 75 days of initial exceedance.			

Date of Initial Exceedance:	1/20/2022
Collection Device ID:	NILHC248
Pressure Reading:	1.23

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature. \square Yes \boxtimes No			
Use of a geomembrane or synthetic cover.	☐ Yes	⊠ No	
A decommissioned well.	☐ Yes	⊠ No	
• If YES to ANY of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Vacuum source at wellhead (lateral is buried/inaccessible)			
Describe what was determined to be the root cause of the exceedance.			
Lack of vacuum on lateral riser, due to construction			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since	⊠ Yes	□ No	
the initial exceedance?	△ res	□ NO	
 If YES, keep records of Root Cause Analysis. No reporting required. 			
 If NO, continue with Corrective Action Analysis and Implementation Plan and submit 			
Notification to state agency within 75 days of initial exceedance.			

Date of Initial Exceedance:	1/20/2022
Collection Device ID:	NILHC249
Pressure Reading:	1.19

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature. \Box Yes \boxtimes No			
Use of a geomembrane or synthetic cover.	☐ Yes	⊠ No	
A decommissioned well.	☐ Yes	⊠ No	
• If YES to ANY of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Vacuum source at wellhead (lateral is buried/inaccessible)			
Describe what was determined to be the root cause of the exceedance.			
Lack of vacuum on lateral riser, due to construction			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since	⊠ Yes	□ No	
the initial exceedance?	△ 163	□ NU	
 If YES, keep records of Root Cause Analysis. No reporting required. 			
 If NO, continue with Corrective Action Analysis and Implementation Plan and submit 			
Notification to state agency within 75 days of initial exceedance.			

Date of Initial Exceedance:	1/20/2022
Collection Device ID:	NILHC250
Pressure Reading:	1.16

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature. \Box Yes \boxtimes No			
Use of a geomembrane or synthetic cover.	☐ Yes	⊠ No	
A decommissioned well.	☐ Yes	⊠ No	
• If YES to ANY of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Vacuum source at wellhead (lateral is buried/inaccessible)			
Describe what was determined to be the root cause of the exceedance.			
Lack of vacuum on lateral riser, due to construction			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since	⊠ Yes	□ No	
the initial exceedance?			
 If YES, keep records of Root Cause Analysis. No reporting required. 			
 If NO, continue with Corrective Action Analysis and Implementation Plan and submit 			
Notification to state agency within 75 days of initial exceedance.			

Date of Initial Exceedance:	2/25/2022
Collection Device ID:	NILEW701
Temperature Reading:	134.7

Root Cause Analysis	-		
Has the owner/operator received approval from the state			
agency to operate at a temperature higher than 55°C (131°F)	□ Yes	\boxtimes No	
for this well?			
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).		
If NO, continue the form.			
Describe what was inspected.			
Gas Sample and de-watering system.			
Describe what was determined to be the root cause of the exceedance.			
Elevated microbial activity			
Determine the required next steps.			
HOV submitted to air board. Waiting approval.			
Was the temperature exceedance remediated within 60 days	□Voc	⊠ No	
since the initial exceedance?	□ Yes	⊠ No	
If YES, keep records of Root Cause Analysis. No reporting required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to state agency within 75 days of initial exceedance.			

Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	2/25/2022
Collection Device ID:	NILEW701
Temperature Reading:	134.7

Corrective Action Analysis
Describe the corrective actions taken to remediate exceedance.
O&M to reduced applied vacuum to well
HOV letter sent to air district. Awaiting approval.

Implementation Schedule		
Expected Start Date:	4/25/2022	
Expected Completion Date:	6/25/2022	
Provide a description of pr	roposed repairs and/or remedial action required and	
supporting information for implementation timeframe.		
Reduce vacuum/gas extraction. Application for temperature HOV pending approval		

Final Steps		
Determine the required next steps.		
Is the remediation expected to take <u>less than 120 days</u> since	⊠ Yes	□No
initial exceedance per implementation schedule?		

- If YES, send notification to state agency within 75 days of initial exceedance. Include Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule in the next Annual Report.
- If NO, send Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule to state agency within 75 days for approval and include in next Annual Report.

Date of Initial Exceedance:	3/4/2022
Collection Device ID:	NILEW797
Pressure Reading:	1.08

Root Cause Analysis			
Was the reason for the positive pressure due to one of the follo	wing:		
A fire or increased well temperature.	A fire or increased well temperature. \Box Yes \boxtimes No		
Use of a geomembrane or synthetic cover.	☐ Yes	⊠ No	
A decommissioned well.	☐ Yes	⊠ No	
• If YES to ANY of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Well head, well casing, and vacuum lateral source.			
Describe what was determined to be the root cause of the exceedance.			
New well start-up. Followed Republic Services SOP.			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since	⊠ Yes	□ No	
the initial exceedance?	△ 1es	□ NO	
 If YES, keep records of Root Cause Analysis. No reporting required. 			
 If NO, continue with Corrective Action Analysis and Implementation Plan and submit 			
Notification to state agency within 75 days of initial exceedance.			

Date of Initial Exceedance:	3/23/2022
Collection Device ID:	NILEW800
Pressure Reading:	2.15

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature.	□ Yes	⊠ No	
Use of a geomembrane or synthetic cover.	☐ Yes	⊠ No	
A decommissioned well.	☐ Yes	⊠ No	
• If YES to ANY of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Vacuum source at wellhead (lateral is buried/inaccessible)			
Describe what was determined to be the root cause of the exceedance.			
Lack of vacuum on lateral riser, due to construction			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since	⊠ Yes	□ No	
the initial exceedance?	△ 162	□ NU	
 If YES, keep records of Root Cause Analysis. No reporting required. 			
 If NO, continue with Corrective Action Analysis and Implementation Plan and submit 			
Notification to state agency within 75 days of initial exceedance			

Date of Initial Exceedance:	6/17/2022
Collection Device ID:	NILEW701
Temperature Reading:	131.0

Root Cause Analysis	-		
Has the owner/operator received approval from the state			
agency to operate at a temperature higher than 55°C (131°F)	□ Yes	\boxtimes No	
for this well?			
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).		
If NO, continue the form.			
Describe what was inspected.			
Gas Sample and de-watering system.			
Describe what was determined to be the root cause of the exceedance.			
Elevated microbial activity			
Determine the required next steps.			
HOV submitted to air board. Waiting approval.			
Was the temperature exceedance remediated within 60 days	□Voc	⊠ No	
since the initial exceedance?	□ Yes	⊠ No	
If YES, keep records of Root Cause Analysis. No reporting required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to state agency within 75 days of initial exceedance.			

Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	6/17/2022
Collection Device ID:	NILEW701
Temperature Reading:	131.0

Corrective Action Analysis
Describe the corrective actions taken to remediate exceedance.
O&M to reduced applied vacuum to well
HOV letter sent to air district. Awaiting approval.

Implementation Schedule		
Expected Start Date:	4/25/2022	
Expected Completion Date:	6/25/2022	
Provide a description of pr	roposed repairs and/or remedial action required and	
supporting information for implementation timeframe.		
Reduce vacuum/gas extraction. Application for temperature HOV pending approval		

Final Steps		
Determine the required next steps.		
Is the remediation expected to take <u>less than 120 days</u> since	⊠ Yes	□No
initial exceedance per implementation schedule?		

- If YES, send notification to state agency within 75 days of initial exceedance. Include Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule in the next Annual Report.
- If NO, send Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule to state agency within 75 days for approval and include in next Annual Report.

Date of Initial Exceedance:	7/22/2022
Collection Device ID:	NILEW644
Pressure Reading:	1.72

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature. \square Yes \boxtimes No			
Use of a geomembrane or synthetic cover.	☐ Yes	⊠ No	
A decommissioned well.	☐ Yes	⊠ No	
• If YES to ANY of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Vacuum source at wellhead (lateral is buried/inaccessible)			
Describe what was determined to be the root cause of the exceedance.			
Lack of vacuum on lateral riser, due to construction			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since	⊠ Yes	□ No	
the initial exceedance?			
If YES, keep records of Root Cause Analysis. No reporting required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to state agency within 75 days of initial exceedance.			

75-Day Notification Letters (including relevant Higher Operating Value requests)

Newby Island Landfill <u>www.scsengineers.com</u>

February 24, 2022

Tamiko Endow Senior Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: 75-Day Notification of Pressure Exceedance

International Disposal Corp. of California, Milpitas, California

Facility Number A9013

Zachelle/ttser

Ms. Endow:

International Disposal Corp. of CA (IDCC), owner and operator of the Newby Island Sanitary Landfill and Recyclery (Newby), located in Milpitas, California, hereby provides the Bay Area Air Quality Management District (BAAQMD) with a 75-day notification pursuant to the compliance provisions identified in Title 40 of the Code of Federal Regulations (CFR) 60.767(j)(2) and 40 CFR 63.1981(j)(1) for a pressure exceedance at landfill gas (LFG) extraction well NILEW628.

The initial pressure exceedance occurred at NILEW628 on December 13, 2021. The well had an initial pressure exceedance of 11.82 inches of water (" H_2O). Corrective actions were initiated within 5 days as the valves were adjusted; however, the well could not be brought back into compliance within 15 days. As required under 40 CFR 60.765(a)(5) and 40 CFR 63.1960(a)(3)(i)(A), a root cause analysis was completed within 60 days from the original exceedance for the well. When the well could not be corrected within 60 days, a corrective action analysis and implementation schedule was completed. These forms are available on site for review and will be included in the next semi-annual report. All the steps for compliance were conducted, however, NILEW628 remains in exceedance as of the submittal of this notification. As such, this 75-day notification is required. The well is planned to be decommissioned and remediated before its 120-day deadline.

If you have any questions or require additional information, please do not hesitate to contact Rachelle Huber at (408) 586-2263 or by email at rhuber2@republicservices.com or Michael Flanagan of SCS Field Services (SCSFS) at 510-363-7796 or by email at MFlanagan@scsengineers.com.

Sincerely,

Rachelle Huber Environmental Manager

Newby Island Landfill

Tamiko Endow Senior Air Quality Engineer BAAQMD February 24, 2022 Page 2

CC:

Josh Mills, Newby Island Michael Flanagan, SCS Field Services Maria Bowen, SCS Engineers Jay Patel, BAAQMD Administrator, U.S. EPA Region 9

March 21, 2022

Tamiko Endow Senior Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: 75-Day Notification of Temperature Exceedances

International Disposal Corp. of California, Milpitas, California

Facility Number A9013

Ms. Endow:

International Disposal Corp. of CA (IDCC), owner and operator of the Newby Island Landfill (Newby), located in Milpitas, California, hereby provides the Bay Area Air Quality Management District (BAAQMD) with a 75-day notification pursuant to the compliance provisions identified in Title 40 of the Code of Federal Regulations (CFR) 60.767(j)(2) for temperature exceedances at NILEW752 and NILEW690.

Well NILEW752 had an initial temperature exceedance of 132.4 degrees Fahrenheit (°F) on January 7, 2022. In addition, Well NILEW690 had an initial temperature exceedance of 133.4 degrees °F on January 17, 2022. Corrective actions were initiated within 5 days as the valves were adjusted; however, the wells could not be brought back into compliance within 15 days.

As required under 40 CFR 60.765(a)(5), a root cause analysis and a corrective action analysis and implementation schedule were completed within 60 days from the original exceedance for both wells. Copies of these forms are attached. All the steps for compliance were conducted, however, these wells remain in exceedance but will be remediated prior to the 120-day deadlines. As such, this 75-day notification is required.

On February 6, 2020 and August 13, 2021, IDCC submitted higher operating value (HOV) requests to operate NILEW690 and NILEW752 at a temperature of 145°F, respectively. IDCC has received conditional approval from the BAAQMD pending approval from the United States Environmental Protection Agency (USEPA). At the time of this submittal, IDCC has followed up with the USEPA regarding the application in August 2020, September 2020, October 2020, April 2021, August 2021, and October 2021 but no response has been received. The USEPA promulgated the revised National Emission Standards for Hazardous Air Pollutants (NESHAP) Subpart AAAA rules, which took effect on September 27, 2021, which allows wells to operate at a temperature of 145°F. In the NESHAP rule, the USEPA allows an operating temperature of 145°F, the same temperature as requested with the HOV which was approved by BAAQMD. We believe this implicates USEPA approval of a higher temperature of 145°F and that the HOV is approved by both USEPA and BAAQMD. Thus, this notification should not be required, however to be conservative and because the 131°F limit is still contained within Newby's permit, this notification is being submitted until BAAQMD confirms that the HOV is now fully approved.

If you have any questions or require additional information, please do not hesitate to contact Rachelle Huber at (408) 586-2263 or by email at rhuber2@republicservices.com or Sean Bass 209-345-2458 or by email at SBass@scsengineers.com.

Tamiko Endow Senior Air Quality Engineer BAAQMD March 21, 2022 Page 2

Sincerely,

Rachelle Huber Environmental Manager Newby Island Landfill

cc: Josh Mills, Newby Island

Sean Bass, SCS Field Services Maria Bowen, SCS Engineers Anne Liu, SCS Engineers

Jay Patel, BAAQMD

Administrator, U.S. EPA Region 9

Attachment A: Root Cause Analysis Forms and Corrective Action Analysis and Implementation

Schedule Forms

Attachment B: Temperature HOV Requests

Attachment A: Root Cause Analysis Forms and Corrective Action Analysis and Implementation Schedule Forms

Date of Initial Exceedance:	1/7/2022
Collection Device ID:	NILEW752
Temperature Reading:	132.4

Root Cause Analysis			
Has the owner/operator received approval from the state			
agency to operate at a temperature higher than 55°C (131°F)	□ Yes	\boxtimes No	
for this well?			
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii) / 40 CFR 63.1958(c).			
• If NO, continue the form.			
Describe what was inspected.			
Gas Sample and de-watering system.			
Describe what was determined to be the root cause of the exceedance.			
Elevated microbial activity			
Determine the required next steps.			
Was the temperature exceedance remediated within 60 days	☐ Yes	⊠ No	
since the initial exceedance?	□ res	△ NO	
If YES, keep records of Root Cause Analysis. No reporting required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to state agency within 75 days of initial exceedance.			

Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	1/7/2022
Collection Device ID:	NILEW752
Temperature Reading:	132.4

Corrective Action Analysis
Describe the corrective actions taken to remediate exceedance.
O&M to reduced applied vacuum to well
HOV letter sent to air district. Awaiting approval.

Implementation Schedule			
Expected Start Date:	1/1/2022		
Expected Completion Date:	5/2/2022		
Provide a description of proposed repairs and/or remedial action required and			
supporting information for implementation timeframe.			
Reduce vacuum/gas extraction. Application for temperature HOV pending approval			

Final Steps		
Determine the required next steps.		
Is the remediation expected to take <u>less than 120 days</u> since	⊠ Yes	□No
initial exceedance per implementation schedule?	△ res	

- If YES, send notification to state agency within 75 days of initial exceedance. Include Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule in the next Annual Report.
- If NO, send Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule to state agency within 75 days for approval and include in next Annual Report.

Root Cause Analysis

Date of Initial Exceedance:	1/17/2022
Collection Device ID:	NILEW690
Temperature Reading:	133.4

Root Cause Analysis			
Has the owner/operator received approval from the state			
agency to operate at a temperature higher than 55°C (131°F)	□ Yes	\boxtimes No	
for this well?			
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 63.1958(c).			
If NO, continue the form.			
Describe what was inspected.			
Gas Sample and de-watering system.			
Describe what was determined to be the root cause of the exceedance.			
Elevated microbial activity			
Determine the required next steps.			
Was the temperature exceedance remediated within 60 days		⊠ No	
since the initial exceedance?	☐ Yes	△ NO	
If YES, keep records of Root Cause Analysis. No reporting required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to state agency within 75 days of initial exceedance			

Notification to state agency within 75 days of initial exceedance.

Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	1/17/2022
Collection Device ID:	NILEW690
Temperature Reading:	133.4

Corrective Action Analysis	
Describe the corrective actions taken to remediate exceedance.	
O&M to reduced applied vacuum to well	
HOV letter sent to air district. Awaiting approval.	

Implementation Schedule			
Expected Start Date:	1/1/2022		
Expected Completion Date:	5/2/2022		
Provide a description of proposed repairs and/or remedial action required and			
supporting information for implementation timeframe.			
Reduce vacuum/gas extraction. Application for temperature HOV pending approval			

Final Steps	·	
Determine the required next steps.		
Is the remediation expected to take <u>less than 120 days</u> since	⊠ Yes	□No
initial exceedance per implementation schedule?		

- If YES, send notification to state agency within 75 days of initial exceedance. Include Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule in the next Annual Report.
- If NO, send Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule to state agency within 75 days for approval and include in next Annual Report.

Attachment B: Temperature HOV Requests

February 6, 2020

Ms. Roshni Brahmbhatt Air Enforcement Section Manager USEPA, Region IX 75 Hawthorne Street San Francisco, CA 94105

Re: Temperature Higher Operating Value (HOV) Request for Four Landfill Gas Wells

Newby Island Sanitary Landfill and Recyclery, Milpitas, California

Plant Number A9013

Dear Ms. Brahmbhatt:

Tetra Tech, on behalf of the International Disposal Corporation of California, Inc. (IDCC), submits this application to the United States Environmental Protection Agency (USEPA), Region IX, to operate four vertical landfill gas (LFG) extraction wells at a temperature higher operating value (HOV) of 145 degrees Fahrenheit (°F) at the Newby Island Sanitary Landfill and Recyclery (Newby Island). Pursuant to New Source Performance Standards/Emissions Guidelines (NSPS/EG), it is required that wellhead temperature levels remain below 131°F. Moreover, pursuant to NSPS Subpart XXX Section 60.763, a HOV demonstration must be submitted to the Administrator for approval.

Newby Island is regulated under the NSPS, based upon a design capacity exceeding 2.5 million Megagrams (Mg) and 2.5 million cubic meters, and based upon a non-methane organic compounds (NMOC) emission rate calculation, which demonstrated an annual NMOC emission rate exceeding 34 Mg per year. Effective September 1, 2019, the gas collection and control system (GCCS) at Newby Island became subject to the monitoring and reporting requirements of NSPS Subpart XXX since it commenced construction, reconstruction, or modification after July 17, 2014. An update of Newby Island's GCCS Design Plan to include NSPS Subpart XXX requirements was submitted to the Bay Area Air Quality Management District (BAAQMD) and USEPA on March 6, 2018.

Per previous correspondence with the BAAQMD Permit Engineer assigned to Newby Island, the BAAQMD has not received delegation from the USEPA for NSPS Subpart XXX. Therefore, the BAAQMD cannot issue exemptions from the regulation for standards, monitoring, or reporting. Thus, IDCC requests an increase of the allowable wellhead temperature limit from 131°F to 145°F for the following four vertical LFG extraction wells:

Well ID	
NILEW690	
NILEW691	
NILEW701	
NILEW703	

Background

The following discussion on the relationship between LFG production and temperatures will serve to justify this request for higher temperatures for these wells under NSPS XXX.

Decomposition of the waste occurs in four stages. During the first two stages, decomposition of the waste occurs aerobically. Aerobic decomposition is exothermic (i.e. heat is produced). The degree of the exothermic reaction is governed by the ambient air temperatures during waste placement, the amount of moisture present, the types of waste deposited, etc. The heat generated during the aerobic phases sets the stage for the types of anaerobic bacteria populations that flourish during later decomposition phases.

There are three types of anaerobic bacterial populations which produce LFG. Methane producing bacteria are called methanogens. The psychrophilic bacteria (organisms that are capable of growth in low temperatures) are found at temperatures below 59°F. This population produces the least amount of LFG and is not normally found in landfills in North America. Methanogens that generate LFG at temperatures below 110°F are known as mesophilic bacteria, while those that generate gas at temperatures in excess of 110°F are called thermophilic bacteria. The mesophilic bacteria predominate in most of the landfills in North America, with the exception of those found in the southernmost states. Therefore, it is not uncommon to find normal LFG temperatures in excess of 140°F to 160°F. It is also not uncommon to find pockets of thermophilic bacteria in any landfill, based on the conditions which existed during waste placement.

The vertical LFG extraction wells NILEW690, NILEW691, NILEW701, and NILEW703 have exhibited elevated readings on a consistent basis. However, the wells are viable and important to the GCCS at Newby Island to collect LFG produced by the Source-2 (S-2) landfill. As vacuum increases at the wells, temperature is projected to increase as well. Tetra Tech operations and maintenance (O&M) personnel have been tuning the wells to prevent prolonged temperature exceedances. As a result, the ability to pull vacuum on these wells has been limited due to the current temperature limit of 131°F. A new temperature limit of 145°F is being requested as it is believed that the wells will be able to operate at their full potential, allowing optimal LFG production and mitigating potential surface emissions. Based on previous attempts by O&M personnel to bring these wells back within allowable temperature parameters, it was concluded that without temperature being the limiting factor, the gas collection efficiency of these wells would greatly improve.

Additionally, carbon monoxide (CO) samples were taken at each well via Draeger tubes and results indicated extremely low levels of CO at each of the four wells (0 to 10 parts per million by volume [ppmv]), indicating that no SSO is occurring. CO concentrations of 500 ppmv or greater indicate likely SSOs, while concentrations between 100 and 499 ppmv would indicate concerns of SSOs. CO sample results are included in this application as Attachment A and in the table below.

Well ID	CO Sample (ppmv)
NILEW690	0
NILEW691	10
NILEW701	0
NILEW703	0

HOV Request

IDCC requests an HOV for temperature for the four vertical LFG extraction wells identified herein be increased from the standard 131°F to 145°F, as decommissioning these viable vertical LFG extraction wells due to elevated temperature readings above the NSPS limit of 131°F would be counterproductive. Additionally, IDCC requests the Newby Island Title V Permit Condition Number 10423 Part 6(d)(i) be altered to include Wells NILEW690, NILEW691, NILEW701, and NILEW703. Historical data for these four vertical LFG extraction wells is included in this application as Attachment B.

A Title V Permit Renewal Application was submitted to the BAAQMD on June 19, 2017. As IDCC is currently awaiting a renewed Title V Permit for Newby Island, including NSPS Subpart XXX requirements, this request is being submitted to obtain approval for an HOV of 145°F to allow LFG extraction wells NILEW690, NILEW691, NILEW701, and NILEW703 to continue operation, while remaining in compliance with permitted limits. In addition, a temperature HOV request for the aforementioned wells to be approved under NSPS Subpart WWW and BAAQMD Regulation 8-34 was also submitted to the BAAQMD.

If you have any questions or require additional information, please do not hesitate to contact Rachelle Huber at (408) 586-2263 or by email at rhuber2@republicservices.com or Meghan Caesar at (925) 241-1074 or by email at meghan.caesar@tetratech.com.

Ms. Roshni Brahmbhatt February 6, 2020 Page 4

1/001

Sincerely,

Rachelle Huber Environmental Manager

Newby Island Landfill

Attachments: Attachment A - CO Sample Results

Attachment B - Historical Wellfield Data

Attachment C - Site Map

cc: Anthony Boccaleoni, IDCC

Rachelle Huber, IDCC

Jennifer Baker, BEL-Engineering

Meghan Caesar, Tetra Tech

Maria Bowen, Tetra Tech

Tamiko Endow, BAAQMD

Mark Sims, USEPA Region IX

May 4, 2022

Tamiko Endow Senior Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: 75-Day Notification of Temperature Exceedance

International Disposal Corp. of California, Milpitas, California

Facility Number A9013

Ms. Endow:

International Disposal Corp. of CA (IDCC), owner and operator of the Newby Island Landfill (Newby), located in Milpitas, California, hereby provides the Bay Area Air Quality Management District (BAAQMD or District) with a 75-day notification pursuant to the compliance provisions identified in Title 40 of the Code of Federal Regulations (CFR) Section 60.767(j)(2) for a temperature exceedance at NILEW701.

Well NILEW701 had an initial temperature exceedance of 134.7 degrees Fahrenheit (°F) on February 25, 2022. Corrective actions were initiated within 5 days as the valve was adjusted; however, the well could not be brought back into compliance within 15 days.

As required under 40 CFR 60.765(a)(5), a root cause analysis and a corrective action analysis and implementation schedule were completed within 60 days from the original exceedance. Copies of these forms are attached. All the steps for compliance were conducted, however, the well remain in exceedance but will be remediated prior to the 120-day deadline. As such, this 75-day notification is required.

On February 6, 2020, IDCC submitted higher operating value (HOV) requests to operate NILEW701 at a temperature of 145°F, respectively. IDCC has received conditional approval from the BAAQMD pending approval from the United States Environmental Protection Agency (USEPA). At the time of this submittal, IDCC has followed up with the USEPA regarding the application in August 2020, September 2020, October 2020, April 2021, August 2021, and October 2021 but no response has been received. The USEPA promulgated the revised National Emission Standards for Hazardous Air Pollutants (NESHAP) Subpart AAAA rules, which took effect on September 27, 2021, which allows wells to operate at a temperature of 145°F. In the NESHAP rule, the USEPA allows an operating temperature of 145°F, the same temperature as requested with the HOV which was approved by BAAQMD. Moreover, the federal rules clearly state that the NESHAP provisions under Subpart AAAA replace the major compliance provisions of Subpart XXX, including wellhead temperature requirements. We believe this implicates USEPA approval of a higher temperature of 145°F and that the HOV is approved by both USEPA and BAAQMD. Thus, this notification should not be required, however to be conservative and because the 131°F limit is still contained within Newby's permit, this notification is being submitted until BAAQMD confirms that the HOV is now fully approved.

If you have any questions or require additional information, please do not hesitate to contact Rachelle Huber at (408) 586-2263 or by email at rhuber2@republicservices.com or Sean Bass 209-345-2458 or by email at SBass@scsengineers.com.

Tamiko Endow Senior Air Quality Engineer BAAQMD May 4, 2022 Page 2

Sincerely,

Rachelle Huber Environmental Manager Newby Island Landfill

cc: Josh Mills, Newby Island

Sean Bass, SCS Field Services Maria Bowen, SCS Engineers

Jay Patel, BAAQMD

Administrator, U.S. EPA Region 9

Attachment A: Root Cause Analysis Form and Corrective Action Analysis and Implementation Schedule

Form

Attachment B: Temperature HOV Request

Attachment A: Root Cause Analysis Form and Corrective Action Analysis and Implementation Schedule Form

TEMPERATURE EXCEEDANCE

Root Cause Analysis

Date of Initial Exceedance:	2/25/2022
Collection Device ID:	NILEW701
Temperature Reading:	134.7

Root Cause Analysis	-			
Has the owner/operator received approval from the state				
agency to operate at a temperature higher than 55°C (131°F)	□ Yes	\boxtimes No		
for this well?				
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).			
If NO, continue the form.				
Describe what was inspected.				
Gas Sample and de-watering system.				
Describe what was determined to be the root cause of the exceedance.				
Elevated microbial activity				
Determine the required next steps.				
HOV submitted to air board. Waiting approval.				
Was the temperature exceedance remediated within 60 days				
since the initial exceedance? \square Yes \square No				
If YES, keep records of Root Cause Analysis. No reporting required.				
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit				
Notification to state agency within 75 days of initial exceedance.				

TEMPERATURE EXCEEDANCE

Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	2/25/2022
Collection Device ID:	NILEW701
Temperature Reading:	134.7

Corrective Action Analysis
Describe the corrective actions taken to remediate exceedance.
O&M to reduced applied vacuum to well
HOV letter sent to air district. Awaiting approval.

Implementation Schedule		
Expected Start Date:	4/25/2022	
Expected Completion Date:	6/25/2022	
Provide a description of pr	roposed repairs and/or remedial action required and	
supporting information for implementation timeframe.		
Reduce vacuum/gas extraction. Application for temperature HOV pending approval		

Final Steps		
Determine the required next steps.		
Is the remediation expected to take <u>less than 120 days</u> since	⊠ Yes	□No
initial exceedance per implementation schedule?		

- If YES, send notification to state agency within 75 days of initial exceedance. Include Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule in the next Annual Report.
- If NO, send Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule to state agency within 75 days for approval and include in next Annual Report.

Attachment B: Temperature HOV Request

February 6, 2020

Ms. Roshni Brahmbhatt Air Enforcement Section Manager USEPA, Region IX 75 Hawthorne Street San Francisco, CA 94105

Re: Temperature Higher Operating Value (HOV) Request for Four Landfill Gas Wells

Newby Island Sanitary Landfill and Recyclery, Milpitas, California

Plant Number A9013

Dear Ms. Brahmbhatt:

Tetra Tech, on behalf of the International Disposal Corporation of California, Inc. (IDCC), submits this application to the United States Environmental Protection Agency (USEPA), Region IX, to operate four vertical landfill gas (LFG) extraction wells at a temperature higher operating value (HOV) of 145 degrees Fahrenheit (°F) at the Newby Island Sanitary Landfill and Recyclery (Newby Island). Pursuant to New Source Performance Standards/Emissions Guidelines (NSPS/EG), it is required that wellhead temperature levels remain below 131°F. Moreover, pursuant to NSPS Subpart XXX Section 60.763, a HOV demonstration must be submitted to the Administrator for approval.

Newby Island is regulated under the NSPS, based upon a design capacity exceeding 2.5 million Megagrams (Mg) and 2.5 million cubic meters, and based upon a non-methane organic compounds (NMOC) emission rate calculation, which demonstrated an annual NMOC emission rate exceeding 34 Mg per year. Effective September 1, 2019, the gas collection and control system (GCCS) at Newby Island became subject to the monitoring and reporting requirements of NSPS Subpart XXX since it commenced construction, reconstruction, or modification after July 17, 2014. An update of Newby Island's GCCS Design Plan to include NSPS Subpart XXX requirements was submitted to the Bay Area Air Quality Management District (BAAQMD) and USEPA on March 6, 2018.

Per previous correspondence with the BAAQMD Permit Engineer assigned to Newby Island, the BAAQMD has not received delegation from the USEPA for NSPS Subpart XXX. Therefore, the BAAQMD cannot issue exemptions from the regulation for standards, monitoring, or reporting. Thus, IDCC requests an increase of the allowable wellhead temperature limit from 131°F to 145°F for the following four vertical LFG extraction wells:

Well ID
NILEW690
NILEW691
NILEW701
NILEW703

Background

The following discussion on the relationship between LFG production and temperatures will serve to justify this request for higher temperatures for these wells under NSPS XXX.

Decomposition of the waste occurs in four stages. During the first two stages, decomposition of the waste occurs aerobically. Aerobic decomposition is exothermic (i.e. heat is produced). The degree of the exothermic reaction is governed by the ambient air temperatures during waste placement, the amount of moisture present, the types of waste deposited, etc. The heat generated during the aerobic phases sets the stage for the types of anaerobic bacteria populations that flourish during later decomposition phases.

There are three types of anaerobic bacterial populations which produce LFG. Methane producing bacteria are called methanogens. The psychrophilic bacteria (organisms that are capable of growth in low temperatures) are found at temperatures below 59°F. This population produces the least amount of LFG and is not normally found in landfills in North America. Methanogens that generate LFG at temperatures below 110°F are known as mesophilic bacteria, while those that generate gas at temperatures in excess of 110°F are called thermophilic bacteria. The mesophilic bacteria predominate in most of the landfills in North America, with the exception of those found in the southernmost states. Therefore, it is not uncommon to find normal LFG temperatures in excess of 140°F to 160°F. It is also not uncommon to find pockets of thermophilic bacteria in any landfill, based on the conditions which existed during waste placement.

The vertical LFG extraction wells NILEW690, NILEW691, NILEW701, and NILEW703 have exhibited elevated readings on a consistent basis. However, the wells are viable and important to the GCCS at Newby Island to collect LFG produced by the Source-2 (S-2) landfill. As vacuum increases at the wells, temperature is projected to increase as well. Tetra Tech operations and maintenance (O&M) personnel have been tuning the wells to prevent prolonged temperature exceedances. As a result, the ability to pull vacuum on these wells has been limited due to the current temperature limit of 131°F. A new temperature limit of 145°F is being requested as it is believed that the wells will be able to operate at their full potential, allowing optimal LFG production and mitigating potential surface emissions. Based on previous attempts by O&M personnel to bring these wells back within allowable temperature parameters, it was concluded that without temperature being the limiting factor, the gas collection efficiency of these wells would greatly improve.

Additionally, carbon monoxide (CO) samples were taken at each well via Draeger tubes and results indicated extremely low levels of CO at each of the four wells (0 to 10 parts per million by volume [ppmv]), indicating that no SSO is occurring. CO concentrations of 500 ppmv or greater indicate likely SSOs, while concentrations between 100 and 499 ppmv would indicate concerns of SSOs. CO sample results are included in this application as Attachment A and in the table below.

Well ID	CO Sample (ppmv)
NILEW690	0
NILEW691	10
NILEW701	0
NILEW703	0

HOV Request

IDCC requests an HOV for temperature for the four vertical LFG extraction wells identified herein be increased from the standard 131°F to 145°F, as decommissioning these viable vertical LFG extraction wells due to elevated temperature readings above the NSPS limit of 131°F would be counterproductive. Additionally, IDCC requests the Newby Island Title V Permit Condition Number 10423 Part 6(d)(i) be altered to include Wells NILEW690, NILEW691, NILEW701, and NILEW703. Historical data for these four vertical LFG extraction wells is included in this application as Attachment B.

A Title V Permit Renewal Application was submitted to the BAAQMD on June 19, 2017. As IDCC is currently awaiting a renewed Title V Permit for Newby Island, including NSPS Subpart XXX requirements, this request is being submitted to obtain approval for an HOV of 145°F to allow LFG extraction wells NILEW690, NILEW691, NILEW701, and NILEW703 to continue operation, while remaining in compliance with permitted limits. In addition, a temperature HOV request for the aforementioned wells to be approved under NSPS Subpart WWW and BAAQMD Regulation 8-34 was also submitted to the BAAQMD.

If you have any questions or require additional information, please do not hesitate to contact Rachelle Huber at (408) 586-2263 or by email at rhuber2@republicservices.com or Meghan Caesar at (925) 241-1074 or by email at meghan.caesar@tetratech.com.

Ms. Roshni Brahmbhatt February 6, 2020 Page 4

1/001

Sincerely,

Rachelle Huber Environmental Manager

Newby Island Landfill

Attachments: Attachment A - CO Sample Results

Attachment B - Historical Wellfield Data

Attachment C - Site Map

cc: Anthony Boccaleoni, IDCC

Rachelle Huber, IDCC

Jennifer Baker, BEL-Engineering

Meghan Caesar, Tetra Tech

Maria Bowen, Tetra Tech

Tamiko Endow, BAAQMD

Mark Sims, USEPA Region IX

Appendix F - Title V Semi-Annual Report

Newby Island Landfill <u>www.scsengineers.com</u>

NEWBY ISLAND LANDFILL TITLE V SEMI-ANNUAL MONITORING REPORT

SITE:			FACILITY ID#:	1
NEWBY ISLAN	D LANDFILL			A9013
REPORTING PERIOD:	from	through)	
	02/01/2022		07/31/2022	

CERTIFICATION:

I declare, under penalty of perjury under the laws of the state of California, that, based on information and belief formed after reasonable inquiry, all information provided in this reporting package is true, accurate, and addresses all deviations during the reporting period:

kevin divincenzo	08/31/2022
Signature of Responsible Official	Date
Kevin Divincenzo	
Name of Responsible Official (please print)	
Area Vice President	
Title of Responsible Official (please print)	

Mail to:

Director of Compliance and Enforcement BAAQMD 375 Beale Street, Suite 600 San Francisco, CA 94105

Attn: Title V reports

TITLE V SEMI-ANNUAL MONITORING REPORT

SITE:			FACILITY ID#:	
NEWBY ISLAN	D LANDFILL			A9013
REPORTING PERIOD:	from	through		
	02/01/2022		07/31/2022	

List of Permitted Sources and Abatement Device

Permit Unit Number	Equipment Description		
S-#	Description		
S-2	Newby Island Sanitary Landfill – Waste Decomposition Process;		
5-2	Equipped with Landfill Gas Collection System		
S-3	Composting Operation; A-3 Water Truck		
S-4	Non-retail Gasoline Dispensing Facility		
S-5	Newby Island Sanitary Landfill – Waste and Cover Material Dumping		
S-6	Newby Island Sanitary Landfill – Excavating, Bulldozing and		
3-0	Compacting Activities		
S-7	Diesel engine Powering Air Compressor		
S-8 and S-9	Horizontal Grinder/Operations, Trommel Screen/Operations		
S-10	Screening/Separating, Multi-material Recycling Sorting Line		
S-153	Portable Self-Propelled Horizontal Grinder with Conveyor		
S-156	Portable Diesel Engine Propel/Power Grinder		
S-1003	Composting, aerated static piles, Green waste Composting Operations		
S-1008	Waste material grinding, Multi-material Portable Tub Grinder		
S-1009	Screening/Separating, Green waste, Portable Power Screen		
S-1038	Portable Diesel Engine Powering 3300 Screen		
S-1040	Portable Diesel Engine Powering Power Screen		
S-1042	Portable Diesel Engine Powering Power Screen		
S-1043	Screening/Separating, Green waste, Portable 3300 Screen		
S-1055	Stationary Prime Diesel Engine Powering CASP Blower		
S-1056	Stationary Prime Diesel Engine Powering CASP Blower		
S-1057	Portable Backup Prime Diesel Engine		
A-2	Landfill Gas Flare		
A-3	Landfill Gas Flare		

Newby also maintains a Title V Permit (Facility No. A9013), which expired on December 20, 2017. On June 20, 2017, a Title V Renewal Application was submitted to the Bay Area Air Quality Management District (BAAQMD). The site currently operates under an application shield. On November 30, 2021, Mr. Dennis Jang with the BAAQMD informed IDCC that the renewal application (Application Number [A/N] 28723) is open and in process and another renewal application will not be needed.

The conditions listed below are incorporated in the BAAQMD Permit to Operate (PTO) that expired August 1, 2022 but has not yet been incorporated into the Title V permit. All conditions have been reviewed for compliance.

- Condition #24887 applies to S#4;
- Condition #26046 applies to S#7, 8, 9, 10;
- Condition #26606 applies to S#1008;
- Condition #26607 applies to S#1040;
- Condition #26608 applies to S#1009;
- Condition #26609 applies to S#1042;
- Condition #26610 applies to S#1043;
- Condition #26611 applies to S#1038;
- Condition #27359 applies to S#153

During the compilation of this report, the following deviations were discovered.

- Condition 26607 Part 2
 - o The daily operating hours for the S-1040 were exceeded on 2/16 and 2/23.
- Condition 26609 Part 2
 - o The daily operating hours for the S-1042 were exceeded on 5/16.

On July 21, 2021, Newby received the following permit conditions for S-1055, 1056, and 1057.

- Condition #27446 applies S#1057; and
- Condition #27477 applies to S#1055, 1056.

Please note that IDCC does not own the engines for S-1055, 1056, and 1057. As such, IDCC is inquiring with the owners, United Rentals, how to comply with the following permit conditions as the site does not have full autonomy on the equipment. IDCC followed up with the BAAQMD for recommendations on how to comply with these conditions under these circumstances. At this time, no recommendation has been provided by the BAAQMD.

- Condition 27446 Part 10
 - Part 10: Within 30 days after the end of every calendar year, the owner/operator shall provide a year-end summary of the total hours of operation or fuel usage for S-1057 for the previous 12 months. Please note the S-1057 engine did not run in 2021.
- Condition 27447 Part 2 and 3
 - Part 2: The owner/operator shall properly install, operate, and maintain a nonresettable totalizing meter to measure hours of operation and shall also record actual fuel usage at each engine, S-1055 and S-1056.
 - Part 3: The owner/operator shall ensure both engines S-1055 and S-1056 comply with the NOx and co emission limits in Regulation 9-8-304.2, and each calendar quarter, the owner/operator shall monitor to ensure that both engines comply with these emissions limits, in accordance with Regulation 9-8-503.

Newby also maintains an Authority to Construct (ATC) A/N 28472 for the S-1003 Covered Aerated Static Pile (CASP) Composting Operation and the S-15 Mixed Waste Stockpiles. The ATCs for the S-1003 CASP Composting Operation and S-15 Mixed Waste Stockpiles were issued on November 21, 2017, were extended via approval email from the BAAQMD on

November 21, 2019, and expired on November 21, 2021. On September 21, 2021, IDCC submitted a request to extend the ATC. On October 18, 2021, the BAAQMD informed IDCC that the ATC will not be cancelled. All conditions have been reviewed for compliance this reporting period.

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 Landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Collection	BAAQMD	Records	Periodic / On	BAAQMD	For Active Areas:	Continuous	N/A
System	8-34-501.7		event basis	8-34-	Collection system		
Installation	and 501.8			304.2	components must be		
Dates	and BAAQMD				installed and operating		
	Condition #				by 5 years + 60 days		
	10423, Part				after initial waste		
	13b, 13c, 13f,				placement		
	13g						
Collection	BAAQMD	Records	Periodic / On	BAAQMD	For Any Uncontrolled	Continuous	N/A
System	8-34-501.7		event basis	8-34-	Areas or Cells: collection		
Installation	and 501.8			304.3	system components		
Dates	and BAAQMD				must be installed and		
	Condition #				operating within 60 days		
	10423, Part				after the uncontrolled		
	13b, 13c, 13f,				area or cell accumulates		
	13g				1,000,000 tons of		
					decomposable waste		
Gas Flow	BAAQMD	Gas Flow	Continuous	BAAQMD	Landfill gas collection	Intermittent	There were unplanned shutdowns of the gas
	8-34-501.10	Meter and		8-34-301	system shall operate		collection and control system (GCCS) that
	and 508	Recorder		and 301.1	continuously and all		did not meet the exemption criteria in
		(every 15			collected gases shall be		BAAQMD Rule 8-34-113. These events were
		minutes)			vented to a properly		reported to the BAAQMD as reportable
					operating control system		compliance activities (RCA) and breakdown
							relief was requested. These events occurred
							on the following dates:

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas	Reporting Period: from 02/01/2022 through 07/31/2022
COLLECTION SYSTEM, A-2 AND A-3 LANDFILL GAS FLARE; S-5 WASTE AND	
COVER MATERIAL DUMPING; S-6 EXCAVATING, BULLDOZING, AND	
COMPACTING ACTIVITIES	

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Criteria		,					 February 10, 2022 (IDs 08F38 and 08F39 – low temperature); February 22, 2022 (IDs 08F64 and 08F65 – pump work); March 21, 2022 (IDs 08G42 and 08G43 – sump maintenance); April 6, 2022 (IDs 08G88 and 08G89 – routine quarterly sump jetting maintenance); May 1, 2022 (IDs 08H21 and 08H22 – utility outage); May 4, 2022 (IDs 08H34 and 08H35 – programmable logic controller
							 [PLC] malfunction); May 18, 2022 (IDs 08H81 and 08H82 - main blower variable Frequency Drive [VFD] malfunction) June 15, 2022 (IDs 08J42 and 08J43 - Pacific Gas and Energy [PG&E] power outage); and July 27, 2022 (IDs 08K52 and 08K53 - flame failure).

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas	Reporting Period: from 02/01/2022 through 07/31/2022
COLLECTION SYSTEM, A-2 AND A-3 LANDFILL GAS FLARE; S-5 WASTE AND	
COVER MATERIAL DUMPING; S-6 EXCAVATING, BULLDOZING, AND	
COMPACTING ACTIVITIES	

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
							On July 14, 2022, Ms. Aleah Zapf issued Notice of Violation (NOV) A61610 for an alleged failure to operate the GCCS continuously during RCA event Breakdown ID 08J42 and Excess Excursion ID 08J43, which was due to an unplanned utility power outage from PG&E. For additional information, including corrective actions taken, please refer to the July 22, 2022 10/30-Day Combined Deviation Letter and NOV Response Letter.
Gas Flow	BAAQMD Condition # 10423, Parts 13f-h	Records of Landfill Gas Flow Rates, Collection and Control Systems Downtime, and Collection System Components	Periodic / Daily	BAAQMD Condition # 10423, Parts 5 and 6	Landfill gas collection system shall operate continuously and all collected gases shall be vented to a properly operating control system	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas	Reporting Period: from 02/01/2022 through 07/31/2022
COLLECTION SYSTEM, A-2 AND A-3 LANDFILL GAS FLARE; S-5 WASTE AND	
COVER MATERIAL DUMPING; S-6 EXCAVATING, BULLDOZING, AND	
COMPACTING ACTIVITIES	

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Collection	BAAQMD	Operating	Periodic /	BAAQMD	240 hours per year and	Continuous	N/A
and	8-34-501.1	Records	Daily	8-34-	5 consecutive days		
Control				113.2			
Systems							
Shutdown							
Time							
Periods of	BAAQMD	Operating	Periodic /	BAAQMD	≤ 15 consecutive days	Continuous	N/A
Inoperation	1-523.4	Records for All	Daily	1-523.2	per incident and		
for		Parametric			≤30 calendar days per		
Parametric		Monitors			12-month period		
Monitors							
Continuous	40 CFR	Operating	Periodic /	40 CFR	Requires Continuous	Continuous	N/A
Monitors	60.7(b)	Records for All	Daily	60.13(e)	Operation except for		
		Continuous			breakdowns, repairs,		
		Monitors			calibration, and required		
					span adjustments		
Wellhead	BAAQMD	Monthly	Periodic /	BAAQMD	< 0 psig (applies to all	Continuous	N/A
Pressure	8-34-414,	Inspection and	Monthly	8-34-	wells or collectors that		
	501.9 and	Records		305.1	are connected to the		
	505.1				vacuum system)		
Temperatu	BAAQMD	Monthly	Periodic /	BAAQMD	< 55 °C (< 131 °F),	Continuous	N/A
re of Gas	8-34-414,	Inspection and	Monthly	8-34-	except for components		
at	501.9 and	Records		305.2	identified in Condition		
Wellhead	505.2				# 818, Part 3b(i)		

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 Landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Temperatu	BAAQMD	Monthly	Periodic /	BAAQMD	<63 C (<145 F)	Continuous	N/A
re of Gas	8-34-414,	Inspection and	Monthly	8-34-305	(Alternative wellhead		
at	501.9, 505.2,	Records		and	temperature limit that		
Wellheads	and BAAQMD			BAAQMD	applies only to wells		
	Condition			Condition	specified in BAAQMD		
	10423, part			10423,	Condition # 10423, Part		
	6d(ii)			part 6d(i)	6d(i))		
Gas	BAAQMD	Monthly	Periodic /	BAAQMD	N ₂ < 20%	Continuous	N/A
Concentrat	8-34-414,	Inspection and	Monthly	8-34-	(by volume, dry basis)		
ion at	501.9 and	Records		305.3 or	OR		
Wellhead	505.3 or			305.4	O ₂ < 5%		
	505.4				(Applies to all wells or		
					collectors that are		
					connected to the vacuum		
					system, except wells		
					specified in BAAQMD		
					Condition # 10423, Part		
					6c(i))		

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 Landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Gas	BAAQMD	Monthly	Periodic /	BAAQMD	O2 < 15%	Continuous	N/A
Concentrat	8-34-414,	Inspection and	Monthly	8-34-305	(Alternative wellhead		
ions at	501.9, and	Records		and	oxygen concentration		
Header	505.3 or			BAAQMD	limit that applies only to		
	505.4, and			Condition	wells specified in		
	BAAQMD			# 10423,	BAAQMD Condition #		
	Condition			Part 6c(i)	10423, Part 6c(i))		
	10423 part						
	6c(ii)						
Well	BAAQMD	Records	Periodic /	BAAQMD	No more than 5 wells at	Continuous	N/A
Shutdown	8-34-116.5		Daily	8-34-	a time or 10% of total		
Limits	and 501.1			116.2	collection system,		
					whichever is less		
Well	BAAQMD	Records	Periodic /	BAAQMD	< 24 hours per well	Continuous	N/A
Shutdown	8-34-116.5		Daily	8-34-			
Limits	and 501.1			116.3			
Well	BAAQMD	Records	Periodic /	BAAQMD	No more than 5 wells at	Continuous	N/A
Shutdown	8-34-117.6		Daily	8-34-	a time or 10% of total		
Limits	and 501.1			117.4	collection system,		
					whichever is less		
Well	BAAQMD	Records	Periodic /	BAAQMD	<24 hours per well or	Continuous	N/A
Shutdown	8-34-117.6		Daily	8-34-	<5 days per well for		
Limits	and 501.1			117.5	component replacement		

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas	Reporting Period: from 02/01/2022 through 07/31/2022
COLLECTION SYSTEM, A-2 AND A-3 LANDFILL GAS FLARE; S-5 WASTE AND	
COVER MATERIAL DUMPING; S-6 EXCAVATING, BULLDOZING, AND	
COMPACTING ACTIVITIES	

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
TOC (Total Organic Com- pounds Plus Methane)	BAAQMD 8-34-501.6 and 503	Quarterly Inspection of collection and control system components with portable analyzer and Records	Periodic / Quarterly	BAAQMD 8-34- 301.2	Component Leak Limit: < 1000 ppmv as methane	Intermittent	During a BAAQMD and California Air Resource Board (CARB) inspection conducted on April 27, 2022, five (5) alleged surface leaks exceeding 500 ppmv and four (4) alleged component leaks exceeding 1,000 ppmv were identified by BAAQMD and CARB staff. This resulted in the BAAQMD issuing NOV No. A61608 on June 1, 2022. For additional information, including corrective actions taken, please refer to the June 6, 2022 10/30-Day Combined Deviation Letter and NOV Response Letter.
TOC	BAAQMD 8-34-415, 416, 501.6, 506 and 510	Monthly Visual Inspection of Cover, Quarterly Inspection of Surface with portable analyzer, Various Reinspection Times for Leaking Areas, and Records	Periodic / Monthly, Quarterly, and on an Event Basis	BAAQMD 8-34-303	Surface Leak Limit: < 500 ppmv as methane at 2 inches above surface	Intermittent	During a BAAQMD and California Air Resource Board (CARB) inspection conducted on April 27, 2022, five (5) alleged surface leaks exceeding 500 ppmv and four (4) alleged component leaks exceeding 1,000 ppmv were identified by BAAQMD and CARB staff. This resulted in the BAAQMD issuing NOV No. A61608 on June 1, 2022. For additional information, including corrective actions taken, please refer to the June 6, 2022 10/30-Day Combined Deviation Letter and NOV Response Letter.

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Non-	BAAQMD 8-	Annual Source	Periodic /	BAAQMD	> 98% removal by weight	Continuous	N/A
Methane	34-412 and 8-	Tests and	Annual	8-34-	OR		
Organic	34-501.4 and	Records		301.3	< 30 ppmv,		
Com-	BAAQMD				dry basis @ 3% O2,		
pounds	Condition #				expressed as methane		
(NMOC)	10423,				(applies to flares only)		
	Part 11b						
Temperatu	BAAQMD	Temperature	Continuous	BAAQMD	CT > 1525 °F,	Continuous	N/A
re of	8-34-501.3	Sensor and		Condition	averaged over any 3-		
Combustio	and 507, SIP	Recorder		# 10423,	hour period		
n Zone	8-34-501.3	(continuous)		Part 9	(applies to A-1/A-3 only)		
(CT)	and BAAQMD				CT > 1400 °F,		
	Condition #				averaged over any 3-		
	10423,				hour period		
	Parts 11				(applies to A-2 only)		
Total	BAAQMD	Records	Periodic /	BAAQMD	< 15 pounds/day or	TBD	At the time of the submittal of this report, the
Carbon	Condition #		Daily	8-2-301	< 300 ppm, dry basis		site was not yet able to provide SCS with the
	10423,				(applies only to aeration		records needed to review. SCS will submit a
	Part 3				of or use as cover soil of		Title V semi-annual report amendment to
					soil containing < 50		confirm compliance once records are
					ppmw of volatile organic		available for review.
					compounds)		

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 Landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Amount of	BAAQMD	Records	Periodic / On	BAAQMD	< 1 cubic yard per project	Continuous	N/A
Contamina	Condition #		Event Basis	8-40-			
ted Soil	10423,			116.1 and			
Aerated or	Part 2m			BAAQMD			
Used as				Condition			
Cover				# 10423,			
				Parts 2			
				and 3			
Amount of	BAAQMD	Records	Periodic / On	BAAQMD	< 8 cubic yards per	Continuous	N/A
Contamina	8-40-116.2		Event Basis	8-40-	project, provided organic		
ted Soil	and BAAQMD			116.2 and	content		
Aerated or	Condition #			BAAQMD	< 500 ppmw		
Used as	10423,			Condition	and limited to 1 exempt		
Cover	Part 2m			#10423,	project per 3 month		
				Parts 2	period		
				and 3			
Amount of	BAAQMD	Records	Periodic / On	BAAQMD	Prohibited for Soil with	Continuous	N/A
Contamina	Condition #		Event Basis	8-40-301	Organic Content >50		
ted Soil	10423,			and	ppmw unless exempt per		
Aerated or	Part 2m			BAAQMD	BAAQMD 8-40-116, 117,		
Used as				Condition	or 118		
Cover				#10423,			
				Parts 2			
				and 3			

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Amount of	None	N/A	None	BAAQMD	Soil Contaminated by	Continuous	N/A
Accidental				8-40-117	Accidental Spillage of		
Spillage				and	< 5 Gallons of Liquid		
				BAAQMD	Organic Compounds		
				Condition			
				# 10423,			
				Parts 2			
				and 3			
Total	BAAQMD	Records	Periodic / On	BAAQMD	< 150 pounds VOC per	Continuous	N/A
Aeration	Condition		Event Basis	8-40-118	project and toxic air		
Project	#10423,			and	contaminant emissions		
Emissions	Part 2m			BAAQMD	per year < BAAQMD		
				Condition	Table 2-1-316 limits		
				# 10423,			
				Parts 2			
				and 3			
Opacity	BAAQMD	Records of all	Periodic / On	BAAQMD	Ringelmann No. 1	Continuous	N/A
	Condition #	site watering	event basis,	6-1-301	for ≤ 3 minutes/hr		
	10423,	and road	Monthly	and SIP 6-	(applies to S-1)		
	Part 13e	cleaning		301			
		events					

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Opacity	None	N/A	None	BAAQMD 6-1-301 and SIP 6- 301	Ringelmann No. 1 for < 3 minutes/hr (applies to flares)	Continuous	N/A
TSP	None	N/A	None	BAAQMD 6-1-310.1 and SIP 6- 310	< 0.15 grains/dscf (applies to flares only)	Continuous	N/A
SO ₂	None	N/A	None	BAAQMD 9-1-301	Property Line Ground Level Limits: < 0.5 ppm for 3 minutes and < 0.25 ppm for 60 min. and <0.05 ppm for 24 hours (applies to flares only)	Continuous	N/A
SO ₂	BAAQMD Condition # 10423, Parts 10 and 13j	Sulfur analysis of landfill gas and Records	Periodic / Quarterly	BAAQMD Regulation 9-1-302	Exhaust Gas from Flare: < 300 ppm (dry basis) (applies to flares only)	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas	Reporting Period: from 02/01/2022 through 07/31/2022
COLLECTION SYSTEM, A-2 AND A-3 LANDFILL GAS FLARE; S-5 WASTE AND	
COVER MATERIAL DUMPING; S-6 EXCAVATING, BULLDOZING, AND	
COMPACTING ACTIVITIES	

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Total	BAAQMD	Sulfur analysis	Periodic /	BAAQMD	< 1300 ppmv	Continuous	N/A
Sulfur	Condition #	of landfill gas	Quarterly	Condition	instantaneous		
Content in	10423,			# 10423,	concentration		
Landfill	Parts 10a and			Part 10a	(expressed as H2S)		
Gas	13j						
Total	BAAQMD	Sulfur analysis	Periodic /	BAAQMD	< 300 ppmv annual	Continuous	N/A
Sulfur	Condition #	of landfill gas	Quarterly	Condition	average		
Content in	10423,	and Records		# 10423,	(expressed as H2S)		
Landfill	Parts 10a and			Part 10a	,		
Gas	13j						
NOx	BAAQMD	Annual Source	Periodic /	BAAQMD	Applies to Exhaust Gas	Continuous	N/A
	Condition	Test &	Annual	Condition	from Flares:		
	10423, Part	Records		# 10423,	< 60 ppm corrected to		
	11d			Part 10b	15% oxygen, dry basis		
					(< 0.05 pounds NOx per		
					million BTU LFG)		
H₂S	None	N/A	None	BAAQMD	Property Line Ground	Continuous	N/A
				9-2-301	Level Limits:		
					< 0.06 ppm,		
					averaged over 3 minutes		
					and < 0.03 ppm,		
					averaged over 60		
					minutes		

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Amount of	BAAQMD	Records	Periodic /	BAAQMD	4,000 tons/day and	Continuous	N/A
Waste	Condition #		Daily	Condition	< 39,000,000 tons		
Accepted	10423,			# 10423,	(predicted cumulative		
	Part 13a			Part 1	amount of all wastes)		
					and		
					< 50,800,000 yd3		
					(cumulative amount of all		
					wastes and cover		
					materials)		
Heat Input	BAAQMD	Records	Periodic /	BAAQMD	< 2,006 MM BTU per day	Continuous	N/A
A-1/A-3	Condition #		Daily	Condition	and		
	10423,			# 10423,	< 732,095 MM BTU per		
	Parts 8 and			Part 8	year		
	13h						
Heat Input,	BAAQMD	Records	Periodic /	BAAQMD	< 1,800 MM BTU per day	Continuous	N/A
A-2	Condition #		Daily	Condition	and		
	10423,			# 10423,	< 657,000 MM BTU per		
	Parts 8 and			Part 8	year		
	13h						

Site: Ne	wby Island Landfill	Facility ID#:	A901	13
Permitted Uni	t: S-3 COMPOSTING OPERATION; A-3 WATER TRUCK	Reporting Period	from	02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Opacity	BAAQMD Condition # 8178, Parts 3 and 4	Observation of Operations and Records	Periodic / On Event Basis	BAAQMD Regulation 6-1-301 and SIP 6-301	< Ringelmann 1.0 for 3 minutes in any hour	Continuous	N/A
Opacity	BAAQMD Condition # 8178, Parts 3 and 4	Observation of Operations and Records	Periodic / On Event Basis	BAAQMD Condition # 8178, Part 3	< Ringelmann 1.0	Continuous	N/A

Site:	Newby	/ Island Landfill	Facility ID#:	A901	3
Permitted	Unit:	S-4 Non-Retail Gasoline Dispensing Facility	Reporting Period:	from	02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Gasoline Throughput	BAAQMD 8-7-503.1	Records	Periodic / Annual	BAAQMD Condition # 14098	940,000 gallons per 12-month period	Continuous	N/A
Throughput (exempt from Phase I)	BAAQMD 8-7-501 and 8-7-503.2	Records	Periodic / On event basis	BAAQMD 8-7- 114	1000 gallons per facility for tank integrity leak checking	Continuous	N/A
Organic Compounds	None	N/A	None	SIP 8-5-303.2	Tank Pressure Vacuum Valve Shall Be: Gas Tight or < 500 ppmv (expressed as methane) above background for PRVs (as defined in SIP 8-5-206)	Continuous	N/A
Organic Compounds	None	Equipment must be precertified by CARB	None	BAAQMD 8-7- 301.2	All Phase I Systems Shall Meet the Emission Limitations of the Applicable CARB Certification	Continuous	N/A
Organic Compounds	CARB EO G-70-148-A paragraph 21	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery	Periodic / Annual	BAAQMD 8-7- 301.6	All Phase I Equipment (except components with allowable leak rates) shall be leak free (<3 drops/minute) and vapor tight	Continuous	N/A

Site:	Newby	/ Island Landfill	Facility ID#:	A901	3
Permitted	Unit:	S-4 Non-Retail Gasoline Dispensing Facility	Reporting Period:	from	02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
		System					
Organic Compounds	CARB EO G-70-148-A paragraph 21	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	BAAQMD 8-7- 302.5	All Phase II Equipment (except components with allowable leak rates or at the nozzle/fill-pipe interface) Shall Be: leak free (<3 drops/minute) and vapor tight	Continuous	N/A
Organic Compounds	CARB EO G-70-148-A paragraph 21	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	CARB EO G- 70-148-A paragraph 10	Any Emergency Vent or Manway Shall Be: leak free	Continuous	N/A
Defective Component Repair/ Replacement Time Limit	BAAQMD 8-7-503.2	Records	Periodic / On Event Basis	BAAQMD 8-7- 302.4	< 7 days	Continuous	N/A
Liquid Removal Rate	CARB EO G-70-52-AM	CARB Certification Procedures	Periodic / On Event Basis	BAAQMD 8-7- 302.8	> 5 ml per gallon dispensed, when dispensing rate	Continuous	N/A

Site: New	by Island Landfill	Facility ID#:	A901	3
Permitted Unit:	S-4 Non-Retail Gasoline Dispensing Facility	Reporting Period:	from	02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
					> 5 gallons/minute		
Liquid Retain from Nozzles	CARB EO G-70-52-AM	CARB Certification Procedures	Periodic / On Event Basis	BAAQMD 8-7- 302.12	< 100 ml per 1000 gallons dispensed	Continuous	N/A
Nozzle Spitting	CARB EO G-70-52-AM	CARB Certification Procedures	Periodic / On Event Basis	BAAQMD 8-7- 302.13	< 1.0 ml per nozzle per test	Continuous	N/A
Pressure- Vacuum Valve Settings	CARB EO G-70-148-A	CARB Certification Procedures	Periodic / On Event Basis	BAAQMD 8-7- 316 and CARB EO G- 70-148-A, paragraph 14	Pressure Setting: > 2.5 inches of water, gauge	Continuous	N/A
Pressure- Vacuum Valve Settings	None	N/A	None	SIP 8-5-303.1	Pressure Setting: > 10% of maximum working pressure or > 0.5 psig	Continuous	N/A
Disconnection Liquid Leaks	CARB EO G-70-148-A paragraph 21	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	CARB EO G- 70-148-A paragraph 12	10 ml per disconnect, averaged over 3 disconnect operations	Continuous	N/A

Site:	Newby	Island Landfill	Facility ID#:	A901	13
Permit	ted Unit:	S-8 HORIZONTAL GRINDER OPERATIONS/ S-9	Reporting Period:	from	02/01/2022 through 07/31/2022
TROMME	L SCREEN/OPE	RATIONS			-

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Opacity	None	N/A	None	BAAQMD 6-1-301 and SIP 6-301	Ringelmann 1.0 for <3 minutes in any hour	Continuous	N/A
Particulate Matter (PM)	None	N/A	None	BAAQMD 6-1-311 And SIP 6-311	E = 0.026(P) ^{0.67} where: E = Allowable Emission Rate (lb/hr); and P = Process Weight Rate (lb/hr) Maximum Allowable Emission Rate = 40 lb/hr For P >57,320 lb/hr (or P > 28.66 tons/hr)	Continuous	N/A