TV Tracking #: 294 1. D RECEIVED IN 09/28/2021 ENFORCEMENT:

Revised NSPS/BAAQMD Rule 8-34 Semi-Annual Report, SSM Plan Semi-Annual Report, and Title V Semi-Annual Report Newby Island Landfill Milpitas, California (Facility No. 9013)

Prepared for:

International Disposal Corporation of California 1601 Dixon Landing Road Milpitas, CA 95035

For Submittal to:

Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

01205162.04 Task 1 | September 2021

3843 Brickway Boulevard, Suite 208 Santa Rosa, CA 95403 707-546-9461 This submittal consisting of the Revised New Source Performance Standards (NSPS)/Bay Area Air Quality Management District (BAAQMD) Rule 8-34 Semi-Annual Report, the Semi-Annual Startup, Shutdown, and Malfunction Plan Report, and the Title V Semi-Annual Monitoring Report for the Newby Island Landfill in Milpitas, California, dated September 2021, was prepared and reviewed by the following:

Anne Liu Staff Professional SCS ENGINEERS

Ray Huff Vice President SCS ENGINEERS

Patto & Sullen

Patrick S. Sullivan, REA, CPP, BCES Senior Vice President SCS ENGINEERS

Table of Contents

Sect	ion			Page					
SECT	ION I.	NSP	S/BAAQMD Rule 8-34 Semi-Annual Report	1					
1.0	.0 Introduction1								
2.0	Site Background Information2								
	2.1	Existing Air Permits2							
	2.2	Existing	g Landfill Gas Collection and Control System	2					
3.0	Moni	toring a	nd Records	3					
	3.1 Continuously Monitored Parameters								
		3.1.1	Gas Extraction System Downtime	3					
		3.1.2	Emission Control System Downtime	3					
		3.1.3	Individual Well Downtime	4					
		3.1.4	Flow Meter and Temperature Gauge Downtime	4					
		3.1.5	Flare Combustion Zone Temperature	4					
	3.2	Compo	nent Leak Quarterly Monitoring	5					
		3.2.1	First Quarter 2021 Monitoring	5					
		3.2.2	Second Quarter 2021 Monitoring	5					
	3.3	Control	I Efficiency	5					
	3.4	Landfil	I Surface Emissions Monitoring	6					
		3.4.1	First Quarter 2021 Monitoring	6					
		3.4.1	Second Quarter 2021 Monitoring	6					
	3.5	Wellhe	ad Monthly Monitoring	6					
		3.5.1	Pressure	7					
		3.5.2	Oxygen	7					
		3.5.3	Temperature	7					
	3.6	Cover I	ntegrity Monitoring	8					
	3.7	Gas Ge	eneration Estimate and Monthly Landfill Gas Flow Rates	8					
	3.8	Annual	Waste Acceptance Rate and Refuse In Place	9					
		3.8.1	Non-Degradable Waste Areas	9					
SECT	ION II.	SSM	I Plan Report	10					
SECT	ION III	. Title	V Semi-Annual Report	11					

Tables

Table 1a - GCCS Downtime

- Table 1b Flare A-2 Downtime
- Table 1c Flare A-3 Downtime
- Table 2 Individual Well Startups, Shutdowns and Decommissions
- Table 3 Wells with Positive Pressure
- Table 4 Wells with Oxygen Exceedances
- Table 5 Wells with Temperature Exceedances

Appendices

Appendix A – Responsible Official Certification Form

- Appendix B Existing GCCS Layout
- Appendix C Excerpts from the 2021 Source Test Results (report dated April 1, 2021)
- Appendix D Surface Emission and GCCS Component Leak Monitoring Results
- Appendix E Title V Semi-Annual Report

SECTION I. NSPS/BAAQMD RULE 8-34 SEMI-ANNUAL REPORT

1.0 INTRODUCTION

On behalf of the International Disposal Corporation of California (IDCC), SCS Engineers (SCS) hereby submits this New Source Performance Standard (NSPS), 40 Code of Federal Regulations (CFR) Part 60, Subpart WWW), and Bay Area Air Quality Management District (BAAQMD or District) Rule 8-34 Semi-Annual Report and Semi-Annual Start-up, Shutdown, and Malfunction (SSM) Plan Report for the period of February 1, 2021 through July 31, 2021 to the BAAQMD for the Newby Island Sanitary Landfill and Recyclery (Newby).

This Semi-Annual report also meets the requirements of the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for MSW landfills, 40 CFR 63, Subpart AAAA and complies with the requirements specified in Newby's Title V permit. In addition, Newby is not yet subject the new NESHAP, which goes into effect September 27, 2021, but will comply with the current version of the NESHAP until that time. This Semi-Annual report includes a certification signed by a Responsible Official which is provided in **Appendix A**. In accordance with the NESHAP for Landfills, this report is submitted semi-annually.

The Semi-Annual Report pertains to the landfill gas (LFG) collection and control system (GCCS) operated at Newby.

This report includes the following information, as required by BAAQMD Rule 8-34-411:

- All collection system and/or component downtime and reasons for the shutdown (8-34-501.1).
- All emission control system downtime and reason for the shutdown (8-34-501.2).
- Continuous temperature monitoring and dates of any excesses (8-34-501.3 and 507).
- Testing performed to satisfy of the requirements of this Rule (8-34-501.4).
- Monthly LFG flow rates and excesses (8-34-501.5).
- Collection and emission control system leak testing and any excesses, action taken to correct excesses, and re-monitored concentrations (8-34-501.6 and 503).
- Landfill surface monitoring, location of excesses, excess concentration, date discovered, actions taken to repair the excess, and re-monitored concentrations (8-34-501.6 and 506).
- Annual waste acceptance rate and the current amount of waste in-place (8-34-501.7).
- Records of non-degradable waste if area is excluded from LFG collection (8-34-501.8).
- Well head monitoring including gauge pressure, LFG temperature, and LFG oxygen concentration (8-34-501.9 and 505).

• Continuous flow monitoring (8-34-501.10).

Information summarizing the monitoring activities associated with the above-listed items is provided in the following sections.

2.0 SITE BACKGROUND INFORMATION

Newby is a municipal solid waste (MSW) landfill located in Milpitas, California and is owned and operated by International Disposal Corporation of California (IDCC). The municipal refuse disposal site is located in Santa Clara County on the western terminus of Dixon Landing Road. The 342-acre landfill began accepting waste circa 1930 and is currently in operation.

Newby is subject to NSPS Subpart XXX since it commenced construction, reconstruction, or modification after July 17, 2014. Pursuant to NSPS Subpart XXX, Newby was required to initiate gas collection and control system (GCCS) operations, including associated monitoring, recordkeeping, and reporting, on September 4, 2019 (30 months after the submittal of the NMOC Emissions Rate Report). For ease of recordkeeping, Newby elected to begin reporting effective September 1, 2019. However, due to potentially overlapping requirement, Newby is continuing to report semi-annually under NSPS Subpart WWW and Rule 8-34. A separate NSPS XXX Annual Report is also prepared.

2.1 EXISTING AIR PERMITS

Newby maintains a BAAQMD Permit to Operate (PTO) (Plant No. 9013), which includes conditions for the wellfield, collection system, and A-2 and A-3 flare stations (Condition No. 10423). This condition incorporates all applicable requirements from NSPS Subpart WWW and from BAAQMD Rule 8-34, which are addressed in this report. Newby also maintains a Title V Permit (Facility No. A9013), which expired on December 20, 2017. On June 20, 2017, a Title V Renewal Application was submitted to the BAAQMD. The site currently operates under an application shield.

A GCCS Design Plan was prepared for the site to review and determine the adequacy of the existing LFG system. The current design of the system was determined to be adequate to comply with both NSPS and BAAQMD Rule 8-34 requirements. The system design is based on the density of wells calculated to sufficiently extract the maximum flow of LFG generated, according to the United States (U.S.) Environmental Protection Agency (EPA) LFG emissions model (LandGEM). The GCCS is designed to control surface emissions, as well as to minimize subsurface lateral migration of LFG. Both the perimeter of the landfill and the landfill surface are monitored on a quarterly basis. Additional details regarding the GCCS are in the GCCS Design Plan that was previously submitted to the BAAQMD. A drawing showing the existing GCCS is provided in **Appendix B**.

2.2 EXISTING LANDFILL GAS COLLECTION AND CONTROL SYSTEM

The GCCS at Newby consists of extraction wells used to collect the LFG from within the landfill (the "wellfield") and a piping system (the "collection system") used to convey the collected LFG to the control systems for destruction. The LFG is extracted from the landfill through a combination of vertical gas extraction wells and horizontal gas extraction trenches/pipes, as well as leachate collection system components. All landfill gas is controlled by one of more of the following means: The A-2 and A-3 Flares or the IC engine power generators operated by the San Jose/Santa Clara Water Pollution Control Plant (Facility #A778).

A diagram of the GCCS displaying system component locations is shown in the site plan(s) provided in **Appendix B**.

3.0 MONITORING AND RECORDS

3.1 CONTINUOUSLY MONITORED PARAMETERS

According to BAAQMD Rule 8-34-301.1, the GCCS must be operated continuously. To comply with this requirement, the landfill owner/operator is required to maintain full-time operation of the LFG collection system and control devices, as well as individual extraction wells. Downtime for any of these components must be reported in the Rule 8-34 Semi-Annual Report. This information is summarized below and in the attached tables. Records of continuously monitored parameters are available for review at the site.

3.1.1 Gas Extraction System Downtime

During the reporting period, the LFG extraction system was off-line on several occasions for a total of 31.53 hours. Shutdowns involved pre-programmed or manual system shutdowns prior to noncompliant operation or equipment failure, and involved inspection, maintenance and/or repair of the GCCS, and thus meet the criteria for allowed GCCS downtime, as specified in Rule 8-34-113 and in accordance with the BAAQMD November 5, 2018 Compliance Advisory, with the exemption of 12 events. These 12 events occurred on March 10, 12, 27 and 28; May 5, 30, and 31; July 10, 15, and 22, 2021, and were due to air blower low-flow alarms, site-wide power outages due to unforeseen utility outage events, a tripped power supply, maintenance conducted on Condensate Sump 18, and flame failure conditions.

Reportable Compliance Activity (RCA) forms were submitted to the BAAQMD on March 11, 12, 28, and 29; May 5, 30, and 31; July 12, 16, and 22, 2021, respectively, to request breakdown relief and to report the parametric excursions.

BAAQMD issued RCA IDs 07Y71 and 07Y72 for the breakdown and excursion, respectively, for the March 10, 2021 event; RCA IDs 07Y73 and 07Y74, for the March 12, 2021 event; RCA IDs 07Y89 and 07Y90 for the March 27, 2021 event; RCA IDs 07Y92 and 07Y93 for the March 28, 2021 event; RCA IDs 07Z38 and 07Z39 for the May 5, 2021 event; RCA IDs 07Z82 and 07Z86 for the May 30, 2021 event; RCA IDs 07Z83 and 07Z87, 07Z84 and 07Z88, 07Z85 and 07Z89 for the May 31, 2021 events; RCA IDs 08A51 and 08A52 for the July 10, 2021 event; RCA IDs 08A58 and 08A59 for the July 15, 2021 event; and RCA IDs 08A73 and 08A74 for the July 22, 2021 event.

On March 20, April 6, May 14, June 10 and 11, July 21, 26, 30, 2021, Newby submitted the Combined 10/30-Day Title V Reports and Notifications for the respective RCA IDs to the BAAQMD.

A summary of the GCCS downtime for this reporting period is provided in **Table 1a**, including the date, reason for the downtime, description of the corrective measure(s) implemented to resume GCCS operation, and the total elapsed time for each event. Gas extraction system downtime records are available for review at the site.

3.1.2 Emission Control System Downtime

During the reporting period, the A-2 and A-3 Flares were off-line on several occasions. Summaries of the A-2 and A-3 flare downtime are provided in **Table 1b and 1c**, including the date, reason for the downtime, and the total elapsed time for each event. During the reporting period, downtime for the

A-2 Flare occurred over a cumulative period of approximately 65.12 hours and for the A-3 Flare over a cumulative period of approximately 42.35 hours. Emission control system downtime records are available for review at the site.

3.1.3 Individual Well Downtime

In some instances, the entire GCCS may not go off-line, but individual extraction wells may be taken off-line for inspection, maintenance, and/or repair, and active filling in the vicinity of the well, as well as for other unforeseen circumstances. These are generally planned events, although such events can occur without notice. During the reporting period, several wells were temporarily taken offline or were taken offline during a previous reporting period and remained offline for a portion of the reporting period due to active filling and construction activities occurring in their vicinity.

On February 19, 2021 and May 25, 2021, IDCC submitted Requests for Limited Exemption from the requirements of BAAQMD Regulation 8-34 117.1 through 117.6 and 118 Construction Plan (118 Plan) for construction activities to the BAAQMD. These wells were taken off-line in accordance with the requirements of Rule 8-34.

Four (4) wells, (NIHC17-2, NIHC17-3, NILEW741, NILMW015), remained offline at the end of the reporting period and will be reported as a startup once the filling operations around each well cease and the wells are brought back online.

Two (2) horizontal collectors and ten (10) vertical wells were abandoned during the reporting period due to poor gas production.

Pursuant to permit condition No. 10423, Part 6, the owner/operator must notify the District of expected installation or decommissioning dates. A combined Well Decommissioning and Startup Notification Letter was submitted to the BAAQMD for the well actions noted above.

Details of individual well shutdown and well startups occurring during the reporting period are provided in **Table 2**. Please see the Semi-Annual Startup, Shutdown, and Malfunction (SSM) Report included in this submittal for additional details.

3.1.4 Flow Meter and Temperature Gauge Downtime

The continuous operation of the GCCS is measured through the continuous measurement of LFG flow to each flare and flare combustion temperature. As required by Rule 8-34, each flare at Newby is equipped with flow measuring devices and temperature gauges that provide continuous readout displays using digital chart recorders. During the reporting period, the flow meter(s) and temperature gauge(s)/recorders at the flare station did not go out of operation due to malfunction or other breakdown conditions. Continuous monitoring and calibration information are available for review at the site.

3.1.5 Flare Combustion Zone Temperature

Newby is required by permit condition No. 10423, Part 9 to operate the A-2 and A-3 Flares in such a manner that the combustion zone temperature of the flares does not drop below the permitted limit of 1,400 and 1,501 degrees Fahrenheit (°F), respectively, (averaged over a 3-hour period) or a higher or lower temperature based on the most recent source test.

During the reporting period, the minimum temperature at which the A-2 flare was required to operate was 1,452°F (1,502 °F minus 50 °F), based on the February 23, 2021 source test performed by Blue Sky Environmental, Inc. (final report issued on April 1, 2021). During the reporting period, the minimum temperature at which the A-3 flare was required to operate was 1,454°F (1,504 °F minus 82 °F), based on the February 23, 2021 source test performed by Blue Sky Environmental, Inc. (final report issued on April 1, 2021).

During the reporting period, the A-2 and A-3 flares operated above the minimum established 3-hour average temperature limit at all times, except during periods of SSM.

Flare temperature records are available for review at the site.

3.2 COMPONENT LEAK QUARTERLY MONITORING

During the reporting period, quarterly testing of the GCCS components for any leaks with a methane concentration of greater than 1,000 parts per million by volume (ppmv), as required by BAAQMD Rule 8-34-503, was conducted. Testing in the wellfield and at the flare station was performed using an organic vapor analyzer (OVA), which was calibrated on the same day as the testing. Monitoring results and calibration records are provided in **Appendix D** and are available for review at the site.

3.2.1 First Quarter 2021 Monitoring

SCS Field Services (SCSFS) conducted the component leak testing of the wellfield and flare station on March 27, 2021. No component leaks above 1,000 ppmv were detected in the wellfield or at the flare station during the first quarter 2021 monitoring event.

3.2.2 Second Quarter 2021 Monitoring

SCSFS conducted the component leak testing of the flare station and wellfield on April 9, 2021. No component leaks above 1,000 ppmv were detected in the wellfield or at the flare station during the second quarter 2021 monitoring event.

3.3 CONTROL EFFICIENCY

LFG flares A-2 and A-3 was also tested on February 23, 2021 to demonstrate compliance with the control efficiency standard of 98 percent NMOC destruction efficiency or outlet concentration of 30 ppmv of NMOC as methane (for flares) as required by BAAQMD Rules 8-34-301.3, 8-34-412, 8-34-501.4, and Condition # 10423, Part 11. The NMOC destruction efficiency for the A-2 Flare during the February 2021 source test was measured to be >99.56 percent by weight, and the NMOC as methane concentration in the flare outlet was <2.5 ppmv. The NMOC destruction efficiency for the A-3 Flare during the February 2021 source test was measured to be >99.57 percent by weight, and the NMOC as methane concentration in the flare outlet was <2.5 ppmv. As such, flares A-2 and A-3 is in compliance with the aforementioned rules and permit condition by meeting the ppmv limit.

Excerpts from the February 2021 source test report dated April 1, 2021, summarizing the test results, are provided in **Appendix C** of this report.

3.4 LANDFILL SURFACE EMISSIONS MONITORING

Surface emissions monitoring (SEM) was conducted at Newby on a quarterly basis during the reporting period, in accordance with BAAQMD Rule 8-34-303 and 8-34-506. The SEM events were conducted in accordance with the SEM plan in the landfill's GCCS Design Plan. Testing was performed using a Trimble SiteFID Landfill Gas Monitor Portable Flame Ionization Detector (FID), which was calibrated the same day as the testing. The results of this monitoring are summarized below. Reports for each quarterly monitoring event are provided in **Appendix D**. Records of SEM are available for review at the site.

3.4.1 First Quarter 2021 Monitoring

SCSFS field technicians monitored the landfill surface for leaks with a methane concentration of greater than 500 ppmv above background on March 12, 15, 16, 17, 19, 22, 23, 26, 27, and 29, 2021. Surface emissions in excess of 500 ppmv were detected at eighteen (18) locations during the first quarter 2021 monitoring event. The locations with the exceedances and associated methane concentrations are provided in the first quarter 2021 SEM report (**Appendix D**).

SCSFS field technicians performed appropriate corrective actions, including flow increases to the surrounding extraction wells, cover repairs, and installation of borehole emission control systems. SCSFS completed the 10-day re-monitoring events for these locations on March 19 and 29, 2021. All the locations were under the 500 ppmv threshold and thus back in compliance. SCSFS performed the 1-month re-monitoring event, as required by NSPS, on April 9, 2021, and all locations remained in compliance.

3.4.1 Second Quarter 2021 Monitoring

SCSFS monitored the landfill surface for leaks with a methane concentration of greater than 500 ppmv above background on April 8, 9, 12, and 13, 2021. Surface emissions in excess of 500 ppmv were detected at twenty-seven (27) locations during the second quarter 2021 monitoring event. The locations with the exceedances and associated methane concentrations are provided in the second quarter 2021 SEM report (**Appendix D**).

SCSFS field technicians performed appropriate corrective actions, including flow increases to the surrounding extraction wells and borehole repairs. SCSFS completed the 10-day re-monitoring event for these locations on April 22, 2021 and performed the 1-month re-monitoring event, as required by NSPS, on May 11, 2021, and twenty-one (21) locations remained in compliance. In accordance with NSPS requirements for expansion and remediation, the exceedance locations need to be remediated and returned to compliance in accordance with the rule (expansion of the collection system or an alternative compliance option if approved by the BAAQMD) within 120 days of the detected initial instantaneous exceedance, which will be due by August 11, 2021. On August 2, 2021, a new shallow slope collector was started up to fulfill the 120-day requirement.

3.5 WELLHEAD MONTHLY MONITORING

Monthly wellhead monitoring for pressure, temperature, and oxygen content was conducted by SCSFS to comply with BAAQMD Rule 8-34-305 and 9-34-414. The results of this monitoring are summarized below. Wellhead exceedances are provided in **Table 3, 4, and 5.**

Please note that during the reporting period, all active wells were monitored.

3.5.1 Pressure

The majority of the operational extraction wells were under negative pressure during the monitoring events conducted during the reporting period, in accordance with BAAQMD Rule 8-34-305 and 8-34-414. For any wells that exhibited positive pressure during this reporting period, the identification number and dates that each well was operating with positive pressure are provided in **Table 3**. The table also includes corrective action and re-monitoring results. In all instances, corrective action and re-monitoring were performed in accordance with the 5- and 15-day requirements specified in the NSPS regulations and in Rule 8-34.

Wells NIHC17-2, NIHC17-3, NILEW066, NILEW451, NILEW464, NILEW465, NILEW496, NILEW497, NILEW626, NILEW664, NILEW665, NILEW707, NILEW726, NILEW733, NILEW742, NISS17-3, and NISS17-4 demonstrated a positive pressure reading at the end of the reporting period. These wells will be returned under negative pressure by the applicable compliance dates, as specified in BAAQMD Rule 8-34-414, and compliance will be documented in the next semi-annual report.

As of the end of the previous reporting period, no wells were operating under positive pressure.

3.5.2 Oxygen

Newby has elected to use oxygen as its compliance standard under Rule 8-34-305, rather than nitrogen. Per Newby's PTO Condition No. 10423, Part 6(c), the oxygen concentration limit does not apply to the wells listed below, provided that the oxygen concentration in the LFG at the main header does not exceed five percent oxygen by volume (dry basis) and the methane concentration in the LFG at the main header is greater than 35 percent by volume (dry basis). The oxygen Higher Operating Value (HOV) of 15% is approved for wells: 30RR, EW-13, IOIR, HC- 201. The oxygen HOV of 20% is approved for wells: HC-231, HC- 232, HC- 235, HC-237, HC- 241.

The majority of the wells were operating within the regulatory limit of five (5) percent oxygen or their respective oxygen HOVs during the monitoring events conducted during the reporting period. The dates when wells were operating with excessive oxygen, and the well identification number, corrective actions, and re-monitoring results for these wells are provided in **Table 4**.

As of the end of the reporting period, all of the operating wells were operating with an oxygen concentration below the 5 percent limit or their respective oxygen HOVs except for wells NI3EW40R, NILEW217, NILEW431, NILEW463, NILEW514, NILEW677, NILEW685, NILEW698, NILEW704, NILEW720, NILEW723, NILEW747, NILEW748, NILEW753, NILEW760, NILEW769, NILLEW16, NILMW002, NILMW020, NILMW034, NILW573A, NILW574A, and NLCRST05. The wells will be returned to below the 5 percent limit as specified in BAAQMD Rule 8-34-414, and compliance will be documented in the next semi-annual report.

As of the end of the previous reporting period, wells NILEW723, NILLEW16, and NILW475A were operating with an oxygen concentration above the 5 percent limit. The wells were back in compliance within the timeline specified in 8-34-414.

3.5.3 Temperature

BAAQMD Rule 8-34-305 requires the landfill gas temperature in each wellhead to measure less than 55 degrees Celsius (°C) or 131°F. However, Condition No. 10423, Part 6(d) in Newby's BAAQMD

PTO allows Newby to operate wells EW-39R, EW-40R, EW-14, EW-37, EW-005, EW-00A, EW-00D, EW-00E, EW-019, EW-025, EW-106, EW-218, EW-224, EW-243, EW-51R, EW-54R, NI3EW07R, NI3EW31, NILEW106, NILEW464, NILEW466, NILEW479, NILEW481, NILEW482, NILEW488, NILEW489, NILEW497, NILEW511, NILEW568, NILEW570, NILEW599, NILEW601, NILEW604, NILEW617, NILEW621, NILEW622, NILEW623, NILEW626, NILEW628, NILEW663, NILEW664, NILEW665, NILEW666, and NILEW667 at an alternative temperature of 145°F and well EW-07R at an alternative temperature of 150°F.

The majority of wells were operating within their respective limits of 131°F, 145°F, and 150°F during the monitoring events conducted during the reporting period. The dates when wells were operating above their respective temperature limits, and the well identification number, correction actions, and re-monitoring results for these wells are provided in **Table 5**.

As of the end of the reporting period, wells NILEW690, NILEW701, and NILEW752 were operating with a temperature higher than 131 °F. The wells will be returned to below the 131 °F limit as specified in BAAQMD Rule 8-34-414, and compliance will be documented in the next semi-annual report.

As of the end of the previous reporting period, wells NILEW690 and NILEW703 were operating with a temperature higher than 131 °F. These wells returned to compliance within the timelines specified in 8-34-414.

An HOV application to request an increase of the allowable wellhead temperature limit from 131°F to 145°F for wells NILEW690, NILEW691, NILEW701, and NILEW703 was submitted to the USEPA and BAAQMD on February 6, 2020. Addendums requesting an increase of the allowable wellhead temperature limit from 131°F to 145°F for wells NILEW476, NILEW642, NILEW703, NILEW707, and NILEW752 were submitted in April 2020 and August 2021. The BAAQMD has provided approval of these HOV limits pending approval from the USEPA. IDCC has followed up with the USEPA regarding the application in August 2020, September 2020, October 2020, April 2021, and August 2021 but no response has been received. IDCC is currently awaiting a response to the HOV requests.

3.6 COVER INTEGRITY MONITORING

Under BAAQMD Rule 8-34-510 and the NSPS, the landfill surface must be monitored at least monthly for evidence of cracks or other surface integrity issues, which could allow for surface emissions. During the reporting period, cover integrity monitoring was conducted by SCSFS personnel in conjunction with the wellhead monitoring on February 25, March 21, April 20, May 31, June 29, July 29, 2021 using procedures specified in the GCCS Design Plan. The observations during these monitoring events indicated the landfill surface was in good condition. In the event visual evidence suggested otherwise, the surface will be promptly repaired. Records of cover integrity monitoring are available for review upon request.

3.7 GAS GENERATION ESTIMATE AND MONTHLY LANDFILL GAS FLOW RATES

The Newby is not subject to Rule 8-34-404 because the Landfill does not operate less than continuously. Therefore, monthly flow data are not required to be reported.

3.8 ANNUAL WASTE ACCEPTANCE RATE AND REFUSE IN PLACE

Newby is an active landfill that continues to accept refuse for disposal. From February 1, 2021 through July 31, 2021, the site accepted 634,864.35 tons of decomposable waste and cover material, resulting in a cumulative waste-in-place total of 36,559,475.68 tons as of July 31, 2021.

3.8.1 Non-Degradable Waste Areas

No areas of non-degradable waste deposition are known to exist. There are no landfill areas that are excluded from the collection system requirements.

SECTION II. SSM PLAN REPORT

As mentioned previously, Newby is subject to 40 CFR Part 63, Subpart AAAA, the NESHAPS for MSW Landfills. Newby maintains a SSM Plan which documents the procedures for operating and maintaining the affected elements of the GCCS during startup, shutdown, and malfunction (SSM). The SSM events that occurred during the reporting period of February 1, 2021 through July 31, 2021 are documented in this section.

During the reporting period, there were forty-nine (49) SSM events involving shutdown of the entire GCCS. Thirty-five (35) of these events were planned startups/shutdowns and fourteen (14) of these startup/shutdown events were associated with a malfunction of the GCCS.

During the reporting period, there were sixty four (64) SSM events involving the wellfield. Additional wells were offline from previous reporting periods and remained offline for all or a portion of the reporting period. These events involved planned shutdowns of several wells on various dates due to active landfilling in the vicinity of these wells. All wells except for NIHC17-2, NIHC17-3, NILEW741, and NILMW015 remained offline as of the end of the reporting period and will be reported as startups once the landfilling activities in the vicinity of these wells cease and the wells are brought back online. There were no malfunctions of any of the wellfield components during the reporting period.

During the reporting period, there were no planned startups/shutdowns or known malfunctions of LFG monitoring equipment (e.g. flow measuring/recording device, temperature measuring/recording device).

In each case described above, the SSM Plan was successfully implemented. Specific information regarding these SSMs are included in **Tables 1a (entire GCCS)**, **1b (flares)**, **and 2 (wells)**.

No revisions were made to the SSM Plan during this reporting period. A copy of the SSM Plan and all revisions/addenda are kept on file at the facility for at least five (5) years and are available to appropriate regulatory agency personnel for inspection.

SECTION III. TITLE V SEMI-ANNUAL REPORT

As specified in 40 Code of Federal Regulation (CFR) Part 70, reports of any required monitoring must be submitted at least every 6 months. All instances of deviations from permit requirements for the semi-annual reporting period, specified in the Landfill's Initial Title V Permit as August 1 through January 31 and February 1 through July 31, must be clearly identified in each report. This Title V Report covers the February 1, 2021 through July 31, 2021 reporting period.

This report has been prepared based on Table VII (Applicable Limits and Compliance Monitoring Requirements) of the Landfill's MFR Permit. The report includes a certification by a responsible official, consistent with §70.5(d).

The full Title V Semi-Annual Report, including certification by a responsible official, is provided as **Appendix E**.

Tables

Table 1a. GCCS Downtime Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Shutdown	Startup	Downtime Hours	Reason for Downtime	BAAQMD Exemption	Corrective Actions Taken
2/1/2021 8:50	2/1/2021 10:42	1.87	Flare inspections (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/9/2021 8:24	2/9/2021 8:34	0.17	Flare source testing (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/9/2021 10:10	2/9/2021 10:56	0.77	Flare source testing (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/9/2021 11:24	2/9/2021 11:36	0.20	Flare source testing (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/15/2021 9:22	2/15/2021 9:28	0.10	Zink Preventative maintenance (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/15/2021 10:44	2/15/2021 10:52	0.13	Zink Preventative maintenance (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/18/2021 13:10	2/18/2021 13:18	0.13	Blower Swap (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/19/2021 11:06	2/19/2021 11:14	0.13	Air blower troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/22/2021 11:20	2/22/2021 11:26	0.10	Air filter cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/23/2021 14:54	2/23/2021 15:00	0.10	Flare source testing (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/10/2021 13:26	3/10/2021 13:32	0.10	Utility outage (RCA submitted)	RCA Submitted for this event (RCA IDs 07Y71 and 07Y72)	O&M personnel completed inspection then restarted the flares.
3/12/2021 9:20	3/12/2021 9:56	0.60	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event (RCA IDs 07Y73 and 07Y74)	O&M personnel completed inspection then restarted the flares.
3/12/2021 12:54	3/12/2021 13:00	0.10	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/17/2021 11:24	3/17/2021 11:30	0.10	Gas Blower inspection (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/27/2021 15:04	3/27/2021 15:10	0.10	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event (RCA IDs 07Y89 and 07Y90)	O&M personnel completed inspection then restarted the flares.
3/28/2021 12:42	3/28/2021 12:48	0.10	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event IDs (RCA IDs 07Y92 and 07Y93)	O&M personnel completed inspection then restarted the flares.
3/31/2021 8:34	3/31/2021 13:04	4.50	Condensate Knock out Pot Demistier pad Installation (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/31/2021 13:54	3/31/2021 14:02	0.13	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/31/2021 14:56	3/31/2021 15:02	0.10	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/31/2021 15:22	3/31/2021 15:30	0.13	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/31/2021 15:58	3/31/2021 16:24	0.43	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
4/15/2021 17:02	4/15/2021 17:08	0.10	Flame arrestor servicing (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
4/15/2021 17:12	4/15/2021 17:14	0.03	Flame arrestor servicing (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
4/15/2021 17:20	4/15/2021 18:12	0.87	Flame arrestor servicing (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
4/23/2021 13:48	4/23/2021 13:56	0.13	Air Combustion blower filter cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.

Table 1a. GCCS Downtime Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Shutdown	Startup	Downtime Hours	Reason for Downtime	BAAQMD Exemption	Corrective Actions Taken
4/23/2021 14:08	4/23/2021 14:32	0.40	Air Combustion blower filter cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/4/2021 13:14	5/4/2021 13:54	0.67	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/5/2021 13:18	5/5/2021 13:50	0.53	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event (RCA IDs 07Z38 and 07Z39)	O&M personnel completed inspection then restarted the flares.
5/6/2021 10:58	5/6/2021 11:04	0.10	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/6/2021 11:08	5/6/2021 12:32	1.40	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/24/2021 14:20	5/24/2021 14:28	0.13	Air Combustion blower filter cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/26/2021 7:52	5/26/2021 8:00	0.13	Burner tip cleaning event (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/30/2021 14:40	5/30/2021 14:45	0.08	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event (RCA IDs 07Z82 and 07Z86)	O&M personnel completed inspection then restarted the flares.
5/31/2021 10:45	5/31/2021 10:51	0.10	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event (RCA IDs 07Z83 and 07Z87)	O&M personnel completed inspection then restarted the flares.
5/31/2021 14:17	5/31/2021 15:30	1.22	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event (RCA IDs 07Z84 and 07Z88)	O&M personnel completed inspection then restarted the flares.
5/31/2021 16:43	5/31/2021 17:11	0.47	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event (RCA IDs 07Z85 and 07Z89)	O&M personnel completed inspection then restarted the flares.
6/16/2021 9:36	6/16/2021 9:58	0.37	Air blower troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
6/16/2021 10:52	6/16/2021 11:06	0.23	Air blower troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
6/16/2021 14:18	6/16/2021 14:36	0.30	Air blower troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
6/22/2021 14:28	6/22/2021 14:36	0.13	Air Combustion blower filter cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/10/2021 20:24	7/11/2021 8:00	11.60	Utility outage (RCA Submitted)	RCA Submitted for this event (RCA IDs 08A51 and 08A52)	O&M personnel completed inspection then restarted the flares.
7/11/2021 11:56	7/11/2021 12:06	0.17	John Zink Flow Meter Installation (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/15/2021 13:44	7/15/2021 13:52	0.13	Condensate Sump 18 Maintenance (RCA submitted)	RCA Submitted for this event (RCA IDs 08A58 and 08A59)	O&M personnel completed inspection then restarted the flares.
7/16/2021 8:08	7/16/2021 8:14	0.10	Air Combustion Blower Filter Cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/22/2021 1:16	7/22/2021 1:24	0.13	Flame Failure (RCA submitted)	RCA Submitted for this event (RCA IDs 08A73 and 08A74)	O&M personnel completed inspection then restarted the flares.
7/22/2021 11:14	7/22/2021 11:20	0.10	Gas Blower Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/28/2021 13:52	7/28/2021 13:58	0.10	Low Gas Flow Due to Construction Activities (118)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/28/2021 14:08	7/28/2021 15:50	1.70	Low Gas Flow Due to Construction Activities (118)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
	Total:	31.53		•	

Notes:

Events in bold type denotes Malfunction Events

Downtimes listed represent periods when all landfill gas combustion devices were offline concurrently (no gas flow from the collection system).

All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113 requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018, with the exception of the events that occurred on March 10, 12, 27, and 28, May 5, 30, and 31, and July 10, 15, and 22, 2021, which involved utility outages and air blower low flow shutdowns. These events were considered reportable compliance activities (RCA) and breakdown relief was requested.

Table 1b. Flare (A-2) Downtime Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Shutdown	Startup	Downtime Hours	Reason for Downtime	
2/1/21 8:50	2/1/21 11:20	2.50	Flare inspections (113)	
2/9/21 8:24	2/9/21 8:34	0.17	Thermocouple troubleshooting/ Flare pre source test (113)	
2/9/21 8:38	2/9/21 8:48	0.17	Thermocouple troubleshooting/ Flare pre source test (113)	
2/9/21 8:50	2/9/21 9:40	0.83	Thermocouple troubleshooting/ Flare pre source test (113)	
2/9/21 10:10	2/9/21 10:56	0.77	Thermocouple troubleshooting/ Flare pre source test (113)	
2/9/21 11:24	2/9/21 11:50	0.43	Thermocouple troubleshooting/ Flare pre source test (113)	
2/9/21 12:08	2/9/21 14:30	2.37	Thermocouple troubleshooting/ Flare pre source test (113)	
2/9/21 14:42	2/9/21 15:00	0.30	Thermocouple troubleshooting/ Flare pre source test (113)	
2/15/21 9:22	2/15/21 10:12	0.83	Zink preventative maintenance (113)	
2/15/21 10:44	2/15/21 11:30	0.77	Zink preventative maintenance (113)	
2/15/21 12:00	2/15/21 12:38	0.63	Zink preventative maintenance (113)	
2/18/21 13:10	2/18/21 13:28	0.30	Blower swap (113)	
2/19/21 11:06	2/19/21 11:34	0.47	Air blower troubleshooting (113)	
2/19/21 11:46	2/19/21 11:52	0.10	Air blower troubleshooting (113)	
2/19/21 11:56	2/19/21 12:00	0.07	Air blower troubleshooting (113)	
2/19/21 12:02	2/19/21 12:08	0.10	Air blower troubleshooting (113)	
2/22/21 11:20	2/22/21 11:26	0.10	Air blower troubleshooting (113)	
2/22/21 11:30	2/22/21 11:36	0.10	Air blower troubleshooting (113)	
2/22/21 11:52	2/22/21 11:58	0.10	Air blower troubleshooting (113)	
2/22/21 13:24	2/22/21 15:36	2.20	Air filter cleaning (113)	
2/23/21 14:52	2/23/21 15:00	0.13	Flare source testing (113)	
3/10/21 13:26	3/10/21 13:32	0.10	Utility outage (RCA submitted, RCA IDs 07Y71 and 07Y72)	
3/12/21 9:18	3/12/21 9:56	0.63	Air Blower low flow shut down (RCA submitted, RCA IDs 07Y73 and 07Y74)	
3/12/21 12:52	3/12/21 14:18	1.43	Air Blower maintenance and troubleshooting (113)	
3/17/21 11:22	3/17/21 11:44	0.37	Gas blower inspection (113)	
3/27/21 15:04	3/27/21 16:26	1.37	Air Blower low flow shut down (RCA submitted, RCA IDs 07Y89 and 07Y90)	
3/28/21 12:42	3/28/21 14:39	1.95	Air Blower low flow shut down (RCA submitted, RCA IDs 07Y92 and 07Y93)	
3/31/21 8:34	3/31/21 13:06	4.53	Condensate Knock out Pot Demistier Pad Installation (113)	
3/31/21 13:54	3/31/21 14:32	0.63	Air Blower maintenance and troubleshooting (113)	
3/31/21 14:54	3/31/21 15:08	0.23	Air Blower maintenance and troubleshooting (113)	
3/31/21 15:22	3/31/21 15:42	0.33	Air Blower maintenance and troubleshooting (113)	
3/31/21 15:44	3/31/21 16:24	0.67	Air Blower maintenance and troubleshooting (113)	
4/15/21 17:00	4/15/21 18:16	1.27	Flame arrestor servicing (113)	
4/23/21 13:48	4/23/21 14:34	0.77	Air Combustion blower filter cleaning (113)	
5/4/21 13:12	5/4/21 13:58	0.77	Air Blower maintenance and troubleshooting (113)	

Table 1b. Flare (A-2) Downtime Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Shutdown	Startup	Downtime Hours	Reason for Downtime	
5/5/21 13:22	5/5/21 13:54	0.53	Air Blower low flow shut down (RCA submitted, RCA IDs 07Z38 and 07Z39)	
5/6/21 10:58	5/6/21 12:32	1.57	Air Blower maintenance and troubleshooting (113)	
5/24/21 14:20	5/24/21 14:40	0.33	Air Blower maintenance and troubleshooting (113)	
5/26/21 7:52	5/26/21 16:04	8.20	Burner tip cleaning event (113)	
5/30/21 14:46	5/30/21 18:32	3.77	Air Blower low flow shut down (RCA submitted, RCA IDs 07Z82 and 07Z86)	
5/31/21 10:50	5/31/21 12:30	1.67	Air Blower low flow shut down (RCA submitted, RCA IDs 07Z83 and 07Z87)	
5/31/21 14:22	5/31/21 15:40	1.30	Air Blower low flow shut down (RCA submitted, RCA IDs 07Z84 and 07Z88)	
5/31/21 16:48	5/31/21 17:28	0.67	Air Blower low flow shut down (RCA submitted, RCA IDs 07Z85 and 07Z89)	
6/4/21 12:18	6/4/21 12:30	0.20	Air Blower low flow shut down	
6/8/21 7:26	6/8/21 8:20	0.90	Air blower filter cleaning (113)	
6/14/21 7:56	6/14/21 8:02	0.10	Air Blower low flow shut down	
6/16/21 9:36	6/16/21 10:48	1.20	Air blower troubleshooting (113)	
6/16/21 10:52	6/16/21 11:14	0.37	Air blower troubleshooting (113)	
6/16/21 11:48	6/16/21 12:06	0.30	Air blower troubleshooting (113)	
6/16/21 12:40	6/16/21 12:52	0.20	Air blower troubleshooting (113)	
6/16/21 14:18	6/16/21 14:38	0.33	Air blower troubleshooting (113)	
6/22/21 14:28	6/22/21 15:26	0.97	Air Combustion blower filter cleaning (113)	
7/10/21 20:24	7/11/21 8:00	11.60	Utility outage (RCA submitted, RCA IDs 08A51 and 08A52)	
7/11/21 11:56	7/11/21 12:06	0.17	High Gas Flow	
7/15/21 13:44	7/15/21 13:52	0.13	Condensate Sump 18 Maintenance (RCA submitted, RCA IDs 08A58 and 08A59)	
7/16/21 8:08	7/16/21 8:14	0.10	Air Combustion Blower Filter Cleaning (113)	
7/22/21 1:16	7/22/21 1:24	0.13	Flame Failure (RCA submitted, RCA IDs 08A73 and 08A74)	
7/22/21 11:14	7/22/21 11:20	0.10	Gas Blower Maintenance and Troubleshooting (113)	
7/28/21 13:52	7/28/21 13:58	0.10	Low Gas Flow Due to Construction Activities (118)	
7/28/21 14:08	7/28/21 15:50	1.70	Low Gas Flow Due to Construction Activities (118)	
Tot	tal	65.12		

Notes:

Events in **bold type denotes Malfunction Events**

All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113 requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018, with the exception of the events that occurred on March 10, 12, 27, and 28, May 5, 30, and 31, and July 10, 15, and 22, 2021, which involved utility outages and air blower low flow shutdowns. These events were considered reportable compliance activities (RCA) and breakdown relief was requested.

Table 1c. Flare (A-3) Downtime Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Shutdown	Startup	Downtime Hours	Reason for Downtime	
2/1/2021 8:50	2/1/2021 10:42	1.87	Flare inspections (113)	
2/9/2021 8:24	2/9/2021 8:38	0.23	Flare source testing (113)	
2/9/2021 10:10	2/9/2021 11:36	1.43	Flare source testing (113)	
2/15/2021 9:22	2/15/2021 9:28	0.10	Zink preventative maintenance (113)	
2/15/2021 10:44	2/15/2021 10:52	0.13	Zink preventative maintenance (113)	
2/18/2021 13:10	2/18/2021 13:18	0.13	Blower swap (113)	
2/19/2021 11:06	2/19/2021 11:14	0.13	Air blower troubleshooting (113)	
2/22/2021 11:20	2/22/2021 11:26	0.10	Air filter cleaning (113)	
2/23/2021 14:54	2/23/2021 15:00	0.10	Flare source testing (113)	
3/10/2021 13:26	3/10/2021 15:20	1.90	Utility outage (RCA submitted, RCA IDs 07Y71 and 07Y72)	
3/12/2021 9:20	3/12/2021 10:30	1.17	Air Blower low flow shut down (RCA submitted, RCA IDs 07Y73 and 07Y74)	
3/12/2021 12:54	3/12/2021 13:00	0.10	Air Blower maintenance and troubleshooting (113)	
3/17/2021 11:24	3/17/2021 11:30	0.10	Gas blower inspection (113)	
3/27/2021 15:04	3/27/2021 15:10	0.10	Air Blower low flow shut down (RCA submitted, RCA IDs 07Y89 and 07Y90)	
3/28/2021 12:42	3/28/2021 12:49	0.12	Air Blower low flow shut down (RCA submitted, RCA IDs 07Y92 and 07Y93)	
3/31/2021 8:34	3/31/2021 13:04	4.50	Condensate Knock out Pot Demistier Pad Installation (113)	
3/31/2021 13:54	3/31/2021 14:02	0.13	Air Blower maintenance and troubleshooting (113)	
3/31/2021 14:56	3/31/2021 15:02	0.10	Air Blower maintenance and troubleshooting (113)	
3/31/2021 15:22	3/31/2021 15:30	0.13	Air Blower maintenance and troubleshooting (113)	
3/31/2021 15:58	3/31/2021 16:26	0.47	Air Blower maintenance and troubleshooting (113)	
4/15/2021 17:02	4/15/2021 17:08	0.10	Flame arrestor servicing (113)	
4/15/2021 17:12	4/15/2021 17:14	0.03	Flame arrestor servicing (113)	
4/15/2021 17:20	4/15/2021 18:12	0.87	Flame arrestor servicing (113)	
4/23/2021 13:48	4/23/2021 13:56	0.13	Air Combustion blower filter cleaning (113)	
4/23/2021 14:08	4/23/2021 14:32	0.40	Air Combustion blower filter cleaning (113)	
5/4/2021 13:14	5/4/2021 13:54	0.67	Air Blower maintenance and troubleshooting (113)	
5/5/2021 13:24	5/5/2021 13:30	0.10	Air Blower low flow shut down (RCA submitted, RCA IDs 07Z38 and 07Z39)	
5/5/2021 13:42	5/5/2021 13:58	0.27	Air Blower low flow shut down (RCA submitted, RCA IDs 07Z38 and 07Z39)	
5/6/2021 10:58	5/6/2021 11:04	0.10	Air Blower maintenance and troubleshooting (113)	
5/6/2021 11:08	5/6/2021 12:32	1.40	Air Blower maintenance and troubleshooting (113)	
5/24/2021 14:20	5/24/2021 14:28	0.13	Air Combustion blower filter cleaning (113)	
5/26/2021 7:52	5/26/2021 8:00	0.13	Burner tip cleaning event (113)	
5/30/2021 14:46	5/30/2021 14:54	0.13	Air Blower low flow shut down (RCA submitted, RCA IDs 07Z82 and 07Z86)	
5/31/2021 10:52	5/31/2021 10:58	0.10	Air Blower low flow shut down (RCA submitted, RCA IDs 07Z83 and 07Z87)	
5/31/2021 14:22	5/31/2021 15:36	1.23	Air Blower low flow shut down (RCA submitted, RCA IDs 07Z84 and 07Z88)	
5/31/2021 16:50	5/31/2021 17:18	0.47	Air Blower low flow shut down (RCA submitted, RCA IDs 07Z85 and 07Z89)	

Table 1c. Flare (A-3) Downtime Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Shutdown	Startup	Downtime Hours	Reason for Downtime
6/16/2021 9:36	6/16/2021 9:58	0.37	Air blower troubleshooting (113)
6/16/2021 10:52	6/16/2021 11:06	0.23	Air blower troubleshooting (113)
6/16/2021 14:18	6/16/2021 14:36	0.30	Air blower troubleshooting (113)
6/22/2021 14:28	6/22/2021 14:36	0.13	Air Combustion blower filter cleaning (113)
7/10/2021 20:24	7/11/2021 13:14	16.83	Utility outage (RCA submitted, RCA IDs 08A51 and 08A52)
7/15/2021 13:44	7/15/2021 13:56	0.20	Condensate Sump 18 Maintenance (RCA submitted, RCA IDs 08A58 and 08A59)
7/16/2021 8:06	7/16/2021 10:40	2.57	Air Combustion Blower Filter Cleaning (113)
7/22/2021 1:16	7/22/2021 1:28	0.20	Flame Failure (RCA submitted, RCA IDs 08A73 and 08A74)
7/22/2021 11:14	7/22/2021 11:22	0.13	Air Blower maintenance and troubleshooting (113)
7/28/2021 13:50	7/28/2021 14:02	0.20	Low Gas Flow Due to Construction Activities (118)
7/28/2021 14:06	7/28/2021 15:58	1.87	Low Gas Flow Due to Construction Activities (118)
То	tal	42.35	

Notes:

Events in bold type denotes Malfunction Events

All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113 requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018, with the exception of the events that occurred on March 10, 12, 27, and 28, May 5, 30, and 31, and July 10, 15, and 22, 2021, which involved utility outages and air blower low flow shutdowns. These events were considered reportable compliance activities (RCA) and breakdown relief was requested.

Table 2. Individual Well Startups, Shutdowns and Decommissions Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Well ID	Shutdown	Start-up	Days Offline	Reason for Shutdown/Startup	
NILW558A	8/13/20 11:33	N/A		Well Permanently Decommissioned Due to Poor Gas Quality	
NILEW662	9/15/20 12:43	N/A		Well Permanently Decommissioned Due to GCCS Construction	
NILEW455	11/18/20 7:00	N/A		Well Permanently Decommissioned Due to GCCS Construction	
NILEW059	2/18/21 0:00	N/A		Well Permanently Decommissioned Due to Poor Gas Quality	
NILEW060	2/18/21 0:00	N/A		Well Permanently Decommissioned Due to Poor Gas Quality	
NILEW063	2/18/21 0:00	N/A		Well Permanently Decommissioned Due to Poor Gas Quality	
NILEW67R	2/18/21 0:00	N/A		Well Permanently Decommissioned Due to Poor Gas Quality	
NILEW730	3/12/21 11:02	6/4/21 0:00	83.54	Well Temporarily Offline Construction 118-Plan	
NILEW733	3/12/21 11:07	4/28/21 12:22	47.05	Well Temporarily Offline Construction 118-Plan	
NILEW066	3/12/21 11:37	7/14/21 11:11	123.98	Well Temporarily Offline Construction 118-Plan	
NILEW465	3/12/21 11:45	4/28/21 12:24	47.03	Well Temporarily Offline Construction 118-Plan	
NILEW707	4/14/21 13:29	4/19/21 8:47	4.80	Well Temporarily Offline to Remediate Subsurface Oxidation (SSO) Event	
NILEW496	4/14/21 13:33	4/19/21 8:44	4.80	Well Temporarily Offline to Remediate SSO Event	
NILEW664	4/14/21 13:36	4/19/21 8:42	4.80	Well Temporarily Offline to Remediate SSO Event	
NILEW711	4/14/21 13:39	4/19/21 8:39	4.79	Well Temporarily Offline to Remediate SSO Event	
NILEW464	4/14/21 13:45	4/19/21 9:34	4.83	Well Temporarily Offline to Remediate SSO Event	
NILEW626	4/14/21 13:52	4/19/21 9:29	4.82	Well Temporarily Offline to Remediate SSO Event	
NILEW744	4/14/21 13:55	4/19/21 9:31	4.82	Well Temporarily Offline to Remediate SSO Event	
NILEW497	4/14/21 13:58	4/19/21 9:27	4.81	Well Temporarily Offline to Remediate SSO Event	
NILEW451	4/14/21 14:02	4/19/21 9:23	4.81	Well Temporarily Offline to Remediate SSO Event	
NILEW745	4/14/21 14:07	4/19/21 9:20	4.80	Well Temporarily Offline to Remediate SSO Event	
NILEW692	4/14/21 14:09	4/19/21 9:19	4.80	Well Temporarily Offline to Remediate SSO Event	
NILEW463	4/14/21 14:13	4/19/21 9:16	4.79	Well Temporarily Offline to Remediate SSO Event	
NILEW693	4/14/21 14:17	4/19/21 9:12	4.79	Well Temporarily Offline to Remediate SSO Event	
NILEW706	4/14/21 14:21	4/19/21 9:10	4.78	Well Temporarily Offline to Remediate SSO Event	
NILEW596	4/14/21 14:25	4/19/21 9:07	4.78	Well Temporarily Offline to Remediate SSO Event	
NILHC201	4/14/21 14:29	4/19/21 9:03	4.77	Well Temporarily Offline to Remediate SSO Event	
NILEW748	4/14/21 14:32	4/19/21 9:01	4.77	Well Temporarily Offline to Remediate SSO Event	
NILEW615	4/14/21 14:37	4/19/21 8:55	4.76	Well Temporarily Offline to Remediate SSO Event	
NILEW663	4/14/21 14:40	4/19/21 8:51	4.76	Well Temporarily Offline to Remediate SSO Event	
NILW475A	5/27/21 10:05	N/A	1	Well Permanently Decommissioned Due to Poor Gas Quality	
NILEW730	6/4/21 0:00	N/A	1	Well Permanently Decommissioned Due to Poor Gas Quality	
NILEW686	6/9/21 11:51	N/A		Well Permanently Decommissioned Due to Poor Gas Quality	
NILEW676	6/9/21 12:02	N/A	1	Well Permanently Decommissioned Due to Poor Gas Quality	
NISS17-3	6/11/21 14:55	7/8/21 0:00	26.38	Well Temporarily Offline Due to Filling	
NILEW529	6/29/21 10:01	N/A	1	Well Permanently Decommissioned Due to Poor Gas Quality	
NISS17-3	7/8/21 0:00	N/A	1	Well Permanently Decommissioned Due to Poor Gas Quality	
NIHC17-2*	7/14/21 15:33	,	17.35	Well Temporarily Offline Due to Filling	
NIHC17-3*	7/14/21 15:34		17.35	Well Temporarily Offline Due to Filling	
NILEW741*	7/14/21 16:10		17.33	Well Temporarily Offline Due to Filling	
NISS17-5	7/22/21 10:28	N/A	17.55	Well Permanently Decommissioned Due to Poor Gas Quality	
NILEW660	7/22/21 10:28	N/A N/A			
INILE WOODU	7/22/21 13:43	IN/A		Well Permanently Decommissioned Due to Poor Gas Quality	

Newby Island contracted with a new operations and maintenance (O&M) provider, SCS Field Services (SCSFS), starting on February 1, 2021. Upon further inspection, it was discovered that the wells noted in italics had previously been decommissioned. These wells are noted in this report for recordkeeping purposes.

*Well was offline at the end of the reporting period. For reporting purposes, the startup time is calculated as of August 1, 2021 at 0:00.

Note: All well downtime events listed are consistent with applicable Rule 8-34 provisions and BAAQMD permit conditions.

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NIHC17-2	6/29/2021 9:48	4.87	4.88	Adjusted Valve
				Second Reading (Well was temporarily taken
NIHC17-2	6/29/2021 9:48	4.85	4.86	offline)
NIHC17-3	6/29/2021 9:45	3.62	3.61	Adjusted Valve
				Second Reading (Well was temporarily taken
NIHC17-3	6/29/2021 9:46	3.53	3.55	offline)
NILEW066	7/14/2021 11:11	0.63	0.64	Adjusted Valve
NILEW066	7/14/2021 11:12	0.68	0.68	Second Reading
NILEW066	7/29/2021 15:10	0.24	0.24	Adjusted Valve
NILEW066	7/29/2021 15:11	0.18	0.17	Second Reading
NILEW451	4/15/2021 9:44	3.15	3.14	Adjusted Valve
NILEW451	4/15/2021 9:46	2.88	2.89	Second Reading
NILEW451	4/16/2021 15:15	6.88	6.9	Adjusted Valve
NILEW451	4/17/2021 19:40	7.87	8.11	Adjusted Valve
NILEW451	4/17/2021 19:43	4.22	0.07	Second Reading
NILEW451	4/18/2021 17:59	11.15	11.14	Adjusted Valve
NILEW451	4/18/2021 18:01	9.02	9.02	Second Reading
NILEW451	4/19/2021 9:23	7.6	7.32	Adjusted Valve
NILEW451	4/21/2021 13:00	-5.71	-5.7	In Compliance
				· · · · · · · · · · · · · · · · · · ·
NILEW451	7/30/2021 9:56	1.37	1.37	Adjusted Valve
NILEW451	7/30/2021 9:57	1.38	1.39	Second Reading
NILEW463	4/15/2021 9:26	10.6	10.6	Adjusted Valve
NILEW463	4/15/2021 9:26	10.6	10.6	Second Reading
NILEW463	4/15/2021 9:28	10.64	10.64	Third Reading
NILEW463	4/16/2021 15:34	5.78	15.01	Adjusted Valve
NILEW463	4/17/2021 19:18	15.5	15.53	Adjusted Valve
NILEW463	4/17/2021 19:20	14.02	13.93	Second Reading
NILEW463	4/18/2021 17:35	16.49	16.49	Adjusted Valve
NILEW463	4/18/2021 17:38	14.54	14.54	Second Reading
NILEW463	4/19/2021 9:16	13.57	12.16	Adjusted Valve
NILEW463	4/20/2021 12:24	3.61	-0.18	Adjusted Valve, In Compliance
-				
NILEW464	4/15/2021 9:59	1.15	1.15	Adjusted Valve
NILEW464	4/15/2021 10:00	1.12	1.13	Second Reading
NILEW464	4/16/2021 14:53	2.69	2.7	Adjusted Valve
NILEW464	4/18/2021 18:36	2.57	2.57	Adjusted Valve
NILEW464	4/18/2021 18:39	1.01	1.01	Second Reading
NILEW464	4/19/2021 9:34	2.1	2.1	Adjusted Valve
NILEW464	4/20/2021 11:47	1.94	1.3	Adjusted Valve
NILEW464	4/21/2021 12:15	-0.5	-1.05	In Compliance

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW464	7/13/2021 13:21	0.85	0.85	Adjusted Valve
NILEW464	7/13/2021 13:22	0.83	0.83	Second Reading
NILEW464	7/23/2021 11:34	-2.67	-2.75	In Compliance
NILEW464	7/30/2021 13:19	0.03	0.05	Adjusted Valve
NILEW464	7/30/2021 13:20	0.05	0.07	Second Reading
NILEW465	5/25/2021 11:18	1.39	1.39	Adjusted Valve
NILEW465	5/25/2021 11:19	1.42	1.42	Second Reading
NILEW465	6/4/2021 9:22	-0.11	-0.11	In Compliance
NILL VV405	0/4/2021 9.22	-0.11	-0.11	
NILEW465	7/14/2021 11:08	2.36	2.36	Adjusted Valve
NILEW465	7/14/2021 11:09	2.01	2.01	Second Reading
NILEW465	7/29/2021 15:06	2.15	2.18	Adjusted Valve
NILEW465	7/29/2021 15:07	2.11	2.12	Second Reading
NILEW476	2/5/2021 11:30	0.19	-0.86	Adjusted Valve, In Compliance
NILEW483	4/29/2021 9:44	0.78	-5.52	Adjusted Valve, In Compliance
NILEW496	4/16/2021 14:33	0.08	0.52	Adjusted Valve
NILEW496	4/17/2021 14:33	0.08	-4.68	Adjusted Valve, In Compliance
INILE VV490	4/17/2021 18.25	0.5	-4.06	Adjusted valve, in compliance
NILEW496	4/19/2021 8:44	1.19	1.19	Adjusted Valve
NILEW496	4/20/2021 11:55	-2.11	-4.9	In Compliance
	7/2/2024 40:25	0.1	0.12	
NILEW496 NILEW496	7/2/2021 10:35 7/2/2021 10:37	0.1	0.13 0.15	Adjusted Valve Second Reading
NILEW496	7/14/2021 11:46	8.37	8.36	Adjusted Valve
NILEW496	7/14/2021 11:48	8.69	8.30	Second Reading
NILEW496	7/30/2021 13:29	12	12.01	Adjusted Valve
NILEW496	7/30/2021 13:30	12.09	12.09	Second Reading
NILEW497	4/16/2021 15:08	13.03	13.03	Adjusted Valve
NILEW497	4/17/2021 17:48	14.43	14.46	Adjusted Valve
NILEW497	4/17/2021 17:53	3.38	2.09	Second Reading
NILEW497	4/18/2021 18:48	15.09	15.09	Adjusted Valve
NILEW497	4/18/2021 18:50	5.41	5.4	Second Reading
NILEW497	4/19/2021 9:27	14.56	12.29	Adjusted Valve
NILEW497	4/20/2021 12:35	1.91	-0.61	In Compliance
NILEW497	7/30/2021 13:22	9.93	9.93	Adjusted Valve
NILEW497	7/30/2021 13:22	9.91	9.92	Second Reading

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW500	3/19/2021 10:19	3.03	-0.34	Adjusted Valve, In Compliance
NILEW510	4/20/2021 12:32	2.72	-0.54	Adjusted Valve, In Compliance
	4/20/2021 12.52	2.72	-0.54	
NILEW596	4/15/2021 9:14	5.88	5.88	Adjusted Valve
NILEW596	4/15/2021 9:16	5.9	5.9	Second Reading
NILEW596	4/16/2021 13:53	5.96	5.96	Adjusted Valve
NILEW596	4/17/2021 16:02	6.05	6.06	Adjusted Valve
NILEW596	4/17/2021 16:06	0.06	-0.04	Adjusted Valve, In Compliance
NILEW596	4/18/2021 16:56	5.54	5.55	Adjusted Valve
NILEW596	4/18/2021 17:00	-0.86	-0.87	In Compliance
NILEW596	4/19/2021 9:07	5.15	2.74	Adjusted Valve
NILEW596	4/20/2021 12:16	1.37	-0.26	Adjusted Valve, In Compliance
INILE VV 390	4/20/2021 12.10	1.57	-0.20	
NILEW601	3/19/2021 12:13	8.24	-0.96	Adjusted Valve, In Compliance
NILEW604	3/4/2021 10:25	0.15	0.13	Adjusted Valve
NILEW604	3/4/2021 10:25	0.13	0.13	Second Reading
NILEW604	3/5/2021 9:26	-1.74	-1.74	In Compliance
				•
NILEW615	4/15/2021 9:02	93.62	93.62	Adjusted Valve
NILEW615	4/15/2021 9:04	93.52	93.53	Second Reading
NILEW615	4/16/2021 14:18	92.06	0.07	Adjusted Valve
NILEW615	4/17/2021 15:21	0.09	0	Adjusted Valve
NILEW615	4/17/2021 15:27	93.22	92.8	Second Reading
NILEW615	4/18/2021 15:25	100.37	100.37	Adjusted Valve
NILEW615	4/19/2021 8:55	33.25	85.61	Adjusted Valve
NILEW615	4/20/2021 12:06	-3.29	-2.77	In Compliance
NILEW626	4/15/2021 9:51	1.86	1.86	Adjusted Valve
NILEW626	4/15/2021 9:53	1.9	1.89	Second Reading
NILEW626	4/16/2021 15:01	3.15	3.17	Adjusted Valve
NILEW626	4/18/2021 18:09	3.19	3.19	Adjusted Valve
NILEW626	4/18/2021 18:11	1.86	1.86	Second Reading
NILEW626	4/19/2021 9:29	2.45	2.37	Adjusted Valve
NILEW626	4/20/2021 11:44	0.79	0.56	Adjusted Valve
NILEW626	4/21/2021 12:13	-1.74	-1.74	In Compliance
NILEW626	7/30/2021 10:03	0.16	0.17	Adjusted Valve
NILEW626	7/30/2021 10:03	0.13	0.13	Second Reading
NILEW637	7/26/2021 10:52	12.93	-38.69	Adjusted Valve, In Compliance

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW663	4/15/2021 8:59	100.37	100.37	Adjusted Valve
NILEW663	4/15/2021 9:00	100.37	100.37	Second Reading
NILEW663	4/17/2021 14:33	100.37	100.37	Adjusted Valve
NILEW663	4/17/2021 14:37	100.37	100.37	Second Reading
NILEW663	4/19/2021 8:51	45.23	20.32	Adjusted Valve
NILEW663	4/20/2021 12:04	12.4	-0.29	Adjusted Valve, In Compliance
NILEW664	4/15/2021 8:47	8.96	8.96	Adjusted Valve
NILEW664	4/15/2021 8:48	8.94	8.94	Second Reading
NILEW664	4/16/2021 14:41	11.4	11.41	Adjusted Valve
NILEW664	4/17/2021 17:57	12.37	12.39	Adjusted Valve
NILEW664	4/17/2021 18:01	-0.41	-1.36	In Compliance
NILEW664	4/18/2021 16:15	12.51	12.51	Adjusted Valve
NILEW664	4/18/2021 16:18	4.61	4.17	Second Reading
NILEW664	4/19/2021 8:42	12.12	10.57	Adjusted Valve
NILEW664	4/20/2021 11:52	-2.43	-2.42	In Compliance
NILEW664	7/2/2021 10:56	6.35	6.35	Adjusted Valve
NILEW664	7/2/2021 10:59	6.35	6.35	Second Reading
NILEW664	7/14/2021 11:49	7.85	7.85	Adjusted Valve
NILEW664	7/14/2021 11:50	7.89	7.89	Second Reading
NILEW664	7/30/2021 13:25	15.31	15.31	Adjusted Valve
NILEW664	7/30/2021 13:25	15.4	15.41	In Compliance
NILEW665	7/14/2021 10:50	0.35	0.35	Adjusted Valve
NILEW665	7/14/2021 10:51	0.43	0.43	Second Reading
NILEW665	7/29/2021 14:54	0.75	0.78	Adjusted Valve
NILEW665	7/29/2021 14:54	0.75	0.78	Second Reading
NILEW665	7/29/2021 14:55	0.88	0.87	Third Reading
NILEW692	4/15/2021 9:30	12.6	12.6	Adjusted Valve
NILEW692	4/15/2021 9:32	12.56	12.57	Second Reading
NILEW692	4/16/2021 15:28	16.4	17.74	Adjusted Valve
NILEW692	4/17/2021 19:11	18.64	18.65	Adjusted Valve
NILEW692	4/17/2021 19:14	14.93	13.67	Second Reading
NILEW692	4/18/2021 17:41	16.69	19.09	Adjusted Valve
NILEW692	4/18/2021 17:44	14.97	14.97	Second Reading
NILEW692	4/19/2021 9:19	16.33	15.59	Adjusted Valve
NILEW692	4/20/2021 12:27	5.15	-0.58	Adjusted Valve, In Compliance
NILEW693	4/15/2021 9:22	3.24	3.25	Adjusted Valve
NILEW693	4/15/2021 9:24	3.29	3.29	Second Reading
NILEW693	4/16/2021 15:46	4.88	4.9	Adjusted Valve
NILEW693	4/17/2021 19:56	4.74	4.77	Adjusted Valve

NILEW693 4/2 NILEW693 4/2 NILEW693 4/2 NILEW693 4/2 NILEW693 4/2 NILEW706 4/2 NILEW706 4/2 NILEW706 4/2	17/2021 19:58 18/2021 17:18 18/2021 17:20 19/2021 9:12 20/2021 12:21	1.52 5.16 3.25 4.21 0.79	1.46 5.18 3.26	Second Reading Adjusted Valve
NILEW693 4/2 NILEW693 4/2 NILEW693 4/2 NILEW706 4/2 NILEW706 4/2 NILEW706 4/2	18/2021 17:20 19/2021 9:12 20/2021 12:21	3.25 4.21	3.26	Adjusted Valve
NILEW693 4/ NILEW693 4/2 NILEW706 4/2 NILEW706 4/2 NILEW706 4/2 NILEW706 4/2	19/2021 9:12 20/2021 12:21	4.21		
NILEW693 4/2 NILEW706 4/ NILEW706 4/ NILEW706 4/	20/2021 12:21			Second Reading
NILEW706 4/ NILEW706 4/ NILEW706 4/		0.79	3.06	Adjusted Valve
NILEW706 4/ NILEW706 4/2	15/2021 9:18		-0.25	Adjusted Valve, In Compliance
NILEW706 4/ NILEW706 4/2	15/2021 9:18			
NILEW706 4/2		14.67	14.67	Adjusted Valve
	15/2021 9:19	14.66	14.66	Second Reading
NILEW/706 4/-	16/2021 16:08	17.71	17.71	Adjusted Valve
	17/2021 16:18	18.8	18.82	Adjusted Valve
	17/2021 16:24	5.21	5.02	Second Reading
NILEW706 4/2	18/2021 17:07	17.29	17.29	Adjusted Valve
NILEW706 4/2	18/2021 17:09	4.87	4.87	Second Reading
NILEW706 4/	19/2021 9:10	16.45	14.58	Adjusted Valve
NILEW706 4/2	20/2021 12:18	0.73	-0.57	Adjusted Valve, In Compliance
NILEW706 7/:	13/2021 11:20	0.77	0.76	Adjusted Valve
	-			•
	13/2021 11:22	0.48	0.46	Second Reading
NILEW706 7/2	23/2021 11:04	-43.92	-43.89	In Compliance
NILEW707 4/	15/2021 8:54	13.04	13.05	Adjusted Valve
NILEW707 4/	15/2021 8:56	13.1	13.1	Second Reading
NILEW707 4/2	16/2021 14:27	13.3	13.3	Adjusted Valve
NILEW707 4/2	17/2021 17:13	13.53	13.57	Adjusted Valve
NILEW707 4/2	17/2021 17:16	0.28	-0.27	Adjusted Valve, In Compliance
NILEW707 4/2	18/2021 15:33	10.92	10.93	Adjusted Valve
NILEW707 4/2	18/2021 15:36	-0.18	-0.18	In Compliance
	10/2021 0.47	12.20	10.0	
	19/2021 8:47	12.39	10.9	Adjusted Valve
NILEW707 4/2	20/2021 11:58	-3.33	-3.33	In Compliance
NILEW707 7/	2/2021 10:31	4.43	4.43	Adjusted Valve
	2/2021 10:32	4.5	4.49	Second Reading
	14/2021 11:31	7.43	7.43	Adjusted Valve
	14/2021 11:31	7.52	7.52	Second Reading
	29/2021 16:02	8.5	8.5	Adjusted Valve
· · · ·	29/2021 16:05	9.11	9.16	Second Reading
	15/2021 8:43	0.04	0.04	Adjusted Valve
	15/2021 8:44	0.03	0.03	Second Reading
	16/2021 14:47	0.45	0.44	Adjusted Valve
	17/2021 17:34	0.55	0.59	Adjusted Valve
NILEW711 4/2	17/2021 17:36	-1.67	-1.63	In Compliance

NIEW711 4/18/2021 16:32 0.45 0.45 Adjusted Valve NIEW711 4/18/2021 16:32 -0.13 -0.14 In Compliance NIEW711 4/19/2021 8:39 0.12 0.12 Adjusted Valve NIEW711 4/20/2021 11:49 0.3 0.18 Adjusted Valve NIEW711 4/21/2021 12:18 -0.22 -0.2 In Compliance NIEW717 3/4/2021 10:20 1.37 1.37 Adjusted Valve NIEW717 3/4/2021 10:20 1.37 1.37 Adjusted Valve NIEW717 3/4/2021 10:20 1.37 1.37 Adjusted Valve NIEW716 7/14/2021 10:00 0.53 0.53 Adjusted Valve NIEW726 7/14/2021 10:00 0.44 0.45 Second Reading NIEW726 7/21/2021 9:04 0.89 Adjusted Valve NIEW735 5/25/2021 11:15 1.63 1.64 Adjusted Valve NIEW735 5/25/2021 11:15 1.63 1.64 Adjusted Valve NIEW733 5/25/2021 11:16 1.6	Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW711 4/19/2021 8:39 0.12 0.12 Adjusted Valve NILEW711 4/20/2021 11:49 0.3 0.18 Adjusted Valve NILEW711 4/21/2021 11:49 0.22 -0.2 In Compliance NILEW717 3/4/2021 10:20 1.37 1.37 Adjusted Valve NILEW717 3/4/2021 10:21 1.26 1.25 Second Reading NILEW717 3/4/2021 10:00 0.53 0.53 Adjusted Valve NILEW726 7/14/2021 10:00 0.53 0.53 Adjusted Valve NILEW726 7/14/2021 10:01 0.44 0.45 Second Reading NILEW726 7/22/2021 9:04 0.89 0.89 Adjusted Valve NILEW736 5/25/2021 11:15 1.63 1.64 Adjusted Valve NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 5/25/2021 11:20 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 10:20 1.74 1.73 Adjusted Valve NILEW733 7/	NILEW711	4/18/2021 16:30	0.45	0.45	Adjusted Valve
NILEW711 4/20/2021 11:49 0.3 0.18 Adjusted Valve NILEW711 4/21/2021 12:18 -0.2 -0.2 In Compliance NILEW717 3/4/2021 10:20 1.37 1.37 Adjusted Valve NILEW717 3/4/2021 10:21 1.26 1.25 Second Reading NILEW717 3/5/2021 9:12 -5.3 -6.63 In Compliance NILEW717 3/5/2021 9:12 -5.3 -6.63 In Compliance NILEW726 7/14/2021 10:00 0.53 0.53 Adjusted Valve NILEW726 7/12/2021 9:04 0.89 0.89 Adjusted Valve NILEW726 7/22/2021 9:04 0.89 0.85 Second Reading NILEW733 5/25/2021 11:15 1.63 1.64 Adjusted Valve NILEW733 5/25/2021 11:20 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/14/20	NILEW711	4/18/2021 16:32	-0.13	-0.14	In Compliance
NILEW711 4/20/2021 11:49 0.3 0.18 Adjusted Valve NILEW711 4/21/2021 12:18 -0.22 -0.2 In Compliance NILEW717 3/4/2021 10:20 1.37 1.37 Adjusted Valve NILEW717 3/4/2021 10:21 1.26 1.25 Second Reading NILEW717 3/5/2021 9:12 -5.3 -6.63 In Compliance NILEW717 3/5/2021 9:12 -5.3 -6.63 In Compliance NILEW726 7/14/2021 10:00 0.53 0.53 Adjusted Valve NILEW726 7/22/2021 9:04 0.89 0.89 Adjusted Valve NILEW726 7/22/2021 9:05 0.84 0.85 Second Reading NILEW733 5/25/2021 11:15 1.63 1.64 Adjusted Valve NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/14/					
NILEW711 4/21/2021 12:18 -0.22 -0.2 In Compliance NILEW717 3/4/2021 10:20 1.37 1.37 Adjusted Valve NILEW717 3/4/2021 10:21 1.26 1.25 Second Reading NILEW717 3/5/2021 9:12 -5.3 -6.63 In Compliance NILEW726 7/14/2021 10:00 0.53 0.53 Adjusted Valve NILEW726 7/14/2021 10:01 0.44 0.45 Second Reading NILEW726 7/22/2021 9:04 0.89 0.89 Adjusted Valve NILEW726 7/22/2021 9:05 0.84 0.85 Second Reading NILEW733 5/25/2021 11:15 1.63 1.64 Adjusted Valve NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW733 7	NILEW711	4/19/2021 8:39	0.12	0.12	Adjusted Valve
NILEW717 3/4/2021 10:20 1.37 1.37 Adjusted Valve NILEW717 3/4/2021 10:21 1.26 1.25 Second Reading NILEW717 3/5/2021 9:12 -5.3 -6.63 In Compliance NILEW726 7/14/2021 10:00 0.53 0.53 Adjusted Valve NILEW726 7/12/2021 9:04 0.89 0.89 Adjusted Valve NILEW726 7/22/2021 9:05 0.84 0.85 Second Reading NILEW733 5/25/2021 11:15 1.63 1.64 Adjusted Valve NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 5/25/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/29/2021 11:04 1.66 1.61 Second Reading NILEW733 7/12/2021 11:04 1.6 5.65 6.66 Adjusted Valve NILEW733 7/29/2021 11:04 1.6 5.65 6.66 Adjusted Valve <t< td=""><td>NILEW711</td><td>4/20/2021 11:49</td><td>0.3</td><td>0.18</td><td>Adjusted Valve</td></t<>	NILEW711	4/20/2021 11:49	0.3	0.18	Adjusted Valve
NILEW717 3/4/2021 10:21 1.26 1.25 Second Reading NILEW717 3/5/2021 9:12 -5.3 -6.63 In Compliance NILEW726 7/14/2021 10:00 0.53 0.53 Adjusted Valve NILEW726 7/12/2021 9:04 0.89 0.89 Adjusted Valve NILEW726 7/22/2021 9:05 0.84 0.85 Second Reading NILEW733 5/25/2021 11:15 1.63 1.64 Adjusted Valve NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/12/2021 15:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:37 6.85 6.66 Adjusted Valve NILEW742 7/12/2021 14:35 18:22 18:27 Adjusted Valve NILEW742 <td< td=""><td>NILEW711</td><td>4/21/2021 12:18</td><td>-0.22</td><td>-0.2</td><td>In Compliance</td></td<>	NILEW711	4/21/2021 12:18	-0.22	-0.2	In Compliance
NILEW717 3/4/2021 10:21 1.26 1.25 Second Reading NILEW717 3/5/2021 9:12 -5.3 -6.63 In Compliance NILEW726 7/14/2021 10:00 0.53 0.53 Adjusted Valve NILEW726 7/12/2021 9:04 0.89 0.89 Adjusted Valve NILEW726 7/22/2021 9:05 0.84 0.85 Second Reading NILEW733 5/25/2021 11:15 1.63 1.64 Adjusted Valve NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/12/2021 15:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:37 6.85 6.66 Adjusted Valve NILEW742 7/12/2021 14:35 18:22 18:27 Adjusted Valve NILEW742 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
NILEW717 3/5/2021 9:12 -5.3 -6.63 In Compliance NILEW726 7/14/2021 10:00 0.53 0.53 Adjusted Valve NILEW726 7/14/2021 10:01 0.44 0.45 Second Reading NILEW726 7/22/2021 9:04 0.89 0.89 Adjusted Valve NILEW726 7/22/2021 9:05 0.84 0.85 Second Reading NILEW733 5/25/2021 11:15 1.63 1.64 Adjusted Valve NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 6/4/2021 9:24 -0.83 -0.84 In Compliance NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/12/2021 15:29 2.3 2.31 Adjusted Valve NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7	NILEW717	3/4/2021 10:20	1.37	1.37	Adjusted Valve
NILEW726 7/14/2021 10:00 0.53 0.53 Adjusted Valve NILEW726 7/14/2021 10:01 0.44 0.45 Second Reading NILEW726 7/22/2021 9:04 0.89 0.89 Adjusted Valve NILEW726 7/22/2021 9:05 0.84 0.85 Second Reading NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 6/4/2021 9:24 -0.83 -0.84 In Compliance NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:35 1.8.22 18.27 Adjusted Valve NILEW744 <t< td=""><td>NILEW717</td><td>3/4/2021 10:21</td><td>1.26</td><td>1.25</td><td>Second Reading</td></t<>	NILEW717	3/4/2021 10:21	1.26	1.25	Second Reading
NILEW726 7/14/2021 10:01 0.44 0.45 Second Reading NILEW726 7/22/2021 9:04 0.89 0.89 Adjusted Valve NILEW726 7/22/2021 9:05 0.84 0.85 Second Reading NILEW733 5/25/2021 11:15 1.63 1.64 Adjusted Valve NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 5/25/2021 11:10 1.67 1.67 Second Reading NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 10:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:37 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW744 4/15/2021 9:55<	NILEW717	3/5/2021 9:12	-5.3	-6.63	In Compliance
NILEW726 7/14/2021 10:01 0.44 0.45 Second Reading NILEW726 7/22/2021 9:04 0.89 0.89 Adjusted Valve NILEW726 7/22/2021 9:05 0.84 0.85 Second Reading NILEW733 5/25/2021 11:15 1.63 1.64 Adjusted Valve NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 5/25/2021 11:10 1.67 1.67 Second Reading NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 10:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:37 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW744 4/15/2021 9:55<					
NILEW726 7/22/2021 9:04 0.89 0.89 Adjusted Valve NILEW726 7/22/2021 9:05 0.84 0.85 Second Reading NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 6/4/2021 9:24 -0.83 -0.84 In Compliance NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/14/2021 15:29 2.3 2.31 Adjusted Valve NILEW733 7/29/2021 15:29 2.3 2.31 Adjusted Valve NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/	NILEW726	7/14/2021 10:00	0.53	0.53	Adjusted Valve
NILEW726 7/22/2021 9:05 0.84 0.85 Second Reading NILEW733 5/25/2021 11:15 1.63 1.64 Adjusted Valve NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 6/4/2021 9:24 -0.83 -0.84 In Compliance NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 10:29 2.3 2.31 Adjusted Valve NILEW733 7/29/2021 15:29 2.3 2.34 Second Reading NILEW742 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:35 18.22 18.27 Adjusted Valve NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW744 4/15/2021 9:55 1.1 1.16 Second Reading NILEW744 <	NILEW726	7/14/2021 10:01	0.44	0.45	Second Reading
NILEW733 5/25/2021 11:15 1.63 1.64 Adjusted Valve NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 5/25/2021 11:10 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/29/2021 15:29 2.3 2.31 Adjusted Valve NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 <	NILEW726	7/22/2021 9:04	0.89	0.89	Adjusted Valve
NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 6/4/2021 9:24 -0.83 -0.84 In Compliance NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/14/2021 11:29 2.3 2.31 Adjusted Valve NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:35 18.85 Second Reading NILEW742 7/14/2021 10:35 18.22 18.27 Adjusted Valve NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 <td>NILEW726</td> <td>7/22/2021 9:05</td> <td>0.84</td> <td>0.85</td> <td>Second Reading</td>	NILEW726	7/22/2021 9:05	0.84	0.85	Second Reading
NILEW733 5/25/2021 11:16 1.67 1.67 Second Reading NILEW733 6/4/2021 9:24 -0.83 -0.84 In Compliance NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/14/2021 11:29 2.3 2.31 Adjusted Valve NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:35 18.82 18.27 Adjusted Valve NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
NILEW733 6/4/2021 9:24 -0.83 -0.84 In Compliance NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/29/2021 15:29 2.3 2.31 Adjusted Valve NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW733 7/29/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744	NILEW733	5/25/2021 11:15	1.63	1.64	Adjusted Valve
NILEW733 7/14/2021 11:02 1.74 1.73 Adjusted Valve NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/29/2021 15:29 2.3 2.31 Adjusted Valve NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW733 7/29/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 <t< td=""><td>NILEW733</td><td>5/25/2021 11:16</td><td>1.67</td><td>1.67</td><td>Second Reading</td></t<>	NILEW733	5/25/2021 11:16	1.67	1.67	Second Reading
NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/29/2021 15:29 2.3 2.31 Adjusted Valve NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/	NILEW733	6/4/2021 9:24	-0.83	-0.84	In Compliance
NILEW733 7/14/2021 11:04 1.6 1.61 Second Reading NILEW733 7/29/2021 15:29 2.3 2.31 Adjusted Valve NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW744 7/29/2021 14:35 14.95 18.83 Second Reading NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
NILEW733 7/29/2021 15:29 2.3 2.31 Adjusted Valve NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW733 7/29/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744					-
NILEW733 7/29/2021 15:30 2.34 2.34 Second Reading NILEW742 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/20/2021 9:40 12.27 12.33 Adjusted Valve NILEW745					, , , , , , , , , , , , , , , , , , ,
NILEW742 7/14/2021 10:35 6.65 6.66 Adjusted Valve NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745					
NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745 4/15/2021 9:40 12:27 12:33 Adjusted Valve NILEW745	NILEW733	7/29/2021 15:30	2.34	2.34	Second Reading
NILEW742 7/14/2021 10:37 6.85 6.85 Second Reading NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745 4/15/2021 9:40 12:27 12:33 Adjusted Valve NILEW745					
NILEW742 7/29/2021 14:35 18.22 18.27 Adjusted Valve NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745 4/15/2021 9:40 12.27 12.33 Adjusted Valve NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
NILEW742 7/29/2021 14:35 14.95 18.83 Second Reading NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745 4/15/2021 9:40 12.27 12.33 Adjusted Valve NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
NILEW744 4/15/2021 9:55 1.1 1.11 Adjusted Valve NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745 4/15/2021 9:40 12.27 12.33 Adjusted Valve NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745 4/15/2021 9:40 12.27 12.33 Adjusted Valve NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 4/16/2021 19:27 19.33 19.35 Adjusted Valve	NILEW 742	//29/2021 14:35	14.95	18.83	Second Reading
NILEW744 4/15/2021 9:57 1.17 1.16 Second Reading NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745 4/15/2021 9:40 12.27 12.33 Adjusted Valve NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 4/16/2021 19:27 19.33 19.35 Adjusted Valve		4/45/2024 0.55	1.1	1 4 4	A disease distaine
NILEW744 4/18/2021 18:17 1.78 1.8 Adjusted Valve NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745 4/15/2021 9:40 12.27 12.33 Adjusted Valve NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 4/17/2021 19:27 19.33 19.35 Adjusted Valve					
NILEW744 4/18/2021 18:21 0.31 0.3 Second Reading NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745 4/15/2021 9:40 12.27 12.33 Adjusted Valve NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/15/2021 9:42 12.3 12.3 Adjusted Valve NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 4/17/2021 19:27 19.33 19.35 Adjusted Valve					0
NILEW744 4/19/2021 9:31 1.48 1.49 Adjusted Valve NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745 4/15/2021 9:40 12.27 12.33 Adjusted Valve NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 4/17/2021 19:27 19.33 19.35 Adjusted Valve					-
NILEW744 4/20/2021 11:41 1.46 0.92 Adjusted Valve NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745 4/15/2021 9:40 12.27 12.33 Adjusted Valve NILEW745 4/15/2021 9:40 12.27 12.33 Second Reading NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 4/17/2021 19:27 19.33 19.35 Adjusted Valve					5
NILEW744 4/21/2021 12:11 -0.33 -0.34 In Compliance NILEW745 4/15/2021 9:40 12.27 12.33 Adjusted Valve NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 4/17/2021 19:27 19.33 19.35 Adjusted Valve					-
NILEW745 4/15/2021 9:40 12.27 12.33 Adjusted Valve NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 4/17/2021 19:27 19.33 19.35 Adjusted Valve					-
NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 4/17/2021 19:27 19.33 19.35 Adjusted Valve		4/21/2021 12:11	-0.33	-0.54	
NILEW745 4/15/2021 9:42 12.3 12.3 Second Reading NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 4/17/2021 19:27 19.33 19.35 Adjusted Valve		A/15/2021 Q·A0	12.27	12.22	Adjusted Valve
NILEW745 4/16/2021 15:23 18.27 18.27 Adjusted Valve NILEW745 4/17/2021 19:27 19.33 19.35 Adjusted Valve					
NILEW745 4/17/2021 19:27 19.33 19.35 Adjusted Valve					
					-
TILE 17.75 - 4/17/2021 13.27 - 13.35 - 13.35 - 35COIU (Reduiiig					-
NILEW745 4/17/2021 19:30 5.97 5.47 Third Reading					0
NILEW745 4/17/2021 19:50 5.97 5.47 Hind Keading NILEW745 4/18/2021 17:50 20.22 20.22 Adjusted Valve					

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW745	4/18/2021 17:53	10.88	10.87	Second Reading
NILEW745	4/19/2021 9:20	-4.3	-3.75	In Compliance
NILEW748	4/15/2021 9:06	83.45	83.46	Adjusted Valve
NILEW748	4/15/2021 9:08	83.48	83.48	Second Reading
NILEW748	4/16/2021 14:08	99.98	99.98	Adjusted Valve
NILEW748	4/17/2021 14:54	100.37	100.37	Adjusted Valve
NILEW748	4/17/2021 14:58	99	98.49	Second Reading
NILEW748	4/18/2021 14:39	96.59	96.59	Adjusted Valve
NILEW748	4/18/2021 14:42	93.58	93.56	Second Reading
NILEW748	4/19/2021 9:01	57.12	39.98	Adjusted Valve
NILEW748	4/20/2021 12:09	1.06	-0.36	Adjusted Valve, In Compliance
NILEW752	6/18/2021 12:31	-5.37	1.21	Adjusted Valve
NILEW752	6/18/2021 12:34	2.1	2.17	Second Reading
NILEW752	6/18/2021 12:36	-0.76	-0.87	In Compliance
NILHC201	4/16/2021 14:01	0.09	0.08	Adjusted Valve
NILHC201	4/17/2021 15:41	-4.47	-4.8	In Compliance
	- 10 /000 / 10 00	0.00		
NILMW020	7/9/2021 10:39	0.03	-2.42	Adjusted Valve, In Compliance
NILMW023	4/29/2021 12:02	0.98	-9.7	Adjusted Valve, In Compliance
NILW632A	5/12/2021 8:15	30.38	-1.21	Adjusted Valve, In Compliance
NISS17-3	3/10/2021 9:32	2.22	2.21	Adjusted Valve
NISS17-3	3/10/2021 9:33	2.22	2.22	Second Reading
NISS17-3	3/24/2021 11:02	1.55	2.16	Adjusted Valve
NISS17-3	4/8/2021 9:42	5.36	4.2	Adjusted Valve
NISS17-3	4/29/2021 9:28	4.51	4.51	Adjusted Valve
NISS17-3	5/27/2021 12:30	7.88	8.28	Well Permanently Decommissioned Due to Poor Gas Quality
		0.24		
NISS17-4	6/29/2021 9:54	0.34	0.4	Adjusted Valve
NISS17-4	6/29/2021 9:55	0.41	0.42	Second Reading
NISS17-4	6/29/2021 9:55	0.28	0.29	Third Reading
NISS17-4	7/14/2021 10:19	3.97	3.98	Adjusted Valve
NISS17-4	7/14/2021 10:20	3.86	3.87	Second Reading
NISS17-4	7/22/2021 10:47	3.82	3.83	Adjusted Valve
NISS17-4	7/22/2021 10:48	3.95	3.97	Second Reading
NISS17-5	3/24/2021 10:22	8.03	8.06	Adjusted Valve
NISS17-5	3/24/2021 10:24	7.67	7.7	Second Reading
NISS17-5	4/8/2021 9:04	23.35	23.35	Adjusted Valve

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NISS17-5	4/8/2021 9:05	23.57	23.57	Second Reading
NISS17-5	4/30/2021 11:15	26.37	26.38	Adjusted Valve
NISS17-5	4/30/2021 11:16	26.29	26.3	Second Reading
NISS17-5	5/14/2021 10:03	26.87	26.88	Adjusted Valve
NISS17-5	5/14/2021 10:05	26.93	26.93	Second Reading
NISS17-5	5/27/2021 12:29	13.43	14.36	Adjusted Valve
NISS17-5	6/11/2021 8:27	29.34	29.34	Adjusted Valve
NISS17-5	6/11/2021 8:29	27.71	29.35	Second Reading
NISS17-5	6/29/2021 8:53	30.65	30.65	Adjusted Valve
NISS17-5	6/29/2021 8:53	30.66	30.66	Second Reading
NISS17-5	7/14/2021 9:41	32.32	32.32	Adjusted Valve
NISS17-5	7/14/2021 9:42	32.25	32.26	Second Reading
NISS17-5	7/22/2021 10:27	32.72	32.69	Adjusted Valve
				Well Permanently Decommissioned due to
NISS17-5	7/22/2021 10:28	31.41	32.07	Poor Gas Quality

Note: All required corrective action and remonitoring was completed in accordance with Rule 8-34 and NSPS timelines.

Well ID	Date and Time	Oxygen (%)	Comments
NI3EW40R	5/13/2021 12:26	18.5	Adjusted Valve
NI3EW40R	5/13/2021 12:27	18.9	Second Reading
NI3EW40R	5/27/2021 9:15	0.7	In Compliance
NI3EW40R	6/10/2021 10:06	11.8	Adjusted Valve
NI3EW40R	6/10/2021 10:07	11.6	Second Reading
NI3EW40R	6/23/2021 9:23	10.4	Adjusted Valve
NI3EW40R	6/23/2021 9:24	9.9	Second Reading
NI3EW40R	7/12/2021 10:46	0	In Compliance
NI3EW40R	7/23/2021 9:59	17.4	Adjusted Valve
NI3EW40R	7/23/2021 10:00	17.8	Second Reading
NIHC17-1	3/24/2021 10:06	6.5	Adjusted Valve
NIHC17-1	3/24/2021 10:08	6.8	Second Reading
NIHC17-1	4/8/2021 9:15	0	In Compliance
NIHC17-5	2/24/2021 9:44	6.7	Adjusted Valve
NIHC17-5	2/24/2021 9:46	6.8	Second Reading
NIHC17-5	3/10/2021 9:29	0	In Compliance
	_ / /		
NIHC17-5	5/14/2021 10:38	9.2	Adjusted Valve
NIHC17-5	5/14/2021 10:39	9	Second Reading
NIHC17-5	5/28/2021 12:40	0	In Compliance
	c /20 /2024 0 42	12.6	
NIHC17-5	6/29/2021 9:42	12.6	Adjusted Valve
NIHC17-5	6/29/2021 9:42	11.9	Second Reading
NIHC17-5	7/12/2021 14:31	19.5	Adjusted Valve
NIHC17-5	7/12/2021 14:34	20.4	Second Reading
NIHC17-5	7/22/2021 13:40	2.5	In Compliance
NIHC17-7	2/24/2021 11.15	11.0	Adjusted Valva
NIHC17-7	3/24/2021 11:15 3/24/2021 11:16	11.9 7.2	Adjusted Valve Second Reading
		4.1	
NIHC17-7	4/7/2021 8:54	4.1	In Compliance
NIHC17-7	4/27/2021 8:51	18	Adjusted Valve
NIHC17-7	4/27/2021 8:54	5.7	Second Reading
NIHC17-7	5/12/2021 9:30	16.4	Adjusted Valve
NIHC17-7	5/12/2021 9:32	16.1	Second Reading
NIHC17-7	5/20/2021 8:45	17.3	Adjusted Valve
NIHC17-7	5/20/2021 8:45	20.1	Second Reading
NIHC17-7	6/9/2021 9:05	19.5	Adjusted Valve
NIHC17-7	6/9/2021 9:08	19.9	Second Reading
NIHC17-7	6/16/2021 8:36	20	Adjusted Valve

Well ID	Date and Time	Oxygen (%)	Comments
NIHC17-7	6/16/2021 8:37	20.6	Second Reading
NIHC17-7	7/13/2021 9:48	7.5	Adjusted Valve
NIHC17-7	7/13/2021 9:49	8.5	Second Reading
NIHC17-7	7/30/2021 11:03	3.1	In Compliance
NILCW001	3/2/2021 9:52	19.4	Adjusted Valve
NILCW001	3/2/2021 9:57	7.2	Second Reading
NILCW001	3/17/2021 9:18	17	Adjusted Valve
NILCW001	3/17/2021 9:19	17.5	Second Reading
NILCW001	4/7/2021 9:14	0	In Compliance
NILCW004	2/19/2021 9:50	6.9	Adjusted Valve
NILCW004	2/19/2021 9:51	6.9	Second Reading
NILCW004	3/2/2021 10:13	6.6	Adjusted Valve
NILCW004	3/2/2021 10:15	6.7	Second Reading
NILCW004	3/17/2021 9:29	0.2	In Compliance
NILEW035	2/4/2021 9:37	6.8	Adjusted Valve
NILEW035	2/4/2021 9:40	3.5	In Compliance
NILEW035	5/12/2021 10:38	5.5	Adjusted Valve
NILEW035	5/12/2021 10:39	5.4	Second Reading
NILEW035	5/25/2021 9:39	1.6	In Compliance
NILEW217	7/21/2021 11:32	19	Adjusted Valve
NILEW217	7/21/2021 11:34	20.9	Second Reading
NILEW232	2/4/2021 10:41	20.3	Adjusted Valve
NILEW232	2/4/2021 10:43	0.6	In Compliance
NILEW430	4/28/2021 10:21	18.4	Adjusted Valve
NILEW430	4/28/2021 10:22	16.4	Second Reading
NILEW430	5/12/2021 8:02	0.9	In Compliance
	7/20/2021		
NILEW431	7/26/2021 11:03	11.1	Adjusted Valve
NILEW431	7/26/2021 11:06	11.8	Second Reading
		42 5	A -1:
NILEW463	2/5/2021 10:04	13.5	Adjusted Valve
NILEW463	2/5/2021 10:05	15.7	Second Reading
NILEW463	2/17/2021 12:53	11.5	Adjusted Valve
NILEW463	2/17/2021 12:55	11.4	Second Reading
NILEW463	3/9/2021 10:12	11.1	Adjusted Valve
NILEW463	3/9/2021 10:14	1.6	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILEW463	4/14/2021 14:12	8.3	Adjusted Valve
NILEW463	4/14/2021 14:13	8.4	Second Reading
NILEW463	4/15/2021 9:26	0	In Compliance
NILEW463	6/4/2021 8:54	6.4	Adjusted Valve
NILEW463	6/4/2021 8:56	2.2	In Compliance
NILEW463	7/30/2021 13:34	21.2	Adjusted Valve
NILEW463	7/30/2021 13:35	21.4	Second Reading
NILEW496	4/15/2021 8:51	20	Adjusted Valve
NILEW496	4/15/2021 8:52	20.2	Second Reading
NILEW496	4/16/2021 14:33	13.6	Adjusted Valve
NILEW496	4/17/2021 18:23	13	Adjusted Valve
NILEW496	4/18/2021 15:48	0	In Compliance
NILEW496	4/19/2021 8:44	9	Adjusted Valve
NILEW496	4/20/2021 11:55	4.9	In Compliance
NILEW500	3/8/2021 11:09	5.9	Adjusted Valve
NILEW500	3/8/2021 11:11	5.9	Second Reading
NILEW500	3/19/2021 10:19	0	In Compliance
NILEW500	4/23/2021 9:14	5.7	Adjusted Valve
NILEW500	4/23/2021 9:17	6.1	Second Reading
NILEW500	5/3/2021 11:30	6	Adjusted Valve
NILEW500	5/3/2021 11:39	6	Second Reading
NILEW500	5/27/2021 9:47 5/27/2021 9:49	7.4	Adjusted Valve
NILEW500 NILEW500	6/10/2021 12:29	7.5	Second Reading
INILE VV 500	6/10/2021 12:29	0.5	In Compliance
NILEW500	7/12/2021 12:08	7.2	Adjusted Valve
NILEW500	7/12/2021 12:08	7.3	Second Reading
NILEW500	7/21/2021 13:39	0	In Compliance
	112112021 13.33	<u> </u>	
NILEW514	3/16/2021 9:35	11.7	Adjusted Valve
NILEW514	3/16/2021 9:35	13.4	Second Reading
NILEW514	4/1/2021 12:27	2.6	In Compliance
	·/ ±/ ±0±± ±2.27	2.0	
NILEW514	7/27/2021 14:53	6.6	Adjusted Valve
NILEW514	7/27/2021 14:55	6.9	Second Reading
	, ,		
NILEW529	4/29/2021 9:40	19.6	Adjusted Valve
NILEW529	4/29/2021 9:40	19.6	Second Reading
	1/23/2021 3.40	13.0	

Well ID	Date and Time	Oxygen (%)	Comments
NILEW529	4/29/2021 9:43	20.2	Third Reading
NILEW529	5/14/2021 10:34	18.5	Adjusted Valve
NILEW529	5/14/2021 10:35	20.4	Second Reading
NILEW529	5/27/2021 12:43	19.3	Adjusted Valve
NILEW529	5/27/2021 12:44	20.1	Second Reading
NILEW529	6/11/2021 9:21	21.2	Adjusted Valve
NILEW529	6/11/2021 9:22	21.1	Second Reading
NILEW529	6/29/2021 10:00	10.9	Adjusted Valve
NILEW529	6/29/2021 10:01	10.7	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW601	5/21/2021 8:39	7.2	Adjusted Valve
NILEW601	5/21/2021 8:39	8.8	Second Reading
NILEW601	6/2/2021 10:29	13.4	Adjusted Valve
NILEW601	6/24/2021 11:55	2.7	In Compliance
NILEVVOUL	0/24/2021 11.55	2.7	in compliance
NILEW604	2/5/2021 10:03	13.4	Adjusted Valve
NILEW604	2/5/2021 10:05	2.4	In Compliance
			·
NILEW604	2/18/2021 10:36	21	Adjusted Valve
NILEW604	2/18/2021 10:37	21	Second Reading
NILEW604	3/4/2021 10:25	17.8	Adjusted Valve
NILEW604	3/4/2021 10:26	18.1	Second Reading
NILEW604	3/5/2021 9:26	21.3	Adjusted Valve
NILEW604	3/5/2021 9:28	21.4	Second Reading
NILEW604	3/25/2021 9:57	17.6	Adjusted Valve
NILEW604	3/25/2021 9:58	17.6	Second Reading
NILEW604	4/9/2021 10:17	3.4	In Compliance
NILEW604	5/19/2021 9:45	17.3	Adjusted Valve
NILEW604	5/19/2021 9:46	16.9	Second Reading
NILEW604	6/3/2021 9:42	17.6	Adjusted Valve
NILEW604	6/3/2021 9:42	16.8	Second Reading
NILEW604	6/18/2021 10:39	0	In Compliance
NILEW640	2/10/2021 10:51	5.2	Adjusted Valve
NILEW640	2/10/2021 10:52	4.6	In Compliance
NILEW640	3/2/2021 10:56	8.4	Adjusted Valve
NILEW640	3/2/2021 10:58	6.9	Second Reading
NILEW640	3/17/2021 10:06	10	Adjusted Valve
NILEW640	3/17/2021 10:07	9.6	Second Reading
NILEW640	4/7/2021 10:01	0	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILEW647	4/5/2021 10:29	10.6	Adjusted Valve
NILEW647	4/5/2021 10:30	11.2	Second Reading
NILEW647	4/20/2021 13:08	0	In Compliance
NILEW648	2/5/2021 10:22	7.8	Adjusted Valve
NILEW648	2/5/2021 10:25	6.9	Second Reading
NILEW648	2/17/2021 13:33	4.8	In Compliance
NILEW648	5/13/2021 9:53	5.9	Adjusted Valve
NILEW648	5/13/2021 9:55	13	Second Reading
NILEW648	5/19/2021 9:43	2.9	In Compliance
NILEW648	6/18/2021 10:32	7.6	Adjusted Valve
NILEW648	6/18/2021 10:34	4.9	In Compliance
NILEW650	4/9/2021 10:34	13.6	Adjusted Valve
NILEW650	4/9/2021 10:35	13.8	Second Reading
NILEW650	4/20/2021 13:12	0	In Compliance
NILEW653	5/19/2021 9:16	5.4	Adjusted Valve
NILEW653	5/19/2021 9:17	1.5	In Compliance
	_ /_ /		
NILEW653	7/7/2021 9:36	17.8	Adjusted Valve
NILEW653	7/7/2021 9:38	1	In Compliance
NILEW656	6/23/2021 8:46	20	Adjusted Valve
NILEW656	6/23/2021 8:46	20.1	Second Reading
NILEW656	7/8/2021 12:26	18.6	Adjusted Valve
NILEW656	7/8/2021 12:27	18.7	Second Reading
NILEW656	7/23/2021 9:11	0.4	In Compliance
	2/11/2021 0.54	17.1	A diverte d Makes
NILEW660	2/11/2021 8:54	17.1	Adjusted Valve
NILEW660 NILEW660	2/11/2021 8:55 2/24/2021 9:10	<u> 12.4</u> 7.9	Second Reading
			Adjusted Valve
NILEW660 NILEW660	2/24/2021 9:10 2/24/2021 9:14	7.9 5.6	Second Reading Third Reading
NILEW660	3/10/2021 9:14	4.5	Inira Reading In Compliance
	3/ 10/ 2021 9.30	4.3	
NILEW660	3/24/2021 10:48	9.9	Adjusted Valve
NILEW660	3/24/2021 10:48	10.4	Second Reading
NILEW660	4/8/2021 9:48	11.6	Adjusted Valve
NILEW660	4/8/2021 9:48	9.4	Second Reading
NILEW660	4/29/2021 9:49	15.4	Adjusted Valve
NILEW660	4/29/2021 9:48	15.2	Second Reading
	+/23/2021 3.40	13.2	Second Nedding

Well ID	Date and Time	Oxygen (%)	Comments
NILEW660	5/14/2021 10:28	14	Adjusted Valve
NILEW660	5/14/2021 10:29	14	Second Reading
NILEW660	5/21/2021 10:22	14.2	Adjusted Valve
NILEW660	5/21/2021 10:23	14	Second Reading
NILEW660	6/11/2021 9:17	10.6	Adjusted Valve
NILEW660	6/11/2021 9:18	10.6	Second Reading
NILEW660	6/29/2021 9:35	7.8	Adjusted Valve
NILEW660	6/29/2021 9:36	7.8	Second Reading
NILEW660	7/12/2021 14:48	11.9	Adjusted Valve
NILEW660	7/12/2021 14:49	12.1	Second Reading
NILEW660	7/22/2021 13:41	15	Adjusted Valve
NILEW660	7/22/2021 13:43	15.6	Well Permanently Decommissioned due to Poor Gas Quality
	2 4 2 2 2 2 4 2 4 2		
NILEW666	3/19/2021 12:13	9.9	Adjusted Valve
NILEW666	3/19/2021 12:13	9.9	Second Reading
NILEW666	3/19/2021 12:14	15	Third Reading
NILEW666	4/1/2021 12:06	0	In Compliance
	7/20/2024 44.50	0.1	A division of Markov
NILEW666	7/29/2021 14:58	9.1	Adjusted Valve
NILEW666	7/29/2021 15:03	4.9	In Compliance
NILEW676	2/11/2021 10:49	16.9	Adjusted Valve
NILEW676	2/11/2021 10:49	16.7	-
NILEW676		21.4	Second Reading Adjusted Valve
NILEW676	2/24/2021 11:41 2/24/2021 11:42	21.4	
NILEW676		21.4	Second Reading
	3/10/2021 10:27		Adjusted Valve
NILEW676 NILEW676	3/10/2021 10:28 3/24/2021 12:12	21.9	Second Reading Adjusted Valve
		18.2	
NILEW676 NILEW676	3/24/2021 12:12 4/8/2021 11:16	19.8 17	Second Reading Adjusted Valve
├ ────		15.2	Adjusted Valve
NILEW676 NILEW676	4/29/2021 10:45 4/29/2021 10:45		
		15.1	Second Reading
NILEW676	5/13/2021 12:39 5/13/2021 12:40	15.2	Adjusted Valve
NILEW676	5/13/2021 12:40	14 16.5	Second Reading Adjusted Valve
NILEW676 NILEW676	6/9/2021 12:01		Adjusted Valve
	0/9/2021 12:01	14.1	Adjusted Valve Well Permanently Decommissioned Due to Poor Gas
NILEW676	6/9/2021 12:02	13.9	Quality
NILEW677	2/18/2021 9:55	6.3	Adjusted Valve
NILEW677	2/18/2021 9:56	6.2	Second Reading
NILEW677	3/4/2021 10:06	4.4	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILEW677	5/19/2021 9:02	16.3	Adjusted Valve
NILEW677	5/19/2021 9:03	17.6	Second Reading
NILEW677	6/3/2021 9:06	16.5	Adjusted Valve
NILEW677	6/3/2021 9:07	20.6	Second Reading
NILEW677	6/18/2021 9:20	17	Adjusted Valve
NILEW677	6/18/2021 9:22	17.7	Second Reading
NILEW677	7/7/2021 9:05	18.6	Adjusted Valve
NILEW677	7/7/2021 9:07	19.4	Second Reading
NILEW677	7/20/2021 8:48	11.9	Adjusted Valve
NILEW677	7/20/2021 8:49	12.2	Second Reading
NILEW681	2/11/2021 9:41	9.1	Adjusted Valve
NILEW681	2/11/2021 9:43	0.4	In Compliance
NILEW683	2/5/2021 11:32	5.1	Adjusted Valve
NILEW683	2/5/2021 11:35	6	Second Reading
NILEW683	2/17/2021 13:26	3.6	In Compliance
NILEW683	3/5/2021 9:59	12.1	Adjusted Valve
NILEW683	3/5/2021 10:04	15.8	Second Reading
NILEW683	3/17/2021 10:30	8	Adjusted Valve
NILEW683	3/17/2021 10:31	7.1	Second Reading
NILEW683	3/25/2021 10:28	2.4	In Compliance
NILEW683	4/27/2021 12:04	5.3	Adjusted Valve
NILEW683	4/27/2021 12:06	4.9	In Compliance
NILEW683	7/7/2021 10:37	14.5	Adjusted Valve
NILEW683	7/7/2021 10:39	4.9	In Compliance
NILEW685	7/30/2021 9:42	20.1	Adjusted Valve
NILEW685	7/30/2021 9:42	20.4	Second Reading
NILEW686	2/10/2021 13:11	20.8	Adjusted Valve
NILEW686	2/10/2021 13:12	20.8	Second Reading
NILEW686	2/24/2021 11:34	20.7	Adjusted Valve
NILEW686	2/24/2021 11:35	20.7	Second Reading
NILEW686	3/10/2021 10:19	13.2	Adjusted Valve
NILEW686	3/10/2021 10:19	13.2	Second Reading
NILEW686	3/10/2021 10:25	13.1	Third Reading
NILEW686	3/24/2021 12:07	9.6	Adjusted Valve
NILEW686	3/24/2021 12:08	9.6	Second Reading
NILEW686	4/8/2021 11:07	6.8	Adjusted Valve
NILEW686	4/8/2021 11:08	6.8	Second Reading

Well ID	Date and Time	Oxygen (%)	Comments
NILEW686	4/29/2021 10:39	15	Adjusted Valve
NILEW686	4/29/2021 10:40	15	Second Reading
NILEW686	5/13/2021 12:34	14.5	Adjusted Valve
NILEW686	5/13/2021 12:35	15.1	Second Reading
NILEW686	5/27/2021 9:23	11.9	Adjusted Valve
NILEW686	5/27/2021 9:24	12.2	Second Reading
NILEW686	6/9/2021 11:49	7.7	Adjusted Valve
NILEW686	6/9/2021 11:51	7.5	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW694	Г /27 /2021 9.FF	11.1	Adjusted Valve
NILEW694	5/27/2021 8:55 5/27/2021 8:56	10.8	Second Reading
NILEW694	6/10/2021 9:22	4.9	In Compliance
NILEW695	2/10/2021 13:47	18.1	Adjusted Valve
NILEW695	2/10/2021 13:49	18	Second Reading
NILEW695	2/24/2021 10:27	2.2	In Compliance
NILEW696	7/8/2021 15:16	18.9	Adjusted Valve
NILEW696	7/8/2021 15:18	0	In Compliance
NILEW697	6/29/2021 9:58	19.3	Adjusted Valve
NILEW697	6/29/2021 9:58	19.3	Second Reading
NILEW697	7/12/2021 14:43	0	In Compliance
NILEW698	2/24/2021 8:36	7	Adjusted Valve
NILEW698	2/24/2021 8:36	7.2	Second Reading
NILEW698	3/2/2021 9:19	7.2	Adjusted Valve
NILEW698	3/2/2021 9:21	6.9	Second Reading
NILEW698	3/24/2021 10:41	6.3	Adjusted Valve
NILEW698	3/24/2021 10:42	6.5	Second Reading
NILEW698	4/8/2021 9:40	0.2	In Compliance
NILEW698	5/27/2021 8:32	6.8	Adjusted Valve
NILEW698	5/27/2021 8:33	4.9	In Compliance
NILEW698	6/29/2021 9:30	17.6	Adjusted Valve
NILEW698	6/29/2021 9:30	18.8	Second Reading
NILEW698	7/12/2021 14:52	19.8	Adjusted Valve
NILEW698	7/12/2021 14:53	20	Second Reading
NILEW698	7/22/2021 13:47	19.9	Adjusted Valve
NILEW698	7/22/2021 13:48	20.4	Second Reading
NILEW699	4/8/2021 10:24	11	Adjusted Valve

Well ID	Date and Time	Oxygen (%)	Comments
NILEW699	4/8/2021 10:26	4.8	In Compliance
NILEW700	2/10/2021 9:15	10.4	Adjusted Valve
NILEW700	2/10/2021 9:17	8.5	Second Reading
NILEW700	2/19/2021 9:15	8.7	Adjusted Valve
NILEW700	2/19/2021 9:15	8.9	Second Reading
NILEW700	3/2/2021 9:15	10.9	Adjusted Valve
NILEW700	3/2/2021 9:16	10	Second Reading
NILEW700	3/24/2021 10:01	2.9	In Compliance
NILEW704	3/19/2021 9:02	17.6	Adjusted Valve
NILEW704	3/19/2021 9:03	20.3	Second Reading
NILEW704	4/1/2021 11:58	2.1	In Compliance
NILEW704	5/12/2021 10:19	11.8	Adjusted Valve
NILEW704	5/12/2021 10:20	12.2	Second Reading
NILEW704	5/25/2021 9:25	11.7	Adjusted Valve
NILEW704	5/25/2021 9:33	11.6	Second Reading
NILEW704	6/8/2021 9:33	3.4	In Compliance
NILEW704	7/21/2021 8:52	5.7	Adjusted Valve
NILEW704	7/21/2021 8:55	10.4	Second Reading
NILEW711	2/5/2021 13:00	10.9	Adjusted Valve
NILEW711	2/5/2021 13:02	11.3	Second Reading
NILEW711	2/17/2021 12:41	9.1	Adjusted Valve
NILEW711	2/17/2021 12:42	9.2	Second Reading
NILEW711	3/9/2021 9:00	9.3	Adjusted Valve
NILEW711	3/9/2021 9:02	9.5	Second Reading
NILEW711	3/19/2021 11:32	7.7	Adjusted Valve
NILEW711	3/19/2021 11:37	7.4	Second Reading
NILEW711	4/12/2021 10:33	2.5	In Compliance
NILEW711	4/14/2021 13:39	10.9	Adjusted Valve
NILEW711	4/14/2021 13:41	15.5	Second Reading
NILEW711	4/15/2021 8:43	0	In Compliance
NILEW711	5/7/2021 11:20	5.3	Adjusted Valve
NILEW711	5/7/2021 11:50	5.2	Second Reading
NILEW711	5/12/2021 10:19	5.6	Adjusted Valve
NILEW711	5/13/2021 13:49	0.7	In Compliance
NILEW714	3/19/2021 12:25	5.5	Adjusted Valve
NILEW714	3/19/2021 12:27	4.9	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILEW714	7/9/2021 11:39	5.4	Adjusted Valve
NILEW714	7/9/2021 11:41	6.5	Second Reading
NILEW714	7/21/2021 11:41	0.9	In Compliance
NILEW717	2/18/2021 10:25	15.2	Adjusted Valve
NILEW717	2/18/2021 10:26	15.5	Second Reading
NILEW717	3/4/2021 10:20	0.4	In Compliance
NILEW717	6/18/2021 10:03	16	Adjusted Valve
NILEW717	6/18/2021 10:05	17.5	Second Reading
NILEW717	7/1/2021 14:06	0.1	In Compliance
NILEW719	4/9/2021 9:25	13.4	Adjusted Valve
NILEW719	4/9/2021 9:28	14.4	Second Reading
NILEW719	4/20/2021 13:05	0	In Compliance
NILEW720	7/20/2021 8.54	10.5	Adjusted Valva
NILEW720 NILEW720	7/20/2021 8:54 7/20/2021 8:55	10.5	Adjusted Valve Second Reading
NILEVV720	7/20/2021 8:55	10.0	
NILEW723	2/5/2021 11:01	15.4	(Initial Exceedance was on 12/16/20) Adjusted Valve
NILEW723	2/5/2021 11:02	15.4	Second Reading
NILEW723	2/5/2021 11:03	15.1	Third Reading
NILEW723	2/18/2021 10:53	0.1	In Compliance
NILEW723	3/5/2021 9:42	6.9	Adjusted Valve
NILEW723	3/5/2021 9:43	6.9	Second Reading
NILEW723	3/17/2021 10:43	10.1	Adjusted Valve
NILEW723	3/17/2021 10:44	10.8	Second Reading
NILEW723	3/25/2021 10:12	14.1	Adjusted Valve
NILEW723	3/25/2021 10:12	14.2	Second Reading
NILEW723	4/9/2021 10:38	4.9	In Compliance
NILEW723	7/7/2021 10:24	10	Adjusted Valve
NILEW723	7/7/2021 10:24	10	Second Reading
NILEW723	7/20/2021 9:36	11.1	Adjusted Valve
NILEW723	7/20/2021 9:36	14.2	Second Reading
1112 11/23	,,20,2021 3.30	17.2	
NILEW726	3/24/2021 11:32	5.4	Adjusted Valve
NILEW726	3/24/2021 11:33	5.4	Second Reading
NILEW726	4/8/2021 11:38	0	In Compliance
	1/20/2021 2 22		
NILEW728	4/30/2021 9:20	13.3	Adjusted Valve

Well ID	Date and Time	Oxygen (%)	Comments
NILEW728	4/30/2021 9:21	13.2	Second Reading
NILEW728	5/12/2021 9:57	4.8	In Compliance
NILEW728	5/18/2021 8:27	7.3	Adjusted Valve
NILEW728	5/18/2021 8:30	6.1	Second Reading
NILEW728	6/2/2021 8:11	3.8	In Compliance
NILEW728	6/17/2021 8:28	6.4	Adjusted Valve
NILEW728	6/17/2021 8:32	6.6	Second Reading
NILEW728	7/1/2021 14:13	14.5	Adjusted Valve
NILEW728	7/1/2021 14:17	15.2	Second Reading
NILEW728	7/29/2021 13:50	6.5	Adjusted Valve
NILEW728	7/29/2021 13:50	6.5	Second Reading
NILEW728	7/29/2021 13:51	4.9	In Compliance
NILEW730	2/4/2021 11:39	15.2	Adjusted Valve
NILEW730	2/4/2021 11:41	15.4	Second Reading
NILEW730	2/17/2021 12:25	15.1	Adjusted Valve
NILEW730	2/17/2021 12:26	15.2	Second Reading
NILEW730	7/14/2021 11:16	0	In Compliance
NILEW744	2/4/2021 11:56	14.5	Adjusted Valve
NILEW744	2/4/2021 11:56	14.5	Second Reading
NILEW744	2/4/2021 11:57	14.3	Third Reading
NILEW744	2/17/2021 12:30	7.7	Adjusted Valve
NILEW744	2/17/2021 12:32	7.3	Second Reading
NILEW744	3/9/2021 10:44	7.6	Adjusted Valve
NILEW744	3/9/2021 10:46	1.6	In Compliance
NILEW744	5/7/2021 7:19	8.7	Adjusted Valve
NILEW744	5/7/2021 7:20	9.6	Second Reading
NILEW744	5/12/2021 10:10	7.1	Adjusted Valve
NILEW744	5/12/2021 10:11	8.2	Second Reading
NILEW744	5/21/2021 9:35	4.8	In Compliance
NILEW747	7/21/2021 10:33	9.4	Adjusted Valve
NILEW747	7/21/2021 10:34	9.8	Second Reading
NILEW748	4/19/2021 9:01	17.2	Adjusted Valve
NILEW748	4/20/2021 12:09	0	In Compliance
NILEW748	5/21/2021 8:33	14.6	Adjusted Valve
NILEW748	5/21/2021 8:35	11.2	Second Reading
NILEW748	6/2/2021 10:32	2.1	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILEW748	6/24/2021 11:51	8.6	Adjusted Valve
NILEW748	6/24/2021 11:52	4.4	In Compliance
	-/ /		
NILEW748	7/29/2021 12:31	12	Adjusted Valve
NILEW750	6/4/2021 8:16	6.3	Adjusted Valve
NILEW750	6/4/2021 8:18	6.3	Second Reading
NILEW750	6/18/2021 8:33	0.1	In Compliance
NILEW753	4/29/2021 9:06	6.9	Adjusted Valve
NILEW753	4/29/2021 9:09	7.3	Second Reading
NILEW753	5/12/2021 10:37	9	Adjusted Valve
NILEW753	5/12/2021 10:56	9	Second Reading
NILEW753	5/25/2021 9:09	7.7	Adjusted Valve
NILEW753	5/25/2021 9:10	11.7	Second Reading
NILEW753	6/8/2021 9:20	4.9	In Compliance
NILEW753	7/8/2021 9:26	5	Adjusted Valve
NILEW753	7/8/2021 9:29	4.9	In Compliance
NILEW753	7/21/2021 9:29	8.1	Adjusted Valve
NILEW753	7/21/2021 9:30	8.6	Second Reading
	- / /		
NILEW760	2/18/2021 9:44	6.1	Adjusted Valve
NILEW760	2/18/2021 9:45	5.9	Second Reading
NILEW760	3/4/2021 10:00	0	In Compliance
NILEW760	3/25/2021 8:59	6.5	Adjusted Valve
NILEW760	3/25/2021 9:00	6.8	Second Reading
NILEW760	4/8/2021 11:48	0	In Compliance
NILEW760	4/27/2021 10:30	8.1	Adjusted Valve
NILEW760	4/27/2021 10:32	8.7	Second Reading
NILEW760	5/12/2021 9:41	0.9	In Compliance
	6/2/2021 0.50	9.2	Adjusted Value
NILEW760 NILEW760	6/3/2021 8:58 6/3/2021 8:59	10.9	Adjusted Valve
NILEW760	6/18/2021 9:06	10.9	Second Reading Adjusted Valve
NILEW760	6/18/2021 9:08	13.8	Second Reading
NILEW760	7/7/2021 8:55	0	In Compliance
	11120210.33		in compliance
NILEW760	7/20/2021 8:40	8	Adjusted Valve
NILEW760	7/20/2021 8:40	7.4	Second Reading

Well ID	Date and Time	Oxygen (%)	Comments
NILEW761	4/27/2021 10:23	7.3	Adjusted Valve
NILEW761	4/27/2021 10:24	7.6	Second Reading
NILEW761	5/12/2021 9:44	0.1	In Compliance
		10.1	
NILEW761	6/3/2021 8:51	10.4	Adjusted Valve
NILEW761	6/3/2021 8:53	10.4	Second Reading
NILEW761	6/18/2021 8:56	5.8	Adjusted Valve
NILEW761	6/18/2021 8:58	6.5	Second Reading
NILEW761	7/7/2021 8:48	0	In Compliance
		_	
NILEW762	4/27/2021 12:15	7	Adjusted Valve
NILEW762	4/27/2021 12:16	7.5	Second Reading
NILEW762	5/12/2021 9:47	7.4	Adjusted Valve
NILEW762	5/12/2021 9:49	7.6	Second Reading
NILEW762	5/19/2021 10:18	7.7	Adjusted Valve
NILEW762	5/19/2021 10:19	7.3	Second Reading
NILEW762	6/3/2021 10:11	0	In Compliance
NILEW762	6/18/2021 8:51	8.5	Adjusted Valve
NILEW762	6/18/2021 8:53	10.9	Second Reading
NILEW762	7/1/2021 14:32	6	Adjusted Valve
NILEW762	7/1/2021 14:38	6.7	Second Reading
NILEW762	7/20/2021 8:30	0	In Compliance
NILEW763	2/5/2021 12:59	7.4	Adjusted Valve
NILEW763	2/5/2021 13:01	10.5	Second Reading
NILEW763	2/17/2021 10:53	4.9	In Compliance
NILEW763	3/3/2021 8:38	15.6	Adjusted Valve
NILEW763	3/3/2021 8:39	16.5	Second Reading
NILEW763	3/16/2021 9:30	7	Adjusted Valve
NILEW763	3/16/2021 9:30	7	Second Reading
NILEW763	3/16/2021 9:31	7.9	Third Reading
NILEW763	4/5/2021 8:35	14.2	Adjusted Valve
NILEW763	4/5/2021 8:36	14.8	Second Reading
NILEW763	4/28/2021 9:01	0.4	In Compliance
NILEW764	2/17/2021 8:47	11.7	Adjusted Valve
NILEW764	2/17/2021 8:50	14	Second Reading
NILEW764	3/3/2021 8:46	1.3	In Compliance
NILEW769	3/25/2021 11:24	10.7	Adjusted Valve
NILEW769	3/25/2021 11:26	2.5	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILEW769	4/12/2021 10:17	11.3	Adjusted Valve
NILEW769	4/12/2021 10:18	12.8	Second Reading
NILEW769	4/20/2021 12:52	1.3	In Compliance
NILEW769	7/21/2021 14:11	13.5	Adjusted Valve
NILEW769	7/21/2021 14:11	14.4	Second Reading
NILEW769	7/21/2021 14:12	14.2	Third Reading
NILEVV709	//21/2021 14.17	14.2	
NILLEW16	2/11/2021 14:06	17.9	(Initial Exceedance was on 12/11/20) Adjusted Valve
NILLEW16	2/11/2021 14:06	17.9	Second Reading
NILLEW16	2/11/2021 14:07	17.6	Third Reading
NILLEW16	2/25/2021 10:27	19.6	Adjusted Valve
NILLEW16	2/25/2021 10:30	19.6	Second Reading
NILLEW16	3/8/2021 9:15	1.7	In Compliance
NILLEW16	7/13/2021 12:28	9.6	Adjusted Valve
NILLEW16	7/13/2021 12:29	7	Second Reading
NILLEW16	7/27/2021 13:42	8.9	Adjusted Valve
NILLEW16	7/27/2021 13:45	9.6	Second Reading
NILMW002	6/24/2021 11:10	18.6	Adjusted Valve
NILMW002	6/24/2021 11:12	18.9	Second Reading
NILMW002	7/8/2021 12:47	17.8	Adjusted Valve
NILMW002	7/8/2021 12:48	17.9	Second Reading
NILMW002	7/28/2021 12:03	8.4	Adjusted Valve
NILMW002	7/28/2021 12:05	8.4	Second Reading
NILMW016	4/30/2021 8:54	5.2	Adjusted Valve
NILMW016	4/30/2021 8:55	6.5	Second Reading
NILMW016	5/13/2021 13:26	0.5	In Compliance
	5/15/2021 15.20	0	
NILMW019	2/4/2021 11:04	17.2	Adjusted Valve
NILMW019	2/4/2021 11:06	20.1	Second Reading
NILMW019	2/17/2021 12:21	3.1	In Compliance
NILMW019	5/25/2021 11:00	9.6	Adjusted Valve
NILMW019	5/25/2021 11:01	9.5	Second Reading
NILMW019	6/8/2021 10:55	6.5	Adjusted Valve
NILMW019	6/22/2021 10:37	6.1	Adjusted Valve
NILMW019	6/22/2021 10:38	7.5	Second Reading
NILMW019	7/9/2021 11:56	1.6	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILMW020	5/25/2021 10:52	6.6	Adjusted Valve
NILMW020	5/25/2021 10:53	6.6	Second Reading
NILMW020	6/8/2021 10:49	0	In Compliance
NILMW020	6/22/2021 10:28	7.9	Adjusted Valve
NILMW020	6/22/2021 10:29	3.4	In Compliance
NILMW020	7/21/2021 10:45	7.4	Adjusted Valve
NILMW020	7/21/2021 10:47	7.2	Second Reading
NILMW030	2/4/2021 9:31	20.2	Adjusted Valve
NILMW030	2/4/2021 9:33	15	Second Reading
NILMW030	2/17/2021 12:13	3.5	In Compliance
NILMW030	5/12/2021 10:52	5.5	Adjusted Valve
NILMW030	5/12/2021 10:53	5.5	Second Reading
NILMW030	5/25/2021 9:42	4.6	In Compliance
NILMW031	3/19/2021 9:25	10	Adjusted Valve
NILMW031	3/19/2021 9:26	9.9	Second Reading
NILMW031	4/1/2021 11:48	3.9	In Compliance
	4/20/2021 11:00		A diverte d Value
NILMW031 NILMW031	4/29/2021 11:08	6.6 10.2	Adjusted Valve
	4/29/2021 11:12		Second Reading
NILMW031	5/12/2021 11:06	4.8	In Compliance
NILMW031	6/8/2021 10:09	8	Adjusted Valve
NILMW031	6/8/2021 10:09	8.6	Second Reading
NILMW031	6/22/2021 9:30	2.5	In Compliance
NILIVIVOST	0/22/2021 5.50	2.5	in compliance
NILMW032	2/25/2021 9:37	8.7	Adjusted Valve
NILMW032	2/25/2021 9:39	7.4	Second Reading
NILMW032	3/8/2021 9:59	2	In Compliance
NILMW034	2/25/2021 9:30	7.9	Adjusted Valve
NILMW034	2/25/2021 9:31	8	Second Reading
NILMW034	3/8/2021 9:51	6.1	Adjusted Valve
NILMW034	3/8/2021 9:52	6	Second Reading
NILMW034	3/19/2021 9:19	4.1	In Compliance
NILMW034	7/8/2021 13:22	5.9	Adjusted Valve
NILMW034	7/8/2021 13:24	5.9	Second Reading
NILMW034	7/20/2021 14:37	6.8	Adjusted Valve
NILMW034	7/20/2021 14:42	18.1	Second Reading

Well ID	Date and Time	Oxygen (%)	Comments
NILW475A	2/5/2021 11:19	10.5	(Initial Exceedance was on 1/27/21) Adjusted Valve
NILW475A	2/5/2021 11:21	18.1	Second Reading
NILW475A	2/18/2021 11:04	13.2	Adjusted Valve
NILW475A	3/5/2021 9:55	13.7	Adjusted Valve
NILW475A	3/5/2021 9:55	13.1	Second Reading
NILW475A	3/25/2021 10:23	8.7	Adjusted Valve
NILW475A	3/25/2021 10:24	8.5	Second Reading
NILW475A	4/9/2021 10:51	10.8	Adjusted Valve
NILW475A	4/9/2021 10:52	10.8	Second Reading
NILW475A	4/27/2021 11:56	8.7	Adjusted Valve
NILW475A	5/13/2021 7:48	12.6	Adjusted Valve
NILW475A	5/13/2021 8:48	15.4	Second Reading
NILW475A	5/19/2021 10:06	8.4	Adjusted Valve
NILW475A	5/19/2021 10:07	8.7	Second Reading
NILW475A	5/27/2021 10:05	9.8	Well Permanently Decommissioned Due to Poor Gas Quality
NILW573A	6/10/2021 9:57	19.6	Adjusted Valve
NILW573A	6/10/2021 9:57	20.1	Second Reading
NILW573A	6/23/2021 9:17	20.7	Adjusted Valve
NILW573A	6/23/2021 9:17	21	Second Reading
NILW573A	7/12/2021 11:31	18.2	Adjusted Valve
NILW573A	7/12/2021 11:32	19.8	Second Reading
NILW573A	7/23/2021 10:12	21.5	Adjusted Valve
NILW573A	7/23/2021 10:14	21.7	Second Reading
NILW574A	3/24/2021 12:01	19.5	Adjusted Valve
NILW574A	3/24/2021 12:01	19.9	Second Reading
NILW574A	4/8/2021 11:00	4.9	In Compliance
	C /10 /2024 10 02	0.7	
NILW574A	6/10/2021 10:02	9.7	Adjusted Valve
NILW574A	6/10/2021 10:03	7.2	Second Reading
NILW574A	6/23/2021 9:20	1.9	In Compliance
NILW574A	7/23/2021 10:07	5.7	Adjusted Valve
NILW574A	7/23/2021 10:09	5.7	Second Reading
NILW632A	4/28/2021 9:18	7.8	Adjusted Valve
NILW632A	4/28/2021 9:20	5.7	Second Reading
NILW632A	5/12/2021 8:15	0	In Compliance
NISS17-1	4/7/2021 9:00	17.2	Adjusted Valve

Well ID	Date and Time	Oxygen (%)	Comments
NISS17-1	4/7/2021 9:01	17.8	Second Reading
NISS17-1	4/20/2021 12:59	0	In Compliance
NISS17-4	3/10/2021 9:20	14.9	Adjusted Valve
NISS17-4	3/10/2021 9:21	14.9	Second Reading
NISS17-4	3/24/2021 11:06	16.3	Adjusted Valve
NISS17-4	3/24/2021 11:07	16.7	Second Reading
NISS17-4	4/8/2021 10:07	2.6	In Compliance
NISS17-4	4/29/2021 9:14	7.4	Adjusted Valve
NISS17-4	4/29/2021 9:15	9.5	Second Reading
NISS17-4	5/12/2021 8:51	4.8	In Compliance
NISS17-4	5/27/2021 12:32	8.3	Adjusted Valve
NISS17-4	5/27/2021 12:33	7.9	Second Reading
NISS17-4	6/11/2021 9:09	7.7	Adjusted Valve
NISS17-4	6/11/2021 9:10	11.5	Second Reading
NISS17-4	6/29/2021 9:54	1.2	In Compliance
NISS17-4	6/29/2021 9:55	10.5	Adjusted Valve
NISS17-4	6/29/2021 9:55	10.5	Second Reading
NISS17-4	7/14/2021 10:19	5.1	Adjusted Valve
NISS17-4	7/14/2021 10:20	4.7	In Compliance
NLCR1112	2/12/2021 8:42	19.9	Adjusted Valve
NLCR1112	2/12/2021 8:43	19.9	Second Reading
NLCR1112	2/17/2021 9:22	1.8	In Compliance
NLCRST05	7/29/2021 14:19	11.2	Adjusted Valve
NLCRST05	7/29/2021 14:23	15.5	Second Reading

Note: All required corrective action and monitoring was completed in accordance with Rule 8-34 and NSPS timelines

Well ID	Date and Time	Initial Temp [°F]	Adjusted Temp	Comments
			[°F]	
NILEW476	7/8/2021 16:11	133.4	133.5	Adjusted Valve
NILEW476	7/8/2021 16:11	133.4	133.5	Second Reading
NILEW476	7/21/2021 13:29	129.8	130.2	In Compliance
NILEW688	5/13/2021 12:51	131	131	Adjusted Valve
NILEW688	5/13/2021 12:53	131.1	131.1	Second Reading
NILEW688	5/27/2021 9:57	129.2	129.1	In Compliance
	5/2//2021 5.5/	125.2	125.1	
				(Initial Exceedance was on 11/5/20)
NILEW690	2/5/2021 11:07	134.8	132.1	Adjusted Valve
NILEW690	2/5/2021 11:12	134.6	131.5	Second Reading
NILEW690	2/24/2021 13:01	134	134.1	Adjusted Valve
NILEW690	2/24/2021 13:03	134.3	134.2	Second Reading
NILEW690	3/2/2021 13:54	133.6	131.6	Adjusted Valve
NILEW690	3/2/2021 13:54			In Compliance
NILEW090	3/2/2021 13.50	128.8	128.8	in compliance
NILEW690	3/19/2021 10:01	134.3	134.3	Adjusted Valve
NILEW690	3/19/2021 10:07	134.2	134.2	Second Reading
NILEW690	4/1/2021 12:22	135	135	Adjusted Valve
NILEW690	4/12/2021 9:57	133.7	133.8	Second Reading
NILEW690	4/23/2021 10:05	134.2	134.1	Adjusted Valve
NILEW690	4/23/2021 10:07	133.6	133.3	Second Reading
NILEW690	5/12/2021 11:21	130.5	130.6	In Compliance
	3/12/2021 11:21	100.0	10010	
NILEW690	5/27/2021 12:20	133.5	133.5	Adjusted Valve
NILEW690	5/27/2021 12:21	133.7	133.7	Second Reading
NILEW690	6/10/2021 13:32	133.4	133.5	Adjusted Valve
NILEW690	6/10/2021 13:40	133.4	133.4	Second Reading
NILEW690	6/24/2021 8:48	132.4	132.5	Adjusted Valve
NILEW690	6/24/2021 8:48	132.4	132.6	Second Reading
NILEW690	7/8/2021 16:00	132.8	135.3	
				Adjusted Valve
NILEW690	7/8/2021 16:00	135.3	135.3	Second Reading
NILEW690	7/22/2021 14:10	133.4	133.4	Adjusted Valve
NILEW690	7/22/2021 14:11	133.2	133.4	Second Reading
NILEW701	2/5/2021 12:09	136.8	136.5	Adjusted Valve
NILEW701	2/5/2021 12:12	136.8	136.7	Second Reading
NILEW701	2/17/2021 13:17	133	133.1	Adjusted Valve
NILEW701	3/8/2021 11:36	135.7	136.2	Adjusted Valve
NILEW701	3/8/2021 11:37	136.9	137	Second Reading
NILEW701	3/19/2021 9:48	137.9	137.9	Adjusted Valve
NILEW701	3/19/2021 9:48	137.9	137.9	Second Reading
NILEW701	4/12/2021 8:51	136.2	135.6	Adjusted Valve
NILEW701	4/12/2021 8:52	136.2	133.0	Second Reading
NILEW701 NILEW701	4/29/2021 11:14	134.1	134.6	Adjusted Valve
NILEW701	4/29/2021 11:15	134.6	134.6	Second Reading
NILEW701	5/13/2021 14:18	134.3	134.4	Adjusted Valve
NILEW701	5/13/2021 14:20	134.2	134.3	Second Reading
NILEW701	5/21/2021 10:03	129.9	129.9	In Compliance
NILEW701	6/10/2021 12:59	135	135	Adjusted Valve
INILE VV / UL	0/10/2021 12.39	122	122	Aujusteu vaive

Well ID	Date and Time	Initial Temp [°F]	Adjusted Temp	Comments
NILEW701		134.9	[°F] 134.8	
	6/10/2021 13:01 6/24/2021 9:09	134.9	134.8	Second Reading Adjusted Valve
NILEW701				-
NILEW701	6/24/2021 9:10	133.9	133.9	Second Reading
NILEW701	7/8/2021 14:59	137.2	137.9	Adjusted Valve
NILEW701	7/8/2021 14:59	137.2	137.9	Second Reading
NILEW701	7/8/2021 15:01	136.4	137.6	Third Reading
NILEW701	7/21/2021 14:48	136.1	136.9	Adjusted Valve
NILEW701	7/21/2021 14:50	137.1	137.1	Second Reading
				(Initial Exceedance was on 12/21/20)
NILEW703	2/5/2021 11:51	132.3	132.3	Adjusted Valve
NILEW703	2/5/2021 11:54	132.2	132.2	Second Reading
NILEW703	2/25/2021 10:21	130.5	130.5	In Compliance
NILEW703	7/8/2021 14:54	132.4	132.5	Adjusted Valve
NILEW703	7/14/2021 14:16	129.7	129.7	In Compliance
NILEW707	3/19/2021 11:50	132.6	132.6	Adjusted Valve
NILEW707	3/19/2021 11:52	132.0	132.5	Second Reading
	4/1/2021 12:13			
NILEW707		133	132.6	Adjusted Valve
NILEW707	4/1/2021 12:14	133.1	133.1	Second Reading
NILEW707	4/12/2021 10:45	131.8	131.7	Adjusted Valve
NILEW707	4/12/2021 10:47	131.6	131.7	Second Reading
NILEW707	4/14/2021 13:29	134.2	134.3	Adjusted Valve
NILEW707	4/15/2021 8:54	67.5	67.6	In Compliance
NILEW707	4/18/2021 15:36	137.3	137.4	Adjusted Valve
NILEW707	4/19/2021 8:47	59.8	65	In Compliance
	1/10/2021 0.17	5510		
NILEW707	4/20/2021 11:58	136	136	Adjusted Valve
NILEW707	4/20/2021 12:00	136.2	136.3	Second Reading
NILEW707	4/21/2021 12:26	135	135	Adjusted Valve
NILEW707	4/22/2021 10:19	133.4	133.4	Adjusted Valve
NILEW707	4/23/2021 10:26	133.7	133.6	Adjusted Valve
NILEW707	4/23/2021 10:30	133.8	133.9	Second Reading
NILEW707	4/26/2021 9:54	131.6	131.7	Adjusted Valve
NILEW707	5/3/2021 11:12	131	130.9	Adjusted Valve, In Compliance
	F /4 0 / 2024 0 4 4	121.2	426.2	
NILEW707	5/10/2021 9:11	134.2	136.2	Adjusted Valve
NILEW707	5/10/2021 9:13	136	135.8	Second Reading
NILEW707	5/14/2021 14:01	132.7	132.8	Adjusted Valve
NILEW707	5/14/2021 14:02	132.5	132.5	Second Reading
NILEW707	5/17/2021 9:35	130.7	130.7	In Compliance
NILEW707	5/24/2021 9:55	131.7	130	Adjusted Valve, In Compliance
NILEW707	6/1/2021 11:21	132.2	132.2	Adjusted Valve
	6/1/2021 11:22	132.2	132.2	Second Reading
NILEW707				
NILEW707	6/15/2021 13:38	132.9	133	Adjusted Valve
NILEW707	6/15/2021 13:40	132.9	133	Second Reading
NILEW707	6/24/2021 11:41	131.3	131.3	Adjusted Valve

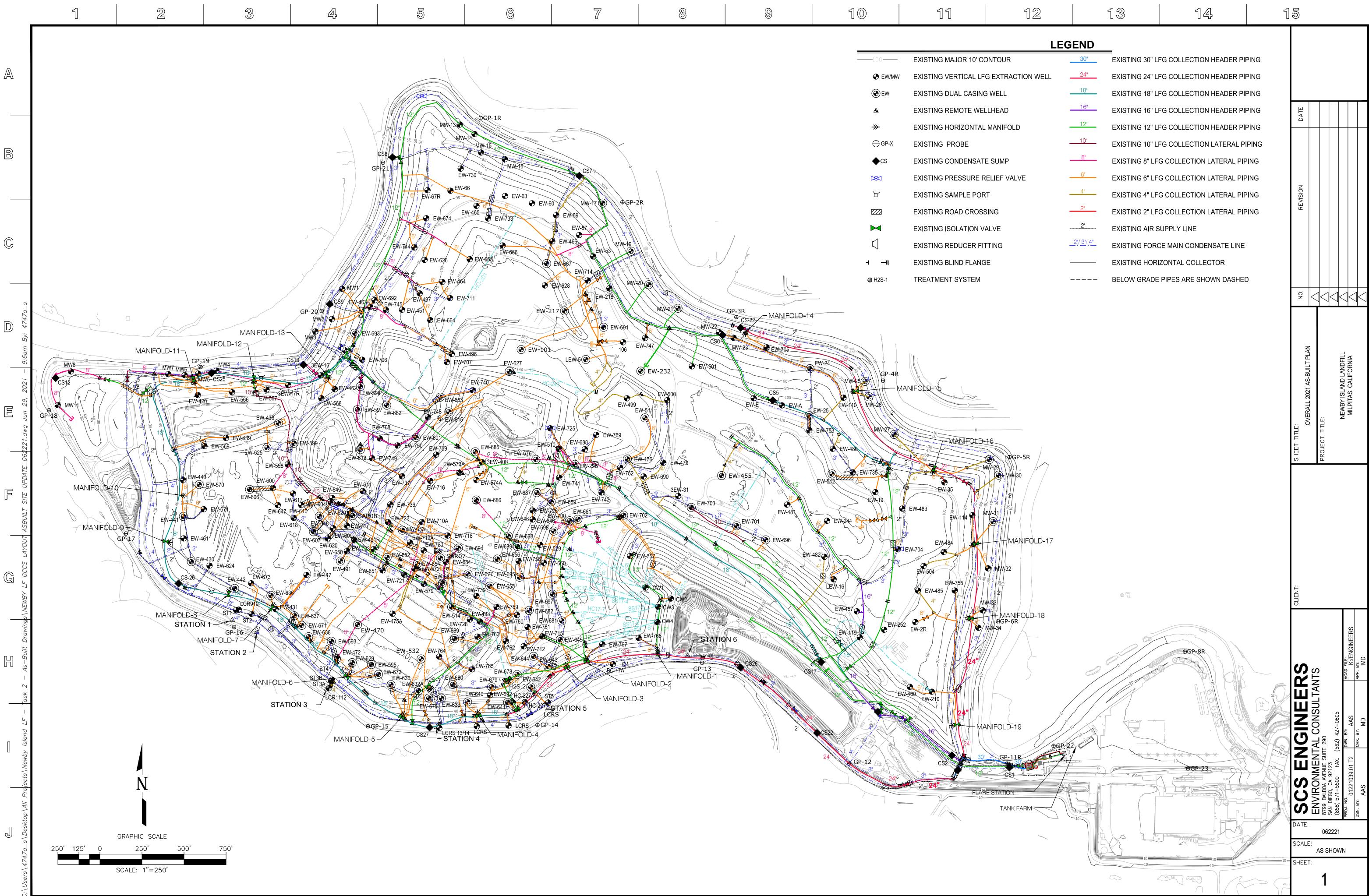
Well ID	Date and Time	Initial Temp [°F]	Adjusted Temp [°F]	Comments
NILEW707	6/24/2021 11:43	131.3	131.3	Second Reading
NILEW707	7/2/2021 10:31	95.6	95.5	In Compliance
				· · · · · · · · · · · · · · · · · · ·
NILEW750	6/4/2021 8:16	131.2	131.8	Adjusted Valve
NILEW750	6/4/2021 8:18	132	131.9	Second Reading
NILEW750	6/18/2021 8:33	125.6	125.8	In Compliance
NILEW752	2/5/2021 11:38	140.5	140.5	Adjusted Valve
NILEW752	2/5/2021 11:43	140.5	140.5	Second Reading
NILEW752	2/17/2021 13:09	138.7	138.7	Adjusted Valve
NILEW752	2/24/2021 13:07	139.1	139.1	Adjusted Valve
NILEW752	2/24/2021 13:08	139.2	139.3	Second Reading
NILEW752	3/8/2021 10:51	138.7	138.9	Adjusted Valve
NILEW752	3/8/2021 10:53	138.9	138.9	Second Reading
NILEW752	3/12/2021 11:27	139.2	139.2	Adjusted Valve
NILEW752	3/12/2021 11:29	139.3	139.3	Second Reading
NILEW752	3/19/2021 10:44	140.8	140.7	Adjusted Valve
NILEW752	3/19/2021 10:46	140.8	140.8	Second Reading
NILEW752	4/12/2021 10:00	138.1	135.9	Adjusted Valve
NILEW752	4/12/2021 10:02	137.3	137.4	Second Reading
NILEW752	4/23/2021 9:49	140.8	140.7	Adjusted Valve
NILEW752	4/23/2021 9:53	140.9	140.9	Second Reading
NILEW752	5/7/2021 12:03	140.6	140.6	Adjusted Valve
NILEW752	5/7/2021 12:11	140.5	140.4	Second Reading
NILEW752	5/21/2021 10:11	130.3	130.3	In Compliance
NILEW752	6/10/2021 12:17	139	139	Adjusted Valve
NILEW752	6/10/2021 12:19	139	139	Second Reading
NILEW752	6/18/2021 12:31	139.8	139.2	Adjusted Valve
NILEW752	6/18/2021 12:34	139.5	139.5	Second Reading
NILEW752	6/18/2021 12:36	140	140	Third Reading
NILEW752	7/8/2021 16:07	141.2	141.5	Adjusted Valve
NILEW752	7/8/2021 16:07	141.2	141.5	Second Reading
NILEW752	7/8/2021 16:09	141.2	141.4	Third Reading
NILEW752	7/21/2021 13:19	138.7	138.7	Adjusted Valve
NILEW752	7/21/2021 13:22	138.7	138.7	Second Reading

Note: All required corrective action and remonitoring was completed in accordance with Rule 8-34 and NSPS timelines.

Appendix A – Responsible Official Certification Form

Certification of Truth and Accuracy and Completeness:

I certify the following:


Based on the information and belief formed after reasonable inquiry, the information in this document are true, accurate, and complete:

08/31/21

Signature of Responsible Official

Date

Daniel North Name of Responsible Official Appendix B – Existing GCCS Layout

12		13	14	1	5			
LEG	BEND							
JR	30"	EXISTING 30" LF	G COLLECTION HEADER PI	PING				
RACTION WELL	24"	EXISTING 24" LF	G COLLECTION HEADER PI	PING				
L	18"	EXISTING 18" LF	FG COLLECTION HEADER PI	PING				
D	16"	EXISTING 16" LF	G COLLECTION HEADER PI	PING	DATE			
FOLD	12"	EXISTING 12" LF	G COLLECTION HEADER PI	PING		+		
	10"	EXISTING 10" LF	G COLLECTION LATERAL PI	PING				
IP	8"	EXISTING 8" LF	G COLLECTION LATERAL PIP	ING				
VALVE	6"	EXISTING 6" LF	G COLLECTION LATERAL PIP	ING				
	<u>4</u> "	EXISTING 4" LF	G COLLECTION LATERAL PIP	ING	ISION			
	2"	EXISTING 2" LF	G COLLECTION LATERAL PIP	ING	REV			
	2"	EXISTING AIR S	UPPLY LINE					
	2"/ 3"/ 4"	EXISTING FORC	E MAIN CONDENSATE LINE					
		EXISTING HORI	ZONTAL COLLECTOR					
		BELOW GRADE	PIPES ARE SHOWN DASHED)				
					ov			
						ľ	I	
					AN			
					וורד פנ		NDFIL	
					AS-BL		ND LA CALIFC	
					LL 2021		BY ISL∕ PITAS,	
	6" 4" 2" 2"	EXISTING 8" LFC EXISTING 6" LFC EXISTING 4" LFC EXISTING 2" LFC EXISTING AIR S EXISTING FORC EXISTING HORI	G COLLECTION LATERAL PIP G COLLECTION LATERAL PIP G COLLECTION LATERAL PIP G COLLECTION LATERAL PIP UPPLY LINE CE MAIN CONDENSATE LINE ZONTAL COLLECTOR	PING PING PING	ALL 2021 AS-BUILT PLAN		VBY ISLAND LANDFILL	

Appendix C – Excerpts from 2021 Source Test Results (report dated April 1, 2021)

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

375 Beale Street, Suite 600 San Francisco, California 94105 (415) 771-6000

Contractor Source Test Supplemental Form

Site name: Newby Island Landfill NST number: 6294 Testing company: Blue Sky Environmental, Inc.

Test purpose:

\checkmark	Routine compliance testing
	Compliance test required after previous source test failure
	Start-up test
	Other, ex: trial testing for permit changes, engineering studies

 Please explain _____
 Revised report with corrections noted Revision number _____

Preliminary test results:

\checkmark	In compliance
	Not in compliance
	N/A

Please explain_____

International Disposal Corporation of California BAAQMD Plant No: 9013

Compliance Emissions Test Report #21059

Flare (A-2) FL-150 Flare (A-3) FL-100

Located at: **Newby Island Landfill** 1601 Dixon Landing Road Milpitas, CA 95035

Prepared for: **Republic Services**

1601 Dixon Landing Road Milpitas, CA 95035

Attn: Rachelle Huber RHuber2@republicservices.com

For Submittal to: **The Bay Area Air Quality Management District** 375 Beale Street, Suite 600 San Francisco, CA 94105

Attn: Marco Hernandez & Gloria Espena mhernandez@baaqmd.gov & gespena@baaaqmd.gov

Testing Performed on: **February 23rd, 2021**

Final Report Submitted on: April 1st, 2021

Performed and Reported by: Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706

bluesky@blueskyenvironmental.com (510) 525 1261 office / (510) 508 3469 cell

Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706 Office (510) 525 1261 Cell (510) 508 3469 bluesky@blueskyenvironmental.com

April 1st, 2021

Attn.: Rachelle Huber Republic Services 1601 Dixon Landing Road Milpitas, CA 95035

<u>Subject:</u> Source test emission report for Flares A-2 and A-3, located at the Newby Island Landfill, 1601 Dixon Landing Road, Milpitas, CA 95035. Bay Area Air Quality Management District (BAAQMD) Facility #9013, Condition 10423.

Test Date(s): Testing was conducted on February 23rd, 2021.

Sampling Location: Sampling was conducted at the exhaust stack of each flare through ports that were accessible using a 40-foot boom lift. Sampling ports were available that met the minimum criteria of 2 stack diameters downstream from the nearest disturbance and 0.5 stack diameters upstream from the nearest disturbance or exhaust. The 96-inch exhaust stack for Flare A-2 had only one sampling port that could be opened. The stack was traversed for all test runs due to stratification. The 144-inch ID exhaust stack for Flare A-3 had fully functional sampling ports that were also traversed for all test runs.

Sampling Personnel: Sampling was performed by Jeramie Richardson and Timothy Eandi of Blue Sky Environmental, Inc.

Observing Personnel: The BAAQMD was notified of the scheduled source test in a plan submitted on January 11th, 2021 (NST #6294); however, no agency observers were present during testing. Max Polkabla of Tetra Tech was on site to operate the flares and provide operating records of fuel flow and combustion temperature.

Process Description: Newby Island Landfill is a multi-material landfill with gas collection system operated by International Disposal Corp of California. The system is abated by two John Zink landfill gas flares (A-2 and A-3)

<u>**Test Program:**</u> The test program objective was to determine compliance of Flares A-2 and A-3 with their associated BAAQMD operating permit limits.

Three consecutive 30-minute tests were performed for nitrogen oxides (NO_x), carbon monoxide (CO), carbon dioxide (CO₂) and oxygen (O₂) at each exhaust stack. The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Analyzer external calibrations were performed before and after each test run using EPA Protocol #1 calibration gases.

Concurrent with the exhaust sampling, Blue Sky Environmental collected a total of six LFG samples (three samples from each flare) for $%CH_4$, $C_1-C_2^+$, TNMOC- C_2^+ , fixed gases, BTU, F-factor, and sulfur compounds using methods ASTM D-1945, D-3588, and D-5504. One sample from each flare was also analyzed for volatile organic compounds by EPA Method TO-15.

The samples were collected in 6-liter Silco Canisters using EPA Method 25C and shipped immediately to Atmospheric Analysis & Consulting, Inc. located in Ventura, CA for testing.

BAAQMD Source #	Test Parameters/Limits
	Exhaust: THC, CH4, NMOC, NOx, CO, CO2, O2
Flare A-2	$NO_X \leq 12 \text{ ppm} @ 15\% O_2 \text{ or } \leq 0.05 \text{ lbs/MMBtu}$
Flate A-2	$CO \leq 81 \text{ ppm} @ 15\% O_2 \text{ or } \leq 0.20 \text{ lbs/MMBtu}$
Compliance Test	NMOC 98% DE or \leq 30 ppm @ 3%O ₂ , CH ₄ DE >99%,
	Landfill gas NMOC, CH ₄ , Fixed Gases, VOC species & TRS as H_2S

BAAQMD Source #	Test Parameters/Limits
	Exhaust: THC, CH4, NMOC, NO _x , CO, CO ₂ , O ₂
Flare A-3	$NO_X \leq 6 \text{ ppm} @ 15\% O_2 \text{ or } \leq 0.025 \text{ lbs/MMBtu}$
	$CO \leq 24 \text{ ppm} @ 15\% \text{ O}_2 \text{ or} \leq 0.06 \text{ Lbs/MMBtu}$
Compliance Test	NMOC 98% DE or \leq 30 ppm @ 3%O ₂ , CH ₄ DE >99%
	Landfill gas NMOC, CH ₄ , Fixed Gases, VOC species & TRS as H_2S

<u>Sampling and Analysis Methods</u>: The following U.S. Environmental Protection Agency (EPA) and ASTM International sampling and analytical methods were used:

O_2 , CO_2
NO _x
СО
Moisture content
NMOC, CH ₄
Flare exhaust flow rate by calculation, DSCFM
NMHC in landfill gas
Volatile organic compounds by GCMS
Sulfur Species in fuels
Fuel analysis for BTU and F-Factor

The sampling and analytical methods are outlined below:

EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas.

EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. Section 16.2.2 of the method is used to determine the NO_x analyzer NO_2 to NO conversion efficiency.

EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of a Honeywell DRP3000 strip chart recorder supported by a Data Acquisition System (DAS).

System Performance Criteria

Instrument Linearity	$\leq 2\%$ Full Scale
25A Instrument Linearity	\leq 5% Cal Gas Value
Instrument Bias	\leq 5% Full Scale
NO _X Converter Efficiency (EPA Method 7E)	$\geq 90\%$
System Response Time	$\leq \pm 2$ minutes
Instrument Zero/Span Drift	≤± 3% Full Scale

EPA Method 25A/ALT-097 – Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This method is used to measure total hydrocarbons, methane, and non-methane hydrocarbons in stationary source emissions using a gas chromatograph with a flame ionization detector (GC/FID). Heated Teflon sample gas transfer lines are used to provide a continuous sample to the heated GC/FID hydrocarbon analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to

incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test.

EPA Method 4-16.4 – Determination of Moisture Content in Stack Gas

This is an acceptable alternative to EPA Method 4 for the determination of moisture using F-factors. The mole fraction of moisture in the ambient air is calculated using equations in EPA Method 4-16.4 from 1) the measured ambient relative humidity, ambient temperature, and barometric pressure, 2) the mole fraction of free water in the fuel, calculated from the moisture % in the fuel, which is determined by the analytical lab to be the balance after all the major gaseous components have been summed, and 3) the mole fraction of hydrogen in the fuel. To determine the moisture in the fuel, the raw fuel analysis before normalization to 100% is referenced.

EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates.

EPA Compendium Method TO-15 – Determination of Toxic Organic Compounds in Ambient Air

This method is used to measure volatile organic compounds that are included in the hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990 by GC/MS (gas chromatography/mass spectroscopy). Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75hrs.

EPA Method 25C – Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. The method is written for evacuated tank sampling but is adaptable to Tedlar bag sampling procedures. The sampling equipment consists of a stainless steel or glass lined probe with a short stainless-steel or Teflon transfer line to a Tedlar bag housed in a sealed chamber. The chamber is evacuated by pump at a prescribed rate for the test duration and the Tedlar bag capacity, so the sample is integrated over the test period. The sample is injected into a GC column where the methane and CO_2 are flushed through and removed then the NMOC (ROC) fraction is oxidized to form CO_2 then reduced to methane and analyzed.

ASTM D1945 – Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

ASTM Method 5504: Sampling for H_2S and Sulfur species in fuels. Sampling consisted of collecting biogas for sulfur analysis in pre-evacuated 5-Liter SILCO SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SILCO canisters have a silanized (glass) lining that permits longer holding times (up to 72 hours) for reactive sulfur compounds. The flow controller, valve and canister are designed so that no sample contacts stainless steel components that can remove hydrogen sulfide. The flow controllers consisted of capillary orifice tubing designed to sample for pre-set durations such as 1-hr, 2-hrs and 4-hrs. The samples were analyzed for 20 sulfur compounds by ASTM Method D-5504 GC/SCD (gas chromatography/sulfur chemiluminescent detector).

Instrument	Analyte	Principle
Servomex 1440	O_2	Paramagnetic
Servomex 1440	CO ₂	IR
TECO Model 42C	NO _X	Chemiluminescence
TECO Model 48C	СО	GFC/IR
TECO Model 55C	THC/CH ₄ /VOC	FID

Instrumentation: The following continuous emissions analyzers were used:

<u>**Test Results:**</u> Emission results derived from the source test complied with permit conditions and are summarized below. Detailed results for individual test runs are provided in Tables 1 through 4.

Emission Parameter	Average Results Flare A-2	Permit Limits
NO _x ppm @ 15% O ₂	9.0	12
NO _X , lbs/MMBtu	0.037	0.05
CO ppm @ 15% O ₂	8.6	81
CO, lbs/MMBtu	0.021	0.20
NMOC ppm @ 3% O2 as CH4	<2.5	30
NMOC Destruction Efficiency %	>99.56	or >98%
CH4 Destruction Efficiency %	>99.97	>99%
TRS, ppm in LFG	624	1,300

Average Results Flare A-3	Permit Limits
3.1	6
0.012	0.025
6.1	24
0.015	0.060
<2.5	30
>99.57	or >98%
>99.70	>99%
573	1,300

The appendices are organized as follows:

Calculations

Calculations performed on the continuous emissions monitoring (CEM) data and flow rate calculations.

<u>Laboratory Reports</u> All laboratory reports and chain of custody.

Field Data Sheets

CEMS data and any transcribed data from the strip charts.

Process Data

Facility records of temperature and fuel flow data.

Calibration Gas Certifications

Certifications for the calibration gas standards.

Stack Diagram

Sketch or photograph of the stack.

Sample System Diagram

Schematic of the sampling system configuration.

Permit to Operate / ATC

Permit to Operate / Authority to Construct.

Source Test Plan

Sampling protocols submitted to the BAAQMD prior to testing.

Comments: This source test was performed in accordance with the protocol submitted to the BAAQMD. No deviations from the protocol or anomalies were observed during testing. This source test indicates that the emissions comply with permitted limits.

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report is authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If there are any questions concerning this report, please contact Jeramie Richardson at 810 923 3181, Chuck Arrivas at 925 388 4875 or Guy Worthington at 510 508 3469.

Prepared by,

(111

Anne Richardson

Reviewed by,

feela be go

Julie Wose-Jennings

Newby Island Landfill Flare A-2 (FL-150) 1,676°F

RUN	1	2	3	AVERAGE	LIMITS
Test Date	02/23/21	02/23/21	02/23/21		
Test Time	0833-0908	0932-1007	1031-1106		
Standard Temperature, °F	70	70	70	70	
Flare Temperature °F (Mid TC)	1,503	1,503	1,501	1,502	
Fuel Heat Input, MMBtu/hr	33.7	34.0	34.6	34.1	
Fuel Flow Rate, SCFM	1,203	1,209	1,230	1,214	
Exhaust Flow Rate, DSCFM (EPA M19)	14,792	13,827	15,376	14,665	
Oxygen, O ₂ , %	13.2	12.6	13.3	13.1	
Carbon Dioxide, CO ₂ , %	6.8	7.4	6.6	6.9	
Water Vapor, H ₂ O, % (EPA M4.16)	7.6	8.2	7.6	7.8	
NOx, ppm	11.8	12.7	11.4	12.0	
NOx, ppm @ 15% O ₂	9.1	9.0	8.9	9.0	12
NOx, lbs/hr	1.25	1.25	1.25	1.25	
NOx, lbs/day	30.01	30.01	30.08	30.03	or
NOx, lbs/MMBtu	0.037	0.037	0.036	0.037	0.05
CO, ppm	13.3	7.5	13.3	11.3	
$CO, ppm (a) 15\% O_2$	10.2	5.3	10.4	8.6	81
CO, lbs/hr	0.85	0.45	0.89	0.73	
CO, lbs/day	20.5	10.7	21.3	17.5	or
CO, lbs/MMBtu	0.025	0.013	0.026	0.021	0.20
THC, ppm (wet)	<11.0	<11.0	<11.3	<11.1	
THC, ppm (dry)	<11.9	<12.0	<12.2	<12.0	
THC, lbs/hr as CH_4	< 0.44	< 0.41	< 0.47	< 0.44	
CH ₄ , ppm (wet) <i>(EPA M25A)</i>	<10.0	<10.0	10.3	10.1	-
CH ₄ , ppm (dry)	<10.8	<10.9	11.1	10.9	
NMOC, ppm as CH ₄ (wet) (EPA M25A)	<1.0	<1.0	<1.0	<1.0	
NMOC, ppm as CH_4 (dry)	<1.1	<1.1	<1.1	<1.1	
NMOC, lbs/hr as CH_4	< 0.04	< 0.04	< 0.04	< 0.04	
NMOC, ppm @ 3% O2 as CH ₄	<2.5	<2.4	<2.6	<2.5	30
INLET NMOC ppm as CH ₄ (EPA M25C)	2,828	3,101	3,084	3,004	
INLET NMOC lbs/hr as CH ₄	8.4	9.3	9.4	9.1	or
NMOC Destruction Efficiency, %	>99.53%	>99.60%	>99.56%	>99.56%	>98
INLET CH ₄ , ppm (ASTM 1945/EPA M18 & 3C)	476,000	478,000	478,000	477,333	
INLET CH ₄ lbs/hr	1,421	1,435	1,459	1,438	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>99
INLET THC (TOC) ppm as CH ₄	478,828	481,101	481,084	480,338	
INLET THC (TOC) lbs/hr as CH ₄	1,430	1,444	1,468	1,447	1
THC (TOC) Destruction Efficiency, %	99.97%	99.97%	99.97%	99.97%	>98
Hydrogen Sulfide (H ₂ S)	614	602	620	612	
TRS as H ₂ S, ppm in Fuel, %	626	614	632	624	1,300
SO ₂ , ppm stack emissions (calculated)	50.9	53.7	50.5	51.6	
SO ₂ , ppm @ 15% O ₂	39.2	38.2	39.4	38.9	
SO ₂ , lbs/hr	7.49	7.38	7.73	7.53	1

WHERE,

ppm = Parts Per Million Concentration

Lbs/hr = Pound Per Hour Emission Rate

- Tstd. = Standard Temp. (°R = °F+460)
- MW = Molecular Weight

DSCFM = Dry Standard Cubic Feet Per Minute

NOx = Oxides of Nitrogen as NO₂ (MW = 46)

CO = Carbon Monoxide (MW = 28)

 $\mathrm{TOC}=\mathrm{THC}=\mathrm{Total}\ \mathrm{Organic}\ \mathrm{Carbon}\ \mathrm{as}\ \mathrm{Methane},\ \mathrm{NMOC}+\mathrm{CH}_4\ (\mathrm{MW}=16)$

THC = Total Hydrocarbons as Methane (MW = 16)

NMOC = Total Non-Methane Organic Carbons as Methane (MW = 16)

 $SO_2 = Sulfur Dioxide (MW = 64.1)$

CALCULATIONS,

$$\begin{split} & \text{PPM} @ 15\% \text{ O}_2 = \text{ppm} * 5.9 \ / \ (20.9 - \%\text{O}_2) \\ & \text{PPM} @ 3\% \text{ O}_2 = \text{ppm} * 17.9 \ / \ (20.9 - \%\text{O}_2) \end{split}$$

Lbs/hr = ppm x 8.223 E-05 x DSCFM x MW / Tstd. °R

Lbs/day = Lbs/hr * 24

- Removal Efficiency = (inlet lbs/hr- outlet lbs/hr) / inlet lbs/hr
- <VALUE = 2% of Analyzer Range

lbs/MMBtu = Fd * MW * ppm * 2.59E-9 * 20.9/(20.9 - %O_2)

Newby Island Landfill Flare A-2 (FL-150)

Landfill Gas Characterization

RUN			2	LIMITS
Test Date			2/23/21	
Test Time			0932-1007	
Acrylonitrile		ppb	<153	
Benzene		ppb	1,470	
Carbon Disulfide		ppb	5,200	
Carbon Tetrachloride		ppb	<38.3	
Chlorobenzene		ppb	<38.3	
Chlorodifluoromethane		ppb	<38.3	
Chloroethane		ppb	119	
Chloroform		ppb	<38.3	
1,1 Dichloroethane		ppb	<38.3	
1,1 Dichloroethene		ppb	<38.3	
1,2 Dichloroethane		ppb	176	
1,4 Dichlorobenzene		ppb	712	
Dichlorodifluoromethane		ppb	71.3	
Dichlorofluoromethane		ppb	<38.3	
Ethylbenzene		ppb	2,700	
Ethlyene Dibromide	1,2 Dibromoethane	ppb	<38.3	
Fluorotrichloromethane	Trichlorofluormethane	ppb	<38.3	
Hexane		ppb	318	
Hydrogen Sulfide		ppm	602	
2-Propanol (IPA)		ppb	13,000	
2-Butanone (MEK)		ppb	24,700	
Methylene Chloride		ppb	164	
Perchloroethylene (PCE)	Tetrachloroethylene	ppb	110	
Toluene		ppb	4,690	
1,1,1 Trichlororethane		ppb	<38.3	
1,1,2,2 Tetrachloroethane		ppb	<38.3	
Trichloroethylene	Trichloroethene (TCE)	ppb	72.8	
Vinyl Chloride		ppb	62.8	
m+p xylenes, o xylenes		ppb	6,050	

Newby Island Landfill Flare A-3 (FL-100) 1,504°F

RUN	1	2	3	AVERAGE	LIMITS
Test Date	02/23/21	02/23/21	02/23/21		
Test Time	1200-1241	1306-1349	1409-1447		
Standard Temperature, °F	70	70	70	70	
Flare Temperature °F (Mid TC)	1,504	1,505	1,504	1,504	
Fuel Heat Input, MMBtu/hr	92.7	95.2	95.8	94.6	
Fuel Flow Rate, SCFM	3,294	3,338	3,396	3,343	
Exhaust Flow Rate, DSCFM (EPA M19)	42,328	42,795	40,196	41,773	
Oxygen, O ₂ , %	13.5	13.4	12.9	13.3	
Carbon Dioxide, CO ₂ , %	6.3	5.9	6.7	6.3	
Water Vapor, H ₂ O, % (EPA M4.16)	7.2	7.2	7.6	7.3	
NOx, ppm	3.7	3.9	4.2	3.9	
NOx, ppm @ 15% O ₂	3.0	3.1	3.1	3.1	6
NOx, lbs/hr	1.13	1.18	1.21	1.18	
NOx, lbs/day	27.08	28.43	29.15	28.22	or
NOx, lbs/MMBtu	0.012	0.012	0.012	0.012	0.025
CO, ppm	6.4	11.5	5.3	7.8	
CO, ppm (a) 15% O ₂	5.2	9.1	3.9	6.1	24
CO, lbs/hr	1.2	2.1	0.9	1.4	
CO, lbs/day	28.4	51.5	22.1	34.0	or
CO, lbs/MMBtu	0.013	0.022	0.009	0.015	0.060
THC, ppm (wet)	<11.0	<11.0	<11.0	<11.0	
THC, ppm (dry)	<11.9	<11.9	<11.9	<11.9	
THC, lbs/hr as CH_4	<1.25	<1.26	<1.19	<1.23	
CH ₄ , ppm (wet) (EPA M25A)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppm (dry)	<10.8	<10.8	<10.8	<10.8	
CH ₄ , lbs/hr	1.13	1.14	1.08	1.1	
NMOC, ppm as CH ₄ (wet) <i>(EPA M25A)</i>	<1.0	<1.0	<1.0	<1.0	
NMOC, ppm as CH ₄ (dry)	<1.1	<1.1	<1.1	<1.1	
NMOC, lbs/hr as CH ₄	< 0.11	< 0.11	< 0.11	< 0.11	
NMOC, ppm @ 3% O2 as CH ₄	<2.6	<2.6	<2.4	<2.5	30
INLET NMOC ppm as CH ₄ (EPA M25C)	3,087	3,196	3,023	3,102	1
INLET NMOC lbs/hr as CH ₄	25.2	26.5	25.5	25.7	or
NMOC Destruction Efficiency, %	>99.55%	>99.57%	>99.58%	>99.57%	>98
INLET CH ₄ , ppm (ASTM 1945/EPA M18 & 3C)	478,000	484,000	479,000	480,333	
INLET CH ₄ lbs/hr	3,908.9	4,010.8	4,037.5	3,986	
CH ₄ Destruction Efficiency, %	>99.70%	>99.70%	>99.71%	>99.70%	>99
INLET THC (TOC) ppm as CH ₄	481,087	487,196	482,023	483,435	
INLET THC (TOC) lbs/hr as CH ₄	3,934	4,037	4,063	4,011	1
THC (TOC) Destruction Efficiency, %	99.97%	99.97%	99.97%	99.97%	>98
Hydrogen Sulfide (H ₂ S)	597	504	585	562	
TRS as H_2S , ppm in Fuel	607	515	597	573	1,300
SO ₂ , ppm stack emissions, calculated	47.2	40.2	50.4	45.9	
SO ₂ , ppm @ 15% O ₂	37.8	31.7	37.2	35.5	1
SO ₂ , lbs/hr	19.89	17.10	20.16	19.05	1

WHERE,

ppm = Parts Per Million Concentration

Lbs/hr = Pound Per Hour Emission Rate

Tstd. = Standard Temp. (°R = °F+460)

MW = Molecular Weight

DSCFM = Dry Standard Cubic Feet Per Minute

NOx = Oxides of Nitrogen as NO_2 (MW = 46)

CO = Carbon Monoxide (MW = 28)

TOC = THC = Total Organic Carbon as Methane, NMOC+CH₄ (MW = 16)

THC = Total Hydrocarbons as Methane (MW = 16)

NMOC = Total Non-Methane Organic Carbons as Methane (MW = 16)

 $SO_2 = Sulfur Dioxide (MW = 64.1)$

CALCULATIONS,

PPM @ 15% $\mathrm{O_2}$ = ppm * 5.9 / (20.9 - %O_2)

PPM @ 3% $O_2 = ppm * 17.9 / (20.9 - %O_2)$

Lbs/hr = ppm x 8.223 E-05 x DSCFM x MW / Tstd. °R

Lbs/day = Lbs/hr * 24

Removal Efficiency = (inlet lbs/hr- outlet lbs/hr) / inlet lbs/hr

<VALUE = 2% Value of Analyzer Range

lbs/MMBtu = Fd * MW * ppm * 2.59E-9 * 20.9/(20.9 - O_2)

Newby Island Landfill Flare A-3 (FL-100)

Landfill Gas Characterization

RUN			2	LIMITS
Test Date			2/23/21	
Test Time			1306-1349	
Acrylonitrile		ppb	<162	
Benzene		ppb	1,510	
Carbon Disulfide		ppmv	5,810	
Carbon Tetrachloride		ppb	<40.5	
Chlorobenzene		ppb	115	
Chlorodifluoromethane		ppb	<40.5	
Chloroethane		ppb	105	
Chloroform		ppb	<40.5	
1,1 Dichloroethane		ppb	<40.5	
1,1 Dichloroethene		ppb	<40.5	
1,2 Dichloroethane		ppb	175	
1,4 Dichlorobenzene		ppb	784	
Dichlorodifluoromethane		ppb	70.5	
Dichlorofluoromethane		ppb	<40.5	
Ethylbenzene		ppb	2,900	
Ethlyene Dibromide	1,2 Dibromoethane	ppb	<40.5	
Fluorotrichloromethane	Trichlorofluormethane	ppb	<40.5	
Hexane		ppb	336	
Hydrogen Sulfide		ppmv	504	
2-Propanol (IPA)		ppb	16,100	
2-Butanone (MEK)		ppb	25,800	
Methylene Chloride		ppb	165	
Perchloroethylene (PCE)	Tetrachloroethylene	ppb	115	
Toluene		ppb	4,820	
1,1,1 Trichlororethane		ppb	<40.5	
1,1,2,2 Tetrachloroethane		ppb	<40.5	
Trichloroethylene	Trichloroethene (TCE)	ppb	72.1	
Vinyl Chloride		ppb	68.9	
m+p xylenes, o xylenes		ppb	6,280	

Appendix D – Surface Emission and GCCS Component Leak Monitoring Results

SCS FIELD SERVICES

June 5, 2021 File No. 07221077.00

Ms. Rachelle Huber Republic Services – Newby Island Landfill 1601 Dixon Landing Road Milpitas, California 95035

Subject: Newby Island Landfill - Milpitas, California

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring for First Quarter 2021.

Dear Ms. Huber:

SCS Field Services (SCS) is pleased to provide the Republic Services, with the enclosed report summarizing the surface emissions monitoring services provided at the Newby Island Landfill (Site) during the First Quarter 2021. This report includes the results of surface scan, component emissions and blower/flare station emissions monitoring for the Site for this monitoring period.

SCS appreciates the opportunity to be of assistance to Republic Services on this project. As you review the enclosed information, please contact Michael Flanagan at (510) 363-7796 or Whitney Stackhouse at (209) 338-7990 if you have any questions or comments.

Sincerely,

Whitney Stackhouse Project Manager SCS Field Services

High Muser

Michael Flanagan Project Manager SCS Field Services

Encl.

Sean Bass, SCS Field Services Art Jones, SCS Field Services

Newby Island Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring

First Quarter 2021

Presented to:

Ms. Rachelle Huber Republic Services – Newby Island 1601 Dixon Landing Road Milpitas, California 95035

SCS FIELD SERVICES

File No. 07221077.00 Task 01 | June 5, 2021

SCS FIELD SERVICES 4730 Enterprise Way Suite A Modesto, CA 95356

Newby Island Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring First Quarter 2021

INTRODUCTION

This letter provides results of the March 12, 15, 16, 17, 19, 22, 23, 26, 27, 29 and April 6 and 9, 2021, LMR and NSPS landfill surface emissions monitoring (SEM) performed by SCS Field Services (SCS) at the subject site. All work was performed in accordance with our approved Work Scope dated December 23, 2020, and the LMR requirements.

SUMMARY AND CONCLUSIONS

As stipulated in LMR, if uncorrectable exceedances within the 10-day limitation are detected or emissions are discovered during an inspection by Regulatory Agencies, the landfill must perform monitoring on a 25-foot pathway on a quarterly basis for active disposal sites. Upon completion of four consecutive SEM events without an uncorrectable exceedance of the 25 ppmv or 500 ppmv standards, other than non-repeatable momentary readings, the landfill may perform the monitoring on a 100-foot spacing on an annual basis for closed landfills or quarterly for active disposal sites. Therefore, based on the previous monitoring events, in which exceedances were observed, the monitoring at the Newby Island Landfill was performed on 25-foot pathways in accordance with the LMR.

On, March 12, 15, 16, 17, 19, 22, 23, 26, 27, 29 and April 6 and 9, 2021, SCS performed first quarter 2021 SEM as required by the Bay Area Air Quality Management District (BAAQMD). Instantaneous surface emissions monitoring results indicated that eighteen (18) locations exceeded the 500 ppmv maximum concentration during the initial monitoring event (Table 1 in Attachment 3). The required first and second 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring indicated that all areas had returned to below regulatory compliance limits following system adjustments and remediation (well field adjustments and installation of new bentonite plugs) by site personnel. Based on these monitoring results no additional follow up testing was required.

Also, during the instantaneous monitoring event, SCS performed concurrent integrated monitoring of the landfill surface. As required by the LMR, the landfill was divided into 50,000 square foot areas. The Newby Island Landfill surface area was therefore divided into 233 grids, as shown on Figure 1 in Attachment 1. During this monitoring event, several grids were not monitored, in accordance with the regulations, due to ongoing active landfilling activities, unsafe conditions, or there was no waste in place prior to the monitoring event.

During the monitoring event, there were five (5) grid areas observed to exceed the 25 ppmv LMR integrated average threshold (Table 2 in Attachment 4). The required first and second 10-day LMR follow-up monitoring indicated that three (3) areas had returned to compliance following system adjustments and remediation by SCS and site personnel. Based on these monitoring results, and in

accordance with the LMR, the site is required to perform a system expansion within 120-days of the third detected exceedance. These results are discussed in a subsequent section of this report.

In addition, quarterly monitoring of the pressurized piping or components of the Gas Collection and Control System (GCCS) that are under positive pressure must be performed. Results of the testing of the landfill gas (LFG) Blower Flare Station (BFS) pressurized piping and components indicated that all test locations were in compliance with the 500 ppmv requirement.

Further, as required under the LMR, any location on the landfill that has an observed instantaneous methane concentration above 200 ppmv, must be stake-marked and Global Positioning System (GPS) located on a site figure. During this reporting period, no locations were observed to exceed the 200 ppmv, reporting threshold. When these readings are observed, the locations are reported to site personnel for tracking and/or remediation and will be reported in the next submittal of the annual LMR report.

Finally, to help prevent potential future exceedances, SCS recommends that the landfill surface be routinely inspected and any observed surface erosion be routinely repaired.

BACKGROUND

The Newby Island Landfill is an active organic refuse disposal site. By way of background, organic materials buried in a landfill decompose anaerobically (in the absence of oxygen) producing a combustible gas which contains approximately 50 to 60 percent methane gas, 40 to 50 percent carbon dioxide, and trace amount of various other gases, some of which are odorous. The Newby Island property contains a system to control the combustible gases generated in the landfill.

SURFACE EMISSIONS MONITORING

On March 12, 15, 16, 17, 19, 22, 23, 26, 27, 29 and April 6 and 9, 2021, the instantaneous and integrated SEM was performed over the surface of the subject site. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring in the 50,000 square foot grids as required under the LMR. During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rules as required.

EMISSIONS TESTING INSTRUMENTATION/CALIBRATION

Instruments used to perform the landfill surface emission testing consisted of the following:

- Thermo Scientific TVA 2020 portable Flame Ionization Detector (FID). This instrument measures methane in air over a range of 1 to 50,000 ppmv. The TVA 2020 meets the State of California Air Resources Board (CARB) requirements for combined instantaneous and integrated monitoring and was calibrated in accordance with United States Environmental Protection Agency (US EPA) Method 21.
- Weather Anemometer with continuous recorder for meteorological conditions in accordance with the LMR.

Instrument calibration logs and weather information are shown in Attachments 5 and 6.

SURFACE EMISSIONS MONITORING PROCEDURES

Surface emissions monitoring was conducted in accordance with the LMR and NSPS requirements. Monitoring was performed with the FID inlet held within 3-inches of the landfill surface while a technician walked a grid in parallel paths not more than 25 -feet apart over the surface of the landfill. Cracks, holes and other cover penetrations in the surface were also tested. Surface emissions readings were monitored continuously and recorded every 5 seconds. Any areas in exceedance of the 200 or 500 ppmv standards (reporting and compliance levels, respectively) would be GPS tagged and stake-marked for on-site personnel to perform remediation or repairs.

The integrated average is based on the readings stored on the instrument, which are recorded every 5 seconds. The readings are then downloaded and the averages are calculated for each grid using SCS eTools®. All readings are maintained in this secure SCS Database. The readings are not provided in the report due to the volume of readings, but can be furnished upon request.

Recorded wind speed results are shown in Attachment 6. Wind speed averages were observed to remain below the alternative threshold of 10 miles per hour, and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within 72 hours of the monitoring events. Therefore, site meteorological conditions were within the alternatives of the LMR requirements on the above mentioned dates.

TESTING RESULTS

During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rule as required under the LMR and NSPS. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR or NSPS threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring (LMR).

On March 12, 15, 16, 17, 22, 23, 26, 27, and 29, 2021, SCS performed first quarter 2021 instantaneous emissions monitoring testing as required by the BAAQMD. During this monitoring, surface emissions results indicated that eighteen (18) locations exceeded the 500 ppmv maximum concentration. The required first and second 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring performed on March 19, 29 and April 9, 2021, respectively, indicated that all areas had returned to compliance following system adjustments and remediation (wellfield adjustment and borehole repairs using bentonite and soil) performed by SCS and site personnel. Based on these monitoring results no additional follow up testing was required. Results of the monitoring are shown in Attachments 2 and 3 (Table 1).

Additionally, calculated integrated grid monitoring indicated five (5) integrated exceedances of the 25-ppmv requirement on March 17, 2021. The required first and second 10-day LMR follow-up monitoring performed on March 27 and April 6, 2021, indicated that three (3) areas had returned to compliance following system adjustments and remediation by site personnel. The remaining two (2) areas, Grids Nos. 171, and 172 did not return to compliance levels, as required. In accordance with requirements for expansion and remediation, the two (2) grid areas need to be remediated and returned to compliance option if approved by the BAAQMD) within 120 days after the detected third integrated exceedance, which will be due by August 4, 2021. Results of the initial and follow up monitoring are shown in Attachment 4 (Table 2). Calibration logs for the monitoring equipment are provided in Attachment 5.

During this monitoring event, several grids were not monitored, in accordance with the LMR, due to active landfilling activities, unsafe conditions or no waste in place. SCS will continue to monitor all accessible locations during the second quarter 2021.

PRESSURIZED PIPE AND COMPONENT LEAK MONITORING

On March 27, 2021, quarterly leak monitoring was performed in accordance with the LMR. SCS performed LFG pressurized pipe and component leak monitoring at the BFS. Monitoring was performed with the detector inlet held one-half of an inch from pressurized pipe and associated components. No locations exceeding the 500 ppmv threshold were observed during our monitoring event. The maximum reading, which was 10 ppmv, was well below the maximum threshold (see Table 1 for component results). Therefore, all pressurized piping and components located at the LFG BFS were in compliance at the time of our testing.

PROJECT SCHEDULE

According to the LMR and NSPS, surface emissions monitoring at active landfills is required to be performed on a quarterly basis. Therefore, in accordance with our approved Work Scope, the second quarter 2021 (April through June) surface emissions testing event is scheduled to be performed by the end of May 2021 in accordance with the Republic SOP unless an alternative timeline is requested by site personnel.

STANDARD PROVISIONS

This report addresses conditions of the subject site during the testing dates only. Accordingly, we assume no responsibility for any changes that may occur subsequent to our testing which could affect the surface emissions at the subject site or adjacent properties.

Attachment 1

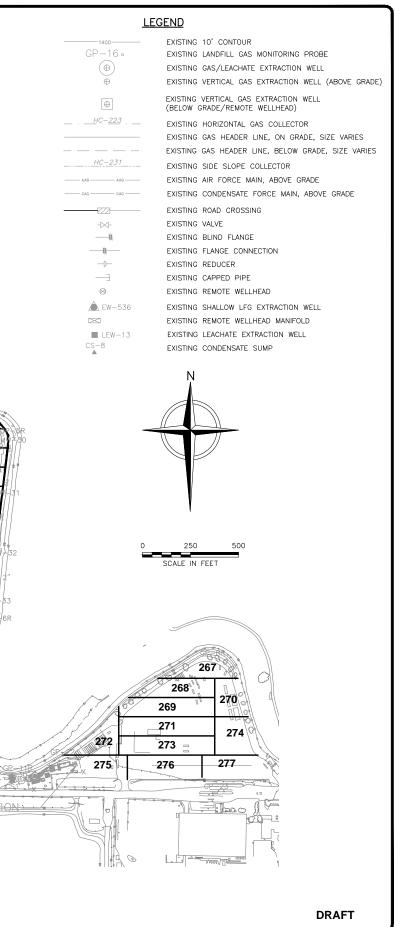
Landfill Grid

	Y 3	37 11 12 11 12 11 14 10 14 10 11 11 11 11 11 11 11 11 11 11 11 11 1						
		2027 66 9	8 10 10 10	Nu-17				
		12 465 15 205 19 	4 60 13 16 9 20 57 20 57 20 57 20 57 20 57 20 57 20 57	17	0			
	21 * 4 25 ± 62 (11 + 29 = 00-497) (11 + 29 = 00-497) (11 + 29 = 00-497)	22 26 5 5 ⊕ 30 € 35	23 - 466 27 - 466 32 - 466 32 - 466 - 32	28 28 29,33 37		the second secon		
GP-24 WELL MANIFOLD DECCOM DECCOM DECCOM DECCOM DECCOM DECCOM DECCOM	39 206 43 4 4 49 20	40	41 45 & 51 & 51	24R 4212 46 47 47 52	47 mm 2 48 mm 23 67 47 mm 2 48 mm 23 67 53	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
8° CP-19 64 55 56 C12 1064 65 66 <t< td=""><td>67 8</td><td>58 68 6° 6° 6° 6° 6° 6°</td><td>59 69 80</td><td>59 70 81</td><td>61 501 71 52 00 82</td><td>62 72 1883</td><td>4R 73 M-26</td><td></td></t<>	67 8	58 68 6° 6° 6° 6° 6° 6°	59 69 80	59 70 81	61 501 71 52 00 82	62 72 1883	4R 7 3 M-26	
GP-M8 84 85 V-38-4 86 EW-39 94 95 12 EW-96 19799 19799 104 105 105 106 EW-21 106 EW-21	87 12" 6" 98 (13 7" 98 (13 7" 07 19 (13 7" 07 10 (13 10 10 10 10 10 10 10 10 10 10 10 10 10	88 ^v [±] 467 2" 99 4" 108 kw40K-6 EV	89 100 398 109			12m 92 12 ^m 92 103 41 12 ^m 112 112 112 112 112 112 112 112	93	* 1114
115 115 116 116 116 116 116 116		130 EW-574 130 EW-574 10 EW-576 10 EW-1405 10 EW-576 10 EW-57	120 12" 131 141 23 152"	121 132 142 142 132	122 133 WSTR 143 154	123 FH 512 134 144	124 135 145	125 5-136 146
412 413 4147 415 415 417 417 417 417 417 417 417 417 417 417	19 (100 s) 133 (100 s) 177 (100 s) 177 (100 s) 177 (100 s) 181 (1	161 161 172 182	EW-542 EW-562 CU2562 EW-2562 EW-2552 EW-3554 EW-3555454 EW-355544 EW-355544 EW-355544 EW-3555544 EW	163 174 184	164 164 175 185	EW-466 165	166PR 1777 1877	157 167 178 188
189 2 426 4 190 199 200 2 201 210	191 - 46 202 21175A	192 62 203 212 63	19312 2	205 214	195 206 215	196 (m) 207 216	197 208 217	⁸⁵ 198 209 53 4 33 7 218 5 10 4 33
	220 229 239	 ⊕ 221 230 240 	6 2222))	223 232 23 2675 16 15 Well MANIFOLD	224 33 234 GP-13	225 235 242	226 236 243	227 237 244
ECOM	245 250 220	246 253	247 254 254 254 254 254 254 254 254 2555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 255555 255555 25555 255555 255555 25555 25555 255555 25555 25555 255	DECOM DECOM	WELL MANIFOLD WELL MANIFOLD DE COOM DE COOM DE COOM DE COOM DE COOM M M M M M M M M M M M M M M M M M M M	248 255 258	249 256 259 261	257
	WELL MANIFOLD WELL MANIFOLD PR-632 EP-632		VELL MANIFOLD	_		260 GP-12	263 265 2"265	262 2644 30 F 266 F
NOTES								

- NOTES:
 1. THE 2018 BASE TOPOGRAPHIC MAP WAS CREATED BY COOPER AERIAL SURVEYS CO. USING PHOTOGRAMMETRIC METHODS. DATE OF PHOTOGRAPHY: APRIL 17, 2018. HORIZONTAL DATUM: NAD27, ZONE 3, VERTICAL DATUM: LOCAL LANDFILL DATUM.
 2. THE 2010 BASE BAS-BUILT WELL AND PIPE LOCATIONS WERE PROVIDED BY REPUBLIC. WELLS EW-487 THROUGH EW-489 ARE PER DESIGN LOCATIONS, NO SURVEY WAS RECEIVED FOR THESE WELLS. AS-BUILT LOCATIONS FOR HC-223 AND LORS-17 ARE APPROXIMATE, NO SURVEY WAS RECEIVED FOR THESE WELLS.
 3. THE 2017 GCCS AS-BUILT WELL AND PIPE LOCATIONS WERE PROVIDED BY RUGGERI, JENSEN, AZAR AND ASSOCIATES, DATES OF SURVEY: JANUARY 11, 20, AND FEBRUARY 24, 2017.
 4. THE 2018 GCCS IMPROVEMENTS PER SURVEY PREPARED BY RUGGERI, JENSEN, AZAR, AND ASSOCIATES, DATE OF SURVEY: MARCH 14, 2018.
 5. THE 2018 GCCS PHASE II IMPROVEMENTS PER SURVEY PREPARED DEVOLOTIONS.

<u>.</u>

°0 -

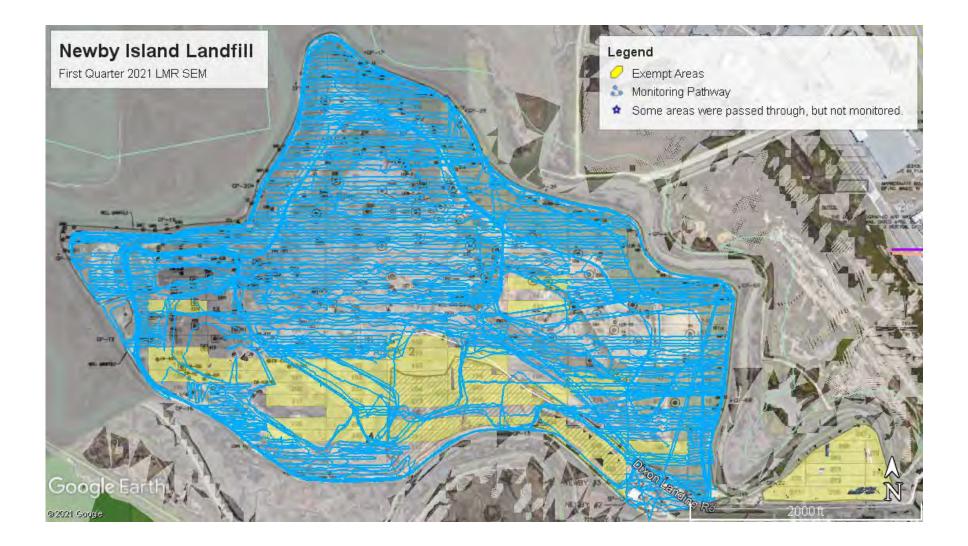

1/2"

. ____

- 14, 2010. THE 2018 GCCS PHASE II IMPROVEMENTS PER SURVEY PREPARED BY RUGGERI, JENSEN, AZAR, AND ASSOCIATES, DATE OF SURVEY: AUGUST 6, 2018. 5.

cornerstone ATETRA TECH COMPANY DWN BY DES BY CHK BY APP B DATE DESCRIPTION DATE OF ISSUE 9/6/18 DRAWN BY _____ DESIGNED BY _____ RAW CHECKED BY _____ AMN MED

This drawing represents intellectual property of Connerstone, Any modification to the original by other than Connerstone greanomic induces its original purpose and as such is rendered void. Cornerstone will not be held fiable for any changes made to this document without express written consent of the originator.


NEWBY ISLAND LANDFILL SANTA CLARA COUNTY, CALIFORNIA

GCCS AS-BUILT SEM SITE PLAN

Attachment 2

Surface Pathway

First Quarter 2021 LMR Surface Emissions Monitoring Pathway Newby Island Landfill, Milpitas, California Attachment 3

Instantaneous and Component Emissions Monitoring Results

First Quarter 2021

Table 1. LMR Instantaneous Surface and Component

Emissions Monitoring Results

Newby Island Sanitary Landfill, Milpitas, California

Instantaneous Data Report for March 12, 15, 16, 17, 19, 22, 23, 26, 27, 29 and April 6 and 9, 2021

Location Well ID or Grid Number	Initial Monitoring (ppmv) March 12, 2021	10-Day Follow Up Monitoring (ppmv) March 19, 2021	20-Day Follow Up Monitoring (ppmv) March 29, 2021	30-Day Follow Up Monitoring (ppmv) April 9, 2021
NILEW500	854	25	NA	10.3
36" T (main header downhill from 641/ HC227A)	8,219	3,500	350	<500
CS08	1,358	125	NA	9.5
CS26	1,000	1,000	8	9.7
HC227A (this is the wellhead location by 641)	1,135	1,000	350	<500
LEW05	1,500	2,500	100	32.0
MW013	600	25	NA	4.2
MW018	900	150	NA	3.3
MW020	600	200	NA	25.0
NILEW 461	2,496	2,496	170	9.7
NILEW 510	37,000	75	NA	154.0

First Quarter 2021

Table 1. LMR Instantaneous Surface and Component

Emissions Monitoring Results

Newby Island Sanitary Landfill, Milpitas, California

Location Well ID or Grid Number	Initial Monitoring (ppmv) March 12, 2021	10-Day Follow Up Monitoring (ppmv) March 19, 2021	20-Day Follow Up Monitoring (ppmv) March 29, 2021	30-Day Follow Up Monitoring (ppmv) April 9, 2021
NILEW 568	1,088	50	NA	51.8
	1,000	50		51.0
NILEW 690	605	200	NA	13.9
NILEW 706	1,588	200	NA	3.3
NILEW 747	30,000	2,500	6	25.1
NILEW 460	3,880	5	NA	<500
NILEW 694	1750+	750	200	38.0
NILEW 719	1,500	20,000	250	36.6

Pressurized Pipe

Route	Date	Highest Concentration (ppmv)
Flare Station	3/27/2021	10

No other exceedances of the 500 ppm threshold observed during the LMR/NSPS monitoring performed during the first quarter 2021.

First Quarter 2021 Initial Emissions Monitoring Locations Greater Than 500 ppmv Keller Canyon Landfill, Pittsburg, California Attachment 4

Integrated Monitoring Results

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-001	3/15/2021	1.72	
NIL-002	3/15/2021	2.11	
NIL-003	3/15/2021	2.06	
NIL-004	3/15/2021	3.07	
NIL-005	3/15/2021	4.87	
NIL-006	3/15/2021	2.88	
NIL-007	3/15/2021	3.15	
NIL-008	3/15/2021	3.68	
NIL-009	3/15/2021	4.50	
NIL-010	3/15/2021	4.51	
NIL-011	3/15/2021	6.14	
NIL-012	3/15/2021	7.20	
NIL-013	3/15/2021	10.15	
NIL-014	3/15/2021	3.00	
NIL-015	3/15/2021	3.31	
NIL-016	3/15/2021	3.81	
NIL-017	3/17/2021	7.44	
NIL-018	3/17/2021	3.46	
NIL-019	3/17/2021	5.96	
NIL-020	3/15/2021	4.40	
NIL-021	3/15/2021	2.06	
NIL-022	3/15/2021	2.97	
NIL-023	3/15/2021	5.20	
NIL-024	3/15/2021	3.91	
NIL-025	3/15/2021	2.31	
NIL-026	3/15/2021	2.38	
NIL-027	3/15/2021	4.62	
NIL-028	3/15/2021	3.76	
NIL-029	3/16/2021	5.98	
NIL-030	3/16/2021	4.85	
NIL-031			Grid is not on the Grid Map
NIL-032	3/16/2021	2.58	
NIL-033	3/16/2021	2.05	
NIL-034	3/15/2021	1.83	
NIL-035	3/15/2021	2.13	
NIL-036	3/15/2021	2.21	
NIL-037	3/15/2021	2.10	
NIL-038	3/12/2021	13.40	
NIL-039	3/16/2021	5.65	
NIL-040	3/16/2021	5.03	
NIL-041	3/16/2021	4.46	
NIL-042	3/16/2021	3.16	
NIL-043	3/16/2021	4.82	

SCS DataServices - Secure Environmental Data

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-044	3/16/2021	7.48	
NIL-045	3/16/2021	4.22	
NIL-046	3/16/2021	3.01	
NIL-047	3/23/2021	1.29	
NIL-048	3/23/2021	1.20	
NIL-049	3/23/2021	2.26	
NIL-050	3/23/2021	2.17	
NIL-051	3/23/2021	3.15	
NIL-052	3/23/2021	4.77	
NIL-053	3/23/2021	1.97	
NIL-054	3/23/2021	1.68	
NIL-055	3/12/2021	3.20	
NIL-056	3/16/2021	6.02	
NIL-057	3/16/2021	5.19	
NIL-058	3/16/2021	9.62	
NIL-059	3/16/2021	10.42	
NIL-060	3/16/2021	3.66	
NIL-061	3/16/2021	2.46	
NIL-062	3/16/2021	3.19	
NIL-063	3/15/2021	4.07	
NIL-064	3/15/2021	4.74	
NIL-065	3/15/2021	6.11	
NIL-066	3/15/2021	6.14	
NIL-067	3/15/2021	10.03	
NIL-068	3/16/2021	20.40	
NIL-069	3/16/2021	15.86	
NIL-070	3/15/2021	5.54	
NIL-071	3/15/2021	2.75	
NIL-072	3/16/2021	2.29	
NIL-073	3/23/2021	1.26	
NIL-074	3/16/2021	1.54	
NIL-075	3/16/2021	2.31	
NIL-076	3/16/2021	2.32	
NIL-077	3/16/2021	3.98	
NIL-078	3/16/2021	6.30	
NIL-079	3/16/2021	11.66	
NIL-080	3/16/2021	14.46	
NIL-081	3/16/2021	4.36	
NIL-082	3/16/2021	2.69	
NIL-083	3/16/2021	2.41	
NIL-084	3/16/2021	2.61	
NIL-085	3/16/2021	3.66	
NIL-086	3/16/2021	3.02	

SCS DataServices - Secure Environmental Data

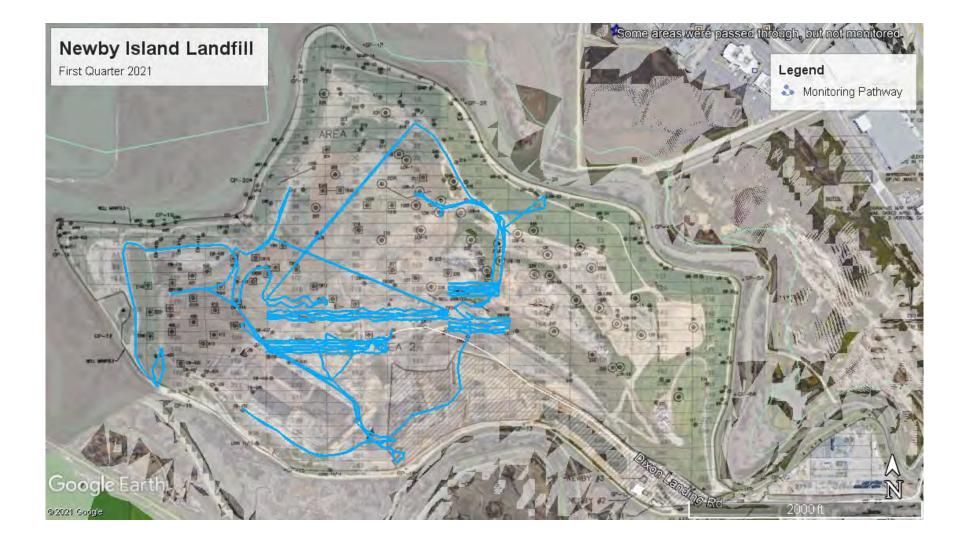
DEL X

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-087	3/16/2021	6.26	
NIL-088	3/16/2021	11.72	
NIL-089	3/16/2021	15.71	
NIL-090	3/16/2021	5.61	
NIL-091	3/16/2021	3.17	
NIL-092	3/16/2021	3.68	
NIL-093	3/16/2021	1.75	
NIL-094	3/16/2021	2.36	
NIL-095	3/16/2021	3.63	
NIL-096	3/16/2021	3.34	
NIL-097	3/16/2021	7.57	
NIL-098	3/16/2021	8.70	
NIL-099	3/16/2021	13.23	
NIL-100	3/16/2021	13.00	
NIL-101	3/16/2021	6.77	
NIL-102	3/16/2021	3.41	
NIL-103	3/16/2021	2.86	
NIL-104	3/23/2021	2.31	
NIL-105	3/23/2021	2.26	
NIL-106	3/23/2021	2.77	
NIL-107	3/23/2021	6.46	
NIL-108	3/23/2021	14.47	
NIL-109	3/17/2021	15.79	
NIL-110	3/17/2021	5.83	
NIL-111			Active
NIL-112	3/17/2021	4.45	
NIL-113	3/17/2021	3.22	
NIL-114	3/17/2021	5.09	
NIL-115	3/22/2021	2.63	
NIL-116	3/22/2021	3.13	
NIL-117	3/22/2021	3.27	
NIL-118	3/22/2021	2.04	
NIL-119	3/22/2021	11.51	
NIL-120	3/17/2021	24.49	
NIL-121	3/17/2021	26.86	Initial Monitoring
NIL-121	3/27/2021	4.55	First 10-Day Follow Up Monitoring
NIL-122	3/17/2021	6.92	.,
NIL-123	3/17/2021	4.74	
NIL-124	3/17/2021	5.23	
NIL-125	3/17/2021	4.85	
NIL-126	3/23/2021	2.67	
NIL-127			Active
NIL-128	3/17/2021	15.14	

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-129	3/17/2021	26.48	Initial Monitoring
NIL-129	3/27/2021	16.59	First 10-Day Follow Up Monitoring
NIL-130	3/17/2021	22.95	
NIL-131	3/17/2021	16.56	
NIL-132	3/17/2021	11.15	
NIL-133			Active
NIL-134	3/17/2021	2.38	
NIL-135	3/17/2021	1.93	
NIL-136	3/17/2021	2.00	
NIL-137	3/22/2021	2.19	
NIL-138	3/23/2021	1.76	
NIL-139	3/27/2021	20.36	
NIL-140	3/27/2021	17.77	
NIL-141	3/22/2021	15.25	
NIL-142	3/16/2021	16.42	
NIL-143	3/16/2021	10.64	
NIL-144	3/16/2021	1.70	
NIL-145	3/16/2021	1.46	
NIL-146	3/16/2021	2.13	
NIL-147	3/23/2021	3.13	
NIL-148	3/23/2021	2.56	
NIL-149	3/23/2021	6.90	
NIL-150	3/17/2021	19.95	
NIL-151	3/17/2021	24.45	
NIL-152	3/17/2021	14.96	
NIL-153	3/17/2021	34.32	Initial Monitoring
NIL-153	3/27/2021	11.86	First 10-Day Follow Up Monitoring
NIL-154	3/17/2021	11.50	
NIL-155	3/17/2021	4.01	
NIL-156	3/17/2021	2.56	
NIL-157	3/17/2021	1.99	
NIL-158	3/23/2021	1.85	
NIL-159	3/17/2021	17.75	
NIL-160	3/17/2021	19.24	
NIL-161	3/17/2021	17.50	
NIL-162			Active
NIL-163	3/17/2021	18.18	
NIL-164	3/17/2021	6.53	
NIL-165	3/17/2021	3.91	
NIL-166	3/17/2021	1.66	
NIL-167	3/17/2021	1.93	
NIL-168	3/23/2021	2.16	
NIL-169			Active

SCS DataServices - Secure Environmental Data

的是


Point Name	Record Date	FID Concentration (ppm)	Comments	
NIL-170	3/17/2021	15.15		
NIL-171	3/17/2021	27.74	Initial Monitoring	
NIL-171	3/27/2021	47.38	First 10-Day Follow Up Monitoring	
NIL-171	4/6/2021	49.53	Second 10-Day Follow Up Monitoring	
NIL-172	3/17/2021	27.08	Initial Monitoring	
NIL-172	3/27/2021	52.37	First 10-Day Follow Up Monitoring	
NIL-172	4/6/2021	48.54	Second 10-Day Follow Up Monitoring	
NIL-173	3/27/2021		Active	
NIL-174	3/27/2021		Active	
NIL-175	3/17/2021	7.27		
NIL-176	3/17/2021	3.78		
NIL-177	3/17/2021	2.96		
NIL-178	3/17/2021	3.17		
NIL-179			Active	
NIL-180			Active	
NIL-181			Active	
NIL-182			Active	
NIL-183			Active	
NIL-184			Active	
NIL-185	3/22/2021	10.06		
NIL-186			Active	
NIL-187	3/29/2021	3.31		
NIL-188	3/29/2021	3.32		
NIL-189			Active	
NIL-190			Active	
NIL-191			Active	
NIL-192			Active	
NIL-193			Active	
NIL-194			Active	
NIL-195	3/22/2021	9.42		
NIL-196	3/22/2021	4.07		
NIL-197	3/22/2021	1.76		
NIL-198	3/22/2021	1.70		
NIL-199	3/22/2021	3.00		
NIL-200	3/26/2021	3.34		
NIL-201	3/26/2021	15.98		
NIL-202			Active or Native	
NIL-203			Active or Native	
NIL-204			Active or Native	
NIL-205			Active or Native	
NIL-206			Active or Native	
NIL-207			Active or Native	
NIL-208	3/26/2021	5.81		

SCS DataServices - Secure Environmental Data

Point Name	Record Date	FID Concentration (ppm)	Comments	
NIL-209	3/26/2021	4.38		
NIL-210	3/26/2021	6.50		
NIL-211			Active or Native	
NIL-212			Active or Native	
NIL-213			Active or Native	
NIL-214			Active or Native	
NIL-215			Active or Native	
NIL-216	3/22/2021	5.92		
NIL-217	3/22/2021	5.06		
NIL-218	3/22/2021	6.09		
NIL-219	3/22/2021	5.63		
NIL-220	3/22/2021	15.94		
NIL-221			Active or Native	
NIL-222	3/22/2021	8.22		
NIL-223	3/22/2021	9.27		
NIL-224	3/22/2021	8.12		
NIL-225	3/22/2021	2.84		
NIL-226	3/22/2021	2.50		
NIL-227	3/22/2021	2.09		
NIL-228	3/26/2021	11.01		
NIL-229			Active or Native	
NIL-230			Active or Native	
NIL-231			Active or Native	
NIL-232			Active or Native	
NIL-233			Active or Native	
NIL-234			Active or Native	
NIL-235	3/22/2021	6.62		
NIL-236	3/22/2021	4.03		
NIL-237	3/22/2021	4.27		
NIL-238	3/23/2021	7.42		
NIL-239			Active	
NIL-240			Active	
NIL-241			Active	
NIL-242			Active	
NIL-243	3/22/2021	2.99		
NIL-244	3/22/2021	4.81		
NIL-245	3/29/2021	15.35		
NIL-246	3/23/2021	13.75		
NIL-247	3/23/2021	10.86		
NIL-248			Active or Native	
NIL-249			Active or Native	
NIL-250	3/23/2021	9.82		
NIL-251	3/23/2021	12.59		

SCS DataServices - Secure Environmental Data

Point Name	Record Date	FID Concentration (ppm)	Comments	
NIL-252	3/23/2021	10.77		
NIL-253	3/23/2021	18.18		
NIL-254	3/23/2021	12.01		
NIL-255			Active or Native	
NIL-256			Active or Native	
NIL-257	3/22/2021	4.69		
NIL-258			Active or Native	
NIL-259	3/22/2021	5.70		
NIL-260			Active or Native	
NIL-261	3/22/2021	1.91		
NIL-262	3/22/2021	1.88		
NIL-263	3/22/2021	3.95		
NIL-264	3/22/2021	4.60		
NIL-265	3/22/2021	2.31		
NIL-266	3/22/2021	2.15		
NIL-267			Active or Native	
NIL-268			Active or Native	
NIL-269			Active or Native	
NIL-270			Active or Native	
NIL-271			Active or Native	
NIL-272			Active or Native	
NIL-273			Active or Native	
NIL-274		Active or Native		
NIL-275			Active or Native	
NIL-276			Active or Native	
NIL-277			Active or Native	

First Quarter 2021 LMR Surface Emissions Monitoring First 10-Day Pathway Newby Island Landfill, Milpitas, California

First Quarter 2021 LMR Surface Emissions Monitoring Second 10-Day Pathway Newby Island Landfill, Milpitas, California Attachment 5

Calibration Logs

		SURFACE EMISSIC			
Date:	3/15/2		Site Name:	Newby	
Inspector(s):	funter		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	d:MPH	Wind Direction:		Barometric Pressure: 30	"Hg
Ai Temperature		General Weather Conditions:	partly (loudy	
CALIBRATION	INFORMATION			v	
^o re-monitoring	Calibration Precision Check				
and calculate tl	ibrate the instrument. Make a he average algebraic difference be less than or equal to 10% of a han or equal to 10% of the second secon	between the instrument re			
Frial	Zero Air Reading	Cal Gas Reading	I Cal Gas (ConcCal Gas Reading	Response Time (seconds
1	O	50	JCarGas (
2	.0	<u>199</u> 501		1	3
		= 100% = 9, 9, -8	<u>۸</u>	/500 x 100%	
non Consitiuituu		= -(-(- 0 -	70		
ipan Sensitivity irial 1: Co	ounts Observed for the Span=	12 3340		nts Observed for the Span=	20
Cou	unters Observed for the Zero=	3872	Coun	ters Observed for the Zero=	39
Co	ounts Observed for the Span=	3894			
ost Monitoring	Calibration Check				
ero Air eading:	ppm	Cal Gas Reading:	500	_ppm	
ACKGROUND	CONCENTRATIONS CHECKS				
pwind Location	n Description:	Entrance		Reading: 1.3	ppm
ownwind Locat	tion Description:	C-1V, d (60	(Reading: <u>1.5</u>	ppm
	Wind speed averages were ob			quested 10 miles per hour ar us 24 hours of the monitoring	-

					Post
		SURFACE EMISSI	ONS MONITO	DRING	
		CALIBRATION AN	D PERTINEN	DATA	
Date:	3-15-21		Site Name:	newlow	4
Inspector(s):	Hunte	\langle	Instrument:	TVA 2020)
WEATHER OBS	SERVATIONS			4	
	7	Wind		Barometric 30	- C.
Wind Speed:	:МРН	Direction:		Pressure: <u>0</u>	
Air Temperature:	<u>53</u> °F	General Weather Conditions	cloud	4	
CALIBRATION	INFORMATION		- 10		
Pre-monitoring	Calibration Precision Check				
	prate the instrument. Make a e average algebraic differenc				
	e less than or equal to 10% o			noration gas as a percen	
Instrument Seria	Number: <u>542</u>	0		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas Co	ncCal Gas Reading	Response Time (seconds)
1		Tou's			
2		501		5	3
3	2	SIN	· · · · ·		5
anoration Preci	sion= Average Difference/Cal	= 100%-	\mathbf{b}	'500 x 100%	
		=99-7	%		
Span Sensitivity:					
Trial 1:		173075	Trial 3:		102007
Co	unts Observed for the Span=	1000		s Observed for the Span=	12>301
Cour Frial 2:	nters Observed for the Zero=	3109	Counter	s Observed for the Zero=	3959
Co	unts Observed for the Span=	2029			
Cour	nters Observed for the Zero=	2181			
ost Monitoring	Calibration Check				
ero Air eading:	Øppm	Cal Gas Reading:	500,	pm	
ACKGROUND	CONCENTRATIONS CHECKS				
Ipwind Location	Description:	Entranc	e R	eading: <u>\2</u>	ppm
ownwind Locati	on Description:	Crid 16	54 R	eading: <u>19</u>	ppm
	Wind speed averages were ol exceeded 20 miles per hour.				

l

		ONS MONITORING D PERTINENT DATA	
Date: 3/15/21		Site Name: Newby	
Inspector(s): Branch Wa	de	Instrument:	
WEATHER OBSERVATIONS	C.	· · · · · ·	
Wind Speed: 9.8 MPH	Wind Direction:	Barometric Pressure: 30	"Hg
Air Temperature: <u>46</u> *F	General Weather Conditions		
CALIBRATION INFORMATION			
Pre-monitoring Calibration Precision Check			
Procedure: Calibrate the instrument. Make and calculate the average algebraic differer precision must be less than or equal to 10% Instrument Serial Number: 54 [5	nce between the instrument i		
Trial Zero Air Reading 1 4472	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (sec
2 3	498	2	42
Calibration Precision= Average Difference/Ca	al Gas Conc. X 100% = 100%- = 99.1	<u>\.</u> /500 × 100% %	
	× · ·		
Span Sensitivity:			
	= 148148	Trial 3: Counts Observed for the Span=	14864
Trial 1: Counts Observed for the Span Counters Observed for the Zero			4820
Trial 1: Counts Observed for the Span Counters Observed for the Zero Trial 2: Counts Observed for the Span	= 4729 = 148361	Counts Observed for the Span=	4820
Trial 1: Counts Observed for the Span Counters Observed for the Zero Trial 2: Counts Observed for the Span Counters Observed for the Zero	= 4729 = 148361	Counts Observed for the Span=	4820
Trial 1: Counts Observed for the Span Counters Observed for the Zero Trial 2: Counts Observed for the Span Counters Observed for the Zero	= 4729 = 148361	Counts Observed for the Span=	14864 4820
Trial 1: Counts Observed for the Span Counters Observed for the Zero Trial 2: Counts Observed for the Span Counters Observed for the Zero Post Monitoring Calibration Check	= 4729 = 148361	Counts Observed for the Span=	14864 4820
Trial 1: Counts Observed for the Span Counters Observed for the Zero Trial 2: Counts Observed for the Span Counters Observed for the Zero Post Monitoring Calibration Check Zero Air Reading:	= 4729 = 148361 = 4721 Cal Gas Reading:	Counts Observed for the Span=	14864
Trial 1: Counts Observed for the Span Counters Observed for the Zero Trial 2: Counts Observed for the Span Counters Observed for the Zero Post Monitoring Calibration Check	= 4729 = 148361 = 4721 Cal Gas Reading:	Counts Observed for the Span= Counters Observed for the Zero=	14864 4820
Trial 1: Counts Observed for the Span Counters Observed for the Zeros Trial 2: Counts Observed for the Span Counters Observed for the Zeros Post Monitoring Calibration Check Zero Air Reading: Post Concentrations Check	= 4729 = 148361 = 4721 Cal Gas Reading:	Counts Observed for the Span= <u>Counters Observed for the Zero=</u> <u>Counters Observed for the Zero=</u> <u>Counters Observed for the Zero=</u> <u>Reading:</u> <u>1.5</u>	ррт ррт

-		SURFACE EMISSI		ORING	
1					
-	2 - 15 21				
Date:	3-15-21		Site Name:	newby	
Inspector(s):	Brant	\sim	Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS				
Wind Speed:	мрн	Wind Direction:	-	Barometric Pressure: 50	- "Hg
Air Temperature:	53 F	General Weather Conditions	cloud	<u>"</u>	
CALIBRATION I	NFORMATION				
Pre-monitoring (Calibration Precision Check				
and calculate the precision must b	rate the instrument. Make a e average algebraic difference e less than or equal to 10% a	e between the instrument i	reading and the o		
Instrument Seria	I Number:	5		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
2	.2	200			2
3	1	UAR	2		
	sion= Average Difference/Ca		λ	/500 × 100%	
		= (Q, (%		
Span Sensitivity:					
	unts Observed for the Span=	147824		nts Observed for the Span=	(48134
Trial 2:	nters Observed for the Zero=	141921	Count	ers Observed for the Zero=	90,01
	unts Observed for the Span= nters Observed for the Zero=	4809			
ost Monitoring (Calibration Check				
ero Air		Cal Gas	_		
Reading:	ррт	Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECK	5			
Jpwind Location	Description:	Entranci	e	Reading:	ppm
ownwind Locati	on Description:	chrid (691	Reading:	ppm
6	Wind speed averages were o exceeded 20 miles per hour. neteorological conditions we	No rainfall had occurred wi	ithin the previou	s 24 hours of the monitorin	g event. Therefore, site

ENT DATA Now by TVA 2020 Barometric Pressure: "Hg
TVA 2020 Barometric
Barometric 🤈
1 .
lady
ing zero air and the calibration gas. Record the readin
he calibration gas as a percentage. The calibration
Cal Gas Concentration: 500ppm
s ConcCal Gas Reading Response Time (secor
2 4
1 3
1 9
/500 x 100%
/500 x 100%
/500 x 100%
ounts Observed for the Span= 14453
ounts Observed for the Span= 14453
ounts Observed for the Span= <u>し</u> 4453 unters Observed for the Zero= <u>38</u> 47
ounts Observed for the Span= <u>し</u> 4453 unters Observed for the Zero= <u>38</u> 47
ppm
2

17

Date:			ONS MONITOR		
Date: 2	-	CALIBRATION AND	PERTINENT (DATA (
	5-5.21		Site Name:	endy	
Inspector(s);	cody		Instrument:	VA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed	с П МРН	Wind Direction:	В	arometric <u>30</u> Pressure:	- "Нд
Aiı Temperature	n L	General Weather Conditions:	cloud	3	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	brate the instrument. Make of the average algebraic difference be less than or equal to 10% of	ce between the instrument re	eading and the calib		
Instrument Seria	al Number: 510		C	al Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Conc.	-Cal Gas Reading	Response Time (seconds)
1		SUL	2		5
2	.5	LIQS	3		3
3	1 1	479	L		4
Calibration Preci	ision= Average Difference/Ca	l Gas Conc. X 100%			
		= 100%-	1.6 /50	0 x 100%	
		= 100% = 9.9.7	<u>\.</u> 6_/50 %	0 x 100%	
pan Sensitivity:			<u>/.6</u> /50 %	0 x 100%	
Span Sensitivity: Frial 1:		= 99.7	/50 % Trial 3:	0 x 100%	1112 0 75
f <mark>rial 1:</mark> Co	ounts Observed for the Span=	=99.7	% Trial 3:	0 x 100% Dbserved for the Span=	143975
T <u>rial 1:</u> Co		=99.7	% Trial 3: Counts C		143975
Trial 1: Cou Cou	ounts Observed for the Span=	=99.7	% Trial 3: Counts C	bserved for the Span=	143975 3865
T <u>rial 1:</u> Cou Trial 2: Co	ounts Observed for the Span= inters Observed for the Zero=	=99.7	% Trial 3: Counts C	bserved for the Span=	143975 3865
T <u>rial 1:</u> Cou Cou Trial 2: Cou	ounts Observed for the Span= Inters Observed for the Zero= Dunts Observed for the Span=	=99.7	% Trial 3: Counts C	bserved for the Span=	143975 3865
T <u>rial 1:</u> Cou Cou Trial 2: Cou	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero=	=99.7	% Trial 3: Counts C	bserved for the Span=	<u>143975</u> 3865
T <u>rial 1:</u> Cou Trial 2: Cou Cou	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero=	= 99.7 143726 3829 143852 3847	% Trial 3: Counts C	Observed for the Span= Observed for the Zero=	143975 3865
Trial 1: Cou Trial 2: Cou Post Monitoring Post Monitoring Pero Air Pero Air	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero= Calibration Check	= 99.7 <u>143726</u> <u>3829</u> <u>143852</u> <u>3647</u> Cal Gas Reading:	% Trial 3: Counts C Counters C	Observed for the Span= Observed for the Zero=	143975 3865
Trial 1: Cou Trial 2: Cou Post Monitoring Post Monitoring Pero Air Pero Air	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero= Calibration Check	= 99.7 143726 3829 143852 3647 Cal Gas Reading:	% Trial 3: Counts C Counters C S	Observed for the Span= Observed for the Zero=	143975 3865

		SURFACE EMISSIC			
Date:	3/15/21		Site Name:	Newby	
Inspector(s):	Don Gulase	n	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	. Ч. 8 мрн	Wind <i>J</i>		Barometric Pressure: 30	- "Hg
Air Temperature	11	General Weather Conditions:		loudy	
CALIBRATION	INFORMATION			0	
Pre-monitoring	Calibration Precision Check				
and calculate th	orate the instrument. Make one average algebraic different pe less than or equal to 10% of al Number.	ce between the instrument <mark>r</mark>			
		-			
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seco
2		499	T		3
alibration Preci	ision= Average Difference/Ca	I Gas Conc. X 100% = 100%-	99.7	/500 x 100%	
		= 997		2.	
pan Sensitivity:					
	ounts Observed for the Span=	162610		unts Observed for the Span=	
Trial 2:	nters Observed for the Zero= punts Observed for the Span=	00.21	Coun	ters Observed for the Zero=	36 89
	nters Observed for the Span=	21 50			
1.0	Calibration Check				
ero Air		Cal Gas	_		
leading:	ppm	Reading:	500	≥ppm	
ACKGROUND	CONCENTRATIONS CHECK	5			
pwind Location	Description:	Fintran	CC	Reading:	ppm
ownwind Locati	ion Description:	Crig 1	200	Reading: <u>\</u>	ppm
	Wind speed averages were o exceeded 20 miles per hour.	No rainfall had occurred wi	thin the previo		g event. Therefore, site

					Post
		SURFACE EMISSIO			
		CALIBRATION AND	PERTINE		
Date:	3-15-21	<u>`</u>	Site Name:	newba	<u>\$</u>
Inspector(s):	pon C	7	Instrument:	TVA 2020	
WEATHER	DBSERVATIONS				
Wind Spe	red:	Wind Direction:		Barometric Pressure: 30	
Temperate	Air ,53 °F	General Weather Conditions:	class	4	
CALIBRATIC	IN INFORMATION		1		
Pre-monitori	ng Calibration Precision Check				
and calculate	alibrate the instrument. Make a the average algebraic difference st be less than or equal to 10% o	e between the instrument r	eading and the		
Instrument S	erial Number:			Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response_Time (seconds)
1		500			S S
2	1.7	498		2	6
3		199		1	M
		= 100%-)	_/500 x 100%	
		= 99.8	%		
Span Sensitiv	ty:				
<u>Trial 1:</u>	Counts Observed for the Span=	182572	Trial 3: Cou	nts Observed for the Span-	162963
C Trial 2:	ounters Observed for the Zero=	3652	Coun	ters Observed for the Zero-	3694
11012.	Counts Observed for the Span=	162824			
C	ounters Observed for the Zero=	56-61			
Post Monitori	ng Calibration Check				
ero Air	6	Cal Gas	\bigcap		
Reading:	ppm	Reading:	200	ppm	
ACKGROUN	D CONCENTRATIONS CHECKS		0	A (
Jpwind Locat	on Description:	Chtrand	Z	Reading:	ppm
ownwind Lo	cation Description:	C110 (2-1	Reading: 1-6	_ppm
votes:	Wind speed averages were of exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred wi	thin the previou	s 24 hours of the monitori	ng event. Therefore, site

- Hard and Ball-

		SURFACE EMISSIO		
Date:	3/15/21		Site Name: Newby	
Inspector(s):	Bruan		Instrument: TVA 2020	
VEATHER OBS	ERVATIONS	,		
Wind Speed:	9,8 мрн	Wind N Direction:	Barometric Pressure: <u>30</u>	"Нg
Air Temperature:	46 °F	General Weather Conditions:	antly doudy	
ALIBRATION II	NFORMATION	·	v c	
re-monitoring C	alibration Precision Check			
nd calculate the	e average algebraic different e less than or equal to 10% o	ce between the instrument re of the calibration gas value.	s by alternating zero air and the calibro ading and the calibration gas as a per	
istrument Serial	Number: 1215		Cal Gas Concentratio	on: 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (second
1	1	501	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9
2	0	100	2	
		= 100% = VV, B %	/500 × 100%	
an Sensitivity:		, , _		
ial 1:			rial 3:	120 071
Cou	ints Observed for the Span=	13.828	Counts Observed for the Sp.	an = 13253
	ters Observed for the Zero=	3126	Counters Observed for the Ze	ro= 51 88
rial 2: Cou	ints Observed for the Span=	132247		
	ters Observed for the Zero=			
	alibration Check			
	0			
ro Air ading:	ppm	Cal Gas Reading: 5	ppm	
CKGROUND C	ONCENTRATIONS CHECK	s		
wind Location D	Description:	Entrance	Reading:	> ppm
wnwind Locatio	n Description:	(1vid 169	Reading: 1.5	ppm
	xceeded 20 miles per hour.	No rainfall had occurred with	alternative requested 10 miles per ho nin the previous 24 hours of the monit matives of the LMR requirements on t	oring event. Therefore, site

SCS DataServices — Secure Environmental Data 🚽 🖓 👘 🔂

<u></u>				P	ort
		SURFACE EMISSIO			
	5	CALIBRATION AND	D PERTINEN	T DATA	
Date:	3-15-21		Site Name:	nepub	5
Inspector(s):	Bryan	0	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed:	МРН	Wind Direction:		Barometric Pressure: <u>20</u>	"Нд
Air Temperature:	53.	General Weather Conditions:	clou	2 M	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	prate the instrument. Make a e average algebraic difference ne less than or equal to 10% o	e between the instrument r			
Instrument Seria	I Number:	<u> </u>		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
1	.2	Mag B	2		4
2		499	1		3
3		501	(E
Calibration Preci	sion= Average Difference/Cal	Gas Conc. X 100% = 100%-	13	/500 × 100%	
		=99.7	%		
Span Sensitivity:					
<u>Trial 1:</u> Co	unts Observed for the Span=	131651	Trial 3: Cour	nts Observed for the Span=	131974
Cou	nters Observed for the Zero=	3147	Count	ers Observed for the Zero=	3191
<u>Trial 2:</u> Co	unts Observed for the Span=	131813			
Cour	nters Observed for the Zero=	3162			
Post Monitoring	Calibration Check				
Zero Air Reading:	©ppm	Cal Gas Reading:	500	ppm	
BACKGROUND	CONCENTRATIONS CHECK	5			
Jpwind Location	Description:	Entranci	2	Reading: 1.2	ppm
Downwind Locati	on Description:	Curig		Reading:	ppm
	Wind speed averages were o exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred wi	thin the previou	s 24 hours of the monitorin	g event. Therefore, site

2		1	Da	11.1	Jen	vices		A-ARI	IV.C.	Emyzti	roni	neni	6	19/6168	
---	--	---	----	------	------------	-------	--	-------	-------	--------	------	------	---	---------	--

			SURFACE I	ON AND PE				
Date:	3/15	/21			Name:	Dow	he	
	Liam	INA C				/C	J_	
Inspector(s):	Clam	MCG.	nn_	Inst	rument:	TVA 2020	-	
WEATHER OBS	SERVATIONS					1		
Wind Speed	<u>4.8</u>	ЛРН	Wind Direction:	N		Barometric Pressure:	30	"Hg
Air Temperature:		F		il Weather onditions: Pou	Hy C	loudy		
CALIBRATION	INFORMATION			1	·			
Pre-monitoring	Calibration Precisio	on Check						
Procedure: Calib	rate the instrumer	nt Makeata	tal of three me	asuramants hu	alternatio	a zoro air and the c	alibration	gas. Record the reading
and calculate th	e average algebra	ic difference i	between the ins	strument readii				gas. Record the redaing ge. The calibration
precision must b	e less than or equa	al to 10% of t	he calibration g	jas value.				
Instrument Seria	I Number:	2364				Cal Gas Concen	tration:	500ppm
Frial	Zero Air Rea	ading	Cal Gas Rea	ading	Cal Gas C	oncCal Gas Readi	ing	Response Time (secon
1	.3		501)			cy
2	. \		499					3
3	-7-		498		2	-		12
	sion= Average Diff	erence/Cal G	Average Diffe	*Perfo	2 rm recalibratio	3 n if average difference is g	reater than 10	3
	sion= Average Diffe	erence/Cal G		*Perfo	rm recallbratio	-	reater than 10	3
	sion= Average Diffe	erence/Cal G		*Perfo	rm recalibratio	3 n if average difference is g _/500 x 100%	reater than 10	3
	sion= Average Diff	erence/Cal G	as Conc. X 1009 =	*Perfo	rm recallbratio	-	reater than 10	5
Calibration Preci	sion= Average Diff	erence/Cal G	as Conc. X 1009 =	*Perfo % 100%	rm recallbratio	-	reater than 10	
Calibration Precis pan Sensitivity: rial 1:			as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(,, 7 %	<u>, 3</u> 3:	_/500 x 100%		3
Calibration Precis pan Sensitivity: rial 1:	sion= Average Diffe		as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(,, 7 %	<u>, 3</u> 3:	-		3
Calibration Precis pan Sensitivity: rial 1: Co Cour		the Span=	as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(,, 7 %	, <u>3</u> <u>3:</u> Cour	_/500 x 100%	ne Span=	145213
Calibration Precis pan Sensitivity: rial 1: Co Cour rial 2:	unts Observed for	the Span= the Zero=	as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(,, 7 %	, <u>3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th	ne Span=	145213
pan Sensitivity: rial 1: Co <u>rial 2:</u> Co	unts Observed for nters Observed for unts Observed for	the Span= the Zero= the Span=	as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(,, 7 %	<u>, 3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th	ne Span=	145213
alibration Precision pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co <u>Cour</u>	unts Observed for nters Observed for unts Observed for nters Observed for	the Span= the Zero= the Span=	as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(,, 7 %	<u>, 3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th	ne Span=	145213
alibration Precision pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co <u>Cour</u>	unts Observed for nters Observed for unts Observed for	the Span= the Zero= the Span=	as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(,, 7 %	<u>, 3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th	ne Span=	145213
alibration Precis pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co cour ost Monitoring (unts Observed for nters Observed for unts Observed for nters Observed for Calibration Check	the Span= the Zero= the Span= the Zero≃	as Conc. X 1009 = = 9 [19767 8970 [970 [970] [97	*Perfo 6 00%- 0(.7 % 2 <u>Trial</u> 25 3 Gas 5	<u>, 3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th	ne Span=	145213
alibration Precis pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co cour ost Monitoring (unts Observed for nters Observed for unts Observed for nters Observed for	the Span= the Zero= the Span= the Zero≃	as Conc. X 1009 = = 9 [19767 8970 [970 [970] [97	*Perfo 100% Q.7 % 2 Trial 25 3	<u>, 3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th	ne Span=	145213
Calibration Precis Span Sensitivity: Trial 1: Co Cour Tial 2: Co Cour ost Monitoring (ero Air eading:	unts Observed for nters Observed for unts Observed for nters Observed for Calibration Check	the Span= the Zero= the Span= the Zero~	as Conc. X 1009 = = 9 [19767 8970 [970 [970] [97	*Perfo 6 00%- 0(.7 % 2 <u>Trial</u> 25 3 Gas 5	<u>, 3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th ers Observed for th	ne Span=	145213
Calibration Precis Span Sensitivity: Trial 1: Co Cour Tial 2: Co Cour ost Monitoring (ero Air eading:	unts Observed for nters Observed for unts Observed for nters Observed for Calibration Check	the Span= the Zero= the Span= the Zero~	as Conc. X 1009 = = 9 [19767 3970 [970 [970 [970] [970	*Perfo 6 00%- 0(.7 % 2 <u>Trial</u> 25 3 Gas 5	, <u>3</u> <u>3:</u> Count	_/500 x 100% nts Observed for th ers Observed for th	ne Span= ne Zero=	145213
Calibration Precision pan Sensitivity: rial 1: Co Cour rial 2: Cour cost Monitoring Cour cost Monitoring Cour ero Air eading: ACKGROUND C	unts Observed for nters Observed for unts Observed for nters Observed for Calibration Check	the Span= the Zero= the Span= the Zero~	as Conc. X 1009 = = 9 [19767 3970 [970 [970 [970] [970	*Perfo % 100%- (1,7 % 2 Trial 25 3 Gas ding:	, <u>3</u> <u>3:</u> Count	_/500 x 100% nts Observed for th ers Observed for th	ne Span= ne Zero=	<u>145213</u> 40 49

					Vost
		SURFACE EMISSI	ONS MONI	TORING	
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	3-15-21		Site Name:	newbu	
Inspector(s):	Liamn		Instrument:	TVA 2020)
WEATHER OBS	SERVATIONS				
Wind Speed:	7 мрн	Wind Direction:	-	Barometric Pressure: <u>30</u>	"Hg
Air Temperature:	53 .	General Weather Conditions		ĽΥ	
CALIBRATION	INFORMATION				
Pre-monitoring (Calibration Precision Check				
and calculate th	rate the instrument. Make a e average algebraic difference e less than or equal to 10% a	ce between the instrument i	reading and the		on gas. Record the readings ntage. The calibration
Instrument Seria	Il Number:	57		Cal Gas Concentration	500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1	502	498	50		
2		501	-		2
		100	L		
alibration Preci	sion= Average Difference/Ca	= 100%-	1.6	/500 x 100%	
		=9,0.7	%	-	
Span Sensitivity:					
<u>Frial 1:</u> Co	unts Observed for the Span=	144372	Trial 3: Cou	ints Observed for the Span	174734
Cour	nters Observed for the Zero=	4017	Coun	ters Observed for the Zero	= MO 73
	unts Observed for the Span=	14456			
Cour	nters Observed for the Zero=	4043			
ost Monitoring	Calibration Check				
ero Air eading:	ppm	Cal Gas Reading:	500	_ppm	
ACKGROUND	CONCENTRATIONS CHECK	S			
pwind Location	Description:	Entrance		Reading: 1.2	_ppm
ownwind Locati	on Description:	C712216	्य	Reading: <u>19</u>	_ppm
(Wind speed averages were o exceeded 20 miles per hour. meteorological conditions w	No rainfall had occurred w	ithin the previo	us 24 hours of the monitor	

	SURFACE EMISSI			
011	CALIBRATION AND			
Date: 3/15/21		Site Name:	Newby	
nspector(s):		Instrument:	TVA 2020	
U WEATHER OBSERVATIONS			~	
Wind Speed: 9,8 MPH	Wind Direction:	~	Barometric Pressure: 30	"Hg
Air Temperature: <u>4(</u> *F	General Weathe Conditions	partly C	loudy	
CALIBRATION INFORMATION		. /		
re-monitoring Calibration Precision Check				
procedure: Calibrate the instrument. Make a	total of three measuremer	nts by alternating	zero air and the calibratio	n aas. Record the reading
nd calculate the average algebraic difference				
recision must be less than or equal to 10% of	the calibration gas value.			
strument Serial Number: 1211			Cal Gas Concentration:	500ppm
rial Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (second
	102	\\		3
$\frac{2}{3}$	500	0		9
libration Precision= Average Difference/Cal	Average Difference:	*Perform recalibration	h if average difference is greater than	10
alibration Precision= Average Difference/Cal	Average Difference:	1	/500 x 100%	10
alibration Precision= Average Difference/Cal	Average Difference: Gas Conc. X 100%	1] 10
	Average Difference: Gas Conc. X 100%	6] 10
an Sensitivity:	Average Difference: Gas Conc. X 100%	% Trial <u>3:</u>	_/500 x 100%	
oan Sensitivity: ial 1: Counts Observed for the Span=	Average Difference: Gas Conc. X 100%	% Trial 3: Cour	/500 x 100% hts Observed for the Span=	111 342
pan Sensitivity:	Average Difference: Gas Conc. X 100%	% Trial 3: Cour	_/500 x 100%	111342
oan Sensitivity: • <mark>ial 1:</mark> Counts Observed for the Span=_ Counters Observed for the Zero≃	Average Difference: Gas Conc. X 100%	% Trial 3: Cour	/500 x 100% hts Observed for the Span=	111 342
ban Sensitivity: ial 1: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> ial 2: Counts Observed for the Span=	Average Difference: Gas Conc. X 100%	% Trial 3: Cour	/500 x 100% hts Observed for the Span=	111 342
ban Sensitivity: ial 1: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> ial 2: Counts Observed for the Span= <u>Counters Observed for the Zero=</u>	Average Difference: Gas Conc. X 100%	% Trial 3: Cour	/500 x 100% hts Observed for the Span=	111 342
ban Sensitivity: ial 1: Counts Observed for the Span= Counters Observed for the Zero= ial 2: Counts Observed for the Span= Counters Observed for the Zero= bst Monitoring Calibration Check	Average Difference: Gas Conc. X 100% = 100%- = 10088 3928 3928 111 253 3921	% Trial 3: Cour	/500 x 100% hts Observed for the Span=	111 342
aan Sensitivity: ial 1: Counts Observed for the Span= Counters Observed for the Zero= ial 2: Counts Observed for the Span= Counters Observed for the Zero= st Monitoring Calibration Check	Average Difference: Gas Conc. X 100% = 100%- = NOBB 3928 111 253 3921 Cal Gas	% Trial 3: Cour	/500 x 100% hts Observed for the Span= ers Observed for the Zero=	111342
ban Sensitivity: ial 1: Counts Observed for the Span= Counters Observed for the Zero= ial 2: Counts Observed for the Span= Counters Observed for the Zero= ost Monitoring Calibration Check ro Air eading:	Average Difference: Gas Conc. X 100% = 100%- = 10088 3928 3928 111 253 3921	% Trial 3: Cour	/500 x 100% hts Observed for the Span=	111342
Dan Sensitivity: Tial 1: Counts Observed for the Span= Counters Observed for the Zero= Tial 2: Counts Observed for the Span= Counters Observed for the Zero= Dest Monitoring Calibration Check Tro Air Rading: Dest Monitoring Calibration Check Tro Air Rading: Dest Monitoring Calibration Check	Average Difference: Gas Conc. X 100% = 100%- = NOBB 3928 111 253 3921 Cal Gas	% Trial 3:	/500 x 100% hts Observed for the Span= ers Observed for the Zero=	111342
ban Sensitivity: ial 1: Counts Observed for the Span= Counters Observed for the Zero= ial 2: Counts Observed for the Span= Counters Observed for the Zero= ost Monitoring Calibration Check ro Air eading:	Average Difference: Gas Conc. X 100% = 100%- = NOBB 3928 111 253 3921 Cal Gas	% Trial 3:	/500 x 100% hts Observed for the Span= ers Observed for the Zero=	111 342
Dan Sensitivity: ial 1: Counts Observed for the Span= Counters Observed for the Zero= ial 2: Counts Observed for the Span= Counters Observed for the Zero= Dest Monitoring Calibration Check ro Air ading: ppm ACKGROUND CONCENTRATIONS CHECKS	Average Difference: Gas Conc. X 100% = 100%- = NOBB 3928 111 253 3921 Cal Gas	% Trial 3:	/500 x 100% hts Observed for the Span= ers Observed for the Zero= ppm	111342 39 83

		SURFACE EMISSI	ONS MONITORING	
			D PERTINENT DATA	
	3-1= 21			
Date:	215-11	<u>`</u>	Site Name: VICO	00
Inspector(s);	If your t	-)	Instrument: TVA 2020	
WEATHER OB	SERVATIONS			
	0	Wind	Barometric -	
Wind Speed	и:МРН	Direction:	Pressure:	SO "Hg
Ai Temperature	F. L	General Weather Conditions:		
CALIBRATION	INFORMATION			
Pre-monitoring	Calibration Precision Check			
			its by alternating zero air and the o reading and the calibration gas as	calibration gas. Record the readings a percentage. The calibration
	be less than or equal to 10% of			, , , , , , , , , , , , , , , , , , , ,
nstrument Seri	al Number:	\	Cal Gas Concer	ntration: 500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Read	ling Response Time (seconds
1		1 504	2	4
2		499		
		100	1	
alibration Pred	ision= Average Difference/Ca	Average Difference;	*Perform recalibration if average difference is	greater than 10
Calibration Prec	ision= Average Difference/Ca	l Gas Conc. X 100%	13	greater than 10
Calibration Prec	ision= Average Difference/Ca		*Perform recalibration if average difference is.	greater than 10
Calibration Prec	ision= Average Difference/Ca	l Gas Conc. X 100%	13	greater than 10
Span Sensitivity		l Gas Conc. X 100%	<u>∖.</u> 3/500 x 100% %	greater than 10
ipan Sensitivity		I Gas Conc. X 100% = 100%- = 99.7	13	110408
Span Sensitivity Frial 1: Co	: ounts Observed for the Span=	I Gas Conc. X 100% = 100%- = 99.7 = 10772	/500 x 100% % Trial 3: Counts Observed for t	he Span= 110823
Span Sensitivity Frial 1: Cou Cou	ounts Observed for the Span= unters Observed for the Zero=	I Gas Conc. X 100% = 100%- = 99.7 = <u>10772</u> = <u>3969</u>	<u>\.</u> /500 x 100% % Trial <u>3:</u>	he Span= 110823
Span Sensitivity Frial 1: Cou Cou Frial 2: Co	counts Observed for the Span= unters Observed for the Zero= pounts Observed for the Span=	I Gas Conc. X 100% = 100% = 99.7 $= 99.7$ $= 390% = 3$	/500 x 100% % Trial 3: Counts Observed for t	he Span= 110823
Span Sensitivity Frial 1: Cou Cou Frial 2: Co	ounts Observed for the Span= unters Observed for the Zero=	I Gas Conc. X 100% = 100% = 99.7 $= 99.7$ $= 390% = 3$	/500 x 100% % Trial 3: Counts Observed for t	he Span= 110823
Span Sensitivity Frial 1: Cou Frial 2: Cou Cou	counts Observed for the Span= unters Observed for the Zero= pounts Observed for the Span=	I Gas Conc. X 100% = 100% = 99.7 $= 99.7$ $= 390% = 3$	/500 x 100% % Trial 3: Counts Observed for t	he Span= 110823
Span Sensitivity Trial 1: Cou Cou Trial 2: Cou Post Monitoring	ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero=	I Gas Conc. X 100% = 100% = 99.7 $= 99.7$ $= 390% = 3$	/500 x 100% % Trial 3: Counts Observed for t	he Span= 110823
Span Sensitivity Frial 1: Cou Trial 2: Cou Post Monitoring	ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero=	I Gas Conc. X 100% = 100% = 99.7 $= 99.7$ $= 110772$ $= 3967$ $= 110689$ $= 3980$	/500 x 100% % Trial 3: Counts Observed for t	he Span= 110823
Span Sensitivity Frial 1: Cou Cou Frial 2: Cou Post Monitoring Pero Air Reading:	ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check	I Gas Conc. X 100% = 100%- = 99.7 = 110772 = 3969 = 110689 = 110689 = 110689 = 100689 = 100689 = 100689 = 100% = 100% = 20% = 20	∑/500 x 100% % Trial 3: Counts Observed for t Counters Observed for t	he Span= 110823
Span Sensitivity Frial 1: Cou Frial 2: Cou Post Monitoring Zero Air Reading:	ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check	I Gas Conc. X 100% = 100%- = 99.7 = 110772 = 3969 = 110689 = 110689 = 110689 = 100689 = 100689 = 100689 = 100% = 100% = 20% = 20	∑/500 x 100% % Trial 3: Counts Observed for t Counters Observed for t	he Span= 110823
Span Sensitivity Trial 1: Cou Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND Jpwind Locatior	ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check	I Gas Conc. X 100% = 100%- = 99.7 = 110772 = 3969 = 110689 = 110689 = 110689 = 100689 = 100689 = 100689 = 100% = 100% = 20% = 20	500 x 100% % Trial 3: Counts Observed for t Counters Observed for t 500 ppm	he Span= <u>110823</u> the Zero= <u>3999</u>

		SURFACE EMISSIC			
Date:	3/16/21		Site Name:	Newbar	
	Thurley and	-	Site Name;		
Inspector(s): _	power ott		Instrument:	TVA 2020	
WEATHER OBSE	RVATIONS				
Wind Speed:	<u> </u>	Wind Direction:	e	Barometric Pressure: 29.9	"Hg
Air Temperature:	45 °F	General Weather Conditions:	deer	-	
CALIBRATION IN	FORMATION				
re-monitoring Ca	libration Precision Check				
nd calculate the d	average algebraic difference less than or equal to 10% of	e between the instrument re		a zero air and the calibration calibration gas as a percente Cal Gas Concentration:	
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (secon
1	4	500		0	1
2	ا د	500		0	2
3	. 2	501		1	2
		= 100% = 499	/	/500 × 100%	
an Sensitivity:					
rial 1:	its Observed for the Span=	114320	Trial 3:	the Observed for the Serve	114903
Cours	its observed for the span=	119 200	Cour	nts Observed for the Span=	114903
		2220			
Counte	ers Observed for the Zero=	3322	Counte	ers Observed for the Zero=	3347
Counte	ers Observed for the Zero= ts Observed for the Span=	3322	Counte	ers Observed for the Zero=	3397
Counte ial 2: Coun		3322 114 600 +#1003	Counte	ers Observed for the Zero=	3397
Counte tial 2: Coun	ts Observed for the Span= ers Observed for the Zero=	3322 114 600 +#2003 33 35	Counti	ers Observed for the Zero=	3397
Counte rial 2: Coun Counte ost Monitoring Cal	ts Observed for the Span= ers Observed for the Zero=	3322 114 600 +++++++++++++++++++++++++++++++++++	500	ers Observed for the Zero=	3397
Counte ial 2: Coun Counte est Monitoring Cal ro Air ading:	ts Observed for the Span= ers Observed for the Zero= libration Check	Cal Gas	500		3397
Counte rial 2: Counte Counte ost Monitoring Cal ero Air eading:	its Observed for the Span= ers Observed for the Zero= libration Check ppm PNCENTRATIONS CHECKS	Cal Gas	500	ppm	33 77
Counte rial 2: Coun Counte cou	its Observed for the Span= ers Observed for the Zero= libration Check ppm PNCENTRATIONS CHECKS escription:	Cal Gas Reading:	500	ppm Reading:	

SES DO	ard Serv	ices -	Secure	Environ	nenta	DIGNAL

					Asst
		SURFACE EMISSI	ONS MONI	TORING	- Martin
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	5-16-21		Site Name:	newb	4
Inspector(s):	() NO(<u> </u>	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed	С (мрн	Wind Direction:	-	Barometric Pressure: <u>30</u>	
Air Temperature:	L(5 °F	General Weathe Conditions		\mathbf{V}	
	NFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	rate the instrument. Make of e average algebraic difference e less than or equal to 10% of I Number:	ce between the instrument	reading and the		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
1		499		2	M
2	0	199		1	3
3		500		0	3
		$=$ 100% $=$ 99 \times	%	_/500 x 100%	
pan Sensitivity:					
	unts Observed for the Span=	110-		nts Observed for the Span=	294
rial 2:	nters Observed for the Zero= unts Observed for the Span=	157675	Coun	ters Observed for the Zero=)6(0
Cour	iters Observed for the Zero=	3662			
ost Monitoring (Calibration Check				
ero Air eading:	O ppm	Cal Gas Reading:	500	ppm	
	CONCENTRATIONS CHECKS	-			
pwind Location		Entran	ice	Reading:	ppm
ownwind Locatio	on Description:	grid 1	69	Reading: <u>1-3</u>	ppm
e	Nind speed averages were o exceeded 20 miles per hour. neteorological conditions we	No rainfall had occurred w	ithin the previou	us 24 hours of the monitorin	g event. Therefore, site

State State

20	S Date	aServi	ces - S	ecure.	Enviro	nmenta	Data
----	--------	--------	---------	--------	--------	--------	------

		SURFACE EMISSIC	ONS MONITORII	NG	
		CALIBRATION AND	PERTINENT DA	ТА	
Date:	3-16-21		Site Name:	lente	1
Inspector(s):	Ryan		Instrument: TVA	2020	
WEATHER OB	SERVATIONS			~	
Wind Speec	н:мрн	Wind Direction:		ometric ressure: <u>3</u> 0	"Нg
Ai Temperature	ir 45 ••	General Weather Conditions:			
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
ind calculate th	brate the instrument. Make o he average algebraic differen be less than or equal to 10% o	ce between the instrument re	ts by alternating zero a eading and the calibrat	ir and the calibratio tion gas as a percen	n gas. Record the readings tage. The calibration
nstrument Seri	al Number:	<u> </u>	Cal	Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCa	al Gas Reading	Response Time (seconds
1	1	501	2		5
	1	1			
2	.0	(199	1		4
3	ision= Average Difference/Ca		*Perform recalibration if averag	e difference is greater than]
3	ision= Average Difference/Ca]
3	ision= Average Difference/Ca	l Gas Conc. X 100%]
3		l Gas Conc. X 100%]
3 Calibration Prec pan Sensitivity: rial 1:		Gas Conc. X 100% = 100% = 29.7 f			10
3 alibration Prec pan Sensitivity: rial 1: Co	ounts Observed for the Span=	I Gas Conc. X 100% = 100%- = 29.7	/500 × % Trial 3: Counts Obs	erved for the Span=	257011
3 Calibration Prec pan Sensitivity: rial 1: Cou		I Gas Conc. X 100% = 100%- = 29.7	/500 × % Trial 3: Counts Obs	x 100%	257011
3 Calibration Prec pan Sensitivity: rial 1: Cou rial 2:	ounts Observed for the Span=	I Gas Conc. X 100% = 100% = 29.7 % $= 29.7 %$ $= 58.41$	/500 × % Trial 3: Counts Obs	erved for the Span=	257 9111
3 Calibration Prec pan Sensitivity: rial 1: Cou rial 2: Cou	ounts Observed for the Span= Inters Observed for the Zero=	1 Gas Conc. X 100% = 100%- = 29.7 = 200%- = 20	/500 × % Trial 3: Counts Obs	erved for the Span=	257 9111
3 Calibration Prec pan Sensitivity: rial 1: Cou rial 2: Cou Cou	ounts Observed for the Span= Inters Observed for the Zero= Dunts Observed for the Span=	1 Gas Conc. X 100% = 100%- = 29.7 = 200%- = 20	/500 × % Trial 3: Counts Obs	erved for the Span=	257 9111
3 Calibration Prec pan Sensitivity: rial 1: Cou rial 2: Cou cou cou cou cou	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check	I Gas Conc. X 100% = 100%- = 29.7 = 2	K K Trial 3: Counts Obs Counters Obs	erved for the Span=	257 9111
3 Calibration Prec	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero= Calibration Check	I Gas Conc. X 100% = 100%- = 29.7 = 2	/500 × % Trial 3: Counts Obs	erved for the Span=	257 9111
3 Calibration Prec pan Sensitivity: rial 1: Cou rial 2: Cou rial 2: Cou cost Monitoring ero Air eading: ACKGROUND	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check	I Gas Conc. X 100% = 100%- = 29.7 = 2	X Trial 3: Counts Obs Counters Obs 500 ppm	erved for the Span= served for the Zero=	107841 3869
3 alibration Prec pan Sensitivity: rial 1: Co Cou rial 2: Co cou ost Monitoring ero Air eading: ACKGROUND owind Location	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check	I Gas Conc. X 100% = 100%- = 29.7 = 2	K K Trial 3: Counts Obs Counters Obs	$\frac{100\%}{\text{erved for the Span}}$	257011

SCS DataServices - Secure Environmental Data

Data - Maria

		SURFACE EMISSIC			
		CALIBRATION AND	D PERTINE	NT DATA	
Date:	3-16-21	\	Site Name;	reula	<u>)</u>
nspector(s):	Bryan		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	н:мрн	Wind Direction:		Barometric Pressure: <u>30</u>	"Hg
Ai Temperature	ir <u>53</u> °F	General Weather Conditions:	clear	-	
CALIBRATION	INFORMATION				
're-monitoring	Calibration Precision Check				
nd calculate tl	brate the instrument. Make a he average algebraic differenc be less than or equal to 10% o	e between the instrument r			
nstrument Seri				Cal Gas Concentration:	500ppm
'rial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds
1	1	652	~	2	C C
2		ZIA 8	7		3
3	ision= Average Difference/Cal	Average Difference:	*Perform recalibratio	n if average difference is greater than	 n 10
3	ision= Average Difference/Cal	Average Difference: [Gas Conc. X 100% = 100%-	۵.١] n 10
3		Average Difference:	۵.١		n 10
3 alibration Prec		Average Difference: [Gas Conc. X 100% = 100%- = QQJ	\.b %		n 10
3 alibration Prec ban Sensitivity rial 1:		Average Difference: Gas Conc. X 100% = 100%- = QQ	<u>%</u> Trial 3:		10DR
3 alibration Prec <u>ban Sensitivity</u> ial 1: Cou		Average Difference: Gas Conc. X 100% = 100% = QQT 121583	% 7 <u>Trial 3:</u> Cou	_/500 x 100%	=122362
3 alibration Prec pan Sensitivity rial 1: Cou rial 2:	: ounts Observed for the Span=	Average Difference: Gas Conc. X 100% = 00% = 00% 121583 121583 2020	% 7 <u>Trial 3:</u> Cou	_/500 × 100% nts Observed for the Span=	=122362
3 alibration Prec pan Sensitivity rial 1: Cou rial 2: Cou	: ounts Observed for the Span= inters Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100% = QQT 121583 2q20 121862	% 7 <u>Trial 3:</u> Cou	_/500 × 100% nts Observed for the Span=	=122362
3 alibration Prec pan Sensitivity: rial 1: Cou rial 2: Cou	: ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span=	Average Difference: Gas Conc. X 100% = 100% = QQT 121583 2q20 121862	% 7 <u>Trial 3:</u> Cou	_/500 × 100% nts Observed for the Span=	=122362
3 alibration Prec pan Sensitivity rial 1: Cou rial 2: Cou cou cost Monitoring	ounts Observed for the Span= Inters Observed for the Zero= Dunts Observed for the Span= Inters Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100% = QQT 121583 2q20 121862	% 7 <u>Trial 3:</u> Cou	_/500 × 100% nts Observed for the Span=	=122362
3 Calibration Prec	: ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero= Calibration Check	Average Difference: Gas Conc. X 100% = 100% = QQT 121583 2QZO 121862 2QV3 Cal Gas Reading:	% 7 <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	=122362
3 Calibration Prec	concentrations checks	Average Difference: Gas Conc. X 100% = 100% = QQT 121583 2QZO 121862 2QV3 Cal Gas Reading:	% Trial 3: Cou Cour	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	=122362

SCS	DataSer	vices - S	becure	Environ	menta	Date
-----	---------	-----------	--------	---------	-------	------

				Rost
SL	IRFACE EMISSI	ONS MONI	TORING	
CA	LIBRATION AN	D PERTINE	NT DATA	
Date: 3-16-21		Site Name:	newby	
Inspector(s): Rabo R		Instrument:	TVA 2020	
WEATHER OBSERVATIONS			~	
Wind Speed: MPH D	Wind irection:	-	Barometric <u>3</u> 0	- "Нg
Air 53 °F	General Weathe Conditions		Y	
CALIBRATION INFORMATION				
Pre-monitoring Calibration Precision Check				
Procedure: Calibrate the instrument. Make a total and calculate the average algebraic difference betw precision must be less than or equal to 10% of the c	ween the instrument	reading and the	g zero air and the calibratio calibration gas as a percent	n gas. Record the readings tage. The calibration
Instrument Serial Number: 54721	<u> </u>		Cal Gas Concentration:	500ppm
Trial Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds)
2	LIGA		(5
3	501		ì	1 21
Calibration Precision= Average Difference/Cal Gas C	Conc. X 100% = 100%-	(.3	_/500 x 100%	
	= 99	°}¢		
pan Sensitivity:	(
Counts Observed for the Span=	33462		ints Observed for the Span= ters Observed for the Zero=	133996 37 84
rial 2: Counts Observed for the Span=	53724	Cour		0101
Counters Observed for the Zero= 5	756			
ost Monitoring Calibration Check				
ero Air eading:ppm	Cal Gas Reading:	500	_ppm	
ACKGROUND CONCENTRATIONS CHECKS				
pwind Location Description:	ntrana	c	Reading: 1-3	ppm
ownwind Location Description:	1×19 1P	4	Reading: 1.2	ppm
otes: Wind speed averages were observe exceeded 20 miles per hour. No rai meteorological conditions were wit	infall had occurred w	ithin the previou	is 24 hours of the monitorin	g event. Therefore, site

		SURFACE EMISSI			
		CALIBRATION AN		NI DATA	
Date:	3/16/21 Liam Moginn		Site Name:	Newby	
Inspector(s):	Liam Moginn		Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS				
Wind Speed:	<u>Ч</u> мрн	Wind S Direction:	22	Barometric Pressure: 29.9	"Hg
Air Temperature:	45 °F	General Weathe Conditions	cleoir	_	
CALIBRATION II	NFORMATION				
	alibration Precision Check				
	e less than or equal to 10% of	of the calibration gas value.		calibration gas as a percent Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (seco
1	0.1	497		3	3
2 3	0.1	497		1	2
			*Perform recalibration	n if average difference is greater than "	10
Calibration Precis	ion= Average Difference/Ca	Il Gas Conc. X 100%	*Perform recalibratio	n if average difference is greater than :	10
	ion= Average Difference/Ca	= 100%-	*Perform recalibratio	n if average difference is greater than : _/500 x 100%	10
pan Sensitivity:	ion≃ Average Difference/Ca	= 100%-	6-3 %		10
ipan Sensitivity: ' rial 1:	ion= Average Difference/Ca ints Observed for the Span=	= 100%- = 9 % .7	6 - 3 % Trial 3:		
ipan Sensitivity: i <mark>rial 1:</mark> Cou Coun		= 100%- = 48.7 = <u>161036</u>	6 - 3 % <u>Trial 3:</u> Cou	_/500 x 100%	161607
ipan Sensitivity: irial 1: Cou Coun irial 2:	ints Observed for the Span-	= 100%- = 48.7 = <u>161036</u> = <u>3769</u>	6 - 3 % <u>Trial 3:</u> Cou	/500 x 100% nts Observed for the Span=	161607
ipan Sensitivity: 'rial 1: Cou <u>Coun</u> 'rial 2: Cou	ints Observed for the Span= ters Observed for the Zero=	= 100%- = 48.7 = <u>161036</u> = <u>3769</u> = <u>161499</u>	6 - 3 % <u>Trial 3:</u> Cou	/500 x 100% nts Observed for the Span=	161607
ipan Sensitivity: I <mark>rial 1:</mark> Cou <u>Coun</u> I <mark>rial 2:</mark> Cou Coun	ints Observed for the Span- ters Observed for the Zero- ints Observed for the Span- ters Observed for the Zero-	= 100%- = 48.7 = <u>161036</u> = <u>3769</u> = <u>161499</u>	6 - 3 % <u>Trial 3:</u> Cou	/500 x 100% nts Observed for the Span=	161607
ipan Sensitivity: rial 1: Cou rial 2: Cou Coun ost Monitoring C ero Air	ints Observed for the Span- ters Observed for the Zero- ints Observed for the Span- ters Observed for the Zero-	= 100%- = 48.7 = <u>161036</u> = <u>3769</u> = <u>161499</u>	6 - 3 % <u>Trial 3:</u> Cou	/500 x 100% nts Observed for the Span=	161607
ipan Sensitivity: rial 1: Cou Coun rial 2: Cou Coun ost Monitoring C ero Air eading:	ants Observed for the Span- ters Observed for the Zero- ints Observed for the Span- ters Observed for the Zero- alibration Check	= 100% $= 4%.7$ $= 161036$ $= 3769$ $= 161499$ $= 3780$ Cal Gas Reading:	6 - 3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	161607
ipan Sensitivity: rial 1: Coun rial 2: Coun rial 2: Coun coun coun coun coun coun Co	ants Observed for the Spans ters Observed for the Zeros ants Observed for the Spans ters Observed for the Zeros alibration Check	= 100% $= 4%.7$ $= 161036$ $= 3769$ $= 161499$ $= 3780$ Cal Gas Reading:	G-3 % Trial 3: Count Count	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	161607
Span Sensitivity: Trial 1: Coun Trial 2: Coun Trial 2: Coun	ants Observed for the Span- ters Observed for the Zero- unts Observed for the Span- ters Observed for the Zero- alibration Check	= 100% $= 49.7$ $= 161036$ $= 3769$ $= 161499$ $= 3780$ Cal Gas Reading: S	G-3 % Trial 3: Count Count	_/500 x 100% nts Observed for the Span= ters Observed for the Zero= ppm Reading:	<u>161607</u> 3147

				ONS MONI		
		CALIBRAT	ION AN	D PERTINEN	IT DATA	
Date:	3/16/21			Site Name:	Newby	
Inspector(s):	Brant Wad	le		Instrument:	TVA 2020	
WEATHER OBSI	ERVATIONS				36	
Wind Speed:	ЦМРН	Wind Direction:	5	-	Barometric Pressure: 27.9	"Hg
Air Temperature:	45°F		ral Weathe Conditions	1 4. /	-	
	FORMATION					
Pre-monitoring C	alibration Precision Check					
and calculate the	average algebraic different less than or equal to 10% o	ce between the i	nstrument	reading and the	g zero air and the calibration calibration gas as a percent Cal Gas Concentration:	age. The calibration
Trial	Zero Air Reading	Cal Gas R	eading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
1		501				2
2 3	02	501			2	3
		,00		-	-	>
		-	100%- 억<i>억</i>, 4	2.6 %	_/500 x 100%	
pan Sensitivity:						
frial 1:	nts Observed for the Span=	15070	08	Trial 3: Cou	nts Observed for the Span=	160200
	ers Observed for the Zero=	4729		Count	ers Observed for the Zero=	4767
rial 2: Cou	nts Observed for the Span=	150 94	18			
Count	ers Observed for the Zero=	4740				
ost Monitoring C	alibration Check					
ero Air	(h)		l Gas	500		
eading: —	ppm		ading:		ppm	
ACKGROUND C	DNCENTRATIONS CHECKS					
pwind Location D	escription:	Entre	ince	-	Reading: 1. 4	opm
ownwind Locatio	n Description:	Carig	- 16c	1	Reading: 1.5	pm
e		No rainfall had	occurred w	ithin the previou	uested 10 miles per hour ar s 24 hours of the monitoring	event. Therefore, site

		SURFACE EMISSI	ONS MONITORING	
	~ 11 ~ 1	CALIBRATION AN	D PERTINENT DATA	
Date:	3-16-21		Site Name: Nauby	
Inspector(s):	Von Gibs	on	Instrument: TVA 2020	
WEATHER OBS	ERVATIONS			
Wind Speed:	Цмрн	Wind Direction:	Barometric Pressure: 29.9	"Hg
Air Temperature:		General Weather Conditions		
CALIBRATION I	NFORMATION			
Pre-monitoring (Calibration Precision Check			
and calculate the	e average algebraic difference e less than or equal to 10% o	e between the instrument i f the calibration gas value. -	nts by alternating zero air and the calibratio reading and the calibration gas as a percent Cal Gas Concentration:	
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Conc ₄ -Cal Gas Reading	Response Time (seconds)
1	0	500	0	7
2	02	50 (3
	UL	500	0	
		= 100%- = 99.8	/500 x 100%	
Span Sensitivity: Trial 1:			Trial 3:	
Col	unts Observed for the Span=	158644	Counts Observed for the Span=	159219
	ters Observed for the Zero=	3547	Counters Observed for the Zero=	3578
Trial 2: Cou	unts Observed for the Span=			
Coun	ters Observed for the Zero=	3560		
Post Monitoring (Calibration Check			
Zero Air Reading:	ppm	Cal Gas Reading:	500 ppm	
BACKGROUND C	CONCENTRATIONS CHECKS	1.0x2		
Ipwind Location I	Description:	Entrance	e Reading:	ppm
ownwind Locatio	on Description:	Chright	9 Reading:	ppm
e	exceeded 20 miles per hour.	No rainfall had occurred wi	e alternative requested 10 miles per hour a ithin the previous 24 hours of the monitorin ernatives of the LMR requirements on the a	g event. Therefore, site bove mentioned date.

		SURFACE EMISSIO		
Date:	3-16-21		Site Name: Machin	
Inspector(s):	Ryon Itas	an	Instrument: TVA 2020	
WEATHER OB	SERVATIONS			
	11	Wind <	Barometric	,
Wind Speed		Direction:	Pressure: 24r	/ "Hg
Ai Temperature		General Weather Conditions:	clear	
CALIBRATION	INFORMATION			
Pre-monitoring	Calibration Precision Check			
and calculate th	ne average algebraic difference be less than or equal to 10% of	e between the instrument re	s by alternating zero air and the calibrati ading and the calibration gas as a percer Cal Gas Concentration:	ntage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	[Cal Gas ConcCal Gas Reading]	Response Time (seconds)
1 2	0	498	2	3
3	1.(501	db	1 2
		= 100% = 44.34 %	3.3 /500 × 100%	
pan Sensitivity:				
rial 1:	ounts Observed for the Span=	108832	rial 3: Counts Observed for the Span	= 109204
	nters Observed for the Zero=	3876	Counters Observed for the Zero	302 -
rial 2:	ounts Observed for the Span=	109 133		
	nters Observed for the Zero=	3894		
ost Monitoring	Calibration Check			
		Cal Gas	500	
ero Air	0	Cal Gas		
	ppm	Reading:	ppm	
ero Air eading:	<i>ppm</i> CONCENTRATIONS CHECKS		ppm	
ero Air eading:	CONCENTRATIONS CHECKS		Reading:	_ppm
ero Air eading: ACKGROUND	CONCENTRATIONS CHECKS		ppm	_ppm

	CALIBRATION AND	INS MONITORING	
Date: <u>3/16</u>	1 . 1	Site Name: Newby	
Inspector(s): Byon	Ochoa	Instrument: TVA 2020	
V WEATHER OBSERVATIONS			
Wind Speed:M	Wind Direction:	Barometric 29.9)"н _g
Air Temperature: <u>45</u> °F	General Weather Conditions:	eleav	
CALIBRATION INFORMATION			
Pre-monitoring Calibration Precision	n Check		
	l to 10% of the calibration gas value.	rading and the calibration gas as a perce Cal Gas Concentration	
rial Zero Air Rea		Cal Gas ConcCal Gas Reading	Response Time (second
1 1	499		3
2 . 2	50(2
3 , (500	D	1
alibration Precision= Average Diffe	erence/Cal Gas Conc. X 100%	1.3 Perform recalibration if average difference is greater th	nan 10
alibration Precision= Average Diffe	-		nan 10
alibration Precision= Average Diffe	erence/Cal Gas Conc. X 100% = 100%	Perform recalibration if average difference is greater th	nan 10
pan Sensitivity: ial 1:	erence/Cal Gas Conc. X 100% = 100% = 99;7 %	Perform recalibration if average difference is greater th	
oan Sensitivity: r <mark>ial 1:</mark> Counts Observed for t Counters Observed for t	the Span= $\frac{122210}{-229}$	Perform recalibration if average difference is greater th	n= <u>122740</u>
pan Sensitivity: rial 1: Counts Observed for t	the Span= 122210 12222100 12222200	Perform recalibration if average difference is greater th 1. 3 /500 x 100% % Trial 3: Counts Observed for the Spa	n= <u>122740</u>
oan Sensitivity: r <mark>ial 1:</mark> Counts Observed for t Counters Observed for t rial 2:	the Span= 122210 the Span= 122340 the Span= 122340	Perform recalibration if average difference is greater th 1. 3 /500 x 100% % Trial 3: Counts Observed for the Spa	n= <u>122740</u>
oan Sensitivity: rial 1: Counts Observed for t Counters Observed for t rial 2: Counts Observed for t Counters Observed for t	the Span= 122210 the Span= 122340 the Span= 122340	Perform recalibration if average difference is greater th 1. 3 /500 x 100% % Trial 3: Counts Observed for the Spa	n= <u>122740</u>
ban Sensitivity: rial 1: Counts Observed for t Counters Observed for t rial 2: Counters Observed for t Counters Observed for t Dest Monitoring Calibration Check	the Span= 122214 the Zero= 2909 the Zero= 2909 the Zero= 2909 the Zero= 2909	Perform recalibration if average difference is greater th 1. 3 /500 x 100% % Trial 3: Counts Observed for the Spa	n= <u>122740</u>
ban Sensitivity: ial 1: Counts Observed for t Counters Observed for t ial 2: Counts Observed for t Counters Observed for t ost Monitoring Calibration Check ro Air	the Span= 122212 the Span= 122342 the Span= 122342 the Span= 122342 the Zero= 2909 the Span= 122342 the Zero= 2930	Perform recalibration if average difference is greater th 1. 3 /500 x 100% % Trial 3: Counts Observed for the Spa	n= <u>122740</u>
pan Sensitivity: rial 1: Counts Observed for t Counters Observed for t rial 2: Counts Observed for t Counters Observed for t ost Monitoring Calibration Check ero Air	the Span= 122214 the Span= 122214 the Zero= 2909 the Span= 122340 the Zero= 2930 the Zero= 2930 the Zero= 2930 Cal Gas Reading:	Perform recalibration if average difference is greater th 1. 3 /500 x 100% 6 7 7 7 7 7 7 7 7 7 7 7 7 7	n= <u>122740</u>
ban Sensitivity: rial 1: Counts Observed for t Counters Observed for t rial 2: Counts Observed for t Counters Observed for t Counters Observed for t ost Monitoring Calibration Check ero Air ppn	the Span= 122214 the Span= 122214 the Zero= 2909 the Span= 122340 the Zero= 2930 the Zero= 2930 the Zero= 2930 Cal Gas Reading:	Image: Perform recalibration if average difference is greater the spanning of t	n= <u>122740</u>
Dan Sensitivity: rial 1: Counts Observed for t Counters Observed for t rial 2: Counts Observed for t Counters Observed for t Counters Observed for t Counters Observed for t Dest Monitoring Calibration Check ero Air Pading: Pading: Councentrations	erence/Cal Gas Conc. X 100% = 100%- $= 9.4;7 %$ the Span= 122210 the Zero= 2909 the Span= 122340 the Zero= 2930 the Zero= 2930 Cal Gas Reading: S S CHECKS	Image: Perform recalibration if average difference is greater the spanning of t	n= 122740 D= 2947

			ONS MONITORING D PERTINENT DATA	
	ρ l_{1} l_{2}			
Date:	- 3/16/2		Site Name: Newby	
Inspector(s):	Pablo River	a	Instrument:TVA 2020	
WEATHER OBSE	RVATIONS			
Wind Speed:	ИМРН	Wind Direction:	Barometric Pressure: 29.9	"Нд
Air Temperature:	45°F	General Weather Conditions:		
CALIBRATION IN	IFORMATION			
Pre-monitoring Ca	libration Precision Check			
precision must be nstrument Serial	less than or equal to 10% of	of the calibration gas value.	eading and the calibration gas as a percent Cəl Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1 2	. 2	498	2	
3	• 2	502	Z	2
			<u>3.6</u> /500 × 100%	
pan Sensitivity:			4	
rial 1:	nts Observed for the Span=	134 144	Trial 3: Counts Observed for the Span=	134507
Count	ers Observed for the Zero=	3740	Counters Observed for the Zero=	3767
rial 2:	its Observed for the Span=		Counters Observed for the 2010-	5701
Count	ers Observed for the Zero=	B757		
ost Monitoring Ca	libration Check			
ero Air eading:	O ppm	Cal Gas Reading:	500 ppm	
ACKGROUND CO	ONCENTRATIONS CHECK	5		
owind Location De	escription:	Entrane	Reading:	opm
wnwind Location	Description:	C1V18 16	9 Reading: <u>1.4</u>	opm
ex	ceeded 20 miles per hour.	No rainfall had occurred wit	e alternative requested 10 miles per hour ar thin the previous 24 hours of the monitoring ernatives of the LMR requirements on the ab	event. Therefore, site

4		SURFACE EMISSIONS CALIBRATION AND PE		
Date:	3-17-2-1	Site	Name: Neu	1.617
Inspector(s):	Brant War	le, Instr	ument: TVA 2020	
WEATHER OBS	ERVATIONS			
Wind Speed:	Ч мрн	$\frac{Wind}{Direction}$	Barometric Pressure:	
				"Нд
Air Temperature:	<u>_39</u> •F	General Weather for Conditions:	loudy	
CALIBRATION II	NFORMATION			
Pre-monitoring C	Calibration Precision Check			
and calculate the	e average algebraic differen	a total of three measurements by a nee between the instrument reading of the calibration gas value.		alibration gas. Record the readings a percentage. The calibration
nstrument Serial	~U	15	Cal Gas Concen	tration:500ppm
rial 1	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Readi	ng Response Time (seconds
2	.0	501	· · · ·	
3	1	राववे	1	2
	sion= Average Difference/Ca	= 100%-	/500 x 100%	
		= 997 %		
pan Sensitivity:			k:	
rial 1:	unts Observed for the Span=		Counts Observed for th	e Span= 145829
		1452CO	Counts Observed for th	117 110
rial 1: Cou Coun rial 2:	unts Observed for the Span- nters Observed for the Zero- unts Observed for the Span-	4684	Counts Observed for th Counters Observed for th	117 110
rial 1: Cou Coun rial 2: Cou	nters Observed for the Zero-	145220 4684 145538	Counts Observed for th	117 110
rial 1: Cou Coun rial 2: Cou Coun	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	145220 4684 145538	Counts Observed for th	117 110
r <u>ial 1:</u> Cou <u>Coun</u> rial 2: Cou	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	145220 4684 145538	Counts Observed for th	117 110
rial 1: Cou rial 2: Cou Coun Ost Monitoring C	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	-145220 -4684 -145538 -4710	Counts Observed for th	117 110
rial 1: Cou rial 2: Cou Coun cost Monitoring C ero Air eading: —	nters Observed for the Zero- unts Observed for the Span- nters Observed for the Zero- Calibration Check	= 14520 = 4684 = 145538 = 4710 Cal Gas Reading:	Counts Observed for th	117 110
rial 1: Cou rial 2: Cou Coun cost Monitoring C ero Air eading: —	aters Observed for the Zero= unts Observed for the Span= aters Observed for the Zero= Calibration Check	= 14520 = 4684 = 145538 = 4710 Cal Gas Reading:	Counts Observed for th	117 110
rial 1: Coun rial 2: Coun coun cost Monitoring C ero Air eading: ACKGROUND C	aters Observed for the Zero= unts Observed for the Span= aters Observed for the Zero= Calibration Check	= 14520 = 4684 = 145538 = 4710 Cal Gas Reading:	Counts Observed for th	ne Zero= 47 49

			ONS MONITORING	
	0	CALIBRATION ANI	D PERTINENT DATA	
Date:	3-17-2		Site Name: MCNb	Q
Inspector(s):	Brant	5 W	Instrument: TVA 2020	
WEATHER OB	SERVATIONS			
Wind Speed	н:мрн	Wind Direction:	Barometric 3 3	"Hg
Ai Temperature		General Weather Conditions:		
CALIBRATION	INFORMATION			
re-monitoring	Calibration Precision Check			
and calculate th		e between the instrument r	ts by alternating zero air and the calibrat reading and the calibration gas as a perce	
nstrument Seria	al Number: 51	15	Cal Gas Concentration	: 500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
1	0	502	10	Ч
2		LIAA	1	×
3		498	2-	B
			*Perform recalibration if average difference is greater th	an 10
alibration Prec	ision= Average Difference/Cal	Gas Conc. X 100%		an 10
alibration Prec	ision= Average Difference/Cał	Gas Conc. X 100% = 100%-	/500 x 100%	an 10
	1	Gas Conc. X 100%		an 10
pan Sensitivity:	1	Gas Conc. X 100% = 100%- =	∕_, 6 /500 × 100% %	an 10
pan Sensitivity: rial 1:	1	Gas Conc. X 100% = 100%- =	/500 x 100%	1415739
pan Sensitivity: rial 1: Cc	/ :	Gas Conc. X 100% = 100%- =	/500 x 100% % Trial 3:	= <u>145239</u>
pan Sensitivity: rial 1: Co Cou rial 2:	; punts Observed for the Span=	Gas Conc. X 100% = 100%- =	<pre>/500 x 100% % Trial 3: Counts Observed for the Span</pre>	= <u>145239</u>
pan Sensitivity: rial 1: Cou rial 2: Cou	: ounts Observed for the Span= inters Observed for the Zero=	Gas Conc. X 100% = 100%- =	<pre>/500 x 100% % Trial 3: Counts Observed for the Span</pre>	= <u>145239</u>
pan Sensitivity: rial 1: Cou rial 2: Cou Cou	: counts Observed for the Span= inters Observed for the Zero= counts Observed for the Span=	Gas Conc. X 100% = 100%- =	<pre>/500 x 100% % Trial 3: Counts Observed for the Span</pre>	= <u>145239</u>
pan Sensitivity: rial 1: Cou rial 2: Cou Cou	unters Observed for the Span= unters Observed for the Zero= punts Observed for the Span= unters Observed for the Zero=	Gas Conc. X 100% = 100%- =	<pre>/500 x 100% % Trial 3: Counts Observed for the Span</pre>	= <u>145239</u>
pan Sensitivity: rial 1: Cou rial 2: Cou cost Monitoring ero Air	unters Observed for the Span= unters Observed for the Zero= punts Observed for the Span= unters Observed for the Zero=	Gas Conc. X 100% = $100%$ = 1494927 4736 14507 4751	<pre>/500 x 100% % Trial 3: Counts Observed for the Span</pre>	= <u>145239</u>
pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring ero Air eading:	counts Observed for the Span= unters Observed for the Zero= pounts Observed for the Span= unters Observed for the Zero= Calibration Check	Gas Conc. X 100% = 100%- = 144927 4736 145107 4751 4751 Cal Gas Reading:	/500 x 100% % Trial 3: Counts Observed for the Span Counters Observed for the Zero	= <u>145239</u>
pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring ero Air eading:	concentrations checks	Gas Conc. X 100% = 100%- = 144927 4736 145107 4751 4751 Cal Gas Reading:	/500 x 100% % Trial 3: Counts Observed for the Span Counters Observed for the Zero	= <u>145239</u>

÷

		SURFACE EMISSI			
Data	2-17-7	\backslash		intuba	
Date:			Site Name:	ricupy	
Inspector(s):	Bryen	10	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			(56)	
Wind Speed			÷	Barometric Pressure: <u>30</u>	"Hg
Air Temperature	10	General Weathe Conditions	1101	dg	
CALIBRATION	INFORMATION			2	
Pre-monitoring	Calibration Precision Check				
and calculate th	e average algebraic differer be less than or equal to 10%		reading and the	g zero air and the calibration calibration gas as a percent Cal Gas Concentration:	age. The calibration
					500ppm
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
2	P P	601			
3	0	LIAN	1	1	5
	sion= Average Difference/C	= 100%- = GG.7	%	_/500 x 100%	
and Constations					
pan Sensitivity: rial 1:			Trial 3:		
	ounts Observed for the Span	= <u>173489k</u>	Cou	ints Observed for the Span=	113942
Cou rial 2:	nters Observed for the Zero	= 300	Coun	ters Observed for the Zero=	2141
Co	unts Observed for the Span				
Cour	nters Observed for the Zero	3108			
ost Monitoring	Calibration Check				
ero Air	\bigcap	Cal Gas	in		
eading:	ppm	Reading:	500	_ppm	
ACKGROUND	CONCENTRATIONS CHECH	s (
pwind Location	Description:	Entrance	2	Reading: 1,2	ppm
ownwind Locati	on Description:	Cavid 160	2	Reading: $\sqrt{.5}$	ppm
				quested 10 miles per hour an us 24 hours of the monitorin	

					Rost
		SURFACE EMISSI			
1.00	-	CALIBRATION AN	D PERTINE		
Date:	3-17-21 Bryar		Site Name:	newba	9
Inspector(s):	Bryne	10	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	мрн	Wind Direction: NC		Barometric Pressure: 🖄 🗋	"Hg
Aiı Temperature		General Weather Conditions		<u>+</u> y	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	orate the instrument. Make a le average algebraic differenc de less than or equal to 10% o	e between the instrument i	reading and the	-	
Instrument Seria	al Number:	5		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1	. (SOL		2	6
2		299		(5
alibration Preci	sion= Average Difference/Cal	Gas Conc. X 100% = 100%-	1.3	_/500 x 100%	
		= 99.7	%		
Span Sensitivity:					
F <mark>rial 1:</mark> Co	ounts Observed for the Span=	113375	<u>Trial 3:</u> Cou	ints Observed for the Span	113788
Cou	nters Observed for the Zero=	5112	Coun	ters Observed for the Zero:	3 58
Trial 2:	unts Observed for the Span=	3 - 1			2.20
	nters Observed for the Zero=	31 37			
ost Monitoring	Calibration Check				
ero Air	A	Cal Gas			
eading:	ррт	Reading:	500) ppm	
ACKGROUND	CONCENTRATIONS CHECKS	; }			
pwind Location	Description:	Entra	NIR	Reading:	_ppm
ownwind Locati	ion Description:	(-v. & 1	64	Reading: $\sqrt{.5}$	ppm
	Wind speed averages were ol exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	ithin the previou	us 24 hours of the monitori	ng event. Therefore, site

		SURFACE EMISSIONS		
Date:	3-17-21		Name: NEWBU	
nspector(s):	Dorblo Div	1000	trument: TVA 2020)
VEATHER OB	SERVATIONS			
Wind Speed	t: MPH	Wind Direction: VVVV	Barometric 500 Pressure: 500) "Hø
Ai		General Weather		
Temperature	** <u></u> *F	Conditions:	(oudy	
ALIBRATION	INFORMATION			
re-monitoring	Calibration Precision Check			
nd calculate th recision must l	he average algebraic differen be less than or equal to 10% (ce between the instrument readi	alternating zero air and the calibratio ng and the calibration gas as a percent	tage. The calibration
istrument Seri	al Number:		Cal Gas Concentration:	500ppm
rial 1	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
2		502	1	8
3	Ö	riga	1	E A
		= 100%-	/500 x 100%	
		=99.7 %		
an Sensitivity:				
r <mark>ial 1:</mark> Co	ounts Observed for the Span-	171036 Trial	3: Counts Observed for the Span=	171586
Cou	Inters Observed for the Zero=	4850	Counters Observed for the Zero=	4921
ial 2: Co	ounts Observed for the Span=	111273		
Cou	nters Observed for the Zero=	4884		
st Monitoring	Calibration Check			
St Wontoning				
	\wedge	Cal Gas 1	00	
ro Air ading:	ppm	Reading:	ppm ppm	
ro Air ading:	D ppm CONCENTRATIONS CHECK	Reading:	ppm_	
ro Air ading: ACKGROUND	CONCENTRATIONS CHECK	Reading:	ppm Reading: <u>\-Y</u>	ppm
ro Air ading: A CKGROUND wind Location	CONCENTRATIONS CHECK	Reading:		ppm

tal Data 🚽

I

				Re	ost
		SURFACE EMISSIO			
		CALIBRATION ANI	J PERTINE		
Date:	3-17-7		Site Name:	newbr	<u>\</u>
Inspector(s):	Pablo M		Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			1	
Wind Speed:		Wind Direction: NE		Barometric Pressure:	"Hg
Air Temperature:	10	General Weather Conditions:	clou	dy	
CALIBRATION	NFORMATION			-	
Pre-monitoring (Calibration Precision Check				
and calculate th	rate the instrument. Make a e average algebraic differenc e less than or equal to 10% oj	e between the instrument r	eading and the		
Instrument Seria	I Number: $5 - 11$	9		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	ICal Gas (ConcCal Gas Reading	Response Time (seconds)
1		501	Tea. eas		Nesponse nine (seconds)
2	0	नेवल		Ì	3
3		502		2_	25
Calibration Preci	sion= Average Difference/Cal		1.3	_/500 x 100%	
		= (- 01 -)	%		
Span Sensitivity: Trial 1:			Trial 2.		
	unts Observed for the Span=	170637	Trial 3: Cou	nts Observed for the Span=	120925
Cour	nters Observed for the Zero=	4916	Count	ters Observed for the Zero=	195(
<u>Trial 2:</u> Co	unts Observed for the Span=	170708			
Cour	nters Observed for the Zero=	4932			
Post Monitoring (Calibration Check				
Zero Air		Cal Gas	\frown		
Reading:	Oppm	Reading:	500	ppm	
BACKGROUND	CONCENTRATIONS CHECKS			4	
Upwind Location	Description:	Entrance		Reading:	ppm
Downwind Location	on Description:	grig 1	04	Reading:	opm
e	Wind speed averages were ob exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred wi	thin the previou	is 24 hours of the monitoring	g event. Therefore, site

		SURFACE EMISSIO			
Date:	3-17-	2021	Site Name:	newka	1
Inspector(s):	Citom Mea	jim_	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS	5			
Wind Speed	d: МРН	Wind Direction:		Barometric Pressure:	"Hg
A Temperature	e:*F	General Weather Conditions: _	clou	dy	
CALIBRATION	INFORMATION)	
Pre-monitoring	calibration Precision Check				
and calculate t	he average algebraic differen be less than or equal to 10% ~~	a total of three measurements nce between the instrument re of the calibration gas value. GGA			
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1	.0	502	2		5
2	11	501	1		4
3		499	1		9
	cision= Average Difference/C	= 100%	1.3	_/500 x 100%	
		= 79.7 %	6		
Span Sensitivity	"				
f rial 1: C	ounts Observed for the Span		r <mark>ial 3:</mark> Cou	ints Observed for the Span=	182748
	unters Observed for the Zero	= 3953	Coun	ters Observed for the Zero=	4037
Crial 2: C	ounts Observed for the Span	-182471			
Cou	unters Observed for the Zero	= 3994			
ost Monitoring	g Calibration Check				
ero Air eading:	ppm	Cal Gas Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECH	<s< td=""><td></td><td></td><td></td></s<>			
pwind Location	n Description:	Entrance	-	Reading:	ppm
ownwind Locat	tion Description:	(prid 169		Reading:	opm
lotes:	exceeded 20 miles per hour	observed to remain below the . No rainfall had occurred with vere within the requested alter	hin the previou	us 24 hours of the monitoring	g event. Therefore, site

SCS DataServices - Secure Environmental Data

ire Environmental Data 🛛 🛁 🖓 📬 🛸

					rust
		SURFACE EMISSI	ONS MONI	TORING	
		CALIBRATION AN	D PERTINEI	NT DATA	
Date:	3-17-2	(Site Name:	newbu	
Inspector(s):	Liam	\sim	instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			145	
Wind Speed:	В	Wind Direction: MC	<u>-</u>	Barometric Pressure:	"Hg
Air Temperature:		General Weathe Conditions		4	
CALIBRATION	INFORMATION				
Pre-monitoring (Calibration Precision Check				
and calculate th	erate the instrument. Make of e average algebraic difference e less than or equal to 10% of I Number:	e between the instrument	reading and the		
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas	ConcCal Gas Reading	Response Time (seconds
1	- 1	501	Tear and		
2	- /	449		(5
3		500	-	2	
		= 100%- = 99.7	<u>\r3</u>	_/500 x 100%	
pan Sensitivity:					
Trial 1: Co	unts Observed for the Span=			ints Observed for the Span=	182581
rial 2:	nters Observed for the Zero=	150 K ml	Coun	ters Observed for the Zero=	
Co	unts Observed for the Span=	18(254			
Cour	nters Observed for the Zero=				
ost Monitoring (Calibration Check				
ero Air eading:	Oppm	Cal Gas Reading:	500	ppm	
	CONCENTRATIONS CHECKS	5			
pwind Location	Description:	Entrance	8	Reading: <u>1.3</u>	opm
ownwind Locati	on Description	64.910		Reading: 1.5	opm
e	Wind speed averages were o exceeded 20 miles per hour. meteorological conditions we	No rainfali had occurred w	ithin the previo	us 24 hours of the monitoring	event. Therefore, site
and the second second	a surface and the surface of			Mal to a	

1		SURFACE EMISSIC			
Date:	3-17-2		Site Name:	newbe	4
Inspector(s);	Don Coloso	n	Instrument:	TVA 2020	5
WEATHER OBS	SERVATIONS				
Wind Speed	Мрн	Wind Direction: <u>N</u>)	Barometric Pressure: 30	"Hg
Air Temperature	39_°F	General Weather Conditions:	~ \ \C	Įη	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	prate the instrument. Make a be average algebraic difference be less than or equal to 10% of al Number:	e between the instrument r			
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1	0	702		L.	0
2	.)	501		1	
3	0	(10.9			
Calibration Prec	ision= Average Difference/Cal	Gas Conc. X 100% = 100%- = 99.7	\.3 %	_/500 × 100%	
Span Sensitivity:					
	ounts Observed for the Span=	165992		unts Observed for the Span=	166581
Cou Trial 2:	inters Observed for the Zero=	3003	Cour	iters Observed for the Zero=	31 10
Co	ounts Observed for the Span=	2717			
	Inters Observed for the Zero=	51.0	0		
Post Monitoring	Calibration Check				
Zero Air Reading:	ppm	Cal Gas Reading:	50D	_ppm	
BACKGROUND	CONCENTRATIONS CHECKS	5			
Upwind Locatior	Description:	Entrag	e	Reading:	ppm
Downwind Locat	tion Description:	C-14, 211	59	Reading: 16	ppm
Notes:	Wind speed averages were o exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	ithin the previo	ous 24 hours of the monitorir	ng event. Therefore, site

Clight S B

				Post
		SURFACE EMISSI	ONS MONITORING	
		CALIBRATION AN	D PERTINENT DATA	
Date:	3-11-21		Site Name: NCWb	\sim
Inspector(s):	Don G		Instrument:TVA 2020	
WEATHER OB	SERVATIONS			
Wind Speed	ВМРН	Wind Direction:	Barometric Pressure: 30	"Hg
Aiı Temperature	61	General Weathe Conditions		
CALIBRATION	INFORMATION			
Pre-monitoring	Calibration Precision Check			
and calculate th	e average algebraic differenc pe less than or equal to 10% oj ۲ ۲	e between the instrument	nts by alternating zero air and the calibratio reading and the calibration gas as a percen Cal Gas Concentration:	
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
2	0	500		3
3		301-	2	ti
		= 100%-	(, (/500 x 100%	
		= 99, (%	
pan Sensitivity:				1.0
f <mark>rial 1:</mark> Co	ounts Observed for the Span=	65703	Trial 3: Counts Observed for the Span-	166083
Cou	nters Observed for the Zero=	3106	Counters Observed for the Zero-	5151
T <u>rial 2:</u> Co	unts Observed for the Span=	165972		
Cou	nters Observed for the Zero=	3(21		
ost Monitoring	Calibration Check			
ero Air eading:	ppm	Cal Gas Reading:	<u>500 ppm</u>	
ACKGROUND	CONCENTRATIONS CHECKS	\sim 1		
Ipwind Location	Description:	Futrany	Reading:	ppm
ownwind Locati	on Description:	Grig ,	Reading: 12	ppm
	exceeded 20 miles per hour.	No rainfall had occurred w	ne alternative requested 10 miles per hour a it is not the previous 24 hours of the monitori ternatives of the LMR requirements on the	ng event. Therefore, site

		ACE EMISSIC			
	CALIB	RATION AND	PERTINENT	DATA	
Date:	7-2-1		Site Name:	Newbo	
Inspector(s):	Ner O		Instrument:	TVA 2020	
WEATHER OBSERVATIONS				4	
Wind Speed:		vind tion: NW		Barometric Pressure: <u>30</u>	"Hg
Air Temperature: 39	°F	General Weather Conditions:	partly		
CALIBRATION INFORMATIO	N		Clondy		
Pre-monitoring Calibration Pre	cision Check				
Procedure: Calibrate the instru and calculate the average alge precision must be less than or t	braic difference betwee	n the instrument re			
Instrument Serial Number:	0920			Cal Gas Concentration:	500ppm
Trial Zero Air	Reading Cal	Gas Reading	Cal Gas Con	ncCal Gas Reading	Response Time (seconds)
2 4	5 6	51	ì		3
3 ,1	E	500	C	5	3
Calibration Precision= Average Span Sensitivity:	Difference/Cal Gas Conc			500 x 100%	
Trial 1:		C.D. 1	Trial 3:		2005
Counts Observed	for the Span= 100	1512	Count	s Observed for the Span=	150251
Counters Observed	for the Zero= 37	20	Counter	s Observed for the Zero=	37 86
Trial 2: Counts Observed Counters Observed		9843			
Post Monitoring Calibration Ch	eck				
Zero Air Reading:	ppm	Cal Gas Reading:	500 -	pm	
BACKGROUND CONCENTRAT	TIONS CHECKS				
Upwind Location Description:	E	ntisana	ie r	eading: <u>\.</u>	opm
Downwind Location Description	Criv	19 (190	R R	eading: $\sqrt{5}$	opm
exceeded 20 m	iles per hour. No rainfa	II had occurred wit	hin the previous	ested 10 miles per hour ar 24 hours of the monitoring /IR requirements on the al	

SCS DataServices — Secure Environmental Data 🚽 🖓 😭 🔜

		SURFACE EMISSI		TORING	
		CALIBRATION AN			
	8-17-21				N
Date:	2110		Site Name:	hewb	1
Inspector(s):	Hunter	0	Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS				
Wind Speed:	ЗМРН	Wind Direction:	- C	Barometric Pressure: SD	"Hg
Air Temperature:		General Weather Conditions	clou	dy	
CALIBRATION	NFORMATION				2
Pre-monitoring	Calibration Precision Check				
and calculate th	rate the instrument. Make a e average algebraic difference e less than or equal to 10% o	e between the instrument i	reading and the		
Instrument Seria	I Number:			Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1	-7	402	1	7	5
2	.O	2199		F	3
3	0	501		(1	T N
	sion= Average Difference/Cal	= 100%-	1.3	/500 x 100%	
		= 99.7	%		
Span Sensitivity:					
frial 1:		179874	Trial 3:		179 851
Co	unts Observed for the Span=	101317	Co	unts Observed for the Span=	159 021
Cour	nters Observed for the Zero=	3752	Cour	ters Observed for the Zero=	37 83
T <mark>rial 2:</mark> Co	unts Observed for the Span=	129592			
Cour	nters Observed for the Zero=	3769			
ost Monitoring (Calibration Check				
ero Air		Cal Gas			
eading:	D ppm	Reading:	500	_ppm	
	CONCENTRATIONS CHECKS	6		~	
Ipwind Location	Description:	Entranc	e.	Reading: 1-2	ppm
ownwind Locati	on Description:	Chirof 16	27	Reading: 1.4	ppm
	Wind speed averages were of exceeded 20 miles per hour.	No rainfall had occurred w	ithin the previo		g event. Therefore, site

ACT DISTURD	Services - Sec	ure Enviro	on mento	DESERT
-------------	----------------	------------	----------	--------

		SURFACE EMISSI			
Date: Inspector(s):	3-17	2021	Site Name:	NCW by	5
WEATHER OBS	SERVATIONS	<u>40 C</u>	instrument.		
Wind Speed:	ММРН	Wind Direction: MM	20	Barometric 30	"Hg
Air Temperature:	30 *F	General Weathe Conditions	· · ·	dy	
CALIBRATION I	NFORMATION				
Pre-monitoring (Calibration Precision Check				
and calculate th	rate the instrument. Make a e average algebraic differenc e less than or equal to 10% o I Number:	e between the instrument	reading and the		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1 2	0	498	2		
3		300	Ċ	>	
Calibration Preci	sion= Average Difference/Cal	Gas Conc. X 100% = 100%-	 	on if average difference is greater than : /500 x 100%	
Span Sensitivity:			20		
<u>Trial 1:</u> Co	unts Observed for the Span= nters Observed for the Zero=	117228	1	unts Observed for the Span= ters Observed for the Zero=	114847
T <u>rial 2:</u> Co	unts Observed for the Span=	2.6			
	nters Observed for the Zero=	51 911			
ost wonitoring (Calibration Check				
Zero Air Reading:	ppm	Cal Gas Reading:	300	_ppm	
BACKGROUND	CONCENTRATIONS CHECKS	i			
Jpwind Location	Description:	Entrana Chrid 160	e	Reading: 1-4	ppm
ownwind Locati	on Description:	Chrid Ibe	1	Reading: 1-3	ppm
6	Wind speed averages were of exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	ithin the previo	us 24 hours of the monitorin	g event. Therefore, site

Sight Si Sa

		SURFACE EMISSI	ONS MONITORING	
		CALIBRATION ANI	D PERTINENT DATA	
	3-17-7	0	Site Name: Newbu	
Date:	0114	<u></u>	Site Name:)
Inspector(s):	Ryan 1	1	Instrument:	
WEATHER OB	SERVATIONS			
WEATHER OD.				
Wind Speed	: МРН	Wind Direction: Ne	Barometric Pressure: 🤝 🚫	11 J
wind speed		Direction.		"Hg
Air Temperature	51.	General Weather Conditions:		
remperature		conditions.	Liberg	
CALIBRATION	INFORMATION			
Pre-monitoring	Calibration Precision Check			
Procedure: Calib	orate the instrument Make o	i total of three measuremen	nts by alternating zero air and the calibratio	n and Pacard the readings
			reading and the calibration gas as a percent	
precision must b	pe less than or equal to 10% o	f the calibration gas value.		
nstrument Seria	al Number:	\	Cal Gas Concentration:	500ppm
Frial	Zoro Air Boading	Cal Cas Deading		December 71 mar / 1
1	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
2	.2	198	Z	St
3	1,1	502	2	5
andration Preci	ision= Average Difference/Cal	Gas Conc. X 100%		
Landration Preci	ision= Average Difference/Cal	Gas Conc. X 100% = 100%-	/500 x 100%	
andration Preci	ision= Average Difference/Cal		/500 x 100%	
			/500 x 100%	
pan Sensitivity: 'rial 1:			/500 x 100% % Trial 3:	11(177*)
ipan Sensitivity: irial 1:			%	114 2724
ipan Sensitivity: Trial 1: Co			% Trial 3:	114274
ipan Sensitivity: Trial 1: Co Cour Trial 2:	ounts Observed for the Span= nters Observed for the Zero=		% Trial 3: Counts Observed for the Span=	114274
Span Sensitivity: Trial 1: Co Cour Trial 2:	ounts Observed for the Span=		% Trial 3: Counts Observed for the Span=	114274
Span Sensitivity: Trial 1: Cou Trial 2: Co	ounts Observed for the Span= nters Observed for the Zero=		% Trial 3: Counts Observed for the Span=	114274
ipan Sensitivity: I <mark>rial 1:</mark> Co <u>Cou</u> I <mark>rial 2:</mark> Co Cour	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span=		% Trial 3: Counts Observed for the Span=	114274
ipan Sensitivity: Trial 1: Cou Trial 2: Cou Cour ost Monitoring	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero=		% Trial 3: Counts Observed for the Span=	114274
ipan Sensitivity: irial 1: Council irial 2: Council counci council council council cou	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero=	$= 100\%$ $= 99.7$ $\frac{113927}{3953}$ 119135 3972	% Trial 3: Counts Observed for the Span=	114274
Span Sensitivity: Frial 1: Cou Cour Frial 2: Cou Cour	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check	= 100%- = 99.7 <u>3927</u> <u>3953</u> <u>101355</u> <u>3972</u> Cal Gas Reading:	% Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	114274
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Cost Monitoring Cost Monitoring Cost Monitoring Cost Monitoring Cost Monitoring Cost Monitoring Court Co	ounts Observed for the Span= <u>nters Observed for the Zero=</u> ounts Observed for the Span= <u>nters Observed for the Zero=</u> Calibration Check <u>ppm</u> CONCENTRATIONS CHECKS	= 100%- = 99.7 <u>3927</u> <u>3953</u> <u>101355</u> <u>3972</u> Cal Gas Reading:	Trial 3: Counts Observed for the Span= Counters Observed for the Zero= 3000 ppm	114274
Span Sensitivity: Trial 1: Count Count Trial 2: Count	ounts Observed for the Span= <u>nters Observed for the Zero=</u> ounts Observed for the Span= <u>nters Observed for the Zero=</u> Calibration Check <u>ppm</u> CONCENTRATIONS CHECKS	= 100%- = 99.7 <u>3927</u> <u>3953</u> <u>101355</u> <u>3972</u> Cal Gas Reading:	% Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	114274 3993
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Court	ounts Observed for the Span= <u>nters Observed for the Zero=</u> ounts Observed for the Span= <u>nters Observed for the Zero=</u> Calibration Check <u>ppm</u> CONCENTRATIONS CHECKS Description:	= 100%- = 99.7 <u>3927</u> <u>3953</u> <u>101355</u> <u>3972</u> Cal Gas Reading:	Trial 3: Counts Observed for the Span= Counters Observed for the Zero= 3000 ppm	114274 3993 ppm
ipan Sensitivity: rial 1: Co Cour rial 2: Co Cour ost Monitoring ero Air eading: ACKGROUND of pwind Location ownwind Locati	punts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check Calibration Check Description: ion Description:	= 100%- = 99:7 <u>13927</u> <u>3953</u> <u>119135</u> <u>3972</u> Cal Gas Reading: <u>FM trance</u> <u>Gridib</u>	% Trial 3: Counts Observed for the Span= Counters Observed for the Zero= 500 ppm Reading: 3	ppm
pan Sensitivity: rial 1: Co Cour rial 2: Co Cour ost Monitoring ero Air eading: ACKGROUND pwind Location ownwind Locati	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check Calibration Check Description: ion Description: Wind speed averages were o	= 100%- = 99:7 <u>3927</u> <u>3953</u> <u>10135</u> <u>3972</u> Cal Gas Reading: <u>Morance</u> <u>Gridib</u> bserved to remain below th	% Trial 3: Counts Observed for the Span= Counters Observed for the Zero= 500 ppm Reading: 1.3	ppm nd no instantaneous speed:

		SURFACE EMISSIC			
Date:	3-17-	γ	Site Name:	Newty	
Inspector(s):	Code Crock	er	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
	()	Wind		Barometric 🧑 🥆	
Wind Speed	:МРН	Direction: MW	-	Pressure: <u>50</u>	"Hg
Air Temperature		General Weather Conditions:		<u>ay</u>	
CALIBRATION	INFORMATION			/	
Pre-monitoring	Calibration Precision Check				
and calculate th precision must b	orate the instrument. Make of e average algebraic difference be less than or equal to 10% of	ce between the instrument r		calibration gas as a percente	
nstrument Seria	al Number: <u>2</u>			Cal Gas Concentration:	500ppm
Trial	Zero Air-Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
1	$-\rho$	502			3
2	0	1500	e		1
	sion= Average Difference/Ca	= 100%-	١	/500 x 100%	
		= 99,8	%	-	
pan Sensitivity:					
rial 1:	unts Observed for the Span=		Trial 3: Cou	nts Observed for the Span=	141467
Cou	nters Observed for the Zero=	3948		ters Observed for the Zero=	
rial 2:	unts Observed for the Span=				
	nters Observed for the Zero=	-0.10			
	Calibration Check	0			
ero Air	\cap	Cal Gas	000		
eading:	ppm	Reading:	Geo	ppm	
ACKGROUND	CONCENTRATIONS CHECK	S			
pwind Location	Description:	Entranc	e	Reading: <u>[.U]</u>	ppm
ownwind Locati	on Description:	C1V1216	~	Reading: 1.5	ppm
	Wind speed averages were o exceeded 20 miles per hour.	No rainfall had occurred wi	thin the previo		g event. Therefore, site

A REPORT OF A R					and the second second
					100 C 10 C 10 C
STOL STOL STOL	Services -	State of the second	the second second second second second	Design of the second second	I DOWN W
				1 - U & B & * N	🔜 🖓 H + 🖻 fl 🕈

ironmental Data 🚽 🖓 🐨 🕤

				5	Post
		SURFACE EMISSI	ONS MONI	TORING	
			D PERTINE	NT DATA	
Date:	5-11-2	1	Site Name:	newbu	9
Inspector(s):	cody C		Instrument:	TVA 2020	
WEATHER OBS				· .	
Wind Speed		Wind Direction:		Barometric Pressure: 30) "Hg
Air Temperature:	5(_°F	General Weather Conditions	CI GIA	<u>1</u> 9	
CALIBRATION	NFORMATION			/	
Pre-monitoring	Calibration Precision Check				
and calculate th	rate the instrument. Make a e average algebraic difference e less than or equal to 10% o t Number:	e between the instrument i	reading and the	calibration gas as a percen	tage. The calibration
				Cal Gas Concentration:	
Trial 1	Zero Air Reading	Cal Gas Reading		ConcCal Gas Reading	Response Time (seco
2	.)	2198)	5
		1		1	
andration Preci	sion= Average Difference/Cal	= 100%-	1.6	/500 x 100%	
		= QQ.7	%		
Span Sensitivity:			T-1-1-2.		
Frial 1: Co	unts Observed for the Span=	140872	<u>Trial 3:</u> Cou	nts Observed for the Span=	141070
Cour Frial 2:	nters Observed for the Zero=	1005	Count	ters Observed for the Zero=	40 91
Co	unts Observed for the Span=	140965			
Cour	nters Observed for the Zero=	COCI			
Post Monitoring (Calibration Check				
Zero Air Reading:	ppm	Cal Gas Reading:	500	_ppm	
	CONCENTRATIONS CHECKS	5			
Jpwind Location	Description:	Entrar	ce ?	Reading: 1.3	ppm
ownwind Locati	on Description:	C7/10/16	h	Reading: <u>1.5</u>	ppm
6	Wind speed averages were of exceeded 20 miles per hour.	No rainfall had occurred wi	thin the previou		ng event. Therefore, site

		SURFACE EMISSIO		
Date:	15-25-2		Site Name: Merthi	1
Inspector(s):	3424 0	1. (nstrument: TVA 2020	
WEATHER OBS	ERVATIONS			
Wind Speed:	MPH	Wind Direction:	Barometric <u>30</u> Pressure: <u>30</u>) "Нg
Air Temperature:	6.1	General Weather Conditions:	clear	
CALIBRATION I	NFORMATION			
Pre-monitoring (Calibration Precision Check			
and calculate the	e average algebraic difference e less than or equal to 10% of	e between the instrument ree	by alternating zero air and the calibration gas as a per ading and the calibration gas as a per Cal Gas Concentrati	rcentage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1		501		CI
2	1	501		- 5
		= 100% = 9(9.8%	\/500 x 100%	
Span Sensitivity: [rial 1:			i-1 2.	
Со	unts Observed for the Span=	193980	ial 3: Counts Observed for the Sp	
Cour	ters Observed for the Zero=	4008	Counters Observed for the Ze	ero= 4083
	unts Observed for the Span=_	144273		
Coun	ters Observed for the Zero=	1034		
ost Monitoring C	Calibration Check			
ero Air eading:	ppm	Cal Gas Reading:	500 ppm	
ACKGROUND C	ONCENTRATIONS CHECKS			
pwind Location I	Description:	Entrance	Reading:	ppm
ownwind Locatic	on Description:	Chrid (PC	Reading:	ppm
otes: V	Vind speed averages were ob xceeded 20 miles per hour. N	served to remain below the a No rainfall had occurred with	alternative requested 10 miles per ho in the previous 24 hours of the monit	ur and no instantaneous speeds

		SURFACE EMISSIC			past
1.1.4	272-71	CALIBRATION AND			,
Date:	<u> </u>	2 (Site Name:	newor	}
Inspector(s);	5421 (0	dy	Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS	J			
Wind Speed:	МРН	Wind Direction:/		Barometric Pressure: <u>3</u> 0	-"Hg
Air Temperature:		General Weather Conditions:	A	C	
CALIBRATION I	NFORMATION				
Pre-monitoring (Calibration Precision Check				
and calculate the	rate the instrument. Make a e average algebraic difference e less than or equal to 10% of I Number:	e between the instrument r	eading and the	calibration gas as a percent	tage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds)
1		49	2		5
2	0	lag	1		3
Calibration Precis	sion= Average Difference/Cal	= 100%-	1.3	_/500 x 100%	
		= 99.7	%		
Span Sensitivity:					
	unts Observed for the Span=	142974		nts Observed for the Span=	143561
Trial 2:	nters Observed for the Zero=	1000	Count	ters Observed for the Zero=	1105
	unts Observed for the Span=	142259			
	iters Observed for the Zero=				
Post Monitoring (Landration Check				
Zero Air Reading:	Dppm	Cal Gas Reading:	500	ppm	
BACKGROUND C	CONCENTRATIONS CHECKS				
Jpwind Location	Description:	Entrance		Reading: $\sqrt{3}$	ppm
Downwind Locatio	on Description:	Entrance (1ri216	er.	Reading: 15	ppm
e	Vind speed averages were ob exceeded 20 miles per hour. I neteorological conditions we	No rainfall had occurred wi	thin the previou	is 24 hours of the monitorin	g event. Therefore, site

		SURFACE EMISSIC			
Date: Inspector(s):	3-23-21 Brant 6		Site Name: Instrument:	Newberry 2020	}
WEATHER OBS	ERVATIONS			7	
Wind Speed:	МРН	Wind Direction:	÷	Barometric Pressure: <u>SO</u>	"Нд
Air Temperature:	<u>66</u> °F	General Weather Conditions:	1001	r 	
CALIBRATION I	NFORMATION				
Pre-monitoring (Calibration Precision Check				
and calculate the	rate the instrument. Make a e average algebraic differenc e less than or equal to 10% oj l Number:	e between the instrument r	eading and the	a zero air and the calibration calibration gas as a percente Cal Gas Concentration:	a gas. Record the readings age. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
1 2		503		>	·>
3	· (MAB 500	1		
Calibration Precis	ion= Average Difference/Cal	= 100%-	2	/500 x 100%	
Epop Consitivity		= 9,9,6	70		
	unts Observed for the Span=	166586		nts Observed for the Span= ers Observed for the Zero=	167342
Trial 2:	unts Observed for the Span=	166837	count		
Coun	ters Observed for the Zero=	4938			
Post Monitoring C	Calibration Check				
Zero Air Reading:	5 ppm	Cal Gas Reading:	500	ppm	
BACKGROUND C	ONCENTRATIONS CHECKS				
Jpwind Location I	Description:	Enfrance Grid 169	ر.	Reading: 2.3	opm
Downwind Locatio	on Description:	Curic 169		Reading: 1.5	mqc
e	Vind speed averages were ob xceeded 20 miles per hour. heteorological conditions we	No rainfall had occurred wi	thin the previou	s 24 hours of the monitoring	g event. Therefore, site

	SURFACE EMISSIC			1-032
0-02 7	(\	
2.12.2	- \	Site Name:	newby	
Brant W		Instrument:	TVA 2020	
ERVATIONS			ŵ	
МРН	Wind Direction:		Barometric Pressure: <u>30</u>	"Hg
Y7 °F	General Weather Conditions:	clea	¥	
NFORMATION				
alibration Precision Check				
ate the instrument. Make a	total of three measurement	ts by alternating	a zero air and the calibration	ans Record the readings
average algebraic difference	e between the instrument re	eading and the		
less than or equal to 10% of	f the calibration gas value.			
Number: <u>591</u>	9		Cal Gas Concentration:	500ppm
Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds
0	502	4		4
	501			
	= 100%-			
		1.5	/500 x 100%	
	0.07		_/500 x 100%	
	= 99.79	-	/500 x 100%	
	= 99.79	-	/500 x 100%	
ints Observed for the Span=	= 99.79	% Trial <u>3:</u>	/500 x 100% hts Observed for the Span=	170372
ints Observed for the Span= ters Observed for the Zero=	= 99.79	% Trial 3: Cou		170372 4940
	= 99.79 169740 4886	% Trial 3: Cou	nts Observed for the Span=_	170377 4940
ters Observed for the Zero= nts Observed for the Span=	= 99.79 169740 4886	% Trial 3: Cou	nts Observed for the Span=_	170377 4940
ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero=	= 99.79 169740 4886	% Trial 3: Cou	nts Observed for the Span=_	170372 4940
ters Observed for the Zero= nts Observed for the Span=	= 99.79 169740 4886 170141 4913	% Trial 3: Cou	nts Observed for the Span=_	49.40
ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero=	= 99.79 169740 4886 170141 4913 Cal Gas	% Trial 3: Cou	nts Observed for the Span=_ ers Observed for the Zero= {	4940
ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check	= 99.79 169790 4885 170191 4913 Cal Gas Reading:	% Trial 3: Cou	nts Observed for the Span=_	49.40
ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check ppm ONCENTRATIONS CHECKS	= 99.79 169740 4885 170141 493 Cal Gas Reading:	% T <u>rial 3:</u> Count	nts Observed for the Span=_ ers Observed for the Zero= 2	<u>4940</u>
ters Observed for the Zero= Ints Observed for the Span= ters Observed for the Zero= alibration Check ppm ONCENTRATIONS CHECKS Description:	= 99.79 169790 4885 170191 4913 Cal Gas Reading:	% T <u>rial 3:</u> Count	nts Observed for the Span=_ ers Observed for the Zero= /	170372 4940
ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check ppm ONCENTRATIONS CHECKS	= 99.79 169740 4885 170141 493 Cal Gas Reading:	% T <u>rial 3:</u> Count	This Observed for the Span= ers Observed for the Zero= ℓ ppm Reading:	170377 4940
	Brand W ERVATIONS MPH MPH MF NFORMATION alibration Precision Check rate the instrument. Make a average algebraic difference e less than or equal to 10% op Number: Zero Air Reading 	Wind	Brand W Instrument: ERVATIONS Wind MPH Direction: MPH Ceneral Weather MPH Conditions: Mether Conditions: Conditions: Conditions: Condition: Conditions: </td <td>Brand W Instrument: TVA 2020 ERVATIONS MPH Direction: Pressure: 30 MPH Direction: MPH Pressure: 30 MT *F General Weather Conditions: CCGV So MFORMATION alibration Precision Check ate the instrument. Make a total of three measurements by alternating zero air and the calibration average algebraic difference between the instrument reading and the calibration gas as a percentage tess than or equal to 10% of the calibration gas value. Cal Gas Concentration: Number: Support Cal Gas Reading Cal Gas Concentration: Zero Air Reading Cal Gas Reading Image Cal Gas Reading Cal Gas Reading Average Difference: Support Support *Perform recalibration if average difference is greater than 10 ion= Average Difference/Cal Gas Conc. X 100% Support Support Support</td>	Brand W Instrument: TVA 2020 ERVATIONS MPH Direction: Pressure: 30 MPH Direction: MPH Pressure: 30 MT *F General Weather Conditions: CCGV So MFORMATION alibration Precision Check ate the instrument. Make a total of three measurements by alternating zero air and the calibration average algebraic difference between the instrument reading and the calibration gas as a percentage tess than or equal to 10% of the calibration gas value. Cal Gas Concentration: Number: Support Cal Gas Reading Cal Gas Concentration: Zero Air Reading Cal Gas Reading Image Cal Gas Reading Cal Gas Reading Average Difference: Support Support *Perform recalibration if average difference is greater than 10 ion= Average Difference/Cal Gas Conc. X 100% Support Support Support

				the second of the local second s	The second second
the second se	and the second s	the second of the second s	and the second second	- Aghier -	2. 197.50
SCS DataServices -	- Secure	ENVIET OF THE OF THE AVE	D W S R S C	ILDIR- IFF	
a ca paraservices			· A • D H •		

		SURFACE EMISSIO	ONS MONITORING	
		CALIBRATION AND	D PERTINENT DATA	
Date:	3-23-21		Site Name: <u>newb</u>	<u> </u>
Inspector(s):	Hunter	0	Instrument: TVA 2020	
WEATHER OBS	SERVATIONS		40	
Wind Speed	мрн	Wind Direction:	Barometric Pressure: <u></u>	○ "Hg
Air Temperature:		General Weather Conditions:	(lear	
CALIBRATION I	INFORMATION			
^o re-monitoring (Calibration Precision Check			
and calculate the precision must b	e average algebraic differenc e less than or equal to 10% o	e between the instrument r		ercentage. The calibration
nstrument Seria	Number:		Cal Gas Concentrat	tion: 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1		502	2	t)
2	P	500	2	- K
	sion= Average Difference/Cal	= 100%-	<u>/500 x 100%</u>	
pan Sensitivity: rial 1:			% Trial 3:	$\left \left \left \left \left \left \right\rangle \right\rangle \right \right \right $
	unts Observed for the Span=	46101	Counts Observed for the S	(11 02
rial 2:	nters Observed for the Zero= unts Observed for the Span=	145959	Counters Observed for the Z	
Cour	nters Observed for the Zero=	4650		
ost Monitoring (Calibration Check			
ero Air eading:	Dppm	Cal Gas Reading:	<u>500</u> ppm	
	CONCENTRATIONS CHECKS			
pwind Location	Description:	Entrance	Reading:	-(ppm
ownwind Locati	on Description:	Chrig 16	Reading:	2_ppm
e	exceeded 20 miles per hour.	No rainfall had occurred wi	e alternative requested 10 miles per h thin the previous 24 hours of the mon ernatives of the LMR requirements on	itoring event. Therefore, site

		SURFACE EMISSI	ONS MONI	TORING	
1-0-0		CALIBRATION AN	D PERTINE	NT DATA	
Date:	3-23-21		Site Name:	newby	······
Inspector(s):	HUNTER U		Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed	МРН	Wind Direction:		Barometric Pressure: 30	"Hg
Air Temperature:		General Weather Conditions		\checkmark	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	erate the instrument. Make a set of a set of the instrument. Make a set of the average algebraic difference of the less than or equal to 10% of al Number:	between the instrument	reading and the		
Trial	Zero Air Reading	Cal Gas Reading	ICal Gas	ConcCal Gas Reading	Response Time (seconds)
1		498	2		5
2	1	501	1		Y.
3	.0 .	501			
Calibration Preci	sion= Average Difference/Cal		<u>\.</u> %	_/500 x 100%	
Con Constant da		- (
Span Sensitivity: Trial 1:			Trial 3:		
Co	unts Observed for the Span=		Со	unts Observed for the Span=	147108
Trial 2:	nters Observed for the Zero=	1587	Coun	ters Observed for the Zero=	CIG 29
	unts Observed for the Span= _	146841	1		
Cour	nters Observed for the Zero=	4612			
Post Monitoring	Calibration Check				
Zero Air Reading:	ррт	Cal Gas Reading:	500	_ppm	
BACKGROUND	CONCENTRATIONS CHECKS				
Upwind Location	Description: –	Entrance	e C	Reading: 1.3	ppm
Downwind Locati	on Description: –	Grig 10	\sim	Reading:	ppm
	Wind speed averages were ob exceeded 20 miles per hour. I meteorological conditions wer	to rainfall had occurred w	ithin the previo ernatives of the	us 24 hours of the monitorin	g event. Therefore, site

		SURFACE EMISSI		TORING	
		CALIBRATION AN			
			DPERIINE		
Date:	5-23-21		Site Name:	newba	<u> </u>
Inspector(s):	Bryan O		Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed	:мрн	Wind Direction:	-	Barometric Pressure: <u>50</u>	"Нg
Air Temperature:	66 °F	General Weathe Conditions	: <u>clea</u>	\langle	
	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	prate the instrument. Make a t le average algebraic difference he less than or equal to 10% of	between the instrument	reading and the		
nstrument Seria	al Number: 122	0		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
1		1999		1	5
2	0	198		2	L
3		501		1	4
		= 100%-	13	_/500 x 100%	
		= 49/	%		
pan Sensitivity: rial 1:	1		Trial 3:		
Co	unts Observed for the Span=_	129847		ints Observed for the Span=	130106
Cour	nters Observed for the Zero={	797	Coun	ters Observed for the Zero=	3053
rial 2: Co	unts Observed for the Span=	129985			
Cour	nters Observed for the Zero=	3022			
ost Monitoring (Calibration Check				
ero Air		Cal Gas			
eading:	ppm	Reading:	500	_ppm	
ACKGROUND	CONCENTRATIONS CHECKS	1			
pwind Location	Description:	Entranc	e	Reading: 1, 2	ppm
ownwind Locati	on Description:	C1V1816	с _ц	Reading: <u>1-5</u>	ppm
6	Wind speed averages were obs exceeded 20 miles per hour. N meteorological conditions were	o rainfall had occurred w	ithin the previou	us 24 hours of the monitori	ng event. Therefore, site

					Pre
		SURFACE EMISS	ONS MONI	TORING	
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	3.23 -21		Cite News	ine sh	N
Date:			Site Name:	-VIKND	
Inspector(s):	Bryan		Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
		Wind		Barometric	
Wind Speed:	МРН	Direction:	_	Pressure: <u>30</u>	"Hg
Air Temperature:		General Weathe Conditions		\sim	
CALIBRATION I	INFORMATION				
Pre-monitoring	Calibration Precision Check				
Procedure: Calib	rate the instrument. Make a	total of three measureme	nts by alternatio	a zero air and the calibration	ans Record the readings
	e average algebraic differenc				
precision must b	e less than or equal to 10% o	f the calibration gas value.			
nstrument Seria	I Number: 12 14	6		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds
1	14	501	1		5
2	<u>n N</u>	498		7	
3		1 (199			4
		= 100%-	99-7	_/500 x 100%	
		=99;1	%		
pan Sensitivity:					
rial 1:		1000-0	Trial 3:		12-01/1
Co	unts Observed for the Span=	129608	Cou	nts Observed for the Span=	130161
	nters Observed for the Zero=	2958	Count	ers Observed for the Zero=	2998
rial 2: Co	unts Observed for the Span=	129835			
Cour	nters Observed for the Zero=	2972			
ost Monitoring (Calibration Check				
ero Air		Cal Gas	~		
eading: –	ppm	Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECKS	6			
pwind Location	Description:	Entranc	e	Reading:	pm
ownwind Locatio	on Description:	chid 14	99	Reading:	opm
e	Nind speed averages were ok exceeded 20 miles per hour.	No rainfall had occurred w	ithin the previou	is 24 hours of the monitoring	event. Therefore, site
a state of the sta	neteorological conditions we			LIVIK requirements on the at	oove mentioned date.
Data Sam	vices - Secure H	nvitonmontal	Dates	I Carl man a man	2

					Bre
		SURFACE EMISS	IONS MONI	TORING	
		CALIBRATION AN	ID PERTINE	NT DATA	
Date: –	3-23-20	21	Site Name:	newby)
Inspector(s):	Don C	1	Instrument:	TVA 2020	100 mg
WEATHER OBSEI	RVATIONS				
Wind Speed:	С(МРН	Wind Direction:	_	Barometric Pressure: <u>30</u>	"Нд
Air Temperature:	4.7 °F	General Weathe Condition		\mathcal{A}	
CALIBRATION IN	FORMATION				
² re-monitoring Ca	libration Precision Check				
Procedure: Calibra	te the instrument. Make a	a total of three measureme	ents hv alternatin	g zero air and the calibration	ans Record the readings
and calculate the d	average algebraic differen	ce between the instrument	reading and the	calibration gas as a percentag	ges. The calibration
precision must be l	less than or equal to 10% c	of the calibration gas value	•		
nstrument Serial N	Number: 122	0		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading		ConcCal Gas Reading	Response Time (seconds
2	1	500	2		2
3	-1	50			
		1 10			-1
		= 100%	1.3	/500 x 100%	
		= 99.	%		
oan Sensitivity:					
rial 1:		6.1.7	Trial 3:		
	ts Observed for the Span=	6648		nts Observed for the Span=	162253
	ers Observed for the Zero=	3672	Count	ers Observed for the Zero=	3694
r <mark>ial 2:</mark> Count	ts Observed for the Span=	16901			
Counte	rs Observed for the Zero=	3681			
ost Monitoring Cal	ibration Check				
ero Air eading:	O ppm	Cal Gas Reading:	500		
Color Color				ppm	
		Entrance	>	14	
owind Location De		Child llo	ĺ	15	om
		cture in			m
exc	eeded 20 miles per hour.	No rainfall had occurred w	ithin the previou	uested 10 miles per hour and s 24 hours of the monitoring LMR requirements on the abo	event. Therefore, site
	ces - Secure	The second se		- ful tri - Frank	

Inspector(s): DOK MATHER OBSERVATIONS Wind Speed:				0.110.1.00.11	1	Tost
Date: 3-23-21 Site Name: MEWDY Imagector(F): DON_C1 Instrument: TVA 2020 Wind Speed:						
Inspector(s): DOM Cy Instrument: TVA 2020 Wind Speed:MPH Direction: MPH D		5 77 71	CALIDITATION AN			
Wind Speed: MPH Wind Direction: Barometric Pressure: Pr	Date:	3-25-21		Site Name:	Newby	
Wind Speed: MPH Direction: Pressure: Direction: Directio	Inspector(s):	pon ey		Instrument:	TVA 2020	
Wind Speed: MPH Direction: Pressure: Direction: Pressure: Direction: Mg Air General Weather Conditions: Direction:: Direction:: <td< td=""><td>WEATHER OB</td><td>SERVATIONS</td><td></td><td></td><td></td><td></td></td<>	WEATHER OB	SERVATIONS				
Ar General Weather CALBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibration Precision Check Procedure: Calibration Precision Check Procedure: Calibration or equal to 10% of the calibration gas value. Instrument Serial Number:			Wind		Barometric	
Temperature:	Wind Speed	МРН	Direction:	-	Pressure:	"Hg
				1	_	
Procedure: Colibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the reading and the calibration gas as a percentage. The calibration recision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number:		INFORMATION				
and colculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The colibration verecision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: <	Pre-monitoring	Calibration Precision Check				
and colculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The colibration verecision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: <	Procedure: Calil	hrata tha instrumant Maka a	total of three measureme			
recision must be less than or equal to 10% of the calibration gas value Instrument Serial Number:	nd calculate th	ne average algebraic difference	between the instrument	reading and the	g zero air and the calibration calibration gas as a percente	gas. Record the readings age. The calibration
Image: Series of the spane Cal Gas Reading I Cal Gas ConcCal Gas Reading Response Time (second) 1 .7 <t< td=""><td></td><td></td><td></td><td></td><td>5 ,</td><td>5</td></t<>					5 ,	5
1 1	nstrument Seria	al Number:	_0		Cal Gas Concentration:	500ppm
2 1 1/2 1/2 1/2 3 0 - DDD 0 4 Average Difference:	rial	Zero Air Reading		Cal Gas C		Response Time (seconds
3 0		1			2	2
*Perform recalibration if average difference is greater than 10		0	200	-	0	4
$= 100\% - 1/500 \times 100\%$ $= 9\% \cdot 5\%$ an Sensitivity: ial 1: Counts Observed for the Span= 160873 Counters Observed for the Span= 161247 Counters Observed for the Zero= 3691 Counters Observed for the Zero= 3692 st Monitoring Calibration Check to Air Cal Gas Reading: ppm Cal Gas Reading: ppm CALGENDE CONCENTRATIONS CHECKS wind Location Description: wind Location Description: wind Location Description: wind Location Description: wind Location Description: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous spee exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site				*Perform recalibratio	n if average difference is greater than 1	0
= 94.5% Trial 3: Counts Observed for the Span= 160873 Counters Observed for the Span= 161247 Counters Observed for the Zero= 3672 Counters Observed for the Span= 161247 Counters Observed for the Zero= 3692 Trial 3: Counts Observed for the Zero= 3692 Trial 3: Counters Observed for the Zero= 3692 The Monitoring Calibration Check To Air Cal Gas Reading: ppm Reading: ppm	alibration Preci	ision= Average Difference/Cal	Gas Conc. X 100%	\ \		
Dan Sensitivity: ial 1: Counts Observed for the Span= Counters Observed for the Zero= 3671 Counters Observed for the Zero= 3671 counters Observed for the Span= 161247 Counters Observed for the Span= 161247 Counters Observed for the Span= 161247 Counters Observed for the Zero= 3692 St Monitoring Calibration Check Cal Gas ro Air Cal Gas ading:			- /		_/500 x 100%	
tal 1: Counts Observed for the Span= 160873 Trial 3: Counts Observed for the Span= 161482 Counters Observed for the Zero= 3671 Counters Observed for the Zero= 3720 tal 2: Counters Observed for the Span= 161247 Counters Observed for the Zero= 3720 counters Observed for the Span= 161247 Counters Observed for the Zero= 3720 counters Observed for the Zero= 36692 373 3720 outers Observed for the Zero= 36692 3730 3720 outers Observed for the Zero= 36692 3720 3720 outers Observed for the Zero= 36692 3720 3720 outers Observed for the Zero= 36692 3720 3720 outers Observed for the Zero= 500 3720 3720 outers Observed for the Zero= 600 3720 3720 outers Observed for the Zero= 500 3720 372			= 99. B	%		
Counts Observed for the Span= 100815 Counts Observed for the Span= 61482 Counters Observed for the Zero= 3611 Counters Observed for the Zero= 3780 ial 2: Counts Observed for the Span= 161247 Counters Observed for the Zero= 3780 counters Observed for the Span= 161247 Counters Observed for the Zero= 3780 3780 counters Observed for the Zero= 3692 3692 3780 3780 3780 vist Monitoring Calibration Check Cal Gas Reading: 500 ppm 500 ppm ACKGROUND CONCENTRATIONS CHECKS Reading: 500 ppm 9790 wwwind Location Description: Entropy Childer Reading: 15 ppm www.wind Location Description: Entropy Childer Reading: 15 ppm www.wind Location Description: Entropy Childer Reading: 15 ppm wtes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speed exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	oan Sensitivity:					
ial 2: Counts Observed for the Span= 161247 Counters Observed for the Zero= 3692 est Monitoring Calibration Check ro Air Cal Gas reading:	rial 1: Co	ounts Observed for the Span=	160873		nts Observed for the Span=	61486
ial 2: Counts Observed for the Span= 161247 Counters Observed for the Zero= 3692 est Monitoring Calibration Check ro Air Cal Gas reading:	Cou	nters Observed for the Zero=	3671	Count	ers Observed for the Zero=	2780
AckGROUND CONCENTRATIONS CHECKS www.ind Location Description: Image: Image:	rial 2:		161247			91100
ro Air Cal Gas rading: ppm Reading: ppm ACKGROUND CONCENTRATIONS CHECKS owind Location Description:	Cour	- nters Observed for the Zero=	3692			
hading: ppm Reading: ppm ACKGROUND CONCENTRATIONS CHECKS	ost Monitoring	Calibration Check				
ACKGROUND CONCENTRATIONS CHECKS wwind Location Description: Entrance Wind Location Description: Entrance Wind Location Description: Entrance Wind Speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous spee exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	ro Air		Cal Gas			
www.ind Location Description: wnwind Location Description: Entry 2000 Reading: 100 ppm Reading: 100 ppm	eading:	ppm	Reading:	500	ppm	
wnwind Location Description: CLUIDED Reading: LEE ppm wtes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous spee exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site		CONCENTRATIONS CHECKS				
wnwind Location Description: CLUIDED Reading: LEE ppm wtes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous spee exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	wind Location	Description:	Entranc	e	Reading: \- U	pm
exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	wnwind Locati	on Description:	C1vid 16	27	Reading: 1.5	ppm
meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.	6	exceeded 20 miles per hour. N	lo rainfall had occurred w	ithin the previou	s 24 hours of the monitoring	event. Therefore, site
DataServices - Secure Environmental Data	A DECK DECK	The second se	Sevent the sevent sevent	the state of the second	LMR requirements on the ab	ove mentioned date.

		SURFACE EMISSI			
	2 0	CALIBRATION AN	DPERIINE	NIDAIA	
Date:	5-13-2 Cimina M		Site Name:	nevby	·
Inspector(s):	Crown M	1	instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	:МРН	Wind Direction:	÷	Barometric Pressure: 30	
Ai Temperature		General Weathe Conditions	010	M	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	brate the instrument. Make on the average algebraic difference the less than or equal to 10% of al Number:54	e between the instrument	reading and the	g zero air and the calibratio calibration gas as a percen Cal Gas Concentration:	on gas. Record the readings tage. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading		Cons. Cal Cas Reading	Despense Time (accorde)
1		LP19		ConcCal Gas Reading	Response Time (seconds)
2	, 1	टावव	1		CI
3	0	507		L	5
		= 100%- = (()_ (<u>\.3</u> %	_/500 x 100%	
Span Sensitivity:					
Trial 1:	ounts Observed for the Span=	126728	<u>Trial 3:</u> Cou	nts Observed for the Span=	127185
	nters Observed for the Zero=	3985	Coun	ers Observed for the Zero=	3564
Trial 2: Co	unts Observed for the Span=	126959			
Coui	nters Observed for the Zero=	3523			
ost Monitoring	Calibration Check				
ero Air leading:	Oppm	Cal Gas Reading:	500	ppm	
	CONCENTRATIONS CHECKS	i i			
Ipwind Location	Description:	Entrance		Reading: 2	ppm
ownwind Locati	on Description:	Crvidlb	q	Reading: 1. U	ppm
	Wind speed averages were o exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	ithin the previou	s 24 hours of the monitorin	ng event. Therefore, site
Street Could Income	vices - Secure	and the state of the	(Barrison)	Mail this will	rait .

		SURFACE EMISSI			
Date:	3-23-2		Site Name:	nersbu	
Inspector(s):	3-23-2 Cian V	n	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			41	
		14.11		5-0-2	
Wind Speed	МРН	Wind Direction: <u>Y</u>	_	Barometric Pressure: <u>30</u>	"Hg
Air Temperature		General Weathe Conditions	clear		
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th precision must b	e average algebraic differen be less than or equal to 10%	a total of three measurement ace between the instrument of the calibration gas value.	reading and the	g zero air and the calibration g calibration gas as a percentag	e. The calibration
Instrument Seria	al Number: <u> </u>	<u> </u>		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds)
1	.2	498	7		<u>L</u>
2		201	1		3
3		1 501	1		9
Calibration Preci	sion= Average Difference/C		1.3	_/500 x 100%	
		-	%		
Span Sensitivity:					
- 1 I A	unts Observed for the Span	125863	<u>Trial 3:</u> Cou	nts Observed for the Span=	126281
	nters Observed for the Zero	0-0-1	Count	ters Observed for the Zero=	3594
T <mark>rial 2:</mark> Co	unts Observed for the Span	126084			
Cour	nters Observed for the Zero	3572			
Post Monitoring (Calibration Check				
ero Air		Cal Gas			
leading:	ppm	Reading:	500	ppm	
	CONCENTRATIONS CHECK	(S			
lpwind Location	Description:	Entrance	>	Reading: <u>1-2</u> pp	m
ownwind Locati	on Description:	Cridle	21	Reading: <u>1.4</u> pp	m
6	exceeded 20 miles per hour	. No rainfall had occurred w	ithin the previou	quested 10 miles per hour and is 24 hours of the monitoring e LMR requirements on the abo	event. Therefore, site

I

			ONS MONITORING		NE
1. To T		CALIBRATION ANI	D PERTINENT DATA		
Date:	3-27-21		Site Name:	the	
Inspector(s):	Don Gibs	-712	Instrument: TVA 202	0	
WEATHER OB	SERVATIONS				
Wind Speed	:МРН	Wind Direction: <u>EN E</u>	Barome Pressu	× ~ ·	"Нд
Air Temperature	Collo .F	General Weather Conditions:			
CALIBRATION	INFORMATION		0		
Pre-monitoring	Calibration Precision Check				
	pe less than or equal to 10%	nce between the instrument r of the calibration gas value.		gas as a percentag	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Ga	s Reading	Response Time (second
1	4	501			
2	O t	4,22	F		2
Calibration Preci	sion= Average Difference/Ca	Average Difference:	*Perform recallbration if average diffe	rence is greater than 10	
Calibration Preci	sion= Average Difference/Ca	al Gas Conc. X 100%	9945		
Calibration Preci	sion= Average Difference/Ca		*Perform recalibration if average diffe		
Calibration Preci	sion= Average Difference/Ca	al Gas Conc. X 100%	1.3 24.5 /500 × 100		
		al Gas Conc. X 100% = 100%- - 91 9 7	1.3 24.5 /500 × 100		
Span Sensitivity: Trial 1:		al Gas Conc. X 100% = 100%- = 99,7	/500 x 100 % Trial 3:	%	112000
Span Sensitivity: T rial 1: Co	ounts Observed for the Span	al Gas Conc. X 100% = 100%- = 99,7 = <u>164128</u>	/500 × 100 % <u>Trial 3:</u> Counts Observe	% d for the Span=(65721
Span Sensitivity: Trial 1: Co Cour	ounts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100%- = 99,7 = <u>164128</u> = <u>3602</u>	/500 × 100 % <u>Trial 3:</u> Counts Observe	%	
Span Sensitivity: Trial 1: Co Cour	ounts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100%- = 99,7 = <u>164128</u> = <u>3602</u>	/500 × 100 % <u>Trial 3:</u> Counts Observe	% d for the Span=(
Span Sensitivity: Trial 1: Co Cour Trial 2: Co	ounts Observed for the Span	al Gas Conc. X 100% = 100% = $99,7$ = 1664128 = 3602 = 163019 = 163019	/500 × 100 % <u>Trial 3:</u> Counts Observe	% d for the Span=(
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans	al Gas Conc. X 100% = 100% = $99,7$ = 1664128 = 3602 = 163019 = 163019	/500 × 100 % <u>Trial 3:</u> Counts Observe	% d for the Span=(
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring of Pero Air	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros	al Gas Conc. X 100% = 100% = $99,7$ = 1664128 = 3602 = 163019 = 163019	/500 × 100 % <u>Trial 3:</u> Counts Observe	% d for the Span=(
Span Sensitivity: Trial 1: Count Trial 2: Count Post Monitoring of Zero Air Reading:	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% = 99.7 = 1664128 = 3602 = 163019 = 3631 Cal Gas Reading:	% <u>Trial 3:</u> Counts Observe <u>Counters Observe</u>	% d for the Span=(
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring of Post Mo	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% = 99.7 = 1664128 = 3602 = 16507 = 3631 Cal Gas Reading:	% <u>Trial 3:</u> Counts Observe <u>Counters Observe</u>	% d for the Span=(3612
Span Sensitivity: Trial 1: Count Trial 2: Count Post Monitoring of Zero Air Reading:	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% = 99.7 = 1664128 = 3602 = 163019 = 3631 Cal Gas Reading:	/500 x 100 % Trial 3: Counts Observe Counters Observe	% d for the Span= <u>(</u> d for the Zero= -	<u>3617</u>
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring of Corro Air Reading: BACKGROUND of Jpwind Location Downwind Location Notes:	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check Calibration Check Description: on Description: on Description: Wind speed averages were constructed Wind speed averages were constructed Calibration Check	al Gas Conc. X 100% = 100% = 99.7 = 1664128 = 3602 = 16307 = 3631 Cal Gas Reading:	/500 x 100 % Trial 3: Counts Observe Counters Observe Counters Observe Reading: Reading: Reading: Reading: e alternative requested 10 r	% d for the Span= $(\frac{1}{\sqrt{1}})^{1}$ $\frac{1}{\sqrt{3}}$ pp niles per hour and of the monitoring e	m m no instantaneous spee vent. Therefore, site

Inspector(s):	MPH G CRMATION Dration Precision Check	Wind Direction: EUP General Weather Conditions:	Site Name: <u>JECCbc</u> Instrument: <u>TVA 2020</u>	1"Hg
Inspector(s):	VATIONS VATIONS CMPH 4 CF ORMATION Dration Precision Check	Wind Direction: EUP General Weather Conditions:	Instrument: TVA 2020 Barometric Pressure:	1"Hg
Wind Speed: Wind Speed: Air Temperature: CALIBRATION INFO	MPH G CRMATION Dration Precision Check	Wind Direction: <u>EMP</u> General Weather Conditions: _	Barometric Pressure:	"Нg
Wind Speed: Air Temperature: CALIBRATION INFO	MPH G CRMATION Dration Precision Check	Direction: <u>EDE</u> General Weather Conditions:	Pressure:	"Нg
Air Temperature:	°F ORMATION oration Precision Check	Direction: <u>EDE</u> General Weather Conditions:	Pressure:	"Нg
Temperature:	oration Precision Check	Conditions: _	SCENAY	
	oration Precision Check		\sim	
Pre-monitoring Calil				
	e the instrument. Make a			
and calculate the av	ss than or equal to 10% of		s by alternating zero air and the calibrat ading and the calibration gas as a perce Cal Gas Concentratior	ntage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1	5	499	(>
2	(501	(5
		502		
	,	= 100% = 99,7 %		
Span Sensitivity:				
Trial 1: Counts	s Observed for the Span= s Observed for the Zero=	131859	rial 3: Counts Observed for the Spa Counters Observed for the Zerr	
Trial 2:		131528	Counters Observed for the Zen	- 2018
Counter	s Observed for the Zero=	3621		
Post Monitoring Calil	pration Check			
Zero Air Reading:	ppm	Cal Gas Reading:	2.00 bbw	
BACKGROUND CON	ICENTRATIONS CHECK	S		
Upwind Location Des	cription:	Entrance Gnid 169	Reading: (1)	ppm
Downwind Location [Description:	Gnd 169	Reading: 1,3	ppm
exce	eded 20 miles per hour. eorological conditions w	No rainfall had occurred with ere within the requested alter	alternative requested 10 miles per hou nin the previous 24 hours of the monito matives of the LMR requirements on the	ring event. Therefore, site e above mentioned date.

RAR SHIEL in.

			ONS MONITORING D PERTINENT DATA	post
	27/27/			1
Date:	sound		Site Name: NEWBY	
Inspector(s):	Jen Gub	SON	Instrument: TVA 2020	
WEATHER OB	SERVATIONS			
Wind Speed	:	Wind Direction:	Barometric Pressure:	"Hg
Aiı Temperature	- 111	General Weather Conditions:	C + 1 (0) + 1	
CALIBRATION	INFORMATION)	
Pre-monitoring	Calibration Precision Che	ck		
Procedure [,] Calib	brate the instrument Ma	ke a total of three measuremen	ts by alternating zero air and the calibrat	ion gas Record the readings
and calculate th	ie average algebraic diffe	rence between the instrument r	eading and the calibration gas as a perce	
precision must b	pe less than or equal to 10	0% of the calibration gas value.		
Instrument Seria	al Number:	2	Cal Gas Concentration	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1 2	6	50	(
3	2	499	5	
	sion= Average Difference		1, 6 /500 x 100%	
		= 99.5		
		= / (/)	70	
Span Sensitivity: Trial 1:		1	Trial 3:	. /
Co	ounts Observed for the Sp	an=165872	Counts Observed for the Spar	=104931
Cour	nters Observed for the Ze	ero=3618	Counters Observed for the Zero	= 3648
rial 2:	unts Observed for the Sp			
	nters Observed for the Ze			
	Calibration Check			
	compression check			
lero Air Reading:	ppm	Cal Gas Reading:	SCO ppm	
	CONCENTRATIONS CHE	CKS		
Jpwind Location	Description:	Entrance	Reading: 1/Z	_ppm
ownwind Locati	on Description:	Grid 169	Reading: 125	_ppm
			e alternative requested 10 miles per hour thin the previous 24 hours of the monitor	

BOG D

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

		SURFACE EMISSI CALIBRATION AN			S-
e	2521				
Date: $\frac{\zeta}{7}$	1014	Λ	Site Name:	Newby	
Inspector(s)	your Hog	slam	Instrument:	TVA 2020	
WEATHER OBSER	ATIONS			÷	
Wind Speed:	<u> </u>	Wind Direction: WMW	_	Barometric Pressure:	"Hg
Air Temperature:	70°F	General Weathe Conditions	1		
	ORMATION)		
re-monitoring Calil	oration Precision Che	eck			
nd calculate the av	erage algebraic diffe	ake a total of three measureme erence between the instrument 0% of the calibration gas value.	reading and the c		
nstrument Serial Nu	mber: 547	°Ø		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (seconds
1	U	802	12		6
2 3	4	56	1		5
		= 100%-	13	/500 x 100%	
		= 99,07	%		
pan Sensitivity:					
r <mark>ial 1:</mark> Counts	Observed for the Sp	582951_=nac	Trial 3: Coun	ts Observed for the Span= l	55902
Counter	s Observed for the Z	ero= \$683	Counte	ers Observed for the Zero=	3653
ial 2:		515951 = nan			
		ero= 3654			
ost Monitoring Calib					
ero Air		Cal Gas			
eading:	ppm	Reading:	500	ppm	
ACKGROUND CON	CENTRATIONS CH	ECKS			
owind Location Des	cription:	Entrance		Reading: <u>117</u> pp	m
wnwind Location [Description:	Entrance Currol 169		Reading: 13 pp	m
		re observed to remain below th our. No rainfall had occurred w			

State a state state

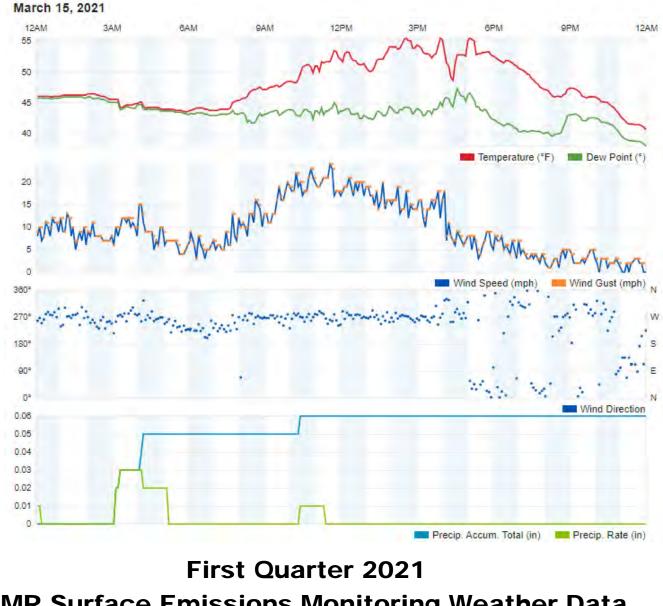
-

I

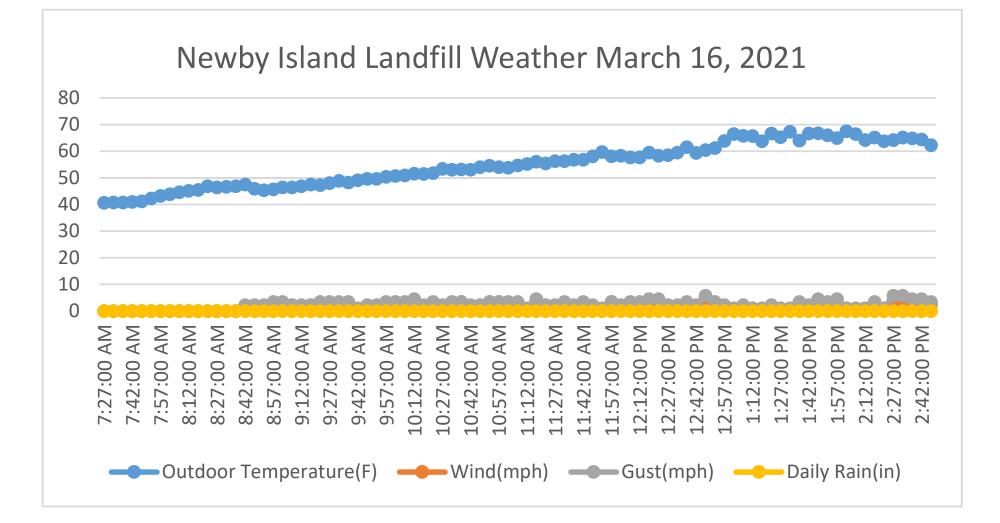
Stat to a Fill

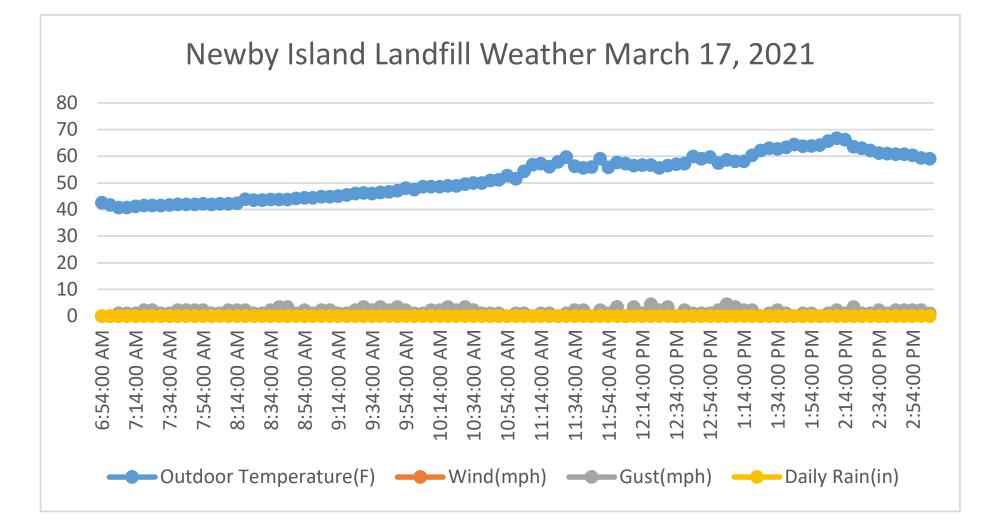
	1	CALIBRATION AND F	PERTINENT DAT	A		
Date:	4-6-21	Sit	te Name: <u><u></u></u>	why		
nspector(s):	Don Call	in:	strument: TVA 2	020		
WEATHER OBS	SERVATIONS			ι.		
Wind Speed	мрн	Wind Direction:	Barom Pres	sure: <u>SO</u>	"Hg	
Air Temperature:	SZ °F	General Weather Conditions:	loudy			
CALIBRATION I	NFORMATION		1			1
Pre-monitoring (Calibration Precision Check					
nd calculate the	e average algebraic differen e less than or equal to 10% c	a total of three measurements b ce between the instrument reac of the calibration gas value.	ling and the calibratio.			ings
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal (Gas Reading	Response Time (seco	onds)
1	1	499	1			
2	2	2 -	1			
libration Precis	sion= Average Difference/Ca		form recalibration if average d	lifference is greater than	10	
alibration Precis	sion= Average Difference/Ca	*Per I Gas Conc. X 100% = 100%- /	form recallbration if average d		10	
	sion= Average Difference/Ca	*Per			1	
an Sensitivity:		⁺ Per I Gas Conc. X 100% = 100%- $/$ = 97. 6 % Tria	/500 x 1	00%	11-11-	
oan Sensitivity: ial 1:	sion= Average Difference/Ca unts Observed for the Span=	⁺ Per I Gas Conc. X 100% = 100%- $/$ = 97. 6 % Tria	/500 x 1		11-11-	A
oan Sensitivity: ial 1: Cou Coun		*Per 1 Gas Conc. X 100% = 100%- $/$ = 97.6 % = $/67823$ Tria	/500 x 1 al 3: Counts Observ	00%	16845	
an Sensitivity: ial 1: Coun ial 2:	unts Observed for the Span=	$\frac{1}{162823}$ $\frac{1}{162823}$	/500 x 1 al 3: Counts Observ	00% ved for the Span=	16845	
oan Sensitivity: ial 1: Cou Coun ial 2: Cou	unts Observed for the Span= nters Observed for the Zero=	+Per I Gas Conc. X 100% = 100% - = 97.6% 167823 Tria 3628 167712 2623	/500 x 1 al 3: Counts Observ	00% ved for the Span=	16845	
oan Sensitivity: ial 1: Cour ial 2: Cour Cour	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	+Per I Gas Conc. X 100% = 100% - = 97.6% 167823 Tria 3628 167712 2623	/500 x 1 al 3: Counts Observ	00% ved for the Span=	16845	
an Sensitivity: ial 1: Coun ial 2: Coun st Monitoring C ro Air	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	+Per I Gas Conc. X 100% = 100% - = 97.6% 167823 Tria 3628 167712 2623	/500 x 1 al 3: Counts Observ	00% ved for the Span=	16845	
oan Sensitivity: ial 1: Cour ial 2: Cour ial 2: Cour ist Monitoring C ro Air ading:	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	*Per 1 Gas Conc. X 100% = 100% - / = 97.6% = 77.6% = 767823 = 767823 = 767823 = 767823 = 767823 = 767823 = 767823 = 767823 = 36628 = 167712 = 36363 Cal Gas Reading: 57	A Joo x 1	00% ved for the Span=	16845	
oan Sensitivity: ial 1: Cour ial 2: Cour ial 2: Cour ist Monitoring C ro Air ading:	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	*Per 1 Gas Conc. X 100% = 100% - / = 97.6% = 77.6% = 767823 = 767823 = 767823 = 767823 = 767823 = 767823 = 767823 = 767823 = 36628 = 167712 = 36363 Cal Gas Reading: 57	A Joo x 1	00% ved for the Span=	16845	A
an Sensitivity: ial 1: Cour ial 2: Cour ial 2: Cour ial 2: Cour cour	unts Observed for the Span= <u>iters Observed for the Zero=</u> unts Observed for the Span= <u>iters Observed for the Zero=</u> Calibration Check ppm CONCENTRATIONS CHECKS Description:	*Per 1 Gas Conc. X 100% = 100% - / = 97.6% 7 167823 7 167823 7 167782 3 628 1 67712 3 636 Cal Gas Reading: 57 S	Al 3: Counts Obser Counters Obser	00% ved for the Span=	16845	A

SURFACE EMISSIONS MONITORING						
Date:	4-6-21	ALIBRATION AN	Site Name:	Alcarby		
	~			J		
Inspector(s):	Don Gabson	2	Instrument:	TVA 2020		
WEATHER OBS	ERVATIONS					
Wind Speed:	МРН	Wind Direction:	-	Barometric Pressure: 30	"Нд	
Air Temperature:		General Weathe Conditions	<u> </u>	4		
CALIBRATION I	NFORMATION					
Pre-monitoring (Calibration Precision Check					
Procedure: Calibi	rate the instrument. Make a t	otal of three measuremer	nts by alternating	g zero air and the calibration	gas. Record the readings	
	e average algebraic difference e less than or equal to 10% of i			calibration gas as a percent	age. The calibration	
nstrument Seria	Number: 1220			Cal Gas Concentration:	500ppm	
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (seconds)	
1		103			3	
2		502 501	C		E -	
anoration Precis	sion= Average Difference/Cal G		1.3	_/500 x 100%		
		= 99,7	%			
pan Sensitivity:						
Frial 1: Cou	unts Observed for the Span=	55982	<u>Trial 3:</u> Cou	nts Observed for the Span=	167384	
	nters Observed for the Zero≈		Count	ers Observed for the Zero=	3648	
rial 7.	unts Observed for the Span= I					
	iters Observed for the Zero= <					
	Calibration Check					
ero Air		Cal Gas				
eading: –	<i>O</i> ppm	Reading:	600	ppm		
	CONCENTRATIONS CHECKS	1				
pwind Location I	Description:	Grid 171		Reading: <u>11</u>	ppm	
ownwind Locatio	on Description:	Gr1d 171		Reading: 13	ppm	
e	Nind speed averages were obs exceeded 20 miles per hour. N neteorological conditions were	o rainfall had occurred w	ithin the previou	s 24 hours of the monitorin	g event. Therefore, site	

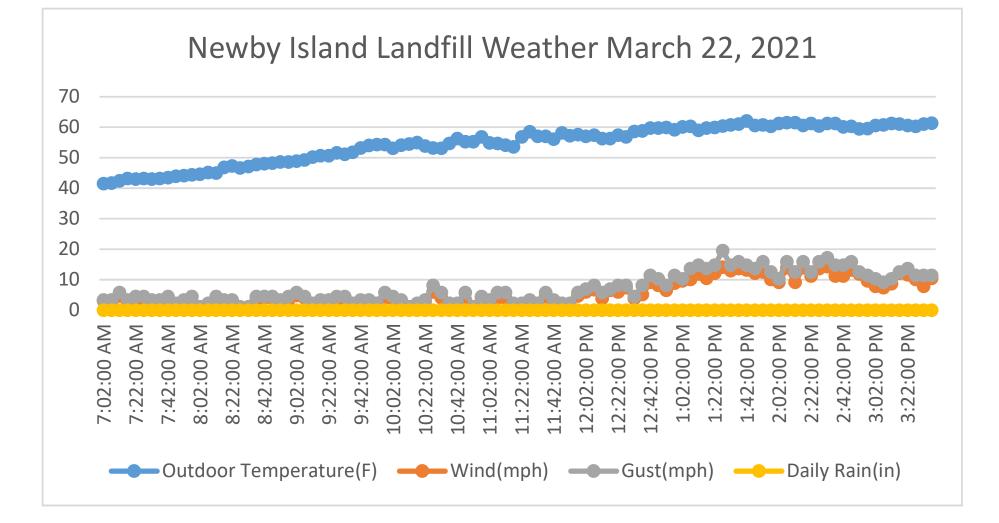

	meteorologica	al conditions v	vere within the r	equested alter	rnatives of
SCS	DataServices -	Secure	Environ	mental	Data

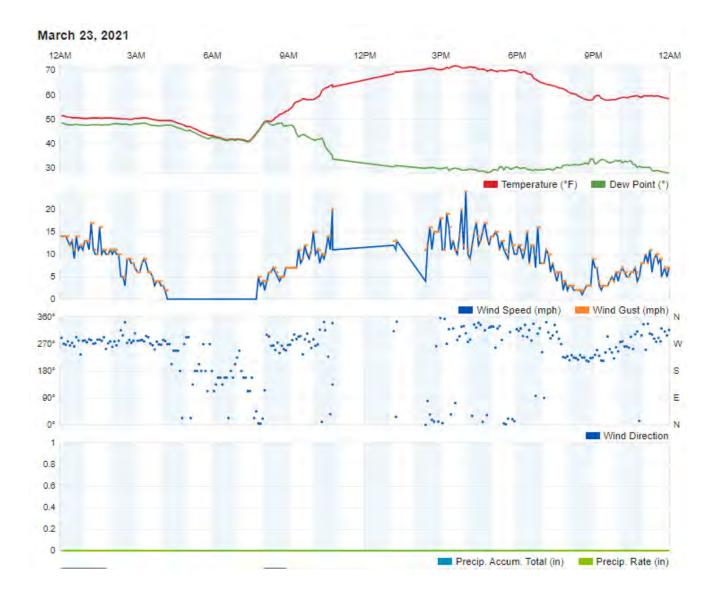
Attachment 6


Weather Data



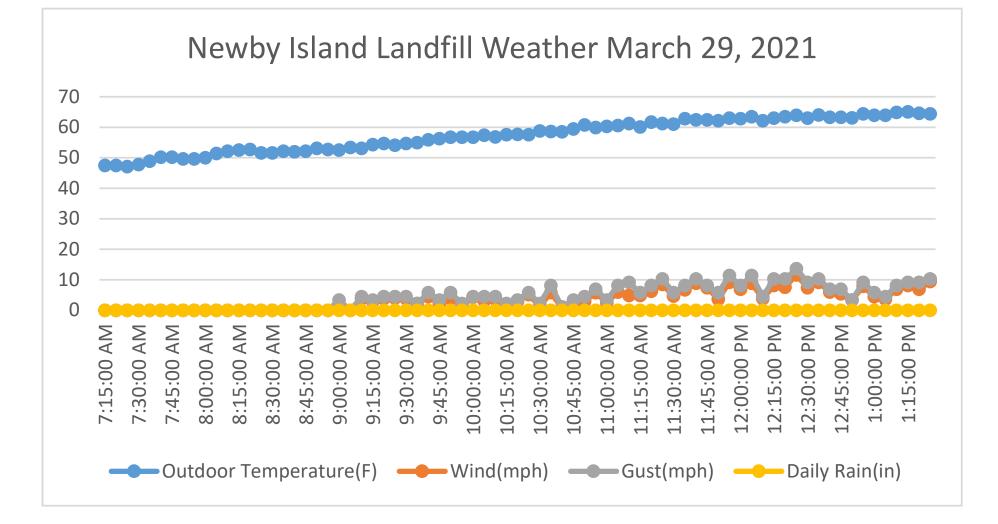
First Quarter 2021 LMR Surface Emissions Monitoring Weather Data March 12, 2021 Newby Island Landfill, Milpitas, California

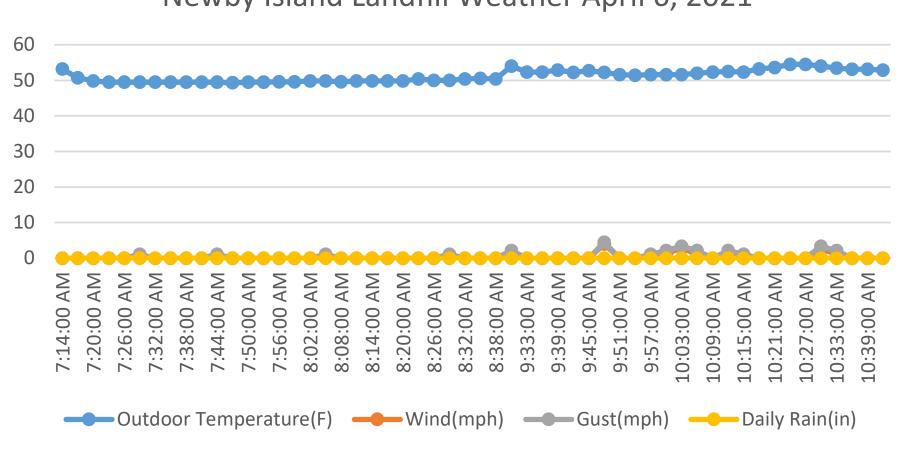

LMR Surface Emissions Monitoring Weather Data March 15, 2021 Newby Island Landfill, Milpitas, California



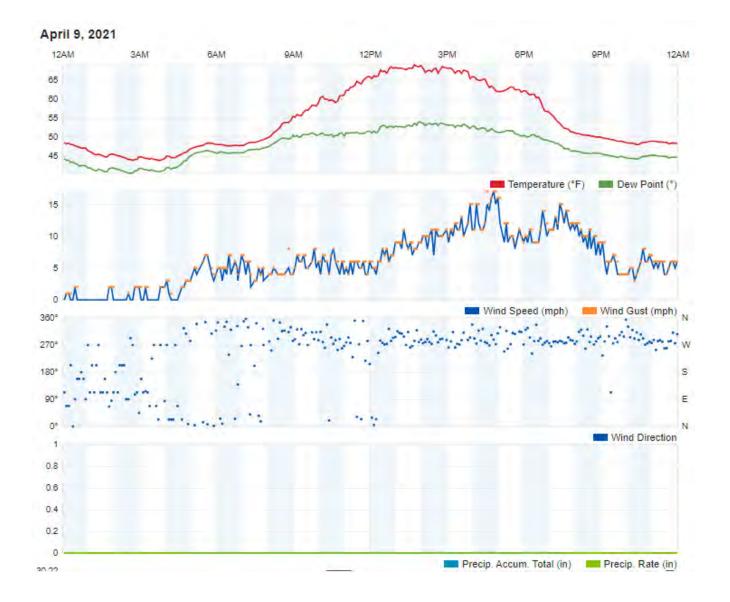
First Quarter 2021 LMR Surface Emissions Monitoring Weather Data March 19, 2021 Newby Island Landfill, Milpitas, California




First Quarter 2021 LMR Surface Emissions Monitoring Weather Data March 23, 2021 Newby Island Landfill, Milpitas, California



First Quarter 2021 LMR Surface Emissions Monitoring Weather Data March 26, 2021 Newby Island Landfill, Milpitas, California



First Quarter 2021 LMR Surface Emissions Monitoring Weather Data March 27, 2021 Newby Island Landfill, Milpitas, California

Newby Island Landfill Weather April 6, 2021

First Quarter 2021 LMR Surface Emissions Monitoring Weather Data April 9, 2021 Newby Island Landfill, Milpitas, California

SCS FIELD SERVICES

August 5, 2021 File No. 07221077.00

Ms. Rachelle Huber Republic Services – Newby Island Landfill 1601 Dixon Landing Road Milpitas, California 95035

Subject: Newby Island Landfill - Milpitas, California

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring for Second Quarter 2021.

Dear Ms. Huber:

SCS Field Services (SCS) is pleased to provide the Republic Services, with the enclosed report summarizing the surface emissions monitoring services provided at the Newby Island Landfill (Site) during the Second Quarter 2021. This report includes the results of surface scan, component emissions and blower/flare station emissions monitoring for the Site for this monitoring period.

SCS appreciates the opportunity to be of assistance to Republic Services on this project. As you review the enclosed information, please contact Michael Flanagan at (510) 363-7796 or Whitney Stackhouse at (209) 338-7990 if you have any questions or comments.

Sincerely,

Whitney Stackhouse Project Manager SCS Field Services

High Muser

Michael Flanagan Project Manager SCS Field Services

Encl.

Sean Bass, SCS Field Services Art Jones, SCS Field Services

Newby Island Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring

Second Quarter 2021

Presented to:

Ms. Rachelle Huber Republic Services – Newby Island 1601 Dixon Landing Road Milpitas, California 95035

SCS FIELD SERVICES

File No. 07221077.00 Task 01 | August 5, 2021

SCS FIELD SERVICES 4730 Enterprise Way Suite A Modesto, CA 95356

Newby Island Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring Second Quarter 2021

INTRODUCTION

This letter provides results of the April 8, 9, 12, 13, 22, and May 11, 2021, LMR and NSPS landfill surface emissions monitoring (SEM) performed by SCS Field Services (SCS) at the subject site. All work was performed in accordance with our approved Work Scope dated December 23, 2020, and the LMR requirements.

SUMMARY AND CONCLUSIONS

As stipulated in LMR, if uncorrectable exceedances within the 10-day limitation are detected or emissions are discovered during an inspection by Regulatory Agencies, the landfill must perform monitoring on a 25-foot pathway on a quarterly basis for active disposal sites. Upon completion of four consecutive SEM events without an uncorrectable exceedance of the 25 ppmv or 500 ppmv standards, other than non-repeatable momentary readings, the landfill may perform the monitoring on a 100-foot spacing on an annual basis for closed landfills or quarterly for active disposal sites. Therefore, based on the previous monitoring events, in which exceedances were observed, the monitoring at the Newby Island Landfill was performed on 25-foot pathways in accordance with the LMR.

On, April 8, 9, 12, 13, 22, and May 11, 2021, SCS performed second quarter 2021 SEM as required by the Bay Area Air Quality Management District (BAAQMD). Instantaneous surface emissions monitoring results indicated that twenty-seven (27) locations exceeded the 500 ppmv maximum concentration during the initial monitoring event (Table 1 in Attachment 3). The required 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring indicated that all areas did not returned to below regulatory compliance limits following system adjustments and remediation (well field adjustments and installation of new bentonite plugs) by site personnel. Based on these monitoring results, and in accordance with the NSPS, the site is required to perform a system expansion within 120-days of the initial detected exceedance. These results are discussed in a subsequent section of this report.

Also, during the instantaneous monitoring event, SCS performed concurrent integrated monitoring of the landfill surface. As required by the LMR, the landfill was divided into 50,000 square foot areas. The Newby Island Landfill surface area was therefore divided into 233 grids, as shown on Figure 1 in Attachment 1. During this monitoring event, several grids were not monitored, in accordance with the regulations, due to ongoing active landfilling activities, unsafe conditions, or there was no waste in place prior to the monitoring event.

During the monitoring event, there were six (6) grid areas observed to exceed the 25 ppmv LMR integrated average threshold (Table 2 in Attachment 4). The required first and second 10-day LMR

follow-up monitoring indicated that all areas had returned to compliance following system adjustments and remediation by SCS and site personnel. Based on these monitoring results no additional follow up testing was required.

In addition, quarterly monitoring of the pressurized piping or components of the Gas Collection and Control System (GCCS) that are under positive pressure must be performed. Results of the testing of the landfill gas (LFG) Blower Flare Station (BFS) pressurized piping and components indicated that all test locations were in compliance with the 500 ppmv requirement.

Further, as required under the LMR, any location on the landfill that has an observed instantaneous methane concentration above 200 ppmv, must be stake-marked and Global Positioning System (GPS) located on a site figure. During this reporting period, four (4) locations were observed to exceed the 200 ppmv, reporting threshold. When these readings are observed, the locations are reported to site personnel for tracking and/or remediation and will be reported in the next submittal of the annual LMR report.

Finally, to help prevent potential future exceedances, SCS recommends that the landfill surface be routinely inspected and any observed surface erosion be routinely repaired.

BACKGROUND

The Newby Island Landfill is an active organic refuse disposal site. By way of background, organic materials buried in a landfill decompose anaerobically (in the absence of oxygen) producing a combustible gas which contains approximately 50 to 60 percent methane gas, 40 to 50 percent carbon dioxide, and trace amount of various other gases, some of which are odorous. The Newby Island property contains a system to control the combustible gases generated in the landfill.

SURFACE EMISSIONS MONITORING

On April 8, 9, 12, 13, 22, and May 11, 2021, the instantaneous and integrated SEM was performed over the surface of the subject site. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring in the 50,000 square foot grids as required under the LMR. During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rules as required.

EMISSIONS TESTING INSTRUMENTATION/CALIBRATION

Instruments used to perform the landfill surface emission testing consisted of the following:

- Thermo Scientific TVA 2020 portable Flame Ionization Detector (FID). This instrument measures methane in air over a range of 1 to 50,000 ppmv. The TVA 2020 meets the State of California Air Resources Board (CARB) requirements for combined instantaneous and integrated monitoring and was calibrated in accordance with United States Environmental Protection Agency (US EPA) Method 21.
- Weather Anemometer with continuous recorder for meteorological conditions in accordance with the LMR.

Instrument calibration logs and weather information are shown in Attachments 5 and 6.

SURFACE EMISSIONS MONITORING PROCEDURES

Surface emissions monitoring was conducted in accordance with the LMR and NSPS requirements. Monitoring was performed with the FID inlet held within 3-inches of the landfill surface while a technician walked a grid in parallel paths not more than 25 -feet apart over the surface of the landfill. Cracks, holes and other cover penetrations in the surface were also tested. Surface emissions readings were monitored continuously and recorded every 5 seconds. Any areas in exceedance of the 200 or 500 ppmv standards (reporting and compliance levels, respectively) would be GPS tagged and stake-marked for on-site personnel to perform remediation or repairs.

The integrated average is based on the readings stored on the instrument, which are recorded every 5 seconds. The readings are then downloaded and the averages are calculated for each grid using SCS eTools®. All readings are maintained in this secure SCS Database. The readings are not provided in the report due to the volume of readings, but can be furnished upon request.

Recorded wind speed results are shown in Attachment 6. Wind speed averages were observed to remain below the alternative threshold of 10 miles per hour, and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within 72 hours of the monitoring events. Therefore, site meteorological conditions were within the alternatives of the LMR requirements on the above mentioned dates.

TESTING RESULTS

During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rule as required under the LMR and NSPS. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR or NSPS threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring (LMR).

On April 8, 9, 12 and 13, 2021, SCS performed second quarter 2021 instantaneous emissions monitoring testing as required by the BAAQMD. During this monitoring, surface emissions results indicated that twenty-seven (27) locations exceeded the 500 ppmv maximum concentration. The required 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring performed on April 13 and May 11, 2021, respectively, indicated that twenty-one (21) locations did not remain below compliance limits as required, following system adjustments and remediation (wellfield adjustment and borehole repairs using bentonite and soil) performed by SCS and site personnel. In accordance with NSPS requirements for expansion and remediation, the exceedance locations need to be remediated and returned to compliance in accordance with the rule (expansion of the collection system or an alternative compliance option if approved by the BAAQMD) within 120 days of the detected initial instantaneous exceedance, which will be due by August 11, 2021. Results of the initial and follow up monitoring are shown in Attachments 2 and 3 (Table 1).

Additionally, calculated integrated grid monitoring indicated six (6) integrated exceedances of the 25ppmv requirement on April 8, 9 and 12, 2021. The required 10-day LMR follow-up monitoring performed on April 13 and 22, 2021, indicated that all areas had returned to compliance following system adjustments and remediation by site personnel. Based on these monitoring results no additional follow up testing was required. Results of the initial and follow up monitoring are shown in Attachment 4 (Table 2). Calibration logs for the monitoring equipment are provided in Attachment 5. During this monitoring event, several grids were not monitored, in accordance with the LMR, due to active landfilling activities, unsafe conditions or no waste in place. SCS will continue to monitor all accessible locations during the third quarter 2021.

PRESSURIZED PIPE AND COMPONENT LEAK MONITORING

On April 9, 2021, quarterly leak monitoring was performed in accordance with the LMR. SCS performed LFG pressurized pipe and component leak monitoring at the BFS. Monitoring was performed with the detector inlet held one-half of an inch from pressurized pipe and associated components. No locations exceeding the 500 ppmv threshold were observed during our monitoring event. The maximum reading, which was 470 ppmv, was below the maximum threshold (see Table 1 for component results). Therefore, all pressurized piping and components located at the LFG BFS were in compliance at the time of our testing.

PROJECT SCHEDULE

According to the LMR and NSPS, surface emissions monitoring at active landfills is required to be performed on a quarterly basis. Therefore, in accordance with our approved Work Scope, the third quarter 2021 (July through September) surface emissions testing event is scheduled to be performed by the end of August 2021 in accordance with the Republic SOP unless an alternative timeline is requested by site personnel.

STANDARD PROVISIONS

This report addresses conditions of the subject site during the testing dates only. Accordingly, we assume no responsibility for any changes that may occur subsequent to our testing which could affect the surface emissions at the subject site or adjacent properties.

Attachment 1

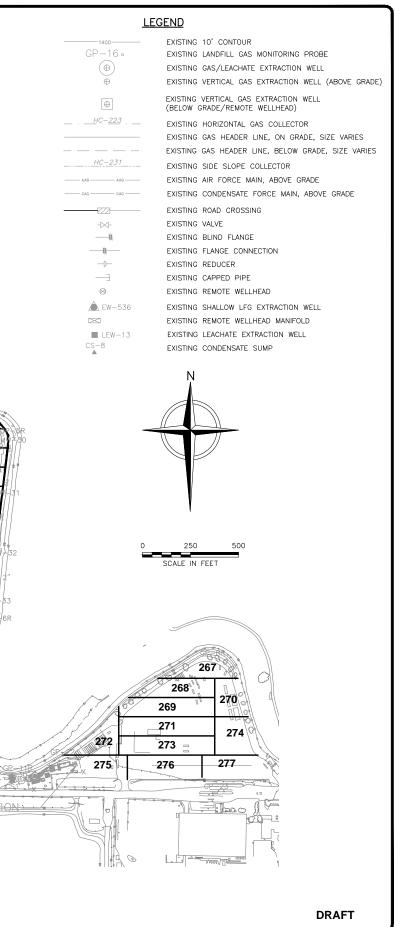
Landfill Grid

		37 11 12 11 12 11 14 10 14 10 11 11 11 11 11 11 11 11 11 11 11 11 1						
		2027 66 9	8 10 10 10	Nu-17				
		12 465 15 205 19 	4 60 13 16 9 20 57 20 57 20 57 20 57 20 57 20 57 20 57	17	0			
	21 * 4 25 ± 62 (11 + 29 = 00-497) (11 + 29 = 00-497) (11 + 29 = 00-497)	22 26 5 5 ⊕ 30 € 35	23-466 27 32 	28 28 29,33 37		the second secon		
GP-24 WELL MANIFOLD DECCOM DECCOM DECCOM DECCOM DECCOM DECCOM DECCOM	39 206 43 4 4 49 20	40	41 45 & 51 & 51	24R 4212 46 47 47 52	47 mm 2 48 mm 23 67 47 mm 2 48 mm 23 67 53	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
8° CP-19 64 55 56 C12 1064 65 66 <t< td=""><td>67 8</td><td>58 68 6° 6° 6° 6° 6° 6°</td><td>59 69 80</td><td>59 70 81</td><td>61 501 71 52 00 82</td><td>62 72 1883</td><td>4R 73 M-26</td><td></td></t<>	67 8	58 68 6° 6° 6° 6° 6° 6°	59 69 80	59 70 81	61 501 71 52 00 82	62 72 1883	4R 7 3 M-26	
GP-M8 84 85 V-38-4 86 EW-39 94 95 12 EW-96 19799 19799 104 105 105 106 EW-21 106 EW-21	87 12" 98 (913 197 98 (913 1	88 ^v [±] 467 2" 99 4" 108 kw40K-6 EV	89 100 398 109			12m 92 12 ^m 92 103 41 12 ^m 112 112 112 112 112 112 112 112	93	* 1114
115 115 116 116 116 116 116 116		130 EW-574 130 EW-574 10 EW-576 10 EW-1405 10 EW-576 10 EW-57	120 12" 131 141 23 152"	121 132 142 132 132	122 133 WSTR 143 154	123 FH 512 134 144	124 135 145	125 5-136 146
412 413 4147 415 415 417 417 417 417 417 417 417 417 417 417	19 (100 s) 133 (100 s) 177 (100 s) 177 (100 s) 177 (100 s) 181 (1	161 161 172 182	EW-542 EW-562 CU2562 CU2562 EW-8554 EW-8554 EW-8554 EW-8554 EW-8554 EW-8554 EW-8554 EW-8554 EW-8554 EW-8554 EW-8554 EW-8554 EW-8545 EW-8545 EW-5456 EW-5466	163 174 184	164 164 175 185	EW-466 165	166PR 1777 1877	157 167 178 188
189 2 426 4 190 199 200 2 201 210	191 - 44 202 21175A	192 62 203 212 63	19312 2	205 214	195 206 215	196 (m) 207 216	197 208 217	⁸⁵ 198 209 53 4 33 7 218 5 10 4 33
	220 229 239	 ⊕ 221 230 240 	6 2222))	223 232 23 2675 16 15 Well MANIFOLD	224 33 234 GP-13	225 235 242	226 236 243	227 237 244
ECOM	245 250 220	246 253	247 254 254 254 254 254 254 254 254 2555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 255555 25555 255555 255555 25555 25555 255555 25555 25555 255	DECOM DECOM	WELL MANIFOLD WELL MANIFOLD DE COOM DE COOM DE COOM DE COOM DE COOM M M M M M M M M M M M M M M M M M M M	248 255 258	249 256 259 261	257
	WELL MANIFOLD WELL MANIFOLD PR-632 EP-632		VELL MANIFOLD	_		260 GP-12	263 265 2"265	262 2644 30 F 266 F
NOTES								

- NOTES:
 1. THE 2018 BASE TOPOGRAPHIC MAP WAS CREATED BY COOPER AERIAL SURVEYS CO. USING PHOTOGRAMMETRIC METHODS. DATE OF PHOTOGRAPHY: APRIL 17, 2018. HORIZONTAL DATUM: NAD27, ZONE 3, VERTICAL DATUM: LOCAL LANDFILL DATUM.
 2. THE 2010 BASE BAS-BUILT WELL AND PIPE LOCATIONS WERE PROVIDED BY REPUBLIC. WELLS EW-487 THROUGH EW-489 ARE PER DESIGN LOCATIONS, NO SURVEY WAS RECEIVED FOR THESE WELLS. AS-BUILT LOCATIONS FOR HC-223 AND LORS-17 ARE APPROXIMATE, NO SURVEY WAS RECEIVED FOR THESE WELLS.
 3. THE 2017 GCCS AS-BUILT WELL AND PIPE LOCATIONS WERE PROVIDED BY RUGGERI, JENSEN, AZAR AND ASSOCIATES, DATES OF SURVEY: JANUARY 11, 20, AND FEBRUARY 24, 2017.
 4. THE 2018 GCCS IMPROVEMENTS PER SURVEY PREPARED BY RUGGERI, JENSEN, AZAR, AND ASSOCIATES, DATE OF SURVEY: MARCH 14, 2018.
 5. THE 2018 GCCS PHASE II IMPROVEMENTS PER SURVEY PREPARED DEVOLOTIONS.

<u>.</u>

°0 -

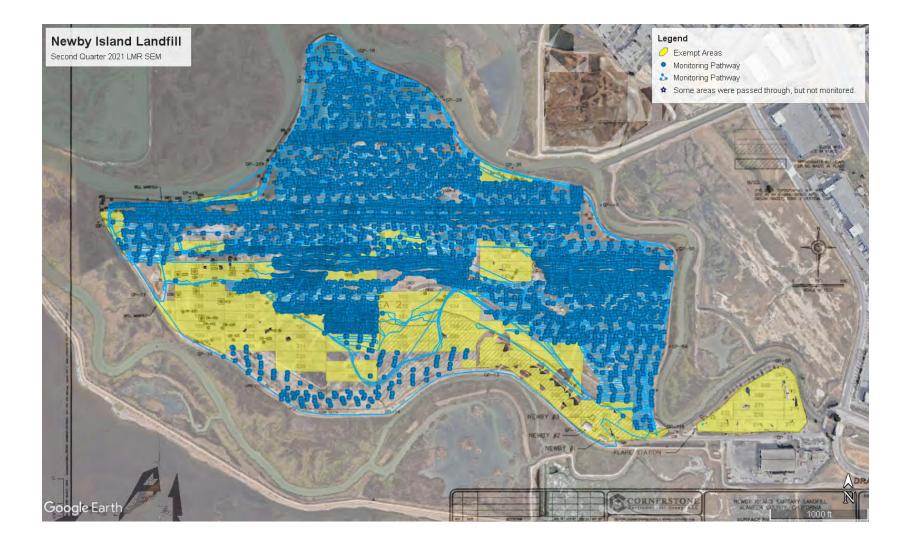

1/2"

. ____

- 14, 2010. THE 2018 GCCS PHASE II IMPROVEMENTS PER SURVEY PREPARED BY RUGGERI, JENSEN, AZAR, AND ASSOCIATES, DATE OF SURVEY: AUGUST 6, 2018. 5.

cornerstone ATETRA TECH COMPANY DWN BY DES BY CHK BY APP B DATE DESCRIPTION DATE OF ISSUE 9/6/18 DRAWN BY _____ DESIGNED BY _____ RAW CHECKED BY _____ AMN MED

This drawing represents intellectual property of Cornerstone. Any modification to the original by other than Cornerstone greanomic induces its original purpose and cas such is rendered void. Cornerstone will not be held fiable for any changes made to this document without express written consent of the originator.


NEWBY ISLAND LANDFILL SANTA CLARA COUNTY, CALIFORNIA

GCCS AS-BUILT SEM SITE PLAN

Attachment 2

Surface Pathway

Second Quarter 2021 LMR Surface Emissions Monitoring Pathway Newby Island Landfill, Milpitas, California Attachment 3

Instantaneous and Component Emissions Monitoring Results

Second Quarter 2021

Table 1. LMR Instantaneous Surface and Component

Emissions Monitoring Results

Newby Island Sanitary Landfill, Milpitas, California

Instantaneous Data Report for April 8, 9, 12, 13, 22, and May 11, 2021

Location Well ID or Grid Number	Initial Monitoring (ppmv)	10-Day Follow Up Monitoring (ppmv)	20-Day Follow Up Monitoring (ppmv)	30-Day Follow Up Monitoring (ppmv)
NILEW106	April 13, 2021 700	April 22, 2021 40	NA NA	May 11, 2021 41
NILE VV 100	700	40		41
NILEW510	930	100	NA	210
NILEW601	6,483	70	NA	2,975
NILEW615	36,700	150	NA	1,665
NILEW618	10,000	30	NA	200
NILEW620	10,000	200	NA	1,663
NILEW638	10,000	70	NA	2,490
NILEW663	1,000	100	NA	700
NILEW675	10,000	200	NA	245
NILEW676	10,000	100	NA	4,128
NILEW677	2,496	200	NA	2,489
NILEW682	20,000	200	NA	1,423
NILEW694	535	100	NA	778
NILEW720	1,187	100	NA	1,455
NILEW723	1,201	90	NA	1,900

Second Quarter 2021

Table 1. LMR Instantaneous Surface and Component

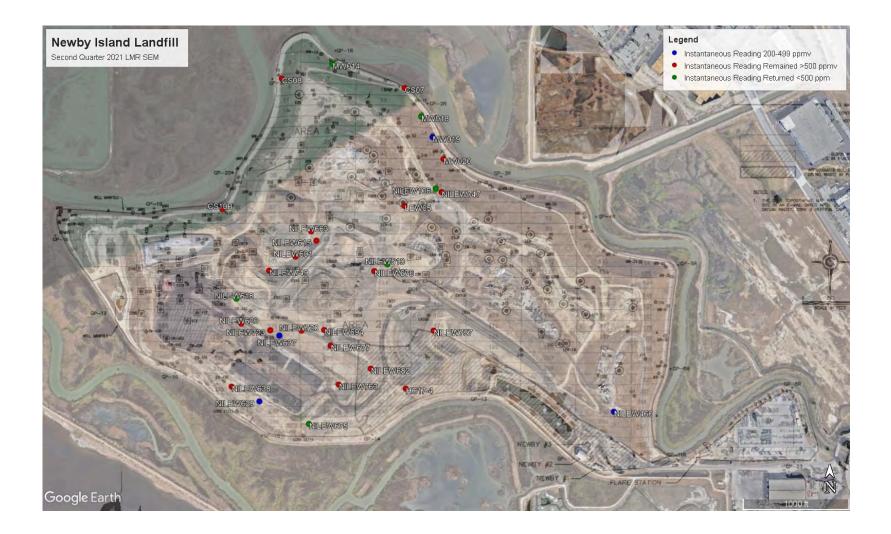
Emissions Monitoring Results

Newby Island Sanitary Landfill, Milpitas, California

Location Well ID or Grid Number	Initial Monitoring (ppmv) April 13, 2021	10-Day Follow Up Monitoring (ppmv) April 22, 2021	20-Day Follow Up Monitoring (ppmv) NA	30-Day Follow Up Monitoring (ppmv) May 11, 2021
NILEW747	1,500	75	NA	753
NILEW749	1,315	20	NA	1,300
NILEW757	40,000	60	NA	7,401
NILEW763	8,474	12	NA	1,190
CS07	20,000	70	NA	2,796
CS08	900	50	NA	1,158
CS10B	2,784	90	NA	2,465
HC17-4	8,000	250	NA	2,897
MW014	4,500	60	NA	200
MW018	4,000	80	NA	496
MW020	1,000	90	NA	1,051
LEW05	2,000	150	NA	1,158
MW019	250	NA	NA	NA
NILEW460	328	NA	NA	NA
NILEW637	348	NA	NA	NA
NILEW629	438	NA	NA	NA

Second Quarter 2021

Table 1. LMR Instantaneous Surface and Component


Emissions Monitoring Results

Newby Island Sanitary Landfill, Milpitas, California

Pressurized Pipe

Location	Date	Highest Concentration (ppmv)
Flare Station	4/9/2021	470

No other exceedances of the 500 ppm threshold observed during the LMR/NSPS monitoring performed during the second quarter 2021.

Second Quarter 2021 Initial Emissions Monitoring Locations Greater Than 500 ppmv Newby Island Landfill Milpitas, California Attachment 4

Integrated Monitoring Results

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-001	4/8/2021	1.76	
NIL-002	4/8/2021	2.18	
NIL-003	4/8/2021	3.24	
NIL-004	4/8/2021	4.28	
NIL-005	4/8/2021	5.62	
NIL-006	4/8/2021	3.97	
NIL-007	4/8/2021	5.13	
NIL-008	4/8/2021	5.78	
NIL-009	4/12/2021	7.22	
NIL-010	4/12/2021	5.87	
NIL-011	4/12/2021	1.64	
NIL-012	4/12/2021	4.67	
NIL-013	4/12/2021	3.02	
NIL-014	4/12/2021	2.45	
NIL-015	4/12/2021	4.51	
NIL-016	4/12/2021	3.05	
NIL-017	4/12/2021	2.21	
NIL-018	4/12/2021	1.90	
NIL-019	4/12/2021	3.57	
NIL-020	4/12/2021	2.48	
NIL-021	4/12/2021	1.59	
NIL-022	4/12/2021	5.78	
NIL-023	4/12/2021	7.51	
NIL-024	4/12/2021	4.87	
NIL-025	4/9/2021	1.71	
NIL-026	4/9/2021	2.33	
NIL-027	4/9/2021	5.22	
NIL-028	4/9/2021	3.50	
NIL-029	4/12/2021	3.26	
NIL-030	4/12/2021	4.35	
NIL-031			Grid Is Not On The Grid Map
NIL-032	4/12/2021	4.64	
NIL-033	4/12/2021	3.87	
NIL-034	4/12/2021	2.65	
NIL-035	4/12/2021	3.04	
NIL-036	4/12/2021	3.57	
NIL-037	4/12/2021	4.57	
NIL-038	4/9/2021	2.26	
NIL-039	4/12/2021	3.28	
NIL-040	4/12/2021	3.86	
NIL-041	4/12/2021	4.29	
NIL-042	4/12/2021	4.66	
NIL-043	4/12/2021	2.15	

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-044	4/12/2021	2.14	
NIL-045	4/12/2021	2.56	
NIL-046	4/12/2021	3.74	
NIL-047			Native
NIL-048			Native
NIL-049	4/12/2021	2.50	
NIL-050	4/12/2021	2.86	
NIL-051	4/12/2021	8.27	
NIL-052	4/12/2021	5.19	
NIL-053	4/12/2021	4.19	
NIL-054	4/12/2021	5.65	
NIL-055			Native
NIL-056	4/9/2021	2.00	
NIL-057	4/12/2021	1.78	
NIL-058	4/12/2021	2.75	
NIL-059	4/12/2021	6.99	
NIL-060	4/12/2021	7.34	
NIL-061	4/12/2021	1.91	
NIL-062	4/12/2021	3.28	
NIL-063	4/8/2021	1.94	
NIL-064	4/8/2021	4.82	
NIL-065	4/8/2021	2.68	
NIL-066	4/8/2021	5.34	
NIL-067	4/8/2021	2.28	
NIL-068	4/8/2021	4.24	
NIL-069	4/8/2021	7.46	
NIL-070	4/8/2021	4.57	
NIL-071	4/8/2021	1.79	
NIL-072	4/8/2021	2.24	
NIL-073	4/9/2021	1.78	
NIL-074			Native
NIL-075	4/9/2021	2.01	
NIL-076	4/9/2021	1.41	
NIL-077	4/9/2021	4.11	
NIL-078	4/9/2021	3.37	
NIL-079	4/9/2021	6.95	
NIL-080	4/9/2021	11.51	
NIL-081	4/9/2021	2.84	
NIL-082	4/9/2021	1.36	
NIL-083	4/9/2021	1.36	
NIL-084	4/8/2021	3.91	
NIL-085	4/8/2021	3.44	
NIL-086	4/8/2021	4.08	

SCS DataServices - Secure Environmental Data

A State of

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-087	4/8/2021	4.36	
NIL-088	4/8/2021	14.01	
NIL-089	4/8/2021	8.96	
NIL-090	4/8/2021	7.04	
NIL-091	4/8/2021	3.43	
NIL-092	4/8/2021	3.14	
NIL-093	4/8/2021	1.61	
NIL-094			Native
NIL-095	4/8/2021	4.66	
NIL-096	4/8/2021	2.19	
NIL-097	4/8/2021	7.54	
NIL-098	4/8/2021	5.26	
NIL-099	4/8/2021	18.74	
NIL-100			Active
NIL-101	4/8/2021	2.83	
NIL-102	4/8/2021	2.31	
NIL-103	4/8/2021	1.72	
NIL-104	4/8/2021	4.40	
NIL-105			Leachate Pond
NIL-106	4/9/2021	7.18	
NIL-107	4/9/2021	10.15	
NIL-108	4/9/2021	30.59	
NIL-108	4/13/2021	19.29	
NIL-109			Active
NIL-110	4/8/2021	4.06	
NIL-111			Pallet Yard
NIL-112	4/8/2021	2.34	
NIL-113	4/8/2021	2.48	
NIL-114	4/8/2021	2.76	
NIL-115	4/8/2021	4.93	
NIL-116	4/8/2021	6.02	
NIL-117	4/8/2021	5.57	
NIL-118	4/8/2021	9.29	
NIL-119			Active
NIL-120	4/8/2021	25.39	Misread
NIL-120	4/13/2021	19.69	
NIL-121	4/8/2021	3.23	
NIL-122			Pallet Yard
NIL-123	4/8/2021	1.45	
NIL-124	4/8/2021	1.51	
NIL-125	4/8/2021	1.71	
NIL-126			Mulch Area
NIL-127			Mulch Area

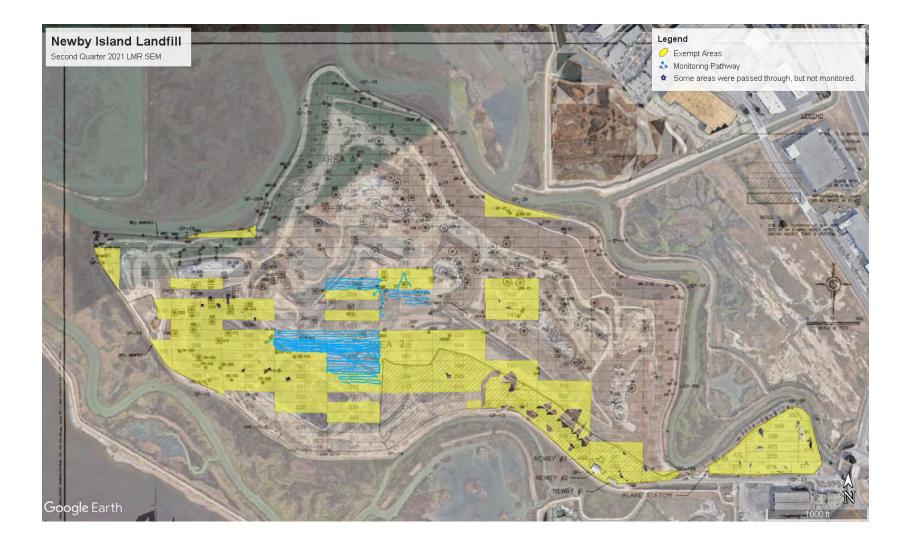
SCS DataServices - Secure Environmental Data

- the so

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-128			Mulch Area
NIL-129	4/9/2021	15.71	
NIL-130	4/9/2021	22.20	
NIL-131	4/9/2021	24.63	
NIL-132	4/9/2021	3.68	
NIL-133			Pallet Yard
NIL-134	4/9/2021	2.41	
NIL-135	4/9/2021	2.39	
NIL-136	4/9/2021	2.49	
NIL-137			Compost Operations
NIL-138			Compost Operations
NIL-139	4/9/2021	22.25	
NIL-140			Active
NIL-141	4/9/2021	14.49	
NIL-142	4/9/2021	2.93	
NIL-143			Pallet Yard
NIL-144	4/9/2021	3.12	
NIL-145	4/9/2021	2.45	
NIL-146	4/9/2021	2.50	
NIL-147	4/9/2021	3.69	
NIL-148			Active
NIL-149	4/9/2021	6.36	
NIL-150	4/9/2021	17.30	
NIL-151	4/9/2021	9.81	
NIL-152	4/9/2021	23.99	
NIL-153	4/9/2021	5.03	
NIL-154	4/9/2021	4.53	
NIL-155	4/9/2021	3.36	
NIL-156	4/9/2021	1.75	
NIL-157	4/9/2021	1.94	
NIL-158			Active
NIL-159			Active
NIL-160	4/9/2021	15.70	
NIL-161	4/9/2021	14.38	
NIL-162			Active
NIL-163			Active
NIL-164	4/9/2021	4.19	
NIL-165	4/9/2021	3.95	
NIL-166	4/9/2021	2.02	
NIL-167	4/9/2021	2.07	
NIL-168			Active
NIL-169			Active
NIL-170			Active

NIL-171 4/12/2021 45.48 NIL-171 4/22/2021 15.68 NIL-172 4/12/2021 69.23 NIL-172 4/22/2021 14.53 NIL-173 Active Active NIL-173 NIL-174 NIL-175 4/12/2021 3.05 NIL-176 4/12/2021 2.47 NIL-176 4/12/2021 1.92 NIL-177 4/12/2021 1.92 NIL-178 4/12/2021 1.98 NIL-179 Compost Operations NIL-180 Compost Operations NIL-181 Compost Operations NIL-182 4/12/2021 54.42 NIL-182 4/22/2021 15.09 NIL-183 Active NIL-184 Active NIL-185 4/12/2021	
NIL-172 4/12/2021 69.23 NIL-172 4/22/2021 14.53 NIL-173 NIL-174 NIL-175 4/12/2021 3.05 NIL-176 4/12/2021 2.47 NIL-176 4/12/2021 1.92 NIL-178 4/12/2021 1.98 NIL-178 4/12/2021 1.98 NIL-179 NIL-180 NIL-180 NIL-181 NIL-182 4/12/2021 54.42 NIL-182 4/22/2021 15.09 NIL-183 NIL-184 NIL-185 4/12/2021 9.51 NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-172 4/22/2021 14.53 NIL-173 Active NIL-174 Active NIL-175 4/12/2021 3.05 NIL-176 4/12/2021 2.47 NIL-176 4/12/2021 1.92 NIL-177 4/12/2021 1.92 NIL-178 4/12/2021 1.98 NIL-179 Compost Operations NIL-180 Compost Operations NIL-181 Compost Operations NIL-182 4/12/2021 54.42 NIL-182 4/22/2021 15.09 NIL-182 4/22/2021 15.09 NIL-183 Active NIL-184 Active NIL-185 4/12/2021 9.51 NIL-186 <td< td=""><td></td></td<>	
NIL-173 Active NIL-174 Active NIL-175 4/12/2021 3.05 NIL-176 4/12/2021 2.47 NIL-176 4/12/2021 1.92 NIL-177 4/12/2021 1.98 NIL-178 4/12/2021 1.98 NIL-179 Compost Operations NIL-180 Compost Operations NIL-181 Compost Operations NIL-182 4/12/2021 54.42 NIL-182 4/22/2021 15.09 NIL-183 Active NIL-183 Active NIL-184 Active NIL-185 4/12/2021 9.51 NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49 </td <td></td>	
NIL-174 Active NIL-175 4/12/2021 3.05	
NIL-175 4/12/2021 3.05 NIL-176 4/12/2021 2.47 NIL-177 4/12/2021 1.92 NIL-178 4/12/2021 1.98 NIL-179 NIL-180 NIL-181 NIL-182 4/12/2021 54.42 NIL-182 4/22/2021 15.09 NIL-183 NIL-184 NIL-185 4/12/2021 9.51 NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-176 4/12/2021 2.47 NIL-177 4/12/2021 1.92 NIL-178 4/12/2021 1.98 NIL-179 Compost Operations Compost Operations NIL-180 Compost Operations NIL-181 Compost Operations NIL-181 Compost Operations NIL-182 4/12/2021 54.42 NIL-182 4/22/2021 15.09 NIL-183 Active NIL-183 Active NIL-184 Active NIL-185 4/12/2021 9.51 NIL-185 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-177 4/12/2021 1.92 NIL-178 4/12/2021 1.98 NIL-179 NIL-180 NIL-181 NIL-182 4/12/2021 54.42 NIL-182 4/12/2021 54.42 NIL-182 4/22/2021 15.09 NIL-183 NIL-183 NIL-184 NIL-185 4/12/2021 9.51 NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-178 4/12/2021 1.98 NIL-179 Compost Operations NIL-180 Compost Operations NIL-181 Compost Operations NIL-182 4/12/2021 54.42 Compost Operations NIL-182 4/12/2021 54.42 Compost Operations NIL-182 4/22/2021 15.09 Compost Operations NIL-183 Active NIL-183 Active NIL-184 Active NIL-185 4/12/2021 9.51 Active NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-179 Compost Operations NIL-180 Compost Operations NIL-181 Compost Operations NIL-181 Compost Operations NIL-182 4/12/2021 54.42 Compost Operations NIL-182 4/22/2021 15.09 Active NIL-183 Active NIL-183 Active NIL-184 Active NIL-185 4/12/2021 9.51 Active NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-180 Compost Operations NIL-181 Compost Operations NIL-182 4/12/2021 54.42 Compost Operations NIL-182 4/22/2021 15.09 Compost Operations NIL-183 Active NIL-184 Active NIL-185 4/12/2021 9.51 Active NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-181 Compost Operations NIL-182 4/12/2021 54.42 NIL-182 4/22/2021 15.09 NIL-183 Active NIL-184 Active NIL-185 4/12/2021 9.51 NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-182 4/12/2021 54.42 NIL-182 4/22/2021 15.09 NIL-183 NIL-184 NIL-185 4/12/2021 9.51 NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-182 4/22/2021 15.09 NIL-183 Active NIL-184 Active NIL-185 4/12/2021 9.51 Active NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-182 4/22/2021 15.09 NIL-183 Active NIL-184 Active NIL-185 4/12/2021 9.51 Active NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-184 Active NIL-185 4/12/2021 9.51 NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-185 4/12/2021 9.51 NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-186 4/12/2021 3.40 NIL-187 4/12/2021 1.49	
NIL-187 4/12/2021 1.49	
NIL-188 4/12/2021 2.04	
NIL-189 Compost Operations	
NIL-190 Compost Operations	
NIL-191 Compost Operations	
NIL-192 4/12/2021 41.19	
NIL-192 4/22/2021 18.00	
NIL-193 Active	
NIL-194 Active	
NIL-195 Active	
NIL-196 4/12/2021 2.55	
NIL-197 4/12/2021 2.16	
NIL-198 4/12/2021 2.28	
NIL-199 Compost Operations	
NIL-200 Compost Operations	
NIL-201 Compost Operations	
NIL-202 Compost Operations	
NIL-203 Compost Operations	
NIL-204 Active	
NIL-205 Active	
NIL-206 Active	
NIL-207 4/12/2021 4.24	
NIL-208 4/12/2021 3.00	
NIL-209 4/12/2021 2.63	

SCS DataServices - Secure Environmental Data


200

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-210			Compost Operations
NIL-211			Compost Operations
NIL-212			Active
NIL-213			Active
NIL-214			Active
NIL-215			Active
NIL-216			Active
NIL-217	4/12/2021	1.55	
NIL-218	4/12/2021	1.46	
NIL-219	4/12/2021	16.65	
NIL-220			Active
NIL-221	4/12/2021	21.00	
NIL-222	4/12/2021	20.88	
NIL-223	4/12/2021	18.92	
NIL-224			Leachate Pond
NIL-225			Active
NIL-226	4/12/2021	1.46	
NIL-227	4/12/2021	1.72	
NIL-228	4/12/2021	10.43	
NIL-229			Leachate Pond
NIL-230			Active
NIL-231	4/12/2021	7.52	
NIL-232	4/12/2021	21.72	
NIL-233			Native
NIL-234			Leachate Pond
NIL-235			Active
NIL-236	4/12/2021	4.76	
NIL-237	4/12/2021	4.01	
NIL-238	4/12/2021	7.66	
NIL-239	4/12/2021	8.84	
NIL-240			Active
NIL-241	4/12/2021	18.01	
NIL-242			Leachate Pond
NIL-243	4/12/2021	2.45	
NIL-244	4/12/2021	2.43	
NIL-245	4/12/2021	8.19	
NIL-246	4/12/2021	7.69	
NIL-247	4/12/2021	6.48	
NIL-248			Leachate Pond
NIL-249	4/12/2021	3.09	
NIL-250	4/12/2021	8.92	
NIL-251	4/12/2021	7.90	
NIL-252	4/12/2021	8.70	

SCS DataServices - Secure Environmental Data

200

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-253	4/12/2021	15.43	
NIL-254	4/12/2021	6.93	
NIL-255			Leachate Pond
NIL-256	4/12/2021	2.70	
NIL-257	4/12/2021	3.03	
NIL-258			Leachate Pond
NIL-259			Paved
NIL-260			Paved
NIL-261			Paved
NIL-262	4/12/2021	2.90	
NIL-263			Paved
NIL-264	4/12/2021	2.95	
NIL-265			Paved
NIL-266			Paved
NIL-267			Paved
NIL-268			Paved
NIL-269			Paved
NIL-270			Paved
NIL-271			Paved
NIL-272			Paved
NIL-273			Paved
NIL-274			Paved
NIL-275			Paved
NIL-276			Paved
NIL-277			Paved

Second Quarter 2021 LMR Surface Emissions Monitoring First 10-Day Pathway Newby Island Landfill, Milpitas, California Attachment 5

Calibration Logs

					rre
		SURFACE EMISSI	-		
		CALIBRATION AN	D PERTINEI	NT DATA	
Date:	4-8-21		Site Name:	Mahn	
Inspector(s):	Dablo Dive	era	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			5.4	
		Wind		Barometric	
Wind Speed	МРН	Direction: US4		Pressure: 30	"Hg
Air Temperature:	~7	General Weathe Conditions	_clou	k	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
nd calculate th		ce between the instrument			on gas. Record the readings ntage. The calibration
nstrument Seria	I Number: 54	15		Cal Gas Concentration	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds
1	.9	502		2	7
2	• (500	1	0	3
indration Precis	sion= Average Difference/Ca		23	_/500 x 100%	
		=99.5	%		
oan Sensitivity:					
ial 1		126-762	Trial 3:		17
	unts Observed for the Span			nts Observed for the Span	
Cour	nters Observed for the Zero-	4998	Count	ters Observed for the Zero	= 4832
ial 2: Col	unts Observed for the Span-	126260			
Cour	nters Observed for the Zero=	4812			
ost Monitoring (Calibration Check				
ero Air eading: -	ppm	Cal Gas Reading:	500	ppm	
	CONCENTRATIONS CHECK	S			
owind Location	Description:	Flare		Reading: 1.3	_ppm
wnwind Locatio	on Description:	Gridt		Reading: 1	_ppm
e		No rainfall had occurred wi	thin the previou	s 24 hours of the monitori	

SCS DataServices - Secure Environmental Data

Control Control Party

					110
			IONS MONITORIN		
			ND PERTINENT DA	ТА	
Date:	<u>-4-8-20</u> Cody Cr	21	Site Name:	endy	
Inspector(s):	Cody Cr	ocker	Instrument:TVA	2020	
WEATHER OB	SERVATIONS			м 1	
Wind Speed	мрн	Wind Direction: USA		metric essure: 80	-"Hg
Aiı Temperature	C/	General Weath Condition			
CALIBRATION	INFORMATION		,		
Pre-monitoring	Calibration Precision Che	eck			
and calculate th	e average algebraic diffe be less than or equal to 1	ake a total of three measureme erence between the instrument 0% of the calibration gas value	t reading and the calibrati ?,		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal	Gas Reading	Response Time (s
1	.0	SOI	6		4
2	+1	501	1		3
3					
Calibration Preci	j , (sion= Average Difference	Average Difference: e/Cal Gas Conc. X 100%	0 1.3 *Perform recalibration if average	difference is greater than] 10
Calibration Preci		Average Difference: e/Cal Gas Conc. X 100%	1.3	-] 10
Calibration Preci		Average Difference: e/Cal Gas Conc. X 100%	1. 3 *Perform recalibration if average	-] 10
		Average Difference: e/Cal Gas Conc. X 100%	1.3 *Perform recalibration if average	-] 10
Span Sensitivity: Trial 1:	sion= Average Difference	Average Difference: e/Cal Gas Conc. X 100%	<i>I. 3</i> *Perform recalibration if average - <u>(. 3</u> /500 x % Trial 3:	100%] 10 <i> 56 37 3</i>
Span Sensitivity: T rial 1: Co	sion= Average Difference	Average Difference: e/Cal Gas Conc. X 100% = 100% = $9/9,7$ ban= 156296	I. 3 *Perform recalibration if average (. 3 /500 x % Trial 3: Counts Obse	100% erved for the Span=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2:	sion= Average Difference unts Observed for the Sp nters Observed for the Ze	Average Difference: e/Cal Gas Conc. X 100% = 100% = $9/9,7$ ban= 156296	I. 3 *Perform recalibration if average (. 3 /500 x % Trial 3: Counts Obse	100%	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co	sion= Average Difference unts Observed for the Sp nters Observed for the Ze	Average Difference: $e/Cal Gas Conc. \times 100\%$ = 100% = 90% an = 156296 ero = 5172 ban = 156288	I. 3 *Perform recalibration if average (. 3 /500 x % Trial 3: Counts Obse	100% erved for the Span=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour	sion= Average Difference ounts Observed for the Sp nters Observed for the Zo unts Observed for the Sp	Average Difference: $e/Cal Gas Conc. \times 100\%$ = 100% = 90% an = 156296 ero = 5172 ban = 156288	I. 3 *Perform recalibration if average (. 3 /500 x % Trial 3: Counts Obse	100% erved for the Span=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour	sion= Average Difference ounts Observed for the Sp <u>inters Observed for the Ze</u> unts Observed for the Sp <u>inters Observed for the Ze</u>	Average Difference: $e/Cal Gas Conc. \times 100\%$ = 100% = 90% an = 156296 ero = 5172 ban = 156288	I.3 *Perform recalibration if average (.3) /500 x % Trial 3: Counts Obse Counters Obse	100% erved for the Span=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring o	sion= Average Difference ounts Observed for the Sp <u>inters Observed for the Ze</u> unts Observed for the Sp <u>inters Observed for the Ze</u>	Average Difference: e/Cal Gas Conc. X 100% = 100% = 90% an = 156296 ero = 5172 ban = 156288 ero = 4964	I. 3 *Perform recalibration if average (. 3 /500 x % Trial 3: Counts Obse	100% erved for the Span=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring of Zero Air Reading:	sion= Average Difference ounts Observed for the Sp inters Observed for the Zo unts Observed for the Sp inters Observed for the Zo Calibration Check	Average Difference: $e/Cal Gas Conc. \times 100\%$ = 100% = 997,7 ban = 156296 ero = 5172 ban = 156288 ero = 4964 Cal Gas Reading:	I.3 *Perform recalibration if average (.3) /500 x % Trial 3: Counts Obse Counters Obse 500	100% erved for the Span=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring of Zero Air Reading:	sion= Average Difference ounts Observed for the Sp inters Observed for the Sp inters Observed for the Sp inters Observed for the Sp inters Observed for the Ze Calibration Check	Average Difference: $e/Cal Gas Conc. \times 100\%$ = 100% = 997,7 ban = 156296 ero = 5172 ban = 156288 ero = 4964 Cal Gas Reading:	I.3 *Perform recalibration if average (.3) /500 x % Trial 3: Counts Obse Counters Obse 500	100% erved for the Span= erved for the Zero=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring of Post Mo	sion= Average Difference ounts Observed for the Sp inters Observed for the Sp inters Observed for the Sp inters Observed for the Sp inters Observed for the Ze Calibration Check	Average Difference: e/Cal Gas Conc. X 100% = 100% = 90% ero= 5172 ban= 156296 ero= 5172 ban= 156288 ero= 4964 Cal Gas Reading: ECKS	I.3 *Perform recallbration if average (.3) /500 x % Trial 3: Counts Obse Counters Obse 500 ppm	$\frac{100\%}{100\%}$ erved for the Span= erved for the Zero=	156 329 4988

		SURFACE EMIS	SIONS MONI	TORING	All a street and
		CALIBRATION A	ND PERTINE	ΝΤ DATA	
	4.8.20	21		Newba	
Date:	10-20		Site Name:	micwog	
Inspector(s):	Hunter	\bigcirc	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			-	
Wind Speed	d:МРН	Wind Direction:	\sim	Barometric Pressure:	"Hg
A Temperature	0.7	General Weat Conditio	- \ \	<u>v</u> y	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Chec	k			
				g zero air and the calibration	
precision must	be less than or equal to 109	% of the calibration gas valu		calibration gas as a percentag	
Instrument Seri	al Number: 54	20		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	(Cal Gas (ConcCal Gas Reading	Response Time (
1		501			
					-1
3	p (- 498		2	3
3	. (Average Difference:			3
3	1	Average Difference:	*Perform recalibration	2. Con if average difference is greater than 10	3
3	. (Average Difference:		2.16	3
3 Calibration Prec	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 100	*Perform recalibratio	2. Con if average difference is greater than 10	3
3 Calibration Prec	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4	*Perform recalibratio %- <u>2.6</u> % Trial 3:	2 on if average difference is greater than 10 /500 x 100%	
3 Calibration Prec Span Sensitivity Trial 1: Co	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348	*Perform recalibratio %- <u>2.6</u> % Trial 3:	2. Con if average difference is greater than 10	12169
<u>З</u> Calibration Prec Span Sensitivity Trial 1: Соц	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100%	
3 Calibration Prec Span Sensitivity Trial 1: Cou	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 m = 125348 o = 4093	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100%	121697
3 Calibration Prec Span Sensitivity Trial 1: Cou Trial 2: Cou	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348 n= 121480 n= 121480	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100%	121697
3 Calibration Prec Span Sensitivity Trial 1: Cou Trial 2: Cou Cou	ision= Average Difference/ ounts Observed for the Spa unters Observed for the Zer	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348 n= 121480 n= 121480	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100%	121697
3 Calibration Prec Span Sensitivity Trial 1: Cou Trial 2: Cou Cou	ision= Average Difference/ ounts Observed for the Spa unters Observed for the Zer ounts Observed for the Spa	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348 n= 121480 n= 121480	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100%	121697
3 Calibration Pred Span Sensitivity Trial 1: Cou Crial 2: Cou Post Monitoring	ision= Average Difference/ ounts Observed for the Spa unters Observed for the Zer ounts Observed for the Spa	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n = 125348 o = 4093 n = 121480 o = 3856	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100%	121697
3 Calibration Prec Span Sensitivity Trial 1: Cou Cou Frial 2: Cou Post Monitoring Sero Air Leading:	ision= Average Difference/ bunts Observed for the Spa unters Observed for the Zer bunts Observed for the Spa unters Observed for the Spa unters Observed for the Zer Calibration Check	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348 o= 4093 n= 121480 o= 3856 Cal Gas Reading:	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100% unts Observed for the Span= ters Observed for the Zero=	121697
3 Calibration Prec Span Sensitivity Frial 1: Cou Cou Frial 2: Cou Post Monitoring Sero Air Seading: BACKGROUND	ision= Average Difference/ ision= Average Difference/ ounts Observed for the Spa inters Observed for the Zer ounts Observed for the Spa inters Observed for the Zer Calibration Check	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348 o= 4093 n= 121480 o= 3856 Cal Gas Reading:	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou		12169
3 Calibration Prec Span Sensitivity Trial 1: Cou Cou Cou Post Monitoring Cero Air Reading: BACKGROUND	ision= Average Difference/ ision= Average Difference/ ounts Observed for the Spa inters Observed for the Zer ounts Observed for the Spa inters Observed for the Zer Calibration Check	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348 o= 4093 n= 121480 o= 3856 Cal Gas Reading:	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou		121697 3820

				Y-	re
		SURFACE EMISS			
		CALIBRATION AN		NT DATA	
Date:	4-8-207		Site Name:	Newb	4
Inspector(s):	Bryan		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	н:мрн	Wind Direction: 550	0	Barometric Pressure:)
Ai Temperature		General Weath Condition	1 I I I I I I I I I I I I I I I I I I I	14	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
	be less than or equal to 10%	nce between the instrument 6 of the calibration gas value		calibration gas as a perce Cal Gas Concentration	
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas C	ConcCal Gas Reading	Response Time (se
1	- 2	500	100.000	0	
2	1.	502		2	4
3		502		2	5
	ision= Average Difference/C	= 100%	1-3	/500 x 100%	
		=997	%	-	
Span Sensitivity:					
<u>Trial 1:</u> Co	ounts Observed for the Spar	13000	Trial 3: Cou	nts Observed for the Spar	-112 47
Cou	nters Observed for the Zerc	= 3285	Count	ters Observed for the Zerc	= 31 27
Trial 2:	ounts Observed for the Spar	2710			
Cou	nters Observed for the Zero	= 3104			
Post Monitoring	Calibration Check				
Zero Air		Cal Gas	-		
Reading:	ppm	Reading:	500	_ppm	
BACKGROUND	CONCENTRATIONS CHEC	KS		4	
BACKGROUND		Florre	-	Reading:	_ppm
	Description:	Florre	-	Reading: $\frac{1.0}{5}$ Reading: $\frac{1.5}{5}$	ppm ppm

SCS DataServices - Secure Environmental Data

					pre
		SURFACE EMISS	SIONS MONI	TORING	
		CALIBRATION A	ND PERTINE	NT DATA	
Date:	11-8-20	150	Site Name:	Newby	
Inspector(s):	Ryan H		Instrument:	TVA 2020	
WEATHER OBSE	RVATIONS				
Wind Speed: _	2мрн	Wind Direction:	\sim	Barometric Pressure: 30	"Hg
Air Temperature:	48°F	General Weath Conditio		<u>n</u> 4	
CALIBRATION IN	IFORMATION)	
Pre-monitoring Ca	alibration Precision Check				
and calculate the	average algebraic different less than or equal to 10%	ice between the instrumer	nt reading and the	ng zero air and the calibration calibration gas as a percenta Cal Gas Concentration:	
Trial	Zero Air Reading	Cal Gas Reading		- ConcCal Gas Reading	Response Time (seco
1	- \	501	[Cal Gas		
2	.2	502		2	5
3	-1 -	502		2	5
		= 1009	%- 1.6	/500 × 100%	
		=94.7	%		
Span Sensitivity:					
Trial 1:	nts Observed for the Span	169842	- Trial 3: - Cou	unts Observed for the Span-	2040
Count	ers Observed for the Zero	= 3.921		ters Observed for the Zero-	3978
Trial 2: Cour	nts Observed for the Span	170183			
Count	ers Observed for the Zero	3958			
Post Monitoring Ca	alibration Check				
Zero Air Reading:	ppm	Cal Gas Reading:	500	_ppm	
BACKGROUND CO	ONCENTRATIONS CHECK	(S			
Jpwind Location D	escription:	chridt	_	Reading: 1,3 p	pm
Downwind Location	n Description:	Flare	÷	Reading: <u>\</u> p	pm
				quested 10 miles per hour and	
				us 24 hours of the monitoring	
m	eteorological conditions w	vere within the requested	alternatives of the	ELMR requirements on the ab	
and the second second	and the second second	The state of the state of the state of the	Contraction of the	Ling ter -	9

					1.0
		SURFACE EMISSION			
Date:	4-8-202	-	Site Name:	lewou	
Inspector(s):	Dong			2020	
WEATHER OBS	SERVATIONS			4	
			_		
Wind Speed	:мрн	Direction: <u>SSN</u>) Baru Pr	essure: <u>30</u>	"Нg
Air Temperature:	<u> </u>	General Weather Conditions			
	INFORMATION)		
Pre-monitoring	Calibration Precision Check				
and calculate th	prate the instrument. Make a e average algebraic difference be less than or equal to 10% of	e between the instrument i			
nstrument Seria	al Number: 122	.0	Cal	Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcC	al Gas Reading	Response Time (seconds
1	.\	498	2		3
2	.\	501	1		65
3	-				
- l'han ti a a Dan si		Average Difference:	*Perform recalibration if averag	e difference is greater that]] 10
alibration Preci	sion= Average Difference/Cal	Gas Conc. X 100%		e difference is greater than < 100%	1
alibration Preci	sion= Average Difference/Cal	Gas Conc. X 100%] n 10
	sion= Average Difference/Cal	Gas Conc. X 100%	/500 ;]
pan Sensitivity: rial 1		Gas Conc. X 100% = 100%- =	/500 x		
pan Sensitivity: rial 1: Co	ounts Observed for the Span=	Gas Conc. X 100% = 100%- = 144204	/500 x % <u>Trial 3:</u> Counts Obs	erved for the Span	144893
pan Sensitivity: rial 1: Co Cour		Gas Conc. X 100% = 100%- = 144204	/500 x % <u>Trial 3:</u> Counts Obs	< 100%	144893
pan Sensitivity: rial 1: Co Cour	ounts Observed for the Span=	Gas Conc. X 100% = 100%- = <u>144204</u> <u>39001</u>	/500 x % <u>Trial 3:</u> Counts Obs	erved for the Span	144893
pan Sensitivity: rial 1: Co Coun rial 2: Co	nunts Observed for the Span=	Gas Conc. X 100% = 100%- = <u>144204</u> <u>3901</u> <u>146496</u>	/500 x % <u>Trial 3:</u> Counts Obs	erved for the Span	144893
pan Sensitivity: rial 1: Co Cour rial 2: Co Cour	ounts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	Gas Conc. X 100% = 100%- = <u>144204</u> <u>3901</u> <u>146496</u>	/500 x % <u>Trial 3:</u> Counts Obs	erved for the Span	144893
pan Sensitivity: rial 1: Co Cour rial 2: Co Cour	ounts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	Gas Conc. X 100% = 100%- = <u>144204</u> <u>3901</u> <u>146496</u>	/500 x % <u>Trial 3:</u> Counts Obs	erved for the Span	144893
pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co Cour ost Monitoring o	ounts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	Gas Conc. X 100% = 100%- = <u>144204</u> <u>3901</u> <u>146496</u> <u>3195</u>	/500 x % <u>Trial 3:</u> Counts Obs	erved for the Span	144893
pan Sensitivity: rial 1: Co Cour rial 2: Co cour ost Monitoring o ero Air eading:	ounts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	Gas Conc. X 100% = 100%- = <u>144204</u> <u>3901</u> <u>146496</u> <u>3195</u> Cal Gas Reading:	/500 x % <u>Trial 3:</u> Counts Obs <u>Counters Ob</u>	erved for the Span	144893
pan Sensitivity: rial 1: Co Cour rial 2: Co cour ost Monitoring o ero Air eading:	nunts Observed for the Span= <u>inters Observed for the Zero=</u> unts Observed for the Span= <u>inters Observed for the Zero=</u> Calibration Check <u>ppm</u> CONCENTRATIONS CHECKS	Gas Conc. X 100% = 100%- = <u>144204</u> <u>3901</u> <u>146496</u> <u>3195</u> Cal Gas Reading:	/500 x % <u>Trial 3:</u> Counts Obs <u>Counters Ob</u>	erved for the Spans served for the Zeros	144893
pan Sensitivity: rial 1: Co Cour rial 2: Co Cour cost Monitoring of ero Air eading: ACKGROUND of pwind Location	nunts Observed for the Span= <u>inters Observed for the Zero=</u> unts Observed for the Span= <u>inters Observed for the Zero=</u> Calibration Check <u>ppm</u> CONCENTRATIONS CHECKS	Gas Conc. X 100% = 100%- = <u>144204</u> <u>39001</u> <u>146496</u> <u>3195</u> Cal Gas	/500 x % Trial 3: Counts Obs Counters Obs	erved for the Spans served for the Zeros served for the Zeros	<u>144893</u> 3861

SCS DataServices - Secure Environmental Data

		SURFACE EMISSI			
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	4-8-2021 Pablo River		Site Name:	Newby	
Inspector(s):	Pablo River	a	Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS			- H.	
Wind Speed:	ИАМРН	Wind Direction: NW	-	Barometric Pressure: <u>30</u>	"Hg
Air Temperature:	65_°F	General Weathe Conditions	1	_	
CALIBRATION I	NFORMATION				
Pre-monitoring C	alibration Precision Check				
	e less than or equal to 10% o	f the calibration gas value.	reading and the	calibration gas as a percent	
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (secon
1	- v. 1	27	E	498	2
2	. 2	0 ->	4	500	И
3	2 - A	3 → Average Difference:	*Perform recalibration	3 on if average difference is greater than	3
		3 → Average Difference:	2	503 3 on if average difference is greater than	3
Calibration Precis	2 - A	3 → Average Difference: Gas Conc. X 100%		503 3 on if average difference is greater than	3
Calibration Precis	2 - A	3 → Average Difference: Gas Conc. X 100% = 100%- = 90.4	<u>3</u> %	503 3 on if average difference is greater than	3
Calibration Precis Span Sensitivity: Trial 1:	2 - A	3 → Average Difference: Gas Conc. X 100% = 100%- = 90.4 [2-6 50 8]	<u>3</u> % Trial 3:	503 3 on if average difference is greater than	
Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cour	ion= Average Difference/Cal	$3 \rightarrow$ Average Difference: Gas Conc. X 100% = 100%- = qaA	<u>3</u> % <u>Trial 3:</u> Cou	503 3 on if average difference is greater than /500 x 100%	127056
Calibration Precis Span Sensitivity: Trial 1: Cou Trial 2:	ion= Average Difference/Cal	3 → Average Difference: Gas Conc. X 100% = 100%- = 90.4 [2-6 50 8]	<u>3</u> % <u>Trial 3:</u> Cou	3 on if average difference is greater than /500 x 100%	127056
Calibration Precisi Span Sensitivity: <u>Trial 1:</u> Cou <u>Coun</u> <u>Trial 2:</u> Cou	ion= Average Difference/Cal ints Observed for the Span= ters Observed for the Zero=	$3 \rightarrow$ Average Difference: Gas Conc. X 100% $= 100\%$ $= 9a.4$ 126508 4820	<u>3</u> % <u>Trial 3:</u> Cou	3 on if average difference is greater than /500 x 100%	127056
Calibration Precisi Span Sensitivity: <u>Trial 1:</u> Cou <u>Coun</u> <u>Trial 2:</u> Cou	ion= Average Difference/Cal ints Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Span=	$3 \rightarrow$ Average Difference: Gas Conc. X 100% $= 100\%$ $= 9a.4$ 126508 4820 126809	<u>3</u> % <u>Trial 3:</u> Cou	3 on if average difference is greater than /500 x 100%	127056
Calibration Precisi Span Sensitivity: Trial 1: Coun Trial 2: Coun	ion= Average Difference/Cal ints Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Span=	$3 \rightarrow$ Average Difference: Gas Conc. X 100% $= 100\%$ $= 9a.4$ 126508 4820 126809	<u>3</u> % <u>Trial 3:</u> Cou	3 on if average difference is greater than /500 x 100%	127056
Calibration Precisi Span Sensitivity: <u>Trial 1:</u> Count <u>Trial 2:</u> Count Post Monitoring C Zero Air Reading:	ion= Average Difference/Cal ints Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Zero= alibration Check	$3 \rightarrow$ Average Difference: Gas Conc. X 100% $= 100\%$ $= 99.4$ 126508 126508 126809 126809 126809 126809 Cal Gas Reading:	3 % Trial 3: Coun	3 on if average difference is greater than _/500 x 100%	127056
Calibration Precisi Span Sensitivity: <u>Trial 1:</u> Count <u>Trial 2:</u> Count Post Monitoring C Zero Air Reading:	ion= Average Difference/Cal ints Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Zero= alibration Check ppm ONCENTRATIONS CHECKS	$3 \rightarrow$ Average Difference: Gas Conc. X 100% $= 100\%$ $= 99.4$ 126508 126508 126809 126809 126809 126809 Cal Gas Reading:	3 % Trial 3: Coun	3 on if average difference is greater than /500 x 100% unts Observed for the Span= ters Observed for the Zero=	127056

		CALIBRATION AN		NT DATA	
Date:	H- 8- 2021		Site Name:	Newby	
Inspector(s):	Cody, G		Instrument:	TVA 2020	
WEATHER OE	SERVATIONS				
Wind Speed	н. 14 мрн	Wind Direction: NW	_	Barometric Pressure: <u>3</u> 0	"Hg
A Temperature	1	General Weathe Conditions	clear	-	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate t	brate the instrument. Make a he average algebraic difference be less than or equal to $10\% $ o ial Number: $54/9$	e between the instrument	reading and the		age. The calibration
Trial	Zero Air Reading	Cal Gas Reading		ConcCal Gas Reading	Response Time (seconds)
1	, O	500	I I Cal Gas (D	Hesponse Time (seconds)
2	. 0	498		7	4
3		501		1	И
		= 100%- = 99,5-	2 ,3 %	_/500 x 100%	
Span Sensitivity					
Frial 1:	ounts Observed for the Span=	156038	Trial 3: Cou	nts Observed for the Span=	156288
Соц	unters Observed for the Zero=	49 57	Coun	ters Observed for the Zero=	4923
rial 2: C	ounts Observed for the Span=	156182			
Cou	unters Observed for the Zero=	49 63			
ost Monitoring	Calibration Check				
ero Air	0	Cal Gas	600		
eading:	ppm	Reading;	500	_ppm	
ACKGROUND	CONCENTRATIONS CHECKS				
pwind Location	n Description:	HOVE	~		ppm
ownwind Loca	tion Description:	Chridt	-	Reading: 14	opm
lotes:	Wind speed averages were of exceeded 20 miles per hour.	No rainfall had occurred w	ithin the previou		g event. Therefore, site

1		SURFACE EMISSI			
		CALIBRATION AN	DPERIMEN		
Date:	4-5-2021		Site Name:	Wewby	
Inspector(s):	Hunter O.		Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS				
Wind Speed:	_ <i>LU</i> MPH	Wind Direction: NW	_	Barometric Pressure: <u>30</u>	"Hg
Air Temperature:	65 °F	General Weathe Conditions	: Clean	_	
CALIBRATION I	NFORMATION				
Pre-monitoring C	Calibration Precision Check				
	e average algebraic difference e less than or equal to 10% c Number: 54		-	calibration gas as a percent	age. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (secon
1	ot	500		0	4
2					
	اد	uaq			2
3	.0 -	503 Average Difference:	Perform recalibration	3 2 If average difference is greater than :	4
3		503 Average Difference:		2	4
3	.0 -	Average Difference:		2 If average difference is greater than 3	4
3 Calibration Precis	.0 -	Average Difference: I Gas Conc. X 100% = 100%-	~ %	2 If average difference is greater than 3	4
3 Calibration Precis Span Sensitivity: Trial 1:	ion= Average Difference/Ca	Average Difference: I Gas Conc. X 100% = 100%- = 99.6	% <u>Trial 3:</u>	2 If average difference is greater than : /500 x 100%	4
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cοι	ion= Average Difference/Ca unts Observed for the Span=	Average Difference: I Gas Conc. X 100% = 100%- = $9Q.6$ = $12/2 98$	% Trial 3:	2- If average difference is greater than /500 x 100%	4 10 120 9 98
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cou <u>Coun</u> Trial 2:	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero=	Average Difference: I Gas Conc. X 100% = 100%- = 99.6 = $12/2 98$ = 3845	% Trial 3:	2 If average difference is greater than : /500 x 100%	4
3 Calibration Precis Span Sensitivity: Trial 1: Cou Trial 2: Cou	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero=	Average Difference: I Gas Conc. X 100% = 100%- = 99.6 = $12/2 98$ = 3845 = 120990	% Trial 3:	2- If average difference is greater than /500 x 100%	4 10 120 9 98
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cou <u>Coun</u> Trial 2: Cou	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero= unts Observed for the Span= ters Observed for the Span=	$\frac{503}{4 \text{ verage Difference:}}$ $I \text{ Gas Conc. X 100\%} = 100\% = 99.6$ $= 12/2 98$ $= 3845$ $= 12090$	% Trial 3:	2- If average difference is greater than /500 x 100%	4 10 120 9 98
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cou <u>Coun</u> Trial 2: Cou Post Monitoring C	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero= unts Observed for the Span= ters Observed for the Span=	$\frac{503}{\text{Average Difference:}}$ $I \text{ Gas Conc. X 100\%}$ $= 100\%$ $= 99.6$ $\frac{121298}{3845}$ $\frac{3845}{56}$	% Trial 3:	2- If average difference is greater than /500 x 100%	4 10 120 9 98
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cou <u>Coun</u> <u>Trial 2:</u> Cou <u>Coun</u>	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero= unts Observed for the Span= ters Observed for the Span=	Average Difference: I Gas Conc. X 100% = 100%- = 99.6 = $12/2 98$ = 3845 = 120990	7 %	2- If average difference is greater than /500 x 100%	4 10 120 9 98
3 Calibration Precis Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Coun Post Monitoring C Zero Air Reading:	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero= unts Observed for the Zero= ters Observed for the Zero= Calibration Check	$\frac{503}{\text{Average Difference:}}$ $I \text{ Gas Conc. X 100\%} = 100\% = 99.6$ $= 99.6$ $= 12/2 98$ $= 3845$ $= 120990$ $= 3856$ Cal Gas Reading:	7 %	2 If average difference is greater than /500 x 100% Ints Observed for the Span= ers Observed for the Zero=	4 10 120 9 98
3 Calibration Precis Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Post Monitoring C Zero Air Reading:	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero= unts Observed for the Span= ters Observed for the Zero= Calibration Check	$\frac{503}{\text{Average Difference:}}$ $I \text{ Gas Conc. X 100\%} = 100\% = 99.6$ $= 99.6$ $= 12/2 98$ $= 3845$ $= 120990$ $= 3856$ Cal Gas Reading:	77 ial 3: Counte	2 If average difference is greater than : /500 x 100% Ints Observed for the Span= ers Observed for the Zero= ppm	4 10 120 9 98

					Post
		SURFACE EMISSI			
			DPERTINEN	A . (
Date:	4-8-20	<u>u</u>	Site Name:	Newle	24
inspector(s):	- Von G		Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed:	LY MPH	Wind Direction: MW)	Barometric Pressure: 3	⊖ "нg
Air Temperature:		General Weather Conditions		(
CALIBRATION I	INFORMATION				
Pre-monitoring	Calibration Precision Check				
		e a total of three measuremen nce between the instrument i			
		of the calibration gas value.			
Instrument Seria	Number:	20		Cal Gas Concentra	ation: 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (sec
1	.2	502		2	B
2	.\	499		7	5
		= 100%-	1.6	/500 x 100%	
		=001	%		
		- 991. (70		
Span Sensitivity: Frial 1:			Trial 2.		
Co	unts Observed for the Spar	=143275	Trial 3: Coun	ts Observed for the S	Span= 1435
and the second se	nters Observed for the Zero	= 3847	Counte	ers Observed for the	zero= 38 91
Con	unts Observed for the Spar	=143871			
Cour	nters Observed for the Zerc	= 38 63			
ost Monitoring (Calibration Check				
ero Air	-	Cal Gas			
Reading:	ppm	Reading:	500	ppm	
BACKGROUND	CONCENTRATIONS CHEC	кs			
pwind Location	Description:	Chride	ŧ.	Reading: $_{\cdot} _{\cdot} $	ppm
ownwind Locatio	on Description:	Florre	6 F	Reading: 4	6_ppm
e		observed to remain below th r. No rainfall had occurred wi			
					-
a prove series	neteorological conditions	were within the requested alt	ernatives of the L		n the above mentioned date.

			Post
	SURFACE EMISSIO	ONS MONITORING	
	CALIBRATION AND	D PERTINENT DATA	
4-95-20	\mathcal{X}	Site Name: Newby	
Date: 10 ad		Site Name:	
Inspector(s): Bryon	0	Instrument: TVA 2020	
WEATHER OBSERVATIONS		-	
Wind Speed: 4 MPH	Wind Direction: M	Barometric Pressure: <u>30</u>	нд
Air Temperature: 65 "F	General Weather Conditions:	clear	
CALIBRATION INFORMATION			
Pre-monitoring Calibration Precision Checl	k		
	ence between the instrument r	ts by alternating zero air and the calibratio eading and the calibration gas as a percent	
Instrument Serial Number:	15	Cal Gas Concentration:	500ppm
Trial Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1 2	499	1	-5
2	500	Ð	4
3 .	501	\mathbf{i}	5
	= 100%- = 9.9.8	/500 x 100%	
•	= /((, ()	%	
pan Sensitivity: rial 1:		Trial 3:	10 - T - T - T - T - T - T - T - T - T -
Counts Observed for the Spa	n=112389	Counts Observed for the Span=	112512
Counters Observed for the Zer	-3106	Counters Observed for the Zero=	3159
rial 2: Counts Observed for the Spa	n=112671		
Counters Observed for the Zer	= 3123		
ost Monitoring Calibration Check			
ero Air	Cal Gas		
eading:ppm	Reading:	<u> </u>	
ACKGROUND CONCENTRATIONS CHEC	CKS	N C 1	
pwind Location Description:	1511121	Reading: 1. M	ppm
ownwind Location Description:	1- are	Reading:	ppm
exceeded 20 miles per hou	ir. No rainfall had occurred wi	e alternative requested 10 miles per hour a thin the previous 24 hours of the monitorir ernatives of the LMR requirements on the a	g event. Therefore, site
	Plan Andreas and and	Deter Clarker St	W1

					YON
		SURFACE EMISSI			
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	4-8-20	21	Site Name:	Newba	1
nspector(s):	Ryan	H	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed		Wind Direction: <u>// / / / / / / / / / / / / / / / / / </u>)	Barometric Pressure: <u>30</u>	"Нg
Air Temperature		General Weathe Conditions	· · · · ·	1	
ALIBRATION	INFORMATION				
re-monitoring	Calibration Precision Check				
nd calculate th	prate the instrument. Make be average algebraic differen be less than or equal to 10%	ce between the instrument			
nstrument Seria	al Number: <u>59</u>	121		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds
1		500		0	M
2	.0	502		2	
3	-0 -	501	1	\backslash	3
		= 100%-	(_/500 x 100%	
		= 99-8	%		
pan Sensitivity:					
rial 1.	ounts Observed for the Span-	169392	Trial 3: Cou	nts Observed for the Span-	169817
	nters Observed for the Zero-	00 -	Count	ers Observed for the Zero=	4079
rial 2:	unts Observed for the Span-	170 0110	count		
	nters Observed for the Zero=	00 01			
ost Monitoring (Calibration Check				
ero Air	_	Cal Gas			
eading: -	ppm	Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECK	S			
pwind Location	Description:	chridl		Reading: 1.3	ppm
ownwind Locati	on Description:	Flare		Reading:	ppm
	Wind speed averages were c exceeded 20 miles per hour.				

I

Date: Inspector(s):		CALIBRATION AND	D PERTINENT DATA	PIP-
	H-g-al	CALIBRATION AN		
Inspector(s):			Site Name: Neuby	
	DonGibson		Instrument: TVA 2020	
WEATHER OBSERV	ATIONS			
Wind Speed:	ИМРН	Wind Direction:	Barometric Pressure: 29.9	"Hg
Air Temperature:	<u>58_</u> *F	General Weather Conditions:	and the second se	
CALIBRATION INFO	DRMATION		cloudt	
re-monitoring Calib	ration Precision Check			
nd calculate the ave	erage algebraic differenc is than or equal to 10% oj	e between the instrument r f the calibration gas value	nts by alternating zero air and the calibration reading and the calibration gas as a percenta Cal Gas Concentration:	gas. Record the redaing ge. The calibration 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (secon
1	0	501	(3
2	0	500	0	3
3	0	500	6	3
ilibration Precision=	- Average Difference/Cal		*Perform recalibration if average difference is greater than 10	
alibration Precision=	- Average Difference/Cal		*Perform recalibration if average difference is greater than 10	
alibration Precision=	- Average Difference/Cal	Gas Conc. X 100%	*Perform recalibration if average difference is greater than 10	
pan Sensitivity:	- Average Difference/Cal	Gas Conc. X 100% = 100%-	*Perform recalibration if average difference is greater than 10	
pan Sensitivity: ial 1:	- Average Difference/Cal Observed for the Span=	Gas Conc. X 100% = 100%- = 99.9	*Perform recalibration if average difference is greater than 10	168306
pan Sensitivity: ial 1: Counts	Observed for the Span=	Gas Conc. X 100% = 100%- = 99.9	*Perform recalibration if average difference is greater than 10 /500 x 100% % Trial 3: Counts Observed for the Span=	168306
oan Sensitivity: ial 1: Counts Counters ial 2:		Gas Conc. X 100% = 100%- = 99.9	*Perform recalibration if average difference is greater than 10 - <u>3</u> /500 x 100% % Trial 3:	
oan Sensitivity: ial 1: Counts Counters ial 2: Counts	Observed for the Span= Observed for the Zero=	Gas Conc. X 100% = 100%- = 99.9	*Perform recalibration if average difference is greater than 10 /500 x 100% % Trial 3: Counts Observed for the Span=	168306
oan Sensitivity: ial 1: Counts Counters ial 2: Counts	Observed for the Span= Observed for the Zero= Observed for the Span= Observed for the Zero=	Gas Conc. X 100% $= 100%$ $= 99.9$ 168309 3912 168319 $= 8.87$	*Perform recalibration if average difference is greater than 10 /500 x 100% % Trial 3: Counts Observed for the Span=	168306
an Sensitivity: ial 1: Counts Counters ial 2: Counts Counters st Monitoring Calibr	Observed for the Span= Observed for the Zero= Observed for the Span= Observed for the Zero=	Gas Conc. X 100% $= 100%$ $= 99.9$ 168309 3912 168319 $= 8.87$	*Perform recalibration if average difference is greater than 10 /500 x 100% % Trial 3: Counts Observed for the Span=	168306
an Sensitivity: ial 1: Counts Counters al 2: Counts Counters st Monitoring Calibr	Observed for the Span= Observed for the Zero= Observed for the Span= Observed for the Zero=	Gas Conc. X 100% $= 100%$ $= 99.9$ 168309 3912 168314 3897	*Perform recalibration if average difference is greater than 10 /500 x 100% % Trial 3: Counts Observed for the Span=	168306
aan Sensitivity: ial 1: Counts Counters ial 2: Counts of Counters st Monitoring Calibr ro Air ading:	Observed for the Span= Observed for the Zero= Observed for the Span= Observed for the Zero= ration Check	Gas Conc. X 100% = 100%- = 99.9 168309 3912 168314 3897 Cal Gas	*Perform recalibration if average difference is greater than 10 	168306
aan Sensitivity: ial 1: Counts Counters ial 2: Counters st Monitoring Calibr ro Air ading:	Observed for the Span= Observed for the Zero= Observed for the Span= Observed for the Zero= ration Check	Gas Conc. X 100% = 100%- = 99.9 168309 3912 168314 3897 Cal Gas	*Perform recalibration if average difference is greater than 10 3 /500 x 100% 7 Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	168306

Terate to constantion

Claire Bill

		SURFACE EMISS			Post
Date:	4-9-21		Site Name:	Newby	
Inspector(s)	Don Gibson			VA 2020	
ine l'al					
WEATHER	OBSERVATIONS				
Wind Sp	eed: MPH	Wind E		arometric Pressure: 299	"Hg
Temperat	Air ure: <u>63</u> °F	General Weathe Conditions			
CALIBRATIC	ON INFORMATION		Cloudy		
Pre-monitori	ing Calibration Precision Check				
recision mu	e the average algebraic difference ast be less than or equal to 10% of erial Number:			ration gas as a percento	age. The calibration 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas Conc.	-Cal Gas Reading	Response Time (second
1	1	500	0	>	4
2	8	561	1		5
		500	0		-
		= 100%- = 99,9	<u>3</u> /500) x 100%	
oan Sensitivi	tv:				
ial 1:	Counts Observed for the Span=	169446	Trial 3: Counts O	bserved for the Span=_	169450
С	ounters Observed for the Zero=	3789	Counters O	bserved for the Zero=	2780
ial 2:	Counts Observed for the Span=	169433	eounters o		
Ci	ounters Observed for the Zero≃	3792			
ost Monitorir	ng Calibration Check				
ro Air		Cal Gas	600		
ading:	D ppm	Reading:	<u> </u>		
CKGROUN	D CONCENTRATIONS CHECKS				
wind Location	on Description:	Gridt	Read	ling: 1.2 p	pm
wnwind Loc	ation Description:	Flare	Read	ling: 1.5_p	pm
otes:	Wind speed averages were ob exceeded 20 miles per hour.	served to remain below th	e alternative requeste	ed 10 miles per hour an	d no instantaneous speed

meteororogical	conditions wer	e within the	requested t	arcematives of	THE LIMIT	requirements on	the above m	enuo

n

Line to want R. 1 - S LAUROW

		CALIBRATION AND	DNS MONIT		Pre
Date: –	4-9-21		Site Name:	Newby	
Inspector(s);	Lian Mel	nn	Instrument	TVA 2020	
WEATHER OBSE	RVATIONS			14	
Wind Speed:	<u>Ч</u> мрн	Wind Direction: E		Barometric Pressure: 29,9	"Hg
Air Temperature:	58 .	General Weather Conditions:	Partly		
CALIBRATION IN	FORMATION		Cioudy		
're-monitoring Ca	libration Precision Check				
	ess than or equal to 10% oj	e between the instrument re the calibration gas value. 5	ading and the ca	Cal Gas Concentration:	500ppm
rial 1	Zero Air Reading	Cal Gas Reading	Cal Gas Co	ncCal Gas Reading	Response Time (second
2	0	500		2	3
3	Ĭ	501		1	3
libration Precisio	n= Average Difference/Cal	Gas Conc. X 100%			
libration Precisio	n= Average Difference/Cal	Gas Conc. X 100% = 100% = 999,8%		500 x 100%	
an Sensitivity:	n= Average Difference/Cal	= 100%		500 x 100%	
an Sensitivity: ial 1:	n= Average Difference/Cal	= 100% = 99,8%	6 Trial 3:	500 x 100% s Observed for the Span=_	139330
oan Sensitivity: ial 1: Count Counte		= 100%- = 99,8 %	6 T <u>rial 3:</u> Counts		139330 4669
an Sensitivity: ial 1: Count Counte	s Observed for the Span=	= 99.8 %	6 T <u>rial 3:</u> Counts	s Observed for the Span=_	139330 4669
an Sensitivity; ial 1: Count Counte al 2: Count	s Observed for the Span= rs Observed for the Zero=	= 100%- = 99,8 % 139317 4661	6 T <u>rial 3:</u> Counts	s Observed for the Span=_	139330 4669
oan Sensitivity: ial 1: Count Counte ial 2: Counte	s Observed for the Span= rs Observed for the Zero= s Observed for the Span= rs Observed for the Zero=	= 99.8 % $= 100%$ $= 99.8 %$ 139.317 $= 4661$ $= 139.323$	6 T <u>rial 3:</u> Counts	s Observed for the Span=_	139330 4669
an Sensitivity: ial 1: Counte Counte counter Counter st Monitoring Cali	s Observed for the Span= rs Observed for the Zero= s Observed for the Span= rs Observed for the Zero=	= 100%- = 99,8 % 139317 I 4661 139323 4658 Cal Gas	6 T <u>rial 3:</u> Counts	s Observed for the Span=_	139330 4669
an Sensitivity: ial 1: Counte Counte ial 2: Counter st Monitoring Cali ro Air ading:	ts Observed for the Span= rs Observed for the Zero= s Observed for the Span= rs Observed for the Zero= bration Check	= 100%- = 99,8 % 139317 4661 139323 4658	6 T <u>rial 3:</u> Counter Counter	s Observed for the Span=_	139330 4669
an Sensitivity: ial 1: Counte Counte ial 2: Counter st Monitoring Cali ro Air ading:	ts Observed for the Span= rs Observed for the Zero= s Observed for the Span= rs Observed for the Zero= bration Check	$= 100\% - \frac{100\% - 0\% - 0\% - 0\% - 0\%}{0\% - 0\%}}{00\% - 0\% - 0\% - 0\% - 0\%}{0\% - 0\%}}}}}}}}}}}}}}}}}}}}}$	6 T <u>rial 3:</u> Counter Counter	s Observed for the Span= s Observed for the Zero=_	139330 4669
an Sensitivity: ial 1: Counte al 2: Counter Counter St Monitoring Cali o Air ading: CKGROUND COI	s Observed for the Span= <u>rs Observed</u> for the Zero= s Observed for the Span= <u>rs Observed for the Zero=</u> bration Check <u>ppm</u> VCENTRATIONS CHECKS	= 100%- = 99,8 % 139317 I 4661 139323 4658 Cal Gas Reading: 	6 Trial 3: Counter Counter	s Observed for the Span= s Observed for the Zero=	139330 4669
ban Sensitivity: ial 1: Counte Counte ial 2: Counter St Monitoring Cali ro Air ading:	ts Observed for the Span= rs Observed for the Zero= s Observed for the Span= rs Observed for the Zero= bration Check ppm VCENTRATIONS CHECKS scription:	$= 100\% - \frac{100\% - 0\% - 0\% - 0\% - 0\%}{0\% - 0\%}}{00\% - 0\% - 0\% - 0\% - 0\%}{0\% - 0\%}}}}}}}}}}}}}}}}}}}}}$	6 Trial 3: Counter Counter	s Observed for the Span= s Observed for the Zero= om eading: $1/2$ p	4669

Parate in an inclusion of the

		CALIBRATION A	SIONS MONI		Post
Date:	4-9-2	1	Site Name:	Newby	
Inspector(s):	LIAM McG	117	Instrument:	TVA 2020	
WEATHER	BSERVATIONS				
Wind Spe	ed: МРН	Wind E		Barometric Pressure: 29-9	"Hg
Temperatu	Air63*F	General Weat Conditio	her ons: <u>Partly</u>	-	
CALIBRATIO	N INFORMATION		Cloudy		
re-monitorir	ng Calibration Precision Check				
precision mus	the average algebraic difference t be less than or equal to 10% of rial Number:			calibration gas as a percento Cal Gas Concentration	age. The calibration 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (secon
1 2	6	501	-	1	5.
3	0	502		2	3
libration Pre	cision= Average Difference/Cal	Average Difference: Gas Conc. X 100%	*Perform recalibratio	n if average difference is greater than 1	0
alibration Pre	cision= Average Difference/Cal	Gas Conc. X 100% = 1009	%	/500 x 100%	0
alibration Pre		Gas Conc. X 100%	%		0
oan Sensitivit rial 1:		Gas Conc. X 100% = 1009	%- <u>(, 3</u> 7 % <u>Trial 3:</u>		140367
pan Sensitivit rial 1: Cc	ý:	Gas Conc. X 100% = 100° = 997-7	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100%	
pan Sensitivit rial 1: Cc ial 2:	y: Counts Observed for the Span=	Gas Conc. X 100% = 100° = 997-7	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% hts Observed for the Span=	
pan Sensitivit ial 1: Co ial 2:	y: Counts Observed for the Span= punters Observed for the Zero=	Gas Conc. X 100% = 1009 = 99-7 140365 4411	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% hts Observed for the Span=	
ban Sensitivit tial 1: Co tial 2: Co Co	y: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span=	Gas Conc. X 100% = 1009 = 99-7 140365 4411 140352	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% hts Observed for the Span=	
ban Sensitivit tial 1: Co tial 2: Co Co	y: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= unters Observed for the Zero=	Gas Conc. X 100% = 1009 = 99-7 140365 4411 140352	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% hts Observed for the Span=	
ban Sensitivit rial 1: Co ial 2: Co ost Monitorin	y: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= unters Observed for the Zero=	Gas Conc. X 100% = 1009 = 99-7 140365 4411 140352 4418	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% hts Observed for the Span=	
oan Sensitivit ial 1: Co ial 2: Co ost Monitorin ro Air ading:	y: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= unters Observed for the Zero= g Calibration Check	Gas Conc. X 100% = 100° = 99-7 140365 4411 140352 4418 Cal Gas	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% nts Observed for the Span=_ ers Observed for the Zero=	
ban Sensitivit rial 1: Co rial 2: Co ost Monitorin ro Air rading: ACKGROUNE	counts Observed for the Span= nunters Observed for the Zero= Counts Observed for the Span= unters Observed for the Zero= g Calibration Check	Gas Conc. X 100% = 100° = 99-7 140365 4411 140352 4418 Cal Gas	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% nts Observed for the Span=_ ers Observed for the Zero=	
oan Sensitivit ial 1: Co ial 2: Co ost Monitorin ro Air ading:	counts Observed for the Span= nunters Observed for the Zero= Counts Observed for the Span= unters Observed for the Zero= g Calibration Check	Gas Conc. X 100% = 100° = 99-7 140365 4411 140352 4418 Cal Gas	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% nts Observed for the Span=_ ers Observed for the Zero=	

· · · · · · · · · · · · · · · · · · ·			ONS MONITORING		Pre
Date:	4-9-2			ew by	
nspector(s):	Bryan och	100	Instrument: TVA 202		
VEATHER OBS				~	
Wind Speed	. <u> </u>	Wind Direction:E	Baromet Pressu	1-7-(1	"Hg
Air Temperature:	58	General Weather Conditions:	Partly		
ALIBRATION	INFORMATION		Cloudy		
re-monitoring	Calibration Precision Check				
nd calculate th	arate the instrument. Make of e average algebraic difference e less than or equal to 10% of all Number:	ce between the instrument <mark>r</mark>	eading and the calibration g		
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Ga	s Reading	Response Time (secon
1	0	501	1		4
		500	0		
3 Ilibration Precis	O sion= Average Difference/Cal	Average Difference:	- 3 *Perform recalibration if average diffe	rence is greater than 10	
	O	Average Difference:	<u>13</u> /500 x 100		
alibration Precis	O	Average Difference:			
libration Precis an Sensitivity: ial 1:	sion= Average Difference/Cal	500 Average Difference: Gas Conc. X 100% = 100%- = 9,9,9	<u>13</u> /500 x 100	%	138188
an Sensitivity:		500 Average Difference: Gas Conc. X 100% = 100%- = 9,9,9	<u>;</u> <u>;</u> /500 x 100 % Trial <u>3:</u>	% d for the Span=	<u>3</u> 138188 3392
alibration Precis oan Sensitivity: ial 1: Cour ial 2:	unts Observed for the Span=	Average Difference: Gas Conc. X 100% = 100% = 99,9 138199 3379	<u>3</u> /500 x 100 % <u>Trial 3:</u> Counts Observed	% d for the Span=	<u>3</u> 138188 3392
alibration Precis an Sensitivity: ial 1: Cour ial 2: Cou	unts Observed for the Span= nters Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100% = 99,9 138199 3379	<u>3</u> /500 x 100 % <u>Trial 3:</u> Counts Observed	% d for the Span=	<u>3</u> <u>138188</u> <u>3392</u>
alibration Precis an Sensitivity: ial 1: Cour ial 2: Cour Cour	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	Average Difference: Gas Conc. X 100% = 100% = 99,9 138199 138179 138178	<u>3</u> /500 x 100 % <u>Trial 3:</u> Counts Observed	% d for the Span=	<u> </u>
an Sensitivity: ial 1: Cour Cour al 2: Cour St Monitoring C To Air	unts Observed for the Span= iters Observed for the Zero= unts Observed for the Span= iters Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100% = 99,9 138199 138179 138178	<u>3</u> /500 x 100 % <u>Trial 3:</u> Counts Observed	% d for the Span=	<u>3</u> <u>138188</u> <u>3392</u>
alibration Precis an Sensitivity: ial 1: Cour ial 2: Cour st Monitoring C ro Air ading:	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	Average Difference: Gas Conc. X 100% = 100%- = 9,9,9 138,179 138,178 3380 Cal Gas Reading:	<u>7500 x 100</u> % <u>Trial 3:</u> Counts Observed <u>Counters Observe</u>	% d for the Span=	<u>- 5</u> <u>138188</u> 3392
an Sensitivity: an Sensitivity: al 1: Cour al 2: Cour cour st Monitoring C ro Air ading:	unts Observed for the Span= <u>iters Observed for the Zero=</u> unts Observed for the Span= <u>iters Observed for the Zero=</u> Calibration Check ppm CONCENTRATIONS CHECKS	Average Difference: Gas Conc. X 100% = 100%- = 9,9,9 138,179 138,178 3380 Cal Gas Reading:	<u>7500 x 100</u> % <u>Trial 3:</u> Counts Observed <u>Counters Observe</u>	% d for the Span=	

ALAN A. ALANA

CILLAN - RIVE

. e		SURFACE EMISSI			Post
Date:	4-9-2	-1	Site Name:	Newby	
Inspector(s):	Bryan oc	hoa	Instrument:	TVA 2020	
WEATHER OBSE	RVATIONS				
Wind Speed:	<u> </u>	Wind Direction:E		Barometric Pressure: 299	Hg
Air Temperature:	63 .	General Weathe Conditions		2	
ALIBRATION IN	IFORMATION		Cloudy		
re-monitoring Ca	libration Precision Check				
	less than or equal to 10% o	ce between the instrument of the calibration gas value. 15		calibration gas as a percent	age. The calibration 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (second
1 2	0	500		0	52
3	0	601		1	3
libration Precisio	on= Average Difference/Ca		- 7	/500 x 100%	
		= 99,8	%		
an Sensitivity:			T		
<u>ial 1:</u> Cour	nts Observed for the Span=	141226	Trial 3: Cour	nts Observed for the Span=	141245
	ers Observed for the Zero=	3188	Count	ers Observed for the Zero=	3192
ial 2: Coun	its Observed for the Span=	141237			
Counte	ers Observed for the Zero=	3174			
st Monitoring Ca	libration Check				
ro Air		Cal Gas	K .		
ading:	ppm	Reading:	500	ppm	
CKGROUND CO	NCENTRATIONS CHECK				
wind Location De	escription:	Grid I Flare	69	Reading: 1/2	mqc
wnwind Location	Description	Flare		Reading: 1.5	pm
		bserved to remain below th No rainfall had occurred w			

in an

Statut of Bull

		SURFACE EMISSIC			PR
Date:	4-9-2-		Site Name:	Newby	
Inspector(s);	Huntero	TT	Instrument:	TVA 2020	
WEATHER O	BSERVATIONS			+	
Wind Spee	еd: МРН	Wind Direction: <u> </u>		Barometric Pressure: 29, 4	₹ "Hg
م Temperatur		General Weather Conditions:	Partly cloudy		
	INFORMATION		,		
re-monitoring	g Calibration Precision Check				
	the average algebraic differen be less than or equal to 10% of rial Number:		eading and the c	alibration gas as a percer Cal Gas Concentration:	tage. The calibration
rial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (seconds
1	.0	501		1.	3
2		500 501		0	3
		= 100% = 99,3	•7	/500 x 100%	
an Sensitivity	<i>n</i> .	- 99 B	-7	/500 x 100%	
oan Sensitivity ial 1: C	rounts Observed for the Span=	= 99,8 =	% Trial 3:	/500 x 100% ts Observed for the Span=	163796
<u>ial 1:</u> Ci Cou		= 99,8 =	% T <u>rial 3:</u> Coun		1 - 10
ial 1: Co Cou ial 2:	ounts Observed for the Span=	= 99,8 = 163788 1344	% T <u>rial 3:</u> Coun	ts Observed for the Span-	1 - 10
ial 1: Cou <u>Cou</u> ial 2: Cou	ounts Observed for the Span= unters Observed for the Zero=	= 99,8 = 163788 1344	% T <u>rial 3:</u> Coun	ts Observed for the Span-	1 - 10
ial 1: Cοι ial 2: Cοι Cοι	ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span=	= 99,8 = 163788 1349 163801	% T <u>rial 3:</u> Coun	ts Observed for the Span-	1 - 10
ial 1: Cοι ial 2: Cοι Cοι	ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero=	= 99,8 = 163788 1349 163801	Gounte	ts Observed for the Span-	1 - 10
ial 1: Cou ial 2: Cou St Monitoring ro Air ading:	Counts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= g Calibration Check	= 99,8 9 <u>163788</u> <u>1344</u> <u>163801</u> <u>163801</u> <u>4328</u> Cal Gas Reading:	Gounte	ts Observed for the Span= rs Observed for the Zero=	1 - 10
ial 1: Cou ial 2: Cou st Monitoring ro Air ading:	Counts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= g Calibration Check	= 99,8 9 <u>163788</u> <u>1344</u> <u>163801</u> <u>163801</u> <u>4328</u> Cal Gas Reading:	К Trial 3: Counte	ts Observed for the Span= rs Observed for the Zero=	1 - 10
ial 1: Cou ial 2: Cou st Monitoring ro Air ading: CKGROUND wind Locatior	Counts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check	= 99,8 =	⁶ Trial 3: Counte Counte	ts Observed for the Span= rs Observed for the Zero=	4319

Party a state of the state The second s 6 33

		CALIBRATION AN		IT DATA	Post
Date:	4-9-21		Site Name:	Newby	
Inspector(s):	Hunter off		Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS			4	
Wind Speed:	6 мрн	Wind Direction:		Barometric Pressure: 29-9	"Hg
Air Temperature:	<u>63</u> °F	General Weather Conditions:	Partly	-	
CALIBRATION I	NFORMATION		Cloud 1		
rocedure: Calibi	Calibration Precision Check rate the instrument. Make a t				
	e average algebraic difference e less than or equal to 10% of		eading and the	calibration gas as a percent	age. The calibration
nstrument Serial	Number: 542	0		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (second
1	0	501			3
2 3	9	501			3
		= 100%-	%	/500 x 100%	
an Sensitivity:			70		
ial 1:	ints Observed for the Span=_	165199	Trial <u>3:</u> Cour	its Observed for the Span=	165186
Count	ters Observed for the Zero=	4271	Count	ers Observed for the Zero=	4284
	ints Observed for the Span=	165204			
Count	ters Observed for the Zero=	4305			
st Monitoring C	alibration Check				
ro Air	6	Cal Gas	1000		
ading:	ppm	Reading:	500	ppm	
	ONCENTRATIONS CHECKS				
wind Location D	Description:	Gridl		Reading: 1.2	pm
wnwind Locatio	n Description:	Flare		Reading: 1.5	pm

meteorological conditions were within the requested alternatives of the Livik requirements on the above

		SURFACE EMISSIC			Pre
Date:	4-9-2		Site Name:	Newby	
Inspector(s):	Pablo Rive		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	нМРН	Wind Direction:E		Barometric Pressure: 29-9	"Нg
Ai Temperature	5 75	General Weather Conditions:	Partly	-	
CALIBRATION	INFORMATION		Cloudy		
Pre-monitoring	Calibration Precision Check				
	ne average algebraic difference be less than or equal to 10% o al Number:		eading and the	calibration gas as a percen Cal Gas Concentration:	tage. The calibration
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
2	0	501		1	3
3	0	500		0	2
alibration Preci	sion= Average Difference/Cal	Gas Conc. X 100%	*Perform recalibration	n if average difference is greater than	10
alibration Preci	sion= Average Difference/Cal		*Perform recalibration	n if average difference is greater than /500 x 100%] 10
alibration Preci pan Sensitivity:	sion= Average Difference/Cal	Gas Conc. X 100% = 100%	* Perform recalibration] 10
oan Sensitivity: i al 1: Co	unts Observed for the Span=	Gas Conc. X 100% = 100% = $99/8$	% Frial 3: Cour	_/500 x 100% hts Observed for the Span=	[7824]
pan Sensitivity: ial 1: Co Cour		$Gas Conc. X 100\% = 100\% - 100\% - \frac{100\% - 0\% - 0\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% $	% Frial 3: Cour	_/500 x 100%	[7824]
oan Sensitivity: ial 1: Co <u>Cour</u> ial 2: Co	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	Gas Conc. X 100% = 100% = $99/8$	% Frial 3: Cour	_/500 x 100% hts Observed for the Span=	[7824]
<mark>ial 1:</mark> Co <u>Cour</u> Cour <u>ial 2:</u> Co Cour	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	$Gas Conc. X 100\% = 100\% - 100\% - \frac{100\% - 0\% - 0\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% $	% Frial 3: Cour	_/500 x 100% hts Observed for the Span=	[7824]
oan Sensitivity: ial 1: Co <u>Cour</u> ial 2: Co Cour est Monitoring (unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	$Gas Conc. X 100\% = 100\% - 100\% - \frac{100\% - 0\% - 0\% - 00\% - 00\% - 0\% - 0\% - 0$	% Frial 3: Cour	_/500 x 100% hts Observed for the Span=	[7824]
<mark>ial 1:</mark> Co <u>Cour</u> Cour <u>ial 2:</u> Co Cour	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	$Gas Conc. X 100\% = 100\% - 100\% - \frac{100\% - 0\% - 0\% - 00\% - 00\% - 0\% - 0\% - 0$	% Frial 3: Cour	_/500 x 100% hts Observed for the Span=	[7824]
oan Sensitivity: ial 1: Co <u>Cour</u> ial 2: Co cour est Monitoring (ro Air ading:	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	Gas Conc. X 100% = 100% - = $99/8$ 178226 3867 178256 3871 Cal Gas Reading:	% Frial 3: Cour	_/500 x 100% nts Observed for the Span= ers Observed for the Zero=	[7824]
oan Sensitivity: ial 1: Co <u>Cour</u> ial 2: Co cour est Monitoring (ro Air ading:	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	Gas Conc. X 100% = 100%- = 99,8 178226 3867 178256 3871 Cal Gas Reading: Grid 1	% Frial 3: Count Count	_/500 x 100% nts Observed for the Span= ers Observed for the Zero=	[7824]
ban Sensitivity: ial 1: Co Cour ial 2: Co Cour est Monitoring (ro Air ading: CKGROUND (wind Location	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	Gas Conc. X 100% = 100% - = $99/8$ 1782-26 3867 1782-56 3871 Cal Gas Reading:	% Frial 3: Count Count	_/500 x 100% hts Observed for the Span= ers Observed for the Zero=	[7824] 3866

Reals a real and real of the Ston to a Marine

h			SIONS MONITORING	Post
	11 0			
Date:			Site Name: New L	24
inspector(s):	Pablo Rive	ra	Instrument:TVA 2020	
WEATHER OBS	ERVATIONS			
	ſ	Wind P	Barometric	
Wind Speed:	МРН	Direction:	Pressure: 2	9,9 "Hg
Air Temperature:	63	General Weath		
the same of sector		Condition	Claudy	
CALIBRATION I	NFORMATION		-load y	
Pre-monitoring C	Calibration Precision Check			
Procedure: Calibi	rate the instrument. Make	a total of three measurem	ents by alternating zero air and the ca	libration gas. Record the reading
and calculate the	e average algebraic differen	ce between the instrumen	t reading and the calibration gas as a j	percentage. The calibration
precision must be	e less than or equal to 10% o		2	
Instrument Serial	Number 54	21	Cal Gas Concentr	ation: 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Readin	g Response Time (second
1 2	0	502	2	3
3	1	500	0	2
Calibration Precisi	ion= Average Difference/Ca	Average Difference: Il Gas Conc. X 100% = 100%	Perform recalibration if average difference is gre	ater than 10
Calibration Precisi	ion= Average Difference/Ca	I Gas Conc. X 100% = 100% = 99 7	*Perform recalibration if average difference is gre	ater than 10
	ion= Average Difference/Ca	l Gas Conc. X 100%	*Perform recalibration if average difference is gre	ater than 10
Calibration Precisi Span Sensitivity: Trial 1:	ion= Average Difference/Ca	I Gas Conc. X 100% = 100% = 99 7	*Perform recalibration if average difference is gre	ater than 10
ipan Sensitivity: T rial 1:	ion= Average Difference/Ca nts Observed for the Span=	I Gas Conc. X 100% = 100% = 99.7	*Perform recalibration if average difference is gre	
ipan Sensitivity: [<mark>rial 1:</mark> Cou		I Gas Conc. X 100% = 100% = 99.7 = <u>180 44 [</u>	*Perform recalibration if average difference is gre - <u>l, 3</u> /500 x 100% % Trial 3:	Span= 180453
ipan Sensitivity: I <mark>rial 1:</mark> Cou Count	nts Observed for the Span= ters Observed for the Zero=	I Gas Conc. X 100% = 100% = 99,7 = 180 44 1 = 3712	*Perform recalibration if average difference is gre 5- <u>l, 3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the	Span= <u>180455</u>
ipan Sensitivity: I <mark>rial 1:</mark> Cou Count I <mark>rial 2:</mark> Cou	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span=	$I \text{ Gas Conc. X 100\%} = 100\%$ $= 99.7$ $= 180.44 \text{ J}$ $= 37 \text{ J}_2$ $= 180.460$	*Perform recalibration if average difference is gre 5- <u>l, 3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the	Span= <u>180455</u>
ipan Sensitivity: I <mark>rial 1:</mark> Cou Count I <mark>rial 2:</mark> Cou	nts Observed for the Span= ters Observed for the Zero=	I Gas Conc. X 100% = 100% $= 99.7$ $= 180 441$ $= 3712$ $= 180 460$	*Perform recalibration if average difference is gre 5- <u>l, 3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the	Span= <u>180455</u>
ipan Sensitivity: I <mark>rial 1:</mark> Cou Count I <mark>rial 2:</mark> Cou	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero=	$I \text{ Gas Conc. X 100\%} = 100\%$ $= 99.7$ $= 180.44 \text{ J}$ $= 37 \text{ J}_2$ $= 180.460$	*Perform recalibration if average difference is gre 5- <u>l, 3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the	Span= <u>180455</u>
ipan Sensitivity: Trial 1: Cou Count Trial 2: Cou Count ost Monitoring Ca ero Air	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero=	I Gas Conc. X 100% = 100% $= 99.7$ $= 180 441$ $= 3712$ $= 180 460$	*Perform recalibration if average difference is gre 5- <u>l, 3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the	Span= <u>180455</u>
Span Sensitivity: Trial 1: Count Trial 2: Count Ost Monitoring Ca	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero=	I Gas Conc. X 100% $= 100%$ $= 99.7$ $= 180 441$ $= 3712$ $= 180460$ $= 3724$	*Perform recalibration if average difference is gre 5- <u>l, 3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the	Span= <u>180455</u>
ipan Sensitivity: Trial 1: Cou Count Trial 2: Cou Count ost Monitoring Ca ero Air eading:	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check	I Gas Conc. X 100% $= 100%$ $= 99.7$ $= 180 441$ $= 3712$ $= 180 460$ $= 3724$ Cal Gas Reading:	*Perform recalibration if average difference is gre - <u>l.3</u> /500 x 100% % Trial 3: Counts Observed for the <u>Counters Observed for the</u>	Span= <u>180455</u>
ipan Sensitivity: Trial 1: Cou Count Trial 2: Cou Count ost Monitoring Ca ero Air eading:	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check	I Gas Conc. X 100% $= 100%$ $= 99.7$ $= 180 441$ $= 3712$ $= 180 460$ $= 3724$ Cal Gas Reading:	*Perform recalibration if average difference is gre - <u>l.3</u> /500 x 100% % Trial 3: Counts Observed for the <u>Counters Observed for the</u>	Span= <u>180455</u>
ipan Sensitivity: rial 1: Cou Count rial 2: Cou Count ost Monitoring Ca ero Air eading: ACKGROUND Co	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check Drcentrations checks tescription:	I Gas Conc. X 100% $= 100%$ $= 99.7$ $= 180 44 1$ $= 37 12$ $= 180 460$ $= 3724$ Cal Gas Reading:	*Perform recalibration if average difference is gre - <u>l.3</u> /500 x 100% % Trial 3: Counts Observed for the Counters Observed for the	Span= <u>180455</u> Zero= <u>3723</u>
ipan Sensitivity: Trial 1: Count Trial 2: Count Trial 2: Count Co	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= errs Observed for the Zero= alibration Check ppm DNCENTRATIONS CHECKS rescription: n Description:	I Gas Conc. X 100% = 100% = 99.7 = 180 44 1 = 3712 = 180 460 = 3724 Cal Gas Reading: S Grid 1 Flare	*Perform recalibration if average difference is gre - <u>l,3</u> /500 x 100% % Trial 3: Counts Observed for the Counters Observed for the Counters Observed for the Reading: <u>l</u> , Reading: <u>l</u> ,	Span= <u>180453</u> Zero= <u>3723</u> <u>2</u> ppm
ipan Sensitivity: Trial 1: Count Trial 2: Count Trial 2: Count Co	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Span= alibration Check D ppm DNCENTRATIONS CHECKS rescription: In Description: In Description: In Description:	I Gas Conc. X 100% = 100% $= 99.7$ $= 180 441$ $= 3712$ $= 180 460$ $= 3724$ Cal Gas Reading: S Grid 1 Flare bserved to remain below to No rainfall had occurred to	*Perform recalibration if average difference is gre - <u>l,3</u> /500 x 100% % Trial 3: Counts Observed for the Counters Observed for the Reading: <u>l</u> ,	Span= 180455 Zero= 372.3 2 ppm 5 ppm hour and no instantaneous spe nitoring event. Therefore, site

1		SURFACE EMISSI			pre
102	И.С.				·
Date:	1- 9-2		Site Name:	Newby	
Inspector(s):	cody croc	ker	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			+	
Wind Speed	н:мрн	Wind Direction:		Barometric Pressure: 29,9	"Hg
Ai Temperature	5 6	General Weather Conditions	Partly Cloudy	-	
CALIBRATION	INFORMATION		Cloudy		
Pre-monitoring	Calibration Precision Check				
Instrument Seria		64		Cal Gas Concentration:	500ppm
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (secon
2	1	500		0	3
3	0	500		0	4
	sion= Average Difference/Cal	= 100%-		_/500 × 100%	
		= 99,8	%		
			_		
Trial 1:	ounts Observed for the Span=		Trial 3:	nts Observed for the Span=	177893
T <u>rial 1:</u> Co			<u>Trial 3:</u> Cour	nts Observed for the Span= ers Observed for the Zero=	177 893 3755
Trial 1: Cou Cour	ounts Observed for the Span=	177889 3768	<u>Trial 3:</u> Cour		177 893 3755
T <u>rial 1:</u> Co <u>Cou</u> T <u>rial 2:</u> Co	ounts Observed for the Span= nters Observed for the Zero=	177889 3768	<u>Trial 3:</u> Cour		177893 3755
T <u>rial 1:</u> Cou <u>Cour</u> Frial 2: Co Cour	ounts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	177889 3768	<u>Trial 3:</u> Cour		177 893 3755
T <u>rial 1:</u> Cou T <u>rial 2:</u> Co Cour Post Monitoring 6 Post Monitoring 6	ounts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	177889 3768 177905 3779 Cal Gas	<u>Trial 3:</u> Cour		177893 3755
T <u>rial 1:</u> Cou T <u>rial 2:</u> Co Cour Post Monitoring 6 Post Monitoring 6	ounts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	177889 3768 177905 3779	<u>Trial 3:</u> Cour		177893 3755
Cour Frial 2: Co Cour Post Monitoring of Post Monitoring of Post Air Reading:	nunts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= <u>nters Observed for the Zero=</u> Calibration Check	177889 3768 177905 3779 Cal Gas	<u>Trial 3:</u> Cour	ers Observed for the Zero=	177893 3755
Trial 1: Count Cou	nters Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	177889 3768 177905 3779 Cal Gas	Trial 3: Court Count	ppm	177893 3755
Trial 1: Cour Frial 2: Cour Cour Post Monitoring of Cero Air Reading:	nunts Observed for the Span= <u>nters Observed for the Zero=</u> unts Observed for the Span= <u>nters Observed for the Zero=</u> Calibration Check <u>ppm</u> CONCENTRATIONS CHECKS Description:	177889 3768 177905 3779 Cal Gas	Trial 3: Court Count	ppm Reading: $\frac{1}{2}$	3755

			IONS MONITORING	0 - L
		CALIBRATION AN	ID PERTINENT DATA	POST
Date:	4-9-2	1	Site Name: Ne	wby
Inspector(s):	_ cody croc	ler_	Instrument: TVA 2020	
WEATHER OF	SERVATIONS			
Wind Speed	d:MPH	Wind Direction: <u>E</u>	Barometric Pressure:	29.9 "нв
A Temperature		General Weath Condition	- II	
CALIBRATION	INFORMATION		Cloudy	
Pre-monitoring	g Calibration Precision Check			
	be less than or equal to 10%			as a percentage. The calibration centration:500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Re	
1		501	1	3
3		502		
	Ö		*Perform recalibration if average difference	e is greater than 10
		Average Difference: Il Gas Conc. X 100% = 100%	*Perform recalibration if average difference	
Calibration Prec	cision= Average Difference/Ca	Average Difference: Il Gas Conc. X 100%	*Perform recalibration if average difference	
Calibration Prec	cision= Average Difference/Ca	Average Difference: Il Gas Conc. X 100% = 100%	*Perform recalibration if average difference	
Calibration Prec Span Sensitivity Trial 1:	cision= Average Difference/Ca	Average Difference: al Gas Conc. X 100% = 100% = 99.8 = <u>178012</u>	*Perform recalibration if average difference	e is greater than 10
Calibration Prec Span Sensitivity Trial 1: Cou	cision= Average Difference/Ca	Average Difference: al Gas Conc. X 100% = 100% = 99.8 = <u>178 6 1 2 -</u>	*Perform recalibration if average difference /500 x 100% % Trial 3:	e is greater than 10 or the Span= 178056
Calibration Prec Span Sensitivity Frial 1: Cou Frial 2:	ision= Average Difference/Ca	Average Difference: al Gas Conc. X 100% = 100% = 99.8 = <u>178012</u> = <u>3577</u>	*Perform recalibration if average difference /500 x 100% % Trial 3: Counts Observed fo	e is greater than 10 or the Span= 178056
Calibration Prec Span Sensitivity Trial 1: Co Cou Trial 2: Co	cision= Average Difference/Ca ounts Observed for the Span unters Observed for the Zero=	Average Difference: al Gas Conc. X 100% = 100% = 99% = 178012 = 3577 = 178034 = 178034	*Perform recalibration if average difference /500 x 100% % Trial 3: Counts Observed fo	e is greater than 10 or the Span= 178056
Calibration Prec Span Sensitivity Trial 1: Co Cou Trial 2: Cou	cision= Average Difference/Ca ounts Observed for the Span unters Observed for the Zero= punts Observed for the Span=	Average Difference: al Gas Conc. X 100% = 100% = 99.% $= 178 \circ 12 - \frac{178 \circ 12 - \frac{178 \circ 12 - \frac{178 \circ 12 - \frac{178 \circ 32}{12}}{178 \circ 32}}$	*Perform recalibration if average difference /500 x 100% % Trial 3: Counts Observed fo	e is greater than 10 or the Span= 178056
Calibration Prec Span Sensitivity Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air	cision= Average Difference/Ca ounts Observed for the Span- unters Observed for the Zero- ounts Observed for the Zero- unters Observed for the Span- unters Observed for the Zero-	Average Difference: al Gas Conc. X 100% = 100% = 99.% = 178012 = 3577 = 178034 = 3570 Cal Gas	*Perform recalibration if average difference /500 x 100% % Trial 3: Counts Observed for Counters Observed for Counters Observed for	e is greater than 10 or the Span= 178056
Calibration Prec Span Sensitivity Trial 1: Co Trial 2: Co Cou Post Monitoring Zero Air Reading:	cision= Average Difference/Ca ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Zero= unters Observed for the Zero= calibration Check	Average Difference: al Gas Conc. X 100% = 100% = 99.% $= 178 \circ 12$ = 3577 $= 178 \circ 34$ = 3570 Cal Gas Reading:	*Perform recalibration if average difference /500 x 100% % Trial 3: Counts Observed fo	e is greater than 10 or the Span= 178056
Calibration Prec Span Sensitivity Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND	cision= Average Difference/Ca cision= Average Difference/Ca ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check Calibration Check ConcentrationS check	Average Difference: al Gas Conc. X 100% = 100% = 99.% $= 178 \circ 12$ = 3577 $= 178 \circ 34$ = 3570 Cal Gas Reading:	*Perform recalibration if average difference /500 x 100% % Trial 3: Counts Observed for Counters Observed for 500ppm	e is greater than 10 or the Span= 178056
Calibration Prec Span Sensitivity Trial 1: Co Cou Trial 2: Co Post Monitoring Zero Air Reading: BACKGROUND Jpwind Locatior	cision= Average Difference/Ca ounts Observed for the Span- unters Observed for the Zero- ounts Observed for the Zero- ounts Observed for the Span- unters Observed for the Zero- calibration Check	Average Difference: al Gas Conc. X 100% = 100% = 99.% $= 178 \circ 12$ = 3577 $= 178 \circ 34$ = 3570 Cal Gas Reading:	*Perform recalibration if average difference /500 x 100% % Trial 3: Counts Observed for Counters Observed for <u>500</u> ppm Reading:	e is greater than 10 or the Span= 178056 or the Zero= 3584
Calibration Prec Span Sensitivity Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND Jpwind Locatior	cision= Average Difference/Ca cision= Average Difference/Ca ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check Calibration Check ConcentrationS check	Average Difference: al Gas Conc. X 100% = 100% = 99.% $= 178 \circ 12$ = 3577 $= 178 \circ 34$ = 3570 Cal Gas Reading:	*Perform recalibration if average difference /500 x 100% % Trial 3: Counts Observed for Counters Observed for 500ppm	e is greater than 10 or the Span= 178056

		SURFACE EMISS			
Date:	4-12-21		Site Name:	Newby	
Inspector(s):	Hunter	Ott	Instrument:	TVA 2020	
NEATHER OB	SERVATIONS			,	
Wind Speed	Мрн	Wind Direction:	-	Barometric Pressure: SC	"Нд
Ai Temperature		General Weath Conditior		-	
CALIBRATION	INFORMATION				
're-monitoring	Calibration Precision Chec	k			
and calculate th precision must l	e average algebraic differ be less than or equal to 109	e a total of three measurem ence between the instrumen % of the calibration gas value	t reading and the	calibration gas as a percent	age. The calibration
nstrument Seria		04	46.000	Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (second
1	5	499	1		
2					
3 alibration Preci	ision= Average Difference/	Average Difference:		n if average difference is greater than	10
	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100%	6-126	n if average difference is greater than /500 x 100%	10
Calibration Preci		Average Difference:	6-126		10
alibration Preci pan Sensitivity:		Average Difference: Cal Gas Conc. X 100%	6- <u>126</u> 7%		10
alibration Preci pan Sensitivity: rial 1:		Average Difference: Cal Gas Conc. X 100% = 1009 = 99, 7	6- <u>/ e (</u>) %		
Calibration Preci pan Sensitivity: rial 1: Co	š	Average Difference: Cal Gas Conc. X 100% = 1009 = 99, 7 = 177, 8-39 = 144 $=$ 2	6- <u>/ e (</u>) % Cou	/500 x 100%	
alibration Preci pan Sensitivity: rial 1: Cou rial 2:	ounts Observed for the Spa nters Observed for the Zer	Average Difference: Cal Gas Conc. X 100% = 1009 = 99, 7 = 177, 8-39 = 144 $=$ 2	6- <u>/ e (</u>) % Cou	/500 x 100% nts Observed for the Span=	
alibration Preci pan Sensitivity: rial 1: Cou rial 2: Cou	ounts Observed for the Spa nters Observed for the Zer	Average Difference: Cal Gas Conc. X 100% = 1009 $= 99.7$ $= 99.7$ $= 44.32$ $n = 1.72.817$	6- <u>/ e (</u>) % Cou	/500 x 100% nts Observed for the Span=	
alibration Preci pan Sensitivity: rial 1: Cou rial 2: Cou Cou	ounts Observed for the Spa nters Observed for the Zer punts Observed for the Spa	Average Difference: Cal Gas Conc. X 100% = 1009 $= 99.7$ $= 99.7$ $= 44.32$ $n = 1.72.817$	6- <u>/ e (</u>) % Cou	/500 x 100% nts Observed for the Span=	
alibration Preci pan Sensitivity: rial 1: Cou rial 2: Cou Cou	ounts Observed for the Spa nters Observed for the Zer ounts Observed for the Spa nters Observed for the Zer	Average Difference: Cal Gas Conc. X 100% = 1009 $= 99.7$ $= 99.7$ $= 44.32$ $n = 1.72.817$	6- <u>/ e (</u>) % Cou	/500 x 100% nts Observed for the Span=	
pan Sensitivity: rial 1: Cou rial 2: Cou cou cost Monitoring ero Air	ounts Observed for the Spa nters Observed for the Zer ounts Observed for the Spa nters Observed for the Zer	$\frac{-861}{-861}$ Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 $\frac{-1718-39}{-9}$ $\frac{-17289}{-9}$ $n = 172817$ $n = 4447$	6- <u>/ e (</u>) % Cou	/500 x 100% nts Observed for the Span=	
alibration Preci pan Sensitivity: rial 1: Cou rial 2: Cou rial 2: Cou cost Monitoring ero Air eading:	ounts Observed for the Spa nters Observed for the Zer ounts Observed for the Spa nters Observed for the Zer Calibration Check	Average Difference: Cal Gas Conc. X 100% = 1009 = 99, 7 = 99, 7 = 4432 n = 172817 o = 4447 Cal Gas Reading: CKS	6- 1 e 6 7 % Trial 3: Cou Count	/500 x 100% nts Observed for the Span= ters Observed for the Zero=	
alibration Preci pan Sensitivity: rial 1: Cou rial 2: Cou rial 2: Cou cost Monitoring ero Air eading:	ounts Observed for the Spa nters Observed for the Zer ounts Observed for the Spa nters Observed for the Zer Calibration Check	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6- 1 e 6 7 % Trial 3: Cou Count	_/500 x 100% Ints Observed for the Span= ters Observed for the Zero= ppm	

SCS DataServ	ces - Secure	Envire	onmenia	DETE
--------------	--------------	--------	---------	------

		SURFACE EMISS	ONIS MONIT	TORING	
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	4-12-21 Hunter of		Site Name:	Newby	
Inspector(s):	Hunter of	+	Instrument:	TVA 2020	
WEATHER C	DBSERVATIONS				
Wind Spe	ed: 5 MPH	Wind Direction: NF		Barometric Pressure: <u>50</u>	"Hg
Temperatu	Air <u>54</u> *F	General Weathe Conditions			
CALIBRATIO	N INFORMATION				
Pre-monitori	ng Calibration Precision Check				
and calculate	alibrate the instrument. Make a the average algebraic difference at be less than or equal to 10% of erial Number:	e between the instrument f the calibration gas value.	reading and the		
Trial	Zero Air Reading	Cal Gas Reading		ConcCal Gas Reading]	Response Time (se
1			I Cal Gas C		
2	-2	501		1	5
3	.0	501		(3
Calibration Pro	ecision= Average Difference/Cal	Average Difference: Gas Conc. X 100%		on if average difference is greater than :	10
Calibration Pr	ecision= Average Difference/Cal		*Perform recalibratio		10
Calibration Pr	ecision= Average Difference/Cal	Gas Conc. X 100%	*Perform recalibratio	on if average difference is greater than :	10
		Gas Conc. X 100%	*Perform recalibratio	on if average difference is greater than :	10
ipan Sensitivi		Gas Conc. X 100% = 100% = 99.8	*Perform recalibratio	on if average difference is greater than :	10
ipan Sensitivi Trial 1:		Gas Conc. X 100% = 100% = 99.8 [72036	*Perform recalibratio	on if average difference is greater than :	17230
ipan Sensitivi T rial 1: Ci	ty:	Gas Conc. X 100% = 100% = 99.8	*Perform recalibratio	on if average difference is greater than : _/500 x 100%	17230 4480
ipan Sensitivi Frial 1: Ci	ty: Counts Observed for the Span=	Gas Conc. X 100% = 100% = 99.8 [72036	*Perform recalibratio	on if average difference is greater than /500 x 100%	17230 4489
ipan Sensitivi Trial 1: Crial 2:	ty: Counts Observed for the Span= ounters Observed for the Zero=	Gas Conc. X 100% = 100% = $99.\%$ 172036 4421	*Perform recalibratio	on if average difference is greater than /500 x 100%	17230 4489
ipan Sensitivi Trial 1: Ci Trial 2:	ty: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span=	Gas Conc. X 100% = 100% = $99.\%$ 172036 4421	*Perform recalibratio	on if average difference is greater than /500 x 100%	17230 4489
ipan Sensitivi Trial 1: Ci Trial 2: Ca	ty: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= ounters Observed for the Zero=	Gas Conc. X 100% = 100% = 99.% $= 99.% = 172036 = 1421$	*Perform recalibratio	on if average difference is greater than /500 x 100%	17230
ipan Sensitivi Trial 1: Crial 2: Trial 2: Cost Monitorin ero Air eading:	ty: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= ounters Observed for the Zero= ng Calibration Check	Gas Conc. X 100% = 100% = $99.\%$ 172036 4421 172184 172184 UU51 Cal Gas Reading:	*Perform recalibratio	on if average difference is greater than /500 x 100% unts Observed for the Span= ters Observed for the Zero=	17230 4480
ipan Sensitivi Trial 1: Crial 2: Cost Monitorin ero Air eading: ACKGROUN	ty: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= ounters Observed for the Zero= ng Calibration Check	Gas Conc. X 100% = 100% = $99.\%$ 172036 4421 172184 172184 UU51 Cal Gas Reading:	*Perform recalibratio	on if average difference is greater than /500 x 100% unts Observed for the Span= ters Observed for the Zero=	17230 448 900
ipan Sensitivi Trial 1: Crial 2: Crial 2: Cost Monitorin ero Air eading: ACKGROUN	ty: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= ounters Observed for the Zero= ng Calibration Check Dppm D CONCENTRATIONS CHECKS	Gas Conc. X 100% = 100% = $99.\%$ 172036 4421 172184 172184 UU51 Cal Gas Reading:	*Perform recalibratio		ррт ppm

			ONS MONITORING D PERTINENT DATA	-037
Datas	1-12-21			
Date:	4-12-21 Cody Cro	6.5	Site Name: <u>A/Cu/Dy</u>	
Inspector(s):	Lody tro	ccer	Instrument:TVA 2020	
WEATHER OBS	SERVATIONS			
Wind Speed	мрн	Wind Direction:	Barometric Pressure: SC)"Hg
Air Temperature	1 1.	General Weathe Conditions		
CALIBRATION	INFORMATION			
^o re-monitoring	Calibration Precision Check			
and calculate th		ce between the instrument	nts by alternating zero air and the calibratic reading and the calibration gas as a percen	
nstrument Seria	al Number: 541	9	Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
1		601	1	12
2	6	50/	1	1 5
3	C -	502	2	5
alibration Preci	sion= Average Difference/Ca	Average Difference:	*Perform recalibration if average difference is greater than	10
Calibration Preci	sion= Average Difference/Ca	al Gas Conc. X 100%	17	10
Calibration Preci	sion≃ Average Difference/Ca	al Gas Conc. X 100%	<u>/</u> /500 × 100%	10
Calibration Preci Span Sensitivity:	sion≃ Average Difference/Ca	al Gas Conc. X 100% = 100%-	<u>/</u> /500 × 100%	10
ipan Sensitivity: T rial 1:		al Gas Conc. X 100% = 100% = $99,7$	/ <u>//</u> /500 x 100% %	
Span Sensitivity: Frial 1: Co	unts Observed for the Span	al Gas Conc. X 100% = 100% = 99.7 = 174837	/500 x 100% % Trial 3: Counts Observed for the Span=	175417
Span Sensitivity: Frial 1: Cou Frial 2:	ounts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100% = 99.7 = 174837 = 5213	/ <u>//</u> /500 x 100% %	175417
Span Sensitivity: Frial 1: Co Cour Frial 2: Co	ounts Observed for the Span nters Observed for the Zero unts Observed for the Span	al Gas Conc. X 100% = 100% = $99,7$ = 174837 = 5213 = 174526	/500 x 100% % Trial 3: Counts Observed for the Span=	175417
ipan Sensitivity: irial 1: Co <u>Cou</u> irial 2: Co Cour	ounts Observed for the Span nters Observed for the Zero unts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100% = $99,7$ = 174837 = 5213 = 174526	/500 x 100% % Trial 3: Counts Observed for the Span=	175417
ipan Sensitivity: irial 1: Co <u>Cou</u> irial 2: Co Cour	ounts Observed for the Span nters Observed for the Zero unts Observed for the Span	al Gas Conc. X 100% = 100% = $99,7$ = 174837 = 5213 = 174526	/500 x 100% % Trial 3: Counts Observed for the Span=	175417
ipan Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring	ounts Observed for the Span nters Observed for the Zero unts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100% = $99,7$ = 174837 = 5213 = 174526	/500 x 100% % Trial 3: Counts Observed for the Span=	175417
pan Sensitivity: rial 1: Cour rial 2: Cour cour cour cour cour cour cour cour c	ounts Observed for the Span nters Observed for the Zero unts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100% = $99,7$ = 174837 = 5213 = 174526 = 5224	/500 x 100% % Trial 3: Counts Observed for the Span=	175417
ipan Sensitivity: Tial 1: Cou Trial 2: Cou Trial 2: Cou Cour Cour Cour ero Air eading:	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% - = 99.7 = 174837 = 5213 = 174526 = 52241 Cal Gas Reading:	<pre>/500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=</pre>	175417
Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Cour Post Monitoring Post Monitoring Post Monitoring	nunts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% - = 99.7 = 174837 = 5213 = 174526 = 5224 Cal Gas Reading: S	/500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	175417 5246
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Court Co Court Co	nunts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% - = 99.7 = 174837 = 5213 = 174526 = 52241 Cal Gas Reading:	/500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	175417 5246

		SURFACE EMISSIC	ONS MONIT	ORING	y is t
		CALIBRATION AND		IT DATA	
Date:	4-12-2)	Site Name:	Newby	
Inspector(s);	cody cree	ker	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	5МРН	Wind Direction: ACE		Barometric Pressure: 30	"Hg
Ai Temperature		General Weather Conditions:		_	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	brate the instrument. Make a to be average algebraic difference be less than or equal to 10% of	between the instrument r			
nstrument Seria	al Number: 591	9		Cal Gas Concentration:	500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (second
1	.2	502	(2	5
2	- \	501		\	3
3	-	199		(1 7
alibration Prec	ision= Average Difference/Cal (Gas Conc. X 100%		n if average difference is greater than] n 10
Calibration Prec	ision= Average Difference/Cal (Gas Conc. X 100% = 100%-		n if average difference is greater than /500 x 100%) n 10
		Gas Conc. X 100%] n 10
pan Sensitivity:		Gas Conc. X 100% = 100%- = A.Q.+.T	<u>\.</u> 3 %] 10
pan Sensitivity: rial 1:		Gas Conc. X 100% = 100%- = 919.7	X.3 % Trial 3:		. 75 (100
pan Sensitivity: i <mark>rial 1:</mark> Cou		Gas Conc. X 100% = 100%- = 919.7	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100%	. 75 (100
pan Sensitivity: rial 1: Cou rial 2:	ounts Observed for the Span=	Gas Conc. X 100% = 100%- = 919.7	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span-	. 75 (100
pan Sensitivity: rial 1: Cou rial 2: Cou	ounts Observed for the Span= nters Observed for the Zero=	Gas Conc. X 100% = 100%- = 919.7	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span-	. 75 (100
pan Sensitivity: rial 1: Cou rial 2: Cou Cou	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span=	Gas Conc. X 100% = 100%- = 919.7	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span-	. 75 (100
i <mark>rial 1:</mark> Cou <u>rial 2:</u> Cou rial 2: Cou ost Monitoring	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero=	$Frac{1}{5} = 100\%$ $= 100\%$ $= 9(9,7)$ $\frac{175260}{5166}$ $\frac{175384}{5193}$	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span-	75 (100
pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring ero Air	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero=	Gas Conc. X 100% = 100%- = 919.7	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span-	75 (100
i <mark>rial 1:</mark> Cou rial 2: Cou rial 2: Cou ost Monitoring ero Air eading:	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check	$Frac{1}{5} Frac{1}{5} Frac{1}{5$	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span-	75 (100
ipan Sensitivity: irial 1: Cou rial 2: Cou ost Monitoring ero Air eading: ACKGROUND	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	$Frac{1}{5} Frac{1}{5} Frac{1}{5$	K, 3 % Trial 3: Cou Count	_/500 x 100% nts Observed for the Span-	. 75 (100
i <mark>rial 1:</mark> Cou <u>rial 2:</u> Cou <u>rial 2:</u> Cou ost Monitoring ero Air eading: ACKGROUND pwind Location	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	$F_{ass} Conc. X 100\%$ $= 100\%$ $= 9(9, 1)$ $\frac{175260}{5166}$ $\frac{5166}{516384}$ $\frac{519384}{5193}$ $Cal Gas$ F_{eading}	K, 3 % Trial 3: Cou Count	_/500 x 100% nts Observed for the Spans ers Observed for the Zeros	175 40° 51 24

	CALIBRATION AND			1087-
		PERIME		
Date: 4-12-21		Site Name:	Neuber	
nspector(s): Pablo Air	era	Instrument:	TVA 2020	
VEATHER OBSERVATIONS				
\wedge	Wind		Barometric	
Wind Speed: / MPH	Direction:		Pressure: <u>SO</u>	"Hg
Air Temperature: <u>64</u> °F	General Weather Conditions:	clea		
CALIBRATION INFORMATION				
re-monitoring Calibration Precision Check				
Procedure: Calibrate the instrument. Make a	total of three measurement	s by alternatin	g zero air and the calibration	gas. Record the readi
nd calculate the average algebraic difference	e between the instrument re	eading and the		
recision must be less than or equal to 10% of				
nstrument Serial Number: 542			Cal Gas Concentration:	500ppm
rial Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seco
1 /	499	1		N
$\frac{2}{3}$	501	1		3
	502	-		<u> </u>
alibration Provision- Average Difference (Cal.	Cas Cons X 100%			
alibration Precision= Average Difference/Cal		17		
alibration Precision= Average Difference/Cal	= 100%-	1.3	_/500 × 100%	
alibration Precision= Average Difference/Cal			_/500 × 100%	
alibration Precision= Average Difference/Cal (Dan Sensitivity:	= 100%-		_/500 x 100%	
oan Sensitivity: ial 1:	= 100% = 919,97	% Frial 3:		148512
oan Sensitivity: ial 1: Counts Observed for the Span=_	= 100%- = 99,97 147928	% F <u>rial 3:</u> Cou	nts Observed for the Span=_	
oan Sensitivity: • <mark>ial 1:</mark> Counts Observed for the Span=_ Counters Observed for the Zero=	= 100%- = 99,97 147928	% F <u>rial 3:</u> Cou		
oan Sensitivity: ial 1: Counts Observed for the Span=_	= 100%- = 919,79 <u>147928</u> <u>3912</u>	% F <u>rial 3:</u> Cou	nts Observed for the Span=_	
oan Sensitivity: ial 1: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> ial 2: Counts Observed for the Span=	= 100%- = 919,97 <u>147928</u> <u>3912</u> [4768]	% F <u>rial 3:</u> Cou	nts Observed for the Span=_	
oan Sensitivity: ial 1: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> ial 2: Counts Observed for the Span= <u>Counters Observed for the Zero=</u>	= 100%- = 919,97 <u>147928</u> <u>3912</u> [4768]	% F <u>rial 3:</u> Cou	nts Observed for the Span=_	
Dan Sensitivity: Tial 1: Counts Observed for the Span= Counters Observed for the Zero= Tial 2: Counts Observed for the Span= Counters Observed for the Zero= Dest Monitoring Calibration Check	$= 100\%$ $= 99.9\%$ $\frac{147928}{3912}$ $\frac{147681}{3924}$	% F <u>rial 3:</u> Cou	nts Observed for the Span=_	
ban Sensitivity: ial 1: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> ial 2: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> Dest Monitoring Calibration Check ero Air	$= 100\%$ $= 99.9\%$ $\frac{147928}{3912}$ $\frac{147681}{3924}$ Cal Gas	% F <u>rial 3:</u> Cou	nts Observed for the Span=_ ers Observed for the Zero=	
Dan Sensitivity: Tial 1: Counts Observed for the Span= Counters Observed for the Zero= Tial 2: Counts Observed for the Span= Counters Observed for the Zero= Dest Monitoring Calibration Check	$= 100\%$ $= 99.9\%$ $\frac{147928}{3912}$ $\frac{147681}{3924}$	% F <u>rial 3:</u> Cou	nts Observed for the Span=_	
ban Sensitivity: ial 1: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> ial 2: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> Dest Monitoring Calibration Check ero Air	$= 100\%$ $= 99.9\%$ $\frac{147928}{3912}$ $\frac{147681}{3924}$ Cal Gas	% F <u>rial 3:</u> Cou	nts Observed for the Span=_ ers Observed for the Zero=	
Dan Sensitivity: Tial 1: Counts Observed for the Span= Counters Observed for the Zero= Tial 2: Counts Observed for the Span= Counters Observed for the Zero= Dist Monitoring Calibration Check aro Air Brading: Councentrations Checks	$= 100\%$ $= 99.9\%$ $\frac{147928}{3912}$ $\frac{147681}{3924}$ Cal Gas Reading:	% T <u>rial 3:</u> Coun Coun	nts Observed for the Span=_ eers Observed for the Zero=	
Dan Sensitivity: Tial 1: Counts Observed for the Span= Counters Observed for the Zero= Tial 2: Counts Observed for the Span= Counters Observed for the Zero= Dist Monitoring Calibration Check aro Air Brading: Councentrations Checks	$= 100\%$ $= 99.9\%$ $\frac{147928}{3912}$ $\frac{147681}{3924}$ Cal Gas	% T <u>rial 3:</u> Coun Coun	nts Observed for the Span= rers Observed for the Zero= _ppm Reading:	3943

	SURFACE EMISSI			
Date:		Site Name:	Newsy	
Inspector(s): Pablo Y	R	Instrument:	TVA 2020	
WEATHER OBSERVATIONS			+	
Wind Speed: MPH	Wind Direction: <u>NP</u>	_	Barometric Pressure: 30	"Hg
Air <u>54</u> °F	General Weather Conditions		_	
CALIBRATION INFORMATION				
Pre-monitoring Calibration Precision Check				
Procedure: Calibrate the instrument. Make and calculate the average algebraic differen precision must be less than or equal to 10% of \mathcal{V}	ice between the instrument i		calibration gas as a percentag	ge. The calibration
nstrument Serial Number:	12		Cal Gas Concentration:	500ppm
Trial Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (second
2 7	501		1	
3	En7		2	
	Average Difference:	*Perform recalibration	n if average difference is greater than 10	
		2	n if average difference is greater than 10	
Calibration Precision= Average Difference/Ca	al Gas Conc. X 100% = 100%- - 995	2		
Calibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span=	al Gas Conc. X 100% = 100%- = 995 = 148×76 = 28×26	% Trial 3: Cou	_/500 × 100% nts Observed for the Span=	148356
Calibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span= Counters Observed for the Zero=	al Gas Conc. X 100% = 100%- = 995 = 148×76 = 28×26	% Trial 3: Cou	_/500 x 100%	148356 39856
Calibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span= Counters Observed for the Zero= rial 2: Counts Observed for the Span=	al Gas Conc. X 100% = 100%- = 99.8 = $148 - 76$ = 3920 = $148 - 92$	% Trial 3: Cou	_/500 × 100% nts Observed for the Span=	148356 3986
alibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span= Counters Observed for the Zero= rial 2: Counts Observed for the Span= Counters Observed for the Span=	al Gas Conc. X 100% = 100%- = 99.8 = $148 - 76$ = 3920 = $148 - 92$	% Trial 3: Cou	_/500 × 100% nts Observed for the Span=	148356 39856
Calibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span= Counters Observed for the Zero= rial 2: Counts Observed for the Span= Counters Observed for the Span= Counters Observed for the Zero=	al Gas Conc. X 100% = 100%- = 99.8 = $148 > 76$ = 3920 = $148 - 492$ = 3953	% Trial 3: Cou	_/500 × 100% nts Observed for the Span=	148356 3985
Counters Observed for the Spans Counters Observed for the Spans Counters Observed for the Spans Counters Observed for the Zeros Counters Observed for the Spans Counters Observed for the Spans Counters Observed for the Spans Counters Observed for the Zeros	al Gas Conc. X 100% = 100%- = 99.8 = $148 - 76$ = 3920 = $148 - 92$	% Trial 3: Cou	_/500 × 100% nts Observed for the Span=	148356 3985
Calibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span= Counters Observed for the Zero= rial 2: Counts Observed for the Span= Counters Observed for the Span= Counters Observed for the Zero= ost Monitoring Calibration Check ero Air eading:	al Gas Conc. X 100% = 100%- = 995 = 148×76 = 3920 = 148×92 = 3920 = 148×92 = 3920 Cal Gas Reading:	% Trial 3: Cou	_/500 × 100% nts Observed for the Span=	14835E
Calibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span= Counters Observed for the Zero= rial 2: Counts Observed for the Span= Counters Observed for the Zero= ost Monitoring Calibration Check ero Air	al Gas Conc. X 100% = 100%- = 995 = 148×76 = 3920 = 148×92 = 3920 = 148×92 = 3920 Cal Gas Reading:	% Trial 3: Cou	_/500 × 100% Ints Observed for the Span= ters Observed for the Zero=	148356 39856

		SURFACE EMISSIO			post
	1	CALIBRATION AND	D PERTINEN	IT DATA	, -
Date:	4-12-21		Site Name:	Naby	
nspector(s):	4-12-21 Liam McC	hinn	Instrument:	TVA 2020	
VEATHER OBS	\bigcirc			4	
Wind Speed:	<u></u> мрн	Wind Direction:	1.	Barometric Pressure: <u>30</u>	"Hg
Air Temperature:	64 °F	General Weather Conditions:	clean	£ ,	
CALIBRATION I	NFORMATION				
re-monitoring (Calibration Precision Check				
and calculate the	rate the instrument. Make a e average algebraic difference e less than or equal to 10% o l Number: <u>54/5</u>	te between the instrument r f the calibration gas value.	reading and the o		
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
1	1	500	0	61	1
2	5	501	Ĩ		5
3	7,	502	2		F
		= 100%- = 99,7	%	/500 x 100%	
pan Sensitivity:					
Jan Sensitivity.					
rial 1: Cou	unts Observed for the Span=	1-44-839	<u>Trial 3:</u> Cour	nts Observed for the Span=	143214
r <mark>ial 1:</mark> Cou	unts Observed for the Span= nters Observed for the Zero=	1-44-839	Cour	nts Observed for the Span=	143214 4758
rial 1: Cou Coun		1-44839 4723	Cour	nts Observed for the Span= ers Observed for the Zero=	143214 4758
r <u>ial 1:</u> Cou Coun rial 2: Cou	nters Observed for the Zero=	1-44839 4723 144615	Cour	nts Observed for the Span= ers Observed for the Zero=	143214 4758
r <u>ial 1:</u> Cou Coun r <u>ial 2:</u> Cou Coun	nters Observed for the Zero= unts Observed for the Span=	1-44839 4723 144615	Cour	nts Observed for the Span= ers Observed for the Zero=	143214 4758
r <u>ial 1:</u> Cou Coun rial 2: Coun Coun Dost Monitoring C	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	1-44-8-39 4723 144615 4732 Cal Gas	Cour	ers Observed for the Zero=	143214 4758
r <u>ial 1:</u> Coun r <u>ial 2:</u> Coun Coun Coun cost Monitoring C ero Air eading:	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	1-44-8-39 4723 144615 4732 Cal Gas Reading:	Cour	nts Observed for the Span= ers Observed for the Zero=	143214 4758
r <u>ial 1:</u> Coun r <u>ial 2:</u> Coun Coun Coun cost Monitoring C ero Air eading:	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	1-44-8-39 4723 144615 4732 Cal Gas Reading:	Count	ers Observed for the Zero= ppm	4758
r <u>ial 1:</u> Coun r <u>ial 2:</u> Coun Coun Coun cost Monitoring C ero Air eading:	aters Observed for the Zero= unts Observed for the Span= aters Observed for the Zero= Calibration Check	1-44-8-39 4723 144615 4732 Cal Gas Reading:	Count	ppm Reading: <u>1, 2</u>	425 8
rial 1: Coun rial 2: Coun Coun Coun Coun Coun Coun Coun Coun	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check Calibration Check CONCENTRATIONS CHECKS Description:	1-44-8-39 4723 144615 4732 Cal Gas Reading:	Count	ppm Reading: <u>ノ, こ</u>	4758

			-	1	1e
		SURFACE EMISS	ONS MONIT	TORING	
		CALIBRATION AN	D PERTINE	IT DATA	
Date:		21	Site Name:	Newby	
Inspector(s):	Ciam McC	ZININ	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			÷	
Wind Speed	: <u>5</u> мрн	Wind Direction: NE	_	Barometric Pressure: <u>3</u> 0	Hg
Ai Temperature	<u> </u>	General Weathe Conditions		<u>_</u>	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
	ne average algebraic differen be less than or equal to 10% al Number:		-	calibration gas as a percent Cal Gas Concentration	
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (se
1	. 2	yag	1	2	
2	4				
3	ision= Average Difference/C	Average Difference:	*Perform recalibratio	n if average difference is greater than] 10
3	ision= Average Difference/C		. 2	n if average difference is greater than /500 x 100%	10
3	ision= Average Difference/C	al Gas Conc. X 100%] 10
3 Calibration Prec		al Gas Conc. X 100%	- <u>\.3</u> %		10
3 Calibration Prec Span Sensitivity: Trial 1: Co	ounts Observed for the Span	fal Gas Conc. X 100% = 100% = 9.9.7 $fal Gas Conc. X 100% = 9.9.7$	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou		fal Gas Conc. X 100% = 100% = 9.9.7 $fal Gas Conc. X 100% = 9.9.7$	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100%	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2:	ounts Observed for the Span	al Gas Conc. X 100% = 100% = 9.9.7 $= 143.940 = 4771$	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ounts Observed for the Span Inters Observed for the Zero	$al Gas Conc. \times 100\%$ $= 100\%$ $= 99.7$ $= 143.940$ $= 4771$ $= 143754$	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ounts Observed for the Span Inters Observed for the Zero Dunts Observed for the Span	$al Gas Conc. \times 100\%$ $= 100\%$ $= 99.7$ $= 143.940$ $= 4771$ $= 143754$	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ounts Observed for the Span Inters Observed for the Zero Dunts Observed for the Span Inters Observed for the Zero	$al Gas Conc. \times 100\%$ $= 100\%$ $= 99.7$ $= 143.940$ $= 4771$ $= 143754$	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ounts Observed for the Span Inters Observed for the Zero Dounts Observed for the Span Inters Observed for the Zero Calibration Check	al Gas Conc. X 100% $= 100%$ $= 99.7$ $= 143 940$ $= 4771$ $= 143754$ $= 473754$ $= 473754$ Cal Gas Reading:	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ounts Observed for the Span anters Observed for the Zero ounts Observed for the Span inters Observed for the Zero Calibration Check	al Gas Conc. X 100% $= 100%$ $= 99.7$ $= 143 940$ $= 4771$ $= 143754$ $= 473754$ $= 473754$ Cal Gas Reading:	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND Jpwind Location	ounts Observed for the Span anters Observed for the Zero ounts Observed for the Span inters Observed for the Zero Calibration Check	al Gas Conc. X 100% $= 100%$ $= 99.7$ $= 143 940$ $= 4771$ $= 143754$ $= 473754$ $= 473754$ Cal Gas Reading:	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	14390 4765

a transfer and the second second	Environmental Da	and the second second
A TE R. M M M M M M M M		

			ONS MONITORING	pesa	
		CALIBRATION AND	PERTINENT DATA	·	
Date: _	4-12-2	l	Site Name: Nee	iby	
Inspector(s):	Don Gib:	son	Instrument: TVA 2020		
WEATHER OBSE	RVATIONS				
Wind Speed:	7МРН	Wind Direction:	Barometric Pressure:	-30"Hg	
Air Temperature:	64 °F	General Weather Conditions:	Clear		
CALIBRATION IN	FORMATION				
Pre-monitoring Ca	libration Precision Chec	k			
and calculate the d	average algebraic differ less than or equal to 10		eading and the calibration gas a	e calibration gas. Record the reac as a percentage. The calibration centration: 500ppm	lings
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Rea	ading Response Time (sec	onds)
1	1	499	(7	
2	2	501	1	2	
3	Ĩ	- 502	2	>	
		= 100%- = 99,7	<u>/,</u> /500 x 100%		
ipan Sensitivity:			-		
frial 1:		ŀ	Trial 3:		
Cour	its Observed for the Spa	$m = \frac{167813}{100000000000000000000000000000000000$	Counts Observed for	r the Span= 168-04	1
	ers Observed for the Zei	10= 5818	Counters Observed for	r the Zero= 3841	_
		$n = \frac{167925}{1000000000000000000000000000000000000$			
Counte	ers Observed for the Zer	= 3834			
ost Monitoring Ca	libration Check				
ero Air eading:	/) ppm	Cal Gas Reading:	500 ppm		
	DIVICENTRATIONS CHE		<u> </u>		
pwind Location De			Reading:	1.2 ppm	
ownwind Location	Description:	Entrance Grid 1	Reading:	ppm	
exe	ceeded 20 miles per ho	ur. No rainfall had occurred wit	hin the previous 24 hours of the	s per hour and no instantaneous s e monitoring event. Therefore, si nts on the above mentioned date.	te

				Y	1e
		SURFACE EMISS			
		CALIBRATION AN	ID PERTINEN	NT DATA	
Date:	4-12-:	21	Site Name:	Newby	
Inspector(s);	Don 61350	01	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
		Wind		Barometric	
Wind Speed	d:МРН	Direction:		Pressure: 30	"Hg
Ai Temperature		General Weath Condition	1 -	(
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check	<			
		e a total of three measureme			
	be less than or equal to 10%	ence between the instrument 6 of the calibration gas value		Cal Gas Concentration:	500ppm
T-I-I	Zara Ala Dandina		10-10-10		
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (se
2			1		3
	.0	LIQQ			
3 Calibration Prec	ision= Average Difference/C	Average Difference:	*Perform recalibratio	on if average difference is greater than	10
	Z	Average Difference:	12	2 on if average difference is greater than /500 x 100%	<u> </u>
	Z	Average Difference:	12		10
	Z	Average Difference:	12		10
Calibration Prec	ision= Average Difference/C	Average Difference:	12		10
Calibration Prec Span Sensitivity: Trial 1:	ision= Average Difference/C	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7	<u>\-</u> <u>}</u> %	_/500 x 100%	11990
Calibration Prec Span Sensitivity: Trial 1:	ision= Average Difference/C	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7	<u>\-</u> <u>}</u> %		11990
Calibration Prec Span Sensitivity: Trial 1: Co	ision= Average Difference/C	Average Difference: Cal Gas Conc. X 100% = 100% = $9\%.7$, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2:	ision= Average Difference/C	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 m = 168640 m = 3824	, % <u>Trial 3:</u> Cou	_/500 x 100%	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2:	ision= Average Difference/C	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 m = 168640 m = 3824	, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Difference/C	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 n = 168690 n = 168572	, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Difference/C : : : : : : : : : : : : : : : : : : :	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 n = 168690 n = 168572	, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring	ision= Average Difference/C : : : : : : : : : : : : : : : : : : :	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 n = 168690 n = 168572	, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air	ision= Average Difference/C : : : : : : : : : : : : : : : : : : :	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 m = 168640 m = 168572 m = 168572 m = 3851	, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ision= Average Difference/C : : : : : : : : : : : : : : : : : : :	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 m = 1686% m = 168572 m = 168572 m = 168572 m = 168572 m = 168572 Cal Gas Reading:	, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span= ters Observed for the Zero=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND	ision= Average Difference/C ision= Average Difference/C ounts Observed for the Spar inters Observed for the Zerc ounts Observed for the Zerc calibration Check ppm CONCENTRATIONS CHEC	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 m = 1686% m = 168572 m = 168572 m = 168572 m = 168572 m = 168572 Cal Gas Reading:	500	_/500 x 100% Ints Observed for the Span= ters Observed for the Zero=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND Upwind Location	ision= Average Difference/C ision= Average Difference/C ounts Observed for the Spar inters Observed for the Zerc ounts Observed for the Zerc calibration Check ppm CONCENTRATIONS CHEC	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 m = 168690 m = 168572 m = 168572 m = 168572 Cal Gas Reading: KS	500	_/500 x 100% Ints Observed for the Span= ters Observed for the Zero=	16879

		SURFACE EMISS			Dos7
	1	CALIBRATION A	ND PERTINE	NT DATA	
Date:	-12-21 ryan O		Site Name:	Naby	
nspector(s): <u>B</u>	ryam O	choq	Instrument:	TVA 2020	
WEATHER OBSERVA	TIONS			· · · ·	
Wind Speed:	7МРН	Wind Direction:	_	Barometric Pressure: <u>30</u>	Чд
Air Temperature: 6	4_•F	General Weath Conditior		_	
CALIBRATION INFOR	MATION				
Pre-monitoring Calibra	ition Precision Check				
and calculate the aver	age algebraic differen		t reading and the	ng zero air and the calibratio e calibration gas as a percent	
nstrument Serial Num	ber: <u>121</u> :red	5		Cal Gas Concentration:	500ppm
rial 1	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (second
2	-4	501	- /		4
3		499	1		2
		= 1009	- 16	/500 x 100%	
		= 99/	7%		
pan Sensitivity:					
rial 1:	bserved for the Span=	131413	Trial 3: Con	unts Observed for the Span=	1318-39
Counters C)bserved for the Zero≖	3122		nters Observed for the Zero=	~
rial 7.		132814			
Counters C	bserved for the Zero=	3120			
ost Monitoring Calibra	ition Check				
ero Air		Cal Gas	5730		
eading:	<u>С</u> ррт	Reading	500	_ppm	
ACKGROUND CONC	ENTRATIONS CHECK			1 ~	
owind Location Descri	ption:	Entrance Game	-	Reading: 1/2	ppm
ownwind Location De	scription:	Grid 1	-	Reading:	ppm
exceed	led 20 miles per hour.	No rainfall had occurred	within the previo	equested 10 miles per hour a us 24 hours of the monitorir e LMR requirements on the a	ng event. Therefore, site

					Pre
		SURFACE EMISSI	ONS MONI	TORING	
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	4-12-72		Site Name:	Newby	
Inspector(s):	Bryan	0	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed:	:_5мрн	Wind Direction: <u>NF</u>	-	Barometric Pressure: 30	"Hg
Air Temperature:	-11	General Weather Conditions		\mathbf{X}	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	prate the instrument. Make a e average algebraic difference ne less than or equal to 10% o	e between the instrument i f the calibration gas value.			
Instrument Seria	al Number: 1215			Cal Gas Concentration	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
1		500	2		4
2	0	010.0		7	5
		= 100%-	1.6	/500 x 100%	
		= 99.7	%		
Span Sensitivity:					
<u>Frial 1:</u> Co	unts Observed for the Span=	152516	Trial 3: Col	unts Observed for the Spar	=1328-13
	nters Observed for the Zero=	0		iters Observed for the Zero	2 1
rial 2:	unts Observed for the Span=				2000
	nters Observed for the Zero=	0-1-			
	Calibration Check				
ero Air		Cal Gas			
eading:	ppm	Reading:	500	_ ppm	
ACKGROUND	CONCENTRATIONS CHECKS				
pwind Location	Description:	Entrance	-	Reading: 1.3	_ppm
ownwind Locati	on Description:	Gridt		Reading: 15	_ ppm
	Wind speed averages were of exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	ithin the previo	us 24 hours of the monitor	ing event. Therefore, site

		SURFACE EMIS			post
		CALIBRATION A	ND PERTINEN	ΙΤ ΟΑΤΑ	/-
Date:	4-13-21		Site Name:	Maby	
Inspector(s):	4-13-21 Bryan	Ochoa	Instrument:	TVA 2020	
WEATHER OBS	9			A.,	
Wind Speed:	МРН	Wind Direction: <u>C</u>	<u>Ju</u>	Barometric Pressure: <u> </u>	"Нg
Air		General Weat	her ons: <u>Clea</u> u		
Temperature:	62_°F	Conditio	ons: <u>Clear</u>		
CALIBRATION I	NFORMATION				
Pre-monitoring (Calibration Precision Check	¢			
Procedure: Calib	rate the instrument. Make	e a total of three measuren	nents by alternating	g zero air and the calibration	aas. Record the readinas
and calculate the	e average algebraic differe	ence between the instrume	nt reading and the	calibration gas as a percent	
precision must b	e less than or equal to 10%	6 of the calibration gas valu	ue. S		
Instrument Seria	1 Number: 121	5		Cal Gas Concentration:	500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas (oncCal Gas Reading	Response Time (seconds
1	1	500	0		3
2	2	501	1		2
3	1	502	5		2
		Average Difference:	116		
			1%- <u>Irb</u>	/500 x 100%	
		= 919,0	> %		
pan Sensitivity:					
T <mark>rial 1:</mark> Co	unts Observed for the Spa	n= 131876	Trial 3: Cou	nts Observed for the Span=	152974
	nters Observed for the Zero		Count	nts Observed for the Span= ers Observed for the Zero=	3145
and at		n= 132920			-1
	nters Observed for the Zero		_		
	Calibration Check				
ero Air eading:	ppm	Cal Gas Reading:	500	ppm	
	CONCENTRATIONS CHEC	CKS			
pwind Location	Description:	Entrance		Reading: 112	ppm
ownwind Locatio	on Description:	Entrance Grid (_	Reading: 1,3	opm

				P	re
		SURFACE EMISSI			
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	4-13-20	150	Site Name:	Membu	
Inspector(s):	4-13-20 Brijer	0 1	instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed:	5МРН	Wind Direction: 53F		Barometric Pressure: <u>30</u>	"Hg
Air Temperature:		General Weathe Conditions		<u>s</u>	
	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	orate the instrument. Make a e average algebraic difference e less than or equal to 10% o I Number:	e between the instrument f the calibration gas value.	reading and the	-	tage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1	. \	501			
2	.0	499		1	
alibration Preci	sion= Average Difference/Cal	Gas Conc. X 100%	\	_/500 x 100%	
		= 99.8	%		
pan Sensitivity:		· (-			
frial 1: Co	unts Observed for the Span=	130640		ints Observed for the Span=	
Cour rial 2:	nters Observed for the Zero=	3026	Coun	ters Observed for the Zero=	3108
	unts Observed for the Span=	32680	1.000		
Cou	nters Observed for the Zero=	3217			
ost Monitoring	Calibration Check				
ero Air eading:	O ppm	Cal Gas Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECKS				
pwind Location	Description:	Entranc	e	Reading: 1,5	ppm
ownwind Locati	on Description:	Grid1		Reading:	ppm
	Wind speed averages were of exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	vithin the previo	us 24 hours of the monitori	ng event. Therefore, site

SCS DataServices - Secure Environmental Data

		ONS MONITORING D PERTINENT DATA	po57-
11-13-71			
nspector(s); Don Gilber		Site Name: Newby	
nspector(s); Don Gilber	m	Instrument:TVA 2020	
VEATHER OBSERVATIONS			
Wind Speed: 5 MPH	Wind Direction: <u>L/J/L</u>	Barometric Pressure: <u>50</u>	"Hg
Air Temperature: <u>6</u> 7 °F	General Weather Conditions	01 -	
ALIBRATION INFORMATION			
re-monitoring Calibration Precision Check			
rocedure: Calibrate the instrument. Make	a total of three measuremer	nts by alternating zero air and the calibratio	n aas. Record the reading
nd calculate the average algebraic differen	nce between the instrument i	reading and the calibration gas as a percent	
recision must be less than or equal to 10%	of the calibration gas value.		
nstrument Serial Number:	0	Cal Gas Concentration;	500ppm
rial Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (second
1 3	50/	1	8
2	502	2	2
3	SGL	1	2
alibration Precision= Average Difference/C	Average Difference:	*Perform recallbration if average difference is greater than] 10
alibration Precision= Average Difference/C	al Gas Conc. X 100%] 10
alibration Precision= Average Difference/C	al Gas Conc. X 100% = 100%-	<u>/, 3</u> /500 x 100%] 10
libration Precision= Average Difference/C	al Gas Conc. X 100%	<u>/, 3</u> /500 x 100%] 10
	al Gas Conc. X 100% = 100%-	<u>/, 3</u> /500 x 100%] 10
an Sensitivity:	al Gas Conc. X 100% = 100%- = 99,7	<u>/, 5</u> /500 x 100%	
oan Sensitivity: <u>ial 1:</u> Counts Observed for the Span	al Gas Conc. X 100% = 100%- = 99,7 = <u>166814</u>	<u>/, 5</u> /500 x 100%	
oan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2:	tal Gas Conc. X 100% = 100%- = 99.7 = 166814 = 3783	<u>/, 3</u> /500 x 100%	
oan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span	a Gas Conc. X 100% = 100% = 99.7 $a = 166814$ $a = 3783$ $a = 165148$	<u>/, 5</u> /500 x 100%	
oan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2:	a Gas Conc. X 100% = 100% = 99.7 $a = 166814$ $a = 3783$ $a = 165148$	<u>/, 5</u> /500 x 100%	
oan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero	a Gas Conc. X 100% = 100% = 99.7 $a = 166814$ $a = 3783$ $a = 165148$	<u>/, 5</u> /500 x 100%	
ban Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero ost Monitoring Calibration Check	a Gas Conc. X 100% = 100% = 99.7 $a = 166814$ $a = 3783$ $a = 165148$	<u>/, 5</u> /500 x 100%	
aan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero st Monitoring Calibration Check ro Air	al Gas Conc. X 100% $= 100%$ $= 99.77$ $= 166814$ $= 3783$ $= 165148$ $= 3954$	<u>/, 5</u> /500 x 100%	
aan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero ost Monitoring Calibration Check ro Air ro Air ro Air	al Gas Conc. X 100% $= 100%$ $= 997.7$ $= 166814$ $= 3783$ $= 165148$ $= 3554$ Cal Gas Reading:	<u>/,</u> /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	
Dan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero ost Monitoring Calibration Check ro Air ading: COUNCENTRATIONS CHECK	tal Gas Conc. X 100% = 100%- = 99.77 = 16514 = 165148 = 3783 = 165148 Cal Gas Reading: KS	<u>1,3</u> /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	
ban Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero bast Monitoring Calibration Check	al Gas Conc. X 100% $= 100%$ $= 997.7$ $= 166814$ $= 3783$ $= 165148$ $= 3554$ Cal Gas Reading:	<u>1,3</u> /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	166726 3736

					Pre
		SURFACE EMISSIO	ONS MONI	TORING	
		CALIBRATION AND	D PERTINE	NT DATA	
Date:	4-13-20	150	Site Name:	Newbu	
Inspector(s):	Dong	1	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			~	
		Wind		Barometric	
Wind Speed	МРН	Direction:		Pressure: 30	"Hg
Air Temperature:		General Weather Conditions:		ST .	
	INFORMATION				
re-monitoring	Calibration Precision Check				
Procedure: Calib	arate the instrument Make	a total of three measuremen	its hy alternativ	a zero air and the calibrati	on and Pacord the readings
		ice between the instrument r			
	e less than or equal to 10%		-		-
nstrument Seria	al Number: <u>12</u>	20		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
1		502		2	24
2	.0	501		1	5
3		499	1	1	3
		= 100%-	1.3	/500 x 100%	
		= 99.7	-		
		= \ \- (%		
pan Sensitivity:					
rial 1: Co	ounts Observed for the Span	166772	Trial 3: Cou	unts Observed for the Span	165039
Cou	nters Observed for the Zero-	3765	Cour	iters Observed for the Zero	- 3151
rial 2: Co	ounts Observed for the Span-	165704			
	nters Observed for the Zero-	0101			
ost Monitoring	Calibration Check				
ero Air		Cal Gas			
eading:	ppm	Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECK				
pwind Location	Description:	Entran	icl	Reading: 1.3	ppm
ownwind Locati	ion Description:	Carid 1		Reading:	_ppm
		observed to remain below th . No rainfall had occurred wi			

res of the LMR requirements on the abov

	SURFACE EMISSIO		Pre
	CALIBRATION AND		
11	CALIBRATION AND	PERTINENT DATA	
Date: 9-15	.2021	Site Name: Newby	
Inspector(s): Pala	OR	Instrument: TVA 2020	
WEATHER OBSERVATIONS		÷	
	Wind	Barometric	
Wind Speed: 5	APH Direction: <u>55 F</u>	Pressure: 30	"Hg
Air 50 Temperature:°	General Weather F Conditions:	clear	
CALIBRATION INFORMATION			
Pre-monitoring Calibration Precision	on Check		
		by alternating zero air and the calibration	
	ic difference between the instrument rec al to 10% of the calibration gas value.	ading and the calibration gas as a percento	ige. The calibration
recision must be less than or equi	a to 10% of the calibration gas value.		
nstrument Serial Number;	5421	Cal Gas Concentration:	500ppm
rial Zero Air Re		[Cal Gas ConcCal Gas Reading]	Response Time (seconds)
	502	2	4
2	500	0	3
3 • \	498	2	3
Calibration Precision= Average Diff			
	= 100%	2.6 /500 x 100%	
	= 99.4 %	<u>6</u>	
pan Sensitivity:		rial 3:	
			152 103
Counts Observed for	the Span= 107012	Counts Observed for the Span=	
Counts Observed for Counters Observed for	the Span= 107012		152 (03 39 79
Counts Observed for Counters Observed for rial 2:	the Span= 107012	Counts Observed for the Span=	
Counts Observed for Counters Observed for rial 2:	the Span= 101912 the Zero= 3918 the Span= 150808	Counts Observed for the Span=	
Counts Observed for Counters Observed for Trial 2: Counts Observed for Counters Observed for	the Span= 101912 the Zero= 3918 the Span= 150808	Counts Observed for the Span=	
Counts Observed for Counters Observed for rial 2: Counts Observed for Counters Observed for ost Monitoring Calibration Check	the Span= 141412 the Zero= 3918 the Span= 150808 the Zero= 3946	Counts Observed for the Span=	
Counts Observed for <u>Counters Observed for</u> <u>rial 2:</u> Counts Observed for <u>Counters Observed for</u> ost Monitoring Calibration Check	the Span= 141412 the Zero= 3918 the Span= 150808 the Zero= 3946 Cal Gas	Counts Observed for the Span=	
Counts Observed for <u>Counters Observed for</u> <u>rial 2:</u> Counts Observed for <u>Counters Observed for</u> ost Monitoring Calibration Check ero Air eading: pr	the Span= 141412 the Zero= 3418 the Span= 150808 the Zero= 3446 Cal Gas mean Reading:	Counts Observed for the Span= Counters Observed for the Zero=	
Counts Observed for <u>rial 2:</u> Counters Observed for <u>Counters Observed for</u> <u>Counters Observed for</u> ost Monitoring Calibration Check ero Air eading: <u>D</u> pp ACKGROUND CONCENTRATION	the Span= <u>141414</u> the Zero= <u>3918</u> the Span= <u>150808</u> the Zero= <u>3946</u> Cal Gas Reading:	Counts Observed for the Span= Counters Observed for the Zero=	
Counters Observed for Trial 2: Counts Observed for Counters Observed for Post Monitoring Calibration Check	the Span= 141412 the Zero= 3418 the Span= 150808 the Zero= 3446 Cal Gas mean Reading:	Counts Observed for the Span= <u>Counters Observed for the Zero=</u> <u>500</u> ppm Reading: <u>1.2</u>	3979
Counts Observed for Counters Observed for Counts Observed for Counters Observed for Counters Observed for Ost Monitoring Calibration Check ero Air eading: ACKGROUND CONCENTRATION Ipwind Location Description: Cownwind Location Description:	the Span= 141414 the Zero= 3918 the Span= 150808 the Zero= 3946 Cal Gas Reading: NS CHECKS <u>Entrance</u> <u>Grit1</u>	Counts Observed for the Span= <u>Counters Observed for the Zero=</u> <u>Soco</u> ppm Reading: <u>1.2</u> Reading: <u>(.3</u>	99 79 ppm
Counts Observed for Counters Observed for Counts Observed for Counters Observed for Counters Observed for Ost Monitoring Calibration Check ero Air eading: pr ACKGROUND CONCENTRATION pwind Location Description: ownwind Location Description: otes: Wind speed average	the Span= 161916 the Zero= 3918 the Span= 150808 the Zero= 3946 Cal Gas Reading: NS CHECKS <u>Entrance</u> <u>Grit1</u> ges were observed to remain below the	Counts Observed for the Span= <u>Counters Observed for the Zero=</u> <u>Soco</u> ppm Reading: <u>1.2</u> Reading: <u>(.3</u>) alternative requested 10 miles per hour ar	ppm ppm nd no instantaneous speeds
Counts Observed for Counters Observed for Counts Observed for Counters Observed for Counters Observed for Ost Monitoring Calibration Check ero Air eading: ACKGROUND CONCENTRATION pwind Location Description: ownwind Location Description: otes: Wind speed average exceeded 20 miles	the Span= 161918 the Zero= 3918 the Span= 150808 the Zero= 3946 Cal Gas Reading: NS CHECKS <u>Entrance</u> <u>Grit1</u> ges were observed to remain below the sper hour. No rainfall had occurred with	Counts Observed for the Span= <u>Counters Observed for the Zero=</u> <u>SOO</u> ppm Reading: <u>1.2</u> Reading: <u>(.3)</u> alternative requested 10 miles per hour ar hin the previous 24 hours of the monitoring	ppm ppm d no instantaneous speeds g event. Therefore, site
Counts Observed for Counters Observed for Counts Observed for Counters Observed for Counters Observed for Observed for Counters Observed for Counters Observed for Observed for Counters Observed for	the Span= 161918 the Zero= 3918 the Span= 150808 the Zero= 3946 Cal Gas Reading: NS CHECKS <u>Entrance</u> <u>Grit1</u> ges were observed to remain below the sper hour. No rainfall had occurred with	Counts Observed for the Span= <u>Counters Observed for the Zero=</u> <u>Soc</u> ppm Reading: <u>1.2</u> Reading: <u>(.3)</u> alternative requested 10 miles per hour arbin the previous 24 hours of the monitoring rnatives of the LMR requirements on the alternative of the LMR requirements of the	ppm ppm nd no instantaneous speeds g event. Therefore, site bove mentioned date.

SCS DataServices — Secure Environmental Data

		SURFACE EMIS			
		CALIBRATION /	AND PERMINER	NIDAIA	
Date:	046-13-202 Pablo R	-1	Site Name:	Newby	
Inspector(s):	Pablo R	ivera	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	: мрн	Wind Direction:/パパ		Barometric Pressure: <u>30</u>	- "Нg
Ai Temperature		General Wea Conditi	ions: <u>Clear</u>	_	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Ch	eck			
and calculate th	e average algebraic diff be less than or equal to 1 ۲۲	ake a total of three measure ference between the instrum 10% of the calibration gas va	ent reading and the		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (se
1	0	499	1000 000 0	(3
2	1,	502		2	3
		-01)	3
3 Calibration Prec	O	Average Difference		3. 3	10
		Average Difference e/Cal Gas Conc. X 100% = 10	*Perform recalibratio		10
Calibration Prec	ision= Average Differenc	Average Difference	*Perform recalibratio	on if average difference is greater than] 10
Calibration Preci Span Sensitivity:	ision= Average Differenc	Average Difference e/Cal Gas Conc. X 100% = 10	*Perform recalibratio	on if average difference is greater than	10
Calibration Preci Span Sensitivity: Trial 1:	ision= Average Differenc	Average Difference re/Cal Gas Conc. X 100% = 10 = 99.3 pan= <u>1571963</u>	*Perform recalibratio	on if average difference is greater than	150 903
Calibration Preci Span Sensitivity: Trial 1: Cou	ision= Average Differenc	Average Difference e/Cal Gas Conc. X 100% = 10 = 99.3 pan= <u>15-1963</u>	*Perform recalibratio	on if average difference is greater than /500 x 100%	150 803
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2:	ision= Average Differenc	Average Difference e/Cal Gas Conc. X 100% = 10 = 99.3 pan= <u>1571963</u> ero= <u>39.76</u>	*Perform recalibratio	on if average difference is greater than /500 x 100% ints Observed for the Span=	150 803
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Differenc ounts Observed for the S nters Observed for the Z	Average Difference $e/Cal Gas Conc. \times 100\%$ = 10 = 99.3 pan= <u>151963</u> ero= 39.76 pan= <u>151454</u> = 29.3	*Perform recalibratio	on if average difference is greater than /500 x 100% ints Observed for the Span=	150 803
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Difference bunts Observed for the S nters Observed for the Z bunts Observed for the S	Average Difference $e/Cal Gas Conc. \times 100\%$ = 10 = 99.3 pan= <u>151963</u> ero= 39.76 pan= <u>151454</u> = 29.3	*Perform recalibratio	on if average difference is greater than /500 x 100% ints Observed for the Span=	150 803
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring	ision= Average Difference ounts Observed for the S nters Observed for the Z ounts Observed for the S nters Observed for the S	Average Difference e/Cal Gas Conc. X 100% = 10 = 99.3 pan= 151962 ero= 39.76 pan= 151454 ero= 39.50	*Perform recalibratio	on if average difference is greater than /500 x 100% ints Observed for the Span=	150 803
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Difference ounts Observed for the S nters Observed for the Z ounts Observed for the S nters Observed for the S	Average Difference $e/Cal Gas Conc. \times 100\%$ = 10 = 99.3 pan= <u>151963</u> ero= 39.76 pan= <u>151454</u> = 29.3	*Perform recalibratio	on if average difference is greater than /500 x 100% ints Observed for the Span=	150 803
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ision= Average Difference ounts Observed for the S nters Observed for the Z ounts Observed for the S nters Observed for the Z Calibration Check	Average Difference $e/Cal Gas Conc. \times 100\%$ = 10 = 99.3 pan= 157963 ero= 39.76 pan= 157454 ero= 39.50 Cal Gas Reading:	*Perform recalibratio	on if average difference is greater than /500 x 100% unts Observed for the Span= ters Observed for the Zero=	150 803
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ision= Average Difference bunts Observed for the S <u>inters Observed for the Z</u> bunts Observed for the S <u>inters Observed for the Z</u> Calibration Check	Average Difference $e/Cal Gas Conc. \times 100\%$ = 10 = 99.3 pan= <u>151963</u> <u>vero=</u> 39.76 pan= <u>151454</u> <u>vero=</u> 39.50 Cal Gas Reading: HECKS	*Perform recalibratio	ppm Reading: <u>1. Z</u>	150 803
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND Jpwind Location	ision= Average Difference bunts Observed for the S <u>inters Observed for the Z</u> bunts Observed for the S <u>inters Observed for the Z</u> Calibration Check	Average Difference $e/Cal Gas Conc. \times 100\%$ = 10 = 99.3 pan= 157963 ero= 39.76 pan= 157454 ero= 39.50 Cal Gas Reading:	*Perform recalibratio		150 903 39 90

-					Pre
4		SURFACE EMISS	IONS MONI	TORING	
		CALIBRATION AN	ND PERTINE	NT DATA	
Date:	4-13-2021 (084		Site Name:	Newby	
Inspector(s):	(084		Instrument:	TVA 2020	
WEATHER OBS					
Wind Speed:	5MPH	Wind Direction: 55E		Barometric Pressure: <u>30</u>	"Hg
Air Temperature:	~ ^	General Weath Condition	er ns: Clear	_	
CALIBRATION I	NFORMATION				
² re-monitoring (Calibration Precision Check				
and calculate the	rate the instrument. Make of e average algebraic difference e less than or equal to 10% of I Number: <u>541</u>	ce between the instrumen	t reading and the		
rial	Zero Air Reading	Cal Gas Reading	I Cal Gas (ConcCal Gas Reading	Response Time (seconds
1	v l	501			3
2		501		1	2
3	0	501		1	4
	sion= Average Difference/Ca	= 100%	2.3	_/500 x 100%	
		= 99.5	%		
pan Sensitivity:			1		
rial 1: Cou	unts Observed for the Span=	174524	Trial 3: Cou	nts Observed for the Span=	
	ters Observed for the Zero=	uaud	Coun	ters Observed for the Zero=	49 53
r <mark>ial 2:</mark> Cou	unts Observed for the Span=	175820			
Coun	ters Observed for the Zero=	4903			
ost Monitoring C	Calibration Check				
ero Air eading:	0ppm	Cal Gas Reading:	500	ppm	
ACKGROUND C	ONCENTRATIONS CHECK	S			
owind Location I	Description:	Entroin ce Gnid 1	-	Reading: 1.8	ppm
ownwind Locatio	on Description:	Grit 1		Reading: 1.4	ppm
e	Vind speed averages were o exceeded 20 miles per hour. neteorological conditions we	No rainfall had occurred	within the previou	us 24 hours of the monitorin	g event. Therefore, site
the second second	vices - Secure	the second s	- Interior		*

		SURFACE EMISSI			
	al da a a				
Date:	04-23-202	<i>.</i> l	Site Name:	Wenby	
Inspector(s):	Cody		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	: МРН	Wind Direction:	_	Barometric Pressure: <u>30</u>	"Нд
Ai Temperature		General Weathe Conditions	s: Cleaw	_	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	brate the instrument. Make be average algebraic differen be less than or equal to 10% al Number:	nce between the instrument of the calibration gas value.	reading and the		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (secor
1		500		0	
2	- 1	499		2	
Calibration Preci	ision= Average Difference/Ca		*Perform recalibration	Z - 6 In if average difference is greater than] 10
Calibration Preci	ision= Average Difference/Ca	al Gas Conc. X 100% = 100%-	*Perform recalibration] 10
		al Gas Conc. X 100%	*Perform recalibration	n if average difference is greater than] 10
Span Sensitivity: Trial 1:		al Gas Conc. X 100% = 100% = 9H. H	*Perform recalibration - '2 - 6 % Trial 3:	n if average difference is greater than	
Span Sensitivity: Trial 1: Cc		al Gas Conc. X 100% = 100% = 92.44 = 175.820	*Perform recalibration	n if average difference is greater than _/500 x 100% nts Observed for the Span=	174720
Span Sensitivity: Trial 1: Co Cou Trial 2:	ounts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100% = $9A.W$ = $175 890$ = $49 33$	*Perform recalibration	n if average difference is greater than _/500 x 100%	174720
Span Sensitivity: Trial 1: Cou Trial 2: Co	ounts Observed for the Span nters Observed for the Zero ounts Observed for the Span	al Gas Conc. X 100% = 100% = $9A.W$ = 175800 = 4933 = 175260	*Perform recalibration	n if average difference is greater than _/500 x 100% nts Observed for the Span=	174720
Span Sensitivity: Trial 1: Cou Trial 2: Cou Cou	ounts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100%- = $9A.W$ = 175800 = 4933 = 175260	*Perform recalibration	n if average difference is greater than _/500 x 100% nts Observed for the Span=	174720
Span Sensitivity: Trial 1: Cou Trial 2: Cou Cou	ounts Observed for the Span nters Observed for the Zeros ounts Observed for the Span nters Observed for the Zeros	al Gas Conc. X 100% = 100%- = $9A.W$ = 175800 = 4933 = 175260	*Perform recalibration	n if average difference is greater than _/500 x 100% nts Observed for the Span=	174720
Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	punts Observed for the Spans nters Observed for the Zeros punts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% = $9A.W$ = $175 880$ = $49 33$ = $175 260$ = $HQ II$ Cal Gas Reading:	*Perform recalibration 7 - 6 % Trial 3: Count	n if average difference is greater than _/500 x 100% nts Observed for the Span= ters Observed for the Zero=	174720
Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ounts Observed for the Spans nters Observed for the Zeros ounts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% = $9A.W$ = $175 890$ = $49 33$ = $175 260$ = $49 11$ Cal Gas Reading: XS	*Perform recalibration 7 - 6 % Trial 3: Count	ppm	174720
Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND	ounts Observed for the Spans nters Observed for the Zeros ounts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% = $9A.W$ = $175 880$ = $49 33$ = $175 260$ = $HQ II$ Cal Gas Reading:	*Perform recalibration 7 - 6 % Trial 3: Count	ppm Reading: <u>1.3</u>	174723 4994

		SURFACE EMISSI			
		CALIBRATION AN	D PERTINENT DA	TA	
Date:	4-13-20	21	Site Name:	venby	
Inspector(s):	Hunter	0	instrument: TVA	2020	
WEATHER OB	SERVATIONS			4	
Wind Speec	H:MPH	Wind Direction: <u>SSE</u>		essure: <u>30</u>	9 "Нg
Ai Temperature		General Weather Conditions			
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
	brate the instrument. Make a	total of three measuremer	its by alternating zero a	ir and the calibratic	in ans Record the read
and calculate th	he average algebraic difference	e between the instrument i	reading and the calibrat		-
precision must i	be less than or equal to 10% of	f the calibration gas value.	•		
Instrument Seri	al Number: 5416	5	Cal	Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCa	al Gas Reading	Response Time (sec
1 2	,1	500 500	0		<u> </u>
3	.0	501	0		3
5		201			
		Average Difference:	*Perform recalibration if averag	e difference is greater than]
	ision= Average Difference/Cal	Average Difference:	*Perform recalibration if averag	e difference is greater than]
		Average Difference: Gas Conc. X 100%	*Perform recalibration if averag]
		Average Difference: Gas Conc. X 100% = 100%-	3 /500 ×]
		Average Difference: Gas Conc. X 100%	3 /500 ×]
Calibration Prec	ision= Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100%-	<u> </u>]
Calibration Prec Span Sensitivity: Trial 1: Co	ision= Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UM DOG & D	<u> </u>	x 100%]
Calibration Prec Span Sensitivity: Trial 1: Соц	ision= Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UM DOG & D	<mark>3</mark> /500 × % <u>Trial 3:</u> Counts Obs	x 100%] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2:	ision= Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UU0980 UU0980 UU0980	<mark>3</mark> /500 × % <u>Trial 3:</u> Counts Obs	erved for the Span=] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Difference/Cal punts Observed for the Span= inters Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UU0980 UB39 UB39 JU2108	<mark>3</mark> /500 × % <u>Trial 3:</u> Counts Obs	erved for the Span=] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Cou	ision= Average Difference/Cal punts Observed for the Span= inters Observed for the Zero= punts Observed for the Span=	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UU0980 UB39 UB39 JU2108	<mark>3</mark> /500 × % <u>Trial 3:</u> Counts Obs	erved for the Span=] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Cou	ision= Average Difference/Cal punts Observed for the Span= inters Observed for the Zero= punts Observed for the Span= inters Observed for the Span=	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UU0980 UB39 UB39 JU2108	<mark>3</mark> /500 × % <u>Trial 3:</u> Counts Obs	erved for the Span=] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ision= Average Difference/Cal punts Observed for the Span= inters Observed for the Zero= punts Observed for the Span= inters Observed for the Span= Calibration Check	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UU0980 UB39 UB39 UB39 UB39 UB39 Cal Gas Reading:	• 3 /500 × % <u>Trial 3:</u> Counts Obs Counters Obs	erved for the Span=] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ision= Average Difference/Cal punts Observed for the Span= inters Observed for the Zero= punts Observed for the Span= inters Observed for the Span= Calibration Check ppm CONCENTRATIONS CHECKS	Average Difference: Gas Conc. X 100% = 100%- = $09.9UU0980U839U839U72108U72108Gal GasReading:$	• 3 /500 × % <u>Trial 3:</u> Counts Obs Counters Obs	erved for the Span= served for the Zero=] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND	ision= Average Difference/Cal punts Observed for the Span= inters Observed for the Zero= punts Observed for the Span= inters Observed for the Span= Calibration Check ppm CONCENTRATIONS CHECKS	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UU0980 UB39 UB39 UB39 UB39 UB39 Cal Gas Reading:	 3 /500 × % Trial 3: Counts Obs Counters Obs Counters Obs 	erved for the Span= served for the Zero=] 10 10 1432 <i>9</i> 0 4679

	SURFACE EMISSIO	ONS MONITORIN	G	
	CALIBRATION AND	D PERTINENT DAT	Ά	
Date: 04-13-20 nspector(s): Hunter	2(Site Name: Ne	wby	
nspector(s): <u>Hunter</u>		Instrument:	020	
WEATHER OBSERVATIONS			12	
Wind Speed: MPH	Wind Direction: WMW	Baron Pres	netric isure: <u>30</u>	"Hg
Air 62 °F	General Weather Conditions:	clear,		
CALIBRATION INFORMATION				
re-monitoring Calibration Precision Check				
rocedure: Calibrate the instrument. Make nd calculate the average algebraic differer recision must be less than or equal to 10%	nce between the instrument r	eading and the calibratic		
nstrument Serial Number: 5415	5	Cal Ga	as Concentration:	500ppm
rial Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal	Gas Reading	Response Time (seconds
	501			3
2 .1	502	2		14
3 . 7	500	0		3
alibration Precision= Average Difference/Ca		*Perform recalibration if average of	/	10
alibration Precision= Average Difference/Ca	al Gas Conc. X 100% = 100%-		/	10
	al Gas Conc. X 100% = 100%-	*Perform recalibration if average of the second sec	/	10
alibration Precision= Average Difference/Ca pan Sensitivity: tial 1: Counts Observed for the Span	al Gas Conc. X 100% = 100% = $QQ_c G$	*Perform recalibration if average of 1.6 /500 x 1 %	/	
oan Sensitivity: ial 1:	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = <u>140205</u>	*Perform recalibration if average of 1.6 /500 x 1 % /50	.00% ved for the Span=	140100
oan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2:	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = 140205 = 4968	*Perform recalibration if average of 1.6 /500 x 1 % /50	.00%	140100
oan Sensitivity: f <mark>ial 1:</mark> Counts Observed for the Span Counters Observed for the Zero	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = $\underline{ 40205 }$ = 4968 = $\underline{ 39,098 }$ $\underline{ 402,05 }$	*Perform recalibration if average of 1.6 /500 x 1 % /50	.00% ved for the Span=	140100
oan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = $\underline{ 40205 }$ = 4968 = $\underline{ 39,098 }$ $\underline{ 402,05 }$	*Perform recalibration if average of 1.6 /500 x 1 % /50	.00% ved for the Span=	140100
ban Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero St Monitoring Calibration Check the Air	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = 140205 = <u>13968</u> = <u>13998</u> = <u>13923</u> Cal Gas	*Perform recalibration if average of 	.00% ved for the Span=	140100
ban Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero Dist Monitoring Calibration Check ading: Dist Counters Observed for the Zero	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = $\frac{ 40205 }{ 968 }$ = $13Q_{c}Q98$ = $13Q_{c}Q98$ = 4823 Cal Gas Reading:	*Perform recalibration if average of 1.6 /500 x 1 % /50	.00% ved for the Span=	140100
ban Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero ost Monitoring Calibration Check tro Air eading: COUND CONCENTRATIONS CHECK	al Gas Conc. X 100% = 100% - = $QQ_{c}G$ = 140205 = 13068 = 132098 = 132098 = 132098 Cal Gas Reading: (S	*Perform recalibration if average of 	.00% eved for the Span= erved for the Zero=	140100 47999
Dan Sensitivity: fiel 1: Counts Observed for the Span Counters Observed for the Zero fiel 2: Counts Observed for the Span Counters Observed for the Span Counters Observed for the Zero bit Monitoring Calibration Check ero Air Bading:	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = $\frac{ 40205 }{ 968 }$ = $13Q_{c}Q98$ = $13Q_{c}Q98$ = 4823 Cal Gas Reading:	*Perform recalibration if average of 1.6 /500 x 1 % Trial 3: Counts Obser Counters Obser 5.00 ppm Reading	.00% rved for the Span= rved for the Zero= (. 3	<u>ррт</u>
ban Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero Set Monitoring Calibration Check aro Air Bading: Councers Observed for the Zero ppm ACKGROUND CONCENTRATIONS CHECK powind Location Description: Description:	al Gas Conc. X 100% = 100% - = $QQ_{c}G$ = 140205 = 13068 = 132098 = 132098 = 132098 Cal Gas Reading: (S	*Perform recalibration if average of 1.6 /500 x 1 % Trial 3: Counts Obser Counters Obser Soco ppm Reading Reading	.00% rved for the Span= rved for the Zero= (. 3) (. 4)	<u>ррт</u> ррт

					110
		SURFACE EMIS			
1	2 1 ⁴	CALIBRATION A	ND PERTINE	NT DATA	
Date:	04-22-21 Bryan		Site Name:	Newby	
Inspector(s):	Bryan		Instrument:	TVA 2020	
WEATHER O	BSERVATIONS				
Wind Spee	d: 3.3 MPH	Wind Direction:	_	Barometric Pressure: 30	Hg
A Temperatur	e: 59 °F	General Weath Condition		4	
CALIBRATION	INFORMATION				
Pre-monitoring	g Calibration Precision Check				
Instrument Seri		0		Cal Gas Concentration:	500ppm
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (secon
-				0	3
2		449			3
3	ision= Average Difference/Cal			D. 3 n if average difference is greater than	3 3 10
3	, j , l	<u>ح</u> 00 Average Difference; Gas Conc. X 100% = 100%	6- <u>0·3</u>	0 0.3	3
3 Calibration Prec	ision= Average Difference/Cal	<u>ح</u> 00 Average Difference; Gas Conc. X 100%	6- <u>0·3</u>	D. 3 n if average difference is greater than	3
3 Calibration Prec Span Sensitivity: Frial 1:	ision= Average Difference/Cal	500 Average Difference; Gas Conc. X 100% = 100% = びの.C	6- <u>0 · 3</u> 2∜ % <u>Trial 3:</u>	D D n if average difference is greater than /500 x 100%	3
3 Calibration Prec Span Sensitivity: Trial 1: Co	ision= Average Difference/Cal	$\frac{500}{\text{Average Difference;}}$ Gas Conc. X 100% $= 100\%$ $= 0101.C$ 102.856	6- <u>().3</u> ∛% Cour	D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2:	sion= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero=	$\frac{500}{\text{Average Difference;}}$ Gas Conc. X 100% $= 100\%$ $= 010.C$ 102856 192856 1560	6- <u>().3</u> ∛% Cour	D D n if average difference is greater than /500 x 100%	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	sion= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero=	$\frac{500}{\text{Average Difference;}}$ Gas Conc. X 100% $= 100\%$ $= 010.0$ 102.856 192.856 195.60 193200	6- <u>().3</u> ∛% Cour	D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Frial 2: Cou	sion= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero=	$\frac{500}{\text{Average Difference;}}$ Gas Conc. X 100% $= 100\%$ $= 010.C$ 102856 192856 1560	6- <u>().3</u> ∛% Cour	D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	sion= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero=	$\frac{500}{\text{Average Difference;}}$ Gas Conc. X 100% $= 100\%$ $= 010.0$ 102.856 192.856 195.60 193200	6- <u>().3</u> ∛% Cour	D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring ero Air	s i s i sion= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero= punts Observed for the Span= nters Observed for the Span=	500 Average Difference: Gas Conc. X 100% = 100% = 010 = 010 = 010 - 010 = 010 - 010 = 010 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 0100 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 <tr< td=""><td>6- <u>() . 3</u> 7 % Trial 3: Count Count</td><td>D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=</td><td>3] 10 193690</td></tr<>	6- <u>() . 3</u> 7 % Trial 3: Count Count	D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=	3] 10 193690
3 Calibration Prec Span Sensitivity: Frial 1: Cou Trial 2: Cou Post Monitoring ero Air	s i s i sion= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero= punts Observed for the Span= nters Observed for the Span=	$\frac{500}{\text{Average Difference;}}$ Gas Conc. X 100% $= 100\%$ $= 010.C$ 102.856 192.856 195.60 195.60 195.200 195.54	6- <u>0.3</u> % <u>Trial 3:</u> <u>Counte</u> <u>Counte</u>	D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Sost Monitoring ero Air eading:	ision= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero= punts Observed for the Zero= nters Observed for the Span= nters Observed for the Zero= Calibration Check	500 Average Difference: Gas Conc. X 100% = 100% = 010.0 102.856 102.856 103.00 103.200 103.200 105.54 Cal Gas Reading:	6- <u>0.3</u> % <u>Trial 3:</u> <u>Counte</u> <u>Counte</u>	D D J n if average difference is greater than /500 x 100% nts Observed for the Span= ers Observed for the Zero=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring tero Air teading: Court SACKGROUND (ision= Average Difference/Cal punts Observed for the Span= <u>inters Observed for the Zero=</u> punts Observed for the Span= <u>inters Observed for the Zero=</u> Calibration Check <u>D</u> ppm CONCENTRATIONS CHECKS	500 Average Difference: Gas Conc. X 100% = 100% = 010.0 102.856 102.856 103.00 103.200 103.200 105.54 Cal Gas Reading:	6- <u>0.3</u> γ % Trial 3: Court Counte	D D D J n if average difference is greater than /500 x 100% nts Observed for the Span= ers Observed for the Zero=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Frial 2: Cou Post Monitoring Sero Air Leading:	ision= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero= punts Observed for the Span= nters Observed for the Zero= Calibration Check Concentrations checks Description:	500 Average Difference: Gas Conc. X 100% = 100% = 010.0 102.856 102.856 103.00 103.200 103.200 105.54 Cal Gas Reading:	6- <u>0.3</u> γ % Trial 3: Court Counte	ppm Reading: <u>1.2</u>	3] 10 10 10 10 10 10 10 10 10 10 10 10 10

		SURFACE EMISSIO	NS MONITORING	1	
		CALIBRATION AND	PERTINENT DATA	4	
Date:	4-22-21		Site Name: Ne	uby	<u> </u>
Inspector(s):	Bryon C	2	Instrument:TVA 20	20	
WEATHER OB	SERVATIONS				
Wind Speed	н: <u>5</u> мрн	Wind Direction:	Barome Press	etric ure: <u>30</u>	"Hg
Ai. Temperature	I V.	General Weather Conditions:	Sunny		
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th		a total of three measurement ice between the instrument re of the calibration gas value.			
Instrument Seria	al Number:	.15	Cal Gas	Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal G	ias Reading I	Response Time (seconds
1		500	0	inter inter an inter int	A A
2	1	1 20 1	7		
2		1 2 () /			
3	ision= Average Difference/Ca		Perform recalibration if average dif	fference is greater than]
3			Perform recalibration if average dif	-]
3 Calibration Preci	ision= Average Difference/Ca	al Gas Conc. X 100%	1	-]
3 Calibration Preci pan Sensitivity:	ision= Average Difference/Ca	al Gas Conc. X 100% = 100%- = 997, 109	/500 x 10 %	-]
3 Calibration Preci pan Sensitivity:	ision= Average Difference/Ca	al Gas Conc. X 100% = 100% - = 9%	/500 x 10 %	00%	129872
3 Calibration Preci Span Sensitivity: Frial 1: Cou	ision= Average Difference/Ca	al Gas Conc. X 100% = 100%- = 99749 = $(28763)^{1}$	/500 x 10 %	00% red for the Span=	1291872
3 Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2:	ision= Average Difference/Ca	al Gas Conc. X 100% = 100% = 99.7 = (287.63) = 284.6	/500 x 10 % Trial 3: Counts Observ	00% red for the Span=	1291872
3 Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Difference/Ca : : : : : : : : : : : : : : : : : : :	al Gas Conc. X 100% = 100%- = 997 = 997 = 28763 = 2846 = 31472	/500 x 10 % Trial 3: Counts Observ	00% red for the Span=	1291872
3 Calibration Preci Span Sensitivity: Irial 1: Cou Irial 2: Cou Cou	ision= Average Difference/Ca : : : : : : : : : : : : : : : : : : :	al Gas Conc. X 100% = 100%- = 997 = 997 = 28763 = 2846 = 31472	/500 x 10 % Trial 3: Counts Observ	00% red for the Span=	1291872
3 Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Cou Post Monitoring ero Air	ision= Average Difference/Ca : : : : : : : : : : : : : : : : : : :	al Gas Conc. X 100% = 100%- = 997 = 997 = 28763 = 2846 = 31472	/500 x 10 % Trial 3: Counts Observ	00% red for the Span=	1291872
3 Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Tero Air Leading:	ision= Average Difference/Ca ounts Observed for the Span- unters Observed for the Zero= punts Observed for the Zero= calibration Check	al Gas Conc. X 100% = 100% - = 997 = 997 = 28763 = 28763 = 28763 = 28763 = 28763 = 289763 = 28976	/500 x 10 % Counts Observ Counters Observ	00% red for the Span=	1291872
3 Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Tero Air Leading:	ision= Average Difference/Ca bunts Observed for the Span= inters Observed for the Zero= bunts Observed for the Zero= calibration Check Calibration Check Concentrations Check	al Gas Conc. X 100% = 100% - = 997 = 997 = 28763 = 28763 = 28763 = 28763 = 28763 = 289763 = 28976	/500 x 10 % Counts Observ Counters Observ	00% red for the Span=	1291872

-					eve
		SURFACE EMISS			
		CALIBRATION AN	ID PERTINE	NT DATA	
Date:	04-22-21		Site Name:	Newby	
Inspector(s):	Pablo River	na	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			14	
Wind Speed:	<u>3.4</u> мрн	Wind Direction: W	-	Barometric Pressure: <u>50</u>	"Hg
Air Temperature:	<u>58</u> *F	General Weathe Conditions	Cloudy	-	
CALIBRATION I	NFORMATION				
Dro monitoring (Calibration Precision Check				
and calculate the	e average algebraic differer e less than or equal to 10%	a total of three measurement ace between the instrument of the calibration gas value.	reading and the	calibration gas as a percent	age. The calibration
rial	Zero Air Reading	Cal Gas Reading	I Cal Can (Cal Cas Deadlined	
1	. O	Cal Gas Reading		ConcCal Gas Reading	Response Time (second
2	1 (501		1	4
3	il	498		2	i.
		= 100%-	1.3	/500 x 100%	
		= 09.7	%		
oan Sensitivity:					
t <mark>ial 1:</mark> Cou	nts Observed for the Span=	152600	Trial 3: Cour	nts Observed for the Span=	154780
Count	ters Observed for the Zero=	4830	Count	ers Observed for the Zero=	4990
ial 2: Cou	nts Observed for the Span=	152986			
Count	ers Observed for the Zero=	4877			
st Monitoring Ca	alibration Check				
ro Air	1	Cal Gas	500		
ading:	ppm	Reading:	500	ppm	
CKGROUND CO	DNCENTRATIONS CHECK	S			
wind Location D	escription:	Flave		Reading: 1, 2 p	pm
wnwind Locatior	Description:	Gridt		Reading: L H p	ρm
ex	ceeded 20 miles per hour.	bserved to remain below th No rainfall had occurred wi ere within the requested alte	thin the previous	24 hours of the monitoring	event. Therefore, site
and the second second	the state of the s	Environmental	and a second state of a second state		
- A A A A A A A A A A A A A A A A A A A	CARDUAR SIL	THAN MALA CALLARD STAR BE	CALL NO. CONTRACTOR		

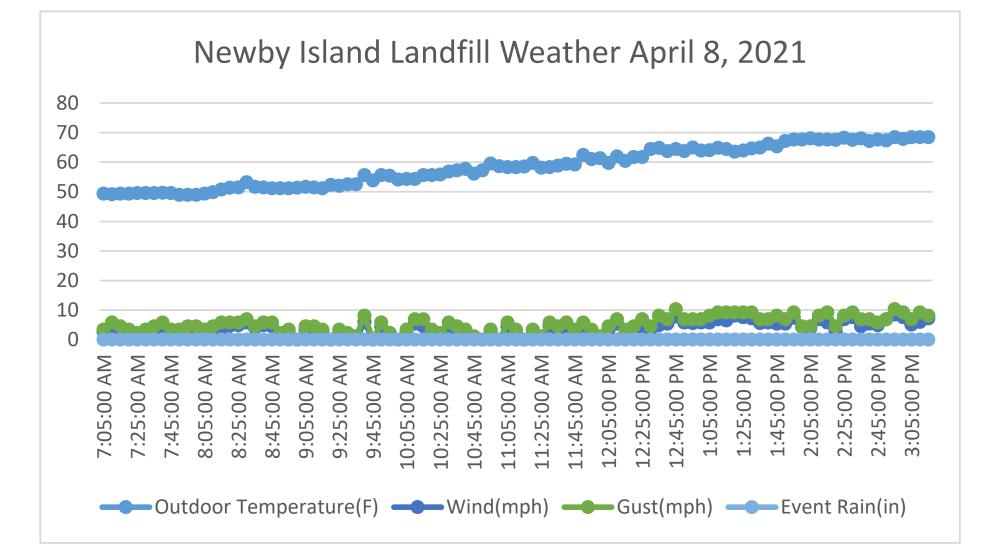
THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	
SCS DaleServices	Secure Environmental Data
THE PARAMENTER AND THE PARAMETER	CASE CARE MARY DIA CARACELARICE CONTACT

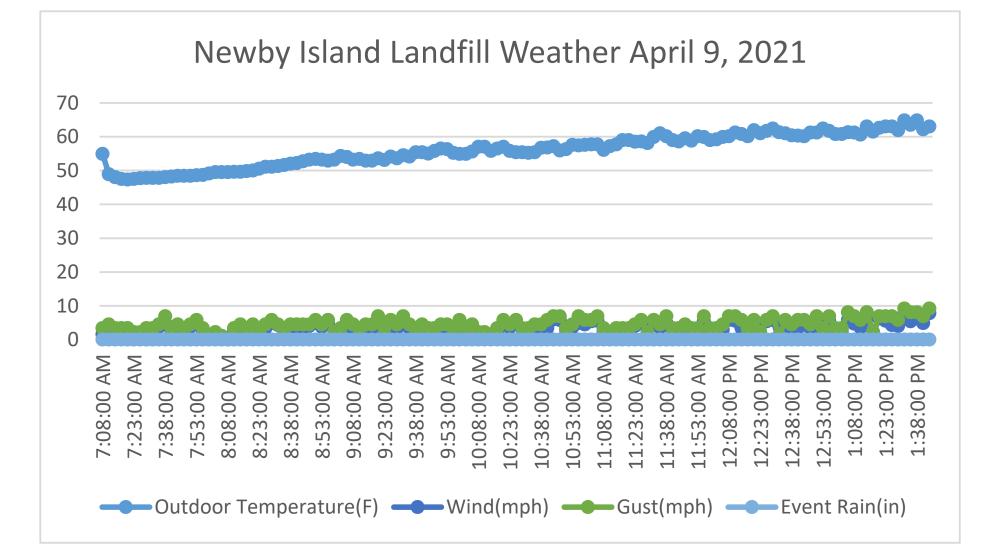
					VOST
		SURFACE EMISSION			
	11 20 21	CALIBRATION AN		21	
Date:	9-22-21		Site Name:	Newbu	
Inspector(s):	Pablo R		Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS			- • 1	
Wind Speed:	5 мрн	Wind Direction:		Barometric Pressure: 50	"Нд
Air Temperature:	68 °F	General Weather Conditions		20	
CALIBRATION II	NFORMATION				
Pre-monitoring C	alibration Precision Check				
and calculate the	rate the instrument. Make a average algebraic difference	e between the instrument i	reading and the		
nstrument Serial	Number: 543			Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds
1		502		2	N
2	.Ô	500		0	5
3	-1	501		1	3
		= 100%-	1	_/500 x 100%	
		= 99.6	%		
pan Sensitivity:					
rial 1:		ITIANT	Trial 3:		0,-, 071
Cou	ints Observed for the Span=	151381	Cou	ints Observed for the Span-	151016
	ters Observed for the Zero=	4811	Coun	ters Observed for the Zero=	4862
<u>rial 2:</u> Cou	ints Observed for the Span=	151592			
Coun	ters Observed for the Zero=	48 39			
ost Monitoring C	alibration Check				
ero Air		Cal Gas	E a b		
eading:	ppm	Reading:	500	ppm	
ACKGROUND C	ONCENTRATIONS CHECKS				
pwind Location [Description:	Flare		Reading: 1.2	_ppm
ownwind Locatio	on Description:	Cavid		Reading: 1.4	ppm
e	Vind speed averages were ob xceeded 20 miles per hour. I neteorological conditions we	No rainfall had occurred w	ithin the previou	us 24 hours of the monitori	ng event. Therefore, site

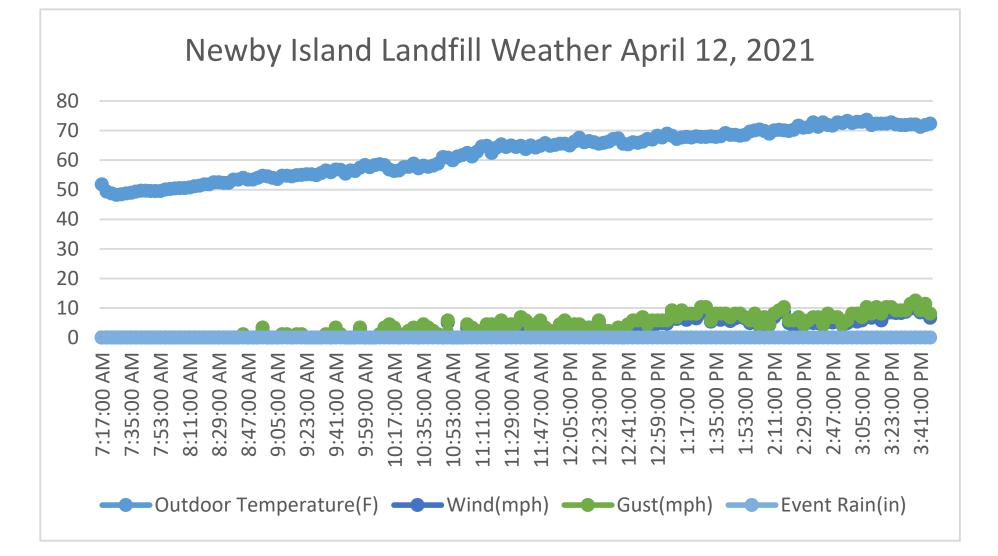
			Ye	st
			ONS MONITORING	
		CALIBRATION AND	D PERTINENT DATA	
Date:	5-11-21		Site Name: Newby	
Inspector(s):	Hunter	Oft	Instrument:	
WEATHER OBS	SERVATIONS		ж. Х.	
Wind Speed:	мрн	Wind Direction:	Barometric Pressure: <u>SO</u>	"Hg
Air Temperature:	- <u>10</u> *F	General Weather Conditions:		
CALIBRATION	INFORMATION			
Pre-monitoring (Calibration Precision Check			
and calculate th		e between the instrument r	nts by alternating zero air and the calibratic reading and the calibration gas as a percen	
nstrument Seria	al Number: <u>542</u>	_\	Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1		500	0	5
2	0	501)	3
3	<u> </u>	501	N	5
alibration Preci	sion= Average Difference/Cal	Gas Conc. X 100% = 100%-	/500 x 100%	
		= 99.8	%	
pan Sensitivity:				
Trial 1:		22001	Trial 3:	122 111
Co	ounts Observed for the Span=	152186	Counts Observed for the Span=	
	nters Observed for the Zero=		Counters Observed for the Zero-	3726
rial 2: Co	unts Observed for the Span=	133049		
Cour	nters Observed for the Zero=	3710		
ost Monitoring	Calibration Check			
ero Air Reading:		Cal Gas Reading:	600	
	ppm	neading.	ppm_	
ACKGROUND	CONCENTRATIONS CHECKS	000011	1.0	
pwind Location	Description:	0100	Reading:	ppm
ownwind Locati	on Description:	FLANE	Reading:	ppm
	exceeded 20 miles per hour.	No rainfall had occurred w	ne alternative requested 10 miles per hour a it is a service of the monitority of the previous 24 hours of the monitority the LMR requirements on the service of the service of the LMR requirements on the service of the LMR requirements of the service of the	ng event. Therefore, site

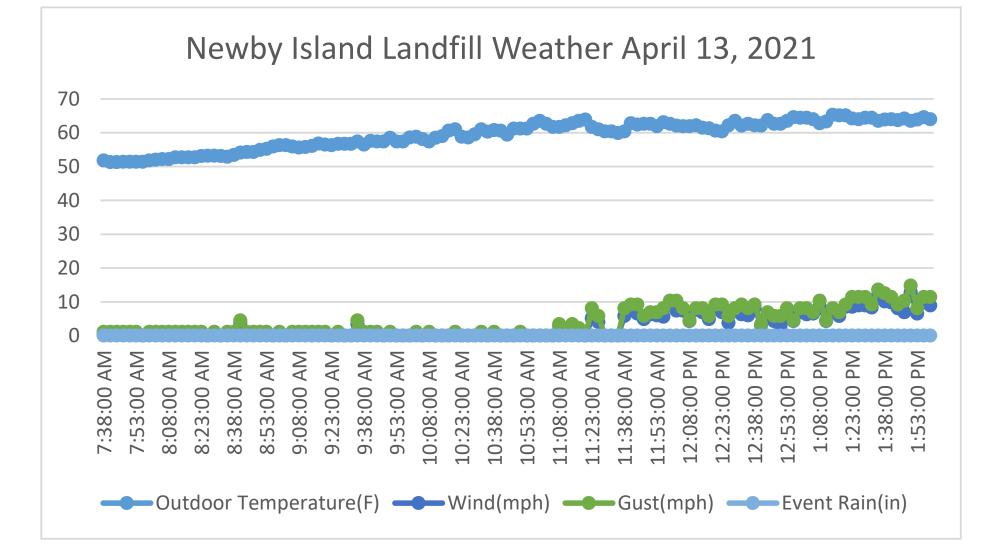
			VE	st
	SURFACE EMISSIC			
	CALIBRATION AND	PERTINENT		
Date: 6-11-21		Site Name:	Newby	
nspector(s): Don (1		Instrument:	TVA 2020	
VEATHER OBSERVATIONS			*	
Wind Speed: MPH	Wind Direction:		Barometric Pressure: 30	"Hg
Air Temperature:°F	General Weather Conditions:	SUNNI	<u>}</u>	
CALIBRATION INFORMATION				
re-monitoring Calibration Precision Check				
Procedure: Calibrate the instrument. Make a and calculate the average algebraic difference precision must be less than or equal to 10% of	e between the instrument r	eading and the cali		
nstrument Serial Number: 591	45		Cal Gas Concentration	500ppm
rial Zero Air Reading	Cal Gas Reading	Cal Gas Cond	Cal Gas Reading	Response Time (seconds)
	501	-		<u> </u>
2	500	0		5
3	- 50C	2		
alibration Precision= Average Difference/Cal	Gas Conc. X 100% = 100%-	/5	00 x 100%	
pan Sensitivity:	= 998	%		
rial 1:	1011597	Trial 3:		125740
Counts Observed for the Span=	1591-5-12	Counts	Observed for the Span=	150299
Counters Observed for the Zero=	4942	Counters	Observed for the Zero=	9819
Counts Observed for the Span=	1.55 146			
Counters Observed for the Zero=	प्रति			
ost Monitoring Calibration Check				
ero Air eading:ppm	Cal Gas Reading:	<u>500</u> pp	m	
ACKGROUND CONCENTRATIONS CHECKS				
pwind Location Description:	C1	Re	ading: <u>\.</u> 2	ppm
ownwind Location Description:	Plave	Re	ading:	ppm
otes: Wind speed averages were ob exceeded 20 miles per hour. I meteorological conditions we	No rainfall had occurred wi	thin the previous 24	4 hours of the monitorin	g event. Therefore, site

			ONS MONITORING	
		CALIBRATION AND	D PERTINENT DATA	
Date:	5-11-21		Site Name: Newby	
Inspector(s):	Bryan	<u> </u>	Instrument:TVA 2020	
NEATHER OB	SERVATIONS		6	
Wind Speed	н:мрн	Wind Direction:	Barometric Pressure: <u>30</u>	"Hg
Ai Temperature		General Weather Conditions:		
	INFORMATION			
Pre-monitoring	Calibration Precision Check			
and calculate th		e between the instrument r	its by alternating zero air and the calibrat reading and the calibration gas as a perce	
nstrument Seria	al Number:	5	Cal Gas Concentration	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1	.0	500		V V
2	.2	502	2	4
3		500	Õ	3
		Average Difference:	*Perform recalibration if average difference is greater th	an 10
Calibration Preci	ision= Average Difference/Cal		*Perform recalibration if average difference is greater th	an 10
2)		Gas Conc. X 100%	L.	an 10
pan Sensitivity:		Gas Conc. X 100% = 100%- = 7 8	<u> </u> /500 x 100% %	an 10
pan Sensitivity: 'rial 1:		Gas Conc. X 100% = 100% - = 99%	L.	140.28
pan Sensitivity: rial 1: Cou rial 2:	ounts Observed for the Span= Inters Observed for the Zero=	Gas Conc. X 100% = 100% = $99.\%$ 121984 2899	/500 x 100% % Trial 3:	1= <u>112286</u>
pan Sensitivity: rial 1: Cou rial 2: Cou	ounts Observed for the Span= Inters Observed for the Zero= Dunts Observed for the Span=	Gas Conc. X 100% = 100% = $99.\%$ 121984 2899	/500 x 100% % <u>Trial 3:</u> Counts Observed for the Span	1= <u>112286</u>
pan Sensitivity: rial 1: Cou rial 2: Cou Cou	ounts Observed for the Span= Inters Observed for the Zero= ounts Observed for the Span= Inters Observed for the Zero=	Gas Conc. X 100% = 100% = $99.\%$ 121984 2899	/500 x 100% % <u>Trial 3:</u> Counts Observed for the Span	1= <u>112286</u>
ipan Sensitivity: Trial 1: Cou Trial 2: Cou Ost Monitoring	ounts Observed for the Span= Inters Observed for the Zero= Dunts Observed for the Span=	Gas Conc. X 100% = 100% = 92% 120% 2899 1220% 29%	/500 x 100% % <u>Trial 3:</u> Counts Observed for the Span	1= <u>112286</u>
pan Sensitivity: rial 1: Cou rial 2: Cou Cou	ounts Observed for the Span= Inters Observed for the Zero= ounts Observed for the Span= Inters Observed for the Zero=	Gas Conc. X 100% = 100% = $99.\%$ 121984 2899	/500 x 100% % <u>Trial 3:</u> Counts Observed for the Span	1= <u>112286</u>
pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring ero Air eading:	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero= Calibration Check	Gas Conc. X 100% = 100%- = 9.8 120984 2899 122046 2940 2940 2940 2940	% Trial 3: Counts Observed for the Span Counters Observed for the Zero	1= <u>112286</u>
pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring ero Air eading:	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero= Calibration Check	Gas Conc. X 100% = 100%- = 9.8 120984 2899 122046 2940 2940 2940 2940	% Trial 3: Counts Observed for the Span Counters Observed for the Zero	1= <u>112286</u>


			Vre	
		SURFACE EMISSIC	ONS MONITORING	
		CALIBRATION AND	PERTINENT DATA	
ate:	Don Gibs	(Site Name:	
spector(s):	Don Gibs	ion	Instrument: TVA 2020	
EATHER OB	SERVATIONS			
Wind Speed	:	Wind Direction: SE	Barometric Pressure: 29	Hg
Air Temperature		General Weather Conditions:	Sunny	
ALIBRATION	INFORMATION			
e-monitoring	Calibration Precision Check			
nd calculate th	he average algebraic different be less than or equal to 10% of \mathcal{C}	ce between the instrument r	ts by alternating zero air and the calibratio eading and the calibration gas as a percen Cal Gas Concentration:	itage. The calibration
ial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1	~ O	Sol	7	
2	1	501	T	2
3	1 1	199	1	P
-4		= 100%- = 99.°	<u>/.</u> /500 x 100%	
an Sensitivity:				
al 1:		1000000	Trial 3:	10 01 0 01
	ounts Observed for the Span=	155812	Counts Observed for the Span-	165628
	nters Observed for the Zero=	5094	Counters Observed for the Zero-	= 4675
al 2: Co	ounts Observed for the Span=	139920		
Cou	nters Observed for the Zero=	4840		
st Monitoring	Calibration Check			
ro Air ading:	ppm	Cal Gas Reading:	STO ppm	
CKGROUND	CONCENTRATIONS CHECK	s ()		
wind Location	Description:	flore	Reading: 112	ppm
wnwind Locat	ion Description: (arid L	Reading: <u>17</u>	_ppm
	exceeded 20 miles per hour.	No rainfall had occurred wi	e alternative requested 10 miles per hour thin the previous 24 hours of the monitori ernatives of the LMR requirements on the	ng event. Therefore, site


			VYE	
			ONS MONITORING	
		CALIBRATION ANI	D PERTINENT DATA	
Date:	5-11-21		Site Name: Menby	
Inspector(s):	brgan		Instrument: TVA 2020	
WEATHER OBS	SERVATIONS		· ·	
Wind Speed:	мрн	Wind Direction: <u>SE</u>	Barometric Pressure: 29	"Hg
Air Temperature:	1 1	General Weather Conditions:	Scence	
CALIBRATION I	INFORMATION			
Pre-monitoring (Calibration Precision Check			
and calculate the	e average algebraic difference le less than or equal to 10% of	e between the instrument i	nts by alternating zero air and the calibration reading and the calibration gas as a percer Cal Gas Concentration:	ntage. The calibration
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
1	, O	500	0	9
2	el	500	0	2
3	0	500	0	<
	_	= 100%-	/00 /500 x 100%	
		- 100	70	
pan Sensitivity: rial 1:			Trial 3:	2 1
Co	unts Observed for the Span=		Counts Observed for the Span	anal.
	nters Observed for the Zero=	2901	Counters Observed for the Zero	= 2924
rial 2: Co	unts Observed for the Span=	12(932		
Cour	nters Observed for the Zero=	2957		
ost Monitoring (Calibration Check			
ero Air eading:	ppm	Cal Gas Reading:	SOO ppm	
ACKGROUND	CONCENTRATIONS CHECKS	\cap	A -	
pwind Location	Description:	Flare.	Reading: $\frac{1}{2}$	_ppm
ownwind Locati	on Description:	Grid I	Reading:	ppm
e	exceeded 20 miles per hour.	No rainfall had occurred w	ne alternative requested 10 miles per hour ithin the previous 24 hours of the monitori cernatives of the LMR requirements on the	ing event. Therefore, site


		SURFACE EMISSIC	ONS MONITORING	
	0	CALIBRATION AND	PERTINENT DATA	
Date:	5-11-21		Site Name: 1/22 loan	
Inspector(s):	Hunter	0	Instrument: TVA 2020	
WEATHER OB	SERVATIONS		÷	
Wind Speed	: <u></u> мрн	Wind Direction: <u>S</u>	Barometric Pressure: 29	Hg
Air Temperature		General Weather Conditions:	Sanne	
CALIBRATION	INFORMATION			
^o re-monitoring	Calibration Precision Check			
			s by alternating zero air and the calibratic ading and the calibration gas as a percen	
	be less than or equal to 10% o			
nstrument Seria	al Number: 547	21	Cal Gas Concentration:	500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1		498	2	
2	0	499	1	
3				
	ision= Average Difference/Ca		Perform recallbration if average difference is greater than	10
1	ision= Average Difference/Ca	l Gas Conc. X 100%	Perform recallibration if average difference is greater than $\frac{1.3}{500 \times 100\%}$]
16	ision= Average Difference/Ca	l Gas Conc. X 100%] 10
Calibration Preci		I Gas Conc. X 100% = 100%- = 7,9,7	1.3 /500 x 100%] 10
Calibration Preci		I Gas Conc. X 100% = 100%- = 9,9,7		
Calibration Preci Span Sensitivity: Trial 1: Cou		I Gas Conc. X 100% = 100% = $9,9,7$ = 134732	<u>1,3</u> /500 x 100% %	133250
Calibration Preci pan Sensitivity: rial 1: Co Cou rial 2:	ounts Observed for the Span=	I Gas Conc. X 100% = 100% = 9.9.7 $= 9.9.7$ $= 134732 = 33183$	1.3 /500 x 100% % Frial 3: Counts Observed for the Span=	133250
Calibration Preci Span Sensitivity: Frial 1: Cou Trial 2: Cou	ounts Observed for the Span= nters Observed for the Zero=	I Gas Conc. X 100% = 100% = 9.9.7 $= 9.9.7$ $= 134732 = 35183 = 132617$	1.3 /500 x 100% % Frial 3: Counts Observed for the Span=	133250
Calibration Preci Span Sensitivity: Trial 1: Co Cou Trial 2: Co Cou	ounts Observed for the Span= nters Observed for the Zero= punts Observed for the Span=	I Gas Conc. X 100% = 100% = 9.9.7 $= 9.9.7$ $= 134732 = 35183 = 132617$	1.3 /500 x 100% % Frial 3: Counts Observed for the Span=	133250
Calibration Preci pan Sensitivity: rial 1: Cou rial 2: Cou cou ost Monitoring	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero=	I Gas Conc. X 100% = 100% = 9.9.7 $= 9.9.7$ $= 134732$ $= 3783$ $= 132612$ $= 3748$	1.3 /500 x 100% % Frial 3: Counts Observed for the Span=	133250
alibration Preci pan Sensitivity: rial 1: Cou rial 2: Cou cou cou cou cou	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero=	I Gas Conc. X 100% = 100% = 9.9.7 $= 9.9.7$ $= 134732 = 35183 = 132617$	1.3 /500 x 100% % Frial 3: Counts Observed for the Span=	133250
Calibration Preci pan Sensitivity: rial 1: Cou rial 2: Cou rial 2: Cou cost Monitoring ero Air eading:	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check	I Gas Conc. X 100% = 100% = 9.9.7 for 134732 = 3183 = 132612 = 3748 Gas $I Cal Gas$ $Reading: = -100% = -10% = -100% = -10% =$	1.3 /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	133250
Calibration Preci pan Sensitivity: rial 1: Co Cou rial 2: Co Cou ost Monitoring ero Air eading: ACKGROUND	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	I Gas Conc. X 100% = 100% = 9.9.7 for 134732 = 3183 = 132612 = 3748 Gas $I Cal Gas$ $Reading: = -100% = -10% = -100% = -10% =$	1.3 /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	133250
Calibration Preci Span Sensitivity: Trial 1: Co Cou Trial 2: Co Cou Tost Monitoring ero Air eading: ACKGROUND	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	I Gas Conc. X 100% = 100% = 9.9.7 for 134732 = 3183 = 132612 = 3748 Gas $I Cal Gas$ $Reading: = -100% = -10% = -$	1.3 /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	133250


Attachment 6


Weather Data

Second Quarter 2021 LMR Surface Emissions Monitoring Weather Data April 22, 2021 Newby Island Landfill, Milpitas, California

Second Quarter 2021 LMR Surface Emissions Monitoring Weather Data May 11, 2021 Newby Island Landfill, Milpitas, California

Appendix E – Title V Semi-Annual Report

TITLE V SEMI-ANNUAL MONITORING REPORT

SITE:			FACILITY ID#:	
NEWBY ISLAN	D LANDFILL			A9013
REPORTING PERIOD:	from	through	1	
	02/01/2021		07/31/2021	

CERTIFICATION:

I declare, under penalty of perjury under the laws of the state of California, that, based on information and belief formed after reasonable inquiry, all information provided in this reporting package is true, accurate, and addresses all deviations during the reporting period:

08/31/21

Signature of Responsible Official

Date

Daniel North Name of Responsible Official (please print)

<u>General Manager</u> Title of Responsible Official (please print)

Mail to:

Director of Compliance and Enforcement BAAQMD 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V reports

TITLE V SEMI-ANNUAL MONITORING REPORT

SITE:			FACILITY ID#:	
NEWBY ISLAN		A9013		
REPORTING PERIOD:	from	through	ו	
	02/01/2021	_	07/31/2021	

List of Permitted Sources and Abatement Device

Permit Unit Number	Equipment Description		
S-#	Description		
S-2	Newby Island Sanitary Landfill – Waste Decomposition Process;		
5-2	Equipped with Landfill Gas Collection System		
S-5 Newby Island Sanitary Landfill – Waste and Cover Material Dumping			
S-6	Newby Island Sanitary Landfill – Excavating, Bulldozing and		
3-0	Compacting Activities		
S-3	Composting Operation; A-3 Water Truck		
S-4	Non-retail Gasoline Dispensing Facility		
S-8 and S-9	Horizontal Grinder/Operations, Trommel Screen/Operations		
A-2	Landfill Gas Flare		
A-3	Landfill Gas Flare		

Newby also maintains a Title V Permit (Facility No. A9013), which expired on December 20, 2017. On June 20, 2017, a Title V Renewal Application was submitted to the Bay Area Air Quality Management District (BAAQMD). The site currently operates under an application shield.

The conditions listed below are incorporated in the BAAQMD Permit to Operate (PTO) that expired August 1, 2021, but has not yet been incorporated into the Title V permit. All conditions have been reviewed for compliance, and the site is in compliance.

- Condition #24887 applies to S#4
- Condition #26046 applies to S#7, 8, 9, 10
- Condition #26606 applies to S#1008
- Condition #26607 applies to S#1040
- Condition #26608 applies to S#1009
- Condition #26609 applies to S#1042
- Condition #26610 applies to S#1043
- Condition #26611 applies to S#1038

Newby also maintains an Authority to Construct (ATC) Application Number (A/N) 28472 for the S-1003 Covered Aerated Static Pile (CASP) Composting Operation and the S-15 Mixed Waste Stockpiles. The ATCs for the S-1003 CASP Composting Operation and S-15 Mixed Waste Stockpiles were issued on November 21, 2017, were extended via approval email from the Bay

Area Air Quality District (BAAQMD) on November 21, 2019, and will expire on November 21, 2021. All conditions have been reviewed for compliance and there was one deviation of the ATC this reporting period.

 On May 27, 2021, Notice of Violation (NOV) Number A59433 was issued by BAAQMD Inspector, Mr. Jay Patel, to Newby Island for an alleged violation of CASP ATC Condition No. 26632, Part 9. Per the NOV, IDCC allegedly failed to comply with CASP ATC Condition No. 26632 Part 9 requirements to immediately initiate corrective actions and maintain records for temperatures that exceeded 180 degrees Fahrenheit (°F) for over six consecutive hours. The NOV was based on records from September 2019 through December 2020. For additional information, including corrective actions taken, please refer to the June 4, 2021 10-day Response Letter.

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Collection	BAAQMD	Records	Periodic /	BAAQMD 8-34-	For Active Areas:	Continuous	N/A
System	8-34-501.7 and		On event	304.2	Collection system		
Installation	501.8 and		basis		components must be		
Dates	BAAQMD				installed and operating		
	Condition # 10423,				by 5 years + 60 days		
	Part 13b, 13c, 13f,				after initial waste		
	13g				placement		
Collection	BAAQMD	Records	Periodic /	BAAQMD 8-34-	For Any Uncontrolled	Continuous	N/A
System	8-34-501.7 and		On event	304.3	Areas or Cells: collection		
Installation	501.8 and		basis		system components		
Dates	BAAQMD				must be installed and		
	Condition # 10423,				operating within 60 days		
	Part 13b, 13c, 13f,				after the uncontrolled		
	13g				area or cell accumulates		
					1,000,000 tons of		
					decomposable waste		

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and	Reporting Period: from 02/01/2021 through 07/31/2021
COMPACTING ACTIVITIES	

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Gas Flow	BAAQMD 8-34-501.10 and 508	Gas Flow Meter and Recorder (every 15 minutes)	Continuous	BAAQMD 8-34- 301 and 301.1	Landfill gas collection system shall operate continuously and all collected gases shall be vented to a properly operating control system	Intermittent	On March 10, 2021, a utility outage occurred at the site causing the A-2 and A-3 Flares to automatically shut down. For additional information, including corrective actions taken, please refer to the March 20, 2021 30-day Breakdown Report for RCA IDs 07Y71

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
						Intermittent	On June 14, 2021, the
							BAAQMD inspector, Jay
							Patel, issued NOV A55722 for
							failure to operate the gas
							collection and control system
							(GCCS) continuously during
							Reportable Compliance
							Activity (RCA) events 07Y73
							and 07Y74; 07Y89 and
							07Y90; 07Y92 and 07Y93;
							07Z38 and 07Z39; 07Z82 and
							07Z86; 07Z83 and 07Z87;
							07Z84 and 07Z88; 07Z85 and
							07Z89. For additional
							information, including
							corrective actions taken,
							please refer to the June 24,
							2021 10-day Response Letter
							and the respective 30-day
							Breakdown Reports.

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
						Intermittent	On July 10, 2021, the power supply at the site was tripped, causing the GCCS to shut down. For additional information, including corrective actions taken, please refer to the July 20, 2021 30-day Breakdown Report for RCA IDs 08A51 and 08A52.
						Intermittent	On July 15, 2021, low flow alarms were triggered during planned maintenance on Condensate Sump 18. For additional information, including corrective actions taken, please refer to the July 23, 2021 30-day Breakdown Report for RCA IDs 08A58 and 08A59.

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 WASTE DECOMPOSITION PROCESS WITH GAS COLLECTION SYSTEM, A-2 AND A-3 LANDFILL GAS FLARE; S-5 WASTE AND COVER MATERIAL DUMPING; S-6 EXCAVATING, BULLDOZING, AND COMPACTING ACTIVITIES	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
						Intermittent	On July 22, 2021, a flame failure condition occurred at the A-2 and A-3 Flares, brought about by surging in the header, leading to an automatic shutdown of GCCS. For additional information, including corrective actions taken, please refer to the July 30, 2021 30-day Breakdown Report for RCA IDs 08A73 and 08A74.
Gas Flow	BAAQMD Condition # 10423, Parts 13f-h	Records of Landfill Gas Flow Rates, Collection and Control Systems Downtime, and Collection System Components	Periodic / Daily	BAAQMD Condition # 10423, Parts 5 and 6	Landfill gas collection system shall operate continuously and all collected gases shall be vented to a properly operating control system	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Collection and	BAAQMD	Operating	Periodic /	BAAQMD 8-34-	240 hours per year and	Continuous	N/A
Control	8-34-501.1	Records	Daily	113.2	5 consecutive days		
Systems							
Shutdown							
Time							
Periods of	BAAQMD	Operating	Periodic /	BAAQMD 1-523.2	\leq 15 consecutive days	Continuous	N/A
Inoperation for	1-523.4	Records for	Daily		per incident and		
Parametric		All Parametric			\leq 30 calendar days per		
Monitors		Monitors			12-month period		
Continuous	40 CFR 60.7(b)	Operating	Periodic /	40 CFR 60.13(e)	Requires Continuous	Continuous	N/A
Monitors		Records for	Daily		Operation except for		
		All			breakdowns, repairs,		
		Continuous			calibration, and required		
		Monitors			span adjustments		
Wellhead	BAAQMD	Monthly	Periodic /	BAAQMD 8-34-	< 0 psig (applies to all	Continuous	N/A
Pressure	8-34-414, 501.9	Inspection	Monthly	305.1	wells or collectors that		
	and 505.1	and Records			are connected to the		
					vacuum system)		
Temperature of	BAAQMD	Monthly	Periodic /	BAAQMD 8-34-	< 55 °C (< 131 °F),	Continuous	N/A
Gas at	8-34-414, 501.9	Inspection	Monthly	305.2	except for components		
Wellhead	and 505.2	and Records			identified in Condition		
					# 818, Part 3b(i)		

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Temperature of	BAAQMD	Monthly	Periodic /	BAAQMD 8-34-	<63 C (<145 F)	Continuous	N/A
Gas at	8-34-414, 501.9,	Inspection	Monthly	305	(Alternative wellhead		
Wellheads	505.2, and	and Records		and	temperature limit that		
	BAAQMD			BAAQMD	applies only to wells		
	Condition 10423,			Condition 10423,	specified in BAAQMD		
	part 6d(ii)			part 6d(i)	Condition # 10423, Part		
					6d(i))		
Gas	BAAQMD	Monthly	Periodic /	BAAQMD	N ₂ < 20%	Continuous	N/A
Concentration	8-34-414, 501.9	Inspection	Monthly	8-34-305.3 or	(by volume, dry basis)		
at Wellhead	and 505.3 or 505.4	and Records		305.4	OR		
					O ₂ < 5%		
					(Applies to all wells or		
					collectors that are		
					connected to the vacuum		
					system, except wells		
					specified in BAAQMD		
					Condition # 10423, Part		
					6c(i))		N1/A
Gas	BAAQMD	Monthly	Periodic /	BAAQMD 8-34-	O2 < 15%	Continuous	N/A
Concentrations	8-34-414, 501.9,	Inspection	Monthly	305	(Alternative wellhead		
at Header	and 505.3 or	and Records		and	oxygen concentration		
	505.4, and			BAAQMD	limit that applies only to		
	BAAQMD			Condition #	wells specified in		
	Condition 10423			10423, Part 6c(i)	BAAQMD Condition #		
	part 6c(ii)				10423, Part 6c(i))		

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Well Shutdown Limits	BAAQMD 8-34-116.5 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 116.2	No more than 5 wells at a time or 10% of total collection system, whichever is less	Continuous	N/A
Well Shutdown Limits	BAAQMD 8-34-116.5 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 116.3	< 24 hours per well	Continuous	N/A
Well Shutdown Limits	BAAQMD 8-34-117.6 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 117.4	No more than 5 wells at a time or 10% of total collection system, whichever is less	Continuous	N/A
Well Shutdown Limits	BAAQMD 8-34-117.6 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 117.5	<24 hours per well or <5 days per well for component replacement	Continuous	N/A
TOC (Total Organic Com- pounds Plus Methane)	BAAQMD 8-34-501.6 and 503	Quarterly Inspection of collection and control system components with portable analyzer and Records	Periodic / Quarterly	BAAQMD 8-34- 301.2	Component Leak Limit: < 1000 ppmv as methane	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
TOC	BAAQMD 8-34-415, 416, 501.6, 506 and 510	Monthly Visual Inspection of Cover, Quarterly Inspection of Surface with portable analyzer, Various Reinspection Times for Leaking Areas, and Records	Periodic / Monthly, Quarterly, and on an Event Basis	BAAQMD 8-34- 303	Surface Leak Limit: < 500 ppmv as methane at 2 inches above surface	Continuous	N/A
Non-Methane Organic Com- pounds (NMOC)	BAAQMD 8-34- 412 and 8-34- 501.4 and BAAQMD Condition # 10423, Part 11b	Annual Source Tests and Records	Periodic / Annual	BAAQMD 8-34- 301.3	 > 98% removal by weight OR < 30 ppmv, dry basis @ 3% O2, expressed as methane (applies to flares only) 	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Temperature of Combustion Zone (CT)	BAAQMD 8-34-501.3 and 507, SIP 8-34- 501.3 and BAAQMD Condition # 10423, Parts 11	Temperature Sensor and Recorder (continuous)	Continuous	BAAQMD Condition # 10423, Part 9	CT > 1525 °F, averaged over any 3- hour period (applies to A-1/A-3 only) CT > 1400 °F, averaged over any 3- hour period (applies to A-2 only)	Continuous	N/A
Total Carbon	BAAQMD Condition # 10423, Part 3	Records	Periodic / Daily	BAAQMD 8-2-301	 < 15 pounds/day or < 300 ppm, dry basis (applies only to aeration of or use as cover soil of soil containing < 50 ppmw of volatile organic compounds) 	TBD	At the time of the submittal of this report, VOC soil records are with SCS Engineers (SCS) for review. SCS will submit a Title V semi-annual report amendment to confirm compliance once all records have been reviewed.
Amount of Contaminated Soil Aerated or Used as Cover	BAAQMD Condition # 10423, Part 2m	Records	Periodic / On Event Basis	BAAQMD 8-40- 116.1 and BAAQMD Condition # 10423, Parts 2 and 3	< 1 cubic yard per project	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Amount of	BAAQMD	Records	Periodic /	BAAQMD 8-40-	< 8 cubic yards per	Continuous	N/A
Contaminated	8-40-116.2 and		On Event	116.2 and	project, provided organic		
Soil Aerated or	BAAQMD		Basis	BAAQMD	content		
Used as Cover	Condition # 10423,			Condition #10423,	< 500 ppmw		
	Part 2m			Parts 2 and 3	and limited to 1 exempt		
					project per 3 month		
					period		
Amount of	BAAQMD	Records	Periodic /	BAAQMD 8-40-	Prohibited for Soil with	Continuous	N/A
Contaminated	Condition # 10423,		On Event	301 and BAAQMD	Organic Content >50		
Soil Aerated or	Part 2m		Basis	Condition #10423,	ppmw unless exempt per		
Used as Cover				Parts 2 and 3	BAAQMD 8-40-116, 117,		
					or 118		
Amount of	None	N/A	None	BAAQMD 8-40-	Soil Contaminated by	Continuous	N/A
Accidental				117 and BAAQMD	Accidental Spillage of		
Spillage				Condition #	< 5 Gallons of Liquid		
				10423,	Organic Compounds		
				Parts 2 and 3			
Total Aeration	BAAQMD	Records	Periodic /	BAAQMD 8-40-	< 150 pounds VOC per	Continuous	N/A
Project	Condition #10423,		On Event	118 and BAAQMD	project and toxic air		
Emissions	Part 2m		Basis	Condition #	contaminant emissions		
				10423,	per year < BAAQMD		
				Parts 2 and 3	Table 2-1-316 limits		

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Opacity	BAAQMD Condition # 10423, Part 13e	Records of all site watering and road cleaning events	Periodic / On event basis, Monthly	BAAQMD 6-1-301 and SIP 6-301	Ringelmann No. 1 for ≤ 3 minutes/hr (applies to S-1)	Continuous	N/A
Opacity	None	N/A	None	BAAQMD 6-1-301 and SIP 6-301	Ringelmann No. 1 for < 3 minutes/hr (applies to flares)	Continuous	N/A
TSP	None	N/A	None	BAAQMD 6-1- 310.1 and SIP 6- 310	< 0.15 grains/dscf (applies to flares only)	Continuous	N/A
SO ₂	None	N/A	None	BAAQMD 9-1-301	Property Line Ground Level Limits: < 0.5 ppm for 3 minutes and < 0.25 ppm for 60 min. and <0.05 ppm for 24 hours (applies to flares only)	Continuous	N/A
SO ₂	BAAQMD Condition # 10423, Parts 10 and 13j	Sulfur analysis of landfill gas and Records	Periodic / Quarterly	BAAQMD Regulation 9-1- 302	Exhaust Gas from Flare: < 300 ppm (dry basis) (applies to flares only)	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and	Reporting Period: from 02/01/2021 through 07/31/2021
COMPACTING ACTIVITIES	

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Total Sulfur	BAAQMD	Sulfur	Periodic /	BAAQMD	< 1300 ppmv	Continuous	N/A
Content in	Condition # 10423,	analysis of	Quarterly	Condition #	instantaneous		
Landfill Gas	Parts 10a and 13j	landfill gas		10423,	concentration		
		, C		Part 10a	(expressed as H2S)		
Total Sulfur	BAAQMD	Sulfur	Periodic /	BAAQMD	< 300 ppmv annual	Intermittent	On March 31, 2021, during the
Content in	Condition # 10423,	analysis of	Quarterly	Condition #	average		1Q 2021 monitoring event, an
Landfill Gas	Parts 10a and 13j	landfill gas		10423,	(expressed as H2S)		exceedance of the annual
		and Records		Part 10a			integrated average of 300
							parts per million by volume
							(ppmv) for total reduced sulfur
							compounds (TRS) in the
							collected landfill gas (LFG) at
							Newby Island was discovered.
							For additional information,
							including corrective actions
							taken, please see the April 8,
							2021 30-Day Response
							Letter. As of June 30, 2021,
							the site is in compliance with
							the annual integrated average
							of 300 ppmv.

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
NOx	BAAQMD Condition 10423, Part 11d	Annual Source Test & Records	Periodic / Annual	BAAQMD Condition # 10423, Part 10b	Applies to Exhaust Gas from Flares: < 60 ppm corrected to 15% oxygen, dry basis (< 0.05 pounds NOx per million BTU LFG)	Continuous	N/A
H ₂ S	None	N/A	None	BAAQMD 9-2-301	Property Line Ground Level Limits: < 0.06 ppm, averaged over 3 minutes and < 0.03 ppm, averaged over 60 minutes	Continuous	N/A
Amount of Waste Accepted	BAAQMD Condition # 10423, Part 13a	Records	Periodic / Daily	BAAQMD Condition # 10423, Part 1	4,000 tons/day and < 39,000,000 tons (predicted cumulative amount of all wastes) and < 50,800,000 yd3 (cumulative amount of all wastes and cover materials)	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013	
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021	

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Heat Input	BAAQMD	Records	Periodic /	BAAQMD	< 2,006 MM BTU per day	Continuous	N/A
A-1/A-3	Condition # 10423,		Daily	Condition #	and		
	Parts 8 and 13h			10423,	< 732,095 MM BTU per		
				Part 8	year		
Heat Input,	BAAQMD	Records	Periodic /	BAAQMD	< 1,800 MM BTU per day	Continuous	N/A
A-2	Condition # 10423,		Daily	Condition #	and		
	Parts 8 and 13h			10423,	< 657,000 MM BTU per		
				Part 8	year		

Site:	Newby Island Landfill	Facility ID#:	A901	3
Permitted U	nit: S-3 COMPOSTING OPERATION; A-3 WATER TRUCK	Reporting Period:	from	02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Opacity	BAAQMD Condition # 8178, Parts 3 and 4	Observation of Operations and Records	Periodic / On Event Basis	BAAQMD Regulation 6-1-301 and SIP 6-301	< Ringelmann 1.0 for 3 minutes in any hour	Continuous	N/A
Opacity	BAAQMD Condition # 8178, Parts 3 and 4	Observation of Operations and Records	Periodic / On Event Basis	BAAQMD Condition # 8178, Part 3	< Ringelmann 1.0	Continuous	N/A

Site:	Newby	Island Landfill	Facility	ID#:	A901	3
Permittee	d Unit:	S-4 NON-RETAIL GASOLINE DISPENSING FACILITY	Reportir	ng Period:	from	02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Gasoline Throughput	BAAQMD 8-7-503.1	Records	Periodic / Annual	BAAQMD Condition # 14098	940,000 gallons per 12-month period	Continuous	N/A
Throughput (exempt from Phase I)	BAAQMD 8-7-501 and 8-7-503.2	Records	Periodic / On event basis	BAAQMD 8-7-114	1000 gallons per facility for tank integrity leak checking	Continuous	N/A
Organic Compounds	None	N/A	None	SIP 8-5-303.2	Tank Pressure Vacuum Valve Shall Be: Gas Tight or < 500 ppmv (expressed as methane) above background for PRVs (as defined in SIP 8-5-206)	Continuous	N/A
Organic Compounds	None	Equipment must be precertified by CARB	None	BAAQMD 8-7-301.2	All Phase I Systems Shall Meet the Emission Limitations of the Applicable CARB Certification	Continuous	N/A
Organic Compounds	CARB EO G-70-148-A paragraph 21	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	BAAQMD 8-7-301.6	All Phase I Equipment (except components with allowable leak rates) shall be leak free (<3 drops/minute) and vapor tight	Continuous	N/A

Site:	Newby	Island Landfill	Facility ID	#:	A901	3
Permitted	Unit:	S-4 Non-Retail Gasoline Dispensing Facility	Reporting	Period:	from	02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Organic Compounds	CARB EO G-70-148-A paragraph 21	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	BAAQMD 8-7-302.5	All Phase II Equipment (except components with allowable leak rates or at the nozzle/fill-pipe interface) Shall Be: leak free (<3 drops/minute) and vapor tight	Continuous	N/A
Organic Compounds	CARB EO G-70-148-A paragraph 21	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	CARB EO G-70-148-A paragraph 10	Any Emergency Vent or Manway Shall Be: leak free	Continuous	N/A
Defective Component Repair/ Replacement Time Limit	BAAQMD 8-7-503.2	Records	Periodic / On Event Basis	BAAQMD 8-7-302.4	< 7 days	Continuous	N/A
Liquid Removal Rate	CARB EO G-70-52-AM	CARB Certification Procedures	Periodic / On Event Basis	BAAQMD 8-7-302.8	 > 5 ml per gallon dispensed, when dispensing rate > 5 gallons/minute 	Continuous	N/A

Site:	Newby	Island Landfill	Facility ID)#:	A901	3
Permitted	Unit:	S-4 Non-Retail Gasoline Dispensing Facility	Reporting	Period:	from	02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Liquid Retain from Nozzles	CARB EO G-70-52-AM	CARB Certification Procedures	Periodic / On Event Basis	BAAQMD 8-7-302.12	< 100 ml per 1000 gallons dispensed	Continuous	N/A
Nozzle Spitting	CARB EO G-70-52-AM	CARB Certification Procedures	Periodic / On Event Basis	BAAQMD 8-7-302.13	< 1.0 ml per nozzle per test	Continuous	N/A
Pressure- Vacuum Valve Settings	CARB EO G-70-148-A	CARB Certification Procedures	Periodic / On Event Basis	BAAQMD 8-7-316 and CARB EO G-70-148-A, paragraph 14	Pressure Setting: > 2.5 inches of water, gauge	Continuous	N/A
Pressure- Vacuum Valve Settings	None	N/A	None	SIP 8-5-303.1	Pressure Setting: > 10% of maximum working pressure or > 0.5 psig	Continuous	N/A
Disconnection Liquid Leaks	CARB EO G-70-148-A paragraph 21	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	CARB EO G-70-148-A paragraph 12	10 ml per disconnect, averaged over 3 disconnect operations	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-8 HORIZONTAL GRINDER OPERATIONS/ S-9	Reporting Period: from 02/01/2021 through 07/31/2021
TROMMEL SCREEN/OPERATIONS	

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Opacity	None	N/A	None	BAAQMD 6-1-301 and SIP 6-301	Ringelmann 1.0 for <3 minutes in any hour	Continuous	N/A
Particulate Matter (PM)	None	N/A	None	BAAQMD 6-1-311 And SIP 6-311	E = $0.026(P)^{0.67}$ where: E = Allowable Emission Rate (lb/hr); and P = Process Weight Rate (lb/hr) Maximum Allowable Emission Rate = 40 lb/hr For P >57,320 lb/hr (or P > 28.66 tons/hr)	Continuous	N/A

Newby Island Landfill 1601 Dixon Landing Road, Milpitas, CA 95035 o 408.586.2263 c 510.298.7892 republicservices.com

Direction of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V Reports

Director of the Air Division, USEPA Region IX 75 Hawthorne Street San Francisco, CA 94105 Attn: Air-3

V Tracking #: 294

1. D RECEIVED IN 08/31/2021 **ENFORCEMENT**

Subject:

Combined 8-34 Semi-Annual Report, 40 CFR Subpart AAA Semi-Annual Report, and Title V Semi-Annual Monitoring Report Newby Island Landfill, Milpitas, California (Title V Facility No. A9013)

Dear Sir or Madam:

International Disposal Corp of CA (IDCC) is pleased to submit the enclosed combined Bay Area Air Quality Management District (BAAQMD), Regulation 8, Rule 34 Semi-Annual Report, Semi-Annual Startup, Shutdown and Malfunction (SSM) Plan Report, and Title V Semi-Annual Monitoring Report to the BAAQMD and the U.S. Environmental Protection Agency (EPA) Region IX for the Newby Island Landfill (Newby). The Title V Semi-Annual Monitoring Report, the BAAQMD Rule 8-34 Semi-Annual Report and the SSM Plan Report cover the period from February 1, 2021 through July 31, 2021.

The Title V reports meet the requirements specified in the Title V permit, BAAQMD guidance on Title V report submittals, and Regulation 2, Rule 6. The Rule 8-34 report includes the information required by BAAQMD Rule 8-34-411 and also satisfies the requirements under the New Source Performance Standards (NSPS) for municipal solid waste landfills (40 California Code of Regulation [CFR] Part 60, Subpart WWW), including 40 CFR 60.757(f). The Semi-Annual SSM Plan Report satisfies the requirements under the Maximum Achievable Control Technology (MACT) rule for semi-annual reporting of SSM Plan implementation including 40 CFR 63.10(d)(S). The Title V reports and the SSM Plan report each includes a certification by the responsible official for Newby Island.

If you have any questions regarding this submittal, please do not hesitate to call me at (408) 586-2263 or email me at RHuber2@republicservices.com.

Sincerely

Rachelle Huber Environmental Manager Newby Island Landfill

CC:

Michael O'Connor, SCS Engineers Ray Huff, SCS Engineers

NSPS/BAAQMD Rule 8-34 Semi-Annual Report, SSM Plan Semi-Annual Report, and Title V Semi-Annual Report Newby Island Landfill Milpitas, California (Facility No. 9013)

Prepared for:

International Disposal Corporation of California 1601 Dixon Landing Road Milpitas, CA 95035

For Submittal to:

Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

01205162.04 Task 1 | August 2021

3843 Brickway Boulevard, Suite 208 Santa Rosa, CA 95403 707-546-9461 This submittal consisting of the New Source Performance Standards (NSPS)/Bay Area Air Quality Management District (BAAQMD) Rule 8-34 Semi-Annual Report, the Semi-Annual Startup, Shutdown, and Malfunction Plan Report, and the Title V Semi-Annual Monitoring Report for the Newby Island Landfill in Milpitas, California, dated August 2021, was prepared and reviewed by the following:

Anne Liu Staff Professional SCS ENGINEERS

Ray Huff Vice President SCS ENGINEERS

Patto & Sullen

Patrick S. Sullivan, REA, CPP, BCES Senior Vice President SCS ENGINEERS

Table of Contents

Sect	ion			Page					
SECT	ION I.	NSP	S/BAAQMD Rule 8-34 Semi-Annual Report	1					
1.0	Intro	duction		1					
2.0	Site E	Backgro	und Information	2					
	2.1 Existing Air Permits								
	2.2	Existing	g Landfill Gas Collection and Control System	2					
3.0	Moni	toring a	nd Records	3					
	3.1	Continu	uously Monitored Parameters	3					
		3.1.1	Gas Extraction System Downtime	3					
		3.1.2	Emission Control System Downtime	3					
		3.1.3	Individual Well Downtime	4					
		3.1.4	Flow Meter and Temperature Gauge Downtime	4					
		3.1.5	Flare Combustion Zone Temperature	4					
	3.2	Compo	nent Leak Quarterly Monitoring	5					
		3.2.1	First Quarter 2021 Monitoring	5					
		3.2.2	Second Quarter 2021 Monitoring	5					
	3.3	Control	I Efficiency	5					
	3.4	Landfil	I Surface Emissions Monitoring	6					
		3.4.1	First Quarter 2021 Monitoring	6					
		3.4.1	Second Quarter 2021 Monitoring	6					
	3.5	Wellhe	ad Monthly Monitoring	6					
		3.5.1	Pressure	7					
		3.5.2	Oxygen	7					
		3.5.3	Temperature	7					
	3.6	Cover I	ntegrity Monitoring	8					
	3.7	Gas Ge	eneration Estimate and Monthly Landfill Gas Flow Rates	8					
	3.8	Annual	Waste Acceptance Rate and Refuse In Place	9					
		3.8.1	Non-Degradable Waste Areas	9					
SECT	ION II.	SSM	1 Plan Report	10					
SECT	ION III	. Title	V Semi-Annual Report	11					

Tables

Table 1a - GCCS Downtime

- Table 1b Flare A-2 Downtime
- Table 1c Flare A-3 Downtime
- Table 2 Individual Well Startups, Shutdowns and Decommissions
- Table 3 Wells with Positive Pressure
- Table 4 Wells with Oxygen Exceedances
- Table 5 Wells with Temperature Exceedances

Appendices

Appendix A – Responsible Official Certification Form

- Appendix B Existing GCCS Layout
- Appendix C Excerpts from the 2021 Source Test Results (report dated April 1, 2021)
- Appendix D Surface Emission and GCCS Component Leak Monitoring Results
- Appendix E Title V Semi-Annual Report

SECTION I. NSPS/BAAQMD RULE 8-34 SEMI-ANNUAL REPORT

1.0 INTRODUCTION

On behalf of the International Disposal Corporation of California (IDCC), SCS Engineers (SCS) hereby submits this New Source Performance Standard (NSPS), 40 Code of Federal Regulations (CFR) Part 60, Subpart WWW), and Bay Area Air Quality Management District (BAAQMD or District) Rule 8-34 Semi-Annual Report and Semi-Annual Start-up, Shutdown, and Malfunction (SSM) Plan Report for the period of February 1, 2021 through July 31, 2021 to the BAAQMD for the Newby Island Sanitary Landfill and Recyclery (Newby).

This Semi-Annual report also meets the requirements of the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for MSW landfills, 40 CFR 63, Subpart AAAA and complies with the requirements specified in Newby's Title V permit. In addition, Newby is not yet subject the new NESHAP, which goes into effect September 27, 2021, but will comply with the current version of the NESHAP until that time. This Semi-Annual report includes a certification signed by a Responsible Official which is provided in **Appendix A**. In accordance with the NESHAP for Landfills, this report is submitted semi-annually.

The Semi-Annual Report pertains to the landfill gas (LFG) collection and control system (GCCS) operated at Newby.

This report includes the following information, as required by BAAQMD Rule 8-34-411:

- All collection system and/or component downtime and reasons for the shutdown (8-34-501.1).
- All emission control system downtime and reason for the shutdown (8-34-501.2).
- Continuous temperature monitoring and dates of any excesses (8-34-501.3 and 507).
- Testing performed to satisfy of the requirements of this Rule (8-34-501.4).
- Monthly LFG flow rates and excesses (8-34-501.5).
- Collection and emission control system leak testing and any excesses, action taken to correct excesses, and re-monitored concentrations (8-34-501.6 and 503).
- Landfill surface monitoring, location of excesses, excess concentration, date discovered, actions taken to repair the excess, and re-monitored concentrations (8-34-501.6 and 506).
- Annual waste acceptance rate and the current amount of waste in-place (8-34-501.7).
- Records of non-degradable waste if area is excluded from LFG collection (8-34-501.8).
- Well head monitoring including gauge pressure, LFG temperature, and LFG oxygen concentration (8-34-501.9 and 505).

• Continuous flow monitoring (8-34-501.10).

Information summarizing the monitoring activities associated with the above-listed items is provided in the following sections.

2.0 SITE BACKGROUND INFORMATION

Newby is a municipal solid waste (MSW) landfill located in Milpitas, California and is owned and operated by International Disposal Corporation of California (IDCC). The municipal refuse disposal site is located in Santa Clara County on the western terminus of Dixon Landing Road. The 342-acre landfill began accepting waste circa 1930 and is currently in operation.

Newby is subject to NSPS Subpart XXX since it commenced construction, reconstruction, or modification after July 17, 2014. Pursuant to NSPS Subpart XXX, Newby was required to initiate gas collection and control system (GCCS) operations, including associated monitoring, recordkeeping, and reporting, on September 4, 2019 (30 months after the submittal of the NMOC Emissions Rate Report). For ease of recordkeeping, Newby elected to begin reporting effective September 1, 2019. However, due to potentially overlapping requirement, Newby is continuing to report semi-annually under NSPS Subpart WWW and Rule 8-34. A separate NSPS XXX Annual Report is also prepared.

2.1 EXISTING AIR PERMITS

Newby maintains a BAAQMD Permit to Operate (PTO) (Plant No. 9013), which includes conditions for the wellfield, collection system, and A-2 and A-3 flare stations (Condition No. 10423). This condition incorporates all applicable requirements from NSPS Subpart WWW and from BAAQMD Rule 8-34, which are addressed in this report. Newby also maintains a Title V Permit (Facility No. A9013), which expired on December 20, 2017. On June 20, 2017, a Title V Renewal Application was submitted to the BAAQMD. The site currently operates under an application shield.

A GCCS Design Plan was prepared for the site to review and determine the adequacy of the existing LFG system. The current design of the system was determined to be adequate to comply with both NSPS and BAAQMD Rule 8-34 requirements. The system design is based on the density of wells calculated to sufficiently extract the maximum flow of LFG generated, according to the United States (U.S.) Environmental Protection Agency (EPA) LFG emissions model (LandGEM). The GCCS is designed to control surface emissions, as well as to minimize subsurface lateral migration of LFG. Both the perimeter of the landfill and the landfill surface are monitored on a quarterly basis. Additional details regarding the GCCS are in the GCCS Design Plan that was previously submitted to the BAAQMD. A drawing showing the existing GCCS is provided in **Appendix B**.

2.2 EXISTING LANDFILL GAS COLLECTION AND CONTROL SYSTEM

The GCCS at Newby consists of extraction wells used to collect the LFG from within the landfill (the "wellfield") and a piping system (the "collection system") used to convey the collected LFG to the control systems for destruction. The LFG is extracted from the landfill through a combination of vertical gas extraction wells and horizontal gas extraction trenches/pipes, as well as leachate collection system components. All landfill gas is controlled by one of more of the following means: The A-2 and A-3 Flares or the IC engine power generators operated by the San Jose/Santa Clara Water Pollution Control Plant (Facility #A778).

A diagram of the GCCS displaying system component locations is shown in the site plan(s) provided in **Appendix B**.

3.0 MONITORING AND RECORDS

3.1 CONTINUOUSLY MONITORED PARAMETERS

According to BAAQMD Rule 8-34-301.1, the GCCS must be operated continuously. To comply with this requirement, the landfill owner/operator is required to maintain full-time operation of the LFG collection system and control devices, as well as individual extraction wells. Downtime for any of these components must be reported in the Rule 8-34 Semi-Annual Report. This information is summarized below and in the attached tables. Records of continuously monitored parameters are available for review at the site.

3.1.1 Gas Extraction System Downtime

During the reporting period, the LFG extraction system was off-line on several occasions for a total of 33.22 hours. Shutdowns involved pre-programmed or manual system shutdowns prior to noncompliant operation or equipment failure, and involved inspection, maintenance and/or repair of the GCCS, and thus meet the criteria for allowed GCCS downtime, as specified in Rule 8-34-113 and in accordance with the BAAQMD November 5, 2018 Compliance Advisory, with the exemption of 12 events. These 12 events occurred on March 10, 12, 27 and 28; May 5, 30, and 31; July 10, 15, and 22, 2021, and were due to air blower low-flow alarms, site-wide power outages due to unforeseen utility outage events, a tripped power supply, maintenance conducted on Condensate Sump 18, and flame failure conditions.

Reportable Compliance Activity (RCA) forms were submitted to the BAAQMD on March 11, 12, 28, and 29; May 5, 30, and 31; July 12, 16, and 22, 2021, respectively, to request breakdown relief and to report the parametric excursions.

BAAQMD issued RCA IDs 07Y71 and 07Y72 for the breakdown and excursion, respectively, for the March 10, 2021 event; RCA IDs 07Y73 and 07Y74, for the March 12, 2021 event; RCA IDs 07Y89 and 07Y90 for the March 27, 2021 event; RCA IDs 07Y92 and 07Y93 for the March 28, 2021 event; RCA IDs 07Z38 and 07Z39 for the May 5, 2021 event; RCA IDs 07Z82 and 07Z86 for the May 30, 2021 event; RCA IDs 07Z83 and 07Z87, 07Z84 and 07Z88, 07Z85 and 07Z89 for the May 31, 2021 events; RCA IDs 08A51 and 08A52 for the July 10, 2021 event; RCA IDs 08A58 and 08A59 for the July 15, 2021 event; and RCA IDs 08A73 and 08A74 for the July 22, 2021 event.

On March 20, April 6, May 14, June 10 and 11, July 21, 26, 30, 2021, Newby submitted the Combined 10/30-Day Title V Reports and Notifications for the respective RCA IDs to the BAAQMD.

A summary of the GCCS downtime for this reporting period is provided in **Table 1a**, including the date, reason for the downtime, description of the corrective measure(s) implemented to resume GCCS operation, and the total elapsed time for each event. Gas extraction system downtime records are available for review at the site.

3.1.2 Emission Control System Downtime

During the reporting period, the A-2 and A-3 Flares were off-line on several occasions. Summaries of the A-2 and A-3 flare downtime are provided in **Table 1b and 1c**, including the date, reason for the downtime, and the total elapsed time for each event. During the reporting period, downtime for the

A-2 Flare occurred over a cumulative period of approximately 65.12 hours and for the A-3 Flare over a cumulative period of approximately 42.35 hours. Emission control system downtime records are available for review at the site.

3.1.3 Individual Well Downtime

In some instances, the entire GCCS may not go off-line, but individual extraction wells may be taken off-line for inspection, maintenance, and/or repair, and active filling in the vicinity of the well, as well as for other unforeseen circumstances. These are generally planned events, although such events can occur without notice. During the reporting period, several wells were temporarily taken offline or were taken offline during a previous reporting period and remained offline for a portion of the reporting period due to active filling and construction activities occurring in their vicinity.

On February 19, 2021 and May 25, 2021, IDCC submitted Requests for Limited Exemption from the requirements of BAAQMD Regulation 8-34 117.1 through 117.6 and 118 Construction Plan (118 Plan) for construction activities to the BAAQMD. These wells were taken off-line in accordance with the requirements of Rule 8-34.

Four (4) wells, (NIHC17-2, NIHC17-3, NILEW741, NILMW015), remained offline at the end of the reporting period and will be reported as a startup once the filling operations around each well cease and the wells are brought back online.

Two (2) horizontal collectors and ten (10) vertical wells were abandoned during the reporting period due to poor gas production.

Pursuant to permit condition No. 10423, Part 6, the owner/operator must notify the District of expected installation or decommissioning dates. A combined Well Decommissioning and Startup Notification Letter was submitted to the BAAQMD for the well actions noted above.

Details of individual well shutdown and well startups occurring during the reporting period are provided in **Table 2**. Please see the Semi-Annual Startup, Shutdown, and Malfunction (SSM) Report included in this submittal for additional details.

3.1.4 Flow Meter and Temperature Gauge Downtime

The continuous operation of the GCCS is measured through the continuous measurement of LFG flow to each flare and flare combustion temperature. As required by Rule 8-34, each flare at Newby is equipped with flow measuring devices and temperature gauges that provide continuous readout displays using digital chart recorders. During the reporting period, the flow meter(s) and temperature gauge(s)/recorders at the flare station did not go out of operation due to malfunction or other breakdown conditions. Continuous monitoring and calibration information are available for review at the site.

3.1.5 Flare Combustion Zone Temperature

Newby is required by permit condition No. 10423, Part 9 to operate the A-2 and A-3 Flares in such a manner that the combustion zone temperature of the flares does not drop below the permitted limit of 1,400 and 1,501 degrees Fahrenheit (°F), respectively, (averaged over a 3-hour period) or a higher or lower temperature based on the most recent source test.

During the reporting period, the minimum temperature at which the A-2 flare was required to operate was 1,452°F (1,502 °F minus 50 °F), based on the February 23, 2021 source test performed by Blue Sky Environmental, Inc. (final report issued on April 1, 2021). During the reporting period, the minimum temperature at which the A-3 flare was required to operate was 1,454°F (1,504 °F minus 82 °F), based on the February 23, 2021 source test performed by Blue Sky Environmental, Inc. (final report issued on April 1, 2021).

During the reporting period, the A-2 and A-3 flares operated above the minimum established 3-hour average temperature limit at all times, except during periods of SSM.

Flare temperature records are available for review at the site.

3.2 COMPONENT LEAK QUARTERLY MONITORING

During the reporting period, quarterly testing of the GCCS components for any leaks with a methane concentration of greater than 1,000 parts per million by volume (ppmv), as required by BAAQMD Rule 8-34-503, was conducted. Testing in the wellfield and at the flare station was performed using an organic vapor analyzer (OVA), which was calibrated on the same day as the testing. Monitoring results and calibration records are provided in **Appendix D** and are available for review at the site.

3.2.1 First Quarter 2021 Monitoring

SCS Field Services (SCSFS) conducted the component leak testing of the wellfield and flare station on March 27, 2021. No component leaks above 1,000 ppmv were detected in the wellfield or at the flare station during the first quarter 2021 monitoring event.

3.2.2 Second Quarter 2021 Monitoring

SCSFS conducted the component leak testing of the flare station and wellfield on April 9, 2021. No component leaks above 1,000 ppmv were detected in the wellfield or at the flare station during the second quarter 2021 monitoring event.

3.3 CONTROL EFFICIENCY

LFG flares A-2 and A-3 was also tested on February 23, 2021 to demonstrate compliance with the control efficiency standard of 98 percent NMOC destruction efficiency or outlet concentration of 30 ppmv of NMOC as methane (for flares) as required by BAAQMD Rules 8-34-301.3, 8-34-412, 8-34-501.4, and Condition # 10423, Part 11. The NMOC destruction efficiency for the A-2 Flare during the February 2021 source test was measured to be >99.56 percent by weight, and the NMOC as methane concentration in the flare outlet was <2.5 ppmv. The NMOC destruction efficiency for the A-3 Flare during the February 2021 source test was measured to be >99.57 percent by weight, and the NMOC as methane concentration in the flare outlet was <2.5 ppmv. As such, flares A-2 and A-3 is in compliance with the aforementioned rules and permit condition by meeting the ppmv limit.

Excerpts from the February 2021 source test report dated April 1, 2021, summarizing the test results, are provided in **Appendix C** of this report.

3.4 LANDFILL SURFACE EMISSIONS MONITORING

Surface emissions monitoring (SEM) was conducted at Newby on a quarterly basis during the reporting period, in accordance with BAAQMD Rule 8-34-303 and 8-34-506. The SEM events were conducted in accordance with the SEM plan in the landfill's GCCS Design Plan. Testing was performed using a Trimble SiteFID Landfill Gas Monitor Portable Flame Ionization Detector (FID), which was calibrated the same day as the testing. The results of this monitoring are summarized below. Reports for each quarterly monitoring event are provided in **Appendix D**. Records of SEM are available for review at the site.

3.4.1 First Quarter 2021 Monitoring

SCSFS field technicians monitored the landfill surface for leaks with a methane concentration of greater than 500 ppmv above background on March 12, 15, 16, 17, 19, 22, 23, 26, 27, and 29, 2021. Surface emissions in excess of 500 ppmv were detected at eighteen (18) locations during the first quarter 2021 monitoring event. The locations with the exceedances and associated methane concentrations are provided in the first quarter 2021 SEM report (**Appendix D**).

SCSFS field technicians performed appropriate corrective actions, including flow increases to the surrounding extraction wells, cover repairs, and installation of borehole emission control systems. SCSFS completed the 10-day re-monitoring events for these locations on March 19 and 29, 2021. All the locations were under the 500 ppmv threshold and thus back in compliance. SCSFS performed the 1-month re-monitoring event, as required by NSPS, on April 9, 2021, and all locations remained in compliance.

3.4.1 Second Quarter 2021 Monitoring

SCSFS monitored the landfill surface for leaks with a methane concentration of greater than 500 ppmv above background on April 8, 9, 12, and 13, 2021. Surface emissions in excess of 500 ppmv were detected at twenty-seven (27) locations during the second quarter 2021 monitoring event. The locations with the exceedances and associated methane concentrations are provided in the second quarter 2021 SEM report (**Appendix D**).

SCSFS field technicians performed appropriate corrective actions, including flow increases to the surrounding extraction wells and borehole repairs. SCSFS completed the 10-day re-monitoring event for these locations on April 22, 2021 and performed the 1-month re-monitoring event, as required by NSPS, on May 11, 2021, and twenty-one (21) locations remained in compliance. In accordance with NSPS requirements for expansion and remediation, the exceedance locations need to be remediated and returned to compliance in accordance with the rule (expansion of the collection system or an alternative compliance option if approved by the BAAQMD) within 120 days of the detected initial instantaneous exceedance, which will be due by August 11, 2021. On August 2, 2021, a new shallow slope collector was started up to fulfill the 120-day requirement.

3.5 WELLHEAD MONTHLY MONITORING

Monthly wellhead monitoring for pressure, temperature, and oxygen content was conducted by SCSFS to comply with BAAQMD Rule 8-34-305 and 9-34-414. The results of this monitoring are summarized below. Wellhead exceedances are provided in **Table 3, 4, and 5.**

Please note that during the reporting period, all active wells were monitored.

3.5.1 Pressure

The majority of the operational extraction wells were under negative pressure during the monitoring events conducted during the reporting period, in accordance with BAAQMD Rule 8-34-305 and 8-34-414. For any wells that exhibited positive pressure during this reporting period, the identification number and dates that each well was operating with positive pressure are provided in **Table 3**. The table also includes corrective action and re-monitoring results. In all instances, corrective action and re-monitoring were performed in accordance with the 5- and 15-day requirements specified in the NSPS regulations and in Rule 8-34.

Wells NIHC17-2, NIHC17-3, NILEW066, NILEW451, NILEW464, NILEW465, NILEW496, NILEW497, NILEW626, NILEW664, NILEW665, NILEW707, NILEW726, NILEW733, NILEW742, NISS17-3, and NISS17-4 demonstrated a positive pressure reading at the end of the reporting period. These wells will be returned under negative pressure by the applicable compliance dates, as specified in BAAQMD Rule 8-34-414, and compliance will be documented in the next semi-annual report.

As of the end of the previous reporting period, no wells were operating under positive pressure.

3.5.2 Oxygen

Newby has elected to use oxygen as its compliance standard under Rule 8-34-305, rather than nitrogen. Per Newby's PTO Condition No. 10423, Part 6(c), the oxygen concentration limit does not apply to the wells listed below, provided that the oxygen concentration in the LFG at the main header does not exceed five percent oxygen by volume (dry basis) and the methane concentration in the LFG at the main header is greater than 35 percent by volume (dry basis). The oxygen Higher Operating Value (HOV) of 15% is approved for wells: 30RR, EW-13, IOIR, HC- 201. The oxygen HOV of 20% is approved for wells: HC-231, HC- 232, HC- 235, HC-237, HC- 241.

The majority of the wells were operating within the regulatory limit of five (5) percent oxygen or their respective oxygen HOVs during the monitoring events conducted during the reporting period. The dates when wells were operating with excessive oxygen, and the well identification number, corrective actions, and re-monitoring results for these wells are provided in **Table 4**.

As of the end of the reporting period, all of the operating wells were operating with an oxygen concentration below the 5 percent limit or their respective oxygen HOVs except for wells NI3EW40R, NILEW217, NILEW431, NILEW463, NILEW514, NILEW677, NILEW685, NILEW698, NILEW704, NILEW720, NILEW723, NILEW747, NILEW748, NILEW753, NILEW760, NILEW769, NILLEW16, NILMW002, NILMW020, NILMW034, NILW573A, NILW574A, and NLCRST05. The wells will be returned to below the 5 percent limit as specified in BAAQMD Rule 8-34-414, and compliance will be documented in the next semi-annual report.

As of the end of the previous reporting period, wells NILEW723, NILLEW16, and NILW475A were operating with an oxygen concentration above the 5 percent limit. The wells were back in compliance within the timeline specified in 8-34-414.

3.5.3 Temperature

BAAQMD Rule 8-34-305 requires the landfill gas temperature in each wellhead to measure less than 55 degrees Celsius (°C) or 131°F. However, Condition No. 10423, Part 6(d) in Newby's BAAQMD

PTO allows Newby to operate wells EW-39R, EW-40R, EW-14, EW-37, EW-005, EW-00A, EW-00D, EW-00E, EW-019, EW-025, EW-106, EW-218, EW-224, EW-243, EW-51R, EW-54R, NI3EW07R, NI3EW31, NILEW106, NILEW464, NILEW466, NILEW479, NILEW481, NILEW482, NILEW488, NILEW489, NILEW497, NILEW511, NILEW568, NILEW570, NILEW599, NILEW601, NILEW604, NILEW617, NILEW621, NILEW622, NILEW623, NILEW626, NILEW628, NILEW663, NILEW664, NILEW665, NILEW666, and NILEW667 at an alternative temperature of 145°F and well EW-07R at an alternative temperature of 150°F.

The majority of wells were operating within their respective limits of 131°F, 145°F, and 150°F during the monitoring events conducted during the reporting period. The dates when wells were operating above their respective temperature limits, and the well identification number, correction actions, and re-monitoring results for these wells are provided in **Table 5**.

As of the end of the reporting period, wells NILEW690, NILEW701, and NILEW752 were operating with a temperature higher than 131 °F. The wells will be returned to below the 131 °F limit as specified in BAAQMD Rule 8-34-414, and compliance will be documented in the next semi-annual report.

As of the end of the previous reporting period, wells NILEW690 and NILEW703 were operating with a temperature higher than 131 °F. These wells returned to compliance within the timelines specified in 8-34-414.

An HOV application to request an increase of the allowable wellhead temperature limit from 131°F to 145°F for wells NILEW690, NILEW691, NILEW701, and NILEW703 was submitted to the USEPA and BAAQMD on February 6, 2020. Addendums requesting an increase of the allowable wellhead temperature limit from 131°F to 145°F for wells NILEW476, NILEW642, NILEW703, NILEW707, and NILEW752 were submitted in April 2020 and August 2021. The BAAQMD has provided approval of these HOV limits pending approval from the USEPA. IDCC has followed up with the USEPA regarding the application in August 2020, September 2020, October 2020, April 2021, and August 2021 but no response has been received. IDCC is currently awaiting a response to the HOV requests.

3.6 COVER INTEGRITY MONITORING

Under BAAQMD Rule 8-34-510 and the NSPS, the landfill surface must be monitored at least monthly for evidence of cracks or other surface integrity issues, which could allow for surface emissions. During the reporting period, cover integrity monitoring was conducted by SCSFS personnel in conjunction with the wellhead monitoring on February 25, March 21, April 20, May 31, June 29, July 29, 2021 using procedures specified in the GCCS Design Plan. The observations during these monitoring events indicated the landfill surface was in good condition. In the event visual evidence suggested otherwise, the surface will be promptly repaired. Records of cover integrity monitoring are available for review upon request.

3.7 GAS GENERATION ESTIMATE AND MONTHLY LANDFILL GAS FLOW RATES

The Newby is not subject to Rule 8-34-404 because the Landfill does not operate less than continuously. Therefore, monthly flow data are not required to be reported.

3.8 ANNUAL WASTE ACCEPTANCE RATE AND REFUSE IN PLACE

Newby is an active landfill that continues to accept refuse for disposal. From February 1, 2021 through July 31, 2021, the site accepted 634,864.35 tons of decomposable waste and cover material, resulting in a cumulative waste-in-place total of 36,559,475.68 tons as of July 31, 2021.

3.8.1 Non-Degradable Waste Areas

No areas of non-degradable waste deposition are known to exist. There are no landfill areas that are excluded from the collection system requirements.

SECTION II. SSM PLAN REPORT

As mentioned previously, Newby is subject to 40 CFR Part 63, Subpart AAAA, the NESHAPS for MSW Landfills. Newby maintains a SSM Plan which documents the procedures for operating and maintaining the affected elements of the GCCS during startup, shutdown, and malfunction (SSM). The SSM events that occurred during the reporting period of February 1, 2021 through July 31, 2021 are documented in this section.

During the reporting period, there were forty-nine (49) SSM events involving shutdown of the entire GCCS. Thirty-five (35) of these events were planned startups/shutdowns and fourteen (14) of these startup/shutdown events were associated with a malfunction of the GCCS.

During the reporting period, there were sixty four (64) SSM events involving the wellfield. Additional wells were offline from previous reporting periods and remained offline for all or a portion of the reporting period. These events involved planned shutdowns of several wells on various dates due to active landfilling in the vicinity of these wells. All wells except for NIHC17-2, NIHC17-3, NILEW741, and NILMW015 remained offline as of the end of the reporting period and will be reported as startups once the landfilling activities in the vicinity of these wells cease and the wells are brought back online. There were no malfunctions of any of the wellfield components during the reporting period.

During the reporting period, there were no planned startups/shutdowns or known malfunctions of LFG monitoring equipment (e.g. flow measuring/recording device, temperature measuring/recording device).

In each case described above, the SSM Plan was successfully implemented. Specific information regarding these SSMs are included in **Tables 1a (entire GCCS)**, **1b (flares)**, **and 2 (wells)**.

No revisions were made to the SSM Plan during this reporting period. A copy of the SSM Plan and all revisions/addenda are kept on file at the facility for at least five (5) years and are available to appropriate regulatory agency personnel for inspection.

SECTION III. TITLE V SEMI-ANNUAL REPORT

As specified in 40 Code of Federal Regulation (CFR) Part 70, reports of any required monitoring must be submitted at least every 6 months. All instances of deviations from permit requirements for the semi-annual reporting period, specified in the Landfill's Initial Title V Permit as August 1 through January 31 and February 1 through July 31, must be clearly identified in each report. This Title V Report covers the February 1, 2021 through July 31, 2021 reporting period.

This report has been prepared based on Table VII (Applicable Limits and Compliance Monitoring Requirements) of the Landfill's MFR Permit. The report includes a certification by a responsible official, consistent with §70.5(d).

The full Title V Semi-Annual Report, including certification by a responsible official, is provided as **Appendix E**.

Tables

Table 1a. GCCS Downtime Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Shutdown	Startup	Downtime Hours	Reason for Downtime	BAAQMD Exemption	Corrective Actions Taken
2/1/2021 8:50	2/1/2021 10:42	1.87	Flare inspections (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/9/2021 8:24	2/9/2021 8:34	0.17	Flare source testing (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/9/2021 10:10	2/9/2021 10:56	0.77	Flare source testing (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/9/2021 11:24	2/9/2021 11:36	0.20	Flare source testing (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/15/2021 9:22	2/15/2021 9:28	0.10	Zink Preventative maintenance (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/15/2021 10:44	2/15/2021 10:52	0.13	Zink Preventative maintenance (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/18/2021 13:10	2/18/2021 13:18	0.13	Blower Swap (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/19/2021 11:06	2/19/2021 11:14	0.13	Air blower troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/22/2021 11:20	2/22/2021 11:26	0.10	Air filter cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
2/23/2021 14:54	2/23/2021 15:00	0.10	Flare source testing (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/10/2021 13:26	3/10/2021 13:32	0.10	Utility outage (RCA submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
3/12/2021 9:20	3/12/2021 9:56	0.60	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
3/12/2021 12:54	3/12/2021 13:00	0.10	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/17/2021 11:24	3/17/2021 11:30	0.10	Gas Blower inspection (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/27/2021 15:04	3/27/2021 15:10	0.10	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
3/28/2021 12:42	3/28/2021 14:39	1.95	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
3/31/2021 8:34	3/31/2021 13:04	4.50	Condensate Knock out Pot Demistier pad Installation (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/31/2021 13:54	3/31/2021 14:02	0.13	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/31/2021 14:56	3/31/2021 15:02	0.10	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/31/2021 15:22	3/31/2021 15:30	0.13	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
3/31/2021 15:58	3/31/2021 16:24	0.43	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
4/15/2021 17:02	4/15/2021 17:08	0.10	Flame arrestor servicing (113) 8-34-113, Inspection & Ma		O&M personnel completed inspection then restarted the flares.
4/15/2021 17:12	4/15/2021 17:14	0.03	Flame arrestor servicing (113) 8-34-113, Inspection &		O&M personnel completed inspection then restarted the flares.
4/15/2021 17:20	4/15/2021 18:12	0.87	Flame arrestor servicing (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
4/23/2021 13:48	4/23/2021 13:56	0.13	Air Combustion blower filter cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.

Table 1a. GCCS Downtime Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Shutdown	Startup	Downtime Hours	Reason for Downtime	BAAQMD Exemption	Corrective Actions Taken
4/23/2021 14:08	4/23/2021 14:32	0.40	Air Combustion blower filter cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/4/2021 13:14	5/4/2021 13:54	0.67	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/5/2021 13:24	5/5/2021 13:30	0.10	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
5/5/2021 13:42	5/5/2021 13:54	0.20	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
5/6/2021 10:58	5/6/2021 11:04	0.10	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/6/2021 11:08	5/6/2021 12:32	1.40	Air Blower Maintenance and troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/24/2021 14:20	5/24/2021 14:28	0.13	Air Combustion blower filter cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/26/2021 7:52	5/26/2021 8:00	0.13	Burner tip cleaning event (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
5/30/2021 14:46	5/30/2021 14:54	0.13	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
5/31/2021 10:52	5/31/2021 10:58	0.10	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
5/31/2021 14:22	5/31/2021 15:36	1.23	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares
5/31/2021 16:50	5/31/2021 17:18	0.47	Air Blower low flow shut down (RCA submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
6/16/2021 9:36	6/16/2021 9:58	0.37	Air blower troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
6/16/2021 10:52	6/16/2021 11:06	0.23	Air blower troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
6/16/2021 14:18	6/16/2021 14:36	0.30	Air blower troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
6/22/2021 14:28	6/22/2021 14:36	0.13	Air Combustion blower filter cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/10/2021 20:24	7/11/2021 8:00	11.60	Utility outage (RCA Submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
7/11/2021 11:56	7/11/2021 12:06	0.17	Utility outage (RCA Submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
7/15/2021 13:44	7/15/2021 13:52	0.13	Flame Failure (RCA submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
7/16/2021 8:08	7/16/2021 8:14	0.10	Air Combustion Blower Filter Cleaning (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/22/2021 1:16	7/22/2021 1:24	0.13	Low Gas Flow Shutdown (RCA submitted)	RCA Submitted for this event	O&M personnel completed inspection then restarted the flares.
7/22/2021 11:14	7/22/2021 11:20	0.10	Gas Blower Maintenance and Troubleshooting (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/28/2021 13:52	7/28/2021 13:58	0.10	Low Gas Flow (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
7/28/2021 14:08	7/28/2021 15:50	1.70	Low Gas Flow (113)	8-34-113, Inspection & Maintenance	O&M personnel completed inspection then restarted the flares.
Notes:	Total:	33.22		1	A set and a set and a set and a set a se

Notes:

Events in bold type denotes Malfunction Events

Downtimes listed represent periods when all landfill gas combustion devices were offline concurrently (no gas flow from the collection system).

All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113 requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018, with the exception of the events that occurred on March 10, 12, 27, and 28, May 5, 30, and 31, and July 10, 15, and 22, 2021, which involved utility outages and air blower low flow shutdowns. These events were considered reportable compliance activities (RCA) and breakdown relief was requested.

Table 1b. Flare (A-2) Downtime Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Shutdown	Startup	Downtime Hours	Reason for Downtime	
2/1/21 8:50	2/1/21 11:20	2.50	Flare inspections (113)	
2/9/21 8:24	2/9/21 8:34	0.17	Thermocouple troubleshooting/ Flare pre source test (113)	
2/9/21 8:38	2/9/21 8:48	0.17	Thermocouple troubleshooting/ Flare pre source test (113)	
2/9/21 8:50	2/9/21 9:40	0.83	Thermocouple troubleshooting/ Flare pre source test (113)	
2/9/21 10:10	2/9/21 10:56	0.77	Thermocouple troubleshooting/ Flare pre source test (113)	
2/9/21 11:24	2/9/21 11:50	0.43	Thermocouple troubleshooting/ Flare pre source test (113)	
2/9/21 12:08	2/9/21 14:30	2.37	Thermocouple troubleshooting/ Flare pre source test (113)	
2/9/21 14:42	2/9/21 15:00	0.30	Thermocouple troubleshooting/ Flare pre source test (113)	
2/15/21 9:22	2/15/21 10:12	0.83	Zink preventative maintenance (113)	
2/15/21 10:44	2/15/21 11:30	0.77	Zink preventative maintenance (113)	
2/15/21 12:00	2/15/21 12:38	0.63	Zink preventative maintenance (113)	
2/18/21 13:10	2/18/21 13:28	0.30	Blower swap (113)	
2/19/21 11:06	2/19/21 11:34	0.47	Air blower troubleshooting (113)	
2/19/21 11:46	2/19/21 11:52	0.10	Air blower troubleshooting (113)	
2/19/21 11:56	2/19/21 12:00	0.07	Air blower troubleshooting (113)	
2/19/21 12:02	2/19/21 12:08	0.10	Air blower troubleshooting (113)	
2/22/21 11:20	2/22/21 11:26	0.10	Air blower troubleshooting (113)	
2/22/21 11:30	2/22/21 11:36	0.10	Air blower troubleshooting (113)	
2/22/21 11:52	2/22/21 11:58	0.10	Air blower troubleshooting (113)	
2/22/21 13:24	2/22/21 15:36	2.20	Air filter cleaning (113)	
2/23/21 14:52	2/23/21 15:00	0.13	Flare source testing	
3/10/21 13:26	3/10/21 13:32	0.10	Utility outage (RCA submitted)	
3/12/21 9:18	3/12/21 9:56	0.63	Air Blower low flow shut down (RCA submitted)	
3/12/21 12:52	3/12/21 14:18	1.43	Air Blower maintenance and troubleshooting (113)	
3/17/21 11:22	3/17/21 11:44	0.37	Gas blower inspection (113)	
3/27/21 15:04	3/27/21 16:26	1.37	Air Blower low flow shut down (RCA submitted)	
3/28/21 12:42	3/28/21 14:39	1.95	Air Blower low flow shut down (RCA submitted)	
3/31/21 8:34	3/31/21 13:06	4.53	Condensate Knock out Pot Demistier Pad Installation (113)	
3/31/21 13:54	3/31/21 14:32	0.63	Air Blower maintenance and troubleshooting (113)	
3/31/21 14:54	3/31/21 15:08	0.23	Air Blower maintenance and troubleshooting (113)	
3/31/21 15:22	3/31/21 15:42	0.33	Air Blower maintenance and troubleshooting (113)	
3/31/21 15:44	3/31/21 16:24	0.67	Air Blower maintenance and troubleshooting (113)	
4/15/21 17:00	4/15/21 18:16	1.27	Flame arrestor servicing (113)	
4/23/21 13:48	4/23/21 14:34	0.77	Air Combustion blower filter cleaning (113)	
5/4/21 13:12	5/4/21 13:58	0.77	Air Blower maintenance and troubleshooting (113)	

Table 1b. Flare (A-2) Downtime Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Shutdown	Startup	Downtime Hours	Reason for Downtime	
5/5/21 13:22	5/5/21 13:54	0.53	Air Blower low flow shut down (RCA submitted)	
5/6/21 10:58	5/6/21 12:32	1.57	Air Blower maintenance and troubleshooting (113)	
5/24/21 14:20	5/24/21 14:40	0.33	Air Blower maintenance and troubleshooting (113)	
5/26/21 7:52	5/26/21 16:04	8.20	Burner tip cleaning event (113)	
5/30/21 14:46	5/30/21 18:32	3.77	Air Blower low flow shut down (RCA submitted)	
5/31/21 10:50	5/31/21 12:30	1.67	Air Blower low flow shut down (RCA submitted)	
5/31/21 14:22	5/31/21 15:40	1.30	Air Blower low flow shut down (RCA submitted)	
5/31/21 16:48	5/31/21 17:28	0.67	Air Blower low flow shut down (RCA submitted)	
6/4/21 12:18	6/4/21 12:30	0.20	Air Blower low flow shut down	
6/8/21 7:26	6/8/21 8:20	0.90	Air blower filter cleaning (113)	
6/14/21 7:56	6/14/21 8:02	0.10	Air Blower low flow shut down	
6/16/21 9:36	6/16/21 10:48	1.20	Air blower troubleshooting (113)	
6/16/21 10:52	6/16/21 11:14	0.37	Air blower troubleshooting (113)	
6/16/21 11:48	6/16/21 12:06	0.30	Air blower troubleshooting (113)	
6/16/21 12:40	6/16/21 12:52	0.20	Air blower troubleshooting (113)	
6/16/21 14:18	6/16/21 14:38	0.33	Air blower troubleshooting (113)	
6/22/21 14:28	6/22/21 15:26	0.97	Air Combustion blower filter cleaning (113)	
7/10/21 20:24	7/11/21 8:00	11.60	Utility outage (RCA submitted)	
7/11/21 11:56	7/11/21 12:06	0.17	High Gas Flow	
7/15/21 13:44	7/15/21 13:52	0.13	Flame Failure (RCA submitted)	
7/16/21 8:08	7/16/21 8:14	0.10	Air Combustion Blower Filter Cleaning (113)	
7/22/21 1:16	7/22/21 1:24	0.13	Gas Blower Maintenance and Troubleshooting (113)	
7/22/21 11:14	7/22/21 11:20	0.10	Gas Blower Maintenance and Troubleshooting (113)	
7/28/21 13:52	7/28/21 13:58	0.10	Low Gas Flow	
7/28/21 14:08	7/28/21 15:50	1.70	Low Gas Flow	
То	tal	65.12		

Notes:

Events in **bold type denotes Malfunction Events**

All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113 requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018, with the exception of the events that occurred on March 10, 12, 27, and 28, May 5, 30, and 31, and July 10, 15, and 22, 2021, which involved utility outages and air blower low flow shutdowns. These events were considered reportable compliance activities (RCA) and breakdown relief was requested.

Table 1c. Flare (A-3) Downtime Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Shutdown	Startup	Downtime Hours	Reason for Downtime	
2/1/2021 8:50	2/1/2021 10:42	1.87	Flare inspections (113)	
2/9/2021 8:24	2/9/2021 8:38	0.23	Flare source testing (113)	
2/9/2021 10:10	2/9/2021 11:36	1.43	Flare source testing	
2/15/2021 9:22	2/15/2021 9:28	0.10	Zink preventative maintenance (113)	
2/15/2021 10:44	2/15/2021 10:52	0.13	Zink preventative maintenance (113)	
2/18/2021 13:10	2/18/2021 13:18	0.13	Blower swap (113)	
2/19/2021 11:06	2/19/2021 11:14	0.13	Air blower troubleshooting (113)	
2/22/2021 11:20	2/22/2021 11:26	0.10	Air filter cleaning (113)	
2/23/2021 14:54	2/23/2021 15:00	0.10	Flare source testing	
3/10/2021 13:26	3/10/2021 15:20	1.90	Utility outage (RCA submitted)	
3/12/2021 9:20	3/12/2021 10:30	1.17	Air Blower low flow shut down (RCA submitted)	
3/12/2021 12:54	3/12/2021 13:00	0.10	Air Blower maintenance and troubleshooting (113)	
3/17/2021 11:24	3/17/2021 11:30	0.10	Gas blower inspection (113)	
3/27/2021 15:04	3/27/2021 15:10	0.10	Air Blower low flow shut down (RCA submitted)	
3/28/2021 12:42	3/28/2021 12:49	0.12	Air Blower low flow shut down (RCA submitted)	
3/31/2021 8:34	3/31/2021 13:04	4.50	Condensate Knock out Pot Demistier Pad Installation (113)	
3/31/2021 13:54	3/31/2021 14:02	0.13	Air Blower maintenance and troubleshooting (113)	
3/31/2021 14:56	3/31/2021 15:02	0.10	Air Blower maintenance and troubleshooting (113)	
3/31/2021 15:22	3/31/2021 15:30	0.13	Air Blower maintenance and troubleshooting (113)	
3/31/2021 15:58	3/31/2021 16:26	0.47	Air Blower maintenance and troubleshooting (113)	
4/15/2021 17:02	4/15/2021 17:08	0.10	Flame arrestor servicing (113)	
4/15/2021 17:12	4/15/2021 17:14	0.03	Flame arrestor servicing (113)	
4/15/2021 17:20	4/15/2021 18:12	0.87	Flame arrestor servicing (113)	
4/23/2021 13:48	4/23/2021 13:56	0.13	Air Combustion blower filter cleaning (113)	
4/23/2021 14:08	4/23/2021 14:32	0.40	Air Combustion blower filter cleaning (113)	
5/4/2021 13:14	5/4/2021 13:54	0.67	Air Blower maintenance and troubleshooting (113)	
5/5/2021 13:24	5/5/2021 13:30	0.10	Air Blower low flow shut down (RCA submitted)	
5/5/2021 13:42	5/5/2021 13:58	0.27	Air Blower low flow shut down (RCA submitted)	
5/6/2021 10:58	5/6/2021 11:04	0.10	Air Blower maintenance and troubleshooting (113)	
5/6/2021 11:08	5/6/2021 12:32	1.40	Air Blower maintenance and troubleshooting (113)	
5/24/2021 14:20	5/24/2021 14:28	0.13	Air Combustion blower filter cleaning (113)	
5/26/2021 7:52	5/26/2021 8:00	0.13	Burner tip cleaning event (113)	
5/30/2021 14:46	5/30/2021 14:54	0.13	Air Blower low flow shut down (RCA submitted)	
5/31/2021 10:52	5/31/2021 10:58	0.10	Air Blower low flow shut down (RCA submitted)	
5/31/2021 14:22	5/31/2021 15:36	1.23	Air Blower low flow shut down (RCA submitted)	
5/31/2021 16:50	5/31/2021 17:18	0.47	Air Blower low flow shut down (RCA submitted)	

Table 1c. Flare (A-3) Downtime Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Shutdown	Startup	Downtime Hours	Reason for Downtime
6/16/2021 9:36	6/16/2021 9:58	0.37	Air blower troubleshooting (113)
6/16/2021 10:52	6/16/2021 11:06	0.23	Air blower troubleshooting (113)
6/16/2021 14:18	6/16/2021 14:36	0.30	Air blower troubleshooting (113)
6/22/2021 14:28	6/22/2021 14:36	0.13	Air Combustion blower filter cleaning (113)
7/10/2021 20:24	7/11/2021 13:14	16.83	Utility outage (RCA submitted)
7/15/2021 13:44	7/15/2021 13:56	0.20	Air Blower Low Flow Shutdown (RCA submitted)
7/16/2021 8:06	7/16/2021 10:40	2.57	Air Combustion Blower Filter Cleaning (113)
7/22/2021 1:16	7/22/2021 1:28	0.20	Low Gas Flow Shutdown (RCA submitted)
7/22/2021 11:14	7/22/2021 11:22	0.13	Air Blower maintenance and troubleshooting (113)
7/28/2021 13:50	7/28/2021 14:02	0.20	Low Gas Flow
7/28/2021 14:06	7/28/2021 15:58	1.87	Low Gas Flow
To	tal	42.35	

Notes:

Events in **bold type denotes Malfunction Events**

All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113 requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018, with the exception of the events that occurred on March 10, 12, 27, and 28, May 5, 30, and 31, and July 10, 15, and 22, 2021, which involved utility outages and air blower low flow shutdowns. These events were considered reportable compliance activities (RCA) and breakdown relief was requested.

Table 2. Individual Well Startups, Shutdowns and Decommissions Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Well ID	Shutdown	Start-up	Days Offline	Reason for Shutdown/Startup
NILW558A	8/13/20 11:33	N/A		Well Permanently Decommissioned Due to Poor Gas Quality
NILEW662	9/15/20 12:43	N/A		Well Permanently Decommissioned Due to GCCS Construction
NILEW455	11/18/20 7:00	N/A		Well Permanently Decommissioned Due to GCCS Construction
NILEW059	2/18/21 0:00	N/A		Well Permanently Decommissioned Due to Poor Gas Quality
NILEW060	2/18/21 0:00	N/A		Well Permanently Decommissioned Due to Poor Gas Quality
NILEW063	2/18/21 0:00	N/A		Well Permanently Decommissioned Due to Poor Gas Quality
NILEW67R	2/18/21 0:00	N/A		Well Permanently Decommissioned Due to Poor Gas Quality
NILEW730	3/12/21 11:02	6/4/21 0:00	83.54	Well Temporarily Offline Construction 118-Plan
NILEW733	3/12/21 11:07	4/28/21 12:22	47.05	Well Temporarily Offline Construction 118-Plan
NILEW066	3/12/21 11:37	7/14/21 11:11	123.98	Well Temporarily Offline Construction 118-Plan
NILEW465	3/12/21 11:45	4/28/21 12:24	47.03	Well Temporarily Offline Construction 118-Plan
NILEW707	4/14/21 13:29	4/19/21 8:47	4.80	Well Temporarily Offline to Remediate Subsurface Oxidation (SSO) Event
NILEW496	4/14/21 13:33	4/19/21 8:44	4.80	Well Temporarily Offline to Remediate SSO Event
NILEW664	4/14/21 13:36	4/19/21 8:42	4.80	Well Temporarily Offline to Remediate SSO Event
NILEW711	4/14/21 13:39	4/19/21 8:39	4.79	Well Temporarily Offline to Remediate SSO Event
NILEW464	4/14/21 13:45	4/19/21 9:34	4.83	Well Temporarily Offline to Remediate SSO Event
NILEW626	4/14/21 13:52	4/19/21 9:29	4.82	Well Temporarily Offline to Remediate SSO Event
NILEW744	4/14/21 13:55	4/19/21 9:31	4.82	Well Temporarily Offline to Remediate SSO Event
NILEW497	4/14/21 13:58	4/19/21 9:27	4.81	Well Temporarily Offline to Remediate SSO Event
NILEW451	4/14/21 14:02	4/19/21 9:23	4.81	Well Temporarily Offline to Remediate SSO Event
NILEW745	4/14/21 14:07	4/19/21 9:20	4.80	Well Temporarily Offline to Remediate SSO Event
NILEW692	4/14/21 14:09	4/19/21 9:19	4.80	Well Temporarily Offline to Remediate SSO Event
NILEW463	4/14/21 14:13	4/19/21 9:16	4.79	Well Temporarily Offline to Remediate SSO Event
NILEW693	4/14/21 14:17	4/19/21 9:12	4.79	Well Temporarily Offline to Remediate SSO Event
NILEW706	4/14/21 14:21	4/19/21 9:10	4.78	Well Temporarily Offline to Remediate SSO Event
NILEW596	4/14/21 14:25	4/19/21 9:07	4.78	Well Temporarily Offline to Remediate SSO Event
NILHC201	4/14/21 14:29	4/19/21 9:03	4.77	Well Temporarily Offline to Remediate SSO Event
NILEW748	4/14/21 14:32	4/19/21 9:01	4.77	Well Temporarily Offline to Remediate SSO Event
NILEW615	4/14/21 14:37	4/19/21 8:55	4.76	Well Temporarily Offline to Remediate SSO Event
NILEW663	4/14/21 14:40	4/19/21 8:51	4.76	Well Temporarily Offline to Remediate SSO Event
NILW475A	5/27/21 10:05	N/A		Well Permanently Decommissioned Due to Poor Gas Quality
NILEW730	6/4/21 0:00	N/A		Well Permanently Decommissioned Due to Poor Gas Quality
NILEW686	6/9/21 11:51	N/A		Well Permanently Decommissioned Due to Poor Gas Quality
NILEW676	6/9/21 12:02	N/A		Well Permanently Decommissioned Due to Poor Gas Quality
NISS17-3	6/11/21 14:55	7/8/21 0:00	26.38	Well Temporarily Offline Due to Filling
NILEW529	6/29/21 10:01	N/A		Well Permanently Decommissioned Due to Poor Gas Quality
NISS17-3	7/8/21 0:00	N/A		Well Permanently Decommissioned Due to Poor Gas Quality
NIHC17-2*	7/14/21 15:33	,	17.35	Well Temporarily Offline Due to Filling
NIHC17-3*	7/14/21 15:34		17.35	Well Temporarily Offline Due to Filling
NILEW741*	7/14/21 16:10		17.33	Well Temporarily Offline Due to Filling
NISS17-5	7/22/21 10:28	N/A	17.55	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW660	7/22/21 10:28	N/A N/A		
NILEW660 NILMW015*	7/22/21 13:43	N/A	4.53	Well Permanently Decommissioned Due to Poor Gas Quality

Newby Island contracted with a new operations and maintenance (O&M) provider, SCS Field Services (SCSFS), starting on February 1, 2021. Upon further inspection, it was discovered that the wells noted in italics had previously been decommissioned. These wells are noted in this report for recordkeeping purposes.

*Well was offline at the end of the reporting period. For reporting purposes, the startup time is calculated as of August 1, 2021 at 0:00.

Note: All well downtime events listed are consistent with applicable Rule 8-34 provisions and BAAQMD permit conditions.

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NIHC17-2	6/29/2021 9:48	4.87	4.88	Adjusted Valve
				Second Reading (Well was temporarily taken
NIHC17-2	6/29/2021 9:48	4.85	4.86	offline)
NIHC17-3	6/29/2021 9:45	3.62	3.61	Adjusted Valve
				Second Reading (Well was temporarily taken
NIHC17-3	6/29/2021 9:46	3.53	3.55	offline)
NILEW066	7/14/2021 11:11	0.63	0.64	Adjusted Valve
NILEW066	7/14/2021 11:12	0.68	0.68	Second Reading
NILEW066	7/29/2021 15:10	0.24	0.24	Adjusted Valve
NILEW066	7/29/2021 15:11	0.18	0.17	Second Reading
NILEW451	4/15/2021 9:44	3.15	3.14	Adjusted Valve
NILEW451	4/15/2021 9:46	2.88	2.89	Second Reading
NILEW451	4/16/2021 15:15	6.88	6.9	Adjusted Valve
NILEW451	4/17/2021 19:40	7.87	8.11	Adjusted Valve
NILEW451	4/17/2021 19:43	4.22	0.07	Second Reading
NILEW451	4/18/2021 17:59	11.15	11.14	Adjusted Valve
NILEW451	4/18/2021 18:01	9.02	9.02	Second Reading
NILEW451	4/19/2021 9:23	7.6	7.32	Adjusted Valve
NILEW451	4/21/2021 13:00	-5.71	-5.7	In Compliance
				· · · · · · · · · · · · · · · · · · ·
NILEW451	7/30/2021 9:56	1.37	1.37	Adjusted Valve
NILEW451	7/30/2021 9:57	1.38	1.39	Second Reading
NILEW463	4/15/2021 9:26	10.6	10.6	Adjusted Valve
NILEW463	4/15/2021 9:26	10.6	10.6	Second Reading
NILEW463	4/15/2021 9:28	10.64	10.64	Third Reading
NILEW463	4/16/2021 15:34	5.78	15.01	Adjusted Valve
NILEW463	4/17/2021 19:18	15.5	15.53	Adjusted Valve
NILEW463	4/17/2021 19:20	14.02	13.93	Second Reading
NILEW463	4/18/2021 17:35	16.49	16.49	Adjusted Valve
NILEW463	4/18/2021 17:38	14.54	14.54	Second Reading
NILEW463	4/19/2021 9:16	13.57	12.16	Adjusted Valve
NILEW463	4/20/2021 12:24	3.61	-0.18	Adjusted Valve, In Compliance
-				
NILEW464	4/15/2021 9:59	1.15	1.15	Adjusted Valve
NILEW464	4/15/2021 10:00	1.12	1.13	Second Reading
NILEW464	4/16/2021 14:53	2.69	2.7	Adjusted Valve
NILEW464	4/18/2021 18:36	2.57	2.57	Adjusted Valve
NILEW464	4/18/2021 18:39	1.01	1.01	Second Reading
NILEW464	4/19/2021 9:34	2.1	2.1	Adjusted Valve
NILEW464	4/20/2021 11:47	1.94	1.3	Adjusted Valve
NILEW464	4/21/2021 12:15	-0.5	-1.05	In Compliance

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW464	7/13/2021 13:21	0.85	0.85	Adjusted Valve
NILEW464	7/13/2021 13:22	0.83	0.83	Second Reading
NILEW464	7/23/2021 11:34	-2.67	-2.75	In Compliance
NILEW464	7/30/2021 13:19	0.03	0.05	Adjusted Valve
NILEW464	7/30/2021 13:20	0.05	0.07	Second Reading
NILEW465	5/25/2021 11:18	1.39	1.39	Adjusted Valve
NILEW465	5/25/2021 11:19	1.42	1.42	Second Reading
NILEW465	6/4/2021 9:22	-0.11	-0.11	In Compliance
NILL VV405	0/4/2021 9.22	-0.11	-0.11	
NILEW465	7/14/2021 11:08	2.36	2.36	Adjusted Valve
NILEW465	7/14/2021 11:09	2.01	2.01	Second Reading
NILEW465	7/29/2021 15:06	2.15	2.18	Adjusted Valve
NILEW465	7/29/2021 15:07	2.11	2.12	Second Reading
NILEW476	2/5/2021 11:30	0.19	-0.86	Adjusted Valve, In Compliance
NILEW483	4/29/2021 9:44	0.78	-5.52	Adjusted Valve, In Compliance
NILEW496	4/16/2021 14:33	0.08	0.52	Adjusted Valve
NILEW496	4/17/2021 14:33	0.08	-4.68	Adjusted Valve, In Compliance
INILE VV490	4/17/2021 18.25	0.5	-4.06	Adjusted valve, in compliance
NILEW496	4/19/2021 8:44	1.19	1.19	Adjusted Valve
NILEW496	4/20/2021 11:55	-2.11	-4.9	In Compliance
	7/2/2024 40:25	0.1	0.12	
NILEW496 NILEW496	7/2/2021 10:35 7/2/2021 10:37	0.1	0.13 0.15	Adjusted Valve Second Reading
NILEW496	7/14/2021 11:46	8.37	8.36	Adjusted Valve
NILEW496	7/14/2021 11:48	8.69	8.30	Second Reading
NILEW496	7/30/2021 13:29	12	12.01	Adjusted Valve
NILEW496	7/30/2021 13:30	12.09	12.09	Second Reading
NILEW497	4/16/2021 15:08	13.03	13.03	Adjusted Valve
NILEW497	4/17/2021 17:48	14.43	14.46	Adjusted Valve
NILEW497	4/17/2021 17:53	3.38	2.09	Second Reading
NILEW497	4/18/2021 18:48	15.09	15.09	Adjusted Valve
NILEW497	4/18/2021 18:50	5.41	5.4	Second Reading
NILEW497	4/19/2021 9:27	14.56	12.29	Adjusted Valve
NILEW497	4/20/2021 12:35	1.91	-0.61	In Compliance
NILEW497	7/30/2021 13:22	9.93	9.93	Adjusted Valve
NILEW497	7/30/2021 13:22	9.91	9.92	Second Reading

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW500	3/19/2021 10:19	3.03	-0.34	Adjusted Valve, In Compliance
NILEW510	4/20/2021 12:32	2.72	-0.54	Adjusted Valve, In Compliance
	4/20/2021 12.52	2.72	-0.54	
NILEW596	4/15/2021 9:14	5.88	5.88	Adjusted Valve
NILEW596	4/15/2021 9:16	5.9	5.9	Second Reading
NILEW596	4/16/2021 13:53	5.96	5.96	Adjusted Valve
NILEW596	4/17/2021 16:02	6.05	6.06	Adjusted Valve
NILEW596	4/17/2021 16:06	0.06	-0.04	Adjusted Valve, In Compliance
NILEW596	4/18/2021 16:56	5.54	5.55	Adjusted Valve
NILEW596	4/18/2021 17:00	-0.86	-0.87	In Compliance
NILEW596	4/19/2021 9:07	5.15	2.74	Adjusted Valve
NILEW596	4/20/2021 12:16	1.37	-0.26	Adjusted Valve, In Compliance
INILE VV 390	4/20/2021 12.10	1.57	-0.20	
NILEW601	3/19/2021 12:13	8.24	-0.96	Adjusted Valve, In Compliance
NILEW604	3/4/2021 10:25	0.15	0.13	Adjusted Valve
NILEW604	3/4/2021 10:25	0.13	0.13	Second Reading
NILEW604	3/5/2021 9:26	-1.74	-1.74	In Compliance
				•
NILEW615	4/15/2021 9:02	93.62	93.62	Adjusted Valve
NILEW615	4/15/2021 9:04	93.52	93.53	Second Reading
NILEW615	4/16/2021 14:18	92.06	0.07	Adjusted Valve
NILEW615	4/17/2021 15:21	0.09	0	Adjusted Valve
NILEW615	4/17/2021 15:27	93.22	92.8	Second Reading
NILEW615	4/18/2021 15:25	100.37	100.37	Adjusted Valve
NILEW615	4/19/2021 8:55	33.25	85.61	Adjusted Valve
NILEW615	4/20/2021 12:06	-3.29	-2.77	In Compliance
NILEW626	4/15/2021 9:51	1.86	1.86	Adjusted Valve
NILEW626	4/15/2021 9:53	1.9	1.89	Second Reading
NILEW626	4/16/2021 15:01	3.15	3.17	Adjusted Valve
NILEW626	4/18/2021 18:09	3.19	3.19	Adjusted Valve
NILEW626	4/18/2021 18:11	1.86	1.86	Second Reading
NILEW626	4/19/2021 9:29	2.45	2.37	Adjusted Valve
NILEW626	4/20/2021 11:44	0.79	0.56	Adjusted Valve
NILEW626	4/21/2021 12:13	-1.74	-1.74	In Compliance
NILEW626	7/30/2021 10:03	0.16	0.17	Adjusted Valve
NILEW626	7/30/2021 10:03	0.13	0.13	Second Reading
NILEW637	7/26/2021 10:52	12.93	-38.69	Adjusted Valve, In Compliance

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW663	4/15/2021 8:59	100.37	100.37	Adjusted Valve
NILEW663	4/15/2021 9:00	100.37	100.37	Second Reading
NILEW663	4/17/2021 14:33	100.37	100.37	Adjusted Valve
NILEW663	4/17/2021 14:37	100.37	100.37	Second Reading
NILEW663	4/19/2021 8:51	45.23	20.32	Adjusted Valve
NILEW663	4/20/2021 12:04	12.4	-0.29	Adjusted Valve, In Compliance
NILEW664	4/15/2021 8:47	8.96	8.96	Adjusted Valve
NILEW664	4/15/2021 8:48	8.94	8.94	Second Reading
NILEW664	4/16/2021 14:41	11.4	11.41	Adjusted Valve
NILEW664	4/17/2021 17:57	12.37	12.39	Adjusted Valve
NILEW664	4/17/2021 18:01	-0.41	-1.36	In Compliance
NILEW664	4/18/2021 16:15	12.51	12.51	Adjusted Valve
NILEW664	4/18/2021 16:18	4.61	4.17	Second Reading
NILEW664	4/19/2021 8:42	12.12	10.57	Adjusted Valve
NILEW664	4/20/2021 11:52	-2.43	-2.42	In Compliance
NILEW664	7/2/2021 10:56	6.35	6.35	Adjusted Valve
NILEW664	7/2/2021 10:59	6.35	6.35	Second Reading
NILEW664	7/14/2021 11:49	7.85	7.85	Adjusted Valve
NILEW664	7/14/2021 11:50	7.89	7.89	Second Reading
NILEW664	7/30/2021 13:25	15.31	15.31	Adjusted Valve
NILEW664	7/30/2021 13:25	15.4	15.41	In Compliance
NILEW665	7/14/2021 10:50	0.35	0.35	Adjusted Valve
NILEW665	7/14/2021 10:51	0.43	0.43	Second Reading
NILEW665	7/29/2021 14:54	0.75	0.78	Adjusted Valve
NILEW665	7/29/2021 14:54	0.75	0.78	Second Reading
NILEW665	7/29/2021 14:55	0.88	0.87	Third Reading
NILEW692	4/15/2021 9:30	12.6	12.6	Adjusted Valve
NILEW692	4/15/2021 9:32	12.56	12.57	Second Reading
NILEW692	4/16/2021 15:28	16.4	17.74	Adjusted Valve
NILEW692	4/17/2021 19:11	18.64	18.65	Adjusted Valve
NILEW692	4/17/2021 19:14	14.93	13.67	Second Reading
NILEW692	4/18/2021 17:41	16.69	19.09	Adjusted Valve
NILEW692	4/18/2021 17:44	14.97	14.97	Second Reading
NILEW692	4/19/2021 9:19	16.33	15.59	Adjusted Valve
NILEW692	4/20/2021 12:27	5.15	-0.58	Adjusted Valve, In Compliance
NILEW693	4/15/2021 9:22	3.24	3.25	Adjusted Valve
NILEW693	4/15/2021 9:24	3.29	3.29	Second Reading
NILEW693	4/16/2021 15:46	4.88	4.9	Adjusted Valve
NILEW693	4/17/2021 19:56	4.74	4.77	Adjusted Valve

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW693	4/17/2021 19:58	1.52	1.46	Second Reading
NILEW693	4/18/2021 17:18	5.16	5.18	Adjusted Valve
NILEW693	4/18/2021 17:20	3.25	3.26	Second Reading
NILEW693	4/19/2021 9:12	4.21	3.06	Adjusted Valve
NILEW693	4/20/2021 12:21	0.79	-0.25	Adjusted Valve, In Compliance
NILEW706	4/15/2021 9:18	14.67	14.67	Adjusted Valve
NILEW706	4/15/2021 9:19	14.66	14.66	Second Reading
NILEW706	4/16/2021 16:08	17.71	17.71	Adjusted Valve
NILEW706	4/17/2021 16:18	18.8	18.82	Adjusted Valve
NILEW706	4/17/2021 16:24	5.21	5.02	Second Reading
NILEW706	4/18/2021 17:07	17.29	17.29	Adjusted Valve
NILEW706	4/18/2021 17:09	4.87	4.87	Second Reading
NILEW706	4/19/2021 9:10	16.45	14.58	Adjusted Valve
NILEW706	4/20/2021 12:18	0.73	-0.57	Adjusted Valve, In Compliance
	- / /			
NILEW706	7/13/2021 11:20	0.77	0.76	Adjusted Valve
NILEW706	7/13/2021 11:22	0.48	0.46	Second Reading
NILEW706	7/23/2021 11:04	-43.92	-43.89	In Compliance
NILEW707	4/15/2021 8:54	13.04	13.05	Adjusted Valve
NILEW707	4/15/2021 8:56	13.1	13.1	Second Reading
NILEW707	4/16/2021 14:27	13.3	13.3	Adjusted Valve
NILEW707	4/17/2021 17:13	13.53	13.57	Adjusted Valve
NILEW707	4/17/2021 17:16	0.28	-0.27	Adjusted Valve, In Compliance
	1/1//2021 1/120	0.20	0.27	
NILEW707	4/18/2021 15:33	10.92	10.93	Adjusted Valve
NILEW707	4/18/2021 15:36	-0.18	-0.18	In Compliance
NILEW707	4/19/2021 8:47	12.39	10.9	Adjusted Valve
NILEW707	4/20/2021 11:58	-3.33	-3.33	In Compliance
	7/2/2024 40.24	4.42		
NILEW707	7/2/2021 10:31	4.43	4.43	Adjusted Valve
NILEW707	7/2/2021 10:32	4.5	4.49	Second Reading
NILEW707	7/14/2021 11:31	7.43	7.43	Adjusted Valve
NILEW707	7/14/2021 11:31	7.52	7.52	Second Reading
NILEW707	7/29/2021 16:02	8.5	8.5	Adjusted Valve
NILEW707	7/29/2021 16:05	9.11	9.16	Second Reading
NILEW711	4/15/2021 8:43	0.04	0.04	Adjusted Valve
NILEW711	4/15/2021 8:43	0.03	0.03	Second Reading
NILEW711	4/16/2021 14:47	0.45	0.44	Adjusted Valve
NILEW711	4/17/2021 17:34	0.55	0.59	Adjusted Valve
NILEW711	4/17/2021 17:34	-1.67	-1.63	In Compliance
	.,,			

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW711	4/18/2021 16:30	0.45	0.45	Adjusted Valve
NILEW711	4/18/2021 16:32	-0.13	-0.14	In Compliance
NILEW711	4/19/2021 8:39	0.12	0.12	Adjusted Valve
NILEW711	4/20/2021 11:49	0.3	0.18	Adjusted Valve
NILEW711	4/21/2021 12:18	-0.22	-0.2	In Compliance
NILEW717	3/4/2021 10:20	1.37	1.37	Adjusted Valve
NILEW717	3/4/2021 10:21	1.26	1.25	Second Reading
NILEW717	3/5/2021 9:12	-5.3	-6.63	In Compliance
NILEW726	7/14/2021 10:00	0.53	0.53	Adjusted Valve
NILEW726	7/14/2021 10:01	0.44	0.45	Second Reading
NILEW726	7/22/2021 9:04	0.89	0.89	Adjusted Valve
NILEW726	7/22/2021 9:05	0.84	0.85	Second Reading
NILEW733	5/25/2021 11:15	1.63	1.64	Adjusted Valve
NILEW733	5/25/2021 11:16	1.67	1.67	Second Reading
NILEW733	6/4/2021 9:24	-0.83	-0.84	In Compliance
NILEW733	7/14/2021 11:02	1.74	1.73	Adjusted Valve
NILEW733	7/14/2021 11:04	1.6	1.61	Second Reading
NILEW733	7/29/2021 15:29	2.3	2.31	Adjusted Valve
NILEW733	7/29/2021 15:30	2.34	2.34	Second Reading
	· · ·			
NILEW742	7/14/2021 10:35	6.65	6.66	Adjusted Valve
NILEW742	7/14/2021 10:37	6.85	6.85	Second Reading
NILEW742	7/29/2021 14:35	18.22	18.27	Adjusted Valve
NILEW742	7/29/2021 14:35	14.95	18.83	Second Reading
	4/15/2024 0.55	1.1	1 4 4	Adiuska -137-1
NILEW744	4/15/2021 9:55	1.1	1.11	Adjusted Valve
NILEW744	4/15/2021 9:57	1.17	1.16 1.8	Second Reading
NILEW744	4/18/2021 18:17 4/18/2021 18:21	1.78	0.3	Adjusted Valve Second Reading
NILEW744		0.31		Adjusted Valve
NILEW744 NILEW744	4/19/2021 9:31 4/20/2021 11:41	1.48 1.46	1.49 0.92	Adjusted Valve
NILEW744 NILEW744	4/21/2021 11:41	-0.33	-0.34	In Compliance
	7/21/2021 12.11	-0.55	-0.34	
NILEW745	4/15/2021 9:40	12.27	12.33	Adjusted Valve
NILEW745	4/15/2021 9:40	12.27	12.3	Second Reading
NILEW745	4/16/2021 15:23	18.27	18.27	Adjusted Valve
NILEW745	4/17/2021 19:27	19.33	19.35	Adjusted Valve
NILEW745	4/17/2021 19:27	19.33	19.35	Second Reading
NILEW745	4/17/2021 19:30	5.97	5.47	Third Reading
NILEW745	4/18/2021 17:50	20.22	20.22	Adjusted Valve

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NILEW745	4/18/2021 17:53	10.88	10.87	Second Reading
NILEW745	4/19/2021 9:20	-4.3	-3.75	In Compliance
NILEW748	4/15/2021 9:06	83.45	83.46	Adjusted Valve
NILEW748	4/15/2021 9:08	83.48	83.48	Second Reading
NILEW748	4/16/2021 14:08	99.98	99.98	Adjusted Valve
NILEW748	4/17/2021 14:54	100.37	100.37	Adjusted Valve
NILEW748	4/17/2021 14:58	99	98.49	Second Reading
NILEW748	4/18/2021 14:39	96.59	96.59	Adjusted Valve
NILEW748	4/18/2021 14:42	93.58	93.56	Second Reading
NILEW748	4/19/2021 9:01	57.12	39.98	Adjusted Valve
NILEW748	4/20/2021 12:09	1.06	-0.36	Adjusted Valve, In Compliance
NILEW752	6/18/2021 12:31	-5.37	1.21	Adjusted Valve
NILEW752	6/18/2021 12:34	2.1	2.17	Second Reading
NILEW752	6/18/2021 12:36	-0.76	-0.87	In Compliance
NILHC201	4/16/2021 14:01	0.09	0.08	Adjusted Valve
NILHC201	4/17/2021 15:41	-4.47	-4.8	In Compliance
NILMW020	7/9/2021 10:39	0.03	-2.42	Adjusted Valve, In Compliance
NILMW023	4/29/2021 12:02	0.98	-9.7	Adjusted Valve, In Compliance
NILW632A	5/12/2021 8:15	30.38	-1.21	Adjusted Valve, In Compliance
NISS17-3	3/10/2021 9:32	2.22	2.21	Adjusted Valve
NISS17-3	3/10/2021 9:33	2.22	2.22	Second Reading
NISS17-3	3/24/2021 11:02	1.55	2.16	Adjusted Valve
NISS17-3	4/8/2021 9:42	5.36	4.2	Adjusted Valve
NISS17-3	4/29/2021 9:28	4.51	4.51	Adjusted Valve
				Well Permanently Decommissioned Due to
NISS17-3	5/27/2021 12:30	7.88	8.28	Poor Gas Quality
	- / /	-	-	
NISS17-4	6/29/2021 9:54	0.34	0.4	Adjusted Valve
NISS17-4	6/29/2021 9:55	0.41	0.42	Second Reading
NISS17-4	6/29/2021 9:55	0.28	0.29	Third Reading
NISS17-4	7/14/2021 10:19	3.97	3.98	Adjusted Valve
NISS17-4	7/14/2021 10:20	3.86	3.87	Second Reading
NISS17-4	7/22/2021 10:47	3.82	3.83	Adjusted Valve
NISS17-4	7/22/2021 10:48	3.95	3.97	Second Reading
NISS17-5	3/24/2021 10:22	8.03	8.06	Adjusted Valve
NISS17-5	3/24/2021 10:24	7.67	7.7	Second Reading
NISS17-5	4/8/2021 9:04	23.35	23.35	Adjusted Valve

Well ID	Date and Time	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	Comments
NISS17-5	4/8/2021 9:05	23.57	23.57	Second Reading
NISS17-5	4/30/2021 11:15	26.37	26.38	Adjusted Valve
NISS17-5	4/30/2021 11:16	26.29	26.3	Second Reading
NISS17-5	5/14/2021 10:03	26.87	26.88	Adjusted Valve
NISS17-5	5/14/2021 10:05	26.93	26.93	Second Reading
NISS17-5	5/27/2021 12:29	13.43	14.36	Adjusted Valve
NISS17-5	6/11/2021 8:27	29.34	29.34	Adjusted Valve
NISS17-5	6/11/2021 8:29	27.71	29.35	Second Reading
NISS17-5	6/29/2021 8:53	30.65	30.65	Adjusted Valve
NISS17-5	6/29/2021 8:53	30.66	30.66	Second Reading
NISS17-5	7/14/2021 9:41	32.32	32.32	Adjusted Valve
NISS17-5	7/14/2021 9:42	32.25	32.26	Second Reading
NISS17-5	7/22/2021 10:27	32.72	32.69	Adjusted Valve
				Well Permanently Decommissioned due to
NISS17-5	7/22/2021 10:28	31.41	32.07	Poor Gas Quality

Note: All required corrective action and remonitoring was completed in accordance with Rule 8-34 and NSPS timelines.

Well ID	Date and Time	Oxygen (%)	Comments
NI3EW40R	5/13/2021 12:26	18.5	Adjusted Valve
NI3EW40R	5/13/2021 12:27	18.9	Second Reading
NI3EW40R	5/27/2021 9:15	0.7	In Compliance
NI3EW40R	6/10/2021 10:06	11.8	Adjusted Valve
NI3EW40R	6/10/2021 10:07	11.6	Second Reading
NI3EW40R	6/23/2021 9:23	10.4	Adjusted Valve
NI3EW40R	6/23/2021 9:24	9.9	Second Reading
NI3EW40R	7/12/2021 10:46	0	In Compliance
NI3EW40R	7/23/2021 9:59	17.4	Adjusted Valve
NI3EW40R	7/23/2021 10:00	17.8	Second Reading
NIHC17-1	3/24/2021 10:06	6.5	Adjusted Valve
NIHC17-1	3/24/2021 10:08	6.8	Second Reading
NIHC17-1	4/8/2021 9:15	0	In Compliance
NIHC17-5	2/24/2021 9:44	6.7	Adjusted Valve
NIHC17-5	2/24/2021 9:46	6.8	Second Reading
NIHC17-5	3/10/2021 9:29	0	In Compliance
	_ / /		
NIHC17-5	5/14/2021 10:38	9.2	Adjusted Valve
NIHC17-5	5/14/2021 10:39	9	Second Reading
NIHC17-5	5/28/2021 12:40	0	In Compliance
		12.6	
NIHC17-5	6/29/2021 9:42	12.6	Adjusted Valve
NIHC17-5	6/29/2021 9:42	11.9	Second Reading
NIHC17-5	7/12/2021 14:31	19.5	Adjusted Valve
NIHC17-5	7/12/2021 14:34	20.4	Second Reading
NIHC17-5	7/22/2021 13:40	2.5	In Compliance
NIHC17-7	2/24/2021 11.15	11.0	Adjusted Value
NIHC17-7	3/24/2021 11:15 3/24/2021 11:16	<u>11.9</u> 7.2	Adjusted Valve Second Reading
NIHC17-7	4/7/2021 8:54	4.1	In Compliance
	+///2021 0.34	4.1	in compliance
NIHC17-7	4/27/2021 8:51	18	Adjusted Valve
NIHC17-7	4/27/2021 8:54	5.7	Second Reading
NIHC17-7	5/12/2021 9:30	16.4	Adjusted Valve
NIHC17-7	5/12/2021 9:32	16.1	Second Reading
NIHC17-7	5/20/2021 8:45	17.3	Adjusted Valve
NIHC17-7	5/20/2021 8:45	20.1	Second Reading
NIHC17-7	6/9/2021 9:05	19.5	Adjusted Valve
NIHC17-7	6/9/2021 9:08	19.9	Second Reading
NIHC17-7	6/16/2021 8:36	20	Adjusted Valve

Well ID	Date and Time	Oxygen (%)	Comments
NIHC17-7	6/16/2021 8:37	20.6	Second Reading
NIHC17-7	7/13/2021 9:48	7.5	Adjusted Valve
NIHC17-7	7/13/2021 9:49	8.5	Second Reading
NIHC17-7	7/30/2021 11:03	3.1	In Compliance
NILCW001	3/2/2021 9:52	19.4	Adjusted Valve
NILCW001	3/2/2021 9:57	7.2	Second Reading
NILCW001	3/17/2021 9:18	17	Adjusted Valve
NILCW001	3/17/2021 9:19	17.5	Second Reading
NILCW001	4/7/2021 9:14	0	In Compliance
NILCW004	2/19/2021 9:50	6.9	Adjusted Valve
NILCW004	2/19/2021 9:51	6.9	Second Reading
NILCW004	3/2/2021 10:13	6.6	Adjusted Valve
NILCW004	3/2/2021 10:15	6.7	Second Reading
NILCW004	3/17/2021 9:29	0.2	In Compliance
NILEW035	2/4/2021 9:37	6.8	Adjusted Valve
NILEW035	2/4/2021 9:40	3.5	In Compliance
NILEW035	5/12/2021 10:38	5.5	Adjusted Valve
NILEW035	5/12/2021 10:39	5.4	Second Reading
NILEW035	5/25/2021 9:39	1.6	In Compliance
NILEW217	7/21/2021 11:32	19	Adjusted Valve
NILEW217	7/21/2021 11:34	20.9	Second Reading
NILEW232	2/4/2021 10:41	20.3	Adjusted Valve
NILEW232	2/4/2021 10:43	0.6	In Compliance
NILEW430	4/28/2021 10:21	18.4	Adjusted Valve
NILEW430	4/28/2021 10:22	16.4	Second Reading
NILEW430	5/12/2021 8:02	0.9	In Compliance
	7/20/2021		
NILEW431	7/26/2021 11:03	11.1	Adjusted Valve
NILEW431	7/26/2021 11:06	11.8	Second Reading
		42.5	A 11 - 11 - 11 - 1
NILEW463	2/5/2021 10:04	13.5	Adjusted Valve
NILEW463	2/5/2021 10:05	15.7	Second Reading
NILEW463	2/17/2021 12:53	11.5	Adjusted Valve
NILEW463	2/17/2021 12:55	11.4	Second Reading
NILEW463	3/9/2021 10:12	11.1	Adjusted Valve
NILEW463	3/9/2021 10:14	1.6	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILEW463	4/14/2021 14:12	8.3	Adjusted Valve
NILEW463	4/14/2021 14:13	8.4	Second Reading
NILEW463	4/15/2021 9:26	0	In Compliance
NILEW463	6/4/2021 8:54	6.4	Adjusted Valve
NILEW463	6/4/2021 8:56	2.2	In Compliance
NILEW463	7/30/2021 13:34	21.2	Adjusted Valve
NILEW463	7/30/2021 13:35	21.4	Second Reading
NILEW496	4/15/2021 8:51	20	Adjusted Valve
NILEW496	4/15/2021 8:52	20.2	Second Reading
NILEW496	4/16/2021 14:33	13.6	Adjusted Valve
NILEW496	4/17/2021 18:23	13	Adjusted Valve
NILEW496	4/18/2021 15:48	0	In Compliance
NILEW496	4/19/2021 8:44	9	Adjusted Valve
NILEW496	4/20/2021 11:55	4.9	In Compliance
	- /- /		
NILEW500	3/8/2021 11:09	5.9	Adjusted Valve
NILEW500	3/8/2021 11:11	5.9	Second Reading
NILEW500	3/19/2021 10:19	0	In Compliance
	4/22/2024 0:44	F 7	A diverte d Malve
NILEW500	4/23/2021 9:14	5.7	Adjusted Valve
NILEW500	4/23/2021 9:17	6.1	Second Reading
NILEW500 NILEW500	5/3/2021 11:30	6	Adjusted Valve
NILEW500	5/3/2021 11:39 5/27/2021 9:47	7.4	Second Reading
NILEW500	5/27/2021 9:47	7.5	Adjusted Valve Second Reading
NILEW500	6/10/2021 12:29	0.5	In Compliance
NILE W 300	0/10/2021 12.29	0.5	
NILEW500	7/12/2021 12:08	7.2	Adjusted Valve
NILEW500	7/12/2021 12:08	7.3	Second Reading
NILEW500	7/21/2021 13:39	0	In Compliance
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
NILEW514	3/16/2021 9:35	11.7	Adjusted Valve
NILEW514	3/16/2021 9:36	13.4	Second Reading
NILEW514	4/1/2021 12:27	2.6	In Compliance
	,,	-	· · · · ·
NILEW514	7/27/2021 14:53	6.6	Adjusted Valve
NILEW514	7/27/2021 14:55	6.9	Second Reading
NILEW529	4/29/2021 9:40	19.6	Adjusted Valve
NILEW529	4/29/2021 9:40	19.6	Second Reading

Well ID	Date and Time	Oxygen (%)	Comments
NILEW529	4/29/2021 9:43	20.2	Third Reading
NILEW529	5/14/2021 10:34	18.5	Adjusted Valve
NILEW529	5/14/2021 10:35	20.4	Second Reading
NILEW529	5/27/2021 12:43	19.3	Adjusted Valve
NILEW529	5/27/2021 12:44	20.1	Second Reading
NILEW529	6/11/2021 9:21	21.2	Adjusted Valve
NILEW529	6/11/2021 9:22	21.1	Second Reading
NILEW529	6/29/2021 10:00	10.9	Adjusted Valve
NILEW529	6/29/2021 10:01	10.7	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW601	5/21/2021 8:39	7.2	Adjusted Valve
NILEW601	5/21/2021 8:39	8.8	Second Reading
NILEW601	6/2/2021 10:29	13.4	Adjusted Valve
NILEW601	6/24/2021 11:55	2.7	In Compliance
NILEVVOUL	0/24/2021 11.55	2.7	in compliance
NILEW604	2/5/2021 10:03	13.4	Adjusted Valve
NILEW604	2/5/2021 10:05	2.4	In Compliance
			·
NILEW604	2/18/2021 10:36	21	Adjusted Valve
NILEW604	2/18/2021 10:37	21	Second Reading
NILEW604	3/4/2021 10:25	17.8	Adjusted Valve
NILEW604	3/4/2021 10:26	18.1	Second Reading
NILEW604	3/5/2021 9:26	21.3	Adjusted Valve
NILEW604	3/5/2021 9:28	21.4	Second Reading
NILEW604	3/25/2021 9:57	17.6	Adjusted Valve
NILEW604	3/25/2021 9:58	17.6	Second Reading
NILEW604	4/9/2021 10:17	3.4	In Compliance
NILEW604	5/19/2021 9:45	17.3	Adjusted Valve
NILEW604	5/19/2021 9:46	16.9	Second Reading
NILEW604	6/3/2021 9:42	17.6	Adjusted Valve
NILEW604	6/3/2021 9:42	16.8	Second Reading
NILEW604	6/18/2021 10:39	0	In Compliance
NILEW640	2/10/2021 10:51	5.2	Adjusted Valve
NILEW640	2/10/2021 10:52	4.6	In Compliance
NILEW640	3/2/2021 10:56	8.4	Adjusted Valve
NILEW640	3/2/2021 10:58	6.9	Second Reading
NILEW640	3/17/2021 10:06	10	Adjusted Valve
NILEW640	3/17/2021 10:07	9.6	Second Reading
NILEW640	4/7/2021 10:01	0	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILEW647	4/5/2021 10:29	10.6	Adjusted Valve
NILEW647	4/5/2021 10:30	11.2	Second Reading
NILEW647	4/20/2021 13:08	0	In Compliance
NILEW648	2/5/2021 10:22	7.8	Adjusted Valve
NILEW648	2/5/2021 10:25	6.9	Second Reading
NILEW648	2/17/2021 13:33	4.8	In Compliance
NILEW648	5/13/2021 9:53	5.9	Adjusted Valve
NILEW648	5/13/2021 9:55	13	Second Reading
NILEW648	5/19/2021 9:43	2.9	In Compliance
NILEW648	6/18/2021 10:32	7.6	Adjusted Valve
NILEW648	6/18/2021 10:34	4.9	In Compliance
NILEW650	4/9/2021 10:34	13.6	Adjusted Valve
NILEW650	4/9/2021 10:35	13.8	Second Reading
NILEW650	4/20/2021 13:12	0	In Compliance
NILEW653	5/19/2021 9:16	5.4	Adjusted Valve
NILEW653	5/19/2021 9:17	1.5	In Compliance
	- /- /		
NILEW653	7/7/2021 9:36	17.8	Adjusted Valve
NILEW653	7/7/2021 9:38	1	In Compliance
NILEW656	6/23/2021 8:46	20	Adjusted Valve
NILEW656	6/23/2021 8:46	20.1	Second Reading
NILEW656	7/8/2021 12:26	18.6	Adjusted Valve
NILEW656	7/8/2021 12:27	18.7	Second Reading
NILEW656	7/23/2021 9:11	0.4	In Compliance
	2/11/2021 0.54	17.1	Adjusted Value
NILEW660	2/11/2021 8:54	17.1	Adjusted Valve
NILEW660	2/11/2021 8:55	12.4	Second Reading
NILEW660	2/24/2021 9:10	7.9	Adjusted Valve
NILEW660 NILEW660	2/24/2021 9:10 2/24/2021 9:14	5.6	Second Reading Third Reading
NILEW660	3/10/2021 9:14	4.5	Inira Reading In Compliance
	5/ 10/ 2021 9.50	4.3	
NILEW660	3/24/2021 10:48	9.9	Adjusted Valve
NILEW660	3/24/2021 10:48	10.4	Second Reading
NILEW660	4/8/2021 9:48	11.6	Adjusted Valve
NILEW660	4/8/2021 9:49	9.4	Second Reading
NILEW660	4/29/2021 9:47	15.4	Adjusted Valve
NILEW660	4/29/2021 9:48	15.2	Second Reading
	7/23/2021 3.40	13.2	

Well ID	Date and Time	Oxygen (%)	Comments
NILEW660	5/14/2021 10:28	14	Adjusted Valve
NILEW660	5/14/2021 10:29	14	Second Reading
NILEW660	5/21/2021 10:22	14.2	Adjusted Valve
NILEW660	5/21/2021 10:23	14	Second Reading
NILEW660	6/11/2021 9:17	10.6	Adjusted Valve
NILEW660	6/11/2021 9:18	10.6	Second Reading
NILEW660	6/29/2021 9:35	7.8	Adjusted Valve
NILEW660	6/29/2021 9:36	7.8	Second Reading
NILEW660	7/12/2021 14:48	11.9	Adjusted Valve
NILEW660	7/12/2021 14:49	12.1	Second Reading
NILEW660	7/22/2021 13:41	15	Adjusted Valve
NILEW660	7/22/2021 13:43	15.6	Well Permanently Decommissioned due to Poor Gas Quality
	2 4 2 2 2 2 4 2 4 2		
NILEW666	3/19/2021 12:13	9.9	Adjusted Valve
NILEW666	3/19/2021 12:13	9.9	Second Reading
NILEW666	3/19/2021 12:14	15	Third Reading
NILEW666	4/1/2021 12:06	0	In Compliance
	7/20/2024 44.50	0.1	A diverte di Velve
NILEW666	7/29/2021 14:58	9.1	Adjusted Valve
NILEW666	7/29/2021 15:03	4.9	In Compliance
NILEW676	2/11/2021 10:49	16.9	Adjusted Valve
NILEW676	2/11/2021 10:49	16.7	-
NILEW676		21.4	Second Reading Adjusted Valve
NILEW676	2/24/2021 11:41 2/24/2021 11:42	21.4	
NILEW676		21.4	Second Reading
	3/10/2021 10:27		Adjusted Valve
NILEW676 NILEW676	3/10/2021 10:28 3/24/2021 12:12	21.9	Second Reading Adjusted Valve
		18.2	
NILEW676 NILEW676	3/24/2021 12:12 4/8/2021 11:16	19.8 17	Second Reading Adjusted Valve
├ ────		15.2	Adjusted Valve
NILEW676 NILEW676	4/29/2021 10:45 4/29/2021 10:45		
		15.1	Second Reading
NILEW676	5/13/2021 12:39 5/13/2021 12:40	15.2	Adjusted Valve
NILEW676	5/13/2021 12:40	14 16.5	Second Reading Adjusted Valve
NILEW676 NILEW676	6/9/2021 12:01		Adjusted Valve
	0/9/2021 12:01	14.1	Adjusted Valve Well Permanently Decommissioned Due to Poor Gas
NILEW676	6/9/2021 12:02	13.9	Quality
NILEW677	2/18/2021 9:55	6.3	Adjusted Valve
NILEW677	2/18/2021 9:56	6.2	Second Reading
NILEW677	3/4/2021 10:06	4.4	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILEW677	5/19/2021 9:02	16.3	Adjusted Valve
NILEW677	5/19/2021 9:03	17.6	Second Reading
NILEW677	6/3/2021 9:06	16.5	Adjusted Valve
NILEW677	6/3/2021 9:07	20.6	Second Reading
NILEW677	6/18/2021 9:20	17	Adjusted Valve
NILEW677	6/18/2021 9:22	17.7	Second Reading
NILEW677	7/7/2021 9:05	18.6	Adjusted Valve
NILEW677	7/7/2021 9:07	19.4	Second Reading
NILEW677	7/20/2021 8:48	11.9	Adjusted Valve
NILEW677	7/20/2021 8:49	12.2	Second Reading
NILEW681	2/11/2021 9:41	9.1	Adjusted Valve
NILEW681	2/11/2021 9:43	0.4	In Compliance
NILEW683	2/5/2021 11:32	5.1	Adjusted Valve
NILEW683	2/5/2021 11:35	6	Second Reading
NILEW683	2/17/2021 13:26	3.6	In Compliance
NILEW683	3/5/2021 9:59	12.1	Adjusted Valve
NILEW683	3/5/2021 10:04	15.8	Second Reading
NILEW683	3/17/2021 10:30	8	Adjusted Valve
NILEW683	3/17/2021 10:31	7.1	Second Reading
NILEW683	3/25/2021 10:28	2.4	In Compliance
NILEW683	4/27/2021 12:04	5.3	Adjusted Valve
NILEW683	4/27/2021 12:06	4.9	In Compliance
NILEW683	7/7/2021 10:37	14.5	Adjusted Valve
NILEW683	7/7/2021 10:39	4.9	In Compliance
NILEW685	7/30/2021 9:42	20.1	Adjusted Valve
NILEW685	7/30/2021 9:42	20.4	Second Reading
NILEW686	2/10/2021 13:11	20.8	Adjusted Valve
NILEW686	2/10/2021 13:12	20.8	Second Reading
NILEW686	2/24/2021 11:34	20.7	Adjusted Valve
NILEW686	2/24/2021 11:35	20.7	Second Reading
NILEW686	3/10/2021 10:19	13.2	Adjusted Valve
NILEW686	3/10/2021 10:19	13.2	Second Reading
NILEW686	3/10/2021 10:25	13.1	Third Reading
NILEW686	3/24/2021 12:07	9.6	Adjusted Valve
NILEW686	3/24/2021 12:08	9.6	Second Reading
NILEW686	4/8/2021 11:07	6.8	Adjusted Valve
NILEW686	4/8/2021 11:08	6.8	Second Reading

Well ID	Date and Time	Oxygen (%)	Comments
NILEW686	4/29/2021 10:39	15	Adjusted Valve
NILEW686	4/29/2021 10:40	15	Second Reading
NILEW686	5/13/2021 12:34	14.5	Adjusted Valve
NILEW686	5/13/2021 12:35	15.1	Second Reading
NILEW686	5/27/2021 9:23	11.9	Adjusted Valve
NILEW686	5/27/2021 9:24	12.2	Second Reading
NILEW686	6/9/2021 11:49	7.7	Adjusted Valve
NILEW686	6/9/2021 11:51	7.5	Well Permanently Decommissioned Due to Poor Gas Quality
NILEW694	Г /27 /2021 9.FF	11.1	Adjusted Valve
NILEW694	5/27/2021 8:55 5/27/2021 8:56	10.8	Second Reading
NILEW694	6/10/2021 9:22	4.9	In Compliance
NILEW695	2/10/2021 13:47	18.1	Adjusted Valve
NILEW695	2/10/2021 13:49	18	Second Reading
NILEW695	2/24/2021 10:27	2.2	In Compliance
NILEW696	7/8/2021 15:16	18.9	Adjusted Valve
NILEW696	7/8/2021 15:18	0	In Compliance
NILEW697	6/29/2021 9:58	19.3	Adjusted Valve
NILEW697	6/29/2021 9:58	19.3	Second Reading
NILEW697	7/12/2021 14:43	0	In Compliance
NILEW698	2/24/2021 8:36	7	Adjusted Valve
NILEW698	2/24/2021 8:36	7.2	Second Reading
NILEW698	3/2/2021 9:19	7.2	Adjusted Valve
NILEW698	3/2/2021 9:21	6.9	Second Reading
NILEW698	3/24/2021 10:41	6.3	Adjusted Valve
NILEW698	3/24/2021 10:42	6.5	Second Reading
NILEW698	4/8/2021 9:40	0.2	In Compliance
NILEW698	5/27/2021 8:32	6.8	Adjusted Valve
NILEW698	5/27/2021 8:33	4.9	In Compliance
NILEW698	6/29/2021 9:30	17.6	Adjusted Valve
NILEW698	6/29/2021 9:30	18.8	Second Reading
NILEW698	7/12/2021 14:52	19.8	Adjusted Valve
NILEW698	7/12/2021 14:53	20	Second Reading
NILEW698	7/22/2021 13:47	19.9	Adjusted Valve
NILEW698	7/22/2021 13:48	20.4	Second Reading
NILEW699	4/8/2021 10:24	11	Adjusted Valve

Well ID	Date and Time	Oxygen (%)	Comments
NILEW699	4/8/2021 10:26	4.8	In Compliance
NILEW700	2/10/2021 9:15	10.4	Adjusted Valve
NILEW700	2/10/2021 9:17	8.5	Second Reading
NILEW700	2/19/2021 9:15	8.7	Adjusted Valve
NILEW700	2/19/2021 9:15	8.9	Second Reading
NILEW700	3/2/2021 9:15	10.9	Adjusted Valve
NILEW700	3/2/2021 9:16	10	Second Reading
NILEW700	3/24/2021 10:01	2.9	In Compliance
NILEW704	3/19/2021 9:02	17.6	Adjusted Valve
NILEW704	3/19/2021 9:03	20.3	Second Reading
NILEW704	4/1/2021 11:58	2.1	In Compliance
NILEW704	5/12/2021 10:19	11.8	Adjusted Valve
NILEW704	5/12/2021 10:20	12.2	Second Reading
NILEW704	5/25/2021 9:25	11.7	Adjusted Valve
NILEW704	5/25/2021 9:33	11.6	Second Reading
NILEW704	6/8/2021 9:33	3.4	In Compliance
NILEW704	7/21/2021 8:52	5.7	Adjusted Valve
NILEW704	7/21/2021 8:55	10.4	Second Reading
NILEW711	2/5/2021 13:00	10.9	Adjusted Valve
NILEW711	2/5/2021 13:02	11.3	Second Reading
NILEW711	2/17/2021 12:41	9.1	Adjusted Valve
NILEW711	2/17/2021 12:42	9.2	Second Reading
NILEW711	3/9/2021 9:00	9.3	Adjusted Valve
NILEW711	3/9/2021 9:02	9.5	Second Reading
NILEW711	3/19/2021 11:32	7.7	Adjusted Valve
NILEW711	3/19/2021 11:37	7.4	Second Reading
NILEW711	4/12/2021 10:33	2.5	In Compliance
NILEW711	4/14/2021 13:39	10.9	Adjusted Valve
NILEW711	4/14/2021 13:41	15.5	Second Reading
NILEW711	4/15/2021 8:43	0	In Compliance
NILEW711	5/7/2021 11:20	5.3	Adjusted Valve
NILEW711	5/7/2021 11:50	5.2	Second Reading
NILEW711	5/12/2021 10:19	5.6	Adjusted Valve
NILEW711	5/13/2021 13:49	0.7	In Compliance
NILEW714	3/19/2021 12:25	5.5	Adjusted Valve
NILEW714	3/19/2021 12:27	4.9	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILEW714	7/9/2021 11:39	5.4	Adjusted Valve
NILEW714	7/9/2021 11:41	6.5	Second Reading
NILEW714	7/21/2021 11:41	0.9	In Compliance
NILEW717	2/18/2021 10:25	15.2	Adjusted Valve
NILEW717	2/18/2021 10:26	15.5	Second Reading
NILEW717	3/4/2021 10:20	0.4	In Compliance
NILEW717	6/18/2021 10:03	16	Adjusted Valve
NILEW717	6/18/2021 10:05	17.5	Second Reading
NILEW717	7/1/2021 14:06	0.1	In Compliance
NILEW719	4/9/2021 9:25	13.4	Adjusted Valve
NILEW719	4/9/2021 9:28	14.4	Second Reading
NILEW719	4/20/2021 13:05	0	In Compliance
NILEW720	7/20/2021 8:54	10.5	Adjusted Valve
NILEW720	7/20/2021 8:55	10.5	Second Reading
NILL W720	772072021 8.35	10.0	
NILEW723	2/5/2021 11:01	15.4	(Initial Exceedance was on 12/16/20) Adjusted Valve
NILEW723	2/5/2021 11:02	15.4	Second Reading
NILEW723	2/5/2021 11:03	15.1	Third Reading
NILEW723	2/18/2021 10:53	0.1	In Compliance
NILEW723	3/5/2021 9:42	6.9	Adjusted Valve
NILEW723	3/5/2021 9:43	6.9	Second Reading
NILEW723	3/17/2021 10:43	10.1	Adjusted Valve
NILEW723	3/17/2021 10:44	10.8	Second Reading
NILEW723	3/25/2021 10:12	14.1	Adjusted Valve
NILEW723	3/25/2021 10:12	14.2	Second Reading
NILEW723	4/9/2021 10:38	4.9	In Compliance
NILEW723	7/7/2021 10:24	10	Adjusted Valve
NILEW723	7/7/2021 10:24	11.1	Second Reading
NILEW723	7/20/2021 9:36	14	Adjusted Valve
NILEW723	7/20/2021 9:36	14.2	Second Reading
	, ,		
NILEW726	3/24/2021 11:32	5.4	Adjusted Valve
NILEW726	3/24/2021 11:33	5.4	Second Reading
NILEW726	4/8/2021 11:38	0	In Compliance
NILEW728	4/30/2021 9:20	13.3	Adjusted Valve

Well ID	Date and Time	Oxygen (%)	Comments
NILEW728	4/30/2021 9:21	13.2	Second Reading
NILEW728	5/12/2021 9:57	4.8	In Compliance
NILEW728	5/18/2021 8:27	7.3	Adjusted Valve
NILEW728	5/18/2021 8:30	6.1	Second Reading
NILEW728	6/2/2021 8:11	3.8	In Compliance
NILEW728	6/17/2021 8:28	6.4	Adjusted Valve
NILEW728	6/17/2021 8:32	6.6	Second Reading
NILEW728	7/1/2021 14:13	14.5	Adjusted Valve
NILEW728	7/1/2021 14:17	15.2	Second Reading
NILEW728	7/29/2021 13:50	6.5	Adjusted Valve
NILEW728	7/29/2021 13:50	6.5	Second Reading
NILEW728	7/29/2021 13:51	4.9	In Compliance
NILEW730	2/4/2021 11:39	15.2	Adjusted Valve
NILEW730	2/4/2021 11:41	15.4	Second Reading
NILEW730	2/17/2021 12:25	15.1	Adjusted Valve
NILEW730	2/17/2021 12:26	15.2	Second Reading
NILEW730	7/14/2021 11:16	0	In Compliance
NILEW744	2/4/2021 11:56	14.5	Adjusted Valve
NILEW744	2/4/2021 11:56	14.5	Second Reading
NILEW744	2/4/2021 11:57	14.3	Third Reading
NILEW744	2/17/2021 12:30	7.7	Adjusted Valve
NILEW744	2/17/2021 12:32	7.3	Second Reading
NILEW744	3/9/2021 10:44	7.6	Adjusted Valve
NILEW744	3/9/2021 10:46	1.6	In Compliance
NILEW744	5/7/2021 7:19	8.7	Adjusted Valve
NILEW744	5/7/2021 7:20	9.6	Second Reading
NILEW744	5/12/2021 10:10	7.1	Adjusted Valve
NILEW744	5/12/2021 10:11	8.2	Second Reading
NILEW744	5/21/2021 9:35	4.8	In Compliance
NILEW747	7/21/2021 10:33	9.4	Adjusted Valve
NILEW747	7/21/2021 10:34	9.8	Second Reading
NILEW748	4/19/2021 9:01	17.2	Adjusted Valve
NILEW748	4/20/2021 12:09	0	In Compliance
NILEW748	5/21/2021 8:33	14.6	Adjusted Valve
NILEW748	5/21/2021 8:35	11.2	Second Reading
NILEW748	6/2/2021 10:32	2.1	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILEW748	6/24/2021 11:51	8.6	Adjusted Valve
NILEW748	6/24/2021 11:52	4.4	In Compliance
	-, ,		
NILEW748	7/29/2021 12:31	12	Adjusted Valve
NILEW750	6/4/2021 8:16	6.3	Adjusted Valve
NILEW750	6/4/2021 8:18	6.3	Second Reading
NILEW750	6/18/2021 8:33	0.1	In Compliance
NILEW753	4/29/2021 9:06	6.9	Adjusted Valve
NILEW753	4/29/2021 9:09	7.3	Second Reading
NILEW753	5/12/2021 10:37	9	Adjusted Valve
NILEW753	5/12/2021 10:56	9	Second Reading
NILEW753	5/25/2021 9:09	7.7	Adjusted Valve
NILEW753	5/25/2021 9:10	11.7	Second Reading
NILEW753	6/8/2021 9:20	4.9	In Compliance
NILEW753	7/8/2021 9:26	5	Adjusted Valve
NILEW753	7/8/2021 9:29	4.9	In Compliance
NILEW753	7/21/2021 9:29	8.1	Adjusted Valve
NILEW753	7/21/2021 9:30	8.6	Second Reading
NILEW760	2/18/2021 9:44	6.1	Adjusted Valve
NILEW760	2/18/2021 9:45	5.9	Second Reading
NILEW760	3/4/2021 10:00	0	In Compliance
NILEW760	3/25/2021 8:59	6.5	Adjusted Valve
NILEW760	3/25/2021 9:00	6.8	Second Reading
NILEW760	4/8/2021 11:48	0	In Compliance
NILEW760	4/27/2021 10:30	8.1	Adjusted Valve
NILEW760	4/27/2021 10:32	8.7	Second Reading
NILEW760	5/12/2021 9:41	0.9	In Compliance
	6/2/2021 0.50	0.2	Adjusted Value
NILEW760	6/3/2021 8:58	9.2	Adjusted Valve
NILEW760	6/3/2021 8:59		Second Reading
NILEW760 NILEW760	6/18/2021 9:06	10	Adjusted Valve
NILEW760	6/18/2021 9:08 7/7/2021 8:55	13.8 0	Second Reading In Compliance
INILE VV / OU	////2021 0.33	0	in compliance
NILEW760	7/20/2021 8:40	8	Adjusted Valve
NILEW760	7/20/2021 8:40	7.4	Second Reading
	1/20/2021 0.43	/.4	Jecona neading

Well ID	Date and Time	Oxygen (%)	Comments
NILEW761	4/27/2021 10:23	7.3	Adjusted Valve
NILEW761	4/27/2021 10:24	7.6	Second Reading
NILEW761	5/12/2021 9:44	0.1	In Compliance
NILEW761	6/3/2021 8:51	10.4	Adjusted Valve
NILEW761	6/3/2021 8:53	10.4	Second Reading
NILEW761	6/18/2021 8:56	5.8	Adjusted Valve
NILEW761	6/18/2021 8:58	6.5	Second Reading
NILEW761	7/7/2021 8:48	0	In Compliance
NILEW762	4/27/2021 12:15	7	Adjusted Valve
NILEW762	4/27/2021 12:16	7.5	Second Reading
NILEW762	5/12/2021 9:47	7.4	Adjusted Valve
NILEW762	5/12/2021 9:49	7.6	Second Reading
NILEW762	5/19/2021 10:18	7.7	Adjusted Valve
NILEW762	5/19/2021 10:19	7.3	Second Reading
NILEW762	6/3/2021 10:11	0	In Compliance
NILEW762	6/18/2021 8:51	8.5	Adjusted Valve
NILEW762	6/18/2021 8:53	10.9	Second Reading
NILEW762	7/1/2021 14:32	6	Adjusted Valve
NILEW762	7/1/2021 14:38	6.7	Second Reading
NILEW762	7/20/2021 8:30	0	In Compliance
NILEW763	2/5/2021 12:59	7.4	Adjusted Valve
NILEW763	2/5/2021 13:01	10.5	Second Reading
NILEW763	2/17/2021 10:53	4.9	In Compliance
NILEW763	3/3/2021 8:38	15.6	Adjusted Valve
NILEW763	3/3/2021 8:39	16.5	Second Reading
NILEW763	3/16/2021 9:30	7	Adjusted Valve
NILEW763	3/16/2021 9:30	7	Second Reading
NILEW763	3/16/2021 9:31	7.9	Third Reading
NILEW763	4/5/2021 8:35	14.2	Adjusted Valve
NILEW763	4/5/2021 8:36	14.8	Second Reading
NILEW763	4/28/2021 9:01	0.4	In Compliance
NILEW764	2/17/2021 8:47	11.7	Adjusted Valve
NILEW764	2/17/2021 8:50	14	Second Reading
NILEW764	3/3/2021 8:46	1.3	In Compliance
NILEW769	3/25/2021 11:24	10.7	Adjusted Valve
NILEW769	3/25/2021 11:26	2.5	In Compliance

Well ID	Date and Time	Oxygen (%)	Comments
NILEW769	4/12/2021 10:17	11.3	Adjusted Valve
NILEW769	4/12/2021 10:18	12.8	Second Reading
NILEW769	4/20/2021 12:52	1.3	In Compliance
NILEW769	7/21/2021 14.11	13.5	
	7/21/2021 14:11	13.5	Adjusted Valve
NILEW769	7/21/2021 14:12		Second Reading
NILEW769	7/21/2021 14:17	14.2	Third Reading
NILLEW16	2/11/2021 14:06	17.9	(Initial Exceedance was on 12/11/20) Adjusted Valve
NILLEW16	2/11/2021 14:06	17.9	Second Reading
NILLEW16	2/11/2021 14:07	17.6	Third Reading
NILLEW16	2/25/2021 10:27	19.6	Adjusted Valve
NILLEW16	2/25/2021 10:30	19.6	Second Reading
NILLEW16	3/8/2021 9:15	1.7	In Compliance
NILLEW16	7/13/2021 12:28	9.6	Adjusted Valve
NILLEW16	7/13/2021 12:29	7	Second Reading
NILLEW16	7/27/2021 13:42	8.9	Adjusted Valve
NILLEW16	7/27/2021 13:45	9.6	Second Reading
NILMW002	6/24/2021 11:10	18.6	Adjusted Valve
NILMW002	6/24/2021 11:12	18.9	Second Reading
NILMW002	7/8/2021 12:47	17.8	Adjusted Valve
NILMW002	7/8/2021 12:48	17.9	Second Reading
NILMW002	7/28/2021 12:03	8.4	Adjusted Valve
NILMW002	7/28/2021 12:05	8.4	Second Reading
NILMW016	4/30/2021 8:54	5.2	Adjusted Valve
NILMW016	4/30/2021 8:55	6.5	Second Reading
NILMW016	5/13/2021 13:26	0	In Compliance
NILMW019	2/4/2021 11:04	17.2	Adjusted Valve
NILMW019	2/4/2021 11:04	20.1	Second Reading
NILMW019	2/17/2021 12:21	3.1	In Compliance
	-, -, -, -02 +2.2+	5.1	
NILMW019	5/25/2021 11:00	9.6	Adjusted Valve
NILMW019	5/25/2021 11:01	9.5	Second Reading
NILMW019	6/8/2021 10:55	6.5	Adjusted Valve
NILMW019	6/22/2021 10:37	6.1	Adjusted Valve
NILMW019	6/22/2021 10:38	7.5	Second Reading
NILMW019	7/9/2021 11:56	1.6	In Compliance

Table 4. Wells with Oxygen ExceedancesNewby Island Landfill, Milpitas, California(February 1, 2021 through July 31, 2021)

Well ID	Date and Time	Oxygen (%)	Comments
NILMW020	5/25/2021 10:52	6.6	Adjusted Valve
NILMW020	5/25/2021 10:53	6.6	Second Reading
NILMW020	6/8/2021 10:49	0	In Compliance
NILMW020	6/22/2021 10:28	7.9	Adjusted Valve
NILMW020	6/22/2021 10:29	3.4	In Compliance
NILMW020	7/21/2021 10:45	7.4	Adjusted Valve
NILMW020	7/21/2021 10:47	7.2	Second Reading
NILMW030	2/4/2021 9:31	20.2	Adjusted Valve
NILMW030	2/4/2021 9:33	15	Second Reading
NILMW030	2/17/2021 12:13	3.5	In Compliance
NILMW030	5/12/2021 10:52	5.5	Adjusted Valve
NILMW030	5/12/2021 10:53	5.5	Second Reading
NILMW030	5/25/2021 9:42	4.6	In Compliance
NILMW031	3/19/2021 9:25	10	Adjusted Valve
NILMW031	3/19/2021 9:26	9.9	Second Reading
NILMW031	4/1/2021 11:48	3.9	In Compliance
	4/20/2021 11:00		A diverte d \/elve
NILMW031 NILMW031	4/29/2021 11:08	6.6 10.2	Adjusted Valve
	4/29/2021 11:12		Second Reading
NILMW031	5/12/2021 11:06	4.8	In Compliance
NILMW031	6/8/2021 10:09	8	Adjusted Valve
NILMW031	6/8/2021 10:09	8.6	Second Reading
NILMW031	6/22/2021 9:30	2.5	In Compliance
NILIVIVOST	0/22/2021 5.50	2.5	in compliance
NILMW032	2/25/2021 9:37	8.7	Adjusted Valve
NILMW032	2/25/2021 9:39	7.4	Second Reading
NILMW032	3/8/2021 9:59	2	In Compliance
NILMW034	2/25/2021 9:30	7.9	Adjusted Valve
NILMW034	2/25/2021 9:31	8	Second Reading
NILMW034	3/8/2021 9:51	6.1	Adjusted Valve
NILMW034	3/8/2021 9:52	6	Second Reading
NILMW034	3/19/2021 9:19	4.1	In Compliance
NILMW034	7/8/2021 13:22	5.9	Adjusted Valve
NILMW034	7/8/2021 13:24	5.9	Second Reading
NILMW034	7/20/2021 14:37	6.8	Adjusted Valve
NILMW034	7/20/2021 14:42	18.1	Second Reading

Table 4. Wells with Oxygen ExceedancesNewby Island Landfill, Milpitas, California(February 1, 2021 through July 31, 2021)

Well ID	Date and Time	Oxygen (%)	Comments
NILW475A	2/5/2021 11:19	10.5	(Initial Exceedance was on 1/27/21) Adjusted Valve
NILW475A	2/5/2021 11:21	18.1	Second Reading
NILW475A	2/18/2021 11:04	13.2	Adjusted Valve
NILW475A	3/5/2021 9:55	13.7	Adjusted Valve
NILW475A	3/5/2021 9:55	13.1	Second Reading
NILW475A	3/25/2021 10:23	8.7	Adjusted Valve
NILW475A	3/25/2021 10:24	8.5	Second Reading
NILW475A	4/9/2021 10:51	10.8	Adjusted Valve
NILW475A	4/9/2021 10:52	10.8	Second Reading
NILW475A	4/27/2021 11:56	8.7	Adjusted Valve
NILW475A	5/13/2021 7:48	12.6	Adjusted Valve
NILW475A	5/13/2021 8:48	15.4	Second Reading
NILW475A	5/19/2021 10:06	8.4	Adjusted Valve
NILW475A	5/19/2021 10:07	8.7	Second Reading
NILW475A	5/27/2021 10:05	9.8	Well Permanently Decommissioned Due to Poor Gas Quality
NILW573A	6/10/2021 9:57	19.6	Adjusted Valve
NILW573A	6/10/2021 9:57	20.1	Second Reading
NILW573A	6/23/2021 9:17	20.7	Adjusted Valve
NILW573A	6/23/2021 9:17	21	Second Reading
NILW573A	7/12/2021 11:31	18.2	Adjusted Valve
NILW573A	7/12/2021 11:32	19.8	Second Reading
NILW573A	7/23/2021 10:12	21.5	Adjusted Valve
NILW573A	7/23/2021 10:14	21.7	Second Reading
NILW574A	3/24/2021 12:01	19.5	Adjusted Valve
NILW574A	3/24/2021 12:01	19.9	Second Reading
NILW574A	4/8/2021 11:00	4.9	In Compliance
	C /10 /2024 10 02	0.7	
NILW574A	6/10/2021 10:02	9.7	Adjusted Valve
NILW574A	6/10/2021 10:03	7.2	Second Reading
NILW574A	6/23/2021 9:20	1.9	In Compliance
NILW574A	7/23/2021 10:07	5.7	Adjusted Valve
NILW574A	7/23/2021 10:09	5.7	Second Reading
NILW632A	4/28/2021 9:18	7.8	Adjusted Valve
NILW632A	4/28/2021 9:20	5.7	Second Reading
NILW632A	5/12/2021 8:15	0	In Compliance
NISS17-1	4/7/2021 9:00	17.2	Adjusted Valve

Table 4. Wells with Oxygen Exceedances Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

Well ID	Date and Time	Oxygen (%)	Comments
NISS17-1	4/7/2021 9:01	17.8	Second Reading
NISS17-1	4/20/2021 12:59	0	In Compliance
NISS17-4	3/10/2021 9:20	14.9	Adjusted Valve
NISS17-4	3/10/2021 9:21	14.9	Second Reading
NISS17-4	3/24/2021 11:06	16.3	Adjusted Valve
NISS17-4	3/24/2021 11:07	16.7	Second Reading
NISS17-4	4/8/2021 10:07	2.6	In Compliance
NISS17-4	4/29/2021 9:14	7.4	Adjusted Valve
NISS17-4	4/29/2021 9:15	9.5	Second Reading
NISS17-4	5/12/2021 8:51	4.8	In Compliance
NISS17-4	5/27/2021 12:32	8.3	Adjusted Valve
NISS17-4	5/27/2021 12:33	7.9	Second Reading
NISS17-4	6/11/2021 9:09	7.7	Adjusted Valve
NISS17-4	6/11/2021 9:10	11.5	Second Reading
NISS17-4	6/29/2021 9:54	1.2	In Compliance
NISS17-4	6/29/2021 9:55	10.5	Adjusted Valve
NISS17-4	6/29/2021 9:55	10.5	Second Reading
NISS17-4	7/14/2021 10:19	5.1	Adjusted Valve
NISS17-4	7/14/2021 10:20	4.7	In Compliance
NLCR1112	2/12/2021 8:42	19.9	Adjusted Valve
NLCR1112	2/12/2021 8:43	19.9	Second Reading
NLCR1112	2/17/2021 9:22	1.8	In Compliance
NLCRST05	7/29/2021 14:19	11.2	Adjusted Valve
NLCRST05	7/29/2021 14:23	15.5	Second Reading

Note: All required corrective action and monitoring was completed in accordance with Rule 8-34 and NSPS timelines

Table 5. Wells with Temperature ExceedancesNewby Island Landfill, Milpitas, California(February 1, 2021 through July 31, 2021)

Well ID	Date and Time	Initial Temp [°F]	Adjusted Temp	Comments
			[°F]	
NILEW476	7/8/2021 16:11	133.4	133.5	Adjusted Valve
NILEW476	7/8/2021 16:11	133.4	133.5	Second Reading
NILEW476	7/21/2021 13:29	129.8	130.2	In Compliance
NILEW688	5/13/2021 12:51	131	131	Adjusted Valve
NILEW688	5/13/2021 12:53	131.1	131.1	Second Reading
NILEW688	5/27/2021 9:57	129.2	129.1	In Compliance
	5/2//2021 5.5/	125.2	125.1	
				(Initial Exceedance was on 11/5/20)
NILEW690	2/5/2021 11:07	134.8	132.1	Adjusted Valve
NILEW690	2/5/2021 11:12	134.6	131.5	Second Reading
NILEW690	2/24/2021 13:01	134	134.1	Adjusted Valve
NILEW690	2/24/2021 13:03	134.3	134.2	Second Reading
NILEW690	3/2/2021 13:54	133.6	131.6	Adjusted Valve
NILEW690	3/2/2021 13:54			In Compliance
NILEW090	3/2/2021 13.50	128.8	128.8	in compliance
NILEW690	3/19/2021 10:01	134.3	134.3	Adjusted Valve
NILEW690	3/19/2021 10:07	134.2	134.2	Second Reading
NILEW690	4/1/2021 12:22	135	135	Adjusted Valve
NILEW690	4/12/2021 9:57	133.7	133.8	Second Reading
NILEW690	4/23/2021 10:05	134.2	134.1	Adjusted Valve
NILEW690	4/23/2021 10:07	133.6	133.3	Second Reading
NILEW690	5/12/2021 11:21	130.5	130.6	In Compliance
	3/12/2021 11:21	100.0	10010	
NILEW690	5/27/2021 12:20	133.5	133.5	Adjusted Valve
NILEW690	5/27/2021 12:21	133.7	133.7	Second Reading
NILEW690	6/10/2021 13:32	133.4	133.5	Adjusted Valve
NILEW690	6/10/2021 13:40	133.4	133.4	Second Reading
NILEW690	6/24/2021 8:48	132.4	132.5	Adjusted Valve
NILEW690	6/24/2021 8:48	132.4	132.6	Second Reading
NILEW690	7/8/2021 16:00	132.8	135.3	
				Adjusted Valve
NILEW690	7/8/2021 16:00	135.3	135.3	Second Reading
NILEW690	7/22/2021 14:10	133.4	133.4	Adjusted Valve
NILEW690	7/22/2021 14:11	133.2	133.4	Second Reading
NILEW701	2/5/2021 12:09	136.8	136.5	Adjusted Valve
NILEW701	2/5/2021 12:12	136.8	136.7	Second Reading
NILEW701	2/17/2021 13:17	133	133.1	Adjusted Valve
NILEW701	3/8/2021 11:36	135.7	136.2	Adjusted Valve
NILEW701	3/8/2021 11:37	136.9	137	Second Reading
NILEW701	3/19/2021 9:48	137.9	137.9	Adjusted Valve
NILEW701	3/19/2021 9:48	137.9	137.9	Second Reading
NILEW701	4/12/2021 8:51	136.2	135.6	Adjusted Valve
NILEW701	4/12/2021 8:52	136.2	133.0	Second Reading
NILEW701 NILEW701	4/29/2021 11:14	134.1	134.6	Adjusted Valve
NILEW701	4/29/2021 11:15	134.6	134.6	Second Reading
NILEW701	5/13/2021 14:18	134.3	134.4	Adjusted Valve
NILEW701	5/13/2021 14:20	134.2	134.3	Second Reading
NILEW701	5/21/2021 10:03	129.9	129.9	In Compliance
NILEW701	6/10/2021 12:59	135	135	Adjusted Valve
INILE VV / UL	0/10/2021 12.39	122	122	Aujusteu vaive

Table 5. Wells with Temperature ExceedancesNewby Island Landfill, Milpitas, California(February 1, 2021 through July 31, 2021)

Well ID	Date and Time	Initial Temp [°F]	Adjusted Temp	Comments
NILEW701		134.9	[°F] 134.8	
	6/10/2021 13:01 6/24/2021 9:09	134.9	134.8	Second Reading Adjusted Valve
NILEW701				-
NILEW701	6/24/2021 9:10	133.9	133.9	Second Reading
NILEW701	7/8/2021 14:59	137.2	137.9	Adjusted Valve
NILEW701	7/8/2021 14:59	137.2	137.9	Second Reading
NILEW701	7/8/2021 15:01	136.4	137.6	Third Reading
NILEW701	7/21/2021 14:48	136.1	136.9	Adjusted Valve
NILEW701	7/21/2021 14:50	137.1	137.1	Second Reading
				(Initial Exceedance was on 12/21/20)
NILEW703	2/5/2021 11:51	132.3	132.3	Adjusted Valve
NILEW703	2/5/2021 11:54	132.2	132.2	Second Reading
NILEW703	2/25/2021 10:21	130.5	130.5	In Compliance
NILEW703	7/8/2021 14:54	132.4	132.5	Adjusted Valve
NILEW703	7/14/2021 14:16	129.7	129.7	In Compliance
NILEW707	3/19/2021 11:50	132.6	132.6	Adjusted Valve
NILEW707	3/19/2021 11:52	132.0	132.5	Second Reading
	4/1/2021 12:13			
NILEW707		133	132.6	Adjusted Valve
NILEW707	4/1/2021 12:14	133.1	133.1	Second Reading
NILEW707	4/12/2021 10:45	131.8	131.7	Adjusted Valve
NILEW707	4/12/2021 10:47	131.6	131.7	Second Reading
NILEW707	4/14/2021 13:29	134.2	134.3	Adjusted Valve
NILEW707	4/15/2021 8:54	67.5	67.6	In Compliance
NILEW707	4/18/2021 15:36	137.3	137.4	Adjusted Valve
NILEW707	4/19/2021 8:47	59.8	65	In Compliance
	1/10/2021 0.17	5510		
NILEW707	4/20/2021 11:58	136	136	Adjusted Valve
NILEW707	4/20/2021 12:00	136.2	136.3	Second Reading
NILEW707	4/21/2021 12:26	135	135	Adjusted Valve
NILEW707	4/22/2021 10:19	133.4	133.4	Adjusted Valve
NILEW707	4/23/2021 10:26	133.7	133.6	Adjusted Valve
NILEW707	4/23/2021 10:30	133.8	133.9	Second Reading
NILEW707	4/26/2021 9:54	131.6	131.7	Adjusted Valve
NILEW707	5/3/2021 11:12	131	130.9	Adjusted Valve, In Compliance
	F /4 0 / 2024 0 4 4	121.2	426.2	
NILEW707	5/10/2021 9:11	134.2	136.2	Adjusted Valve
NILEW707	5/10/2021 9:13	136	135.8	Second Reading
NILEW707	5/14/2021 14:01	132.7	132.8	Adjusted Valve
NILEW707	5/14/2021 14:02	132.5	132.5	Second Reading
NILEW707	5/17/2021 9:35	130.7	130.7	In Compliance
NILEW707	5/24/2021 9:55	131.7	130	Adjusted Valve, In Compliance
NILEW707	6/1/2021 11:21	132.2	132.2	Adjusted Valve
	6/1/2021 11:22	132.2	132.2	Second Reading
NILEW707				
NILEW707	6/15/2021 13:38	132.9	133	Adjusted Valve
NILEW707	6/15/2021 13:40	132.9	133	Second Reading
NILEW707	6/24/2021 11:41	131.3	131.3	Adjusted Valve

Table 5. Wells with Temperature Exceedances Newby Island Landfill, Milpitas, California (February 1, 2021 through July 31, 2021)

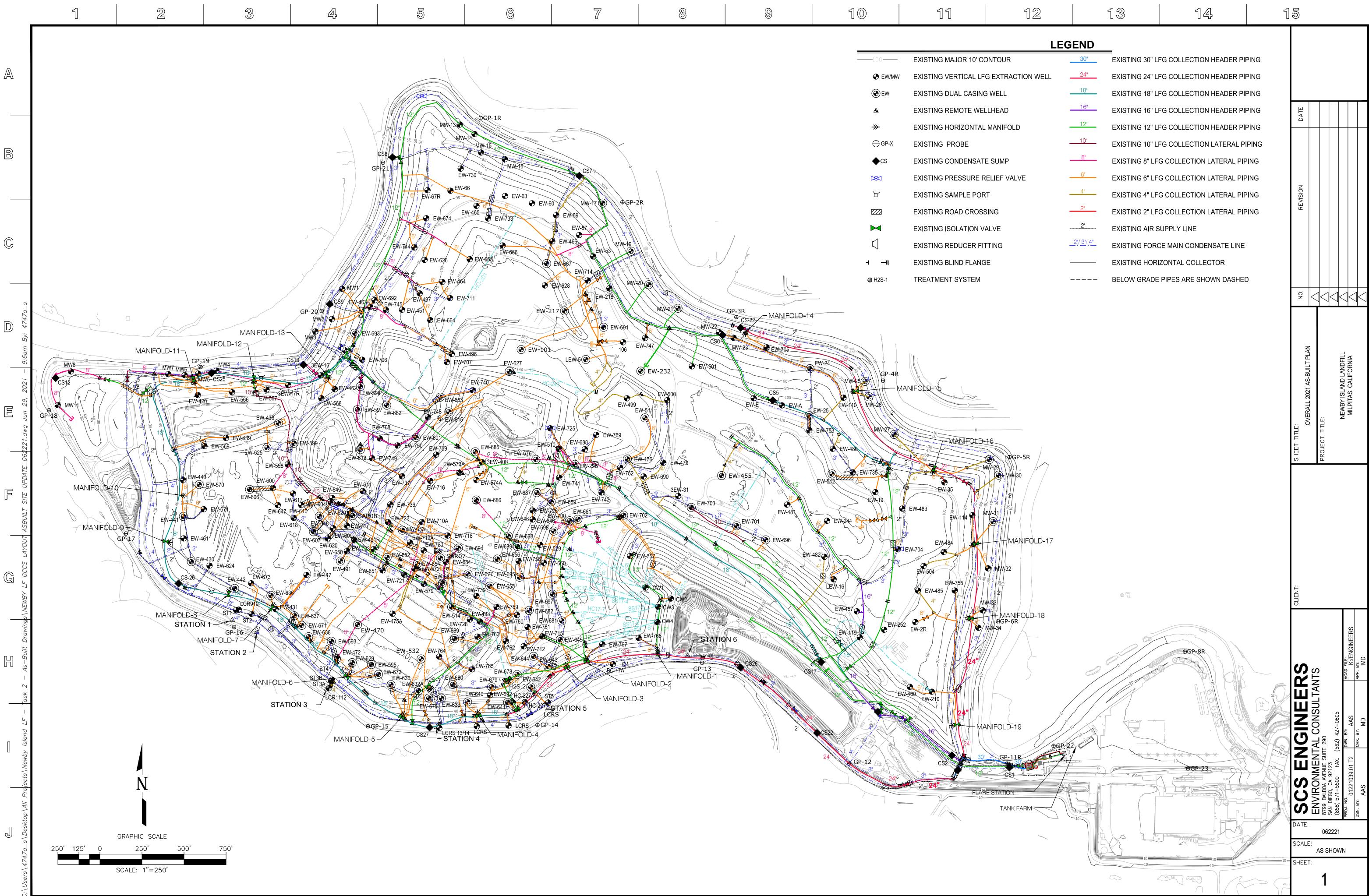
Well ID	Date and Time	Initial Temp [°F]	Adjusted Temp [°F]	Comments
NILEW707	6/24/2021 11:43	131.3	131.3	Second Reading
NILEW707	7/2/2021 10:31	95.6	95.5	In Compliance
				· · · · · · · · · · · · · · · · · · ·
NILEW750	6/4/2021 8:16	131.2	131.8	Adjusted Valve
NILEW750	6/4/2021 8:18	132	131.9	Second Reading
NILEW750	6/18/2021 8:33	125.6	125.8	In Compliance
NILEW752	2/5/2021 11:38	140.5	140.5	Adjusted Valve
NILEW752	2/5/2021 11:43	140.5	140.5	Second Reading
NILEW752	2/17/2021 13:09	138.7	138.7	Adjusted Valve
NILEW752	2/24/2021 13:07	139.1	139.1	Adjusted Valve
NILEW752	2/24/2021 13:08	139.2	139.3	Second Reading
NILEW752	3/8/2021 10:51	138.7	138.9	Adjusted Valve
NILEW752	3/8/2021 10:53	138.9	138.9	Second Reading
NILEW752	3/12/2021 11:27	139.2	139.2	Adjusted Valve
NILEW752	3/12/2021 11:29	139.3	139.3	Second Reading
NILEW752	3/19/2021 10:44	140.8	140.7	Adjusted Valve
NILEW752	3/19/2021 10:46	140.8	140.8	Second Reading
NILEW752	4/12/2021 10:00	138.1	135.9	Adjusted Valve
NILEW752	4/12/2021 10:02	137.3	137.4	Second Reading
NILEW752	4/23/2021 9:49	140.8	140.7	Adjusted Valve
NILEW752	4/23/2021 9:53	140.9	140.9	Second Reading
NILEW752	5/7/2021 12:03	140.6	140.6	Adjusted Valve
NILEW752	5/7/2021 12:11	140.5	140.4	Second Reading
NILEW752	5/21/2021 10:11	130.3	130.3	In Compliance
NILEW752	6/10/2021 12:17	139	139	Adjusted Valve
NILEW752	6/10/2021 12:19	139	139	Second Reading
NILEW752	6/18/2021 12:31	139.8	139.2	Adjusted Valve
NILEW752	6/18/2021 12:34	139.5	139.5	Second Reading
NILEW752	6/18/2021 12:36	140	140	Third Reading
NILEW752	7/8/2021 16:07	141.2	141.5	Adjusted Valve
NILEW752	7/8/2021 16:07	141.2	141.5	Second Reading
NILEW752	7/8/2021 16:09	141.2	141.4	Third Reading
NILEW752	7/21/2021 13:19	138.7	138.7	Adjusted Valve
NILEW752	7/21/2021 13:22	138.7	138.7	Second Reading

Note: All required corrective action and remonitoring was completed in accordance with Rule 8-34 and NSPS timelines.

Appendix A – Responsible Official Certification Form

Certification of Truth and Accuracy and Completeness:

I certify the following:


Based on the information and belief formed after reasonable inquiry, the information in this document are true, accurate, and complete:

08/31/21

Signature of Responsible Official

Date

Daniel North Name of Responsible Official Appendix B – Existing GCCS Layout

12	13		14	1	5			
LEG	BEND							
JR	30"	EXISTING 30" LF	G COLLECTION HEADER PI	PING				
RACTION WELL	24"	EXISTING 24" LF	G COLLECTION HEADER PI	PING				
L	18"	EXISTING 18" LF	FG COLLECTION HEADER PI	PING				
D	16"	EXISTING 16" LF	G COLLECTION HEADER PI	PING	DATE			
FOLD	12"	EXISTING 12" LF	G COLLECTION HEADER PI	PING		+		
	10"	EXISTING 10" LF	G COLLECTION LATERAL PI	PING				
IP	8"	EXISTING 8" LF	G COLLECTION LATERAL PIP	ING				
VALVE	6"	EXISTING 6" LF	G COLLECTION LATERAL PIP	ING				
	<u>4</u> "	EXISTING 4" LF	G COLLECTION LATERAL PIP	ING	ISION			
	2"	EXISTING 2" LF	G COLLECTION LATERAL PIP	ING	REV			
	2"	EXISTING AIR S	UPPLY LINE					
	2"/ 3"/ 4"	EXISTING FORC	E MAIN CONDENSATE LINE					
		EXISTING HORI	ZONTAL COLLECTOR					
		BELOW GRADE	PIPES ARE SHOWN DASHED)				
					ov			
						ľ	I	
					AN			
					וורד פנ		NDFIL	
					AS-BL		ND LA CALIFC	
					LL 2021		BY ISL∕ PITAS,	
	6" 4" 2" 2"	EXISTING 8" LFC EXISTING 6" LFC EXISTING 4" LFC EXISTING 2" LFC EXISTING AIR S EXISTING FORC EXISTING HORI	G COLLECTION LATERAL PIP G COLLECTION LATERAL PIP G COLLECTION LATERAL PIP G COLLECTION LATERAL PIP UPPLY LINE CE MAIN CONDENSATE LINE ZONTAL COLLECTOR	PING PING PING	ALL 2021 AS-BUILT PLAN		VBY ISLAND LANDFILL	

Appendix C – Excerpts from 2021 Source Test Results (report dated April 1, 2021)

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

375 Beale Street, Suite 600 San Francisco, California 94105 (415) 771-6000

Contractor Source Test Supplemental Form

Site name: Newby Island Landfill NST number: 6294 Testing company: Blue Sky Environmental, Inc.

Test purpose:

\checkmark	Routine compliance testing
	Compliance test required after previous source test failure
	Start-up test
	Other, ex: trial testing for permit changes, engineering studies

 Please explain _____
 Revised report with corrections noted Revision number _____

Preliminary test results:

\checkmark	In compliance
	Not in compliance
	N/A

Please explain_____

International Disposal Corporation of California BAAQMD Plant No: 9013

Compliance Emissions Test Report #21059

Flare (A-2) FL-150 Flare (A-3) FL-100

Located at: **Newby Island Landfill** 1601 Dixon Landing Road Milpitas, CA 95035

Prepared for: **Republic Services**

1601 Dixon Landing Road Milpitas, CA 95035

Attn: Rachelle Huber RHuber2@republicservices.com

For Submittal to: **The Bay Area Air Quality Management District** 375 Beale Street, Suite 600 San Francisco, CA 94105

Attn: Marco Hernandez & Gloria Espena mhernandez@baaqmd.gov & gespena@baaaqmd.gov

Testing Performed on: **February 23rd, 2021**

Final Report Submitted on: April 1st, 2021

Performed and Reported by: Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706

bluesky@blueskyenvironmental.com (510) 525 1261 office / (510) 508 3469 cell

Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706 Office (510) 525 1261 Cell (510) 508 3469 bluesky@blueskyenvironmental.com

April 1st, 2021

Attn.: Rachelle Huber Republic Services 1601 Dixon Landing Road Milpitas, CA 95035

<u>Subject:</u> Source test emission report for Flares A-2 and A-3, located at the Newby Island Landfill, 1601 Dixon Landing Road, Milpitas, CA 95035. Bay Area Air Quality Management District (BAAQMD) Facility #9013, Condition 10423.

Test Date(s): Testing was conducted on February 23rd, 2021.

Sampling Location: Sampling was conducted at the exhaust stack of each flare through ports that were accessible using a 40-foot boom lift. Sampling ports were available that met the minimum criteria of 2 stack diameters downstream from the nearest disturbance and 0.5 stack diameters upstream from the nearest disturbance or exhaust. The 96-inch exhaust stack for Flare A-2 had only one sampling port that could be opened. The stack was traversed for all test runs due to stratification. The 144-inch ID exhaust stack for Flare A-3 had fully functional sampling ports that were also traversed for all test runs.

Sampling Personnel: Sampling was performed by Jeramie Richardson and Timothy Eandi of Blue Sky Environmental, Inc.

Observing Personnel: The BAAQMD was notified of the scheduled source test in a plan submitted on January 11th, 2021 (NST #6294); however, no agency observers were present during testing. Max Polkabla of Tetra Tech was on site to operate the flares and provide operating records of fuel flow and combustion temperature.

Process Description: Newby Island Landfill is a multi-material landfill with gas collection system operated by International Disposal Corp of California. The system is abated by two John Zink landfill gas flares (A-2 and A-3)

<u>**Test Program:**</u> The test program objective was to determine compliance of Flares A-2 and A-3 with their associated BAAQMD operating permit limits.

Three consecutive 30-minute tests were performed for nitrogen oxides (NO_x), carbon monoxide (CO), carbon dioxide (CO₂) and oxygen (O₂) at each exhaust stack. The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Analyzer external calibrations were performed before and after each test run using EPA Protocol #1 calibration gases.

Concurrent with the exhaust sampling, Blue Sky Environmental collected a total of six LFG samples (three samples from each flare) for $%CH_4$, $C_1-C_2^+$, TNMOC- C_2^+ , fixed gases, BTU, F-factor, and sulfur compounds using methods ASTM D-1945, D-3588, and D-5504. One sample from each flare was also analyzed for volatile organic compounds by EPA Method TO-15.

The samples were collected in 6-liter Silco Canisters using EPA Method 25C and shipped immediately to Atmospheric Analysis & Consulting, Inc. located in Ventura, CA for testing.

BAAQMD Source #	Test Parameters/Limits
	Exhaust: THC, CH4, NMOC, NOx, CO, CO2, O2
Flare A-2	$NO_X \leq 12 \text{ ppm} @ 15\% O_2 \text{ or } \leq 0.05 \text{ lbs/MMBtu}$
Flate A-2	$CO \leq 81 \text{ ppm} @ 15\% O_2 \text{ or } \leq 0.20 \text{ lbs/MMBtu}$
Compliance Test	NMOC 98% DE or \leq 30 ppm @ 3%O ₂ , CH ₄ DE >99%,
	Landfill gas NMOC, CH ₄ , Fixed Gases, VOC species & TRS as H_2S

BAAQMD Source #	Test Parameters/Limits
	Exhaust: THC, CH4, NMOC, NO _x , CO, CO ₂ , O ₂
Flare A-3	$NO_X \leq 6 \text{ ppm} @ 15\% O_2 \text{ or } \leq 0.025 \text{ lbs/MMBtu}$
	$CO \leq 24 \text{ ppm} @ 15\% \text{ O}_2 \text{ or} \leq 0.06 \text{ Lbs/MMBtu}$
Compliance Test	NMOC 98% DE or \leq 30 ppm @ 3%O ₂ , CH ₄ DE >99%
	Landfill gas NMOC, CH ₄ , Fixed Gases, VOC species & TRS as H_2S

<u>Sampling and Analysis Methods</u>: The following U.S. Environmental Protection Agency (EPA) and ASTM International sampling and analytical methods were used:

O_2 , CO_2
NO _x
СО
Moisture content
NMOC, CH ₄
Flare exhaust flow rate by calculation, DSCFM
NMHC in landfill gas
Volatile organic compounds by GCMS
Sulfur Species in fuels
Fuel analysis for BTU and F-Factor

The sampling and analytical methods are outlined below:

EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas.

EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. Section 16.2.2 of the method is used to determine the NO_x analyzer NO_2 to NO conversion efficiency.

EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of a Honeywell DRP3000 strip chart recorder supported by a Data Acquisition System (DAS).

System Performance Criteria

Instrument Linearity	$\leq 2\%$ Full Scale
25A Instrument Linearity	\leq 5% Cal Gas Value
Instrument Bias	\leq 5% Full Scale
NO _X Converter Efficiency (EPA Method 7E)	$\geq 90\%$
System Response Time	$\leq \pm 2$ minutes
Instrument Zero/Span Drift	≤± 3% Full Scale

EPA Method 25A/ALT-097 – Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This method is used to measure total hydrocarbons, methane, and non-methane hydrocarbons in stationary source emissions using a gas chromatograph with a flame ionization detector (GC/FID). Heated Teflon sample gas transfer lines are used to provide a continuous sample to the heated GC/FID hydrocarbon analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to

incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test.

EPA Method 4-16.4 – Determination of Moisture Content in Stack Gas

This is an acceptable alternative to EPA Method 4 for the determination of moisture using F-factors. The mole fraction of moisture in the ambient air is calculated using equations in EPA Method 4-16.4 from 1) the measured ambient relative humidity, ambient temperature, and barometric pressure, 2) the mole fraction of free water in the fuel, calculated from the moisture % in the fuel, which is determined by the analytical lab to be the balance after all the major gaseous components have been summed, and 3) the mole fraction of hydrogen in the fuel. To determine the moisture in the fuel, the raw fuel analysis before normalization to 100% is referenced.

EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates.

EPA Compendium Method TO-15 – Determination of Toxic Organic Compounds in Ambient Air

This method is used to measure volatile organic compounds that are included in the hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990 by GC/MS (gas chromatography/mass spectroscopy). Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75hrs.

EPA Method 25C – Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. The method is written for evacuated tank sampling but is adaptable to Tedlar bag sampling procedures. The sampling equipment consists of a stainless steel or glass lined probe with a short stainless-steel or Teflon transfer line to a Tedlar bag housed in a sealed chamber. The chamber is evacuated by pump at a prescribed rate for the test duration and the Tedlar bag capacity, so the sample is integrated over the test period. The sample is injected into a GC column where the methane and CO_2 are flushed through and removed then the NMOC (ROC) fraction is oxidized to form CO_2 then reduced to methane and analyzed.

ASTM D1945 – Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

ASTM Method 5504: Sampling for H_2S and Sulfur species in fuels. Sampling consisted of collecting biogas for sulfur analysis in pre-evacuated 5-Liter SILCO SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SILCO canisters have a silanized (glass) lining that permits longer holding times (up to 72 hours) for reactive sulfur compounds. The flow controller, valve and canister are designed so that no sample contacts stainless steel components that can remove hydrogen sulfide. The flow controllers consisted of capillary orifice tubing designed to sample for pre-set durations such as 1-hr, 2-hrs and 4-hrs. The samples were analyzed for 20 sulfur compounds by ASTM Method D-5504 GC/SCD (gas chromatography/sulfur chemiluminescent detector).

Instrument	Analyte	Principle
Servomex 1440	O_2	Paramagnetic
Servomex 1440	CO ₂	IR
TECO Model 42C	NO _X	Chemiluminescence
TECO Model 48C	СО	GFC/IR
TECO Model 55C	THC/CH ₄ /VOC	FID

Instrumentation: The following continuous emissions analyzers were used:

<u>**Test Results:**</u> Emission results derived from the source test complied with permit conditions and are summarized below. Detailed results for individual test runs are provided in Tables 1 through 4.

Emission Parameter	Average Results Flare A-2	Permit Limits
NO _x ppm @ 15% O ₂	9.0	12
NO _X , lbs/MMBtu	0.037	0.05
CO ppm @ 15% O ₂	8.6	81
CO, lbs/MMBtu	0.021	0.20
NMOC ppm @ 3% O2 as CH4	<2.5	30
NMOC Destruction Efficiency %	>99.56	or >98%
CH4 Destruction Efficiency %	>99.97	>99%
TRS, ppm in LFG	624	1,300

Average Results Flare A-3	Permit Limits
3.1	6
0.012	0.025
6.1	24
0.015	0.060
<2.5	30
>99.57	or >98%
>99.70	>99%
573	1,300

The appendices are organized as follows:

Calculations

Calculations performed on the continuous emissions monitoring (CEM) data and flow rate calculations.

<u>Laboratory Reports</u> All laboratory reports and chain of custody.

Field Data Sheets

CEMS data and any transcribed data from the strip charts.

Process Data

Facility records of temperature and fuel flow data.

Calibration Gas Certifications

Certifications for the calibration gas standards.

Stack Diagram

Sketch or photograph of the stack.

Sample System Diagram

Schematic of the sampling system configuration.

Permit to Operate / ATC

Permit to Operate / Authority to Construct.

Source Test Plan

Sampling protocols submitted to the BAAQMD prior to testing.

Comments: This source test was performed in accordance with the protocol submitted to the BAAQMD. No deviations from the protocol or anomalies were observed during testing. This source test indicates that the emissions comply with permitted limits.

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report is authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If there are any questions concerning this report, please contact Jeramie Richardson at 810 923 3181, Chuck Arrivas at 925 388 4875 or Guy Worthington at 510 508 3469.

Prepared by,

(111

Anne Richardson

Reviewed by,

feela be go

Julie Wose-Jennings

Newby Island Landfill Flare A-2 (FL-150) 1,676°F

RUN	1	2	3	AVERAGE	LIMITS
Test Date	02/23/21	02/23/21	02/23/21		
Test Time	0833-0908	0932-1007	1031-1106		
Standard Temperature, °F	70	70	70	70	
Flare Temperature °F (Mid TC)	1,503	1,503	1,501	1,502	
Fuel Heat Input, MMBtu/hr	33.7	34.0	34.6	34.1	
Fuel Flow Rate, SCFM	1,203	1,209	1,230	1,214	
Exhaust Flow Rate, DSCFM (EPA M19)	14,792	13,827	15,376	14,665	
Oxygen, O ₂ , %	13.2	12.6	13.3	13.1	
Carbon Dioxide, CO ₂ , %	6.8	7.4	6.6	6.9	
Water Vapor, H ₂ O, % (EPA M4.16)	7.6	8.2	7.6	7.8	
NOx, ppm	11.8	12.7	11.4	12.0	
NOx, ppm (a) 15% O ₂	9.1	9.0	8.9	9.0	12
NOx, lbs/hr	1.25	1.25	1.25	1.25	
NOx, lbs/day	30.01	30.01	30.08	30.03	or
NOx, lbs/MMBtu	0.037	0.037	0.036	0.037	0.05
CO, ppm	13.3	7.5	13.3	11.3	
$CO, ppm (a) 15\% O_2$	10.2	5.3	10.4	8.6	81
CO, lbs/hr	0.85	0.45	0.89	0.73	
CO, lbs/day	20.5	10.7	21.3	17.5	or
CO, lbs/MMBtu	0.025	0.013	0.026	0.021	0.20
THC, ppm (wet)	<11.0	<11.0	<11.3	<11.1	
THC, ppm (dry)	<11.9	<12.0	<12.2	<12.0	
THC, lbs/hr as CH_4	< 0.44	< 0.41	< 0.47	< 0.44	
CH ₄ , ppm (wet) (EPA M25A)	<10.0	<10.0	10.3	10.1	
CH ₄ , ppm (dry)	<10.8	<10.9	11.1	10.9	
NMOC, ppm as CH_4 (wet) (EPA M25A)	<1.0	<1.0	<1.0	<1.0	
NMOC, ppm as CH_4 (dry)	<1.1	<1.1	<1.1	<1.1	
NMOC, lbs/hr as CH_4	< 0.04	< 0.04	< 0.04	< 0.04	
NMOC, ppm @ 3% O2 as CH ₄	<2.5	<2.4	<2.6	<2.5	30
INLET NMOC ppm as CH ₄ (EPA M25C)	2,828	3,101	3,084	3,004	1
INLET NMOC lbs/hr as CH ₄	8.4	9.3	9.4	9.1	or
NMOC Destruction Efficiency, %	>99.53%	>99.60%	>99.56%	>99.56%	>98
INLET CH ₄ , ppm (ASTM 1945/EPA M18 & 3C)	476,000	478,000	478,000	477,333	
INLET CH ₄ lbs/hr	1,421	1,435	1,459	1,438	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>99
INLET THC (TOC) ppm as CH ₄	478,828	481,101	481,084	480,338	
INLET THC (TOC) lbs/hr as CH ₄	1,430	1,444	1,468	1,447	1
THC (TOC) Destruction Efficiency, %	99.97%	99.97%	99.97%	99.97%	>98
Hydrogen Sulfide (H ₂ S)	614	602	620	612	
TRS as H ₂ S, ppm in Fuel, %	626	614	632	624	1,300
SO ₂ , ppm stack emissions (calculated)	50.9	53.7	50.5	51.6	
SO ₂ , ppm @ 15% O ₂	39.2	38.2	39.4	38.9	1
SO ₂ , lbs/hr	7.49	7.38	7.73	7.53	1

WHERE,

ppm = Parts Per Million Concentration

Lbs/hr = Pound Per Hour Emission Rate

- Tstd. = Standard Temp. (°R = °F+460)
- MW = Molecular Weight

DSCFM = Dry Standard Cubic Feet Per Minute

NOx = Oxides of Nitrogen as NO₂ (MW = 46)

CO = Carbon Monoxide (MW = 28)

 $\mathrm{TOC}=\mathrm{THC}=\mathrm{Total}\ \mathrm{Organic}\ \mathrm{Carbon}\ \mathrm{as}\ \mathrm{Methane},\ \mathrm{NMOC}+\mathrm{CH}_4\ (\mathrm{MW}=16)$

THC = Total Hydrocarbons as Methane (MW = 16)

NMOC = Total Non-Methane Organic Carbons as Methane (MW = 16)

 $SO_2 = Sulfur Dioxide (MW = 64.1)$

CALCULATIONS,

$$\begin{split} \text{PPM} @~15\% \text{ O}_2 &= \text{ppm} * 5.9 \ / \ (20.9 - \%\text{O}_2) \\ \text{PPM} @~3\% \text{ O}_2 &= \text{ppm} * 17.9 \ / \ (20.9 - \%\text{O}_2) \end{split}$$

Lbs/hr = ppm x 8.223 E-05 x DSCFM x MW / Tstd. °R

Lbs/day = Lbs/hr * 24

- Removal Efficiency = (inlet lbs/hr- outlet lbs/hr) / inlet lbs/hr
- <VALUE = 2% of Analyzer Range

lbs/MMBtu = Fd * MW * ppm * 2.59E-9 * 20.9/(20.9 - %O_2)

Newby Island Landfill Flare A-2 (FL-150)

Landfill Gas Characterization

RUN			2	LIMITS
Test Date			2/23/21	
Test Time			0932-1007	
Acrylonitrile		ppb	<153	
Benzene		ppb	1,470	
Carbon Disulfide		ppb	5,200	
Carbon Tetrachloride		ppb	<38.3	
Chlorobenzene		ppb	<38.3	
Chlorodifluoromethane		ppb	<38.3	
Chloroethane		ppb	119	
Chloroform		ppb	<38.3	
1,1 Dichloroethane		ppb	<38.3	
1,1 Dichloroethene		ppb	<38.3	
1,2 Dichloroethane		ppb	176	
1,4 Dichlorobenzene		ppb	712	
Dichlorodifluoromethane		ppb	71.3	
Dichlorofluoromethane		ppb	<38.3	
Ethylbenzene		ppb	2,700	
Ethlyene Dibromide	1,2 Dibromoethane	ppb	<38.3	
Fluorotrichloromethane	Trichlorofluormethane	ppb	<38.3	
Hexane		ppb	318	
Hydrogen Sulfide		ppm	602	
2-Propanol (IPA)		ppb	13,000	
2-Butanone (MEK)		ppb	24,700	
Methylene Chloride		ppb	164	
Perchloroethylene (PCE)	Tetrachloroethylene	ppb	110	
Toluene		ppb	4,690	
1,1,1 Trichlororethane		ppb	<38.3	
1,1,2,2 Tetrachloroethane		ppb	<38.3	
Trichloroethylene	Trichloroethene (TCE)	ppb	72.8	
Vinyl Chloride		ppb	62.8	
m+p xylenes, o xylenes		ppb	6,050	

Newby Island Landfill Flare A-3 (FL-100) 1,504°F

RUN	1	2	3	AVERAGE	LIMITS
Test Date	02/23/21	02/23/21	02/23/21		
Test Time	1200-1241	1306-1349	1409-1447		
Standard Temperature, °F	70	70	70	70	
Flare Temperature °F (Mid TC)	1,504	1,505	1,504	1,504	
Fuel Heat Input, MMBtu/hr	92.7	95.2	95.8	94.6	
Fuel Flow Rate, SCFM	3,294	3,338	3,396	3,343	
Exhaust Flow Rate, DSCFM (EPA M19)	42,328	42,795	40,196	41,773	
Oxygen, O ₂ , %	13.5	13.4	12.9	13.3	
Carbon Dioxide, CO ₂ , %	6.3	5.9	6.7	6.3	
Water Vapor, H ₂ O, % (EPA M4.16)	7.2	7.2	7.6	7.3	
NOx, ppm	3.7	3.9	4.2	3.9	
NOx, ppm @ 15% O ₂	3.0	3.1	3.1	3.1	6
NOx, lbs/hr	1.13	1.18	1.21	1.18	
NOx, lbs/day	27.08	28.43	29.15	28.22	or
NOx, lbs/MMBtu	0.012	0.012	0.012	0.012	0.025
CO, ppm	6.4	11.5	5.3	7.8	
CO, ppm (a) 15% O ₂	5.2	9.1	3.9	6.1	24
CO, lbs/hr	1.2	2.1	0.9	1.4	
CO, lbs/day	28.4	51.5	22.1	34.0	or
CO, lbs/MMBtu	0.013	0.022	0.009	0.015	0.060
THC, ppm (wet)	<11.0	<11.0	<11.0	<11.0	
THC, ppm (dry)	<11.9	<11.9	<11.9	<11.9	
THC, lbs/hr as CH_4	<1.25	<1.26	<1.19	<1.23	
CH ₄ , ppm (wet) (EPA M25A)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppm (dry)	<10.8	<10.8	<10.8	<10.8	
CH ₄ , lbs/hr	1.13	1.14	1.08	1.1	
NMOC, ppm as CH ₄ (wet) <i>(EPA M25A)</i>	<1.0	<1.0	<1.0	<1.0	
NMOC, ppm as CH ₄ (dry)	<1.1	<1.1	<1.1	<1.1	
NMOC, lbs/hr as CH ₄	< 0.11	< 0.11	< 0.11	< 0.11	
NMOC, ppm @ 3% O2 as CH ₄	<2.6	<2.6	<2.4	<2.5	30
INLET NMOC ppm as CH ₄ (EPA M25C)	3,087	3,196	3,023	3,102	1
INLET NMOC lbs/hr as CH ₄	25.2	26.5	25.5	25.7	or
NMOC Destruction Efficiency, %	>99.55%	>99.57%	>99.58%	>99.57%	>98
INLET CH ₄ , ppm (ASTM 1945/EPA M18 & 3C)	478,000	484,000	479,000	480,333	
INLET CH ₄ lbs/hr	3,908.9	4,010.8	4,037.5	3,986	
CH ₄ Destruction Efficiency, %	>99.70%	>99.70%	>99.71%	>99.70%	>99
INLET THC (TOC) ppm as CH ₄	481,087	487,196	482,023	483,435	
INLET THC (TOC) lbs/hr as CH ₄	3,934	4,037	4,063	4,011	1
THC (TOC) Destruction Efficiency, %	99.97%	99.97%	99.97%	99.97%	>98
Hydrogen Sulfide (H ₂ S)	597	504	585	562	
TRS as H ₂ S, ppm in Fuel	607	515	597	573	1,300
SO ₂ , ppm stack emissions, calculated	47.2	40.2	50.4	45.9	
SO ₂ , ppm @ 15% O ₂	37.8	31.7	37.2	35.5	1
SO ₂ , lbs/hr	19.89	17.10	20.16	19.05	1

WHERE,

ppm = Parts Per Million Concentration

Lbs/hr = Pound Per Hour Emission Rate

Tstd. = Standard Temp. (°R = °F+460)

MW = Molecular Weight

DSCFM = Dry Standard Cubic Feet Per Minute

NOx = Oxides of Nitrogen as NO_2 (MW = 46)

CO = Carbon Monoxide (MW = 28)

TOC = THC = Total Organic Carbon as Methane, NMOC+CH₄ (MW = 16)

THC = Total Hydrocarbons as Methane (MW = 16)

NMOC = Total Non-Methane Organic Carbons as Methane (MW = 16)

 $SO_2 = Sulfur Dioxide (MW = 64.1)$

CALCULATIONS,

PPM @ 15% $\mathrm{O_2}$ = ppm * 5.9 / (20.9 - %O_2)

PPM @ 3% $O_2 = ppm * 17.9 / (20.9 - %O_2)$

Lbs/hr = ppm x 8.223 E-05 x DSCFM x MW / Tstd. °R

Lbs/day = Lbs/hr * 24

Removal Efficiency = (inlet lbs/hr- outlet lbs/hr) / inlet lbs/hr

<VALUE = 2% Value of Analyzer Range

lbs/MMBtu = Fd * MW * ppm * 2.59E-9 * 20.9/(20.9 - O_2)

Newby Island Landfill Flare A-3 (FL-100)

Landfill Gas Characterization

RUN			2	LIMITS
Test Date			2/23/21	
Test Time			1306-1349	
Acrylonitrile		ppb	<162	
Benzene		ppb	1,510	
Carbon Disulfide		ppmv	5,810	
Carbon Tetrachloride		ppb	<40.5	
Chlorobenzene		ppb	115	
Chlorodifluoromethane		ppb	<40.5	
Chloroethane		ppb	105	
Chloroform		ppb	<40.5	
1,1 Dichloroethane		ppb	<40.5	
1,1 Dichloroethene		ppb	<40.5	
1,2 Dichloroethane		ppb	175	
1,4 Dichlorobenzene		ppb	784	
Dichlorodifluoromethane		ppb	70.5	
Dichlorofluoromethane		ppb	<40.5	
Ethylbenzene		ppb	2,900	
Ethlyene Dibromide	1,2 Dibromoethane	ppb	<40.5	
Fluorotrichloromethane	Trichlorofluormethane	ppb	<40.5	
Hexane		ppb	336	
Hydrogen Sulfide		ppmv	504	
2-Propanol (IPA)		ppb	16,100	
2-Butanone (MEK)		ppb	25,800	
Methylene Chloride		ppb	165	
Perchloroethylene (PCE)	Tetrachloroethylene	ppb	115	
Toluene		ppb	4,820	
1,1,1 Trichlororethane		ppb	<40.5	
1,1,2,2 Tetrachloroethane		ppb	<40.5	
Trichloroethylene	Trichloroethene (TCE)	ppb	72.1	
Vinyl Chloride		ppb	68.9	
m+p xylenes, o xylenes		ppb	6,280	

Appendix D – Surface Emission and GCCS Component Leak Monitoring Results

SCS FIELD SERVICES

June 5, 2021 File No. 07221077.00

Ms. Rachelle Huber Republic Services – Newby Island Landfill 1601 Dixon Landing Road Milpitas, California 95035

Subject: Newby Island Landfill - Milpitas, California

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring for First Quarter 2021.

Dear Ms. Huber:

SCS Field Services (SCS) is pleased to provide the Republic Services, with the enclosed report summarizing the surface emissions monitoring services provided at the Newby Island Landfill (Site) during the First Quarter 2021. This report includes the results of surface scan, component emissions and blower/flare station emissions monitoring for the Site for this monitoring period.

SCS appreciates the opportunity to be of assistance to Republic Services on this project. As you review the enclosed information, please contact Michael Flanagan at (510) 363-7796 or Whitney Stackhouse at (209) 338-7990 if you have any questions or comments.

Sincerely,

Whitney Stackhouse Project Manager SCS Field Services

High Muser

Michael Flanagan Project Manager SCS Field Services

Encl.

Sean Bass, SCS Field Services Art Jones, SCS Field Services

Newby Island Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring

First Quarter 2021

Presented to:

Ms. Rachelle Huber Republic Services – Newby Island 1601 Dixon Landing Road Milpitas, California 95035

SCS FIELD SERVICES

File No. 07221077.00 Task 01 | June 5, 2021

SCS FIELD SERVICES 4730 Enterprise Way Suite A Modesto, CA 95356

Newby Island Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring First Quarter 2021

INTRODUCTION

This letter provides results of the March 12, 15, 16, 17, 19, 22, 23, 26, 27, 29 and April 6 and 9, 2021, LMR and NSPS landfill surface emissions monitoring (SEM) performed by SCS Field Services (SCS) at the subject site. All work was performed in accordance with our approved Work Scope dated December 23, 2020, and the LMR requirements.

SUMMARY AND CONCLUSIONS

As stipulated in LMR, if uncorrectable exceedances within the 10-day limitation are detected or emissions are discovered during an inspection by Regulatory Agencies, the landfill must perform monitoring on a 25-foot pathway on a quarterly basis for active disposal sites. Upon completion of four consecutive SEM events without an uncorrectable exceedance of the 25 ppmv or 500 ppmv standards, other than non-repeatable momentary readings, the landfill may perform the monitoring on a 100-foot spacing on an annual basis for closed landfills or quarterly for active disposal sites. Therefore, based on the previous monitoring events, in which exceedances were observed, the monitoring at the Newby Island Landfill was performed on 25-foot pathways in accordance with the LMR.

On, March 12, 15, 16, 17, 19, 22, 23, 26, 27, 29 and April 6 and 9, 2021, SCS performed first quarter 2021 SEM as required by the Bay Area Air Quality Management District (BAAQMD). Instantaneous surface emissions monitoring results indicated that eighteen (18) locations exceeded the 500 ppmv maximum concentration during the initial monitoring event (Table 1 in Attachment 3). The required first and second 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring indicated that all areas had returned to below regulatory compliance limits following system adjustments and remediation (well field adjustments and installation of new bentonite plugs) by site personnel. Based on these monitoring results no additional follow up testing was required.

Also, during the instantaneous monitoring event, SCS performed concurrent integrated monitoring of the landfill surface. As required by the LMR, the landfill was divided into 50,000 square foot areas. The Newby Island Landfill surface area was therefore divided into 233 grids, as shown on Figure 1 in Attachment 1. During this monitoring event, several grids were not monitored, in accordance with the regulations, due to ongoing active landfilling activities, unsafe conditions, or there was no waste in place prior to the monitoring event.

During the monitoring event, there were five (5) grid areas observed to exceed the 25 ppmv LMR integrated average threshold (Table 2 in Attachment 4). The required first and second 10-day LMR follow-up monitoring indicated that three (3) areas had returned to compliance following system adjustments and remediation by SCS and site personnel. Based on these monitoring results, and in

accordance with the LMR, the site is required to perform a system expansion within 120-days of the third detected exceedance. These results are discussed in a subsequent section of this report.

In addition, quarterly monitoring of the pressurized piping or components of the Gas Collection and Control System (GCCS) that are under positive pressure must be performed. Results of the testing of the landfill gas (LFG) Blower Flare Station (BFS) pressurized piping and components indicated that all test locations were in compliance with the 500 ppmv requirement.

Further, as required under the LMR, any location on the landfill that has an observed instantaneous methane concentration above 200 ppmv, must be stake-marked and Global Positioning System (GPS) located on a site figure. During this reporting period, no locations were observed to exceed the 200 ppmv, reporting threshold. When these readings are observed, the locations are reported to site personnel for tracking and/or remediation and will be reported in the next submittal of the annual LMR report.

Finally, to help prevent potential future exceedances, SCS recommends that the landfill surface be routinely inspected and any observed surface erosion be routinely repaired.

BACKGROUND

The Newby Island Landfill is an active organic refuse disposal site. By way of background, organic materials buried in a landfill decompose anaerobically (in the absence of oxygen) producing a combustible gas which contains approximately 50 to 60 percent methane gas, 40 to 50 percent carbon dioxide, and trace amount of various other gases, some of which are odorous. The Newby Island property contains a system to control the combustible gases generated in the landfill.

SURFACE EMISSIONS MONITORING

On March 12, 15, 16, 17, 19, 22, 23, 26, 27, 29 and April 6 and 9, 2021, the instantaneous and integrated SEM was performed over the surface of the subject site. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring in the 50,000 square foot grids as required under the LMR. During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rules as required.

EMISSIONS TESTING INSTRUMENTATION/CALIBRATION

Instruments used to perform the landfill surface emission testing consisted of the following:

- Thermo Scientific TVA 2020 portable Flame Ionization Detector (FID). This instrument measures methane in air over a range of 1 to 50,000 ppmv. The TVA 2020 meets the State of California Air Resources Board (CARB) requirements for combined instantaneous and integrated monitoring and was calibrated in accordance with United States Environmental Protection Agency (US EPA) Method 21.
- Weather Anemometer with continuous recorder for meteorological conditions in accordance with the LMR.

Instrument calibration logs and weather information are shown in Attachments 5 and 6.

SURFACE EMISSIONS MONITORING PROCEDURES

Surface emissions monitoring was conducted in accordance with the LMR and NSPS requirements. Monitoring was performed with the FID inlet held within 3-inches of the landfill surface while a technician walked a grid in parallel paths not more than 25 -feet apart over the surface of the landfill. Cracks, holes and other cover penetrations in the surface were also tested. Surface emissions readings were monitored continuously and recorded every 5 seconds. Any areas in exceedance of the 200 or 500 ppmv standards (reporting and compliance levels, respectively) would be GPS tagged and stake-marked for on-site personnel to perform remediation or repairs.

The integrated average is based on the readings stored on the instrument, which are recorded every 5 seconds. The readings are then downloaded and the averages are calculated for each grid using SCS eTools®. All readings are maintained in this secure SCS Database. The readings are not provided in the report due to the volume of readings, but can be furnished upon request.

Recorded wind speed results are shown in Attachment 6. Wind speed averages were observed to remain below the alternative threshold of 10 miles per hour, and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within 72 hours of the monitoring events. Therefore, site meteorological conditions were within the alternatives of the LMR requirements on the above mentioned dates.

TESTING RESULTS

During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rule as required under the LMR and NSPS. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR or NSPS threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring (LMR).

On March 12, 15, 16, 17, 22, 23, 26, 27, and 29, 2021, SCS performed first quarter 2021 instantaneous emissions monitoring testing as required by the BAAQMD. During this monitoring, surface emissions results indicated that eighteen (18) locations exceeded the 500 ppmv maximum concentration. The required first and second 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring performed on March 19, 29 and April 9, 2021, respectively, indicated that all areas had returned to compliance following system adjustments and remediation (wellfield adjustment and borehole repairs using bentonite and soil) performed by SCS and site personnel. Based on these monitoring results no additional follow up testing was required. Results of the monitoring are shown in Attachments 2 and 3 (Table 1).

Additionally, calculated integrated grid monitoring indicated five (5) integrated exceedances of the 25-ppmv requirement on March 17, 2021. The required first and second 10-day LMR follow-up monitoring performed on March 27 and April 6, 2021, indicated that three (3) areas had returned to compliance following system adjustments and remediation by site personnel. The remaining two (2) areas, Grids Nos. 171, and 172 did not return to compliance levels, as required. In accordance with requirements for expansion and remediation, the two (2) grid areas need to be remediated and returned to compliance option if approved by the BAAQMD) within 120 days after the detected third integrated exceedance, which will be due by August 4, 2021. Results of the initial and follow up monitoring are shown in Attachment 4 (Table 2). Calibration logs for the monitoring equipment are provided in Attachment 5.

During this monitoring event, several grids were not monitored, in accordance with the LMR, due to active landfilling activities, unsafe conditions or no waste in place. SCS will continue to monitor all accessible locations during the second quarter 2021.

PRESSURIZED PIPE AND COMPONENT LEAK MONITORING

On March 27, 2021, quarterly leak monitoring was performed in accordance with the LMR. SCS performed LFG pressurized pipe and component leak monitoring at the BFS. Monitoring was performed with the detector inlet held one-half of an inch from pressurized pipe and associated components. No locations exceeding the 500 ppmv threshold were observed during our monitoring event. The maximum reading, which was 10 ppmv, was well below the maximum threshold (see Table 1 for component results). Therefore, all pressurized piping and components located at the LFG BFS were in compliance at the time of our testing.

PROJECT SCHEDULE

According to the LMR and NSPS, surface emissions monitoring at active landfills is required to be performed on a quarterly basis. Therefore, in accordance with our approved Work Scope, the second quarter 2021 (April through June) surface emissions testing event is scheduled to be performed by the end of May 2021 in accordance with the Republic SOP unless an alternative timeline is requested by site personnel.

STANDARD PROVISIONS

This report addresses conditions of the subject site during the testing dates only. Accordingly, we assume no responsibility for any changes that may occur subsequent to our testing which could affect the surface emissions at the subject site or adjacent properties.

Attachment 1

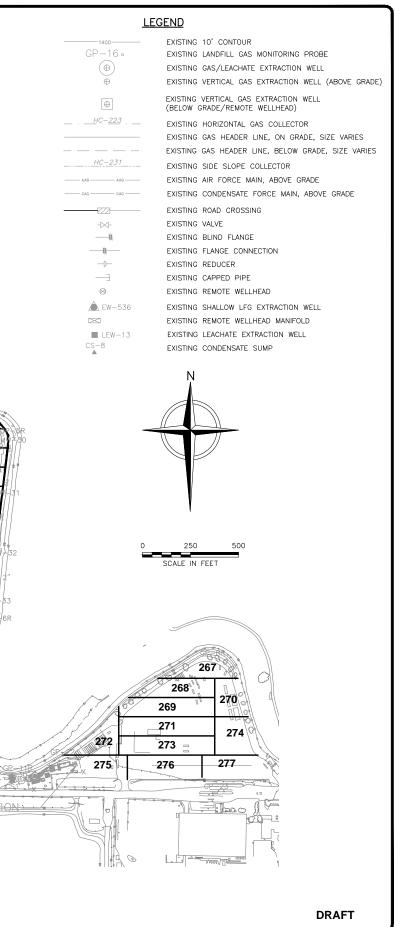
Landfill Grid

		AND					
	6 Contraction of the contraction						
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 17 17 19				
cross GP-201	1 1 1 25 5 4 62 6 1 1 1 1 29 9 0 − 497 0 0 3 4 5 34 5 4 7 5	26 27 30 (2) 32 35 36	28 33 37				
Well MANIFOLD DECOM DECOM DECOM DECOM	39 206 43 4 43 4 4 49 4 5 4 6 4 6 4 7 4 	40 44 50 251 41 45 51 51 51 51 51	46 42 12" 46 46 42 12" 46 46 40 40 52 52	47 mm 2 48 mm + 23 47 48 mm + 23 53 *	234R 54 **********************************		
B CP-19 MM S5 M S6 CS12 M63 64 65 66 66 47 MM74 8 75 8 76 55 77 66 77	67 67 8 EW-59 78 8 615	58 59 68 6 69 79 80 80	80 232 FM 70	61 51 71 m 71 m 82 82	62 72 A 1883	39 ² 4R 73 97W(-26 PR	
GP-W2 84 85 52 86 EW 94 95 92 EW 96 EW 9799 104 52 EW 105 EW 106 EW	87 12" 6 98 613 98 67 60 19 61 98 613 19 61 98 613 19 61 98 61 19 61 98 61 98 61 19 61 98 61 96 61 96 61 96 61 96 61 96 61 96 61 96 61 96 61 96 61 96 61 96 61 96	88v [‡] 467 2" 89 99 4" 4" 6" 100 108 w45K 615 109 109 109 109	10 ² 1 10 ² 1 11 ² 1		12*** 92 103 4 12*** 0103 4 12*** 172 8 12*** 172 8 14+ 512	93	114 3 3 3 3 3
115 115 116 116 116 116 116 116	118 129 139 139 139	119 130 w-574 12" 140° w-576 140° w-522 144 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	121 132 142 142 15 153	122 3 133 WOTH 143 154	123 1412 734 744 744	124 135 145 w-483 5	¹²⁵ ¹³⁵ 136 146 ⁶
412 413 413 4147 4149 4159 4159 4159 4159 4159 4159 4159	100 ° ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6	161 (c) Ew 562 (173) 172 (c) 562 (173) 182 (c) Ew 455 (183)	163 174 184	164 164 175 185	EV-456 165	166 m 1777 1877	157 + + + + + + + + + + + + + + + + + + +
189 - 426 4"190 199 - 200 - 3 201	191 202 21175A	192 62 193 2 203 2 - 204 212 6 - 213	194 205 214	195 206 215	196 207 216	197 208 217	⁸⁵ 198 209 209 218 218
CP - 10 219 219 228 200 228 200 238	220 ₩ 495 ₩ ₩ ₩229 4 239 E	221 (222)) 230 (231) 240 (241)	2 2 16	224 33 234 GP-13	225 235 242	226 236 243	227 237 244
DECOM	245 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	246 247 68 254 254 CRS 17 253 66 10 10 10 10 10 10 10 10 10 10 10 10 10		WELL MANIFOLD EW DE COCOM DE COCOM DE COCOM	248 255 258	249 256 259	257
	Well MANIFOLD THE THE THE THE THE THE THE THE THE THE	WELL MANIFOLD WELL MANIFOLD WELL MANIFOLD WELL HO-211 WELL HO-211 WELL HO-211 WELL HO-211 WELL HO-211 HO HO HO HO	<u>.</u>		260 GP-12	261 263 265 2	262 264 ⁴⁷ 30 266
NOTES							FLAZE: STATIO

- NOTES:
 1. THE 2018 BASE TOPOGRAPHIC MAP WAS CREATED BY COOPER AERIAL SURVEYS CO. USING PHOTOGRAMMETRIC METHODS. DATE OF PHOTOGRAPHY: APRIL 17, 2018. HORIZONTAL DATUM: NAD27, ZONE 3, VERTICAL DATUM: LOCAL LANDFILL DATUM.
 2. THE 2010 BASE SAS-BUILT WELL AND PIPE LOCATIONS WERE PROVIDED BY REPUBLIC. WELLS EW-487 THROUGH EW-489 ARE PER DESIGN LOCATIONS, NO SURVEY WAS RECEIVED FOR THESE WELLS. AS-BUILT LOCATIONS FOR HC-223 AND LORS-17 ARE APPROXIMATE, NO SURVEY WAS RECEIVED FOR THESE WELLS.
 3. THE 2017 GCCS AS-BUILT WELL AND PIPE LOCATIONS WERE PROVIDED BY RUGGERI, JENSEN, AZAR AND ASSOCIATES, DATES OF SURVEY: JANUARY 11, 20, AND FEBRUARY 24, 2017.
 4. THE 2018 GCCS IMPROVEMENTS PER SURVEY PREPARED BY RUGGERI, JENSEN, AZAR, AND ASSOCIATES, DATE OF SURVEY: MARCH 14, 2018.
 5. THE 2018 GCCS PHASE II IMPROVEMENTS PER SURVEY PREPARED DEVOLOTIONS.

<u>.</u>

°0 -

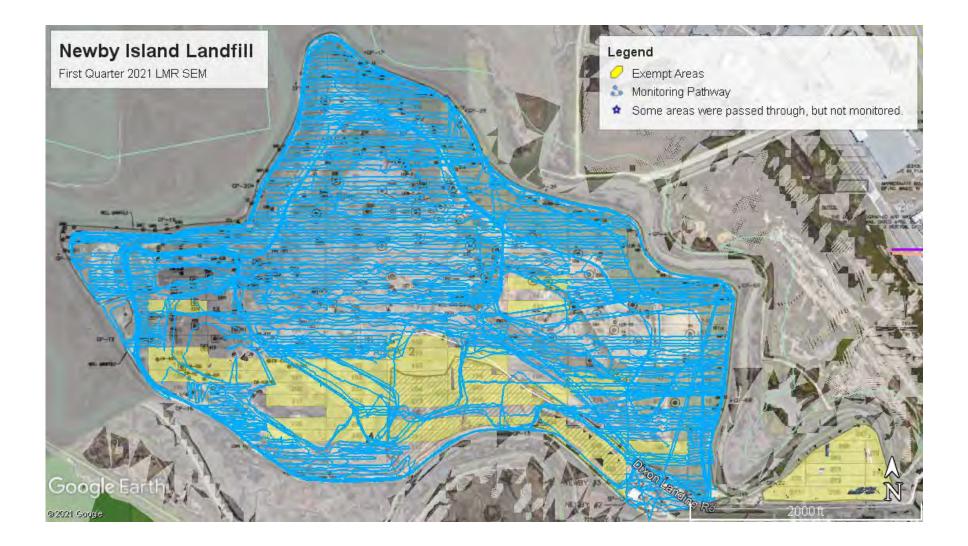

1/2"

. ____

- 14, 2010. THE 2018 GCCS PHASE II IMPROVEMENTS PER SURVEY PREPARED BY RUGGERI, JENSEN, AZAR, AND ASSOCIATES, DATE OF SURVEY: AUGUST 6, 2018. 5.

cornerstone ATETRA TECH COMPANY DWN BY DES BY CHK BY APP B DATE DESCRIPTION DATE OF ISSUE 9/6/18 DRAWN BY _____ DESIGNED BY _____ RAW CHECKED BY _____ AMN MED

This drawing represents intellectual property of Cornerstone. Any modification to the original by other than Cornerstone greanomic induces its original purpose and cas such is rendered void. Cornerstone will not be held fiable for any changes made to this document without express written consent of the originator.


NEWBY ISLAND LANDFILL SANTA CLARA COUNTY, CALIFORNIA

GCCS AS-BUILT SEM SITE PLAN

Attachment 2

Surface Pathway

First Quarter 2021 LMR Surface Emissions Monitoring Pathway Newby Island Landfill, Milpitas, California Attachment 3

Instantaneous and Component Emissions Monitoring Results

First Quarter 2021

Table 1. LMR Instantaneous Surface and Component

Emissions Monitoring Results

Newby Island Sanitary Landfill, Milpitas, California

Instantaneous Data Report for March 12, 15, 16, 17, 19, 22, 23, 26, 27, 29 and April 6 and 9, 2021

Location Well ID or Grid Number	Initial Monitoring (ppmv) March 12, 2021	10-Day Follow Up Monitoring (ppmv) March 19, 2021	20-Day Follow Up Monitoring (ppmv) March 29, 2021	30-Day Follow Up Monitoring (ppmv) April 9, 2021
NILEW500	854	25	NA	10.3
36" T (main header downhill from 641/ HC227A)	8,219	3,500	350	<500
CS08	1,358	125	NA	9.5
CS26	1,000	1,000	8	9.7
HC227A (this is the wellhead location by 641)	1,135	1,000	350	<500
LEW05	1,500	2,500	100	32.0
MW013	600	25	NA	4.2
MW018	900	150	NA	3.3
MW020	600	200	NA	25.0
NILEW 461	2,496	2,496	170	9.7
NILEW 510	37,000	75	NA	154.0

First Quarter 2021

Table 1. LMR Instantaneous Surface and Component

Emissions Monitoring Results

Newby Island Sanitary Landfill, Milpitas, California

Location Well ID or Grid Number	Initial Monitoring (ppmv) March 12, 2021	10-Day Follow Up Monitoring (ppmv) March 19, 2021	20-Day Follow Up Monitoring (ppmv) March 29, 2021	30-Day Follow Up Monitoring (ppmv) April 9, 2021
NILEW 568	1,088	50	NA	51.8
	1,000	50		51.0
NILEW 690	605	200	NA	13.9
NILEW 706	1,588	200	NA	3.3
NILEW 747	30,000	2,500	6	25.1
NILEW 460	3,880	5	NA	<500
NILEW 694	1750+	750	200	38.0
NILEW 719	1,500	20,000	250	36.6

Pressurized Pipe

Route	Date	Highest Concentration (ppmv)
Flare Station	3/27/2021	10

No other exceedances of the 500 ppm threshold observed during the LMR/NSPS monitoring performed during the first quarter 2021.

First Quarter 2021 Initial Emissions Monitoring Locations Greater Than 500 ppmv Keller Canyon Landfill, Pittsburg, California Attachment 4

Integrated Monitoring Results

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-001	3/15/2021	1.72	
NIL-002	3/15/2021	2.11	
NIL-003	3/15/2021	2.06	
NIL-004	3/15/2021	3.07	
NIL-005	3/15/2021	4.87	
NIL-006	3/15/2021	2.88	
NIL-007	3/15/2021	3.15	
NIL-008	3/15/2021	3.68	
NIL-009	3/15/2021	4.50	
NIL-010	3/15/2021	4.51	
NIL-011	3/15/2021	6.14	
NIL-012	3/15/2021	7.20	
NIL-013	3/15/2021	10.15	
NIL-014	3/15/2021	3.00	
NIL-015	3/15/2021	3.31	
NIL-016	3/15/2021	3.81	
NIL-017	3/17/2021	7.44	
NIL-018	3/17/2021	3.46	
NIL-019	3/17/2021	5.96	
NIL-020	3/15/2021	4.40	
NIL-021	3/15/2021	2.06	
NIL-022	3/15/2021	2.97	
NIL-023	3/15/2021	5.20	
NIL-024	3/15/2021	3.91	
NIL-025	3/15/2021	2.31	
NIL-026	3/15/2021	2.38	
NIL-027	3/15/2021	4.62	
NIL-028	3/15/2021	3.76	
NIL-029	3/16/2021	5.98	
NIL-030	3/16/2021	4.85	
NIL-031			Grid is not on the Grid Map
NIL-032	3/16/2021	2.58	
NIL-033	3/16/2021	2.05	
NIL-034	3/15/2021	1.83	
NIL-035	3/15/2021	2.13	
NIL-036	3/15/2021	2.21	
NIL-037	3/15/2021	2.10	
NIL-038	3/12/2021	13.40	
NIL-039	3/16/2021	5.65	
NIL-040	3/16/2021	5.03	
NIL-041	3/16/2021	4.46	
NIL-042	3/16/2021	3.16	
NIL-043	3/16/2021	4.82	

SCS DataServices - Secure Environmental Data

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-044	3/16/2021	7.48	
NIL-045	3/16/2021	4.22	
NIL-046	3/16/2021	3.01	
NIL-047	3/23/2021	1.29	
NIL-048	3/23/2021	1.20	
NIL-049	3/23/2021	2.26	
NIL-050	3/23/2021	2.17	
NIL-051	3/23/2021	3.15	
NIL-052	3/23/2021	4.77	
NIL-053	3/23/2021	1.97	
NIL-054	3/23/2021	1.68	
NIL-055	3/12/2021	3.20	
NIL-056	3/16/2021	6.02	
NIL-057	3/16/2021	5.19	
NIL-058	3/16/2021	9.62	
NIL-059	3/16/2021	10.42	
NIL-060	3/16/2021	3.66	
NIL-061	3/16/2021	2.46	
NIL-062	3/16/2021	3.19	
NIL-063	3/15/2021	4.07	
NIL-064	3/15/2021	4.74	
NIL-065	3/15/2021	6.11	
NIL-066	3/15/2021	6.14	
NIL-067	3/15/2021	10.03	
NIL-068	3/16/2021	20.40	
NIL-069	3/16/2021	15.86	
NIL-070	3/15/2021	5.54	
NIL-071	3/15/2021	2.75	
NIL-072	3/16/2021	2.29	
NIL-073	3/23/2021	1.26	
NIL-074	3/16/2021	1.54	
NIL-075	3/16/2021	2.31	
NIL-076	3/16/2021	2.32	
NIL-077	3/16/2021	3.98	
NIL-078	3/16/2021	6.30	
NIL-079	3/16/2021	11.66	
NIL-080	3/16/2021	14.46	
NIL-081	3/16/2021	4.36	
NIL-082	3/16/2021	2.69	
NIL-083	3/16/2021	2.41	
NIL-084	3/16/2021	2.61	
NIL-085	3/16/2021	3.66	
NIL-086	3/16/2021	3.02	

SCS DataServices - Secure Environmental Data

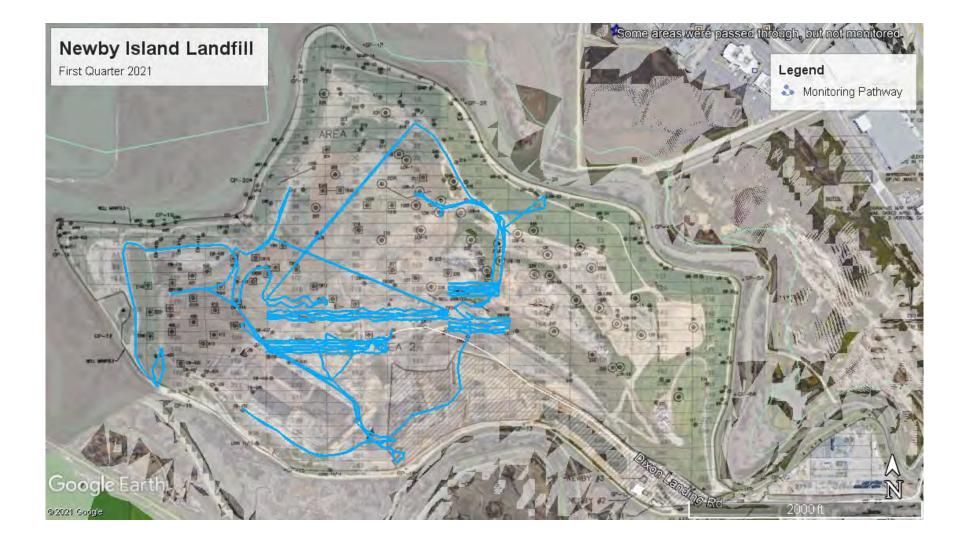
DEL X

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-087	3/16/2021	6.26	
NIL-088	3/16/2021	11.72	
NIL-089	3/16/2021	15.71	
NIL-090	3/16/2021	5.61	
NIL-091	3/16/2021	3.17	
NIL-092	3/16/2021	3.68	
NIL-093	3/16/2021	1.75	
NIL-094	3/16/2021	2.36	
NIL-095	3/16/2021	3.63	
NIL-096	3/16/2021	3.34	
NIL-097	3/16/2021	7.57	
NIL-098	3/16/2021	8.70	
NIL-099	3/16/2021	13.23	
NIL-100	3/16/2021	13.00	
NIL-101	3/16/2021	6.77	
NIL-102	3/16/2021	3.41	
NIL-103	3/16/2021	2.86	
NIL-104	3/23/2021	2.31	
NIL-105	3/23/2021	2.26	
NIL-106	3/23/2021	2.77	
NIL-107	3/23/2021	6.46	
NIL-108	3/23/2021	14.47	
NIL-109	3/17/2021	15.79	
NIL-110	3/17/2021	5.83	
NIL-111			Active
NIL-112	3/17/2021	4.45	
NIL-113	3/17/2021	3.22	
NIL-114	3/17/2021	5.09	
NIL-115	3/22/2021	2.63	
NIL-116	3/22/2021	3.13	
NIL-117	3/22/2021	3.27	
NIL-118	3/22/2021	2.04	
NIL-119	3/22/2021	11.51	
NIL-120	3/17/2021	24.49	
NIL-121	3/17/2021	26.86	Initial Monitoring
NIL-121	3/27/2021	4.55	First 10-Day Follow Up Monitoring
NIL-122	3/17/2021	6.92	.,
NIL-123	3/17/2021	4.74	
NIL-124	3/17/2021	5.23	
NIL-125	3/17/2021	4.85	
NIL-126	3/23/2021	2.67	
NIL-127			Active
NIL-128	3/17/2021	15.14	

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-129	3/17/2021	26.48	Initial Monitoring
NIL-129	3/27/2021	16.59	First 10-Day Follow Up Monitoring
NIL-130	3/17/2021	22.95	
NIL-131	3/17/2021	16.56	
NIL-132	3/17/2021	11.15	
NIL-133			Active
NIL-134	3/17/2021	2.38	
NIL-135	3/17/2021	1.93	
NIL-136	3/17/2021	2.00	
NIL-137	3/22/2021	2.19	
NIL-138	3/23/2021	1.76	
NIL-139	3/27/2021	20.36	
NIL-140	3/27/2021	17.77	
NIL-141	3/22/2021	15.25	
NIL-142	3/16/2021	16.42	
NIL-143	3/16/2021	10.64	
NIL-144	3/16/2021	1.70	
NIL-145	3/16/2021	1.46	
NIL-146	3/16/2021	2.13	
NIL-147	3/23/2021	3.13	
NIL-148	3/23/2021	2.56	
NIL-149	3/23/2021	6.90	
NIL-150	3/17/2021	19.95	
NIL-151	3/17/2021	24.45	
NIL-152	3/17/2021	14.96	
NIL-153	3/17/2021	34.32	Initial Monitoring
NIL-153	3/27/2021	11.86	First 10-Day Follow Up Monitoring
NIL-154	3/17/2021	11.50	
NIL-155	3/17/2021	4.01	
NIL-156	3/17/2021	2.56	
NIL-157	3/17/2021	1.99	
NIL-158	3/23/2021	1.85	
NIL-159	3/17/2021	17.75	
NIL-160	3/17/2021	19.24	
NIL-161	3/17/2021	17.50	
NIL-162			Active
NIL-163	3/17/2021	18.18	
NIL-164	3/17/2021	6.53	
NIL-165	3/17/2021	3.91	
NIL-166	3/17/2021	1.66	
NIL-167	3/17/2021	1.93	
NIL-168	3/23/2021	2.16	
NIL-169			Active

SCS DataServices - Secure Environmental Data

的是


Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-170	3/17/2021	15.15	
NIL-171	3/17/2021	27.74	Initial Monitoring
NIL-171	3/27/2021	47.38	First 10-Day Follow Up Monitoring
NIL-171	4/6/2021	49.53	Second 10-Day Follow Up Monitoring
NIL-172	3/17/2021	27.08	Initial Monitoring
NIL-172	3/27/2021	52.37	First 10-Day Follow Up Monitoring
NIL-172	4/6/2021	48.54	Second 10-Day Follow Up Monitoring
NIL-173	3/27/2021		Active
NIL-174	3/27/2021		Active
NIL-175	3/17/2021	7.27	
NIL-176	3/17/2021	3.78	
NIL-177	3/17/2021	2.96	
NIL-178	3/17/2021	3.17	
NIL-179			Active
NIL-180			Active
NIL-181			Active
NIL-182			Active
NIL-183			Active
NIL-184			Active
NIL-185	3/22/2021	10.06	
NIL-186			Active
NIL-187	3/29/2021	3.31	
NIL-188	3/29/2021	3.32	
NIL-189			Active
NIL-190			Active
NIL-191			Active
NIL-192			Active
NIL-193			Active
NIL-194			Active
NIL-195	3/22/2021	9.42	
NIL-196	3/22/2021	4.07	
NIL-197	3/22/2021	1.76	
NIL-198	3/22/2021	1.70	
NIL-199	3/22/2021	3.00	
NIL-200	3/26/2021	3.34	
NIL-201	3/26/2021	15.98	
NIL-202			Active or Native
NIL-203			Active or Native
NIL-204			Active or Native
NIL-205			Active or Native
NIL-206			Active or Native
NIL-207			Active or Native
NIL-208	3/26/2021	5.81	

SCS DataServices - Secure Environmental Data

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-209	3/26/2021	4.38	
NIL-210	3/26/2021	6.50	
NIL-211			Active or Native
NIL-212			Active or Native
NIL-213			Active or Native
NIL-214			Active or Native
NIL-215			Active or Native
NIL-216	3/22/2021	5.92	
NIL-217	3/22/2021	5.06	
NIL-218	3/22/2021	6.09	
NIL-219	3/22/2021	5.63	
NIL-220	3/22/2021	15.94	
NIL-221			Active or Native
NIL-222	3/22/2021	8.22	
NIL-223	3/22/2021	9.27	
NIL-224	3/22/2021	8.12	
NIL-225	3/22/2021	2.84	
NIL-226	3/22/2021	2.50	
NIL-227	3/22/2021	2.09	
NIL-228	3/26/2021	11.01	
NIL-229			Active or Native
NIL-230			Active or Native
NIL-231			Active or Native
NIL-232			Active or Native
NIL-233			Active or Native
NIL-234			Active or Native
NIL-235	3/22/2021	6.62	
NIL-236	3/22/2021	4.03	
NIL-237	3/22/2021	4.27	
NIL-238	3/23/2021	7.42	
NIL-239			Active
NIL-240			Active
NIL-241			Active
NIL-242			Active
NIL-243	3/22/2021	2.99	
NIL-244	3/22/2021	4.81	
NIL-245	3/29/2021	15.35	
NIL-246	3/23/2021	13.75	
NIL-247	3/23/2021	10.86	
NIL-248			Active or Native
NIL-249			Active or Native
NIL-250	3/23/2021	9.82	
NIL-251	3/23/2021	12.59	

SCS DataServices - Secure Environmental Data

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-252	3/23/2021	10.77	
NIL-253	3/23/2021	18.18	
NIL-254	3/23/2021	12.01	
NIL-255			Active or Native
NIL-256			Active or Native
NIL-257	3/22/2021	4.69	
NIL-258			Active or Native
NIL-259	3/22/2021	5.70	
NIL-260			Active or Native
NIL-261	3/22/2021	1.91	
NIL-262	3/22/2021	1.88	
NIL-263	3/22/2021	3.95	
NIL-264	3/22/2021	4.60	
NIL-265	3/22/2021	2.31	
NIL-266	3/22/2021	2.15	
NIL-267			Active or Native
NIL-268			Active or Native
NIL-269			Active or Native
NIL-270			Active or Native
NIL-271			Active or Native
NIL-272			Active or Native
NIL-273			Active or Native
NIL-274			Active or Native
NIL-275			Active or Native
NIL-276			Active or Native
NIL-277			Active or Native

First Quarter 2021 LMR Surface Emissions Monitoring First 10-Day Pathway Newby Island Landfill, Milpitas, California

First Quarter 2021 LMR Surface Emissions Monitoring Second 10-Day Pathway Newby Island Landfill, Milpitas, California Attachment 5

Calibration Logs

		SURFACE EMISSIC			
Date:	3/15/2		Site Name:	Newby	
Inspector(s):	funter		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	d:MPH	Wind Direction:		Barometric Pressure: 30	"Hg
Ai Temperature		General Weather Conditions:	partly (loudy	
CALIBRATION	INFORMATION			v	
^o re-monitoring	Calibration Precision Check				
and calculate tl	ibrate the instrument. Make a he average algebraic difference be less than or equal to 10% of a han or equal to 10% of a han ber: 5420	between the instrument re			
Frial	Zero Air Reading	Cal Gas Reading	I Cal Gas (ConcCal Gas Reading	Response Time (seconds
1	O	50	JCarGas (
2	.0	<u>199</u> 501		1	3
		= 100% = 9, 9, -8	<u>م</u>	/500 x 100%	
nan Canaitiuituu		= -(-(- 0 -	70		
ipan Sensitivity irial 1: Co	ounts Observed for the Span=	12 3340		nts Observed for the Span=	20
Cou	unters Observed for the Zero=	3872	Coun	ters Observed for the Zero=	39
Co	ounts Observed for the Span=	3894			
ost Monitoring	Calibration Check				
ero Air eading:	ppm	Cal Gas Reading:	500	_ppm	
ACKGROUND	CONCENTRATIONS CHECKS				
pwind Location	n Description:	Entrance		Reading: 1.3	ppm
ownwind Locat	tion Description:	C-1V, d (60	(Reading: <u>1.5</u>	ppm
	Wind speed averages were ob			quested 10 miles per hour ar us 24 hours of the monitoring	-

					Post
		SURFACE EMISSI	ONS MONITO	DRING	
		CALIBRATION AN	D PERTINEN	DATA	
Date:	3-15-21		Site Name:	newlow	4
Inspector(s):	Hunte	\langle	Instrument:	TVA 2020)
WEATHER OBS	SERVATIONS			4	
	7	Wind		Barometric 30	- C.
Wind Speed:	:МРН	Direction:		Pressure: <u>0</u>	
Air Temperature:	<u>53</u> °F	General Weather Conditions	cloud	4	
CALIBRATION	INFORMATION		- 10		
Pre-monitoring	Calibration Precision Check				
	prate the instrument. Make a e average algebraic differenc				
	e less than or equal to 10% o			noration gas as a percen	
Instrument Seria	Number: <u>542</u>	0		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas Co	ncCal Gas Reading	Response Time (seconds)
1		Tou's			
2		501		5	3
3	2	SIN	· · · · ·		5
anoration Preci	sion= Average Difference/Cal	= 100%-	\mathbf{b}	'500 x 100%	
		=99-7	%		
Span Sensitivity:					
Trial 1:		173075	Trial 3:		102007
Co	unts Observed for the Span=	1000	Count	s Observed for the Span=	12>301
Cour Frial 2:	nters Observed for the Zero=	3109	Counter	s Observed for the Zero=	3959
Co	unts Observed for the Span=	2029			
Cour	nters Observed for the Zero=	2181			
ost Monitoring	Calibration Check				
ero Air eading:	Øppm	Cal Gas Reading:	500,	pm	
ACKGROUND	CONCENTRATIONS CHECKS	i			
Ipwind Location	Description:	Entranc	e R	eading: <u>\2</u>	ppm
ownwind Locati	on Description:	Crid 16	54 R	eading: <u>19</u>	ppm
	Wind speed averages were ol exceeded 20 miles per hour.				

l

		ONS MONITORING D PERTINENT DATA	
Date: 3/15/21		Site Name: Newby	
Inspector(s): Branch Wa	de	Instrument:	
WEATHER OBSERVATIONS	C.	· · · · · ·	
Wind Speed: 9.8 MPH	Wind Direction:	Barometric Pressure: 30	"Hg
Air Temperature: <u>46</u> *F	General Weather Conditions		
CALIBRATION INFORMATION			
Pre-monitoring Calibration Precision Check			
Procedure: Calibrate the instrument. Make and calculate the average algebraic differer precision must be less than or equal to 10% Instrument Serial Number: 54 [5	nce between the instrument i		
TrialZero Air Reading14472	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (sec
2 3	498	2	42
Calibration Precision= Average Difference/Ca	al Gas Conc. X 100% = 100%- = 99.1	<u>\.</u> /500 × 100% %	
	× · ·		
Span Sensitivity:			
	= 148148	Trial 3: Counts Observed for the Span=	14864
Trial 1: Counts Observed for the Span Counters Observed for the Zero			4820
Trial 1: Counts Observed for the Span Counters Observed for the Zero Trial 2: Counts Observed for the Span	= 4729 = 148361	Counts Observed for the Span=	4820
Trial 1: Counts Observed for the Span Counters Observed for the Zero Trial 2: Counts Observed for the Span Counters Observed for the Zero	= 4729 = 148361	Counts Observed for the Span=	4820
Trial 1: Counts Observed for the Span Counters Observed for the Zero Trial 2: Counts Observed for the Span Counters Observed for the Zero	= 4729 = 148361	Counts Observed for the Span=	14864 4820
Trial 1: Counts Observed for the Span Counters Observed for the Zero Trial 2: Counts Observed for the Span Counters Observed for the Zero Post Monitoring Calibration Check	= 4729 = 148361	Counts Observed for the Span=	14864 4820
Trial 1: Counts Observed for the Span Counters Observed for the Zero Trial 2: Counts Observed for the Span Counters Observed for the Zero Post Monitoring Calibration Check Zero Air Reading:	= 4729 = 148361 = 4721 Cal Gas Reading:	Counts Observed for the Span=	14864
Trial 1: Counts Observed for the Span Counters Observed for the Zero Trial 2: Counts Observed for the Span Counters Observed for the Zero Post Monitoring Calibration Check	= 4729 = 148361 = 4721 Cal Gas Reading:	Counts Observed for the Span= Counters Observed for the Zero=	14864 4820
Trial 1: Counts Observed for the Span Counters Observed for the Zeros Trial 2: Counts Observed for the Span Counters Observed for the Zeros Post Monitoring Calibration Check Zero Air Reading: Post Concentrations Check	= 4729 = 148361 = 4721 Cal Gas Reading:	Counts Observed for the Span= <u>Counters Observed for the Zero=</u> <u>Counters Observed for the Zero=</u> <u>Counters Observed for the Zero=</u> <u>Reading:</u> <u>1.5</u>	ррт ррт

-		SURFACE EMISSI		ORING	
1					
-	2 - 15 21				
Date:	3-15-21		Site Name:	newby	
Inspector(s):	Brant	\sim	Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS				
Wind Speed:	мрн	Wind Direction:	-	Barometric Pressure: <u>50</u>	- "Hg
Air Temperature:	53 F	General Weather Conditions	cloud	<u>"</u>	
CALIBRATION I	NFORMATION				
Pre-monitoring (Calibration Precision Check				
and calculate the precision must b	rate the instrument. Make a e average algebraic difference e less than or equal to 10% a	e between the instrument i	reading and the o		
Instrument Seria	I Number:	5		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
2	.2	200			2
3	1	UAR	2		
	sion= Average Difference/Ca		λ	/500 × 100%	
		= (Q, (%		
Span Sensitivity:					
	unts Observed for the Span=	147824		nts Observed for the Span=	(48134
Trial 2:	nters Observed for the Zero=	141921	Count	ers Observed for the Zero=	90,01
	unts Observed for the Span= nters Observed for the Zero=	4809			
ost Monitoring (Calibration Check				
ero Air		Cal Gas	_		
Reading:	ррт	Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECK	5			
Jpwind Location	Description:	Entranci	e	Reading:	ppm
ownwind Locati	on Description:	chrid (691	Reading:	ppm
6	Wind speed averages were o exceeded 20 miles per hour. neteorological conditions we	No rainfall had occurred wi	ithin the previou	s 24 hours of the monitorin	g event. Therefore, site

ENT DATA Now by TVA 2020 Barometric Pressure: "Hg
TVA 2020 Barometric
Barometric 🤈
1 .
lady
ing zero air and the calibration gas. Record the readin
he calibration gas as a percentage. The calibration
Cal Gas Concentration: 500ppm
s ConcCal Gas Reading Response Time (secor
2 4
1 3
1 9
/500 x 100%
/500 x 100%
/500 x 100%
ounts Observed for the Span= 14453
ounts Observed for the Span= 14453
ounts Observed for the Span= <u>し</u> 4453 unters Observed for the Zero= <u>38</u> 47
ounts Observed for the Span= <u>し</u> 4453 unters Observed for the Zero= <u>38</u> 47
ppm
2

Date:			ONS MONITOR		
Date: 2	-	CALIBRATION AND	PERTINENT (DATA (
	5-5.21		Site Name:	endy	
Inspector(s);	cody		Instrument:	VA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed	с П МРН	Wind Direction:	В	arometric <u>30</u> Pressure:	- "Нд
Aiı Temperature	n L	General Weather Conditions:	cloud	3	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	brate the instrument. Make of the average algebraic difference be less than or equal to 10% of	ce between the instrument re	eading and the calib		
Instrument Seria	al Number: 510		C	al Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Conc.	-Cal Gas Reading	Response Time (seconds)
1		SUL	2		5
2	.5	LIQS	3		3
3	1 1	479	L		4
Calibration Preci	ision= Average Difference/Ca	l Gas Conc. X 100%			
		= 100%-	1.6 /50	0 x 100%	
		= 100% = 9.9.7	<u>\.</u> 6_/50 %	0 x 100%	
pan Sensitivity:			<u>/.6</u> /50 %	0 x 100%	
Span Sensitivity: Frial 1:		= 99.7	/50 % Trial 3:	0 x 100%	1112 0 75
f <mark>rial 1:</mark> Co	ounts Observed for the Span=	=99.7	% Trial 3:	0 x 100% Dbserved for the Span=	143975
T <u>rial 1:</u> Co		=99.7	% Trial 3: Counts C		143975
Trial 1: Cou Cou	ounts Observed for the Span=	=99.7	% Trial 3: Counts C	bserved for the Span=	143975 3865
T <u>rial 1:</u> Cou Trial 2: Co	ounts Observed for the Span= inters Observed for the Zero=	=99.7	% Trial 3: Counts C	bserved for the Span=	143975 3865
T <u>rial 1:</u> Cou Cou Trial 2: Cou	ounts Observed for the Span= Inters Observed for the Zero= Dunts Observed for the Span=	=99.7	% Trial 3: Counts C	bserved for the Span=	143975 3865
T <u>rial 1:</u> Cou Cou Trial 2: Cou	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero=	=99.7	% Trial 3: Counts C	bserved for the Span=	<u>143975</u> 3865
T <u>rial 1:</u> Cou Trial 2: Cou Cou	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero=	= 99.7 143726 3829 143852 3847	% Trial 3: Counts C	Observed for the Span= Observed for the Zero=	143975 3865
Trial 1: Cou Trial 2: Cou Post Monitoring Post Monitoring Pero Air Pero Air	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero= Calibration Check	= 99.7 <u>143726</u> <u>3829</u> <u>143852</u> <u>3647</u> Cal Gas Reading:	% Trial 3: Counts C Counters C	Observed for the Span= Observed for the Zero=	143975 3865
Trial 1: Cou Trial 2: Cou Post Monitoring Post Monitoring Pero Air Pero Air	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero= Calibration Check	= 99.7 143726 3829 143852 3647 Cal Gas Reading:	% Trial 3: Counts C Counters C S	Observed for the Span= Observed for the Zero=	143975 3865

		SURFACE EMISSIC			
Date:	3/15/21		Site Name:	Newby	
Inspector(s):	Don Gulase	n	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	. Ч. 8 мрн	Wind <i>J</i>		Barometric Pressure: 30	- "Hg
Air Temperature	11	General Weather Conditions:		loudy	
CALIBRATION	INFORMATION			0	
Pre-monitoring	Calibration Precision Check				
and calculate th	orate the instrument. Make one average algebraic different pe less than or equal to 10% of al Number.	ce between the instrument <mark>r</mark>			
		-			
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seco
2		499	T		3
alibration Preci	ision= Average Difference/Ca	I Gas Conc. X 100% = 100%-	99.7	/500 x 100%	
		= 997		2.	
pan Sensitivity:					
	ounts Observed for the Span=	162610		unts Observed for the Span=	
Trial 2:	nters Observed for the Zero= punts Observed for the Span=	00.21	Coun	ters Observed for the Zero=	36 89
	nters Observed for the Span=	21 50			
1.0	Calibration Check				
ero Air		Cal Gas	_		
leading:	ppm	Reading:	500	≥ppm	
ACKGROUND	CONCENTRATIONS CHECK	5			
pwind Location	Description:	Fintran	CC	Reading:	ppm
ownwind Locati	ion Description:	Crig 1	200	Reading: <u>\</u>	ppm
	Wind speed averages were o exceeded 20 miles per hour.	No rainfall had occurred wi	thin the previo		g event. Therefore, site

					Post
		SURFACE EMISSIO			
		CALIBRATION AND	PERTINE		
Date:	3-15-21	<u>`</u>	Site Name:	newba	<u>\$</u>
Inspector(s):	pon C	7	Instrument:	TVA 2020	
WEATHER	DBSERVATIONS				
Wind Spe	ed: MPH	Wind Direction:		Barometric Pressure: 30	
Temperate	Air ,53 °F	General Weather Conditions:	class	4	
CALIBRATIC	IN INFORMATION		1		
Pre-monitori	ng Calibration Precision Check				
and calculate	alibrate the instrument. Make a the average algebraic difference st be less than or equal to 10% o	e between the instrument r	eading and the		
Instrument S	erial Number:			Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response_Time (seconds)
1		500			S S
2	1.7	498		2	6
3		199		1	M
		= 100%-)	_/500 x 100%	
		= 99.8	%		
Span Sensitiv	ty:				
<u>Trial 1:</u>	Counts Observed for the Span=	182572	Trial 3: Cou	nts Observed for the Span-	162963
C Trial 2:	ounters Observed for the Zero=	3652	Coun	ters Observed for the Zero-	3694
11012.	Counts Observed for the Span=	162824			
C	ounters Observed for the Zero=	56-61			
Post Monitori	ng Calibration Check				
ero Air	6	Cal Gas	\bigcap		
Reading:	ppm	Reading:	200	ppm	
ACKGROUN	D CONCENTRATIONS CHECKS		0	A (
Jpwind Locat	on Description:	Chtrand	Z	Reading:	ppm
ownwind Lo	cation Description:	C110 (2-1	Reading: 1-6	ppm
votes:	Wind speed averages were of exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred wi	thin the previou	s 24 hours of the monitori	ng event. Therefore, site

- Handri an Bill-

		SURFACE EMISSIO		
Date:	3/15/21		Site Name: Newby	
Inspector(s):	Bruan		Instrument: TVA 2020	
VEATHER OBS	ERVATIONS	,		
Wind Speed:	9,8 мрн	Wind N Direction:	Barometric Pressure: <u>30</u>	"Нg
Air Temperature:	46 °F	General Weather Conditions:	antly doudy	
ALIBRATION II	NFORMATION	·	v c	
re-monitoring C	alibration Precision Check			
nd calculate the	e average algebraic differen e less than or equal to 10% o	ce between the instrument re of the calibration gas value.	s by alternating zero air and the calibro ading and the calibration gas as a per	
istrument Serial	Number: 1215		Cal Gas Concentratio	on: 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (second
1	1	501	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9
2	0	100	2	
		= 100% = VV, B %	/500 × 100%	
an Sensitivity:		, , _		
ial 1:			rial 3:	120 071
Cou	ints Observed for the Span=	13.828	Counts Observed for the Sp.	an = 13253
	ters Observed for the Zero=	3126	Counters Observed for the Ze	ro= 51 88
rial 2: Cou	ints Observed for the Span=	132247		
	ters Observed for the Zero=			
	alibration Check			
	0			
ro Air ading:	ppm	Cal Gas Reading: 5	ppm	
CKGROUND C	ONCENTRATIONS CHECK	s		
wind Location D	Description:	Entrance	Reading:	> ppm
wnwind Locatio	n Description:	(1vid 169	Reading: 1.5	ppm
	xceeded 20 miles per hour.	No rainfall had occurred with	alternative requested 10 miles per ho nin the previous 24 hours of the monit matives of the LMR requirements on t	oring event. Therefore, site

SCS DataServices — Secure Environmental Data 🚽 🖓 👘 🔂

<u></u>				P	ort
		SURFACE EMISSIO			
	5	CALIBRATION AND	D PERTINEN	T DATA	
Date:	3-15-21		Site Name:	nepub	5
Inspector(s):	Bryan	0	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed:	МРН	Wind Direction:	2	Barometric Pressure: <u>20</u>	"Нд
Air Temperature:	53.	General Weather Conditions:	clou	2 M	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	prate the instrument. Make a e average algebraic difference ne less than or equal to 10% o	e between the instrument r			
Instrument Seria	I Number:	<u> </u>		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
1	.2	Mag B	2		4
2		499	1		3
3		501	(E
Calibration Preci	sion= Average Difference/Cal	Gas Conc. X 100% = 100%-	13	/500 × 100%	
		=99.7	%		
Span Sensitivity:					
<u>Trial 1:</u> Co	unts Observed for the Span=	131651	Trial 3: Cour	nts Observed for the Span=	131974
Cou	nters Observed for the Zero=	3147	Count	ers Observed for the Zero=	3191
<u>Trial 2:</u> Co	unts Observed for the Span=	131813			
Cour	nters Observed for the Zero=	3162			
Post Monitoring	Calibration Check				
Zero Air Reading:	©ppm	Cal Gas Reading:	500	ppm	
BACKGROUND	CONCENTRATIONS CHECK	5			
Jpwind Location	Description:	Entranci	2	Reading: 1.2	ppm
Downwind Locati	on Description:	Curig		Reading:	ppm
	Wind speed averages were o exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred wi	thin the previou	s 24 hours of the monitorin	g event. Therefore, site

2		1	Da	11.1	Jen	vices		A-ARI	IV.C.	Emyzti	roni	neni	6	19/6168	
---	--	---	----	------	------------	-------	--	-------	-------	--------	------	------	---	---------	--

			SURFACE I	ON AND PE				
Date:	3/15	/21			Name:	Dow	he	
	Liam	INA C				/C	J_	
Inspector(s):	Clam	MCG.	nn_	Inst	rument:	TVA 2020	-	
WEATHER OBS	SERVATIONS					1		
Wind Speed	<u>4.8</u>	ЛРН	Wind Direction:	N		Barometric Pressure:	30	"Hg
Air Temperature:		F		il Weather onditions: Pou	Hy C	loudy		
CALIBRATION	INFORMATION			1	·			
Pre-monitoring	Calibration Precisio	on Check						
Procedure: Calib	rate the instrumer	nt Makeata	tal of three me	asuramants hu	alternatio	a zoro air and the c	alibration	gas. Record the reading
and calculate th	e average algebra	ic difference i	between the ins	strument readii				gas. Record the redaing ge. The calibration
precision must b	e less than or equa	al to 10% of t	he calibration g	jas value.				
Instrument Seria	I Number:	2364				Cal Gas Concen	tration:	500ppm
Frial	Zero Air Rea	ading	Cal Gas Rea	ading	Cal Gas C	oncCal Gas Readi	ing	Response Time (secon
1	.3		501)			cy
2	. \		499					3
3	-7-		498		2	-		12
	sion= Average Diff	erence/Cal G	Average Diffe	*Perfo	2 rm recalibratio	3 n if average difference is g	reater than 10	3
	sion= Average Diffe	erence/Cal G		*Perfo	rm recallbratio	-	reater than 10	3
	sion= Average Diffe	erence/Cal G		*Perfo	rm recalibratio	3 n if average difference is g _/500 x 100%	reater than 10	3
	sion= Average Diff	erence/Cal G	as Conc. X 1009 =	*Perfo	rm recallbratio	-	reater than 10	5
Calibration Preci	sion= Average Diff	erence/Cal G	as Conc. X 1009 =	*Perfo % 100%	rm recallbratio	-	reater than 10	
Calibration Precis pan Sensitivity: rial 1:			as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(, 7 %	<u>, 3</u> 3:	_/500 x 100%		3
Calibration Precis pan Sensitivity: rial 1:	sion= Average Diffe		as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(, 7 %	<u>, 3</u> 3:	-		3
Calibration Precis pan Sensitivity: rial 1: Co Cour		the Span=	as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(, 7 %	, <u>3</u> <u>3:</u> Cour	_/500 x 100%	ne Span=	145213
Calibration Precis pan Sensitivity: rial 1: Co Cour rial 2:	unts Observed for	the Span= the Zero=	as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(, 7 %	, <u>3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th	ne Span=	145213
pan Sensitivity: rial 1: Co <u>rial 2:</u> Co	unts Observed for nters Observed for unts Observed for	the Span= the Zero= the Span=	as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(, 7 %	, <u>3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th	ne Span=	145213
alibration Precision pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co <u>Cour</u>	unts Observed for nters Observed for unts Observed for nters Observed for	the Span= the Zero= the Span=	as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(, 7 %	, <u>3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th	ne Span=	145213
alibration Precision pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co <u>Cour</u>	unts Observed for nters Observed for unts Observed for	the Span= the Zero= the Span=	as Conc. X 1009 = = 🏹	*Perfo 6 100% Q(,, 7 %	, <u>3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th	ne Span=	145213
alibration Precis pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co cour ost Monitoring (unts Observed for nters Observed for unts Observed for nters Observed for Calibration Check	the Span= the Zero= the Span= the Zero≃	as Conc. X 1009 = = 9 [19767 8970 [970 [970] [97	*Perfo 6 00%- 0(.7 % 2 <u>Trial</u> 25 3 Gas 5	, <u>3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th	ne Span=	145213
alibration Precis pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co cour ost Monitoring (unts Observed for nters Observed for unts Observed for nters Observed for	the Span= the Zero= the Span= the Zero≃	as Conc. X 1009 = = 9 [19767 8970 [970 [970] [97	*Perfo 100% Q.7 % 2 Trial 25 3	, <u>3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th	ne Span=	145213
Calibration Precis Span Sensitivity: Trial 1: Co Cour Tial 2: Co Cour ost Monitoring (ero Air eading:	unts Observed for nters Observed for unts Observed for nters Observed for Calibration Check	the Span= the Zero= the Span= the Zero~	as Conc. X 1009 = = 9 [19767 8970 [970 [970] [97	*Perfo 6 00%- 0(.7 % 2 <u>Trial</u> 25 3 Gas 5	, <u>3</u> <u>3:</u> Cour	_/500 x 100% nts Observed for th ers Observed for th	ne Span=	145213
Calibration Precis Span Sensitivity: Trial 1: Co Cour Tial 2: Co Cour ost Monitoring (ero Air eading:	unts Observed for nters Observed for unts Observed for nters Observed for Calibration Check	the Span= the Zero= the Span= the Zero~	as Conc. X 1009 = = 9 [19767 3970 [970 [970 [970] [970	*Perfo 6 00%- 0(.7 % 2 <u>Trial</u> 25 3 Gas 5	, <u>3</u> <u>3:</u> Count	_/500 x 100% nts Observed for th ers Observed for th	ne Span= ne Zero=	145213
Calibration Precision pan Sensitivity: rial 1: Co Cour rial 2: Cour cost Monitoring Cour cost Monitoring Cour ero Air eading: ACKGROUND C	unts Observed for nters Observed for unts Observed for nters Observed for Calibration Check	the Span= the Zero= the Span= the Zero~	as Conc. X 1009 = = 9 [19767 3970 [970 [970 [970] [970	*Perfo % 100%- (1,7 % 2 Trial 2 5 3 Gas ding:	, <u>3</u> <u>3:</u> Count	_/500 x 100% nts Observed for th ers Observed for th	ne Span= ne Zero=	<u>145213</u> 40 49

					Post
		SURFACE EMISSI	ONS MONI	TORING	
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	3-15-21		Site Name:	newbu	
Inspector(s):	Liamn		Instrument:	TVA 2020)
WEATHER OBS	SERVATIONS				
Wind Speed:	7 МРН	Wind Direction:	-	Barometric Pressure: <u>30</u>	"Hg
Air Temperature:	53 .	General Weather Conditions		ĽΥ	
CALIBRATION	INFORMATION				
Pre-monitoring (Calibration Precision Check				
and calculate th	rate the instrument. Make a e average algebraic difference e less than or equal to 10% a	ce between the instrument i	reading and the		on gas. Record the readings ntage. The calibration
Instrument Seria	Il Number:	57		Cal Gas Concentration	500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1	502	498	50		
2		501	-		2
		100	L		
alibration Preci	sion= Average Difference/Ca	= 100%-	1.6	/500 x 100%	
		=9,9.7	%	-	
Span Sensitivity:					
<u>Frial 1:</u> Co	unts Observed for the Span=	144372	Trial 3: Cou	ints Observed for the Span	174734
Cour	nters Observed for the Zero=	4017	Coun	ters Observed for the Zero	= MO 73
	unts Observed for the Span=	14456			
Cour	nters Observed for the Zero=	4043			
ost Monitoring	Calibration Check				
ero Air eading:	ppm	Cal Gas Reading:	500	_ppm	
ACKGROUND	CONCENTRATIONS CHECK	S			
pwind Location	Description:	Entrance		Reading: 1.2	_ppm
ownwind Locati	on Description:	C712216	्प	Reading: <u>19</u>	_ppm
(Wind speed averages were o exceeded 20 miles per hour. meteorological conditions w	No rainfall had occurred w	ithin the previo	us 24 hours of the monitor	

	SURFACE EMISSI CALIBRATION AN			
011.	CALIBRATION AN			
Date: 3/15/21		Site Name:	Newby	
nspector(s):		Instrument:	TVA 2020	
V VEATHER OBSERVATIONS			~	
Wind Speed: 9,8 MPH	Wind Direction:	2	Barometric Pressure: 30	"Hg
Air Temperature: <u>46</u> °F	General Weathe Conditions	partly C	loudy	
ALIBRATION INFORMATION		. /	0	
re-monitoring Calibration Precision Check				
rocedure: Calibrate the instrument. Make a t	otal of three measureme	nts by alternating	a zero air and the calibratio	n aas. Record the reading
nd calculate the average algebraic difference				
recision must be less than or equal to 10% of	the calibration gas value.			
strument Serial Number: 1211			Cal Gas Concentration:	500ppm
ial Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (second
	102	1		3
$\frac{2}{3}$	500	0		9
libration Precision= Average Difference/Cal C	Average Difference: Gas Conc. X 100%	*Perform recalibratio	h if average difference is greater than	10
libration Precision= Average Difference/Cal C		1	b n if average difference is greater than /500 x 100%	10
libration Precision= Average Difference/Cal C	Gas Conc. X 100%	1		10
libration Precision= Average Difference/Cal C an Sensitivity:	Gas Conc. X 100%	%		10
	Gas Conc. X 100%	% Trial 3:		
an Sensitivity: ial 1: Counts Observed for the Span=	Gas Conc. X 100%	% Trial 3: Cou	/500 x 100% nts Observed for the Span=	111 342
an Sensitivity: ial 1:	Gas Conc. X 100%	% Trial 3: Cou	/500 x 100%	111 342
an Sensitivity: ial 1: Counts Observed for the Span= Counters Observed for the Zero=	Gas Conc. X 100%	% Trial 3: Cou	/500 x 100% nts Observed for the Span=	111342
an Sensitivity: ial 1: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> ial 2: Counts Observed for the Span=	Gas Conc. X 100%	% Trial 3: Cou	/500 x 100% nts Observed for the Span=	111342
an Sensitivity: ial 1: Counts Observed for the Span= Counters Observed for the Zero= ial 2: Counts Observed for the Span= Counters Observed for the Zero= st Monitoring Calibration Check	5as Conc. X 100% = 100%- = <u>NOOO88</u> <u>3128</u> <u>XIX 253</u> <u>3921</u>	% Trial 3: Cou	/500 x 100% nts Observed for the Span=	111342
an Sensitivity: ial 1: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> ial 2: Counts Observed for the Span= <u>Counters Observed for the Zero=</u>	Gas Conc. X 100%	% Trial 3: Cou	/500 x 100% nts Observed for the Span=	111342
an Sensitivity: ial 1: Counts Observed for the Span= Counters Observed for the Zero= ial 2: Counts Observed for the Span= Counters Observed for the Zero= st Monitoring Calibration Check	Sas Conc. X 100% = 100%- = <u>NOOOB</u> <u>3 f 2 8</u> <u>111 253</u> <u>3921</u> <u>Cal Gas</u>	% Trial 3: Cou	/500 x 100% nts Observed for the Span= ers Observed for the Zero=	111342
an Sensitivity: ial 1: Counts Observed for the Span= Counters Observed for the Zero= ial 2: Counts Observed for the Span= Counters Observed for the Zero= st Monitoring Calibration Check ro Air ading:	Sas Conc. X 100% = 100%- = <u>NOOOB</u> <u>3 f 2 8</u> <u>111 253</u> <u>3921</u> <u>Cal Gas</u>	% Trial 3: Cou	/500 x 100% nts Observed for the Span= ers Observed for the Zero=	111 342
an Sensitivity: ial 1: Counts Observed for the Span= Counters Observed for the Zero= ial 2: Counts Observed for the Span= Counters Observed for the Zero= st Monitoring Calibration Check ro Air ading: ppm CKGROUND CONCENTRATIONS CHECKS	Sas Conc. X 100% = 100%- = <u>NOOOB</u> <u>3 f 2 8</u> <u>111 253</u> <u>3921</u> <u>Cal Gas</u>	% Trial 3: Cou	/500 x 100% Ints Observed for the Span= ers Observed for the Zero= ppm	111342 39 83

6.1		SURFACE EMISSIO	ONS MONI	TORING	
		CALIBRATION AND	PERTINE	NT DATA	
Date:	3-15-21		Site Name:	newby	
inspector(s);	Kyan F	\	Instrument:		
WEATHER OB	SERVATIONS				
Wind Speed		Wind Direction:		Barometric 30	"Hg
Aiı Temperature	File	General Weather Conditions:		<u>1</u> 4	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th precision must b	orate the instrument. Make a le average algebraic difference pe less than or equal to 10% o	e between the instrument r	reading and the	calibration gas as a percent	tage. The calibration
nstrument Seria	al Number:	<u>`</u>		Cal Gas Concentration:	500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds
1	-2	502	5	7	9
2		499	1		5
3		501	1.	1	3
	ision= Average Difference/Cal	= 100%-	1.3	/500 x 100%	
		= 99.7	%		
pan Sensitivity:					
Frial 1:		10200	Trial 3:		110000
	ounts Observed for the Span=	101-12		nts Observed for the Span=	10823
Cou rial 2:	nters Observed for the Zero=	3969	Coun	ters Observed for the Zero=	3499
Co	ounts Observed for the Span=	110689			
Cou	nters Observed for the Zero=	3980			
ost Monitoring	Calibration Check				
ero Air eading:	ppm	Cal Gas Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECKS			. 0	
pwind Location	Description:	Entrane	e a	Reading:	ppm
ownwind Locat	ion Description:	111016		Reading: 1-5	ppm
	Wind speed averages were o exceeded 20 miles per hour.				ng event. Therefore, site

		SURFACE EMISSIC			
Date:	3/16/21		Site Name:	Newbar	
	Thurley and	-	Site Name;		
Inspector(s): _	power ott		Instrument:	TVA 2020	
WEATHER OBSE	RVATIONS				
Wind Speed:	<u> </u>	Wind Direction:	e	Barometric Pressure: 29.9	"Hg
Air Temperature:	45 °F	General Weather Conditions:	deer	-	
CALIBRATION IN	FORMATION				
re-monitoring Ca	libration Precision Check				
nd calculate the d	average algebraic difference less than or equal to 10% of	e between the instrument re		a zero air and the calibration calibration gas as a percente Cal Gas Concentration:	
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (secon
1	4	500		0	1
2	ا د	500		0	2
3	. 2	501		1	2
		= 100% = 499	/	/500 × 100%	
an Sensitivity:					
rial 1:	its Observed for the Span=	114320	Trial 3:	the Observed for the Serve	114903
Cours	its observed for the span=	119 200	Cour	nts Observed for the Span=	114903
		2220			
Counte	ers Observed for the Zero=	3322	Counte	ers Observed for the Zero=	3347
Counte	ers Observed for the Zero= ts Observed for the Span=	3322	Counte	ers Observed for the Zero=	3397
Counte ial 2: Coun		3322 114 600 +#1003	Counte	ers Observed for the Zero=	3397
Counte tial 2: Coun	ts Observed for the Span= ers Observed for the Zero=	3322 114 600 +#2003 33 35	Counti	ers Observed for the Zero=	3397
Counte rial 2: Coun Counte ost Monitoring Cal	ts Observed for the Span= ers Observed for the Zero=	3322 114 600 +++++++++++++++++++++++++++++++++++	500	ers Observed for the Zero=	3397
Counte ial 2: Coun Counte est Monitoring Cal ro Air ading:	ts Observed for the Span= ers Observed for the Zero= libration Check	Cal Gas	500		3397
Counte rial 2: Counte Counte ost Monitoring Cal ero Air eading:	its Observed for the Span= ers Observed for the Zero= libration Check ppm PNCENTRATIONS CHECKS	Cal Gas	500	ppm	33 77
Counte rial 2: Coun Counte cou	its Observed for the Span= ers Observed for the Zero= libration Check ppm PNCENTRATIONS CHECKS escription:	Cal Gas Reading:	500	ppm Reading:	

SES DO	ard Serv	ices -	Secure	Environ	nenta	DIGNO

					Asst
		SURFACE EMISSI	ONS MONI	TORING	- Martin
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	5-16-21		Site Name:	newb	4
Inspector(s):	() Ma(-	<u> </u>	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed	С (мрн	Wind Direction:	-	Barometric Pressure: <u>30</u>	
Air Temperature:	L(5 °F	General Weathe Conditions		\mathbf{V}	
	NFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	rate the instrument. Make of e average algebraic difference e less than or equal to 10% of I Number:	ce between the instrument	reading and the		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
1		499		2	M
2	0	199		1	3
3		500		0	3
		$=$ 100% $=$ 99 \times	%	_/500 x 100%	
pan Sensitivity:					
	unts Observed for the Span=	110-		nts Observed for the Span=	294
rial 2:	nters Observed for the Zero= unts Observed for the Span=	157675	Coun	ters Observed for the Zero=)6(0
Cour	iters Observed for the Zero=	3662			
ost Monitoring (Calibration Check				
ero Air eading:	O ppm	Cal Gas Reading:	500	ppm	
	CONCENTRATIONS CHECKS	-			
pwind Location		Entran	ice	Reading:	ppm
ownwind Locatio	on Description:	grid 1	69	Reading: <u>1-3</u>	ppm
e	Nind speed averages were o exceeded 20 miles per hour. neteorological conditions we	No rainfall had occurred w	ithin the previou	us 24 hours of the monitorin	g event. Therefore, site

State State

20	S Date	aServi	ces - S	ecure.	Enviro	nmenta	Data
----	--------	--------	---------	--------	--------	--------	------

		SURFACE EMISSIC	ONS MONITORII	NG	
		CALIBRATION AND	PERTINENT DA	ТА	
Date:	3-16-21		Site Name:	1emb	1
Inspector(s):	Ryan		Instrument: TVA	2020	
WEATHER OB	SERVATIONS			~	
Wind Speec	н:мрн	Wind Direction:		ometric ressure: <u>3</u> 0	"Нg
Ai Temperature	ir 45 ••	General Weather Conditions:			
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
ind calculate th	brate the instrument. Make o he average algebraic differen be less than or equal to 10% o	ce between the instrument re	ts by alternating zero a eading and the calibrat	ir and the calibratio tion gas as a percen	n gas. Record the readings tage. The calibration
nstrument Seri	al Number:	<u> </u>	Cal	Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCa	al Gas Reading	Response Time (seconds
1		501	2		5
	1				
2	.0	(199	1		4
3	ision= Average Difference/Ca		*Perform recalibration if averag	e difference is greater than]
3	ision= Average Difference/Ca]
3	ision= Average Difference/Ca	l Gas Conc. X 100%]
3		l Gas Conc. X 100%]
3 Calibration Prec pan Sensitivity: rial 1:		Gas Conc. X 100% = 100% = 29.7 f			10
3 alibration Prec pan Sensitivity: rial 1: Co	ounts Observed for the Span=	I Gas Conc. X 100% = 100%- = 29.7	/500 × % Trial 3: Counts Obs	erved for the Span=	257011
3 Calibration Prec pan Sensitivity: rial 1: Cou		I Gas Conc. X 100% = 100%- = 29.7	/500 × % Trial 3: Counts Obs	< 100%	257011
3 Calibration Prec pan Sensitivity: rial 1: Cou rial 2:	ounts Observed for the Span=	I Gas Conc. X 100% = 100% = 29.7 % $= 29.7 %$ $= 58.41$	/500 × % Trial 3: Counts Obs	erved for the Span=	257 9111
3 Calibration Prec pan Sensitivity: rial 1: Cou rial 2: Cou	ounts Observed for the Span= Inters Observed for the Zero=	1 Gas Conc. X 100% = 100%- = 29.7 = 200%- = 20	/500 × % Trial 3: Counts Obs	erved for the Span=	257 9111
3 Calibration Prec pan Sensitivity: rial 1: Cou rial 2: Cou Cou	ounts Observed for the Span= Inters Observed for the Zero= Dunts Observed for the Span=	1 Gas Conc. X 100% = 100%- = 29.7 = 200%- = 20	/500 × % Trial 3: Counts Obs	erved for the Span=	257 9111
3 Calibration Prec pan Sensitivity: rial 1: Cou rial 2: Cou cou cou cou cou	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check	I Gas Conc. X 100% = 100%- = 29.7 = 2	K K Trial 3: Counts Obs Counters Obs	erved for the Span=	257 9111
3 Calibration Prec	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero= Calibration Check	I Gas Conc. X 100% = 100%- = 29.7 = 29.7 = 38.41 107.625 38.20 Cal Gas Reading:	/500 × % Trial 3: Counts Obs	erved for the Span=	257 9111
3 Calibration Prec pan Sensitivity: rial 1: Cou rial 2: Cou rial 2: Cou cost Monitoring ero Air eading: ACKGROUND	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check	I Gas Conc. X 100% = 100%- = 29.7 = 29.7 = 38.41 107.625 38.20 Cal Gas Reading:	K Trial 3: Counts Obs Counters Obs 500 ppm	erved for the Span= served for the Zero=	107841 3869
3 alibration Prec pan Sensitivity: rial 1: Co Cou rial 2: Co cou ost Monitoring ero Air eading: ACKGROUND owind Location	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check	I Gas Conc. X 100% = 100%- = 29.7 = 29.7 = 38.41 107.625 38.20 Cal Gas Reading:	K K Trial 3: Counts Obs Counters Obs	rved for the Span=	257011

SCS DataServices - Secure Environmental Data

Data Algerta

		SURFACE EMISSIC			
		CALIBRATION AND	D PERTINE	NT DATA	
Date:	3-16-21	\	Site Name;	reula	<u>)</u>
nspector(s):	Bryan		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	н:мрн	Wind Direction:		Barometric Pressure: <u>30</u>	"Hg
Ai Temperature	ir <u>53</u> °F	General Weather Conditions:	clear	-	
CALIBRATION	INFORMATION				
're-monitoring	Calibration Precision Check				
nd calculate tl	brate the instrument. Make a he average algebraic differenc be less than or equal to 10% o	e between the instrument r			
nstrument Seri				Cal Gas Concentration:	500ppm
'rial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds
1	1	652	~	2	C C
2		ZIA 8	7		3
3	ision= Average Difference/Cal	Average Difference:	*Perform recalibratio	n if average difference is greater than	 n 10
3	ision= Average Difference/Cal	Average Difference: [Gas Conc. X 100% = 100%-	۵.١		
3		Average Difference:	۵.١		n 10
3 alibration Prec		Average Difference: [Gas Conc. X 100% = 100%- = QQJ	\.b %		n 10
3 alibration Prec ban Sensitivity rial 1:		Average Difference: Gas Conc. X 100% = 100%- = QQ	<u>%</u> Trial 3:		10DR
3 alibration Prec <u>ban Sensitivity</u> ial 1: Cou		Average Difference: Gas Conc. X 100% = 100% = QQT 121583	% 7 <u>Trial 3:</u> Cou	_/500 x 100%	=122362
3 alibration Prec pan Sensitivity rial 1: Cou rial 2:	: ounts Observed for the Span=	Average Difference: Gas Conc. X 100% = 100% = 94.7 121583 2920	% 7 <u>Trial 3:</u> Cou	_/500 × 100% nts Observed for the Span=	= <u>122362</u>
3 alibration Prec pan Sensitivity rial 1: Cou rial 2: Cou	: ounts Observed for the Span= inters Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100% = QQT 121583 2q20 121862	% 7 <u>Trial 3:</u> Cou	_/500 × 100% nts Observed for the Span=	=122362
3 alibration Prec pan Sensitivity: rial 1: Cou rial 2: Cou	: ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span=	Average Difference: Gas Conc. X 100% = 100% = QQT 121583 2q20 121862	% 7 <u>Trial 3:</u> Cou	_/500 × 100% nts Observed for the Span=	=122362
3 alibration Prec pan Sensitivity rial 1: Cou rial 2: Cou cou cost Monitoring	ounts Observed for the Span= Inters Observed for the Zero= Dunts Observed for the Span= Inters Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100% = QQT 121583 2q20 121862	% 7 <u>Trial 3:</u> Cou	_/500 × 100% nts Observed for the Span=	=122362
3 Calibration Prec	: counts Observed for the Span= inters Observed for the Zero= counts Observed for the Span= inters Observed for the Zero= Calibration Check	Average Difference: Gas Conc. X 100% = 100% = QQT 121583 2QZO 121862 2QV3 Cal Gas Reading:	% 7 <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	=122362
3 Calibration Prec	concentrations checks	Average Difference: Gas Conc. X 100% = 100% = QQT 121583 2QZO 121862 2QV3 Cal Gas Reading:	% Trial 3: Cou Cour	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	=122362

SCS	DataSer	vices - S	becure	Environ	menta	Date
-----	---------	-----------	--------	---------	-------	------

				Rost
SL	IRFACE EMISSI	ONS MONI	TORING	
CA	LIBRATION AN	D PERTINE	NT DATA	
Date: 3-16-21		Site Name:	newby	
Inspector(s): Rabo R		Instrument:	TVA 2020	
WEATHER OBSERVATIONS			~	
Wind Speed: MPH D	Wind irection:	-	Barometric <u>3</u> 0	- "Нg
Air 53 °F	General Weathe Conditions		Y	
CALIBRATION INFORMATION				
Pre-monitoring Calibration Precision Check				
Procedure: Calibrate the instrument. Make a total and calculate the average algebraic difference betw precision must be less than or equal to 10% of the c	ween the instrument	reading and the	g zero air and the calibratio calibration gas as a percent	n gas. Record the readings tage. The calibration
Instrument Serial Number: 54721	<u> </u>		Cal Gas Concentration:	500ppm
Trial Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds)
2	LIGA		(5
3	501		ì	1 21
Calibration Precision= Average Difference/Cal Gas C	Conc. X 100% = 100%-	(.3	_/500 x 100%	
	= 99	°}¢		
pan Sensitivity:	(
Counts Observed for the Span=	33462		ints Observed for the Span= ters Observed for the Zero=	133996 37 84
rial 2: Counts Observed for the Span=	53724	Cour		0101
Counters Observed for the Zero= 5	756			
ost Monitoring Calibration Check				
ero Air eading:ppm	Cal Gas Reading:	500	_ppm	
ACKGROUND CONCENTRATIONS CHECKS				
pwind Location Description:	ntrana	c	Reading: 1-3	ppm
ownwind Location Description:	1×19 1P	4	Reading: 1.2	ppm
otes: Wind speed averages were observe exceeded 20 miles per hour. No rai meteorological conditions were wit	infall had occurred w	ithin the previou	is 24 hours of the monitorin	g event. Therefore, site

		SURFACE EMISSI			
		CALIBRATION AN		NI DATA	
Date:	3/16/21 Liam Moginn		Site Name:	Newby	
Inspector(s):	Liam Moginn		Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS				
Wind Speed:	<u>Ч</u> мрн	Wind S Direction:	22	Barometric Pressure: 29.9	"Hg
Air Temperature:	45 °F	General Weathe Conditions	cleoir	_	
CALIBRATION II	NFORMATION				
	alibration Precision Check				
	e less than or equal to 10% of	of the calibration gas value.		calibration gas as a percent Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (seco
1	0.1	497		3	3
2 3	0.1	497		1	2
			*Perform recalibration	n if average difference is greater than "	10
Calibration Precis	ion= Average Difference/Ca	Il Gas Conc. X 100%	*Perform recalibratio	n if average difference is greater than :	10
	ion= Average Difference/Ca	= 100%-	*Perform recalibratio	n if average difference is greater than : _/500 x 100%	10
pan Sensitivity:	ion≃ Average Difference/Ca	= 100%-	6-3 %		10
ipan Sensitivity: ' rial 1:	ion= Average Difference/Ca ints Observed for the Span=	= 100%- = 9 % .7	6 - 3 % Trial 3:		
ipan Sensitivity: i <mark>rial 1:</mark> Cou Coun		= 100%- = 48.7 = <u>161036</u>	6 - 3 % <u>Trial 3:</u> Cou	_/500 x 100%	161607
ipan Sensitivity: irial 1: Cou Coun irial 2:	ints Observed for the Span-	= 100%- = 48.7 = <u>161036</u> = <u>3769</u>	6 - 3 % <u>Trial 3:</u> Cou	/500 x 100% nts Observed for the Span=	161607
ipan Sensitivity: 'rial 1: Cou <u>Coun</u> 'rial 2: Cou	ints Observed for the Span= ters Observed for the Zero=	= 100%- = 48.7 = <u>161036</u> = <u>3769</u> = <u>161499</u>	6 - 3 % <u>Trial 3:</u> Cou	/500 x 100% nts Observed for the Span=	161607
ipan Sensitivity: I <mark>rial 1:</mark> Cou <u>Coun</u> I <mark>rial 2:</mark> Cou Coun	ints Observed for the Span- ters Observed for the Zero- ints Observed for the Span- ters Observed for the Zero-	= 100%- = 48.7 = <u>161036</u> = <u>3769</u> = <u>161499</u>	6 - 3 % <u>Trial 3:</u> Cou	/500 x 100% nts Observed for the Span=	161607
ipan Sensitivity: rial 1: Cou rial 2: Cou Coun ost Monitoring C ero Air	ints Observed for the Span- ters Observed for the Zero- ints Observed for the Span- ters Observed for the Zero-	= 100%- = 48.7 = <u>161036</u> = <u>3769</u> = <u>161499</u>	6 - 3 % <u>Trial 3:</u> Cou	/500 x 100% nts Observed for the Span=	161607
ipan Sensitivity: rial 1: Cou Coun rial 2: Cou Coun cou coun cou coun cou cou cou cou cou cou cou	ants Observed for the Span- ters Observed for the Zero- ints Observed for the Span- ters Observed for the Zero- alibration Check	= 100% $= 4%.7$ $= 161036$ $= 3769$ $= 161499$ $= 3780$ Cal Gas Reading:	6 - 3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	161607
ipan Sensitivity: rial 1: Coun rial 2: Coun rial 2: Coun coun coun coun coun coun Co	ants Observed for the Spans ters Observed for the Zeros ants Observed for the Spans ters Observed for the Zeros alibration Check	= 100% $= 4%.7$ $= 161036$ $= 3769$ $= 161499$ $= 3780$ Cal Gas Reading:	G-3 % Trial 3: Count Count	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	161607
Span Sensitivity: Trial 1: Coun Trial 2: Coun Trial 2: Coun	ants Observed for the Span- ters Observed for the Zero- unts Observed for the Span- ters Observed for the Zero- alibration Check	= 100% $= 49.7$ $= 161036$ $= 3769$ $= 161499$ $= 3780$ Cal Gas Reading: S	G-3 % Trial 3: Count Count	_/500 x 100% nts Observed for the Span= ters Observed for the Zero= ppm Reading:	<u>161607</u> 3147

				ONS MONI		
		CALIBRAT	ION AN	D PERTINEN	IT DATA	
Date:	3/16/21			Site Name:	Newby	
Inspector(s):	Brant Wad	le		Instrument:	TVA 2020	
WEATHER OBSI	ERVATIONS				36	
Wind Speed:	ЦМРН	Wind Direction:	5	-	Barometric Pressure: 27.9	"Hg
Air Temperature:	45°F		ral Weathe Conditions	1 4. /	-	
	FORMATION					
Pre-monitoring C	alibration Precision Check					
and calculate the	average algebraic different less than or equal to 10% o	ce between the i	nstrument	reading and the	g zero air and the calibration calibration gas as a percent Cal Gas Concentration:	age. The calibration
Trial	Zero Air Reading	Cal Gas R	eading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
1		501				2
2 3	02	501			2	3
		,00		-	-	>
		-	100%- 억<i>억</i>, 4	2.6 %	_/500 x 100%	
pan Sensitivity:						
frial 1:	nts Observed for the Span=	15070	08	Trial 3: Cou	nts Observed for the Span=	160200
	ers Observed for the Zero=	4729		Count	ers Observed for the Zero=	4767
rial 2: Cou	nts Observed for the Span=	150 94	18			
Count	ers Observed for the Zero=	4740				
ost Monitoring C	alibration Check					
ero Air	(h)		l Gas	500		
eading: —	ppm		ading:		ppm	
ACKGROUND C	DNCENTRATIONS CHECK					
pwind Location D	escription:	Entre	ince	-	Reading: 1. 4	opm
ownwind Locatio	n Description:	Carig	- 16c	1	Reading: 1.5	pm
e		No rainfall had	occurred w	ithin the previou	uested 10 miles per hour ar s 24 hours of the monitoring	event. Therefore, site

		SURFACE EMISSI	ONS MONITORING	
	~ 11 ~ 1	CALIBRATION AN	D PERTINENT DATA	
Date:	3-16-21		Site Name: Nauby	
Inspector(s):	Von Gibs	on	Instrument: TVA 2020	
WEATHER OBS	ERVATIONS			
Wind Speed:	Цмрн	Wind Direction:	Barometric Pressure: 29.9	"Hg
Air Temperature:		General Weather Conditions		
CALIBRATION I	NFORMATION			
Pre-monitoring (Calibration Precision Check			
and calculate the	e average algebraic difference e less than or equal to 10% o	e between the instrument i f the calibration gas value. -	nts by alternating zero air and the calibratio reading and the calibration gas as a percent Cal Gas Concentration:	
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Conc ₄ -Cal Gas Reading	Response Time (seconds)
1	0	500	0	7
2	01 02	50 (3
	UL	500	0	
		= 100%- = 99.8	/500 x 100%	
Span Sensitivity: Trial 1:			Trial 3:	
Col	unts Observed for the Span=	158644	Counts Observed for the Span=	159219
	ters Observed for the Zero=	3547	Counters Observed for the Zero=	3578
Trial 2: Cou	unts Observed for the Span=			
Coun	ters Observed for the Zero=	3560		
Post Monitoring (Calibration Check			
Zero Air Reading:	ppm	Cal Gas Reading:	500 ppm	
BACKGROUND C	CONCENTRATIONS CHECKS	1.0x2		
Ipwind Location I	Description:	Entrance	e Reading:	ppm
ownwind Locatio	on Description:	Chright	9 Reading:	ppm
e	exceeded 20 miles per hour.	No rainfall had occurred wi	e alternative requested 10 miles per hour a ithin the previous 24 hours of the monitorin ernatives of the LMR requirements on the a	g event. Therefore, site bove mentioned date.

		SURFACE EMISSIO		
Date:	3-16-21		Site Name: Machin	
Inspector(s):	Ryon Itas	an	Instrument: TVA 2020	
WEATHER OB	SERVATIONS			
	11	Wind <	Barometric	,
Wind Speed		Direction:	Pressure: 24r	/ "Hg
Ai Temperature		General Weather Conditions:	clear	
CALIBRATION	INFORMATION			
Pre-monitoring	Calibration Precision Check			
and calculate th	ne average algebraic difference be less than or equal to 10% of	e between the instrument re	s by alternating zero air and the calibrati ading and the calibration gas as a percer Cal Gas Concentration:	ntage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	[Cal Gas ConcCal Gas Reading]	Response Time (seconds)
1 2	0	498	2	3
3	1.(501	db	1 2
		= 100% = 44.34 %	3.3 /500 x 100%	
pan Sensitivity:				
rial 1:	ounts Observed for the Span=	108832	rial 3: Counts Observed for the Span	= 109204
	nters Observed for the Zero=	3876	Counters Observed for the Zero	302 -
rial 2:	ounts Observed for the Span=	109 133		
	nters Observed for the Zero=	3894		
ost Monitoring	Calibration Check			
		Cal Gas	500	
ero Air	0	Cal Gas		
	ppm	Reading:	ppm	
ero Air eading:	<i>ppm</i> CONCENTRATIONS CHECKS		ppm	
ero Air eading:	CONCENTRATIONS CHECKS		Reading:	_ppm
ero Air eading: ACKGROUND	CONCENTRATIONS CHECKS		ppm	_ppm

	CALIBRATION AND	INS MONITORING	
Date: <u>3/16</u>	1 . 1	Site Name: Newby	
Inspector(s): Byon	Ochoa	Instrument: TVA 2020	
V WEATHER OBSERVATIONS			
Wind Speed:M	Wind Direction:	Barometric 29.9)"н _g
Air Temperature: <u>45</u> °F	General Weather Conditions:	eleav	
CALIBRATION INFORMATION			
Pre-monitoring Calibration Precision	n Check		
	l to 10% of the calibration gas value.	rading and the calibration gas as a perce Cal Gas Concentration	
rial Zero Air Rea		Cal Gas ConcCal Gas Reading	Response Time (second
1 1	499		3
2 . 2	50(2
3 , (500	D	1
alibration Precision= Average Diffe	erence/Cal Gas Conc. X 100%	1.3 Perform recalibration if average difference is greater th	nan 10
alibration Precision= Average Diffe	-		nan 10
alibration Precision= Average Diffe	erence/Cal Gas Conc. X 100% = 100%	Perform recalibration if average difference is greater th	nan 10
pan Sensitivity: ial 1:	erence/Cal Gas Conc. X 100% = 100% = 99;7 %	Perform recalibration if average difference is greater th	
oan Sensitivity: r <mark>ial 1:</mark> Counts Observed for t Counters Observed for t	the Span= $\frac{122210}{-229}$	Perform recalibration if average difference is greater th	n= <u>122740</u>
pan Sensitivity: rial 1: Counts Observed for t	the Span= 122210 the Zero= 2909 100%	Perform recalibration if average difference is greater th 1. 3 /500 x 100% % Trial 3: Counts Observed for the Spa	n= <u>122740</u>
oan Sensitivity: r <mark>ial 1:</mark> Counts Observed for t Counters Observed for t rial 2:	the Span= 122210 the Span= 122340 the Span= 122340	Perform recalibration if average difference is greater th 1. 3 /500 x 100% % Trial 3: Counts Observed for the Spa	n= <u>122740</u>
oan Sensitivity: rial 1: Counts Observed for t Counters Observed for t rial 2: Counts Observed for t Counters Observed for t	the Span= 122210 the Span= 122340 the Span= 122340	Perform recalibration if average difference is greater th 1. 3 /500 x 100% % Trial 3: Counts Observed for the Spa	n= <u>122740</u>
ban Sensitivity: rial 1: Counts Observed for t Counters Observed for t rial 2: Counters Observed for t Counters Observed for t Dest Monitoring Calibration Check	the Span= 122214 the Zero= 2909 the Zero= 2909 the Zero= 2909 the Zero= 2909	Perform recalibration if average difference is greater th 1. 3 /500 x 100% % Trial 3: Counts Observed for the Spa	n= <u>122740</u>
ban Sensitivity: ial 1: Counts Observed for t Counters Observed for t ial 2: Counts Observed for t Counters Observed for t ost Monitoring Calibration Check ro Air	the Span= 122212 the Span= 122342 the Span= 122342 the Span= 122342 the Zero= 2909 the Span= 122342 the Zero= 2930	Perform recalibration if average difference is greater th 1. 3 /500 x 100% % Trial 3: Counts Observed for the Spa	n= <u>122740</u>
pan Sensitivity: rial 1: Counts Observed for t Counters Observed for t rial 2: Counts Observed for t Counters Observed for t ost Monitoring Calibration Check	the Span= 122214 the Span= 122214 the Zero= 2909 the Span= 122340 the Zero= 2930 the Zero= 2930 the Zero= 2930 Cal Gas Reading:	Perform recalibration if average difference is greater th 1. 3 /500 x 100% 6 7 7 7 7 7 7 7 7 7 7 7 7 7	n= <u>122740</u>
ban Sensitivity: rial 1: Counts Observed for t Counters Observed for t rial 2: Counts Observed for t Counters Observed for t Counters Observed for t ost Monitoring Calibration Check ero Air ppn	the Span= 122214 the Span= 122214 the Zero= 2909 the Span= 122340 the Zero= 2930 the Zero= 2930 the Zero= 2930 Cal Gas Reading:	Image: Perform recalibration if average difference is greater the spanning of t	n= <u>122740</u>
Dan Sensitivity: rial 1: Counts Observed for t Counters Observed for t rial 2: Counts Observed for t Counters Observed for t Counters Observed for t Counters Observed for t Dest Monitoring Calibration Check ero Air Pading: Pading: Councentrations	erence/Cal Gas Conc. X 100% = 100%- $= 9.4;7 %$ the Span= 122210 the Zero= 2909 the Span= 122340 the Zero= 2930 the Zero= 2930 Cal Gas Reading: S S CHECKS	Image: Perform recalibration if average difference is greater the spanning of t	n= 122740 D= 2947

			ONS MONITORING D PERTINENT DATA	
	ρ l_{1} l_{2}			
Date:	- 3/16/2		Site Name: Newby	
Inspector(s):	Pablo River	a	Instrument:TVA 2020	
WEATHER OBSE	RVATIONS			
Wind Speed:	ИМРН	Wind Direction:	Barometric Pressure: 29.9	"Нд
Air Temperature:	45°F	General Weather Conditions:		
CALIBRATION IN	IFORMATION			
Pre-monitoring Ca	libration Precision Check			
precision must be nstrument Serial	less than or equal to 10% of	of the calibration gas value.	eading and the calibration gas as a percent Cəl Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1 2	. 2	498	2	
3	• 2	502	Z	2
			<u>3.6</u> /500 × 100%	
pan Sensitivity:			4	
rial 1:	nts Observed for the Span=	134 144	Trial 3: Counts Observed for the Span=	134507
Count	ers Observed for the Zero=	3740	Counters Observed for the Zero=	3767
rial 2:	its Observed for the Span=		Counters Observed for the 2010-	5701
Count	ers Observed for the Zero=	B757		
ost Monitoring Ca	libration Check			
ero Air eading:	O ppm	Cal Gas Reading:	500 ppm	
ACKGROUND CO	ONCENTRATIONS CHECK	5		
owind Location De	escription:	Entrane	Reading:	opm
wnwind Location	Description:	C1V18 16	9 Reading: <u>1.4</u>	opm
ex	ceeded 20 miles per hour.	No rainfall had occurred wit	e alternative requested 10 miles per hour ar thin the previous 24 hours of the monitoring ernatives of the LMR requirements on the ab	event. Therefore, site

4		SURFACE EMISSIONS CALIBRATION AND PE		
Date:	3-17-2-1	Site	Name: Neu	1.617
Inspector(s):	Brant War	le, Instr	ument: TVA 2020	
WEATHER OBS	ERVATIONS			
Wind Speed:	Ч мрн	$\frac{Wind}{Direction}$	Barometric Pressure:	
				"Нд
Air Temperature:	<u>_39</u> •F	General Weather for Conditions:	loudy	
CALIBRATION II	NFORMATION			
Pre-monitoring C	Calibration Precision Check			
and calculate the	e average algebraic differen	a total of three measurements by a nee between the instrument reading of the calibration gas value.		alibration gas. Record the readings a percentage. The calibration
nstrument Serial	~U	15	Cal Gas Concen	tration:500ppm
rial 1	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Readi	ng Response Time (seconds
2	.0	501	· · · ·	
3	1	राववे	1	2
	sion= Average Difference/Ca	= 100%-	/500 x 100%	
		= 997 %		
pan Sensitivity:			k:	
rial 1:	unts Observed for the Span=		Counts Observed for th	e Span= 145829
		1452CO	Counts Observed for th	117 110
rial 1: Cou Coun rial 2:	unts Observed for the Span- nters Observed for the Zero- unts Observed for the Span-	4684	Counts Observed for th Counters Observed for th	117 110
rial 1: Cou Coun rial 2: Cou	nters Observed for the Zero-	145220 4684 145538	Counts Observed for th	117 110
rial 1: Cou Coun rial 2: Cou Coun	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	145220 4684 145538	Counts Observed for th	117 110
r <u>ial 1:</u> Cou <u>Coun</u> rial 2: Cou	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	145220 4684 145538	Counts Observed for th	117 110
rial 1: Cou rial 2: Cou Coun Ost Monitoring C	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	-145220 -4684 -145538 -4710	Counts Observed for th	117 110
rial 1: Cou rial 2: Cou Coun cost Monitoring C ero Air eading: —	nters Observed for the Zero- unts Observed for the Span- nters Observed for the Zero- Calibration Check	= 14520 = 4684 = 145538 = 4710 Cal Gas Reading:	Counts Observed for th	117 110
rial 1: Cou rial 2: Cou Coun cost Monitoring C ero Air eading: —	aters Observed for the Zero= unts Observed for the Span= aters Observed for the Zero= Calibration Check	= 14520 = 4684 = 145538 = 4710 Cal Gas Reading:	Counts Observed for th	117 110
rial 1: Coun rial 2: Coun coun cost Monitoring C ero Air eading: ACKGROUND C	aters Observed for the Zero= unts Observed for the Span= aters Observed for the Zero= Calibration Check	= 14520 = 4684 = 145538 = 4710 Cal Gas Reading:	Counts Observed for th	ne Zero= 47 49

			ONS MONITORING	
	0	CALIBRATION ANI	D PERTINENT DATA	
Date:	3-17-2		Site Name: MCNb	Q
Inspector(s):	Brant	5 W	Instrument: TVA 2020	
WEATHER OB	SERVATIONS			
Wind Speed	н:мрн	Wind Direction:	Barometric 3 3	"Hg
Ai Temperature		General Weather Conditions:		
CALIBRATION	INFORMATION			
re-monitoring	Calibration Precision Check			
and calculate th		e between the instrument r	ts by alternating zero air and the calibrat reading and the calibration gas as a perce	
nstrument Seria	al Number: 51	15	Cal Gas Concentration	: 500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
1	0	502	10	Ч
2		LIAA	1	×
3		498	2-	B
			*Perform recalibration if average difference is greater th	an 10
alibration Prec	ision= Average Difference/Cal	Gas Conc. X 100%		an 10
alibration Prec	ision= Average Difference/Cał	Gas Conc. X 100% = 100%-	/500 x 100%	an 10
	1	Gas Conc. X 100%		an 10
pan Sensitivity:	1	Gas Conc. X 100% = 100%- =	∕_, 6 /500 × 100% %	an 10
pan Sensitivity: rial 1:	1	Gas Conc. X 100% = 100%- =	/500 x 100%	1415739
pan Sensitivity: rial 1: Cc	/ :	Gas Conc. X 100% = 100%- =	/500 x 100% % Trial 3:	= <u>145239</u>
pan Sensitivity: rial 1: Co Cou rial 2:	; punts Observed for the Span=	Gas Conc. X 100% = 100%- =	<pre>/500 x 100% % Trial 3: Counts Observed for the Span</pre>	= <u>145239</u>
pan Sensitivity: rial 1: Cou rial 2: Cou	: ounts Observed for the Span= inters Observed for the Zero=	Gas Conc. X 100% = 100%- =	<pre>/500 x 100% % Trial 3: Counts Observed for the Span</pre>	= <u>145239</u>
pan Sensitivity: rial 1: Cou rial 2: Cou Cou	: counts Observed for the Span= inters Observed for the Zero= counts Observed for the Span=	Gas Conc. X 100% = 100%- =	<pre>/500 x 100% % Trial 3: Counts Observed for the Span</pre>	= <u>145239</u>
pan Sensitivity: rial 1: Cou rial 2: Cou Cou	unters Observed for the Span= unters Observed for the Zero= punts Observed for the Span= unters Observed for the Zero=	Gas Conc. X 100% = 100%- =	<pre>/500 x 100% % Trial 3: Counts Observed for the Span</pre>	= <u>145239</u>
pan Sensitivity: rial 1: Cou rial 2: Cou cost Monitoring ero Air	unters Observed for the Span= unters Observed for the Zero= punts Observed for the Span= unters Observed for the Zero=	Gas Conc. X 100% = $100%$ = 1494927 4736 14507 4751	<pre>/500 x 100% % Trial 3: Counts Observed for the Span</pre>	= <u>145239</u>
pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring ero Air eading:	counts Observed for the Span= unters Observed for the Zero= pounts Observed for the Span= unters Observed for the Zero= Calibration Check	Gas Conc. X 100% = 100%- = 144927 4736 145107 4751 4751 Cal Gas Reading:	/500 x 100% % Trial 3: Counts Observed for the Span Counters Observed for the Zero	= <u>145239</u>
pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring ero Air eading:	concentrations checks	Gas Conc. X 100% = 100%- = 144927 4736 145107 4751 4751 Cal Gas Reading:	/500 x 100% % Trial 3: Counts Observed for the Span Counters Observed for the Zero	= <u>145239</u>

÷

		SURFACE EMISSI			
Data	2-17-7	\backslash		intuba	
Date:			Site Name:	ricupy	
Inspector(s):	Bryen	10	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			(56)	
Wind Speed			÷	Barometric Pressure: 30	"Hg
Air Temperature	10	General Weathe Conditions	1101	dg	
CALIBRATION	INFORMATION			2	
Pre-monitoring	Calibration Precision Check				
and calculate th	e average algebraic differer be less than or equal to 10%		reading and the	g zero air and the calibration calibration gas as a percent Cal Gas Concentration:	age. The calibration
					500ppm
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
2	P P	601			
3	0	LIAN	1	1	5
	sion= Average Difference/C	= 100%- = GG.7	%	_/500 x 100%	
and Constations					
pan Sensitivity: rial 1:			Trial 3:		
	ounts Observed for the Span	= <u>173489k</u>	Cou	ints Observed for the Span=	113942
Cou rial 2:	nters Observed for the Zero	= 300	Coun	ters Observed for the Zero=	2141
Co	unts Observed for the Span				
Cour	nters Observed for the Zero	3108			
ost Monitoring	Calibration Check				
ero Air	\bigcap	Cal Gas	in		
eading:	ppm	Reading:	500	_ppm	
ACKGROUND	CONCENTRATIONS CHECH	s (
pwind Location	Description:	Entrance	2	Reading: 1,2	ppm
ownwind Locati	on Description:	Cavid 160	2	Reading: $\sqrt{.5}$	ppm
				quested 10 miles per hour an us 24 hours of the monitorin	

					Rost
		SURFACE EMISSI			
1.00	-	CALIBRATION AN	D PERTINE		
Date:	3-17-21 Bryar		Site Name:	newba	9
Inspector(s):	Bryne	10	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	мрн	Wind Direction: NC		Barometric Pressure: 🖄 🗋	"Hg
Aiı Temperature		General Weather Conditions		<u>+</u> y	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	orate the instrument. Make a le average algebraic differenc de less than or equal to 10% o	e between the instrument i	reading and the	-	
Instrument Seria	al Number:	5		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1	. (SOL		2	6
2		299		(5
alibration Preci	sion= Average Difference/Cal	Gas Conc. X 100% = 100%-	1.3	_/500 x 100%	
		= 99.7	%		
Span Sensitivity:					
F <mark>rial 1:</mark> Co	ounts Observed for the Span=	113375	<u>Trial 3:</u> Cou	ints Observed for the Span	113788
Cou	nters Observed for the Zero=	5112	Coun	ters Observed for the Zero:	3 58
Trial 2:	unts Observed for the Span=	3 - 1			2.20
	nters Observed for the Zero=	31 37			
ost Monitoring	Calibration Check				
ero Air	A	Cal Gas			
eading:	ррт	Reading:	500) ppm	
ACKGROUND	CONCENTRATIONS CHECKS	; }			
pwind Location	Description:	Entra	NIR	Reading:	_ppm
ownwind Locati	ion Description:	(-v. & 1	64	Reading: $\sqrt{.5}$	ppm
	Wind speed averages were ol exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	ithin the previou	us 24 hours of the monitori	ng event. Therefore, site

		SURFACE EMISSIONS		
Date:	3-17-21		Name: NEWBU	
nspector(s):	Dorblo Div	1000	trument: TVA 2020)
VEATHER OB	SERVATIONS			
Wind Speed	t: MPH	Wind Direction: VVVV	Barometric 500 Pressure: 500) "Hø
Ai		General Weather		
Temperature	** <u></u> *F	Conditions:	(oudy	
ALIBRATION	INFORMATION			
re-monitoring	Calibration Precision Check			
nd calculate th recision must l	he average algebraic differen be less than or equal to 10% (ce between the instrument readi	alternating zero air and the calibratio ng and the calibration gas as a percent	tage. The calibration
istrument Seri	al Number:		Cal Gas Concentration:	500ppm
rial 1	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
2		502	1	8
3	Ö	riga	1	1 Z
		= 100%-	/500 x 100%	
		=99.7 %		
an Sensitivity:				
r <mark>ial 1:</mark> Co	ounts Observed for the Span-	171036 Trial	3: Counts Observed for the Span=	171586
Cou	Inters Observed for the Zero=	4850	Counters Observed for the Zero=	4921
ial 2: Co	ounts Observed for the Span=	111273		
Cou	nters Observed for the Zero=	4884		
st Monitoring	Calibration Check			
St Wontoning				
	\wedge	Cal Gas 1	00	
ro Air ading:	ppm	Reading:	ppm ppm	
ro Air ading:	D ppm CONCENTRATIONS CHECK	Reading:	ppm_	
ro Air ading: ACKGROUND	CONCENTRATIONS CHECK	Reading:	ppm Reading: <u>\-Y</u>	ppm
ro Air ading: A CKGROUND wind Location	CONCENTRATIONS CHECK	Reading:		ppm

tal Data 🚽

				Re	ost
		SURFACE EMISSIO			
		CALIBRATION ANI	J PERTINE	NI DATA	
Date:	3-17-7		Site Name:	newbr	<u>\</u>
Inspector(s):	Pablo M		Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			1	
Wind Speed:		Wind Direction: NE		Barometric Pressure:	"Hg
Air Temperature:	10	General Weather Conditions:	clou	dy	
CALIBRATION	NFORMATION			-	
Pre-monitoring (Calibration Precision Check				
and calculate th	rate the instrument. Make a e average algebraic differenc e less than or equal to 10% oj	e between the instrument r	eading and the		
Instrument Seria	I Number: $5 - 11$	9		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	ICal Gas (ConcCal Gas Reading	Response Time (seconds)
1		501	Tear eas		Nesponse nine (seconds)
2	0	नेवल		Ì	3
3		502		2_	25
Calibration Preci	sion= Average Difference/Cal		1.3	_/500 x 100%	
		= (- 01 -)	%		
Span Sensitivity: Trial 1:			Trial 3.		
	unts Observed for the Span=	170637	Trial 3: Cou	nts Observed for the Span=	120925
Cour	nters Observed for the Zero=	4916	Count	ters Observed for the Zero=	195(
Trial 2: Co	unts Observed for the Span=	170708			
Cour	nters Observed for the Zero=	4932			
Post Monitoring (Calibration Check				
Zero Air		Cal Gas	\frown		
Reading:	Oppm	Reading:	500	ppm	
BACKGROUND	CONCENTRATIONS CHECKS			4	
Upwind Location	Description:	Entrance		Reading:	ppm
Downwind Location	on Description:	grig 1	04	Reading:	opm
e	Wind speed averages were ob exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred wi	thin the previou	is 24 hours of the monitoring	g event. Therefore, site

		SURFACE EMISSIO			
Date:	3-17-	2021	Site Name:	newka	1
Inspector(s):	Citom Mea	jim_	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS	5			
Wind Speed	d: МРН	Wind Direction:		Barometric Pressure:	"Hg
A Temperature	e:*F	General Weather Conditions: _	clou	dy	
CALIBRATION	INFORMATION)	
Pre-monitoring	calibration Precision Check				
and calculate t	he average algebraic differen be less than or equal to 10% ~~	a total of three measurements nce between the instrument re of the calibration gas value. GGA			
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1	.0	502	2		5
2	11	501	1		4
3		499	1		9
	cision= Average Difference/C	= 100%	1.3	_/500 x 100%	
		= 79.7 %	6		
Span Sensitivity	"				
f rial 1: C	ounts Observed for the Span		r <mark>ial 3:</mark> Cou	ints Observed for the Span=	182748
	unters Observed for the Zero	= 3953	Coun	ters Observed for the Zero=	4037
Crial 2: C	ounts Observed for the Span	-182471			
Cou	unters Observed for the Zero	= 3994			
ost Monitoring	g Calibration Check				
ero Air eading:	ppm	Cal Gas Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECH	<s< td=""><td></td><td></td><td></td></s<>			
pwind Location	n Description:	Entrance	-	Reading:	ppm
ownwind Locat	tion Description:	(prid 169		Reading:	opm
lotes:	exceeded 20 miles per hour	observed to remain below the . No rainfall had occurred with vere within the requested alter	hin the previou	us 24 hours of the monitoring	g event. Therefore, site

SCS DataServices - Secure Environmental Data

ire Environmental Data 🛛 🛁 🖓 📬 🛸

					rust
		SURFACE EMISSI	ONS MONI	TORING	
		CALIBRATION AN	D PERTINEI	NT DATA	
Date:	3-17-2	(Site Name:	newbu	
Inspector(s):	Liam	\sim	instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			145	
Wind Speed:	В	Wind Direction: MC	<u>-</u>	Barometric Pressure:	"Hg
Air Temperature:		General Weathe Conditions		4	
CALIBRATION	INFORMATION				
Pre-monitoring (Calibration Precision Check				
and calculate th	erate the instrument. Make of e average algebraic difference e less than or equal to 10% of I Number:	e between the instrument	reading and the		
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas	ConcCal Gas Reading	Response Time (seconds
1	- 1	501	Tear and		
2	- /	449		(5
3		500	-	2	
		= 100%- = 99.7	<u>\r3</u>	_/500 x 100%	
pan Sensitivity:					
Trial 1: Co	unts Observed for the Span=			ints Observed for the Span=	182581
rial 2:	nters Observed for the Zero=	150 K ml	Coun	ters Observed for the Zero=	
Co	unts Observed for the Span=	18(254			
Cour	nters Observed for the Zero=				
ost Monitoring (Calibration Check				
ero Air eading:	Oppm	Cal Gas Reading:	500	ppm	
	CONCENTRATIONS CHECKS	5			
pwind Location	Description:	Entrance	8	Reading: <u>1.3</u>	opm
ownwind Locati	on Description	64.910		Reading: 1.5	opm
e	Wind speed averages were o exceeded 20 miles per hour. meteorological conditions we	No rainfali had occurred w	ithin the previo	us 24 hours of the monitoring	event. Therefore, site
and the second second	a surface and the surface of			Mal to a	

1		SURFACE EMISSIC			
Date:	3-17-2		Site Name:	newbe	4
Inspector(s);	Don Coloso	n	Instrument:	TVA 2020	5
WEATHER OBS	SERVATIONS				
Wind Speed	Мрн	Wind Direction: <u>N</u>)	Barometric Pressure: 30	"Hg
Air Temperature	39_°F	General Weather Conditions:	~ \ \C	Įη	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	prate the instrument. Make a be average algebraic difference be less than or equal to 10% of al Number:	e between the instrument r			
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1	0	702		L.	0
2	.)	501		1	
3	0	(10.9			
Calibration Prec	ision= Average Difference/Cal	Gas Conc. X 100% = 100%- = 99.7	\.3 %	_/500 × 100%	
Span Sensitivity:					
	ounts Observed for the Span=	165992		unts Observed for the Span=	166581
Cou Trial 2:	inters Observed for the Zero=	3003	Cour	iters Observed for the Zero=	31 10
Co	ounts Observed for the Span=	2717			
	Inters Observed for the Zero=	51.0	0		
Post Monitoring	Calibration Check				
Zero Air Reading:	ppm	Cal Gas Reading:	50D	_ppm	
BACKGROUND	CONCENTRATIONS CHECKS	5			
Upwind Locatior	Description:	Entrag	e	Reading:	ppm
Downwind Locat	tion Description:	C-14, 211	59	Reading: 16	ppm
Notes:	Wind speed averages were o exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	ithin the previo	ous 24 hours of the monitorir	ng event. Therefore, site

Clapter State

				Post
		SURFACE EMISSI	ONS MONITORING	
		CALIBRATION AN	D PERTINENT DATA	
Date:	3-11-21		Site Name: NCWb	\sim
Inspector(s):	Don G		Instrument:TVA 2020	
WEATHER OB	SERVATIONS			
Wind Speed	ВМРН	Wind Direction:	Barometric Pressure: 30	"Hg
Aiı Temperature	61	General Weathe Conditions		
CALIBRATION	INFORMATION			
Pre-monitoring	Calibration Precision Check			
and calculate th	e average algebraic differenc pe less than or equal to 10% oj ۲ ۲	e between the instrument	nts by alternating zero air and the calibratio reading and the calibration gas as a percen Cal Gas Concentration:	
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
2	0	500		3
3		301-	2	ti
		= 100%-	(, (/500 x 100%	
		= 99, (%	
pan Sensitivity:				1.0
f <mark>rial 1:</mark> Co	ounts Observed for the Span=	65703	Trial 3: Counts Observed for the Span-	166083
Cou	nters Observed for the Zero=	3106	Counters Observed for the Zero-	5151
T <u>rial 2:</u> Co	unts Observed for the Span=	165972		
Cou	nters Observed for the Zero=	3(21		
ost Monitoring	Calibration Check			
ero Air eading:	ppm	Cal Gas Reading:	<u>500 ppm</u>	
ACKGROUND	CONCENTRATIONS CHECKS	\sim 1		
Ipwind Location	Description:	Futrany	Reading:	ppm
ownwind Locati	on Description:	Grig ,	Reading: 12	ppm
	exceeded 20 miles per hour.	No rainfall had occurred w	ne alternative requested 10 miles per hour a it is not the previous 24 hours of the monitori ternatives of the LMR requirements on the	ng event. Therefore, site

		ACE EMISSIC			
	CALIB	RATION AND	PERTINENT	DATA	
Date:	7-2-1		Site Name:	Newbo	
Inspector(s):	Ner O		Instrument:	TVA 2020	
WEATHER OBSERVATIONS				4	
Wind Speed:		vind tion: NW		Barometric Pressure: <u>30</u>	"Hg
Air Temperature: 39	°F	General Weather Conditions:	partly		
CALIBRATION INFORMATIO	N		Clondy		
Pre-monitoring Calibration Pre	cision Check				
Procedure: Calibrate the instru and calculate the average alge precision must be less than or t	braic difference betwee	n the instrument re			
Instrument Serial Number:	0920			Cal Gas Concentration:	500ppm
Trial Zero Air	Reading Cal	Gas Reading	Cal Gas Cor	ncCal Gas Reading	Response Time (seconds)
2 4	5 6	51	ì		3
3 ,1	E	500	C	5	3
Calibration Precision= Average Span Sensitivity:	Difference/Cal Gas Conc			500 x 100%	
Trial 1:		C.D 1	Trial 3:		2005
Counts Observed	for the Span= 100	1512	Count	s Observed for the Span=	150251
Counters Observed	for the Zero= 37	20	Counter	s Observed for the Zero=	37 86
Trial 2: Counts Observed Counters Observed		9843			
Post Monitoring Calibration Ch	eck				
Zero Air Reading:	ppm	Cal Gas Reading:	500 -	pm	
BACKGROUND CONCENTRAT	TIONS CHECKS				
Upwind Location Description:	E	ntisana	e R	eading: <u>\.</u>	opm
Downwind Location Description	Criv	19 (190	R R	eading: $\sqrt{5}$	opm
exceeded 20 m	iles per hour. No rainfa	II had occurred wit	hin the previous	ested 10 miles per hour ar 24 hours of the monitoring /IR requirements on the al	

SCS DataServices — Secure Environmental Data 🚽 🖓 😭 🔜

		SURFACE EMISSI		TORING	
		CALIBRATION AN			
	8-17-21				N
Date:	2110		Site Name:	hewb	1
Inspector(s):	Hunter	0	Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS				
Wind Speed:	ЗМРН	Wind Direction:	- C	Barometric Pressure: SD	"Hg
Air Temperature:		General Weather Conditions	clou	dy	
CALIBRATION	NFORMATION				2
Pre-monitoring	Calibration Precision Check				
and calculate th	rate the instrument. Make a e average algebraic difference e less than or equal to 10% o	e between the instrument i	reading and the		
Instrument Seria	I Number:			Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1	-7	402	1	7	5
2	.O	2199		F	3
3	0	501		(1	T N
	sion= Average Difference/Cal	= 100%-	1.3	/500 x 100%	
		= 99.7	%		
Span Sensitivity:					
frial 1:		179874	Trial 3:		179 851
Co	unts Observed for the Span=	101317	Co	unts Observed for the Span=	159 021
Cour	nters Observed for the Zero=	3752	Cour	ters Observed for the Zero=	37 83
T <mark>rial 2:</mark> Co	unts Observed for the Span=	129592			
Cour	nters Observed for the Zero=	3769			
ost Monitoring (Calibration Check				
ero Air		Cal Gas			
eading:	D ppm	Reading:	500	_ppm	
	CONCENTRATIONS CHECKS	6		~	
Ipwind Location	Description:	Entranc	e.	Reading: 1-2	ppm
ownwind Locati	on Description:	Chirof 16	27	Reading: 1.4	ppm
	Wind speed averages were of exceeded 20 miles per hour.	No rainfall had occurred w	ithin the previo		g event. Therefore, site

ACT DISTURD	Services - Sec	ure Enviro	on mento	DESERT
-------------	----------------	------------	----------	--------

		SURFACE EMISSI			
Date: Inspector(s):	3-17	2021	Site Name:	NCW by	5
WEATHER OBS	SERVATIONS	<u>40 C</u>	instrument.		
Wind Speed:	ММРН	Wind Direction:	20	Barometric 30	"Hg
Air Temperature:	30 *F	General Weathe Conditions	· · ·	dy	
CALIBRATION I	NFORMATION				
Pre-monitoring (Calibration Precision Check				
and calculate th	rate the instrument. Make a e average algebraic differenc e less than or equal to 10% o I Number:	e between the instrument	reading and the		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1 2	0	498	2		
3		300	Ċ	>	
Calibration Preci	sion= Average Difference/Cal	Gas Conc. X 100% = 100%-	 	on if average difference is greater than : /500 x 100%	
Span Sensitivity:			20		
<u>Trial 1:</u> Co	unts Observed for the Span= nters Observed for the Zero=	117228	1	unts Observed for the Span= ters Observed for the Zero=	114847
T <u>rial 2:</u> Co	unts Observed for the Span=	2.6			
	nters Observed for the Zero=	51 911			
ost wonitoring (Calibration Check				
Zero Air Reading:	ppm	Cal Gas Reading:	300	_ppm	
BACKGROUND	CONCENTRATIONS CHECKS	i			
Jpwind Location	Description:	Entrana Chrid 160	e	Reading: 1-4	ppm
ownwind Locati	on Description:	Chrid Ibe	1	Reading: 1-3	ppm
6	Wind speed averages were of exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	ithin the previo	us 24 hours of the monitorin	g event. Therefore, site

Sight Si Sa

		SURFACE EMISSI	ONS MONITORING	
		CALIBRATION ANI	D PERTINENT DATA	
	3-17-7	0	Site Name: Newbu	
Date:	0114	<u></u>	Site Name:)
Inspector(s):	Ryan 1	1	Instrument:	
WEATHER OB	SERVATIONS			
WEATHER OD.				
Wind Speed	: МРН	Wind Direction: Ne	Barometric Pressure: 🤝 🚫	11. I
wind speed		Direction.		"Hg
Air Temperature	51.	General Weather Conditions:		
remperature		conditions.	Liberg	
CALIBRATION	INFORMATION			
Pre-monitoring	Calibration Precision Check			
Procedure: Calib	orate the instrument Make o	i total of three measuremen	nts by alternating zero air and the calibratio	n and Pacord the readings
			reading and the calibration gas as a percent	
precision must b	pe less than or equal to 10% o	f the calibration gas value.		
nstrument Seria	al Number:	\	Cal Gas Concentration:	500ppm
Frial	Zoro Air Boading	Cal Cas Deading		December 71 mar / 1
1	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
2	.2	198	2	St
3	1,1	502	2	5
andration Preci	ision= Average Difference/Cal	Gas Conc. X 100%		
Landration Preci	ision= Average Difference/Cal	Gas Conc. X 100% = 100%-	/500 x 100%	
andration Preci	ision= Average Difference/Cal		/500 x 100%	
			/500 x 100%	
pan Sensitivity: 'rial 1:			/500 x 100% % Trial 3:	11(177*)
ipan Sensitivity: irial 1:			%	114 2724
ipan Sensitivity: Trial 1: Co			% Trial 3:	114274
ipan Sensitivity: Trial 1: Co Cour Trial 2:	ounts Observed for the Span= nters Observed for the Zero=		% Trial 3: Counts Observed for the Span=	114274
Span Sensitivity: Trial 1: Co Cour Trial 2:	ounts Observed for the Span=		% Trial 3: Counts Observed for the Span=	114274
Span Sensitivity: Trial 1: Cou Trial 2: Co	ounts Observed for the Span= nters Observed for the Zero=		% Trial 3: Counts Observed for the Span=	114274
ipan Sensitivity: Trial 1: Cou Trial 2: Cou Cour	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span=		% Trial 3: Counts Observed for the Span=	114274
ipan Sensitivity: Trial 1: Cou Trial 2: Cou Cour ost Monitoring	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero=		% Trial 3: Counts Observed for the Span=	114274
ipan Sensitivity: irial 1: Council irial 2: Council counci council council council cou	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero=	$= 100\%$ $= 99.7$ $\frac{113927}{3953}$ 119135 3972	% Trial 3: Counts Observed for the Span=	114274
Span Sensitivity: Frial 1: Cou Cour Frial 2: Cou Cour	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check	= 100%- = 99.7 <u>3927</u> <u>3953</u> <u>101355</u> <u>3972</u> Cal Gas Reading:	% Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	114274
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Cost Monitoring Sero Air Leading: Co Court	ounts Observed for the Span= <u>nters Observed for the Zero=</u> ounts Observed for the Span= <u>nters Observed for the Zero=</u> Calibration Check <u>ppm</u> CONCENTRATIONS CHECKS	= 100%- = 99.7 <u>3927</u> <u>3953</u> <u>101355</u> <u>3972</u> Cal Gas Reading:	Trial 3: Counts Observed for the Span= Counters Observed for the Zero= 3000 ppm	114274
Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Cour Co	ounts Observed for the Span= <u>nters Observed for the Zero=</u> ounts Observed for the Span= <u>nters Observed for the Zero=</u> Calibration Check <u>ppm</u> CONCENTRATIONS CHECKS	= 100%- = 99.7 <u>3927</u> <u>3953</u> <u>101355</u> <u>3972</u> Cal Gas Reading:	% Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	114274 3993
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Court	ounts Observed for the Span= <u>nters Observed for the Zero=</u> ounts Observed for the Span= <u>nters Observed for the Zero=</u> Calibration Check <u>ppm</u> CONCENTRATIONS CHECKS Description:	= 100%- = 99.7 <u>3927</u> <u>3953</u> <u>101355</u> <u>3972</u> Cal Gas Reading:	Trial 3: Counts Observed for the Span= Counters Observed for the Zero= 3000 ppm	114274 3993 ppm
ipan Sensitivity: rial 1: Co Cour rial 2: Co Cour ost Monitoring ero Air eading: ACKGROUND of pwind Location ownwind Locati	punts Observed for the Span= <u>nters Observed for the Zero=</u> punts Observed for the Span= <u>nters Observed for the Zero=</u> Calibration Check <u>ppm</u> CONCENTRATIONS CHECKS Description: ion Description:	= 100%- = 99:7 <u>13927</u> <u>3953</u> <u>119135</u> <u>3972</u> Cal Gas Reading: <u>FM trance</u> <u>Gridib</u>	% Trial 3: Counts Observed for the Span= Counters Observed for the Zero= 500 ppm Reading: 3 Keading: 3 Counters 3	ppm
pan Sensitivity: rial 1: Co Cour rial 2: Co Cour ost Monitoring ero Air eading: ACKGROUND of pwind Location ownwind Location otes:	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check Calibration Check Description: ion Description: Wind speed averages were o	= 100%- = 99:7 <u>3927</u> <u>3953</u> <u>10135</u> <u>3972</u> Cal Gas Reading: <u>Morance</u> <u>Gridib</u> bserved to remain below th	% Trial 3: Counts Observed for the Span= Counters Observed for the Zero= 500 ppm Reading: 1.3	ppm nd no instantaneous speed:

		SURFACE EMISSIC			
Date:	3-17-	γ	Site Name:	Newty	
Inspector(s):	Code Crock	er	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
	()	Wind		Barometric 🧑 🥆	
Wind Speed	:МРН	Direction: MW	-	Pressure: <u>50</u>	"Hg
Air Temperature		General Weather Conditions:		<u>ay</u>	
CALIBRATION	INFORMATION			/	
Pre-monitoring	Calibration Precision Check				
and calculate th precision must b	orate the instrument. Make of e average algebraic difference be less than or equal to 10% of	ce between the instrument r		calibration gas as a percente	
nstrument Seria	al Number: <u>2</u>			Cal Gas Concentration:	500ppm
Trial	Zero Air-Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
1	$-\rho$	502			3
2	0	1500	e		1
	sion= Average Difference/Ca	= 100%-	١	/500 x 100%	
		= 99,8	%	-	
pan Sensitivity:					
rial 1:	unts Observed for the Span=		Trial 3: Cou	nts Observed for the Span=	141467
Cou	nters Observed for the Zero=	3948		ters Observed for the Zero=	
rial 2:	unts Observed for the Span=				
	nters Observed for the Zero=	-0.10			
	Calibration Check	0			
ero Air	\cap	Cal Gas	000		
eading:	ppm	Reading:	gw	ppm	
ACKGROUND	CONCENTRATIONS CHECK	S			
pwind Location	Description:	Entranc	e	Reading: <u>[.U]</u>	ppm
ownwind Locati	on Description:	C1V1216	~	Reading: 1.5	ppm
	Wind speed averages were o exceeded 20 miles per hour.	No rainfall had occurred wi	thin the previo		g event. Therefore, site

A REPORT OF A R					and the second second
					100 C 10 C 10 C
STOL STOL STOL	Services -	State of the second	the second second second second second	Design of the second second	I DOWN W
				1 - U & B & * N	🔜 🖓 H + 🖻 fl 🕈

ironmental Data 🚽 🖓 🐨 🕤

				5	Post
		SURFACE EMISSI	ONS MONI	TORING	
			D PERTINE	NT DATA	
Date:	5-11-2	1	Site Name:	newbu	9
Inspector(s):	cody C		Instrument:	TVA 2020	
WEATHER OBS				· .	
Wind Speed		Wind Direction:		Barometric Pressure: 30) "Hg
Air Temperature:	5(_°F	General Weather Conditions	CI GIA	<u>1</u> 9	
CALIBRATION	NFORMATION			/	
Pre-monitoring	Calibration Precision Check				
and calculate th	rate the instrument. Make a e average algebraic difference e less than or equal to 10% o t Number:	e between the instrument i	reading and the	calibration gas as a percen	tage. The calibration
				Cal Gas Concentration:	
Trial 1	Zero Air Reading	Cal Gas Reading		ConcCal Gas Reading	Response Time (seco
2	.)	2198)	5
		1		1	
andration Preci	sion= Average Difference/Cal	= 100%-	1.6	/500 x 100%	
		= QQ.7	%		
Span Sensitivity:			T-1-1-2.		
Frial 1: Co	unts Observed for the Span=	140872	<u>Trial 3:</u> Cou	nts Observed for the Span=	141070
Cour Frial 2:	nters Observed for the Zero=	1005	Count	ters Observed for the Zero=	40 91
Co	unts Observed for the Span=	140965			
Cour	nters Observed for the Zero=	COCI			
Post Monitoring (Calibration Check				
Zero Air Reading:	ppm	Cal Gas Reading:	500	_ppm	
	CONCENTRATIONS CHECKS	5			
Jpwind Location	Description:	Entrar	ce ?	Reading: 1.3	ppm
ownwind Locati	on Description:	C7/10/16	h	Reading: <u>1.5</u>	ppm
6	Wind speed averages were o exceeded 20 miles per hour.	No rainfall had occurred wi	thin the previou		ng event. Therefore, site

		SURFACE EMISSIO		
Date:	15-25-2		Site Name: Merthi	1
Inspector(s):	3424 0	1. (nstrument: TVA 2020	
WEATHER OBS	ERVATIONS			
Wind Speed:	MPH	Wind Direction:	Barometric <u>30</u> Pressure: <u>30</u>) "Нg
Air Temperature:	6.1	General Weather Conditions:	clear	
CALIBRATION I	NFORMATION			
Pre-monitoring (Calibration Precision Check			
and calculate the	e average algebraic difference e less than or equal to 10% of	e between the instrument rec	by alternating zero air and the calibration gas as a per ading and the calibration gas as a per Cal Gas Concentrati	rcentage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1		501		CI
2	1	501		- 5
		= 100% = 9(9.8%	\/500 x 100%	
Span Sensitivity: [rial 1:			i-1 2.	
Со	unts Observed for the Span=	193980	ial 3: Counts Observed for the Sp	
Cour	ters Observed for the Zero=	4008	Counters Observed for the Ze	ero= 4083
	unts Observed for the Span=_	144273		
Coun	ters Observed for the Zero=	1034		
ost Monitoring C	Calibration Check			
ero Air eading:	ppm	Cal Gas Reading:	500 ppm	
ACKGROUND C	ONCENTRATIONS CHECKS			
pwind Location I	Description:	Entrance	Reading:	ppm
ownwind Locatic	on Description:	Chrid (PC	Reading:	ppm
otes: V	Vind speed averages were ob xceeded 20 miles per hour. N	served to remain below the a No rainfall had occurred with	alternative requested 10 miles per ho in the previous 24 hours of the monit	ur and no instantaneous speeds

		SURFACE EMISSIC			past
1.1.4	2 7 3 - 7 1	CALIBRATION AND	J PERTINEI		,
Date:	<u> </u>	2 (Site Name:	newor	}
Inspector(s);	5421 (0	dy	Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS	J			
Wind Speed:	МРН	Wind Direction:/		Barometric Pressure: <u>3</u> 0	-"Hg
Air Temperature:		General Weather Conditions:	A	C	
CALIBRATION I	NFORMATION				
Pre-monitoring (Calibration Precision Check				
and calculate the	rate the instrument. Make a e average algebraic difference e less than or equal to 10% of I Number:	e between the instrument r	eading and the	calibration gas as a percent	tage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds)
1		49	2		5
2	0	lag	1		3
Calibration Precis	sion= Average Difference/Cal	= 100%-	1.3	_/500 x 100%	
		= 99.7	%		
Span Sensitivity:					
	unts Observed for the Span=	142974		nts Observed for the Span=	143561
Trial 2:	nters Observed for the Zero=	1000	Count	ters Observed for the Zero=	1105
	unts Observed for the Span=	142259			
	iters Observed for the Zero=				
Post Monitoring (Landration Check				
Zero Air Reading:	Dppm	Cal Gas Reading:	500	ppm	
BACKGROUND C	CONCENTRATIONS CHECKS				
Jpwind Location	Description:	Entrance		Reading: $\sqrt{3}$	ppm
Downwind Locatio	on Description:	Entrance (1ri216	er.	Reading: 15	ppm
e	Vind speed averages were ob exceeded 20 miles per hour. I neteorological conditions we	No rainfall had occurred wi	thin the previou	is 24 hours of the monitorin	g event. Therefore, site

		SURFACE EMISSIC			
Date: Inspector(s):	3-23-21 Brant 6		Site Name: Instrument:	Newber TVA 2020	}
WEATHER OBS	ERVATIONS			7	
Wind Speed:	МРН	Wind Direction:	÷	Barometric Pressure: <u>SO</u>	"Нд
Air Temperature:	<u>66</u> °F	General Weather Conditions:	1001	r 	
CALIBRATION I	NFORMATION				
Pre-monitoring (Calibration Precision Check				
and calculate the	rate the instrument. Make a e average algebraic differenc e less than or equal to 10% oj l Number:	e between the instrument r	eading and the	a zero air and the calibration calibration gas as a percente Cal Gas Concentration:	a gas. Record the readings age. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
1 2		503		>	·>
3	· (MAB 500	1		
Calibration Precis	ion= Average Difference/Cal	= 100%-	2	/500 x 100%	
Epop Consitivity		= 9,9,6	70		
	unts Observed for the Span=	166586		nts Observed for the Span= ers Observed for the Zero=	167342
Trial 2:	unts Observed for the Span=	166837	count		
Coun	ters Observed for the Zero=	4938			
Post Monitoring C	Calibration Check				
Zero Air Reading:	5 ppm	Cal Gas Reading:	500	ppm	
BACKGROUND C	ONCENTRATIONS CHECKS				
Jpwind Location I	Description:	Enfrance Grid 169	ر.	Reading: 2.3	opm
Downwind Locatio	on Description:	Curic 169		Reading: 1.5	mqc
e	Vind speed averages were ob xceeded 20 miles per hour. heteorological conditions we	No rainfall had occurred wi	thin the previou	s 24 hours of the monitoring	g event. Therefore, site

	SURFACE EMISSIC			1-032
0-02 7	(\	
3-12-2	- \	Site Name:	newby	
Brant W		Instrument:	TVA 2020	
ERVATIONS			ŵ	
МРН	Wind Direction:		Barometric Pressure: <u>30</u>	"Hg
Y7 °F	General Weather Conditions:	clea	¥	
NFORMATION				
alibration Precision Check				
ate the instrument. Make a	total of three measurement	ts by alternating	a zero air and the calibration	ans Record the readings
average algebraic difference	e between the instrument re	eading and the		
less than or equal to 10% of	f the calibration gas value.			
Number: <u>591</u>	9		Cal Gas Concentration:	500ppm
Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds
0	502	4		4
	501			
	= 100%-			
		1.5	/500 x 100%	
	0.07		_/500 x 100%	
	= 99.79	-	/500 x 100%	
	= 99.79	-	/500 x 100%	
ints Observed for the Span=	= 99.79	% Trial <u>3:</u>	/500 x 100% hts Observed for the Span=	170372
ints Observed for the Span= ters Observed for the Zero=	= 99.79	% Trial 3: Cou		170372 4940
	= 99.79 169740 4886	% Trial 3: Cou	nts Observed for the Span=_	170377 4940
ters Observed for the Zero= nts Observed for the Span=	= 99.79 169740 4886	% Trial 3: Cou	nts Observed for the Span=_	170377 4940
ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero=	= 99.79 169740 4886	% Trial 3: Cou	nts Observed for the Span=_	170372 4940
ters Observed for the Zero= nts Observed for the Span=	= 99.79 169740 4886 170141 4913	% Trial 3: Cou	nts Observed for the Span=_	49.40
ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero=	= 99.79 169740 4886 170141 4913 Cal Gas	% Trial 3: Cou	nts Observed for the Span=_ ers Observed for the Zero= {	4940
ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check	= 99.79 169790 4885 170191 4913 Cal Gas Reading:	% Trial 3: Cou	nts Observed for the Span=_	49.40
ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check ppm ONCENTRATIONS CHECKS	= 99.79 169790 4886 170191 4913 Cal Gas Reading:	% T <u>rial 3:</u> Count	nts Observed for the Span=_ ers Observed for the Zero= 2	<u>4940</u>
ters Observed for the Zero= Ints Observed for the Span= ters Observed for the Zero= alibration Check ppm ONCENTRATIONS CHECKS Description:	= 99.79 169790 4885 170191 4913 Cal Gas Reading:	% T <u>rial 3:</u> Count	nts Observed for the Span=_ ers Observed for the Zero= /	170372 4940
ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check ppm ONCENTRATIONS CHECKS	= 99.79 169790 4886 170191 4913 Cal Gas Reading:	% T <u>rial 3:</u> Count	This Observed for the Span= ers Observed for the Zero= ℓ ppm Reading:	170377 4940
	Brand W ERVATIONS MPH MPH MF NFORMATION alibration Precision Check rate the instrument. Make a average algebraic difference e less than or equal to 10% op Number: Zero Air Reading 	Wind	Brand W Instrument: ERVATIONS Wind MPH Direction: MPH Ceneral Weather MPH Conditions: Mether Conditions: Conditions: Conditions: Condition: Conditions: </td <td>Brand W Instrument: TVA 2020 ERVATIONS MPH Direction: Pressure: 30 MPH Direction: MPH Pressure: 30 MT *F General Weather Conditions: CCGV So MFORMATION alibration Precision Check ate the instrument. Make a total of three measurements by alternating zero air and the calibration average algebraic difference between the instrument reading and the calibration gas as a percentage tess than or equal to 10% of the calibration gas value. Cal Gas Concentration: Number: Support Cal Gas Reading Cal Gas Concentration: Zero Air Reading Cal Gas Reading Image Cal Gas Reading Cal Gas Reading Average Difference: Support Support *Perform recalibration if average difference is greater than 10 ion= Average Difference/Cal Gas Conc. X 100% Support Support Support</td>	Brand W Instrument: TVA 2020 ERVATIONS MPH Direction: Pressure: 30 MPH Direction: MPH Pressure: 30 MT *F General Weather Conditions: CCGV So MFORMATION alibration Precision Check ate the instrument. Make a total of three measurements by alternating zero air and the calibration average algebraic difference between the instrument reading and the calibration gas as a percentage tess than or equal to 10% of the calibration gas value. Cal Gas Concentration: Number: Support Cal Gas Reading Cal Gas Concentration: Zero Air Reading Cal Gas Reading Image Cal Gas Reading Cal Gas Reading Average Difference: Support Support *Perform recalibration if average difference is greater than 10 ion= Average Difference/Cal Gas Conc. X 100% Support Support Support

				the second of the local second s	The second second
the second se	and the second second	the second of the second s	and the second second	- Aghier w	2 19.50
SCS DataServices -	- SAAWRA	ENVIER OF THE OF THE A	D W S R S C	ILDAT - IFF	
a ca paraservices			· A • D H •		

		SURFACE EMISSIO	ONS MONITORING	
		CALIBRATION AND	PERTINENT DATA	
Date:	3-23-21		Site Name: <u>new</u>	<u>pole</u>
Inspector(s):	Hunter	0	Instrument:TVA 2020	
WEATHER OBS	SERVATIONS		á.	
Wind Speed	мрн	Wind Direction:	Barometric Pressure: _	30 "Hg
Air Temperature:		General Weather Conditions:	clear	
CALIBRATION I	NFORMATION			
^o re-monitoring (Calibration Precision Check			
and calculate the precision must b	e average algebraic difference e less than or equal to 10% o	e between the instrument r	eading and the calibration gas c	e calibration gas. Record the readings as a percentage. The calibration
nstrument Seria	Number:	<u>\')</u>	Cal Gas Conc	centration: 500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Re	ading Response Time (seconds
1		502	2	L)
2		500	2	<u> </u>
sibilation Precis	sion= Average Difference/Cal	= 100%-	<u>\'3</u> /500 x 100%	
pan Sensitivity: rial 1: Co	unts Observed for the Span=		% Trial 3: Counts Observed for	r the Span= 146176
Court	nters Observed for the Zero=	46191	Counters Observed fo	41, 87
rial 2: Co	unts Observed for the Span=	145959	Counters Observed to	
	nters Observed for the Zero=	40,0		
	Calibration Check			
ero Air eading:	D ppm	Cal Gas Reading:	500_ppm	
	CONCENTRATIONS CHECKS	5		
pwind Location	Description:	Entrance	Reading:)ppm
ownwind Locati	on Description:	Chvid 16	م Reading:	1.5 ppm
e	exceeded 20 miles per hour.	No rainfall had occurred wi	thin the previous 24 hours of th	s per hour and no instantaneous speed e monitoring event. Therefore, site nts on the above mentioned date.

1 1			SURFACE EMISSI		TORING	
Inspector(s): HWHC Instrument: TVA 2020 WEATHER OBSERVATIONS Wind Speed: MPH Direction: Buremetric Pressure: "Hg Air General Weather Temperature: 'F General Weather Conditions: CLCCAV CALIBRATION INFORMATION Pre-molitaring Calibration Precision Check Procedure: Calibration request to tail of three measurements by othernating zero air and the calibration gas. Record the readings and calibration request to tail of the calibration gas value. Instrument Serial Number: 'F Conditionation gas value. Instrument Serial Number: 'SUK Cal Gas Concentration: Supprime (second) 1 'A Reading Cal Gas Reading Cal Gas Concentration: Supprime (second) 1 'A Verage Difference/Cal Gas Concentration (second) 2 'A Verage Difference/Cal Gas Concentration (second) 1 'A Verage Difference/Cal Gas Concentration (second) 2 'A Verage Counts Observed for the Span=	1)		CALIBRATION AN	D PERTINE	NT DATA	
WEATHER OBSERVATIONS Wind Speed:	Date:	3-23-21		Site Name:	newby	
Wind Speed: MPH Wind Direction Brownetric B.D. **#g Air YI ** General Weather CallBaction in Krossware ** ** CallBaction in Krosswarton ** Second in and the collbration gas. Recard the readings and and collarbe the overga eigebraic difference between the instrument coding and the collbration gas as a percentage. The collbration gas as a percentage. The collbration gas as a percentage. The collbration precision must be less than or equal to 10% of the collbration gas value. Instrument Serial Number: Survey Call Gas Reading Call Gas Concercal Gas Reading Response Time (seconds) Trial Zero Air Reading Call Gas Conce. Cal Gas Reading Response Time (seconds) * Average Difference! Zero Air Reading Call Gas Conce. Cal Gas Reading Response Time (seconds) 1 Zero Air Reading Call Gas Conce. Cal Gas Reading Response Time (seconds) 2 Xerage Difference! Zero Air Reading Call Gas Conce. Cal Gas Reading! Response Time (seconds) 2 Xerage Difference! Zero Air Reading Call Gas Conce. X 100% Seconds Callbration Precision=Average Difference/Cal Gas Conce. X 100% Image: Call Gas Conce X 100% Seconds Concertage Call Gas Conce X 100%	Inspector(s):	HUNTER U		Instrument:	TVA 2020	
Wind Speed:	WEATHER OBS	ERVATIONS				
Temperature:	Wind Speed:	мрн	0	-0		"Hg
Pre-monitoring Calibration Precision Check Procedure: Calibration Precision Check Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the colibration gas. Record the readings and colucite the overage algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than a equal to 10% of the calibration gas value. Instrument Serial Number: <u>SULK</u> <u>Cal Gas Conce-Cal Gas Reading</u> <u>Response Time (seconds)</u> <u>1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</u>		<u> </u>			\checkmark	
Procedure: Colibrate the instrument. Make a total of three measurements by alternating zero air and the colibration gas. Record the readings and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The colibration precision must be less than or equal to 10% of the colibration gas value. Instrument Serial Number: <u>5415</u> Cal Gas Concertration: <u>500ppm</u> Trial <u>2</u> 2 2 3 3 3 0 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CALIBRATION I	NFORMATION				
and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration gas value.	Pre-monitoring C	alibration Precision Check				
1 1	and calculate the precision must be	e average algebraic difference e less than or equal to 10% of	between the instrument	reading and the	calibration gas as a percent	age. The calibration
1 1	Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas	ConcCal Gas Reading	Response Time (seconds)
3 Average Difference: **erform reculsoration if average difference is greater than 30 Callbration Precision= Average Difference/Cal Gas Conc. X 100% = 100% = 100% Span Sensitivity: rial 1: Counts Observed for the Span= Counts Observed for the Span= 146 Counters Observed for the Span= 146 Counters Observed for the Zero= 1.5 Counters Observed for the Zero= 1.5 Counters Observed for the Zero= 1.6 Counters Observed for the Zero= 1.6 Counters Observed for the Zero= 1.6 VackGROUND Concentrations Check Ereo Air ereo Air	1	- 1		2		
Average Difference: Image Difference: **reform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100% = 100% = 100% Galibration Precision= Average Difference/Cal Gas Conc. X 100% = 100% = 100% Galibration Precision= Average Difference/Cal Gas Conc. X 100% = 100%		2	501	1		Y.
**errorm-recalibration If average difference is greater than 10 Callibration Precision= Average Difference/Cal Gas Conc. X 100% $= 100\% - 5 /500 \times 100\%$ = 0.0.7% igan Sensitivity: Trial 3: Counts Observed for the Span= 146 44% Counts Observed for the Span= 146 841 Counters Observed for the Zero= 16671 Counters Observed for the Zero= 1667 rial 2: Counts Observed for the Zero= 1667 Counters Observed for the Zero= 1667 rial 2: Counters Observed for the Zero= 1667 rial 2: Counters Observed for the Zero= 1667 rial 2: Counters Observed for the Zero= 1667 rial 3: Counters Observed for the Zero= 1667 Counters Observed for the Zero= 1667 rial 2: Counters Observed for the Zero= 1667 rial 3: Counters Observed for the Zero= 1667 rial 2: Counters Observed for the Zero= 1667 rial 2: Counters Observed for the Zero= 1667 rial 3: Counters Observed for the Zero= 1667 rial 2: Counters Observed for the Zero= 1667 rial 3: Counters Observed for the Zero= 1667 rial 2: Counters Observed for the Zero= 1667	3	.0 -	501	1/		
ippan Sensitivity: Trial 3: Counts Observed for the Span= 146448 Counters Observed for the Zero= 1561 Counters Observed for the Zero= 16671 Counters Observed for the Zero= 1672 Action Concentrations Checks Reading: 500 ppm Mack KGROUND CONCENTRATIONS CHECKS Reading: 190 ppm Mack Reading: 190 ppm Mack Reading: 190 ppm Mack Reading: 190 ppm Mack Reading: 190 ppm <th< th=""><th>Calibration Precis</th><th>ion= Average Difference/Cal</th><th>= 100%-</th><th></th><th>_/500 x 100%</th><th></th></th<>	Calibration Precis	ion= Average Difference/Cal	= 100%-		_/500 x 100%	
Trial 1: Counts Observed for the Span= 146448 Trial 3: Counts Observed for the Span= 147108 Counters Observed for the Zero= US81 Counters Observed for the Zero= US81 Trial 2: Counts Observed for the Span= US81 Counters Observed for the Zero= US81 Counters Observed for the Span= US81 Counters Observed for the Zero= US81 Counters Observed for the Zero= US81 Counters Observed for the Zero= US81 Counters Observed for the Zero= US81 Counters Observed for the Zero= US81 Counters Observed for the Zero= US81 Counters Observed for the Zero= US81 Counters Observed for the Zero= US81 Trial 3: Counters Observed for the Zero= US81 Counters Observed for the Zero= US81 Counters Observed for the Zero= US81 Cal Gas 500 ppm Counters Observed for the Zero= Ppm Reading: Sppm Counters Observed for the Zero= Sppm Reading: Sppm Counters Observed for the Zero= Sppm Reading: Sppm Ipwind Location Description: Sppm Reading: Sppm Iownwind Locatio	Sono Constal day					
Counts Observed for the Spane 146448 Counts Observed for the Spane 14694 Counters Observed for the Zeroe 1681 Counters Observed for the Zeroe 1681 Trial 2: Counts Observed for the Spane 146841 Counters Observed for the Zeroe 1687 Counters Observed for the Spane 146841 Counters Observed for the Zeroe 1687 Counters Observed for the Zeroe 1687 Counters Observed for the Zeroe 1687 Counters Observed for the Zeroe 1687 Counters Observed for the Zeroe 1687 Counters Observed for the Zeroe 1687 Counters Observed for the Zeroe 1687 Counters Observed for the Zeroe 1687 Vost Monitoring Calibration Check Counters Observed for the Zeroe 1683 500 ppm VacKGROUND CONCENTRATIONS CHECKS Reading: 500 ppm Nownwind Location Description: Image: Counters Counters Observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives o				Trial 3:		
Trial 2: Counts Observed for the Span= 16891 Counters Observed for the Zero= 1612 Tost Monitoring Calibration Check tero Air Cal Gas tero Air Cal Gas Pack ppm Counters Observed for the Zero= 1602 Prost Monitoring Calibration Check tero Air Cal Gas Reading:	Cou			Со		147108
Counts Observed for the Span= Yes Yes Counters Observed for the Zero= Yes Yes Prost Monitoring Calibration Check Vero Air Cal Gas Reading: O ppm Cal Gas Reading: O Powind Location Description: FMACKGROUND CONCENTRATIONS CHECKS Powind Location Description: FMACKGROUNG Nownwind Location Description: FMACKGROUNG Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.	Trial 2:			Coun	ters Observed for the Zero=	46.29
Post Monitoring Calibration Check Pero Air Leading:ppm Cal Gas Reading:ppm Reading:ppm CACKGROUND CONCENTRATIONS CHECKS Powind Location Description:ff, and the formula of the second seco	Cou	-	146841	1		
Vero Air O ppm Cal Gas 500 ppm Reading:	Coun	ters Observed for the Zero=	4612			
Ackading: ppm Reading: ppm AckGROUND CONCENTRATIONS CHECKS	Post Monitoring C	alibration Check				
Ipwind Location Description: FMUMME Reading: Job ppm Inownwind Location Description: Mind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.	Zero Air Reading:	Оррт		500	_ppm	
Inversion Description: Image: Ima	BACKGROUND C	ONCENTRATIONS CHECKS				
lotes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.	Upwind Location I	Description: –	Entrance	e	Reading: 1.3	ppm
exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.	Downwind Locatic	on Description:	Grig 10	\sim	Reading:	ppm
DataServices - Secure Environmental Data	e n	xceeded 20 miles per hour. I neteorological conditions we	No rainfall had occurred w re within the requested all	ithin the previo ternatives of the	us 24 hours of the monitorin	g event. Therefore, site

		SURFACE EMISSI		TORING	
		CALIBRATION AN			
			DPERIINE		
Date:	5-23-21		Site Name:	newba	<u> </u>
Inspector(s):	Bryan O		Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed	:мрн	Wind Direction:	-	Barometric Pressure: <u>50</u>	"Нg
Air Temperature:	66 °F	General Weathe Conditions	: <u>clea</u>	$\langle $	
	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	prate the instrument. Make a t le average algebraic difference he less than or equal to 10% of	between the instrument	reading and the		
nstrument Seria	al Number: 122	0		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
1		1999		1	5
2	0	198		2	L
3		501		1	9
		= 100%-	13	_/500 x 100%	
		= 49/	%		
pan Sensitivity: rial 1:	1		Trial 3:		
Co	unts Observed for the Span=_	129847		ints Observed for the Span=	130106
Cour	nters Observed for the Zero={	797	Coun	ters Observed for the Zero=	3053
rial 2: Co	unts Observed for the Span=	129985			
Cour	nters Observed for the Zero=	3022			
ost Monitoring (Calibration Check				
ero Air		Cal Gas			
eading:	ppm	Reading:	500	_ppm	
ACKGROUND	CONCENTRATIONS CHECKS	1			
pwind Location	Description:	Entranc	e	Reading: 1, 2	ppm
ownwind Locati	on Description:	C1V1016	લ	Reading: 1-5	ppm
6	Wind speed averages were obs exceeded 20 miles per hour. N meteorological conditions were	o rainfall had occurred w	ithin the previou	us 24 hours of the monitori	ng event. Therefore, site

					Pre
		SURFACE EMISS	ONS MONI	TORING	
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	3.23 -21		Cite No	ine sh	N
Date:			Site Name:	-VIKND	
Inspector(s):	Bryan		Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
		Wind		Barometric	
Wind Speed:	МРН	Direction:	_	Pressure: <u>30</u>	"Hg
Air Temperature:		General Weathe Conditions		\sim	
CALIBRATION I	INFORMATION				
Pre-monitoring	Calibration Precision Check				
Procedure: Calib	rate the instrument. Make a	total of three measureme	nts by alternatio	a zero air and the calibration	ans Record the readings
	e average algebraic differenc				
precision must b	e less than or equal to 10% o	f the calibration gas value.			
nstrument Seria	I Number: 12 11	6		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (seconds
1	14	50	1		5
2	<u>n N</u>	498		7	5
3		1 (199			4
		= 100%-	99.7	_/500 x 100%	
		=99;1	%		
pan Sensitivity:					
rial 1:		1000-0	Trial 3:		12-01/1
Co	unts Observed for the Span=	129608	Cou	nts Observed for the Span=	130161
	nters Observed for the Zero=	2958	Count	ers Observed for the Zero=	2998
rial 2: Co	unts Observed for the Span=	129835			
Cour	nters Observed for the Zero=	2972			
ost Monitoring (Calibration Check				
ero Air		Cal Gas	<u> </u>		
eading: –	ppm	Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECKS	6			
pwind Location	Description:	Entranc	e	Reading:	pm
ownwind Locatio	on Description:	chrid 11	59	Reading:	opm
e	Nind speed averages were ok exceeded 20 miles per hour.	No rainfall had occurred w	ithin the previou	is 24 hours of the monitoring	event. Therefore, site
a state of the sta	neteorological conditions we			LIVIK requirements on the at	oove mentioned date.
Date Sam	vices - Secure H	nvitonmontal	Dates	I Carl man a man	2

					Bre
		SURFACE EMISS	IONS MONI	TORING	
		CALIBRATION AN	ID PERTINE	NT DATA	
Date:	3-23-20	21	Site Name:	newbul)
Inspector(s):	Don -C.	1	Instrument:	TVA 2020	
WEATHER OBSER	VATIONS				
Wind Speed:	С(мрн	Wind Direction:	_	Barometric Pressure: <u>30</u>	"Нд
Air Temperature:	U.J. "F	General Weathe Condition		\mathcal{A}	
CALIBRATION INF	ORMATION				
² re-monitoring Cali	bration Precision Check				
Procedure: Calibrat	e the instrument. Make a	a total of three measureme	nts hv alternatin	g zero air and the calibration	ans Record the readings
and calculate the a	verage algebraic differen	ce between the instrument	reading and the	calibration gas as a percenta	ge. The calibration
precision must be le	ess than or equal to 10% c	of the calibration gas value.			
nstrument Serial N	umber: 122	0		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading		ConcCal Gas Reading	Response Time (seconds
2		500	2		2
3	.1	50			
		= 100%-	1-3	/500 x 100%	
		= 99.	%		
nan Constituituu					
oan Sensitivity: ri al 1:		6.1.5	Trial 3:		
	s Observed for the Span=	6648		nts Observed for the Span=	162253
	s Observed for the Zero=	3672	Count	ers Observed for the Zero=	3694
r <mark>ial 2:</mark> Counts	s Observed for the Span=	16907			
Counter	s Observed for the Zero=	3681	1		
ost Monitoring Calil	bration Check				
ero Air	0	Cal Gas	Im		
eading:	ppm	Reading:	_300	ppm	
ACKGROUND CON	CENTRATIONS CHECKS	5			
owind Location Des	cription:	Entrance	2	Reading:	pm
ownwind Location [Description:	avid 16.	ſ	Reading: 1.5 pp	om
exce	eded 20 miles per hour.	No rainfall had occurred w	ithin the previou	uested 10 miles per hour and s 24 hours of the monitoring LMR requirements on the abo	event. Therefore, site
and the second second second	the second and the second and the second sec	Environmental			

Inspector(s): DOK MATHER OBSERVATIONS Wind Speed:				0.110.1.00.11	1	Tost
Date: 3-23-21 Site Name: MEWDY Imagector(F): DON_C1 Instrument: TVA 2020 Wind Speed:						
Inspector(s): DOM Cy Instrument: TVA 2020 Wind Speed:MPH Direction: MPH D		5 77 71	CALIDITATION AN		i i	
Wind Speed: MPH Wind Direction: Barometric Pressure: Pr	Date:	3-25-21		Site Name:	Newby	
Wind Speed: MPH Direction: Pressure: Direction: Directio	Inspector(s):	pon ey		Instrument:	TVA 2020	
Wind Speed: MPH Direction: Pressure: Direction: Pressure: Direction: Mg Air General Weather Conditions: Direction:: Direction:: <td< td=""><td>WEATHER OB</td><td>SERVATIONS</td><td></td><td></td><td></td><td></td></td<>	WEATHER OB	SERVATIONS				
Ar General Weather CALBRATION INFORMATION Pre-monitoring Calibration Precision Check Procedure: Calibration Precision Check Procedure: Calibration Precision Check Procedure: Calibration or equal to 10% of the calibration gas value. Instrument Serial Number:			Wind		Barometric	
Temperature:	Wind Speed	МРН	Direction:	-	Pressure:	"Hg
				1	_	
Procedure: Colibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the reading and the calibration gas as a percentage. The calibration recision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number:		INFORMATION				
and colculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The colibration verecision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: <	Pre-monitoring	Calibration Precision Check				
and colculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The colibration verecision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number: <	Procedure: Calil	hrata tha instrumant Maka a	total of three measureme			
recision must be less than or equal to 10% of the calibration gas value Instrument Serial Number:	nd calculate th	ne average algebraic difference	between the instrument	reading and the	g zero air and the calibration calibration gas as a percente	gas. Record the readings age. The calibration
Image: Series of the spane Cal Gas Reading I Cal Gas ConcCal Gas Reading Response Time (second) 1 .7 <t< td=""><td></td><td></td><td></td><td></td><td>5 ,</td><td>5</td></t<>					5 ,	5
1 1	nstrument Seria	al Number:	_0		Cal Gas Concentration:	500ppm
2 1 1/2 1/2 1/2 3 0 - DDD 0 4 Average Difference:	rial	Zero Air Reading		Cal Gas C		Response Time (seconds
3 0		1			2	2
*Perform recalibration if average difference is greater than 10		0	200	-	0	4
$= 100\% - 1/500 \times 100\%$ $= 9\% \cdot 5\%$ an Sensitivity: ial 1: Counts Observed for the Span= 160873 Counters Observed for the Span= 161247 Counters Observed for the Zero= 3691 Counters Observed for the Zero= 3692 st Monitoring Calibration Check to Air Cal Gas Reading: ppm Cal Gas Reading: ppm CALCENTRATIONS CHECKS wind Location Description: wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous spee exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site				*Perform recalibratio	n if average difference is greater than 1	0
= 94.5% Trial 3: Counts Observed for the Span= 160873 Counters Observed for the Span= 161247 Counters Observed for the Zero= 3672 Counters Observed for the Span= 161247 Counters Observed for the Zero= 3692 Trial 3: Counts Observed for the Zero= 3692 Trial 3: Counters Observed for the Zero= 3692 The Monitoring Calibration Check To Air Cal Gas Reading: ppm Reading: ppm	alibration Preci	ision= Average Difference/Cal	Gas Conc. X 100%	\ \		
Dan Sensitivity: ial 1: Counts Observed for the Span= Counters Observed for the Zero= 3671 Counters Observed for the Zero= 3671 counters Observed for the Span= 161247 Counters Observed for the Span= 161247 Counters Observed for the Span= 161247 Counters Observed for the Zero= 3692 St Monitoring Calibration Check Cal Gas ro Air Cal Gas ading:			- /		_/500 x 100%	
tal 1: Counts Observed for the Span= 160873 Trial 3: Counts Observed for the Span= 161482 Counters Observed for the Zero= 3671 Counters Observed for the Zero= 3720 tal 2: Counters Observed for the Span= 161247 Counters Observed for the Zero= 3720 counters Observed for the Span= 161247 Counters Observed for the Zero= 3720 counters Observed for the Zero= 36692 373 3720 outers Observed for the Zero= 36692 3730 3720 outers Observed for the Zero= 36692 3720 3720 outers Observed for the Zero= 36692 3720 3720 outers Observed for the Zero= 36692 3720 3720 outers Observed for the Zero= 500 3720 3720 outers Observed for the Zero= 600 3720 3720 outers Observed for the Zero= 500 3720 372			= 99. B	%		
Counts Observed for the Span= 100815 Counts Observed for the Span= 61482 Counters Observed for the Zero= 3611 Counters Observed for the Zero= 3780 ial 2: Counts Observed for the Span= 161247 Counters Observed for the Zero= 3780 counters Observed for the Span= 161247 Counters Observed for the Zero= 3780 3780 counters Observed for the Zero= 3692 3692 3780 3780 3780 vist Monitoring Calibration Check Cal Gas Reading: 500 ppm 500 ppm ACKGROUND CONCENTRATIONS CHECKS Reading: 500 ppm 9790 wwwind Location Description: Entropy Childer Reading: 15 ppm www.wind Location Description: Entropy Childer Reading: 15 ppm www.wind Location Description: Entropy Childer Reading: 15 ppm wtes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous speed exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	oan Sensitivity:					
ial 2: Counts Observed for the Span= 161247 Counters Observed for the Zero= 3692 est Monitoring Calibration Check ro Air Cal Gas reading:	rial 1: Co	ounts Observed for the Span=	160873		nts Observed for the Span=	61486
ial 2: Counts Observed for the Span= 161247 Counters Observed for the Zero= 3692 est Monitoring Calibration Check ro Air Cal Gas reading:	Cou	nters Observed for the Zero=	3671	Count	ers Observed for the Zero=	2780
AckGROUND CONCENTRATIONS CHECKS www.ind Location Description: Image: Image:	rial 2:		161247			91100
ro Air Cal Gas rading: ppm Reading: ppm ACKGROUND CONCENTRATIONS CHECKS owind Location Description:	Cour	- nters Observed for the Zero=	3692			
hading: ppm Reading: ppm ACKGROUND CONCENTRATIONS CHECKS	ost Monitoring	Calibration Check				
ACKGROUND CONCENTRATIONS CHECKS wwind Location Description: Entrance Wind Location Description: Entrance Wind Location Description: Entrance Wind Speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous spee exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	ro Air		Cal Gas			
www.ind Location Description: wnwind Location Description: Entry 2000 Reading: 100 ppm Reading: 100 ppm	eading:	ppm	Reading:	500	ppm	
wnwind Location Description: CLUIDED Reading: LEE ppm wtes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous spee exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site		CONCENTRATIONS CHECKS				
wnwind Location Description: CLUIDED Reading: LEE ppm wtes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous spee exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	wind Location	Description:	Entranc	e	Reading: \- U	pm
exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	wnwind Locati	on Description:	C1vid 16	27	Reading: 1.5	ppm
meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.	6	exceeded 20 miles per hour. N	lo rainfall had occurred w	ithin the previou	s 24 hours of the monitoring	event. Therefore, site
DataServices - Secure Environmental Data	A DECK DECK	The second s	Sevent the sevent sevent	the state of the second	LMR requirements on the ab	ove mentioned date.

		SURFACE EMISSI			
	2 0	CALIBRATION AN	DPERIINE	NIDAIA	
Date:	5-13-2 Cimina M		Site Name:	nevby	·
Inspector(s):	Crown M	1	instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	:МРН	Wind Direction:	÷	Barometric Pressure: 30	
Ai Temperature		General Weathe Conditions	010	M	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	brate the instrument. Make on the average algebraic difference the less than or equal to 10% of al Number:54	e between the instrument	reading and the	g zero air and the calibratio calibration gas as a percen Cal Gas Concentration:	on gas. Record the readings tage. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading		Cons. Cal Cas Reading	Despense Time (accorde)
1		LP19		ConcCal Gas Reading	Response Time (seconds)
2	, 1	टावव	1		CI
3	0	507		L	5
		= 100%- = (()_ (<u>\.3</u> %	_/500 x 100%	
Span Sensitivity:					
Trial 1:	ounts Observed for the Span=	126728	<u>Trial 3:</u> Cou	nts Observed for the Span=	127185
	nters Observed for the Zero=	3985	Coun	ers Observed for the Zero=	3564
Trial 2: Co	unts Observed for the Span=	126959			
Coui	nters Observed for the Zero=	3523			
ost Monitoring	Calibration Check				
ero Air leading:	Oppm	Cal Gas Reading:	500	ppm	
	CONCENTRATIONS CHECKS	i i			
Ipwind Location	Description:	Entrance		Reading: 2	ppm
ownwind Locati	on Description:	Crvidlb	q	Reading: 1. U	ppm
	Wind speed averages were o exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	ithin the previou	s 24 hours of the monitorin	ng event. Therefore, site
Street Could Income	vices - Secure	and the state of the	(Barrison)	Mail this will	rait .

		SURFACE EMISSI			
Date:	3-23-2		Site Name:	nersbu	
Inspector(s):	3-23-2 Cian V	n	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			41	
		14.11		5-0-2	
Wind Speed	МРН	Wind Direction: <u>Y</u>	_	Barometric Pressure: <u>30</u>	"Hg
Air Temperature		General Weathe Conditions	clear		
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th precision must b	e average algebraic differen be less than or equal to 10%	a total of three measurement ace between the instrument of the calibration gas value.	reading and the	g zero air and the calibration g calibration gas as a percentag	e. The calibration
Instrument Seria	al Number: <u> </u>	<u> </u>		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds)
1	.2	498	7		<u>L</u>
2		201	1		3
3		1 501	1		9
Calibration Preci	sion= Average Difference/C		1.3	_/500 x 100%	
		-	%		
Span Sensitivity:					
- 1 I A	unts Observed for the Span	125863	<u>Trial 3:</u> Cou	nts Observed for the Span=	126281
	nters Observed for the Zero	0-0-1	Count	ters Observed for the Zero=	3594
T <mark>rial 2:</mark> Co	unts Observed for the Span	126084			
Cour	nters Observed for the Zero	3572			
Post Monitoring (Calibration Check				
ero Air		Cal Gas			
leading:	ppm	Reading:	500	ppm	
	CONCENTRATIONS CHECK	(S			
lpwind Location	Description:	Entrance	>	Reading: <u>1-2</u> pp	m
ownwind Locati	on Description:	Cridle	21	Reading: <u>1.4</u> pp	m
6	exceeded 20 miles per hour	. No rainfall had occurred w	ithin the previou	quested 10 miles per hour and is 24 hours of the monitoring e LMR requirements on the abo	event. Therefore, site

			ONS MONITORING		NE
1. To T		CALIBRATION ANI	D PERTINENT DATA		
Date:	3-27-21		Site Name:	the	
Inspector(s):	Don Gibs	-712	Instrument: TVA 202	0	
WEATHER OB	SERVATIONS				
Wind Speed	:МРН	Wind Direction: <u>EN E</u>	Barome Pressu	× ~ ·	"Нд
Air Temperature	Collo .F	General Weather Conditions:			
CALIBRATION	INFORMATION		0		
Pre-monitoring	Calibration Precision Check				
	pe less than or equal to 10%	nce between the instrument r of the calibration gas value.		gas as a percentag	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Ga	s Reading	Response Time (second
1	4	501			
2	O t	4,22	F		2
Calibration Preci	sion= Average Difference/Ca	Average Difference:	*Perform recallbration if average diffe	rence is greater than 10	
Calibration Preci	sion= Average Difference/Ca	al Gas Conc. X 100%	2013		
Calibration Preci	sion= Average Difference/Ca		*Perform recalibration if average diffe		
Calibration Preci	ision= Average Difference/Ca	al Gas Conc. X 100%	1.3 24.5 /500 × 100		
		al Gas Conc. X 100% = 100%- - 91 9 7	1.3 24.5 /500 × 100		
Span Sensitivity: Trial 1:		al Gas Conc. X 100% = 100%- = 99,7	/500 x 100 % Trial 3:	%	112000
Span Sensitivity: T rial 1: Co	ounts Observed for the Span	al Gas Conc. X 100% = 100%- = 99,7 = <u>164128</u>	/500 × 100 % <u>Trial 3:</u> Counts Observe	% d for the Span=(63721
Span Sensitivity: Trial 1: Co Cour	ounts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100%- = 99,7 = <u>164128</u> = <u>3602</u>	/500 × 100 % <u>Trial 3:</u> Counts Observe	%	
Span Sensitivity: Trial 1: Co Cour	ounts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100%- = 99,7 = <u>164128</u> = <u>3602</u>	/500 × 100 % <u>Trial 3:</u> Counts Observe	% d for the Span=(
Span Sensitivity: Trial 1: Co Cour Trial 2: Co	ounts Observed for the Span	al Gas Conc. X 100% = 100% = $99,7$ = 1664128 = 3602 = 163019 = 163019	/500 × 100 % <u>Trial 3:</u> Counts Observe	% d for the Span=(
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans	al Gas Conc. X 100% = 100% = $99,7$ = 1664128 = 3602 = 163019 = 163019	/500 × 100 % <u>Trial 3:</u> Counts Observe	% d for the Span=(
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring of Pero Air	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros	al Gas Conc. X 100% = 100% = $99,7$ = 1664128 = 3602 = 163019 = 163019	/500 × 100 % <u>Trial 3:</u> Counts Observe	% d for the Span=(
Span Sensitivity: Trial 1: Count Trial 2: Count Post Monitoring of Zero Air Reading:	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% = 99.7 = 1664128 = 3602 = 163019 = 3631 Cal Gas Reading:	% <u>Trial 3:</u> Counts Observe <u>Counters Observe</u>	% d for the Span=(
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring of Post Mo	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% = 99.7 = 1664128 = 3602 = 16307 = 3631 Cal Gas Reading:	% <u>Trial 3:</u> Counts Observe <u>Counters Observe</u>	% d for the Span=(3612
Span Sensitivity: Trial 1: Count Trial 2: Count Post Monitoring of Zero Air Reading:	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% = 99.7 = 1664128 = 3602 = 163019 = 3631 Cal Gas Reading:	/500 x 100 % Trial 3: Counts Observe Counters Observe	% d for the Span= <u>(</u> d for the Zero= -	<u>3617</u>
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring of Corro Air Reading: BACKGROUND of Jpwind Location Downwind Location Notes:	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check Calibration Check Description: on Description: on Description: Wind speed averages were constructed Wind speed averages were constructed Calibration Check	al Gas Conc. X 100% = 100% = 99.7 = 1664128 = 3602 = 16307 = 3631 Cal Gas Reading:	/500 x 100 % Trial 3: Counts Observe Counters Observe Counters Observe Reading: Reading: Reading: Reading: e alternative requested 10 r	% d for the Span= $(\frac{1}{\sqrt{1}})^{1}$ $\frac{1}{\sqrt{3}}$ pp niles per hour and of the monitoring e	m m no instantaneous spee vent. Therefore, site

Inspector(s):	MPH G CRMATION Dration Precision Check	Wind Direction: EUP General Weather Conditions:	Site Name: <u>JECCbc</u> Instrument: <u>TVA 2020</u>	1"Hg
Inspector(s):	VATIONS VATIONS CMPH 4 CF ORMATION Dration Precision Check	Wind Direction: EUP General Weather Conditions:	Instrument: TVA 2020 Barometric Pressure:	1"Hg
Wind Speed: Wind Speed: Air Temperature: CALIBRATION INFO	MPH G CRMATION Dration Precision Check	Wind Direction: <u>EMP</u> General Weather Conditions: _	Barometric Pressure:	"Нg
Wind Speed: Air Temperature: CALIBRATION INFO	MPH G CRMATION Dration Precision Check	Direction: <u>EDE</u> General Weather Conditions:	Pressure:	"Нg
Air Temperature:	°F ORMATION oration Precision Check	Direction: <u>EDE</u> General Weather Conditions:	Pressure:	"Нg
Temperature:	oration Precision Check	Conditions: _	SCENAY	
	oration Precision Check		\sim	
Pre-monitoring Calil				
	e the instrument. Make a			
and calculate the av	ss than or equal to 10% of		s by alternating zero air and the calibrat ading and the calibration gas as a perce Cal Gas Concentratior	ntage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1	5	499	(>
2	(501	(5
		502		
	,	= 100% = 99,7 %		
Span Sensitivity:				
Trial 1: Counts	s Observed for the Span= s Observed for the Zero=	131859	rial 3: Counts Observed for the Spa Counters Observed for the Zerr	
Trial 2:		131528	Counters Observed for the Zen	- 2018
Counter	s Observed for the Zero=	3621		
Post Monitoring Calil	pration Check			
Zero Air Reading:	ppm	Cal Gas Reading:	2.00 bbw	
BACKGROUND CON	ICENTRATIONS CHECK	S		
Upwind Location Des	cription:	Entrance Gnid 169	Reading: (1)	ppm
Downwind Location [Description:	Gnd 169	Reading: 1,3	ppm
exce	eded 20 miles per hour. eorological conditions w	No rainfall had occurred with ere within the requested alter	alternative requested 10 miles per hou nin the previous 24 hours of the monito matives of the LMR requirements on the	ring event. Therefore, site e above mentioned date.

RAR SHIEL in.

			ONS MONITORING D PERTINENT DATA	post
	27171			1
Date:	sound		Site Name: NEWBY	
Inspector(s):	Jen Gub	SON	Instrument: TVA 2020	
WEATHER OB	SERVATIONS			
Wind Speed	:	Wind Direction:	Barometric Pressure:	"Hg
Aiı Temperature	- 111	General Weather Conditions:	C + 1 (0) + 1	
CALIBRATION	INFORMATION)	
Pre-monitoring	Calibration Precision Che	ck		
Procedure [,] Calib	brate the instrument Ma	ke a total of three measuremen	ts by alternating zero air and the calibrat	ion gas Record the readings
and calculate th	ie average algebraic diffe	rence between the instrument r	eading and the calibration gas as a perce	
precision must b	pe less than or equal to 10	0% of the calibration gas value.		
Instrument Seria	al Number:	2	Cal Gas Concentration	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1 2	6	50	(
3	2	499	5	
	sion= Average Difference		1, 6 /500 x 100%	
		= 99.5		
		= / (/)	70	
Span Sensitivity: Trial 1:		1	Trial 3:	. /
Co	ounts Observed for the Sp	an=165872	Counts Observed for the Spar	=104931
Cour	nters Observed for the Ze	ero=3618	Counters Observed for the Zero	= 3648
rial 2:	unts Observed for the Sp			
	nters Observed for the Ze			
	Calibration Check			
	compression check			
lero Air Reading:	ppm	Cal Gas Reading:	SCO ppm	
	CONCENTRATIONS CHE	CKS		
Jpwind Location	Description:	Entrance	Reading: 1/Z	_ppm
ownwind Locati	on Description:	Grid 169	Reading: 125	_ppm
			e alternative requested 10 miles per hour thin the previous 24 hours of the monitor	

BOG D

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

		SURFACE EMISS			St-
2	2511				
Date: ζ	1 dry	Λ	Site Name:	Newby	
Inspector(s)	Lyon Itog	Slam	Instrument:	TVA 2020	
WEATHER OBSER	ATIONS			1	
Wind Speed:	<u>Ц</u> МРН	Wind Direction: WWW	/	Barometric Pressure:	"Hg
Air Temperature:	70°F	General Weath Conditior	1	_	
	ORMATION)		
re-monitoring Calil	pration Precision Ch	eck			
nd calculate the av	erage algebraic diff ss than or equal to 2		t reading and the	g zero air and the calibration g calibration gas as a percentag Cal Gas Concentration:	
	-0-1-		1		
rial 1	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
2	U.	561			2
3	- C	561	1		Z
		= 100%	- 13	_/500 × 100%	
		= 991,0-	7 %		
pan Sensitivity:					
r <mark>ial 1:</mark> Counts	Observed for the S	pan= 129382	Trial 3: Cou	ints Observed for the Span= \int	SSPOE
Counter	s Observed for the Z	ero= 5683	Coun	ters Observed for the Zero=	3653
ial 2:		Dan= 129212			
		ero= 3654	1		
ost Monitoring Calil			-		
ero Air		Cal Gas			
eading:	ppm	Reading:	500	_ppm	
	CENTRATIONS CH	ECKS			
owind Location Des	cription:	Entrance	_	Reading: <u>117</u> pp	m
wnwind Location [Description:	Entrance Ciril 169		Reading: 13 pp	m
otes: Win	d speed averages w	ere observed to remain below	the alternative re	quested 10 miles per hour and	no instantaneous sneed

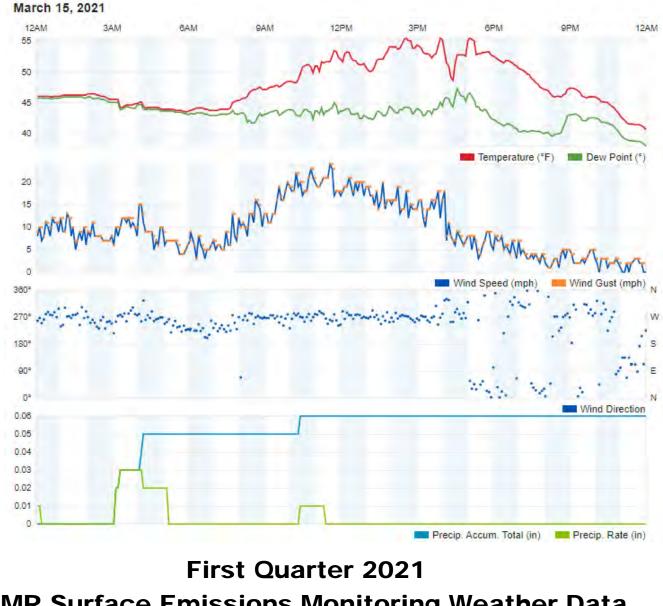
State a state state

-

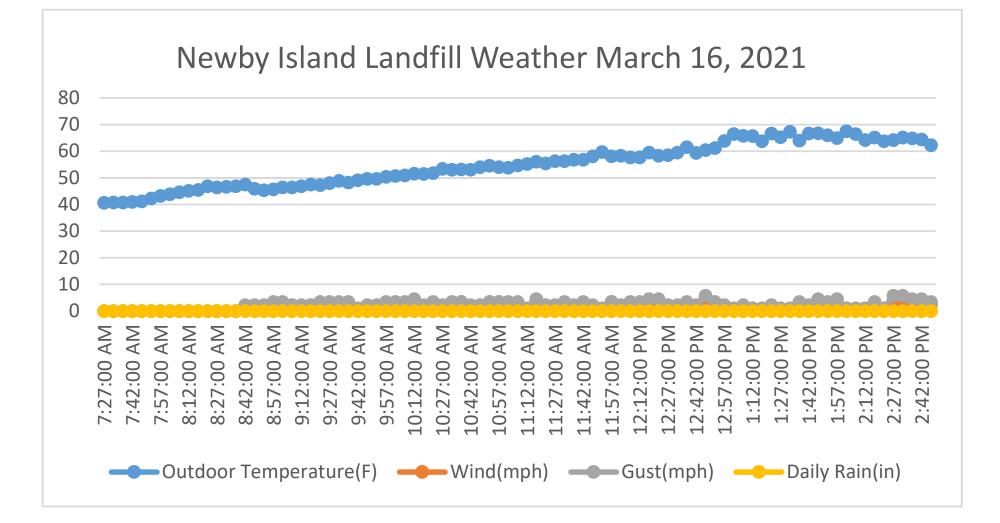
Stat to a Fill

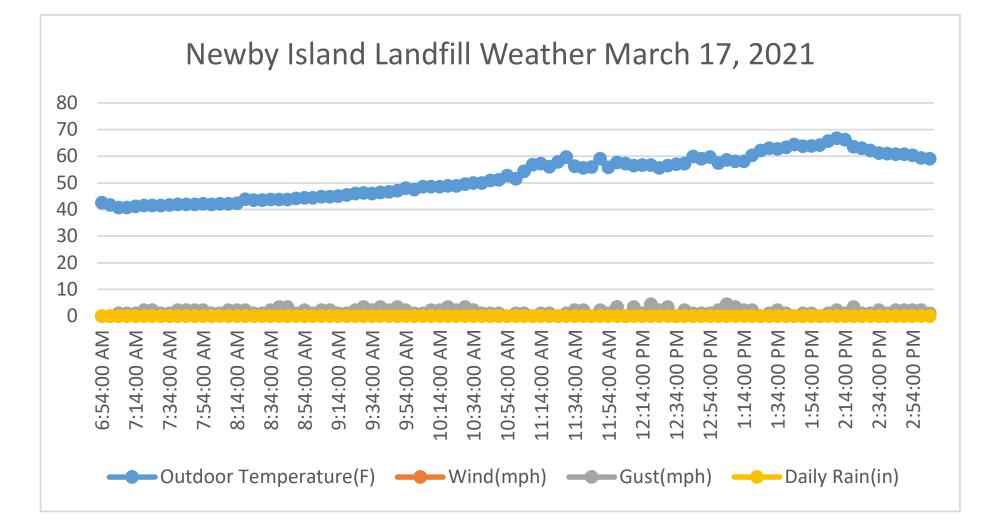
		SURFACE EMISSION		-		
	1	CALIBRATION AND F	PERTINENT DA	ΤΑ		
Date:	4-6-21	Sit	te Name: <u>//c</u>	why		
nspector(s):	Don Call	in:	strument: TVA	2020		
WEATHER OBS	SERVATIONS			10		
Wind Speed:		Wind Direction:		netric ssure: <u>30</u>	"Hg	
Air Temperature:	SZ °F	General Weather Conditions:	loudy			
ALIBRATION I	INFORMATION		1			1
re-monitoring (Calibration Precision Check					
nd calculate the	e average algebraic differen e less than or equal to 10% c	a total of three measurements b ce between the instrument reac of the calibration gas value.	ling and the calibration			ings
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal	Gas Reading	Response Time (seco	ands)
1	1	499	1	cus ricounist	hesponse nine (see	511037
2	2	S.	1			
libration Precis	sion= Average Difference/Ca		form recalibration if average	difference is greater than	10	
ilibration Precis	sion= Average Difference/Ca	*Per	form recallbration if average] 10	
	sion= Average Difference/Ca	*Per] 10	
an Sensitivity:	sion= Average Difference/Ca	*Per I Gas Conc. X 100% = 100%- = 99.6%	/500 x /] 10	
an Sensitivity: ial 1: Cou	unts Observed for the Span=	*Per 1 Gas Conc. X 100% = 100%- $/$ = 97.6 % = $/67823$ Tria	1 <u>3:</u> Counts Obse	100% rved for the Span=	16845	A
an Sensitivity: ial 1: Cou Coun		*Per 1 Gas Conc. X 100% = 100%- $/$ = 97.6 % = $/67823$ Tria	1 <u>3:</u> Counts Obse	100%	16845	
an Sensitivity: ial 1: Cou Coun	unts Observed for the Span=	*Per 1 Gas Conc. X 100% = 100% -/ = 97.6% = 167823 Tria 3628	1 <u>3:</u> Counts Obse	100% rved for the Span=	16845	A
an Sensitivity: ial 1: Cou Coun ial 2: Cou Coun	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	+Per I Gas Conc. X 100% = 100% - = 97.6% 167823 Tria 3628 167712 2623	1 <u>3:</u> Counts Obse	100% rved for the Span=	16845	M
an Sensitivity: ial 1: Cou Coun ial 2: Cou Coun	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	+Per I Gas Conc. X 100% = 100% - = 97.6% 167823 Tria 3628 167712 2623	1 <u>3:</u> Counts Obse	100% rved for the Span=	16845	A
an Sensitivity: ial 1: Cou Coun ial 2: Cou Coun	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	+Per I Gas Conc. X 100% = 100% - = 97.6% 167823 Tria 3628 167712 2623	1 <u>3:</u> Counts Obse	100% rved for the Span=	16845	A
an Sensitivity: ial 1: Coun ial 2: Coun st Monitoring C ro Air ading:	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	*Per 1 Gas Conc. X 100% = 100% - / = 97.6% = 77.6% = 767823 = 7667823 = 767722 = 36636 = 767823 = 767722 = 363636 = 578636 = 5786636 = 5786636 = 57866366 = $578666666666666666666666666666666666666$	al 3: Counts Obse	100% rved for the Span=	16845	A
an Sensitivity: ial 1: Coun ial 2: Coun st Monitoring C ro Air ading:	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	*Per 1 Gas Conc. X 100% = 100% - / = 97.6% = 77.6% = 767823 = 7667823 = 767722 = 36636 = 767823 = 767722 = 363636 = 578636 = 5786636 = 5786636 = 57866366 = $578666666666666666666666666666666666666$	al 3: Counts Obse	100% rved for the Span= erved for the Zero=	16845	
an Sensitivity: ial 1: Coun ial 2: Coun ial 2: Coun st Monitoring C ro Air ading: CKGROUND C wind Location I	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	*Per 1 Gas Conc. X 100% = 100% - / = 97.6% 7 167823 7 167823 7 1677823 7 1677823 7 1677823	Al 3: Counts Obse Counters Obse	100% rved for the Span= erved for the Zero=	16845	

		SURFACE EMISSI			pest-
Date: –	4.6.21		Site Name:	Newby	
Inspector(s):	Don Gabsor	L	Instrument:	TVA 2020	
WEATHER OBSE				4	
Wind Speed: _	МРН	Wind Direction:	-	Barometric Pressure: 80	"Нд
Air Temperature:	°F	General Weather Conditions	<u> </u>	4	
CALIBRATION IN	FORMATION)		
Pre-monitoring Ca	libration Precision Check				
and calculate the	ate the instrument. Make a to average algebraic difference less than or equal to 10% of i	between the instrument i	reading and the		
Instrument Serial I	Number: 1220			Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (seconds)
1 2		502	7		C P
3	4	501	Ĩ		T
	on= Average Difference/Cal G		1.3	_/500 × 100%	
		= 99.9	%		
pan Sensitivity:					
Frial 1: Cour	nts Observed for the Span=	68972	<u>Trial 3:</u> Cou	nts Observed for the Span=	162384
Count	ers Observed for the Zero=	3731	Count	ers Observed for the Zero=	3648
f rial 2: Cour	nts Observed for the Span= \underline{I}	68712			
Count	ers Observed for the Zero= <	3712			
ost Monitoring Ca	libration Check				
ero Air		Cal Gas	Mr.A		
eading:	0ppm	Reading:	500	ppm	
ACKGROUND CO	DNCENTRATIONS CHECKS	1			
pwind Location D	escription:	Grid 171		Reading: <u>1.</u>	ppm
ownwind Location	n Description:	Gr/d 171		Reading: 13	ppm
ex	ind speed averages were obs ceeded 20 miles per hour. N eteorological conditions were	o rainfall had occurred w	ithin the previou		g event. Therefore, site

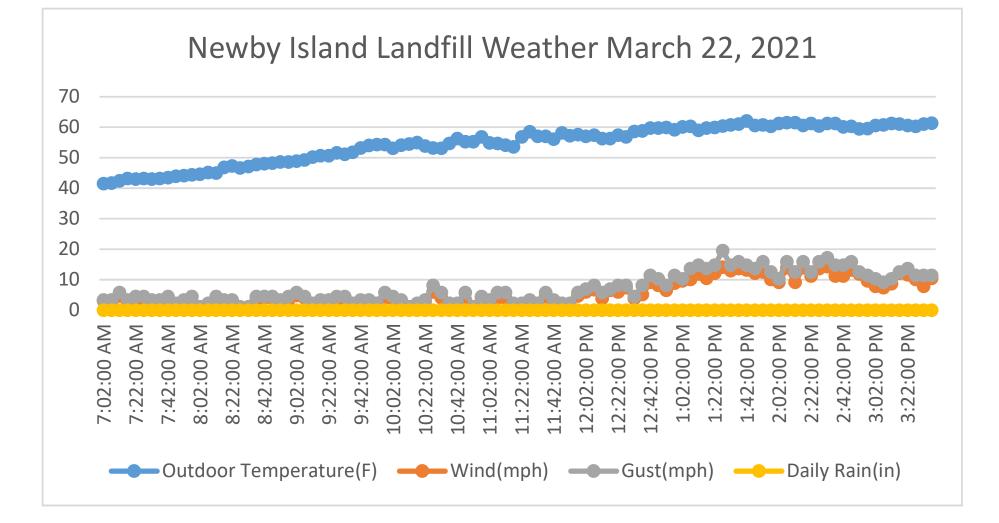

	meteorologica	al conditions v	vere within the r	equested alter	rnatives of
SCS	DataServices -	Secure	Environ	mental	Data

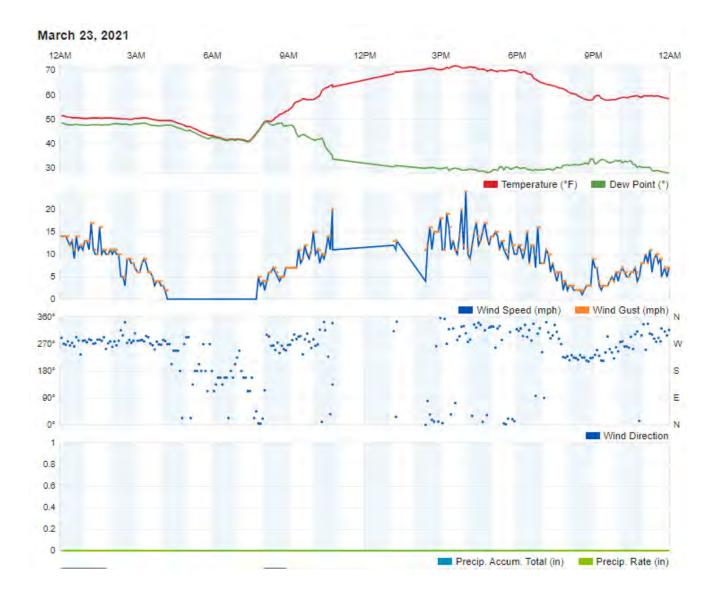
Attachment 6


Weather Data



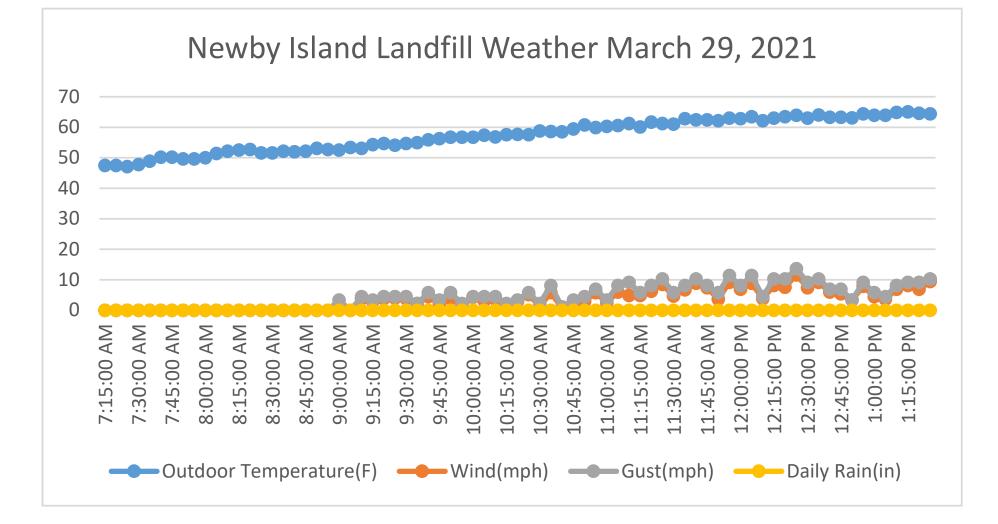
First Quarter 2021 LMR Surface Emissions Monitoring Weather Data March 12, 2021 Newby Island Landfill, Milpitas, California

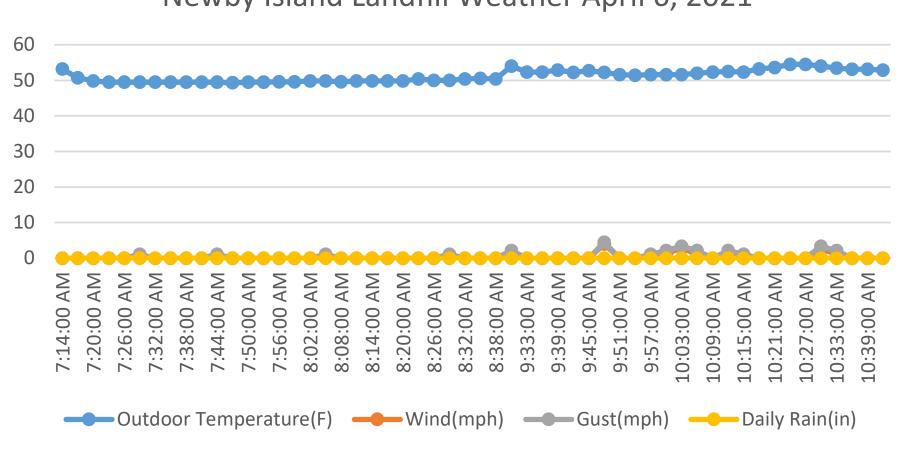

LMR Surface Emissions Monitoring Weather Data March 15, 2021 Newby Island Landfill, Milpitas, California



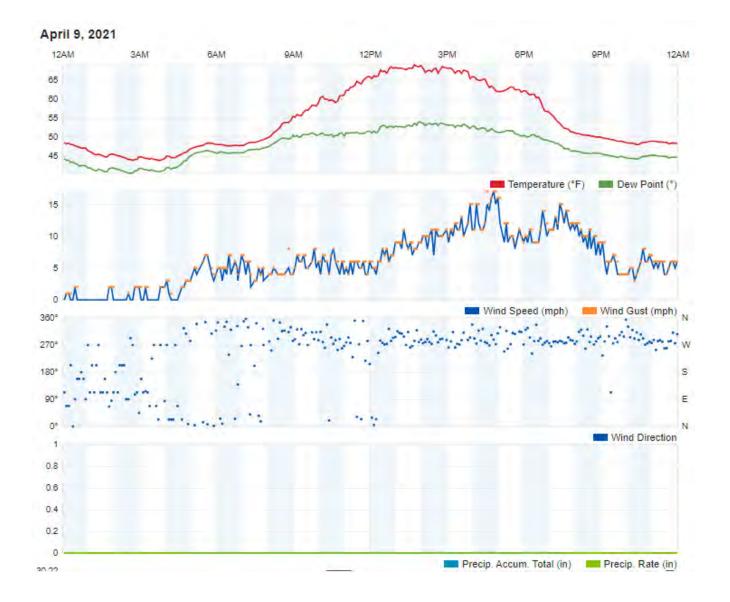
First Quarter 2021 LMR Surface Emissions Monitoring Weather Data March 19, 2021 Newby Island Landfill, Milpitas, California




First Quarter 2021 LMR Surface Emissions Monitoring Weather Data March 23, 2021 Newby Island Landfill, Milpitas, California



First Quarter 2021 LMR Surface Emissions Monitoring Weather Data March 26, 2021 Newby Island Landfill, Milpitas, California



First Quarter 2021 LMR Surface Emissions Monitoring Weather Data March 27, 2021 Newby Island Landfill, Milpitas, California

Newby Island Landfill Weather April 6, 2021

First Quarter 2021 LMR Surface Emissions Monitoring Weather Data April 9, 2021 Newby Island Landfill, Milpitas, California

SCS FIELD SERVICES

August 5, 2021 File No. 07221077.00

Ms. Rachelle Huber Republic Services – Newby Island Landfill 1601 Dixon Landing Road Milpitas, California 95035

Subject: Newby Island Landfill - Milpitas, California

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring for Second Quarter 2021.

Dear Ms. Huber:

SCS Field Services (SCS) is pleased to provide the Republic Services, with the enclosed report summarizing the surface emissions monitoring services provided at the Newby Island Landfill (Site) during the Second Quarter 2021. This report includes the results of surface scan, component emissions and blower/flare station emissions monitoring for the Site for this monitoring period.

SCS appreciates the opportunity to be of assistance to Republic Services on this project. As you review the enclosed information, please contact Michael Flanagan at (510) 363-7796 or Whitney Stackhouse at (209) 338-7990 if you have any questions or comments.

Sincerely,

Whitney Stackhouse Project Manager SCS Field Services

High Muser

Michael Flanagan Project Manager SCS Field Services

Encl.

Sean Bass, SCS Field Services Art Jones, SCS Field Services

Newby Island Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring

Second Quarter 2021

Presented to:

Ms. Rachelle Huber Republic Services – Newby Island 1601 Dixon Landing Road Milpitas, California 95035

SCS FIELD SERVICES

File No. 07221077.00 Task 01 | August 5, 2021

SCS FIELD SERVICES 4730 Enterprise Way Suite A Modesto, CA 95356

Newby Island Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring Second Quarter 2021

INTRODUCTION

This letter provides results of the April 8, 9, 12, 13, 22, and May 11, 2021, LMR and NSPS landfill surface emissions monitoring (SEM) performed by SCS Field Services (SCS) at the subject site. All work was performed in accordance with our approved Work Scope dated December 23, 2020, and the LMR requirements.

SUMMARY AND CONCLUSIONS

As stipulated in LMR, if uncorrectable exceedances within the 10-day limitation are detected or emissions are discovered during an inspection by Regulatory Agencies, the landfill must perform monitoring on a 25-foot pathway on a quarterly basis for active disposal sites. Upon completion of four consecutive SEM events without an uncorrectable exceedance of the 25 ppmv or 500 ppmv standards, other than non-repeatable momentary readings, the landfill may perform the monitoring on a 100-foot spacing on an annual basis for closed landfills or quarterly for active disposal sites. Therefore, based on the previous monitoring events, in which exceedances were observed, the monitoring at the Newby Island Landfill was performed on 25-foot pathways in accordance with the LMR.

On, April 8, 9, 12, 13, 22, and May 11, 2021, SCS performed second quarter 2021 SEM as required by the Bay Area Air Quality Management District (BAAQMD). Instantaneous surface emissions monitoring results indicated that twenty-seven (27) locations exceeded the 500 ppmv maximum concentration during the initial monitoring event (Table 1 in Attachment 3). The required 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring indicated that all areas did not returned to below regulatory compliance limits following system adjustments and remediation (well field adjustments and installation of new bentonite plugs) by site personnel. Based on these monitoring results, and in accordance with the NSPS, the site is required to perform a system expansion within 120-days of the initial detected exceedance. These results are discussed in a subsequent section of this report.

Also, during the instantaneous monitoring event, SCS performed concurrent integrated monitoring of the landfill surface. As required by the LMR, the landfill was divided into 50,000 square foot areas. The Newby Island Landfill surface area was therefore divided into 233 grids, as shown on Figure 1 in Attachment 1. During this monitoring event, several grids were not monitored, in accordance with the regulations, due to ongoing active landfilling activities, unsafe conditions, or there was no waste in place prior to the monitoring event.

During the monitoring event, there were six (6) grid areas observed to exceed the 25 ppmv LMR integrated average threshold (Table 2 in Attachment 4). The required first and second 10-day LMR

follow-up monitoring indicated that all areas had returned to compliance following system adjustments and remediation by SCS and site personnel. Based on these monitoring results no additional follow up testing was required.

In addition, quarterly monitoring of the pressurized piping or components of the Gas Collection and Control System (GCCS) that are under positive pressure must be performed. Results of the testing of the landfill gas (LFG) Blower Flare Station (BFS) pressurized piping and components indicated that all test locations were in compliance with the 500 ppmv requirement.

Further, as required under the LMR, any location on the landfill that has an observed instantaneous methane concentration above 200 ppmv, must be stake-marked and Global Positioning System (GPS) located on a site figure. During this reporting period, four (4) locations were observed to exceed the 200 ppmv, reporting threshold. When these readings are observed, the locations are reported to site personnel for tracking and/or remediation and will be reported in the next submittal of the annual LMR report.

Finally, to help prevent potential future exceedances, SCS recommends that the landfill surface be routinely inspected and any observed surface erosion be routinely repaired.

BACKGROUND

The Newby Island Landfill is an active organic refuse disposal site. By way of background, organic materials buried in a landfill decompose anaerobically (in the absence of oxygen) producing a combustible gas which contains approximately 50 to 60 percent methane gas, 40 to 50 percent carbon dioxide, and trace amount of various other gases, some of which are odorous. The Newby Island property contains a system to control the combustible gases generated in the landfill.

SURFACE EMISSIONS MONITORING

On April 8, 9, 12, 13, 22, and May 11, 2021, the instantaneous and integrated SEM was performed over the surface of the subject site. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring in the 50,000 square foot grids as required under the LMR. During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rules as required.

EMISSIONS TESTING INSTRUMENTATION/CALIBRATION

Instruments used to perform the landfill surface emission testing consisted of the following:

- Thermo Scientific TVA 2020 portable Flame Ionization Detector (FID). This instrument measures methane in air over a range of 1 to 50,000 ppmv. The TVA 2020 meets the State of California Air Resources Board (CARB) requirements for combined instantaneous and integrated monitoring and was calibrated in accordance with United States Environmental Protection Agency (US EPA) Method 21.
- Weather Anemometer with continuous recorder for meteorological conditions in accordance with the LMR.

Instrument calibration logs and weather information are shown in Attachments 5 and 6.

SURFACE EMISSIONS MONITORING PROCEDURES

Surface emissions monitoring was conducted in accordance with the LMR and NSPS requirements. Monitoring was performed with the FID inlet held within 3-inches of the landfill surface while a technician walked a grid in parallel paths not more than 25 -feet apart over the surface of the landfill. Cracks, holes and other cover penetrations in the surface were also tested. Surface emissions readings were monitored continuously and recorded every 5 seconds. Any areas in exceedance of the 200 or 500 ppmv standards (reporting and compliance levels, respectively) would be GPS tagged and stake-marked for on-site personnel to perform remediation or repairs.

The integrated average is based on the readings stored on the instrument, which are recorded every 5 seconds. The readings are then downloaded and the averages are calculated for each grid using SCS eTools®. All readings are maintained in this secure SCS Database. The readings are not provided in the report due to the volume of readings, but can be furnished upon request.

Recorded wind speed results are shown in Attachment 6. Wind speed averages were observed to remain below the alternative threshold of 10 miles per hour, and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within 72 hours of the monitoring events. Therefore, site meteorological conditions were within the alternatives of the LMR requirements on the above mentioned dates.

TESTING RESULTS

During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rule as required under the LMR and NSPS. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR or NSPS threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring (LMR).

On April 8, 9, 12 and 13, 2021, SCS performed second quarter 2021 instantaneous emissions monitoring testing as required by the BAAQMD. During this monitoring, surface emissions results indicated that twenty-seven (27) locations exceeded the 500 ppmv maximum concentration. The required 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring performed on April 13 and May 11, 2021, respectively, indicated that twenty-one (21) locations did not remain below compliance limits as required, following system adjustments and remediation (wellfield adjustment and borehole repairs using bentonite and soil) performed by SCS and site personnel. In accordance with NSPS requirements for expansion and remediation, the exceedance locations need to be remediated and returned to compliance in accordance with the rule (expansion of the collection system or an alternative compliance option if approved by the BAAQMD) within 120 days of the detected initial instantaneous exceedance, which will be due by August 11, 2021. Results of the initial and follow up monitoring are shown in Attachments 2 and 3 (Table 1).

Additionally, calculated integrated grid monitoring indicated six (6) integrated exceedances of the 25ppmv requirement on April 8, 9 and 12, 2021. The required 10-day LMR follow-up monitoring performed on April 13 and 22, 2021, indicated that all areas had returned to compliance following system adjustments and remediation by site personnel. Based on these monitoring results no additional follow up testing was required. Results of the initial and follow up monitoring are shown in Attachment 4 (Table 2). Calibration logs for the monitoring equipment are provided in Attachment 5. During this monitoring event, several grids were not monitored, in accordance with the LMR, due to active landfilling activities, unsafe conditions or no waste in place. SCS will continue to monitor all accessible locations during the third quarter 2021.

PRESSURIZED PIPE AND COMPONENT LEAK MONITORING

On April 9, 2021, quarterly leak monitoring was performed in accordance with the LMR. SCS performed LFG pressurized pipe and component leak monitoring at the BFS. Monitoring was performed with the detector inlet held one-half of an inch from pressurized pipe and associated components. No locations exceeding the 500 ppmv threshold were observed during our monitoring event. The maximum reading, which was 470 ppmv, was below the maximum threshold (see Table 1 for component results). Therefore, all pressurized piping and components located at the LFG BFS were in compliance at the time of our testing.

PROJECT SCHEDULE

According to the LMR and NSPS, surface emissions monitoring at active landfills is required to be performed on a quarterly basis. Therefore, in accordance with our approved Work Scope, the third quarter 2021 (July through September) surface emissions testing event is scheduled to be performed by the end of August 2021 in accordance with the Republic SOP unless an alternative timeline is requested by site personnel.

STANDARD PROVISIONS

This report addresses conditions of the subject site during the testing dates only. Accordingly, we assume no responsibility for any changes that may occur subsequent to our testing which could affect the surface emissions at the subject site or adjacent properties.

Attachment 1

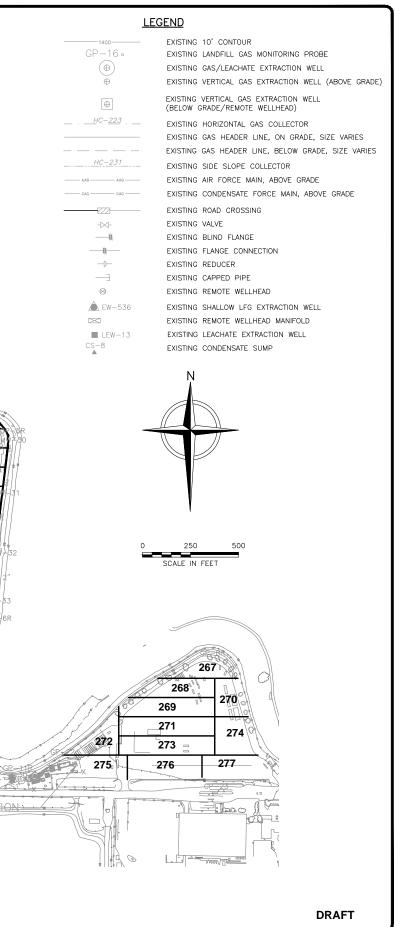
Landfill Grid

		AND					
	6 Contraction of the contraction						
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 17 17 19				
cross GP-201	1 1 1 25 5 4 62 6 1 1 1 1 29 9 0 − 497 0 0 3 4 5 34 5 4 7 5	26 27 30 (2) 32 35 36	28 33 37				
Well MANIFOLD DECOM DECOM DECOM DECOM	39 206 43 4 43 4 4 49 4 5 4 6 4 6 4 7 4 	40 44 50 251 41 45 51 51 51 51 51	46 42 12" 46 46 42 12" 46 46 40 40 52 52	47 mm 2 48 mm + 23 47 48 mm + 23 53 *	234R 54 **********************************		
B CP-19 MM S5 M S6 CS12 M63 64 65 66 66 47 MM74 8 75 8 76 55 77 66 77	67 67 8 EW-59 78 8 615	58 59 68 6 69 79 80 80	80 232 Fi 70	61 51 71 m 71 m 82 82	62 72 A 1883	39 ⁻ 4R 73 -26 Pr	
GP-W2 84 85 52 86 EW 94 95 92 EW 96 EW 9799 104 52 EW 105 EW 106 EW	87 12" 6 98 613 98 67 60 19 61 98 613 19 61 98 613 19 61 98 61 19 61 98 61 98 61 19 61 98	88v [‡] 467 2" 89 99 4" 4" 6" 100 108 w45K 615 109 109 109 109	10 ² 1 10 ² 1 11 ² 1 11 ² 1 11 ² 1 11 ² 1 11 ² 1		12*** 92 103 4 12*** 0103 4 12*** 172 8 12*** 172 8 14+ 512	93	114 3 3 3 3 3
115 115 116 116 116 116 116 116	118 129 139 139 139	119 130 w-574 12" 140° w-576 140° w-522 144 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	121 132 142 142 15 153	122 3 133 WOTH 143 154	123 1412 734 744 744	124 135 145 w-483 5	¹²⁵ ¹ 35136 146 ⁶ 146 ⁶
412 413 413 4147 4149 4159 4159 4159 4159 4159 4159 4159	100 ° ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6	161 (c) Ew 562 (173) 172 (c) 562 (173) 182 (c) Ew 455 (183)	163 174 184	164 164 175 185	EV-456 165	166 177 187	157 + + + + + + + + + + + + + + + + + + +
189 - 426 4"190 199 - 200 - 3 201	191 202 21175A	192 62 193 2 203 2 0 2 0 204 212 6 1 54 213	194 205 214	195 206 215	196 207 216	197 208 217	⁸⁵ 198 209 209 218 218
CP - 10 219 219 228 200 228 200 238	220 ₩ 495 ₩ ₩ ₩229 4 239 E	221 (222)) 230 (231) 240 (241)	2 2 16	224 33 234 GP-13	225 235 242	226 236 243	227 237 244
DECOM	245 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	246 247 68 254 254 CRS 17 253 66 10 10 10 10 10 10 10 10 10 10 10 10 10		WELL MANIFOLD EW DE COCOM DE COCOM DE COCOM	248 255 258	249 256 259	257
	Well MANIFOLD THE THE THE THE THE THE THE THE THE THE	WELL MANIFOLD WELL MANIFOLD WELL MANIFOLD WELL MANIFOLD WELL MANIFOLD WELL MANIFOLD WELL HC-211 WELL WELL WELL HC-211 WELL WELL WELL HC-211 WELL WELL WELL HC-2116 WELL WELL	<u>.</u>		260 GP-12	261 263 265 2	262 264 ⁴⁷ 30 266
NOTES							FLAZE: STATIO

- NOTES:
 1. THE 2018 BASE TOPOGRAPHIC MAP WAS CREATED BY COOPER AERIAL SURVEYS CO. USING PHOTOGRAMMETRIC METHODS. DATE OF PHOTOGRAPHY: APRIL 17, 2018. HORIZONTAL DATUM: NAD27, ZONE 3, VERTICAL DATUM: LOCAL LANDFILL DATUM.
 2. THE 2010 BASE BAS-BUILT WELL AND PIPE LOCATIONS WERE PROVIDED BY REPUBLIC. WELLS EW-487 THROUGH EW-489 ARE PER DESIGN LOCATIONS, NO SURVEY WAS RECEIVED FOR THESE WELLS. AS-BUILT LOCATIONS FOR HC-223 AND LORS-17 ARE APPROXIMATE, NO SURVEY WAS RECEIVED FOR THESE WELLS.
 3. THE 2017 GCCS AS-BUILT WELL AND PIPE LOCATIONS WERE PROVIDED BY RUGGERI, JENSEN, AZAR AND ASSOCIATES, DATES OF SURVEY: JANUARY 11, 20, AND FEBRUARY 24, 2017.
 4. THE 2018 GCCS IMPROVEMENTS PER SURVEY PREPARED BY RUGGERI, JENSEN, AZAR, AND ASSOCIATES, DATE OF SURVEY: MARCH 14, 2018.
 5. THE 2018 GCCS PHASE II IMPROVEMENTS PER SURVEY PREPARED DEVOLOTIONS.

<u>.</u>

°0 -

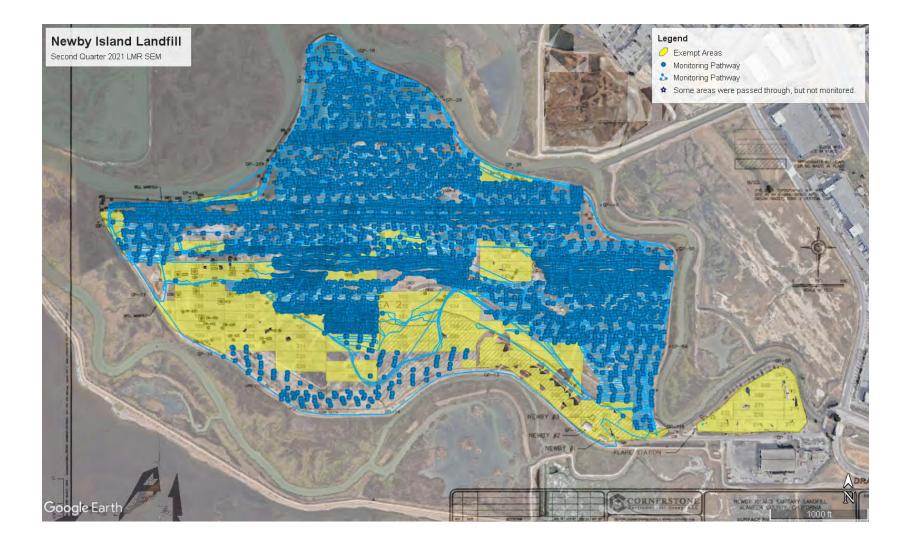

1/2"

. ____

- 14, 2010. THE 2018 GCCS PHASE II IMPROVEMENTS PER SURVEY PREPARED BY RUGGERI, JENSEN, AZAR, AND ASSOCIATES, DATE OF SURVEY: AUGUST 6, 2018. 5.

cornerstone ATETRA TECH COMPANY DWN BY DES BY CHK BY APP B DATE DESCRIPTION DATE OF ISSUE 9/6/18 DRAWN BY _____ DESIGNED BY _____ RAW CHECKED BY _____ AMN MED

This drawing represents intellectual property of Cornerstone. Any modification to the original by other than Cornerstone greanomic induces its original purpose and as such is rendered void. Cornerstone will not be held fiable for any changes made to this document without express written cornerst of the originator.


NEWBY ISLAND LANDFILL SANTA CLARA COUNTY, CALIFORNIA

GCCS AS-BUILT SEM SITE PLAN

Attachment 2

Surface Pathway

Second Quarter 2021 LMR Surface Emissions Monitoring Pathway Newby Island Landfill, Milpitas, California Attachment 3

Instantaneous and Component Emissions Monitoring Results

Second Quarter 2021

Table 1. LMR Instantaneous Surface and Component

Emissions Monitoring Results

Newby Island Sanitary Landfill, Milpitas, California

Instantaneous Data Report for April 8, 9, 12, 13, 22, and May 11, 2021

Location Well ID or Grid Number	Initial Monitoring (ppmv)	10-Day Follow Up Monitoring (ppmv)	20-Day Follow Up Monitoring (ppmv)	30-Day Follow Up Monitoring (ppmv)
NILEW106	April 13, 2021 700	April 22, 2021 40	NA NA	May 11, 2021 41
NILE VV 100	700	40		41
NILEW510	930	100	NA	210
NILEW601	6,483	70	NA	2,975
NILEW615	36,700	150	NA	1,665
NILEW618	10,000	30	NA	200
NILEW620	10,000	200	NA	1,663
NILEW638	10,000	70	NA	2,490
NILEW663	1,000	100	NA	700
NILEW675	10,000	200	NA	245
NILEW676	10,000	100	NA	4,128
NILEW677	2,496	200	NA	2,489
NILEW682	20,000	200	NA	1,423
NILEW694	535	100	NA	778
NILEW720	1,187	100	NA	1,455
NILEW723	1,201	90	NA	1,900

Second Quarter 2021

Table 1. LMR Instantaneous Surface and Component

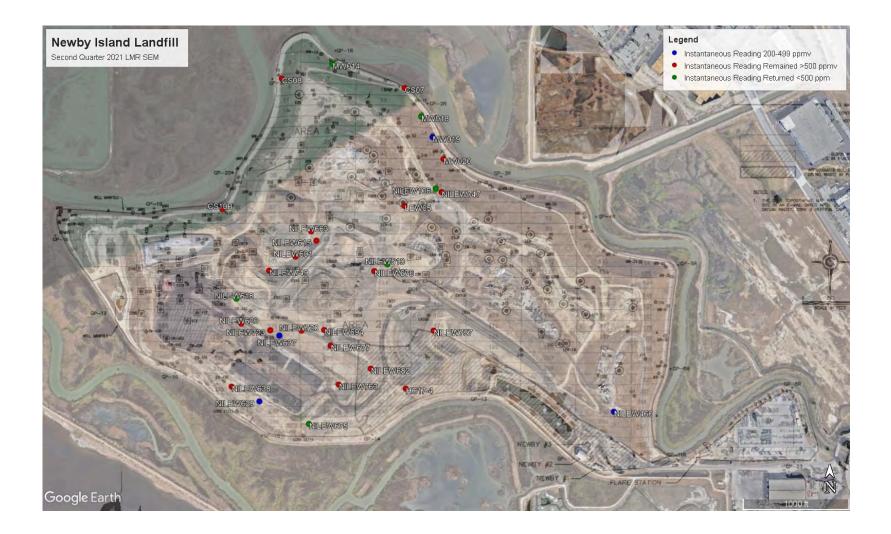
Emissions Monitoring Results

Newby Island Sanitary Landfill, Milpitas, California

Location Well ID or Grid Number	Initial Monitoring (ppmv) April 13, 2021	10-Day Follow Up Monitoring (ppmv) April 22, 2021	20-Day Follow Up Monitoring (ppmv) NA	30-Day Follow Up Monitoring (ppmv) May 11, 2021
NILEW747	1,500	75	NA	753
NILEW749	1,315	20	NA	1,300
NILEW757	40,000	60	NA	7,401
NILEW763	8,474	12	NA	1,190
CS07	20,000	70	NA	2,796
CS08	900	50	NA	1,158
CS10B	2,784	90	NA	2,465
HC17-4	8,000	250	NA	2,897
MW014	4,500	60	NA	200
MW018	4,000	80	NA	496
MW020	1,000	90	NA	1,051
LEW05	2,000	150	NA	1,158
MW019	250	NA	NA	NA
NILEW460	328	NA	NA	NA
NILEW637	348	NA	NA	NA
NILEW629	438	NA	NA	NA

Second Quarter 2021

Table 1. LMR Instantaneous Surface and Component


Emissions Monitoring Results

Newby Island Sanitary Landfill, Milpitas, California

Pressurized Pipe

Location	Date	Highest Concentration (ppmv)	
Flare Station	4/9/2021	470	

No other exceedances of the 500 ppm threshold observed during the LMR/NSPS monitoring performed during the second quarter 2021.

Second Quarter 2021 Initial Emissions Monitoring Locations Greater Than 500 ppmv Newby Island Landfill Milpitas, California Attachment 4

Integrated Monitoring Results

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-001	4/8/2021	1.76	
NIL-002	4/8/2021	2.18	
NIL-003	4/8/2021	3.24	
NIL-004	4/8/2021	4.28	
NIL-005	4/8/2021	5.62	
NIL-006	4/8/2021	3.97	
NIL-007	4/8/2021	5.13	
NIL-008	4/8/2021	5.78	
NIL-009	4/12/2021	7.22	
NIL-010	4/12/2021	5.87	
NIL-011	4/12/2021	1.64	
NIL-012	4/12/2021	4.67	
NIL-013	4/12/2021	3.02	
NIL-014	4/12/2021	2.45	
NIL-015	4/12/2021	4.51	
NIL-016	4/12/2021	3.05	
NIL-017	4/12/2021	2.21	
NIL-018	4/12/2021	1.90	
NIL-019	4/12/2021	3.57	
NIL-020	4/12/2021	2.48	
NIL-021	4/12/2021	1.59	
NIL-022	4/12/2021	5.78	
NIL-023	4/12/2021	7.51	
NIL-024	4/12/2021	4.87	
NIL-025	4/9/2021	1.71	
NIL-026	4/9/2021	2.33	
NIL-027	4/9/2021	5.22	
NIL-028	4/9/2021	3.50	
NIL-029	4/12/2021	3.26	
NIL-030	4/12/2021	4.35	
NIL-031			Grid Is Not On The Grid Map
NIL-032	4/12/2021	4.64	
NIL-033	4/12/2021	3.87	
NIL-034	4/12/2021	2.65	
NIL-035	4/12/2021	3.04	
NIL-036	4/12/2021	3.57	
NIL-037	4/12/2021	4.57	
NIL-038	4/9/2021	2.26	
NIL-039	4/12/2021	3.28	
NIL-040	4/12/2021	3.86	
NIL-041	4/12/2021	4.29	
NIL-042	4/12/2021	4.66	
NIL-043	4/12/2021	2.15	

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-044	4/12/2021	2.14	
NIL-045	4/12/2021	2.56	
NIL-046	4/12/2021	3.74	
NIL-047			Native
NIL-048			Native
NIL-049	4/12/2021	2.50	
NIL-050	4/12/2021	2.86	
NIL-051	4/12/2021	8.27	
NIL-052	4/12/2021	5.19	
NIL-053	4/12/2021	4.19	
NIL-054	4/12/2021	5.65	
NIL-055			Native
NIL-056	4/9/2021	2.00	
NIL-057	4/12/2021	1.78	
NIL-058	4/12/2021	2.75	
NIL-059	4/12/2021	6.99	
NIL-060	4/12/2021	7.34	
NIL-061	4/12/2021	1.91	
NIL-062	4/12/2021	3.28	
NIL-063	4/8/2021	1.94	
NIL-064	4/8/2021	4.82	
NIL-065	4/8/2021	2.68	
NIL-066	4/8/2021	5.34	
NIL-067	4/8/2021	2.28	
NIL-068	4/8/2021	4.24	
NIL-069	4/8/2021	7.46	
NIL-070	4/8/2021	4.57	
NIL-071	4/8/2021	1.79	
NIL-072	4/8/2021	2.24	
NIL-073	4/9/2021	1.78	
NIL-074			Native
NIL-075	4/9/2021	2.01	
NIL-076	4/9/2021	1.41	
NIL-077	4/9/2021	4.11	
NIL-078	4/9/2021	3.37	
NIL-079	4/9/2021	6.95	
NIL-080	4/9/2021	11.51	
NIL-081	4/9/2021	2.84	
NIL-082	4/9/2021	1.36	
NIL-083	4/9/2021	1.36	
NIL-084	4/8/2021	3.91	
NIL-085	4/8/2021	3.44	
NIL-086	4/8/2021	4.08	

SCS DataServices - Secure Environmental Data

- the so

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-087	4/8/2021	4.36	
NIL-088	4/8/2021	14.01	
NIL-089	4/8/2021	8.96	
NIL-090	4/8/2021	7.04	
NIL-091	4/8/2021	3.43	
NIL-092	4/8/2021	3.14	
NIL-093	4/8/2021	1.61	
NIL-094			Native
NIL-095	4/8/2021	4.66	
NIL-096	4/8/2021	2.19	
NIL-097	4/8/2021	7.54	
NIL-098	4/8/2021	5.26	
NIL-099	4/8/2021	18.74	
NIL-100			Active
NIL-101	4/8/2021	2.83	
NIL-102	4/8/2021	2.31	
NIL-103	4/8/2021	1.72	
NIL-104	4/8/2021	4.40	
NIL-105			Leachate Pond
NIL-106	4/9/2021	7.18	
NIL-107	4/9/2021	10.15	
NIL-108	4/9/2021	30.59	
NIL-108	4/13/2021	19.29	
NIL-109			Active
NIL-110	4/8/2021	4.06	
NIL-111			Pallet Yard
NIL-112	4/8/2021	2.34	
NIL-113	4/8/2021	2.48	
NIL-114	4/8/2021	2.76	
NIL-115	4/8/2021	4.93	
NIL-116	4/8/2021	6.02	
NIL-117	4/8/2021	5.57	
NIL-118	4/8/2021	9.29	
NIL-119			Active
NIL-120	4/8/2021	25.39	Misread
NIL-120	4/13/2021	19.69	
NIL-121	4/8/2021	3.23	
NIL-122			Pallet Yard
NIL-123	4/8/2021	1.45	
NIL-124	4/8/2021	1.51	
NIL-125	4/8/2021	1.71	
NIL-126			Mulch Area
NIL-127			Mulch Area

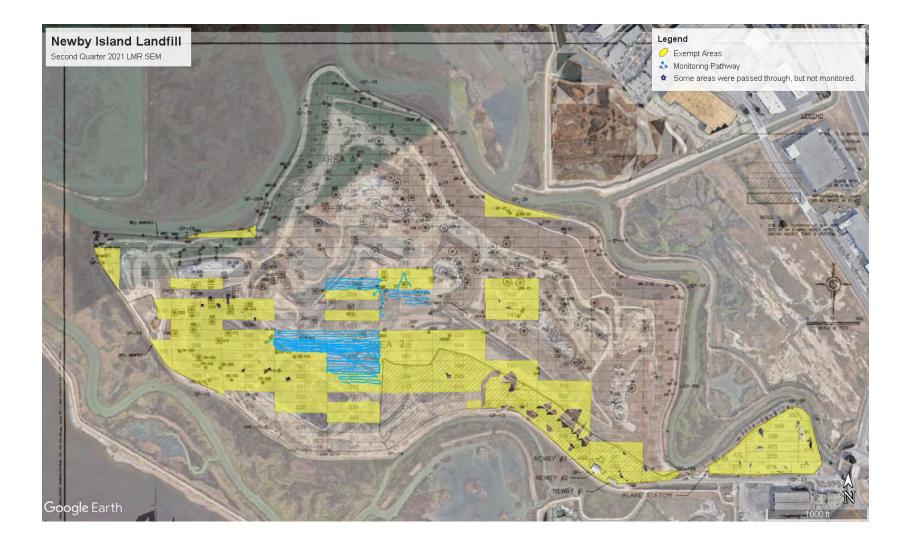
SCS DataServices - Secure Environmental Data

- the so

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-128			Mulch Area
NIL-129	4/9/2021	15.71	
NIL-130	4/9/2021	22.20	
NIL-131	4/9/2021	24.63	
NIL-132	4/9/2021	3.68	
NIL-133			Pallet Yard
NIL-134	4/9/2021	2.41	
NIL-135	4/9/2021	2.39	
NIL-136	4/9/2021	2.49	
NIL-137			Compost Operations
NIL-138			Compost Operations
NIL-139	4/9/2021	22.25	
NIL-140			Active
NIL-141	4/9/2021	14.49	
NIL-142	4/9/2021	2.93	
NIL-143			Pallet Yard
NIL-144	4/9/2021	3.12	
NIL-145	4/9/2021	2.45	
NIL-146	4/9/2021	2.50	
NIL-147	4/9/2021	3.69	
NIL-148			Active
NIL-149	4/9/2021	6.36	
NIL-150	4/9/2021	17.30	
NIL-151	4/9/2021	9.81	
NIL-152	4/9/2021	23.99	
NIL-153	4/9/2021	5.03	
NIL-154	4/9/2021	4.53	
NIL-155	4/9/2021	3.36	
NIL-156	4/9/2021	1.75	
NIL-157	4/9/2021	1.94	
NIL-158			Active
NIL-159			Active
NIL-160	4/9/2021	15.70	
NIL-161	4/9/2021	14.38	
NIL-162			Active
NIL-163			Active
NIL-164	4/9/2021	4.19	
NIL-165	4/9/2021	3.95	
NIL-166	4/9/2021	2.02	
NIL-167	4/9/2021	2.07	
NIL-168			Active
NIL-169			Active
NIL-170			Active

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-171	4/12/2021	45.48	
NIL-171	4/22/2021	15.68	
NIL-172	4/12/2021	69.23	
NIL-172	4/22/2021	14.53	
NIL-173			Active
NIL-174			Active
NIL-175	4/12/2021	3.05	
NIL-176	4/12/2021	2.47	
NIL-177	4/12/2021	1.92	
NIL-178	4/12/2021	1.98	
NIL-179			Compost Operations
NIL-180			Compost Operations
NIL-181			Compost Operations
NIL-182	4/12/2021	54.42	
NIL-182	4/22/2021	15.09	
NIL-183			Active
NIL-184			Active
NIL-185	4/12/2021	9.51	
NIL-186	4/12/2021	3.40	
NIL-187	4/12/2021	1.49	
NIL-188	4/12/2021	2.04	
NIL-189			Compost Operations
NIL-190			Compost Operations
NIL-191			Compost Operations
NIL-192	4/12/2021	41.19	
NIL-192	4/22/2021	18.00	
NIL-193			Active
NIL-194			Active
NIL-195			Active
NIL-196	4/12/2021	2.55	
NIL-197	4/12/2021	2.16	
NIL-198	4/12/2021	2.28	
NIL-199			Compost Operations
NIL-200			Compost Operations
NIL-201			Compost Operations
NIL-202			Compost Operations
NIL-203			Compost Operations
NIL-204			Active
NIL-205			Active
NIL-206			Active
NIL-207	4/12/2021	4.24	
NIL-208	4/12/2021	3.00	
NIL-209	4/12/2021	2.63	

SCS DataServices - Secure Environmental Data


201

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-210			Compost Operations
NIL-211			Compost Operations
NIL-212			Active
NIL-213			Active
NIL-214			Active
NIL-215			Active
NIL-216			Active
NIL-217	4/12/2021	1.55	
NIL-218	4/12/2021	1.46	
NIL-219	4/12/2021	16.65	
NIL-220			Active
NIL-221	4/12/2021	21.00	
NIL-222	4/12/2021	20.88	
NIL-223	4/12/2021	18.92	
NIL-224			Leachate Pond
NIL-225			Active
NIL-226	4/12/2021	1.46	
NIL-227	4/12/2021	1.72	
NIL-228	4/12/2021	10.43	
NIL-229			Leachate Pond
NIL-230			Active
NIL-231	4/12/2021	7.52	
NIL-232	4/12/2021	21.72	
NIL-233			Native
NIL-234			Leachate Pond
NIL-235			Active
NIL-236	4/12/2021	4.76	
NIL-237	4/12/2021	4.01	
NIL-238	4/12/2021	7.66	
NIL-239	4/12/2021	8.84	
NIL-240			Active
NIL-241	4/12/2021	18.01	
NIL-242			Leachate Pond
NIL-243	4/12/2021	2.45	
NIL-244	4/12/2021	2.43	
NIL-245	4/12/2021	8.19	
NIL-246	4/12/2021	7.69	
NIL-247	4/12/2021	6.48	
NIL-248			Leachate Pond
NIL-249	4/12/2021	3.09	
NIL-250	4/12/2021	8.92	
NIL-251	4/12/2021	7.90	
NIL-252	4/12/2021	8.70	

SCS DataServices - Secure Environmental Data

200

Point Name	Record Date	FID Concentration (ppm)	Comments
NIL-253	4/12/2021	15.43	
NIL-254	4/12/2021	6.93	
NIL-255			Leachate Pond
NIL-256	4/12/2021	2.70	
NIL-257	4/12/2021	3.03	
NIL-258			Leachate Pond
NIL-259			Paved
NIL-260			Paved
NIL-261			Paved
NIL-262	4/12/2021	2.90	
NIL-263			Paved
NIL-264	4/12/2021	2.95	
NIL-265			Paved
NIL-266			Paved
NIL-267			Paved
NIL-268			Paved
NIL-269			Paved
NIL-270			Paved
NIL-271			Paved
NIL-272			Paved
NIL-273			Paved
NIL-274			Paved
NIL-275			Paved
NIL-276			Paved
NIL-277			Paved

Second Quarter 2021 LMR Surface Emissions Monitoring First 10-Day Pathway Newby Island Landfill, Milpitas, California Attachment 5

Calibration Logs

					rre
		SURFACE EMISSI	-		
		CALIBRATION AN	D PERTINEI	NT DATA	
Date:	4-8-21		Site Name:	Makin	
Inspector(s):	Dablo Dive	era	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			5.4	
		Wind		Barometric	
Wind Speed	МРН	Direction: US4		Pressure: 30	"Hg
Air Temperature:	~7	General Weathe Conditions	_clou	k	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
nd calculate th		ce between the instrument			on gas. Record the readings ntage. The calibration
nstrument Seria	I Number: 54	15		Cal Gas Concentration	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds
1	.9	502		2	7
2	• (500	1	0	3
indration Precis	sion= Average Difference/Ca		23	_/500 x 100%	
		=99.5	%		
oan Sensitivity:					
ial 1		126-762	Trial 3:		17
	unts Observed for the Span			nts Observed for the Span	
Cour	nters Observed for the Zero-	4998	Count	ters Observed for the Zero	= 4832
ial 2: Col	unts Observed for the Span-	126260			
Cour	nters Observed for the Zero=	4812			
ost Monitoring (Calibration Check				
ero Air eading: -	ppm	Cal Gas Reading:	500	ppm	
	CONCENTRATIONS CHECK	S			
owind Location	Description:	Flare		Reading: 1.3	_ppm
wnwind Locatio	on Description:	Gridt		Reading: 1	_ppm
e		No rainfall had occurred wi	thin the previou	s 24 hours of the monitori	

SCS DataServices - Secure Environmental Data

Control Control Party

					110
			IONS MONITORIN		
			ND PERTINENT DA	ТА	
Date:	<u>-4-8-20</u> Cody Cr	21	Site Name:	endy	
Inspector(s):	Cody Cr	ocker	Instrument:TVA	2020	
WEATHER OB	SERVATIONS			м 1	
Wind Speed	мрн	Wind Direction: USA		metric essure: 80	-"Hg
Aiı Temperature	C/	General Weath Condition			
CALIBRATION	INFORMATION		,		
Pre-monitoring	Calibration Precision Che	eck			
and calculate th	e average algebraic diffe be less than or equal to 1	ake a total of three measureme erence between the instrument 0% of the calibration gas value	t reading and the calibrati ?,		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal	Gas Reading	Response Time (s
1	.0	SOI	6		4
2	+1	501	1		3
3					
Calibration Preci	j , (sion= Average Difference	Average Difference: e/Cal Gas Conc. X 100%	0 1.3 *Perform recalibration if average	difference is greater than] 10
Calibration Preci		Average Difference: e/Cal Gas Conc. X 100%	1.3	-] 10
Calibration Preci		Average Difference: e/Cal Gas Conc. X 100%	1. 3 *Perform recalibration if average	-] 10
		Average Difference: e/Cal Gas Conc. X 100%	I.3 *Perform recalibration if average	-] 10
Span Sensitivity: Trial 1:	sion= Average Difference	Average Difference: e/Cal Gas Conc. X 100%	<i>I. 3</i> *Perform recalibration if average - <u>(. 3</u> /500 x % Trial 3:	100%] 10 <i> 56 37 3</i>
Span Sensitivity: T rial 1: Co	sion= Average Difference	Average Difference: e/Cal Gas Conc. X 100% = 100% = $9/9,7$ ban= 156296	I. 3 *Perform recalibration if average (. 3 /500 x % Trial 3: Counts Obse	100% erved for the Span=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2:	sion= Average Difference unts Observed for the Sp nters Observed for the Ze	Average Difference: e/Cal Gas Conc. X 100% = 100% = $9/9,7$ ban= 156296	I. 3 *Perform recalibration if average (. 3 /500 x % Trial 3: Counts Obse	100%	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co	sion= Average Difference unts Observed for the Sp nters Observed for the Ze	Average Difference: $e/Cal Gas Conc. \times 100\%$ = 100% = 90% an = 156296 ero = 5172 ban = 156288	I. 3 *Perform recalibration if average (. 3 /500 x % Trial 3: Counts Obse	100% erved for the Span=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour	sion= Average Difference ounts Observed for the Sp nters Observed for the Zo unts Observed for the Sp	Average Difference: $e/Cal Gas Conc. \times 100\%$ = 100% = 90% an = 156296 ero = 5172 ban = 156288	I. 3 *Perform recalibration if average (. 3 /500 x % Trial 3: Counts Obse	100% erved for the Span=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour	sion= Average Difference ounts Observed for the Sp <u>inters Observed for the Ze</u> unts Observed for the Sp <u>inters Observed for the Ze</u>	Average Difference: $e/Cal Gas Conc. \times 100\%$ = 100% = 90% an = 156296 ero = 5172 ban = 156288	I.3 *Perform recalibration if average (.3) /500 x % Trial 3: Counts Obse Counters Obse	100% erved for the Span=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring o	sion= Average Difference ounts Observed for the Sp <u>inters Observed for the Ze</u> unts Observed for the Sp <u>inters Observed for the Ze</u>	Average Difference: e/Cal Gas Conc. X 100% = 100% = 90% an = 156296 ero = 5172 ban = 156288 ero = 4964	I. 3 *Perform recalibration if average (. 3 /500 x % Trial 3: Counts Obse	100% erved for the Span=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring of Zero Air Reading:	sion= Average Difference ounts Observed for the Sp inters Observed for the Zo unts Observed for the Sp inters Observed for the Zo Calibration Check	Average Difference: $e/Cal Gas Conc. \times 100\%$ = 100% = 997,7 ban = 156296 ero = 5172 ban = 156288 ero = 4964 Cal Gas Reading:	I.3 *Perform recalibration if average (.3) /500 x % Trial 3: Counts Obse Counters Obse 500	100% erved for the Span=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring of Zero Air Reading:	sion= Average Difference ounts Observed for the Sp inters Observed for the Sp inters Observed for the Sp inters Observed for the Sp inters Observed for the Ze Calibration Check	Average Difference: $e/Cal Gas Conc. \times 100\%$ = 100% = 997,7 ban = 156296 ero = 5172 ban = 156288 ero = 4964 Cal Gas Reading:	I.3 *Perform recalibration if average (.3) /500 x % Trial 3: Counts Obse Counters Obse 500	100% erved for the Span= erved for the Zero=	156 328
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring of Post Mo	sion= Average Difference ounts Observed for the Sp inters Observed for the Sp inters Observed for the Sp inters Observed for the Sp inters Observed for the Ze Calibration Check	Average Difference: e/Cal Gas Conc. X 100% = 100% = 90% ero= 5172 ban= 156296 ero= 5172 ban= 156288 ero= 4964 Cal Gas Reading: ECKS	I.3 *Perform recallbration if average (.3) /500 x % Trial 3: Counts Obse Counters Obse 500 ppm	$\frac{100\%}{100\%}$ erved for the Span= erved for the Zero=	156 329 4988

		SURFACE EMIS	SIONS MONI	TORING	All a street and
		CALIBRATION A	ND PERTINE	ΝΤ DATA	
	4.8.20	21		Newba	
Date:	10-20		Site Name:	micwog	
Inspector(s):	Hunter	\bigcirc	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			-	
Wind Speed	d: МРН	Wind Direction:	\checkmark	Barometric Pressure:	"Hg
A Temperature	0.7	General Weat Conditio	- \ \	<u>v</u> y	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Chec	k			
				g zero air and the calibration	
precision must	be less than or equal to 109	% of the calibration gas valu		calibration gas as a percentag	
Instrument Seri	al Number: 54	20		Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	(Cal Gas (ConcCal Gas Reading	Response Time (
1		501			
					-1
3	p (- 498		2	3
3	. (Average Difference:			3
3	1	Average Difference:	*Perform recalibration	2. Con if average difference is greater than 10	3
3	. (Average Difference:		2.16	3
3 Calibration Prec	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 100	*Perform recalibratio	2. Con if average difference is greater than 10	3
3 Calibration Prec	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4	*Perform recalibratio %- <u>2.6</u> % Trial 3:	2 on if average difference is greater than 10 /500 x 100%	
3 Calibration Prec Span Sensitivity Trial 1: Co	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348	*Perform recalibratio %- <u>2.6</u> % Trial 3:	2. Con if average difference is greater than 10	12169
<u>З</u> Calibration Prec Span Sensitivity Trial 1: Соц	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100%	
3 Calibration Prec Span Sensitivity Trial 1: Cou	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 m = 125348 o = 4093	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100%	121697
3 Calibration Prec Span Sensitivity Trial 1: Cou Trial 2: Cou	ision= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348 n= 121480 n= 121480	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100%	121697
3 Calibration Prec Span Sensitivity Trial 1: Cou Trial 2: Cou Cou	ision= Average Difference/ ounts Observed for the Spa unters Observed for the Zer	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348 n= 121480 n= 121480	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100%	121697
3 Calibration Prec Span Sensitivity Trial 1: Cou Trial 2: Cou Cou	ision= Average Difference/ ounts Observed for the Spa unters Observed for the Zer ounts Observed for the Spa	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348 n= 121480 n= 121480	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100%	121697
3 Calibration Pred Span Sensitivity Trial 1: Cou Crial 2: Cou Post Monitoring	ision= Average Difference/ ounts Observed for the Spa unters Observed for the Zer ounts Observed for the Spa	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n = 125348 o = 4093 n = 121480 o = 3856	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100%	121697
3 Calibration Prec Span Sensitivity Trial 1: Cou Cou Frial 2: Cou Post Monitoring Sero Air Leading:	ision= Average Difference/ bunts Observed for the Spa unters Observed for the Zer bunts Observed for the Spa unters Observed for the Spa unters Observed for the Zer Calibration Check	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348 o= 4093 n= 121480 o= 3856 Cal Gas Reading:	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou	2 on if average difference is greater than 10 /500 x 100% unts Observed for the Span= ters Observed for the Zero=	121697
3 Calibration Prec Span Sensitivity Frial 1: Cou Cou Frial 2: Cou Post Monitoring Sero Air Leading: BACKGROUND	ision= Average Difference/ ision= Average Difference/ ounts Observed for the Spa inters Observed for the Zer ounts Observed for the Spa inters Observed for the Zer Calibration Check	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348 o= 4093 n= 121480 o= 3856 Cal Gas Reading:	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou		12169
3 Calibration Prec Span Sensitivity Trial 1: Cou Cou Cou Post Monitoring Cero Air Reading: BACKGROUND	ision= Average Difference/ ision= Average Difference/ ounts Observed for the Spa inters Observed for the Zer ounts Observed for the Spa inters Observed for the Zer Calibration Check	Average Difference: Cal Gas Conc. X 100% = 100 = 99.4 n= 125348 o= 4093 n= 121480 o= 3856 Cal Gas Reading:	*Perform recalibration %- <u>2.6</u> % <u>Trial 3:</u> Cou		121697 3820

				Y-	re
		SURFACE EMISS			
		CALIBRATION AN		NT DATA	
Date:	4-8-207		Site Name:	Newb	4
Inspector(s):	Bryan		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	н:мрн	Wind Direction: 550	0	Barometric Pressure:)
Ai Temperature	1101	General Weath Condition	1 N N	14	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
	be less than or equal to 10%	nce between the instrument 6 of the calibration gas value		calibration gas as a perce Cal Gas Concentration	
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas C	ConcCal Gas Reading	Response Time (se
1	- 2	500	100.000	0	
2	1.	502		2	4
3		502		2	5
	ision= Average Difference/C	= 100%	1-3	/500 x 100%	
		=997	%	-	
Span Sensitivity:					
<u>Trial 1:</u> Co	ounts Observed for the Spar	13000	Trial 3: Cou	nts Observed for the Spar	-112 47
Cou	nters Observed for the Zerc	= 3285	Count	ters Observed for the Zerc	= 31 27
Trial 2:	ounts Observed for the Spar	2710			
Cou	nters Observed for the Zero	= 3104			
Post Monitoring	Calibration Check				
Zero Air		Cal Gas	-		
Reading:	ppm	Reading:	500	_ppm	
BACKGROUND	CONCENTRATIONS CHEC	KS		4	
BACKGROUND		Florre	-	Reading:	_ppm
	Description:	Florre	-	Reading: $\frac{1.0}{5}$ Reading: $\frac{1.5}{5}$	ppm ppm

SCS DataServices - Secure Environmental Data

					pre
		SURFACE EMISS	SIONS MONI	TORING	
		CALIBRATION A	ND PERTINE	NT DATA	
Date:	11-8-20	150	Site Name:	Newby	
Inspector(s):	Ryan H		Instrument:	TVA 2020	
WEATHER OBSE	RVATIONS				
Wind Speed: _	2мрн	Wind Direction:	\sim	Barometric Pressure: 30	"Hg
Air Temperature:	48°F	General Weath Conditio		<u>n</u> 4	
CALIBRATION IN	IFORMATION)	
Pre-monitoring Ca	alibration Precision Check				
and calculate the	average algebraic different less than or equal to 10%	ice between the instrumer	nt reading and the	ng zero air and the calibration calibration gas as a percenta Cal Gas Concentration:	
Trial	Zero Air Reading	Cal Gas Reading		- ConcCal Gas Reading	Response Time (seco
1	- \	501	[Cal Gas		
2	.2	502		2	5
3	-1 -	502		2	5
		= 1009	%- 1.6	/500 × 100%	
		=94.7	%		
Span Sensitivity:					
Trial 1:	nts Observed for the Span	169842	- Trial 3: - Cou	unts Observed for the Span-	2040
Count	ers Observed for the Zero	= 3.921		ters Observed for the Zero-	3978
Trial 2: Cour	nts Observed for the Span	170183			
Count	ers Observed for the Zero	3958			
Post Monitoring Ca	alibration Check				
Zero Air Reading:	ppm	Cal Gas Reading:	500	_ppm	
BACKGROUND CO	ONCENTRATIONS CHECK	(S			
Jpwind Location D	escription:	chridt	_	Reading: 1,3 p	pm
Downwind Location	n Description:	Flare	÷	Reading: <u>\</u> p	pm
				quested 10 miles per hour and	
				us 24 hours of the monitoring	
m	eteorological conditions w	vere within the requested	alternatives of the	ELMR requirements on the ab	
and the second states	and the second second	The state of the state of the state of the	Contraction of the	Ling ter -	9

					1.0
		SURFACE EMISSION			
Date:	4-8-202	-	Site Name:	lewou	
Inspector(s):	Dong			2020	
WEATHER OBS	SERVATIONS			4	
			_		
Wind Speed	:мрн	Direction: <u>SSN</u>) Baru Pr	essure: <u>30</u>	"Нg
Air Temperature:	<u> </u>	General Weather Conditions			
	INFORMATION)		
Pre-monitoring	Calibration Precision Check				
and calculate th	prate the instrument. Make a e average algebraic difference be less than or equal to 10% of	e between the instrument i			
nstrument Seria	al Number: 122	.0	Cal	Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcC	al Gas Reading	Response Time (seconds
1	.\	498	2		3
2	.\	501	1		65
3	-				
- l'han ti a a Dan si		Average Difference:	*Perform recalibration if averag	e difference is greater that]] 10
alibration Preci	sion= Average Difference/Cal	Gas Conc. X 100%		e difference is greater than < 100%	1
alibration Preci	sion= Average Difference/Cal	Gas Conc. X 100%] n 10
	sion= Average Difference/Cal	Gas Conc. X 100%	/500 ;]
pan Sensitivity: rial 1		Gas Conc. X 100% = 100%- =	/500 x		
pan Sensitivity: rial 1: Co	ounts Observed for the Span=	Gas Conc. X 100% = 100%- = 144204	/500 x % <u>Trial 3:</u> Counts Obs	erved for the Span	144893
pan Sensitivity: rial 1: Co Cour		Gas Conc. X 100% = 100%- = 144204	/500 x % <u>Trial 3:</u> Counts Obs	< 100%	144893
pan Sensitivity: rial 1: Co Cour	ounts Observed for the Span=	Gas Conc. X 100% = 100%- = <u>144204</u> <u>39001</u>	/500 x % <u>Trial 3:</u> Counts Obs	erved for the Span	144893
pan Sensitivity: rial 1: Co Coun rial 2: Co	nunts Observed for the Span=	Gas Conc. X 100% = 100%- = <u>144204</u> <u>3901</u> <u>146496</u>	/500 x % <u>Trial 3:</u> Counts Obs	erved for the Span	144893
pan Sensitivity: rial 1: Co Cour rial 2: Co Cour	ounts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	Gas Conc. X 100% = 100%- = <u>144204</u> <u>3901</u> <u>146496</u>	/500 x % <u>Trial 3:</u> Counts Obs	erved for the Span	144893
pan Sensitivity: rial 1: Co Cour rial 2: Co Cour	ounts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	Gas Conc. X 100% = 100%- = <u>144204</u> <u>3901</u> <u>146496</u>	/500 x % <u>Trial 3:</u> Counts Obs	erved for the Span	144893
pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co Cour ost Monitoring o	ounts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	Gas Conc. X 100% = 100%- = <u>144204</u> <u>3901</u> <u>146496</u> <u>3195</u>	/500 x % <u>Trial 3:</u> Counts Obs	erved for the Span	144893
pan Sensitivity: rial 1: Co Cour rial 2: Co cour ost Monitoring o ero Air eading:	ounts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	Gas Conc. X 100% = 100%- = <u>144204</u> <u>3901</u> <u>146496</u> <u>3195</u> Cal Gas Reading:	/500 x % <u>Trial 3:</u> Counts Obs <u>Counters Ob</u>	erved for the Span	144893
pan Sensitivity: rial 1: Co Cour rial 2: Co cour ost Monitoring o ero Air eading:	nunts Observed for the Span= <u>inters Observed for the Zero=</u> unts Observed for the Span= <u>inters Observed for the Zero=</u> Calibration Check <u>ppm</u> CONCENTRATIONS CHECKS	Gas Conc. X 100% = 100%- = <u>144204</u> <u>3901</u> <u>146496</u> <u>3195</u> Cal Gas Reading:	/500 x % <u>Trial 3:</u> Counts Obs <u>Counters Ob</u>	erved for the Spans served for the Zeros	144893
pan Sensitivity: rial 1: Co Cour rial 2: Co Cour cost Monitoring of ero Air eading: ACKGROUND of pwind Location	nunts Observed for the Span= <u>inters Observed for the Zero=</u> unts Observed for the Span= <u>inters Observed for the Zero=</u> Calibration Check <u>ppm</u> CONCENTRATIONS CHECKS	Gas Conc. X 100% = 100%- = <u>144204</u> <u>39001</u> <u>146496</u> <u>3195</u> Cal Gas	/500 x % Trial 3: Counts Obs Counters Obs	erved for the Spans served for the Zeros served for the Zeros	<u>144893</u> 3861

SCS DataServices - Secure Environmental Data

		SURFACE EMISSI			
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	4-8-2021 Pablo River		Site Name:	Newby	
Inspector(s):	Pablo River	a	Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS			- H.	
Wind Speed:	ИАМРН	Wind Direction: NW	-	Barometric Pressure: <u>30</u>	"Hg
Air Temperature:	65_°F	General Weathe Conditions	1	_	
CALIBRATION I	NFORMATION				
Pre-monitoring C	alibration Precision Check				
	e less than or equal to 10% o	f the calibration gas value.	reading and the	calibration gas as a percent	
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (secon
1	- v. 1	27	E	498	2
2	. 2	0 ->	4	500	И
3	2 - A	3 → Average Difference:	*Perform recalibration	3 on if average difference is greater than	3
		3 → Average Difference:	2	503 3 on if average difference is greater than	3
Calibration Precis	2 - A	3 → Average Difference: Gas Conc. X 100%		503 3 on if average difference is greater than	3
Calibration Precis	2 - A	3 → Average Difference: Gas Conc. X 100% = 100%- = 90.4	<u>3</u> %	503 3 on if average difference is greater than	3
Calibration Precis Span Sensitivity: Trial 1:	2 - A	3 → Average Difference: Gas Conc. X 100% = 100%- = 90.4 [2-6 50 8]	<u>3</u> % Trial 3:	503 3 on if average difference is greater than	
Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cour	ion= Average Difference/Cal	$3 \rightarrow$ Average Difference: Gas Conc. X 100% $= 100\%$ $= qa.4$	<u>3</u> % <u>Trial 3:</u> Cou	503 3 on if average difference is greater than /500 x 100%	127056
Calibration Precis Span Sensitivity: Trial 1: Cou Trial 2:	ion= Average Difference/Cal	3 → Average Difference: Gas Conc. X 100% = 100%- = 90.4 [2-6 50 8]	<u>3</u> % <u>Trial 3:</u> Cou	3 on if average difference is greater than /500 x 100%	127056
Calibration Precisi Span Sensitivity: <u>Trial 1:</u> Cou <u>Coun</u> <u>Trial 2:</u> Cou	ion= Average Difference/Cal ints Observed for the Span= ters Observed for the Zero=	$3 \rightarrow$ Average Difference: Gas Conc. X 100% $= 100\%$ $= 9a.4$ 126508 4820	<u>3</u> % <u>Trial 3:</u> Cou	3 on if average difference is greater than /500 x 100%	127056
Calibration Precisi Span Sensitivity: <u>Trial 1:</u> Cou <u>Coun</u> <u>Trial 2:</u> Cou	ion= Average Difference/Cal ints Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Span=	$3 \rightarrow$ Average Difference: Gas Conc. X 100% $= 100\%$ $= 9a.4$ 126508 4820 126809	<u>3</u> % <u>Trial 3:</u> Cou	3 on if average difference is greater than /500 x 100%	127056
Calibration Precisi Span Sensitivity: Trial 1: Coun Trial 2: Coun	ion= Average Difference/Cal ints Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Span=	$3 \rightarrow$ Average Difference: Gas Conc. X 100% $= 100\%$ $= 9a.4$ 126508 4820 126809	<u>3</u> % <u>Trial 3:</u> Cou	3 on if average difference is greater than /500 x 100%	127056
Calibration Precisi Span Sensitivity: <u>Trial 1:</u> Count <u>Trial 2:</u> Count Post Monitoring C Zero Air Reading:	ion= Average Difference/Cal ints Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Zero= alibration Check	$3 \rightarrow$ Average Difference: Gas Conc. X 100% $= 100\%$ $= 99.4$ 126508 126508 126809 126809 126809 126809 Cal Gas Reading:	3 % Trial 3: Coun	3 on if average difference is greater than _/500 x 100%	127056
Calibration Precisi Span Sensitivity: <u>Trial 1:</u> Count <u>Trial 2:</u> Count Post Monitoring C Zero Air Reading:	ion= Average Difference/Cal ints Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Zero= alibration Check ppm ONCENTRATIONS CHECKS	$3 \rightarrow$ Average Difference: Gas Conc. X 100% $= 100\%$ $= 99.4$ 126508 126508 126809 126809 126809 126809 Cal Gas Reading:	3 % Trial 3: Coun	3 on if average difference is greater than /500 x 100% unts Observed for the Span= ters Observed for the Zero=	127056

		CALIBRATION AN		NT DATA	
Date:	H- 8- 2021		Site Name:	Newby	
Inspector(s):	Cody, G		Instrument:	TVA 2020	
WEATHER OE	SERVATIONS				
Wind Speed	н. 14 мрн	Wind Direction: NW	_	Barometric Pressure: <u>3</u> 0	"Hg
A Temperature	1	General Weathe Conditions	clear	-	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate t	brate the instrument. Make a he average algebraic difference be less than or equal to $10\% $ o ial Number: $54/9$	e between the instrument	reading and the		age. The calibration
Trial	Zero Air Reading	Cal Gas Reading		ConcCal Gas Reading	Response Time (seconds)
1	, O	500	I I Cal Gas (D	Hesponse Time (seconds)
2	. 0	498		7	4
3		501		1	И
		= 100%- = 99,5-	2 ,3 %	_/500 x 100%	
Span Sensitivity					
Frial 1:	ounts Observed for the Span=	156038	Trial 3: Cou	nts Observed for the Span=	156288
Соц	unters Observed for the Zero=	49 57	Coun	ters Observed for the Zero=	4923
rial 2: C	ounts Observed for the Span=	156182			
Cou	unters Observed for the Zero=	49 63			
ost Monitoring	Calibration Check				
ero Air	0	Cal Gas	600		
eading:	ppm	Reading;	500	_ppm	
ACKGROUND	CONCENTRATIONS CHECKS				
pwind Location	n Description:	HOVE	~		ppm
ownwind Loca	tion Description:	Chridt		Reading: 14	opm
lotes:	Wind speed averages were of exceeded 20 miles per hour.	No rainfall had occurred w	ithin the previou		g event. Therefore, site

1		SURFACE EMISSI		. –	
		CALIBRATION AN	DPERIMEN		
Date:	4-5-2021		Site Name:	Wewby	
Inspector(s):	Hunter O.		Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS				
Wind Speed:	_ <i>LU</i> MPH	Wind Direction: NW	_	Barometric Pressure: <u>30</u>	"Hg
Air Temperature:	65 °F	General Weathe Conditions	: Clean	_	
CALIBRATION I	NFORMATION				
Pre-monitoring C	Calibration Precision Check				
	e average algebraic difference e less than or equal to 10% c Number: 54		-	calibration gas as a percent	age. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (secon
1	ot	500		0	4
2					
	اد	uaq			2
3	.0 -	503 Average Difference:	Perform recalibration	3 2 If average difference is greater than :	4
3		503 Average Difference:		2	4
3	.0 -	Average Difference:		2 If average difference is greater than 3	4
3 Calibration Precis	.0 -	Average Difference: I Gas Conc. X 100% = 100%-	~ %	2 If average difference is greater than 3	4
3 Calibration Precis Span Sensitivity: Trial 1:	ion= Average Difference/Ca	Average Difference: I Gas Conc. X 100% = 100%- = 99.6	% <u>Trial 3:</u>	2 If average difference is greater than : /500 x 100%	4
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cοι	ion= Average Difference/Ca unts Observed for the Span=	Average Difference: I Gas Conc. X 100% = 100%- = $9Q.6$ = $12/2 98$	% Trial 3:	2- If average difference is greater than /500 x 100%	4 10 120 9 98
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cou <u>Coun</u> Trial 2:	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero=	Average Difference: I Gas Conc. X 100% = 100%- = 99.6 = $12/2 98$ = 3845	% Trial 3:	2 If average difference is greater than : /500 x 100%	4
3 Calibration Precis Span Sensitivity: Trial 1: Cou Trial 2: Cou	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero=	Average Difference: I Gas Conc. X 100% = 100%- = 99.6 = $12/2 98$ = 3845 = 120990	% Trial 3:	2- If average difference is greater than /500 x 100%	4 10 120 9 98
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cou <u>Coun</u> Trial 2: Cou	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero= unts Observed for the Span= ters Observed for the Span=	$\frac{503}{4 \text{ verage Difference:}}$ $I \text{ Gas Conc. X 100\%} = 100\% = 99.6$ $= 12/2 98$ $= 3845$ $= 12090$	% Trial 3:	2- If average difference is greater than /500 x 100%	4 10 120 9 98
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cou <u>Coun</u> Trial 2: Cou Post Monitoring C	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero= unts Observed for the Span= ters Observed for the Span=	$\frac{503}{\text{Average Difference:}}$ $I \text{ Gas Conc. X 100\%}$ $= 100\%$ $= 99.6$ $\frac{121298}{3845}$ $\frac{3845}{56}$	% Trial 3:	2- If average difference is greater than /500 x 100%	4 10 120 9 98
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cou <u>Coun</u> <u>Trial 2:</u> Cou <u>Coun</u>	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero= unts Observed for the Span= ters Observed for the Span=	Average Difference: I Gas Conc. X 100% = 100%- = 99.6 = $12/2 98$ = 3845 = 120990	7 %	2- If average difference is greater than /500 x 100%	4 10 120 9 98
3 Calibration Precis Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Coun Post Monitoring C Zero Air Reading:	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero= unts Observed for the Zero= ters Observed for the Zero= Calibration Check	$\frac{503}{\text{Average Difference:}}$ $I \text{ Gas Conc. X 100\%} = 100\% = 99.6$ $= 99.6$ $= 12/2 98$ $= 3845$ $= 120990$ $= 3856$ Cal Gas Reading:	7 %	2 If average difference is greater than /500 x 100% Ints Observed for the Span= ers Observed for the Zero=	4 10 120 9 98
3 Calibration Precis Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Post Monitoring C Zero Air Reading:	ion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero= unts Observed for the Span= ters Observed for the Zero= Calibration Check	$\frac{503}{\text{Average Difference:}}$ $I \text{ Gas Conc. X 100\%} = 100\% = 99.6$ $= 99.6$ $= 12/2 98$ $= 3845$ $= 120990$ $= 3856$ Cal Gas Reading:	77 ial 3: Counte	2- If average difference is greater than : /500 x 100% Ints Observed for the Span= ers Observed for the Zero= ppm	4 10 120 9 98

					Post
		SURFACE EMISSI			
			DPERTINEN	A . (
Date:	4-8-20	<u>u</u>	Site Name:	Newle	24
inspector(s):	- Von G		Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed:	LY MPH	Wind Direction: MW)	Barometric Pressure: 3	⊖ "нg
Air Temperature:		General Weather Conditions		(
CALIBRATION I	INFORMATION				
Pre-monitoring	Calibration Precision Check				
		e a total of three measuremen nce between the instrument i			
		of the calibration gas value.			
Instrument Seria	Number:	20		Cal Gas Concentra	ation: 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (sec
1	.2	502		2	B
2	.\	499		7	5
		= 100%-	1.6	/500 x 100%	
		=001	%		
		- 99. (70		
Span Sensitivity: Frial 1:			Trial 2.		
Co	unts Observed for the Spar	=143275	Trial 3: Coun	ts Observed for the S	Span= 1435
and the second se	nters Observed for the Zero	= 3847	Counte	ers Observed for the	zero= 38 91
Con	unts Observed for the Spar	=143871			
Cour	nters Observed for the Zerc	= 38 63			
ost Monitoring (Calibration Check				
ero Air	-	Cal Gas			
Reading:	ppm	Reading:	500	ppm	
BACKGROUND	CONCENTRATIONS CHEC	кs			
pwind Location	Description:	Creide	ŧ.	Reading: $_{\cdot} _{\cdot} $	ppm
ownwind Locatio	on Description:	Florre	6 F	Reading: 4	6_ppm
e		observed to remain below th r. No rainfall had occurred wi			
					-
a prove series	neteorological conditions	were within the requested alt	ernatives of the L		n the above mentioned date.

			Post
	SURFACE EMISSIO	ONS MONITORING	
	CALIBRATION AND	D PERTINENT DATA	
4-95-20	\mathcal{X}	Site Name: Newby	
Date: 10 ad		Site Name:	
Inspector(s): Bryon	0	Instrument: TVA 2020	
WEATHER OBSERVATIONS		-	
Wind Speed: 4 MPH	Wind Direction: M	Barometric Pressure: <u>30</u>	нд
Air Temperature: 65 "F	General Weather Conditions:	clear	
CALIBRATION INFORMATION			
Pre-monitoring Calibration Precision Checl	k		
	ence between the instrument r	ts by alternating zero air and the calibratio eading and the calibration gas as a percent	
Instrument Serial Number:	15	Cal Gas Concentration:	500ppm
Trial Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1 2	499	1	-5
2	500	Ð	4
3 .	501	\mathbf{i}	5
	= 100%- = 9.9.8	/500 x 100%	
•	= /((, ()	%	
pan Sensitivity: rial 1:		Trial 3:	10 - T - T - T - T - T - T - T - T - T -
Counts Observed for the Spa	n=112389	Counts Observed for the Span=	112512
Counters Observed for the Zer	-3106	Counters Observed for the Zero=	3159
rial 2: Counts Observed for the Spa	n=112671		
Counters Observed for the Zer	= 3123		
ost Monitoring Calibration Check			
ero Air	Cal Gas		
eading:ppm	Reading:	<u> </u>	
ACKGROUND CONCENTRATIONS CHEC	CKS	N C 1	
pwind Location Description:	1511121	Reading: 1. M	ppm
ownwind Location Description:	1- are	Reading:	ppm
exceeded 20 miles per hou	ir. No rainfall had occurred wi	e alternative requested 10 miles per hour a thin the previous 24 hours of the monitorir ernatives of the LMR requirements on the a	g event. Therefore, site
	Plan Andreas and and	Deter Clarker St	W1

					YON
		SURFACE EMISSI			
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	4-8-20	21	Site Name:	Newba	1
nspector(s):	Ryan	H	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed		Wind Direction: <u>// / / / / / / / / / / / / / / / / / </u>)	Barometric Pressure: <u>30</u>	"Нg
Air Temperature		General Weathe Conditions	· · · · ·	1	
ALIBRATION	INFORMATION				
re-monitoring	Calibration Precision Check				
nd calculate th	prate the instrument. Make be average algebraic differen be less than or equal to 10%	ce between the instrument			
nstrument Seria	al Number: <u>59</u>	121		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds
1		500		0	M
2	.0	502		2	
3	-0 -	501	1	\backslash	3
		= 100%-	(_/500 x 100%	
		= 99-8	%		
pan Sensitivity:					
rial 1.	ounts Observed for the Span-	169392	Trial 3: Cou	nts Observed for the Span-	169817
	nters Observed for the Zero-	00 -	Count	ers Observed for the Zero=	4079
rial 2:	unts Observed for the Span-	170 0110	count		
	nters Observed for the Zero=	00 01			
ost Monitoring (Calibration Check				
ero Air	_	Cal Gas			
eading: -	ppm	Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECK	S			
pwind Location	Description:	chridl		Reading: 1.3	ppm
ownwind Locati	on Description:	Flare		Reading:	ppm
	Wind speed averages were c exceeded 20 miles per hour.				

Date: Inspector(s):		CALIBRATION AND	D PERTINENT DATA	PIP-
	H-g-al	CALIBRATION AN		
Inspector(s):			Site Name: Neuby	
	DonGibson		Instrument: TVA 2020	
WEATHER OBSERV	ATIONS			
Wind Speed:	ИМРН	Wind Direction:	Barometric Pressure: 29.9	"Hg
Air Temperature:	<u>58_</u> *F	General Weather Conditions:	and the second se	
CALIBRATION INFO	DRMATION		cloudt	
re-monitoring Calib	ration Precision Check			
nd calculate the ave	erage algebraic differenc is than or equal to 10% oj	e between the instrument r f the calibration gas value	nts by alternating zero air and the calibration reading and the calibration gas as a percenta Cal Gas Concentration:	gas. Record the redaing ge. The calibration 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (secon
1	0	501	(3
2	0	500	0	3
3	0	500	6	3
ilibration Precision=	- Average Difference/Cal		*Perform recalibration if average difference is greater than 10	
alibration Precision=	- Average Difference/Cal		*Perform recalibration if average difference is greater than 10	
alibration Precision=	- Average Difference/Cal	Gas Conc. X 100%	*Perform recalibration if average difference is greater than 10	
pan Sensitivity:	- Average Difference/Cal	Gas Conc. X 100% = 100%-	*Perform recalibration if average difference is greater than 10	
pan Sensitivity: ial 1:	- Average Difference/Cal Observed for the Span=	Gas Conc. X 100% = 100%- = 99.9	*Perform recalibration if average difference is greater than 10	168306
pan Sensitivity: ial 1: Counts	Observed for the Span=	Gas Conc. X 100% = 100%- = 99.9	*Perform recalibration if average difference is greater than 10 /500 x 100% % Trial 3: Counts Observed for the Span=	168306
oan Sensitivity: ial 1: Counts Counters ial 2:		Gas Conc. X 100% = 100%- = 99.9	*Perform recalibration if average difference is greater than 10 - <u>3</u> /500 x 100% % Trial 3:	
oan Sensitivity: ial 1: Counts Counters ial 2: Counts	Observed for the Span= Observed for the Zero=	Gas Conc. X 100% = 100%- = 99.9	*Perform recalibration if average difference is greater than 10 /500 x 100% % Trial 3: Counts Observed for the Span=	168306
oan Sensitivity: ial 1: Counts Counters ial 2: Counts	Observed for the Span= Observed for the Zero= Observed for the Span= Observed for the Zero=	Gas Conc. X 100% $= 100%$ $= 99.9$ 168309 3912 168319 $= 8.87$	*Perform recalibration if average difference is greater than 10 /500 x 100% % Trial 3: Counts Observed for the Span=	168306
an Sensitivity: ial 1: Counts Counters ial 2: Counts Counters st Monitoring Calibr	Observed for the Span= Observed for the Zero= Observed for the Span= Observed for the Zero=	Gas Conc. X 100% $= 100%$ $= 99.9$ 168309 3912 168319 $= 8.87$	*Perform recalibration if average difference is greater than 10 /500 x 100% % Trial 3: Counts Observed for the Span=	168306
an Sensitivity: ial 1: Counts Counters Counts Counters st Monitoring Calibr	Observed for the Span= Observed for the Zero= Observed for the Span= Observed for the Zero=	Gas Conc. X 100% $= 100%$ $= 99.9$ 168309 3912 168314 3897	*Perform recalibration if average difference is greater than 10 /500 x 100% % Trial 3: Counts Observed for the Span=	168306
aan Sensitivity: ial 1: Counts Counters ial 2: Counts of Counters st Monitoring Calibr ro Air ading:	Observed for the Span= Observed for the Zero= Observed for the Span= Observed for the Zero= ration Check	Gas Conc. X 100% = 100%- = 99.9 168309 3912 168314 3897 Cal Gas	*Perform recalibration if average difference is greater than 10 	168306
aan Sensitivity: ial 1: Counts Counters ial 2: Counts of Counters st Monitoring Calibr ro Air ading:	Observed for the Span= Observed for the Zero= Observed for the Span= Observed for the Zero= ration Check	Gas Conc. X 100% = 100%- = 99.9 168309 3912 168314 3897 Cal Gas	*Perform recalibration if average difference is greater than 10 3 /500 x 100% 7 Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	168306

Terate to constantion

Claire Bill

		SURFACE EMISS			Post
Date:	4-9-21		Site Name:	Newby	
Inspector(s)	Don Gibson			VA 2020	
ine l'al					
WEATHER	OBSERVATIONS				
Wind Sp	eed: MPH	Wind E		arometric Pressure: 299	"Hg
Temperat	Air ure: <u>63</u> °F	General Weathe Conditions			
CALIBRATIC	ON INFORMATION		Cloudy		
Pre-monitori	ing Calibration Precision Check				
recision mu	e the average algebraic difference ast be less than or equal to 10% of erial Number:			ration gas as a percento	age. The calibration 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas Conc.	-Cal Gas Reading	Response Time (second
1	1	500	0	>	4
2	8	561	1		3
		500	0		-
		= 100%- = 99,9	<u>3</u> /500) x 100%	
oan Sensitivi	tv:				
ial 1:	Counts Observed for the Span=	169446	Trial 3: Counts O	bserved for the Span=_	169450
С	ounters Observed for the Zero=	3789	Counters O	bserved for the Zero=	2780
ial 2:	Counts Observed for the Span=	169433	eounters o		
Ci	ounters Observed for the Zero≃	3792			
ost Monitorir	ng Calibration Check				
ro Air		Cal Gas	600		
ading:	D ppm	Reading:	<u> </u>		
CKGROUN	D CONCENTRATIONS CHECKS				
wind Location	on Description:	Gridt	Read	ling: 1.2 p	pm
wnwind Loc	ation Description:	Flare	Read	ling: 1.5_p	pm
otes:	Wind speed averages were ob exceeded 20 miles per hour.	served to remain below th	e alternative requeste	ed 10 miles per hour an	d no instantaneous speed

meteororogical	conditions wer	e within the	requested t	arcematives of	THE LIMIT	requirements on	the above m	enuo

n

Line to want R. 1 - S LAUROW

		CALIBRATION AND	DNS MONIT		Pre
Date: –	4-9-21		Site Name:	Newby	
Inspector(s);	Lian Mel	nn	Instrument	TVA 2020	
WEATHER OBSE	RVATIONS			14	
Wind Speed:	<u>Ч</u> мрн	Wind Direction: E		Barometric Pressure: 29,9	"Hg
Air Temperature:	58 .	General Weather Conditions:	Partly		
CALIBRATION IN	FORMATION		Cioudy		
're-monitoring Ca	libration Precision Check				
	ess than or equal to 10% oj	e between the instrument re the calibration gas value. 5	ading and the ca	Cal Gas Concentration:	500ppm
rial 1	Zero Air Reading	Cal Gas Reading	Cal Gas Co	ncCal Gas Reading	Response Time (second
2	0	500		2	3
3	Ĭ	501		1	3
libration Precisio	n= Average Difference/Cal	Gas Conc. X 100%			
libration Precisio	n= Average Difference/Cal	Gas Conc. X 100% = 100% = 999,8%		500 x 100%	
an Sensitivity:	n= Average Difference/Cal	= 100%		500 x 100%	
an Sensitivity: ial 1:	n= Average Difference/Cal	= 100% = 99,8%	6 Trial 3:	500 x 100% s Observed for the Span=_	139330
oan Sensitivity: ial 1: Count Counte		= 100%- = 99,8 %	6 T <u>rial 3:</u> Counts		139330 4669
an Sensitivity: ial 1: Count Counte	s Observed for the Span=	= 99.8 %	6 T <u>rial 3:</u> Counts	s Observed for the Span=_	139330 4669
an Sensitivity; ial 1: Count Counte al 2: Count	s Observed for the Span= rs Observed for the Zero=	= 100%- = 99,8 % 139317 4661	6 T <u>rial 3:</u> Counts	s Observed for the Span=_	139330 4669
oan Sensitivity: ial 1: Count Counte ial 2: Counte	s Observed for the Span= rs Observed for the Zero= s Observed for the Span= rs Observed for the Zero=	= 99.8 % $= 100%$ $= 99.8 %$ 139.317 $= 4661$ $= 139.323$	6 T <u>rial 3:</u> Counts	s Observed for the Span=_	139330 4669
an Sensitivity: ial 1: Counte Counte counter Counter st Monitoring Cali	s Observed for the Span= rs Observed for the Zero= s Observed for the Span= rs Observed for the Zero=	= 100%- = 99,8 % 139317 I 4661 139323 4658 Cal Gas	6 T <u>rial 3:</u> Counts	s Observed for the Span=_	139330 4669
an Sensitivity: ial 1: Counte Counte ial 2: Counter st Monitoring Cali ro Air ading:	ts Observed for the Span= rs Observed for the Zero= s Observed for the Span= rs Observed for the Zero= bration Check	= 100%- = 99,8 % 139317 4661 139323 4658	6 T <u>rial 3:</u> Counter Counter	s Observed for the Span=_	139330 4669
an Sensitivity: ial 1: Counte Counte ial 2: Counter st Monitoring Cali ro Air ading:	ts Observed for the Span= rs Observed for the Zero= s Observed for the Span= rs Observed for the Zero= bration Check	$= 100\% - \frac{100\% - 0\% - 0\% - 0\% - 0\%}{10\% - 0\%}}{100\% - 0\% - 0\%}{10\% - 0\%}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	6 T <u>rial 3:</u> Counter Counter	s Observed for the Span= s Observed for the Zero=_	139330 4669
an Sensitivity: ial 1: Counte al 2: Counter Counter St Monitoring Cali o Air ading: CKGROUND COI	s Observed for the Span= <u>rs Observed</u> for the Zero= s Observed for the Span= <u>rs Observed for the Zero=</u> bration Check <u>ppm</u> VCENTRATIONS CHECKS	= 100%- = 99,8 % 139317 I 4661 139323 4658 Cal Gas Reading: 	6 Trial 3: Counter Counter	s Observed for the Span= s Observed for the Zero=	139330 4669
ban Sensitivity: ial 1: Counte Counte ial 2: Counter St Monitoring Cali ro Air ading:	ts Observed for the Span= rs Observed for the Zero= s Observed for the Span= rs Observed for the Zero= bration Check ppm VCENTRATIONS CHECKS scription:	$= 100\% - \frac{100\% - 0\% - 0\% - 0\% - 0\%}{10\% - 0\%}}{100\% - 0\% - 0\%}{10\% - 0\%}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	6 Trial 3: Counter Counter	s Observed for the Span= s Observed for the Zero= om eading: $1/2$ p	4669

Parate in an inclusion of the

		CALIBRATION A	SIONS MONI		Post
Date:	4-9-2	1	Site Name:	Newby	
Inspector(s):	LIAM McG	117	Instrument:	TVA 2020	
WEATHER	BSERVATIONS				
Wind Spe	ed: МРН	Wind E		Barometric Pressure: 29-9	"Hg
Temperatu	Air63*F	General Weat Conditio	her ons: <u>Partly</u>	-	
CALIBRATIO	N INFORMATION		Cloudy		
re-monitorir	ng Calibration Precision Check				
precision mus	the average algebraic difference t be less than or equal to 10% of rial Number:			calibration gas as a percento Cal Gas Concentration	age. The calibration 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (secon
1 2	6	501	-	1	5.
3	0	502		2	3
libration Pre	cision= Average Difference/Cal	Average Difference: Gas Conc. X 100%	*Perform recalibratio	n if average difference is greater than 1	0
alibration Pre	cision= Average Difference/Cal	Gas Conc. X 100% = 1009	%	/500 x 100%	0
alibration Pre		Gas Conc. X 100%	%		0
oan Sensitivit rial 1:		Gas Conc. X 100% = 1009	%- <u>(, 3</u> 7 % <u>Trial 3:</u>		140367
pan Sensitivit rial 1: Cc	ý:	Gas Conc. X 100% = 100° = 997-7	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100%	
pan Sensitivit rial 1: Cc ial 2:	y: Counts Observed for the Span=	Gas Conc. X 100% = 100° = 997-7	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% hts Observed for the Span=	
pan Sensitivit ial 1: Co ial 2:	y: Counts Observed for the Span= punters Observed for the Zero=	Gas Conc. X 100% = 1009 = 99-7 140365 4411	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% hts Observed for the Span=	
ban Sensitivit tial 1: Co tial 2: Co Co	y: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span=	Gas Conc. X 100% = 1009 = 99-7 140365 4411 140352	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% hts Observed for the Span=	
ban Sensitivit tial 1: Co tial 2: Co Co	y: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= unters Observed for the Zero=	Gas Conc. X 100% = 1009 = 99-7 140365 4411 140352	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% hts Observed for the Span=	
ban Sensitivit rial 1: Co ial 2: Co ost Monitorin	y: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= unters Observed for the Zero=	Gas Conc. X 100% = 1009 = 99-7 140365 4411 140352 4418	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	/500 x 100% hts Observed for the Span=	
oan Sensitivit ial 1: Co ial 2: Co ost Monitorin ro Air ading:	y: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= unters Observed for the Zero= g Calibration Check	Gas Conc. X 100% = 100° = 99-7 140365 4411 140352 4418 Cal Gas	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=_ ers Observed for the Zero=	
ban Sensitivit rial 1: Co co rial 2: Co ost Monitorin ro Air rading: ACKGROUNE	counts Observed for the Span= nunters Observed for the Zero= Counts Observed for the Span= unters Observed for the Zero= g Calibration Check	Gas Conc. X 100% = 100° = 99-7 140365 4411 140352 4418 Cal Gas	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=_ ers Observed for the Zero=	
oan Sensitivit ial 1: Co ial 2: Co ost Monitorin ro Air ading:	counts Observed for the Span= nunters Observed for the Zero= Counts Observed for the Span= unters Observed for the Zero= g Calibration Check	Gas Conc. X 100% = 100° = 99-7 140365 4411 140352 4418 Cal Gas	%- <u>[,3</u> 7 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=_ ers Observed for the Zero=	

			ONS MONITORING		Pre
Date:	4-9-2	(ew by	
nspector(s):	Bryan och	100	Instrument: TVA 202		
VEATHER OBS				~	
Wind Speed	мрн	Wind Direction:E	Baromet Pressur	1-7-(1	"Hg
Air Temperature:	58	General Weather Conditions:	Partly		
ALIBRATION	INFORMATION		Cloudy		
re-monitoring	Calibration Precision Check				
	e average algebraic difference de less than or equal to 10% of al Number:			gas as a percentag Concentration	e. The calibration 500ppm
ial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas	s Reading	Response Time (secon
1	0	501	0		4
4			0		
3	sion= Average Difference/Ca		*Perform recalibration if average differ	rence is greater than 10	3
3	sion= Average Difference/Ca	Average Difference: [Gas Conc. X 100% = 100%-	*Perform recalibration if average differ		3
3 alibration Precis	sion= Average Difference/Cal	500 Average Difference: Gas Conc. X 100% = 100%-	*Perform recalibration if average differ		3
3 libration Precis an Sensitivity: ial 1:	sion= Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100% - = $9,9,9$	*Perform recalibration if average differ	%	3
3 Ilibration Precis an Sensitivity: ial 1: Con		Average Difference: Gas Conc. X 100% = 100% - = $9,9,9$	*Perform recalibration if average differ <u>13</u> /500 x 100 % Trial 3:	% d for the Span=	3 138188 3392
3 alibration Precis ial 1: Cour ial 2:	unts Observed for the Span=	Average Difference: Gas Conc. X 100% = 100% = 99,9 138199 3379	*Perform recalibration if average differ <u>3</u> /500 x 100 % Trial 3: Counts Observed	% d for the Span=	3 138188 3392
3 an Sensitivity: ial 1: Cour al 2: Cou	unts Observed for the Span= nters Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100% = 99,9 138199 3379	*Perform recalibration if average differ <u>3</u> /500 x 100 % Trial 3: Counts Observed	% d for the Span=	3 138188 3392
3 alibration Precis tan Sensitivity: tal 1: Cour tal 2: Cour Cour	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	Average Difference: Gas Conc. X 100% = 100% = 99,9 138199 138178	*Perform recalibration if average differ <u>3</u> /500 x 100 % Trial 3: Counts Observed	% d for the Span=	3 138188 3392
3 Ilibration Precis an Sensitivity: ial 1: Cour al 2: Cour st Monitoring C	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100% = 99,9 138199 138178	*Perform recalibration if average differ <u>3</u> /500 x 100 % Trial 3: Counts Observed	% d for the Span=	3 138188 3392
3 an Sensitivity: ial 1: Cour ial 2: Cour st Monitoring C ro Air ading:	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	Average Difference: Gas Conc. X 100% = 100%- = 99.9 138179 138178 3380 Cal Gas Reading:	*Perform recalibration if average differ 	% d for the Span=	3 138188 3392
3 an Sensitivity: ial 1: Cour ial 2: Cour st Monitoring C ro Air ading:	unts Observed for the Span= <u>iters Observed for the Zero=</u> unts Observed for the Span= <u>iters Observed for the Zero=</u> Calibration Check ppm CONCENTRATIONS CHECKS	Average Difference: Gas Conc. X 100% = 100%- = 99.9 138179 138178 3380 Cal Gas Reading:	*Perform recalibration if average differ 	% d for the Span=	

ALAN A. ALANA

CILLAN - RIVE

		SURFACE EMISSI			Post
Date:	4-9-2	-1	Site Name:	Newby	
Inspector(s):	Bryan oc	hoa	Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS				
Wind Speed:	МРН	Wind Direction: <u> </u>		Barometric Pressure: 299	"Hg
Air Temperature:	63.	General Weathe Conditions		-	
CALIBRATION IN	FORMATION		Cloudy		
re-monitoring C	alibration Precision Check				
	less than or equal to 10%	nce between the instrument of the calibration gas value.		calibration gas as a percent	age. The calibration 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (second
1 2	0	500		0	53
3	0	601		1	3
libration Precision	on≃ Average Difference/Ca		- 7	_/500 x 100%	
		= 99,8	%		
an Sensitivity:			T - 10		
<u>ial 1:</u> Cour	nts Observed for the Span=	141226	Trial 3: Cour	nts Observed for the Span=	141245
	ers Observed for the Zero=	3188	Count	ers Observed for the Zero=	3192
ial 2: Cour	nts Observed for the Span=	141237	1		
Count	ers Observed for the Zero=	3174			
st Monitoring Ca	libration Check				
ro Air	0	Cal Gas	K a		
ading:	ppm	Reading:	500	ppm	
CKGROUND CO	DNCENTRATIONS CHECK				
wind Location D	escription:	Grid1 Flare		Reading:)12	pm
wnwind Locatior	Description:	Flare		Reading: 1.5	mq¢
	ind speed averages were o ceeded 20 miles per hour.	bserved to remain below th			

in an

Statut of Bull

		SURFACE EMISSIC			PR
Date:	4-9-2-1		Site Name:	Newby	
Inspector(s);	Huntero	TT	Instrument:	TVA 2020	
WEATHER O	BSERVATIONS			÷+-	
Wind Spee	ed: МРН	Wind Direction: <u>E</u>	2	Barometric Pressure: 29, 4	<u>2</u> "Нg
م Temperatur		General Weather Conditions:	Partly cloudy		
	INFORMATION		,		
re-monitoring	g Calibration Precision Check				
	the average algebraic different be less than or equal to 10% of tial Number:		eading and the c	alibration gas as a percer Cal Gas Concentration:	tage. The calibration
rial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (seconds
1	.0	501		1.	3
2		500 501		0	3
		= 100%- = 99,8	•7	/500 x 100%	
oan Sensitivity		- 990	·7%	/500 x 100%	
ial 1:	ounts Observed for the Span=	= 99,8	% Frial 3:	/500 x 100%	163796
<u>ial 1:</u> Ci Cou		= 99,8	% T <u>rial 3:</u> Coun		1 - 10
ial 1: Co Cou ial 2:	ounts Observed for the Span=	= 99,8	% T <u>rial 3:</u> Coun	ts Observed for the Span-	1 - 10
ial 1: Cou <u>Cou</u> ial 2: Cou	ounts Observed for the Span= unters Observed for the Zero=	= 99,8 163788 1344	% T <u>rial 3:</u> Coun	ts Observed for the Span-	1 - 10
ial 1: Cοι ial 2: Cοι Cοι	ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span=	= 99,8 <u>163788</u> <u>1349</u> <u>163801</u>	% T <u>rial 3:</u> Coun	ts Observed for the Span-	1 - 10
ial 1: Cοι ial 2: Cοι Cοι	ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero=	= 99,8 <u>163788</u> <u>1349</u> <u>163801</u>	% Frial 3: Counte	ts Observed for the Span-	1 - 10
ial 1: Cou ial 2: Cou St Monitoring ro Air ading:	ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check	= 99,8 <u>163788</u> <u>1344</u> <u>163801</u> <u>163801</u> <u>4328</u> Cal Gas Reading:	% Frial 3: Counte	ts Observed for the Span= rs Observed for the Zero=	1 - 10
ial 1: Cou ial 2: Cou St Monitoring ro Air ading:	ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check	= 99,8 <u>163788</u> <u>1344</u> <u>163801</u> <u>163801</u> <u>4328</u> Cal Gas Reading:	К <u>Frial 3:</u> Counte <u>Counte</u>	ts Observed for the Span= rs Observed for the Zero=	1 - 10
ial 1: Cou ial 2: Cou st Monitoring ro Air ading: CKGROUND wind Locatior	ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check	= 99,8 <u>163788</u> <u>1399</u> <u>163801</u> <u>163801</u> <u>4328</u> Cal Gas Reading:	К <u>Frial 3:</u> Counte <u>Counte</u>	ts Observed for the Span= rs Observed for the Zero=	4319

Party a state of the state The second s 6 33

		CALIBRATION AN		IT DATA	Post
Date:	4-9-21		Site Name:	Newby	
Inspector(s):	Hunter off		Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS			- - -	
Wind Speed:	6 мрн	Wind Direction:		Barometric Pressure: 29-9	"Hg
Air Temperature:	<u>63</u> °F	General Weather Conditions:	Partly	-	
CALIBRATION I	NFORMATION		Cloud 1		
rocedure: Calibi	Calibration Precision Check				
	e average algebraic difference e less than or equal to 10% of		eading and the	calibration gas as a percent	age. The calibration
nstrument Serial	Number: 542	-0		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (second
1 2	0	501			3
3	9	501			3
		= 100%- = 99.8	%	/500 x 100%	
an Sensitivity:		11/0	, u		
ial 1:	ents Observed for the Span=_	165199	Trial 3: Cour	its Observed for the Span=	165186
Count ial 2:	ters Observed for the Zero=	4271	Count	ers Observed for the Zero=	4284
	nts Observed for the Span=	165204			
Count	ters Observed for the Zero=	4305			
st Monitoring C	alibration Check				
ro Air	6	Cal Gas	1000		
ading:	ppm	Reading:	500	ppm	
	ONCENTRATIONS CHECKS				
wind Location D	Description:	Gridl		Reading: 1.2	opm
wnwind Locatio	n Description:	Flare		Reading: 1.5	opm

meteorological conditions were within the requested alternatives of the Livik requirements on the above

		SURFACE EMISSIC			Pre
Date:	4-9-2		Site Name:	Newby	
Inspector(s):	Pablo Rive		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	а: мрн	Wind Direction:E		Barometric Pressure: 29-9	"Нg
Ai Temperature	5 75	General Weather Conditions:	Partly	-	
CALIBRATION	INFORMATION		Cloudy		
Pre-monitoring	Calibration Precision Check				
	ne average algebraic difference be less than or equal to 10% of al Number:		eading and the	calibration gas as a percen Cal Gas Concentration:	tage. The calibration
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
2	0	501		1	3
3	0	500		0	2
alibration Preci	sion= Average Difference/Cal	Gas Conc. X 100%	*Perform recalibration	n if average difference is greater than	10
alibration Preci	sion= Average Difference/Cal		*Perform recalibration	n if average difference is greater than /500 x 100%	10
alibration Preci Dan Sensitivity:	sion= Average Difference/Cal	Gas Conc. X 100% = 100%	*Perform recalibration] 10
oan Sensitivity: ' ial 1: Co	unts Observed for the Span=	Gas Conc. X 100% = 100% = $99/8$	% Frial 3: Cour	_/500 x 100% hts Observed for the Span=	[7824]
oan Sensitivity: ' ial 1: Co		$Gas Conc. X 100\% = 100\% - 100\% - \frac{100\% - 0\% - 0\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 0$	% Frial 3: Cour	_/500 x 100%	[7824]
<mark>ial 1:</mark> Co <u>Cour</u> Cour Cour	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	Gas Conc. X 100% = 100% = $99/8$	% Frial 3: Cour	_/500 x 100% hts Observed for the Span=	[7824]
<mark>ial 1:</mark> Co <u>Cour</u> Cour Cour Cour	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	$Gas Conc. X 100\% = 100\% - 100\% - \frac{100\% - 0\% - 0\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 0$	% Frial 3: Cour	_/500 x 100% hts Observed for the Span=	[7824]
oan Sensitivity: rial 1: Co <u>Cour</u> ial 2: Co Cour ost Monitoring (unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	$Gas Conc. X 100\% = 100\% - 100\% - \frac{100\% - 0\% - 0\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 0$	% Frial 3: Cour	_/500 x 100% hts Observed for the Span=	[7824]
<mark>ial 1:</mark> Co <u>Cour</u> Cour Cour Cour	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	$Gas Conc. X 100\% = 100\% - 100\% - \frac{100\% - 0\% - 0\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 00\% - 0$	% Frial 3: Cour	_/500 x 100% hts Observed for the Span=	[7824]
oan Sensitivity: ial 1: Co <u>Cour</u> ial 2: Co Cour ost Monitoring (ro Air ading:	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	Gas Conc. X 100% = 100% - = $99/8$ 178226 3867 178256 3871 Cal Gas Reading:	% Frial 3: Cour	_/500 x 100% nts Observed for the Span= ers Observed for the Zero=	[7824]
oan Sensitivity: ial 1: Co <u>Cour</u> ial 2: Co Cour ost Monitoring (ro Air ading:	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	Gas Conc. X 100% = 100%- = 99,8 178226 3867 178256 3871 Cal Gas Reading: Grid 1	% Frial 3: Count Count	_/500 x 100% nts Observed for the Span= ers Observed for the Zero=	[7824]
ban Sensitivity: rial 1: Co Cour ial 2: Co Cour ost Monitoring (ro Air rading: CKGROUND (pwind Location	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	Gas Conc. X 100% = 100% - = $99/8$ 1782-26 3867 1782-56 3871 Cal Gas Reading:	% Frial 3: Count Count	_/500 x 100% hts Observed for the Span= ers Observed for the Zero= ppm	[7824] 3866

Reals a real and real of the Ston to a Marine

h ·			SIONS MONITORING	Post
	11 0 0			
Date:			Site Name: New	by
inspector(s):	Pablo Rive	ra	Instrument:TVA 2020	
WEATHER OBS	ERVATIONS			
	ſ	Wind	Barometric	
Wind Speed:	МРН	Direction:	Pressure: 2	-9,9 "Hg
Air Temperature:	63 .	General Weath		
		Condition	Claudy .	
CALIBRATION II	NFORMATION		-101017	
Pre-monitoring C	Calibration Precision Check			
Procedure: Calibr	rate the instrument. Make	a total of three measurem	ents by alternating zero air and the co	alibration gas. Record the reading
and calculate the	e average algebraic differen e less than or equal to 10% (ce between the instrumen	t reading and the calibration gas as a	a percentage. The calibration
Instrument Serial	Number. <u>39</u>	21	Cal Gas Concent	tration: 500ppm
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Readi	
2	0	502	2	3
3	l	500	0	3
Calibration Precisi	ion= Average Difference/Ca	Average Difference: Il Gas Conc. X 100% = 100%	Perform recalibration if average difference is gr - 1.3 /500 x 100%	reater than 10
Calibration Precisi	ion= Average Difference/Ca	I Gas Conc. X 100% = 100% = 99 7	*Perform recalibration if average difference is gr	reater than 10
	ion= Average Difference/Ca	l Gas Conc. X 100%	*Perform recalibration if average difference is gr	reater than 10
Calibration Precisi Span Sensitivity: Frial 1:	ion= Average Difference/Ca	I Gas Conc. X 100% = 100% = 99 7	*Perform recalibration if average difference is gr	reater than 10
Span Sensitivity: Frial 1:	ion= Average Difference/Ca nts Observed for the Span=	I Gas Conc. X 100% = 100% = 99.7	*Perform recalibration if average difference is gr - <u>l, 3</u> /500 x 100% %	
Span Sensitivity: Trial 1: Cou Count		Il Gas Conc. X 100% = 100% = 99.7 = <u>180 44 [</u>	*Perform recalibration if average difference is gr - <u>l, 3</u> /500 x 100% % <u>Trial 3:</u>	e Span= <u>180455</u>
Span Sensitivity: Trial 1: Cou Count	nts Observed for the Span= ters Observed for the Zero=	I Gas Conc. X 100% = 100% = 99,7 = <u>180 44 1</u> = <u>3712</u>	*Perform recalibration if average difference is gr 5- <u>l, 3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the	e Span= <u>180455</u>
Span Sensitivity: Trial 1: Cou Count Trial 2: Court	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span=	$I \text{ Gas Conc. X 100\%} = 100\%$ $= 99.7$ $= 180.44 \text{ J}$ $= 37 \text{ J}_2$ $= 180.460$	*Perform recalibration if average difference is gr 5- <u>l, 3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the	e Span= <u>180455</u>
Span Sensitivity: Trial 1: Cou Count Trial 2: Court	nts Observed for the Span= ters Observed for the Zero=	I Gas Conc. X 100% = 100% $= 99.7$ $= 180 441$ $= 3712$ $= 180 460$	*Perform recalibration if average difference is gr 5- <u>l, 3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the	e Span= <u>180455</u>
Span Sensitivity: Trial 1: Cou Count Trial 2: Court	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero=	$I \text{ Gas Conc. X 100\%} = 100\%$ $= 99.7$ $= 180.44 \text{ J}$ $= 37 \text{ J}_2$ $= 180.460$	*Perform recalibration if average difference is gr 5- <u>l, 3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the	e Span= <u>180455</u>
Span Sensitivity: <u>Frial 1:</u> Count <u>Frial 2:</u> Count Count Count Cost Monitoring Ca ero Air	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check	I Gas Conc. X 100% $= 100%$ $= 99.7$ $= 180 441$ $= 3712$ $= 180 460$ $= 3724$ Cal Gas	*Perform recalibration if average difference is gr - <u>l.3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the <u>Counters Observed for the</u>	e Span= <u>180455</u>
Span Sensitivity: Trial 1: Count Count Trial 2: Count	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check	I Gas Conc. X 100% $= 100%$ $= 99.7$ $= 180 44 1$ $= 37 12$ $= 180 460$ $= 3724$ Cal Gas Reading:	*Perform recalibration if average difference is gr 5- <u>l, 3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the	e Span= <u>180455</u>
Span Sensitivity: Trial 1: Count Trial 2: Count	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check	I Gas Conc. X 100% $= 100%$ $= 99.7$ $= 180 441$ $= 3712$ $= 180 460$ $= 3724$ Cal Gas Reading:	*Perform recalibration if average difference is gr - <u>l.3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the <u>Counters Observed for the</u>	e Span= <u>180455</u>
ipan Sensitivity: <u>rrial 1:</u> Count <u>rrial 2:</u> Count ost Monitoring Ca ero Air eading: ACKGROUND CO	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check	I Gas Conc. X 100% $= 100%$ $= 99.7$ $= 180 441$ $= 3712$ $= 180 460$ $= 3724$ Cal Gas Reading:	*Perform recalibration if average difference is gr - <u>l.3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the <u>Counters Observed for the</u>	e Span= <u>180455</u>
Span Sensitivity: Trial 1: Count Count Trial 2: Count	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check D ppm DNCENTRATIONS CHECKS rescription:	I Gas Conc. X 100% $= 100%$ $= 99.7$ $= 180 44 1$ $= 37 12$ $= 180 460$ $= 3724$ Cal Gas Reading:	*Perform recalibration if average difference is gr <u>1.3</u> /500 x 100% % <u>Trial 3:</u> Counts Observed for the <u>Counters Observed for the</u> <u>500</u> ppm	e Span= <u>180455</u> ne Zero= <u>3723</u>
Span Sensitivity: Trial 1: Count Count Trial 2: Count	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check ppm DNCENTRATIONS CHECKS rescription: n Description:	I Gas Conc. X 100% = 100% = 99.7 = 180 44 1 = 3712 = 180 460 = 3724 Cal Gas Reading: S Grid 1 Flare	*Perform recalibration if average difference is gr - <u>l.3</u> /500 x 100% % Trial 3: Counts Observed for the Counters Observed for the Counters Observed for the Reading: Reading:	e Span= <u>180455</u> ne Zero= <u>3723</u>
Span Sensitivity: Trial 1: Count Count Trial 2: Count	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check D ppm DNCENTRATIONS CHECKS rescription: In Description: In Description: In Speed averages were o teceded 20 miles per hour.	I Gas Conc. X 100% = 100% $= 99.7$ $= 180 441$ $= 3712$ $= 180 460$ $= 3724$ Cal Gas Reading: S Grid 1 Flare bserved to remain below to No rainfall had occurred to	*Perform recalibration if average difference is gr - <u>l.3</u> /500 x 100% % Trial 3: Counts Observed for the Counters Observed for the Beading:	e Span= 180455 ne Zero= 3723 12ppm 5ppm r hour and no instantaneous specionitoring event. Therefore, site

1		SURFACE EMISSI			pre
10	И.С.				
Date:	1-9-2		Site Name:	Newby	
Inspector(s):	cody croc	ker	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			+	
Wind Speed	:	Wind Direction: E		Barometric Pressure: 29,9	"Hg
Ai Temperature	5 12	General Weathe Conditions	Cloudy	-	
CALIBRATION	INFORMATION		Cloudy		
Pre-monitoring	Calibration Precision Check				
Instrument Seria		64		Cal Gas Concentration:	500ppm
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (secon
2	7	500		0	3
3	0	500	12	0	4
		= 100%-	.7	/500 × 100%	
		= 99,8			
		= 99,8	%		
rial 1:	unts Observed for the Span=_		% Trial 3:	nts Observed for the Span=	177 893
Frial 1: Co Cour	unts Observed for the Span= nters Observed for the Zero=		% Trial 3: Cour	nts Observed for the Span= ers Observed for the Zero=	177 893 3755
Trial 1: Co Cour Trial 2:		177889 3768	% Trial 3: Cour		177 893 3755
T <u>rial 1:</u> Co <u>Cou</u> T <u>rial 2:</u> Co	nters Observed for the Zero=	177889 3768	% Trial 3: Cour		177 893 3755
T <u>rial 1:</u> Cou <u>Frial 2:</u> Co Cour	nters Observed for the Zero= unts Observed for the Span=	177889 3768	% Trial 3: Cour		177893 3755
Trial 1: Count Frial 2: Count Post Monitoring (Post Monitoring (Post Monitoring (nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	177889 3768 177905 3779 Cal Gas	% Trial 3: Cour		177 893 3755
T <u>rial 1:</u> Cour Trial 2: Cour Cour Post Monitoring 6	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	177889 3768 177905 3779	% Trial 3: Cour		177 893 3755
Cour Frial 2: Co Cour Post Monitoring 6 Post Monitoring 6 Post Air Reading:	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	177889 3768 177905 3779 Cal Gas	% Trial 3: Cour	ers Observed for the Zero=	177 893 3755
Trial 1: Count Cou	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	177889 3768 177905 3779 Cal Gas	% Trial 3: Cour	ppm	177893 3755
Trial 1: Cour Frial 2: Cour Cour Cost Monitoring G Cero Air Reading:	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check Calibration Check Description:	177889 3768 177905 3779 Cal Gas	% Trial 3: Cour	ppm Reading: $\frac{1}{2}$	3755

ð 1					DeL
	14 -	CALIBRATION AN	ID PERTINENT DA	TA	Post
Date:	4-9-2	1	Site Name:	Newby	
Inspector(s):	_ Cody croc	ler	Instrument:TVA	2020	
WEATHER OF	SERVATIONS			24	
Wind Speed	d:MPH	Wind Direction: <u>E</u>		essure: 29.9	"Hg
A Temperature		General Weathe Condition			
CALIBRATION	INFORMATION		Cionay		
Pre-monitoring	g Calibration Precision Check				
	he average algebraic differen be less than or equal to 10% of ial Number:			Gas Concentration:	
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCa	l Gas Reading	Response Time (second
1		501	1		3
2	0	502	0		3
Calibration Prec	cision= Average Difference/Ca	Average Difference: Il Gas Conc. X 100%	*Perform recalibration if average] 10
Calibration Prec		Average Difference: Il Gas Conc. X 100% = 100%	(/500 x	e difference is greater than 100%] 10
	cision= Average Difference/Ca	Average Difference: Il Gas Conc. X 100%	(/500 x] 10
Span Sensitivity	cision= Average Difference/Ca	Average Difference: Il Gas Conc. X 100% = 100%	(/500 x % Trial 3:	100%	
Span Sensitivity Frial 1:	cision= Average Difference/Ca	Average Difference: Il Gas Conc. X 100% = 100% = 99.8 = 178012-	(/500 x % Trial 3:		
Span Sensitivity Frial 1: Co Cou	cision= Average Difference/Ca	Average Difference: Il Gas Conc. X 100% = 100% = 99.8 = <u>178 6 1 2</u>	(/500 x % <u>Trial 3:</u> Counts Obse	100%	
Span Sensitivity Frial 1: Cou Cou	ision= Average Difference/Ca	Average Difference: Il Gas Conc. X 100% = 100% = 99.8 = <u>178 o 12</u> = <u>357 7</u>	(/500 x % <u>Trial 3:</u> Counts Obse	100% erved for the Span=	
Span Sensitivity Trial 1: Co Cou Trial 2: Co	cision= Average Difference/Ca counts Observed for the Span unters Observed for the Zero=	Average Difference: Il Gas Conc. X 100% = 100% = 99.% $= 178 \circ 12$ = 3577 $= 178 \circ 34$	(/500 x % <u>Trial 3:</u> Counts Obse	100% erved for the Span=	
Span Sensitivity Trial 1: Co Cou Trial 2: Cou Cou	cision= Average Difference/Ca ounts Observed for the Span= unters Observed for the Zero= punts Observed for the Span=	Average Difference: Il Gas Conc. X 100% = 100% = 99% $= 178 \circ 12$ = 3577 $= 178 \circ 34$	(/500 x % <u>Trial 3:</u> Counts Obse	100% erved for the Span=	
Span Sensitivity Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air	cision= Average Difference/Ca ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Span= unters Observed for the Zero=	Average Difference: al Gas Conc. X 100% = 100% = 99.% $= 178 \circ 12$ = 3577 $= 178 \circ 34$ = 3570 Cal Gas	- (/500 x % Trial 3: Counts Obs Counters Obs	100% erved for the Span=	
Span Sensitivity Frial 1: Co Cou Frial 2: Cou Cou Cou Cou Cou Cou Cou Cou	cision= Average Difference/Ca counts Observed for the Span= unters Observed for the Zero= ounts Observed for the Zero= unters Observed for the Span= calibration Check	Average Difference: al Gas Conc. X 100% = 100% = 99.% $= 178 \circ 12$ = 3577 $= 178 \circ 34$ = 3570 Cal Gas Reading:	(/500 x % <u>Trial 3:</u> Counts Obse	100% erved for the Span=	
Span Sensitivity Trial 1: Cou Cou Trial 2: Cou Post Monitoring Sero Air Seading: Courter Cou	cision= Average Difference/Ca cision= Average Difference/Ca ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check Calibration Check Concentrations check	Average Difference: al Gas Conc. X 100% = 100% = 99.% $= 178 \circ 12$ = 3577 $= 178 \circ 34$ = 3570 Cal Gas Reading:	- (/500 x % Trial 3: Counts Obs Counters Obs	100% erved for the Span= erved for the Zero=	
Span Sensitivity Trial 1: Co Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND	cision= Average Difference/Ca ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check Calibration Check	Average Difference: al Gas Conc. X 100% = 100% = 99.% $= 178 \circ 12$ = 3577 $= 178 \circ 34$ = 3570 Cal Gas Reading:	- (/500 x % Trial 3: Counts Obs Counters Obs	100% erved for the Span= erved for the Zero= g: $1,2$	
Span Sensitivity Trial 1: Co Cou Trial 2: Cou Post Monitoring Sero Air Reading: SACKGROUND Ipwind Locatior	cision= Average Difference/Ca cision= Average Difference/Ca ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check Calibration Check Concentrations check	Average Difference: Il Gas Conc. X 100% = 100% = 99.8 = 178012 = 3577 = 178034 = 3570 Cal Gas Reading: S 	- (/500 x % Trial 3: Counts Obs Counters Obs 500 ppm Readin Readin	100% erved for the Span= erved for the Zero= g: $1,2$ g: $1,5$	178056 358.4

		SURFACE EMISS			
Date:	4-12-21		Site Name:	Neuby	
nspector(s):	Hunter 1	Ott	Instrument:	TVA 2020	
NEATHER OBS	SERVATIONS				
Wind Speed	Мрн	Wind Direction:	-	Barometric Pressure: 500	"Hg
Air Temperature		General Weath Conditior		_	
	INFORMATION				
're-monitoring	Calibration Precision Check	k			
and calculate th precision must b	e average algebraic differe pe less than or equal to 109 2 -	e a total of three measurem ence between the instrumen % of the calibration gas value	t reading and the	calibration gas as a percent	age. The calibration
nstrument Seria	al Number: <u></u>	04		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (second
1	5	499	1		2
2					
3 alibration Preci	sion= Average Difference/	Average Difference:	*Perform recalibration	n If average difference is greater than	10
	sion= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 1009	6-126	n if average difference is greater than _/500 x 100%	10
Calibration Preci	sion= Average Difference/	Average Difference:	6-126		10
Calibration Preci	sion= Average Difference/	Average Difference: Cal Gas Conc. X 100% = 1009	6- <u>126</u>)%		10
alibration Preci pan Sensitivity: rial 1:	sion= Average Difference/i	Average Difference: Cal Gas Conc. X 100% = 1009 = 99, 7	6- <u>/ e (</u>) %		
Calibration Preci pan Sensitivity: rial 1: Co	÷	$\frac{-56'}{4}$ Average Difference: Cal Gas Conc. X 100% = 100% $= 99%%$ $n = 177% - 39%$	6- <u>/ e (</u>) % Cou	/500 x 100%	
alibration Preci pan Sensitivity: rial 1: Cou rial 2:	ounts Observed for the Spa nters Observed for the Zer	$\frac{-56'}{4}$ Average Difference: Cal Gas Conc. X 100% = 100% $= 99%%$ $n = 177% - 39%$	6- <u>/ e (</u>) % Cou	/500 x 100% nts Observed for the Span=	
alibration Preci pan Sensitivity: rial 1: Co Cour rial 2: Co	ounts Observed for the Spa nters Observed for the Zer	$\frac{66'}{4432}$ Average Difference: Cal Gas Conc. X 100% = 100% = 99, 7 n= <u>1718-39</u> n= <u>172817</u>	6- <u>/ e (</u>) % Cou	/500 x 100% nts Observed for the Span=	
alibration Preci pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co <u>Cour</u>	ounts Observed for the Spa nters Observed for the Zer ounts Observed for the Spa	$\frac{66'}{4432}$ Average Difference: Cal Gas Conc. X 100% = 100% = 99, 7 n= <u>1718-39</u> n= <u>172817</u>	6- <u>/ e (</u>) % Cou	/500 x 100% nts Observed for the Span=	
alibration Preci pan Sensitivity: rial 1: Co <u>rial 2:</u> Co Cour ost Monitoring	ounts Observed for the Spa nters Observed for the Zer ounts Observed for the Spa nters Observed for the Zer	$\frac{66'}{4432}$ Average Difference: Cal Gas Conc. X 100% = 100% = 99, 7 n= <u>1718-39</u> n= <u>172817</u>	6- <u>/ e (</u>) % Cou	/500 x 100% nts Observed for the Span=	
alibration Preci pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co <u>Cour</u> ost Monitoring	ounts Observed for the Spa nters Observed for the Zer ounts Observed for the Spa nters Observed for the Zer	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6- <u>/ e (</u>) % Cou	/500 x 100% nts Observed for the Span=	
Calibration Preci pan Sensitivity: rial 1: Co Cour rial 2: Co Cour ero Air eading:	ounts Observed for the Spa nters Observed for the Zer ounts Observed for the Spa nters Observed for the Zer Calibration Check	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6- 1 e 6 7 % Trial 3: Count Count S COU	/500 x 100% nts Observed for the Span= ters Observed for the Zero=	
alibration Preci pan Sensitivity: rial 1: Co <u>Cour</u> rial 2: Co cour ost Monitoring ero Air eading:	ounts Observed for the Spanters Observed for the Zerrounts Observed for the Spanters Observed for the Spanters Observed for the Zerro Calibration Check	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6- 1 e 6 7 % Trial 3: Count Count S COU	/500 x 100% nts Observed for the Span= ters Observed for the Zero=	

SCS DataServ	ces - Secure	nvironmen	Dene
--------------	--------------	-----------	------

		SURFACE EMISS	ONIS MONIT	TORING	
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	4-12-21 Hunter of		Site Name:	Newby	
Inspector(s):	Hunter of	+	Instrument:	TVA 2020	
WEATHER C	DBSERVATIONS				
Wind Spe	ed: 5 MPH	Wind Direction: NF		Barometric Pressure: <u>50</u>	"Hg
Temperatu	Air <u>54</u> *F	General Weathe Conditions			
CALIBRATIO	N INFORMATION				
Pre-monitori	ng Calibration Precision Check				
and calculate	alibrate the instrument. Make a the average algebraic difference at be less than or equal to 10% of erial Number:	e between the instrument f the calibration gas value.	reading and the		
Trial	Zero Air Reading	Cal Gas Reading		ConcCal Gas Reading]	Response Time (se
1			I Cal Gas C		
2	-2	501		1	5
3	.0	501		(3
Calibration Pro	ecision= Average Difference/Cal	Average Difference: Gas Conc. X 100%		on if average difference is greater than :	10
Calibration Pr	ecision= Average Difference/Cal		*Perform recalibratio		10
Calibration Pr	ecision= Average Difference/Cal	Gas Conc. X 100%	*Perform recalibratio	on if average difference is greater than :	10
		Gas Conc. X 100%	*Perform recalibratio	on if average difference is greater than :	10
ipan Sensitivi		Gas Conc. X 100% = 100% = 99.8	*Perform recalibratio	on if average difference is greater than :	10
ipan Sensitivi Trial 1:		Gas Conc. X 100% = 100% = 99.8 [72036	*Perform recalibratio	on if average difference is greater than :	17230
ipan Sensitivi Trial 1: Ci	ty:	Gas Conc. X 100% = 100% = 99.8	*Perform recalibratio	on if average difference is greater than : _/500 x 100%	17230 4480
ipan Sensitivi Frial 1: Ci	ty: Counts Observed for the Span=	Gas Conc. X 100% = 100% = 99.8 [72036	*Perform recalibratio	on if average difference is greater than /500 x 100%	17230 4489
ipan Sensitivi Trial 1: Crial 2:	ty: Counts Observed for the Span= ounters Observed for the Zero=	Gas Conc. X 100% = 100% = $99.\%$ 172036 4421	*Perform recalibratio	on if average difference is greater than /500 x 100%	17230 4489
ipan Sensitivi Trial 1: Ci Trial 2: Ca	ty: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span=	Gas Conc. X 100% = 100% = $99.\%$ 172036 4421	*Perform recalibratio	on if average difference is greater than /500 x 100%	17230 4489
ipan Sensitivi Trial 1: Ci Trial 2: Ca	ty: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= ounters Observed for the Zero=	Gas Conc. X 100% = 100% = $99.\%$ 172036 4421	*Perform recalibratio	on if average difference is greater than /500 x 100%	17230
ipan Sensitivi Trial 1: Crial 2: Trial 2: Cost Monitorin ero Air eading:	ty: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= ounters Observed for the Zero= ng Calibration Check	Gas Conc. X 100% = 100% = $99.\%$ 172036 4421 172184 172184 UU51 Cal Gas Reading:	*Perform recalibratio	on if average difference is greater than /500 x 100% unts Observed for the Span= ters Observed for the Zero=	17230 4480
ipan Sensitivi Trial 1: Crial 2: Cost Monitorin ero Air eading: ACKGROUN	ty: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= ounters Observed for the Zero= ng Calibration Check	Gas Conc. X 100% = 100% = $99.\%$ 172036 4421 172184 172184 UU51 Cal Gas Reading:	*Perform recalibratio	on if average difference is greater than /500 x 100% unts Observed for the Span= ters Observed for the Zero=	17230 448 900
ipan Sensitivi Trial 1: Crial 2: Crial 2: Cost Monitorin ero Air eading: ACKGROUN	ty: Counts Observed for the Span= ounters Observed for the Zero= Counts Observed for the Span= ounters Observed for the Zero= ng Calibration Check Dppm D CONCENTRATIONS CHECKS	Gas Conc. X 100% = 100% = $99.\%$ 172036 4421 172184 172184 UU51 Cal Gas Reading:	*Perform recalibratio		ррт ppm

			ONS MONITORING D PERTINENT DATA	-037-
Datas	1-12-21			
Date:	4-12-21 Cody Cro	6.5	Site Name: <u>A/Cu/Dy</u>	
Inspector(s):	Lody tro	ccer	Instrument:TVA 2020	
WEATHER OBS	SERVATIONS			
Wind Speed	мрн	Wind Direction:	Barometric Pressure: SC)"Hg
Air Temperature	1 1.	General Weathe Conditions		
CALIBRATION	INFORMATION			
^o re-monitoring	Calibration Precision Check			
and calculate th		ce between the instrument	nts by alternating zero air and the calibratic reading and the calibration gas as a percen	
nstrument Seria	al Number: 541	9	Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
1		601	1	12
2	6	50/	1	1 5
3	C -	502	2	5
alibration Preci	sion= Average Difference/Ca	Average Difference:	*Perform recalibration if average difference is greater than	10
Calibration Preci	sion= Average Difference/Ca	al Gas Conc. X 100%	17	10
Calibration Preci	sion≃ Average Difference/Ca	al Gas Conc. X 100%	<u>/</u> /500 × 100%	10
Calibration Preci Span Sensitivity:	sion≃ Average Difference/Ca	al Gas Conc. X 100% = 100%-	<u>/</u> /500 × 100%	10
ipan Sensitivity: T rial 1:		al Gas Conc. X 100% = 100% = $99,7$	/ <u>//</u> /500 x 100% %	
Span Sensitivity: Frial 1: Co	unts Observed for the Span	al Gas Conc. X 100% = 100% = 99.7 = 174837	/500 x 100% % Trial 3: Counts Observed for the Span=	175417
Span Sensitivity: Frial 1: Cou Frial 2:	ounts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100% = 99.7 = 174837 = 5213	/ <u>//</u> /500 x 100% %	175417
Span Sensitivity: Frial 1: Co Cour Frial 2: Co	ounts Observed for the Span nters Observed for the Zero unts Observed for the Span	al Gas Conc. X 100% = 100% = $99,7$ = 174837 = 5213 = 174526	/500 x 100% % Trial 3: Counts Observed for the Span=	175417
ipan Sensitivity: irial 1: Co <u>Cou</u> irial 2: Co Cour	ounts Observed for the Span nters Observed for the Zero unts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100% = $99,7$ = 174837 = 5213 = 174526	/500 x 100% % Trial 3: Counts Observed for the Span=	175417
ipan Sensitivity: irial 1: Co <u>Cou</u> irial 2: Co Cour	ounts Observed for the Span nters Observed for the Zero unts Observed for the Span	al Gas Conc. X 100% = 100% = $99,7$ = 174837 = 5213 = 174526	/500 x 100% % Trial 3: Counts Observed for the Span=	175417
ipan Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Post Monitoring	ounts Observed for the Span nters Observed for the Zero unts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100% = $99,7$ = 174837 = 5213 = 174526	/500 x 100% % Trial 3: Counts Observed for the Span=	175417
pan Sensitivity: rial 1: Cour rial 2: Cour cour cour cour cour cour cour cour c	ounts Observed for the Span nters Observed for the Zero unts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100% = $99,7$ = 174837 = 5213 = 174526 = 5224	/500 x 100% % Trial 3: Counts Observed for the Span=	175417
ipan Sensitivity: Tial 1: Cou Trial 2: Cou Trial 2: Cou Cour Cour Cour ero Air eading:	ounts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% - = 99.7 = 174837 = 5213 = 174526 = 52241 Cal Gas Reading:	<pre>/500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=</pre>	175417
Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Cour Post Monitoring Post Monitoring Post Monitoring	nunts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% - = 99.7 = 174837 = 5213 = 174526 = 5224 Cal Gas Reading: S	/500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	175417 5246
Span Sensitivity: Trial 1: Co Cour Trial 2: Co Cour Court Co Court Co Court Court Co Court C	nunts Observed for the Spans nters Observed for the Zeros unts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% - = 99.7 = 174837 = 5213 = 174526 = 52241 Cal Gas Reading:	/500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	175417 5246

		SURFACE EMISSIC	ONS MONIT	ORING	y is t
		CALIBRATION AND		IT DATA	
Date:	4-12-2)	Site Name:	Newby	
Inspector(s);	cody cree	ker	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	5МРН	Wind Direction: ACE		Barometric Pressure: 30	"Hg
Ai Temperature		General Weather Conditions:		_	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	brate the instrument. Make a to be average algebraic difference be less than or equal to 10% of	between the instrument r			
nstrument Seria	al Number: 591	9		Cal Gas Concentration:	500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (second
1	.2	502	(2	5
2	-1	501		\	3
3	-	199		(1 7
alibration Prec	ision= Average Difference/Cal (Gas Conc. X 100%		n if average difference is greater than] n 10
Calibration Prec	ision= Average Difference/Cal (Gas Conc. X 100% = 100%-		n if average difference is greater than /500 x 100%) n 10
		Gas Conc. X 100%] n 10
pan Sensitivity:		Gas Conc. X 100% = 100%- = A.Q.+.T	<u>\.</u> 3 %] 10
pan Sensitivity: rial 1:		Gas Conc. X 100% = 100%- = 49.7	X.3 % Trial 3:		. 75 (100
pan Sensitivity: i <mark>rial 1:</mark> Cou		Gas Conc. X 100% = 100%- = 49.7	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100%	. 75 (100
pan Sensitivity: rial 1: Cou rial 2:	ounts Observed for the Span=	Gas Conc. X 100% = 100%- = 49.7	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span-	. 75 (100
pan Sensitivity: rial 1: Cou rial 2: Cou	ounts Observed for the Span= nters Observed for the Zero=	Gas Conc. X 100% = 100%- = 49.7	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span-	. 75 (100
pan Sensitivity: rial 1: Cou rial 2: Cou Cou	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span=	Gas Conc. X 100% = 100%- = 49.7	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span-	. 75 (100
i <mark>rial 1:</mark> Cou <u>rial 2:</u> Cou rial 2: Cou ost Monitoring	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero=	$Frac{1}{5} = 100\%$ $= 100\%$ $= 9(9,7)$ $\frac{175260}{5166}$ $\frac{175384}{5193}$	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span-	75 (100
pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring ero Air	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero=	Gas Conc. X 100% = 100%- = 49.7	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span-	75 (100
i <mark>rial 1:</mark> Cou rial 2: Cou rial 2: Cou ost Monitoring ero Air eading:	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check	$Frac{1}{5} Frac{1}{5} Frac{1}{5$	<u>\</u> , % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span-	75 (100
ipan Sensitivity: irial 1: Cou rial 2: Cou ost Monitoring ero Air eading: ACKGROUND	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	$Frac{1}{5} Frac{1}{5} Frac{1}{5$	K, 3 % Trial 3: Cou Count	_/500 x 100% nts Observed for the Span-	. 75 (100
i <mark>rial 1:</mark> Cou <u>rial 2:</u> Cou <u>rial 2:</u> Cou ost Monitoring ero Air eading: ACKGROUND pwind Location	ounts Observed for the Span= nters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	$F_{ass} Conc. X 100\%$ $= 100\%$ $= 9(9, 1)$ $\frac{175260}{5166}$ $\frac{5166}{516384}$ $\frac{519384}{5193}$ $Cal Gas$ F_{eading}	K, 3 % Trial 3: Cou Count	_/500 x 100% nts Observed for the Spans ers Observed for the Zeros	175 40° 51 24

	CALIBRATION AND			1087-
		PERIME		
Date: 4-12-21		Site Name:	Neaby	
nspector(s): Pablo Air	era	Instrument:	TVA 2020	
VEATHER OBSERVATIONS				
\wedge	Wind		Barometric	
Wind Speed: / MPH	Direction:		Pressure: <u>SO</u>	"Hg
Air Temperature: <u>64</u> °F	General Weather Conditions:	clea		
CALIBRATION INFORMATION				
re-monitoring Calibration Precision Check				
Procedure: Calibrate the instrument. Make a	total of three measurement	s by alternatin	g zero air and the calibration	gas. Record the readi
nd calculate the average algebraic difference	e between the instrument re	eading and the		
recision must be less than or equal to 10% of				
nstrument Serial Number: 542			Cal Gas Concentration:	500ppm
rial Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seco
1 /	499	1		N
$\frac{2}{3}$	501	1		3
	502	-		<u> </u>
alibration Provision- Average Difference (Cal.	Cas Cons X 100%			
alibration Precision= Average Difference/Cal		17		
alibration Precision= Average Difference/Cal	= 100%-	1.3	_/500 × 100%	
alibration Precision= Average Difference/Cal			_/500 × 100%	
alibration Precision= Average Difference/Cal (Dan Sensitivity:	= 100%-		_/500 x 100%	
oan Sensitivity: ial 1:	= 100% = 919,97	% Frial 3:		148512
oan Sensitivity: ial 1: Counts Observed for the Span=_	= 100%- = 99,97 147928	% F <u>rial 3:</u> Cou	nts Observed for the Span=_	
oan Sensitivity: • <mark>ial 1:</mark> Counts Observed for the Span=_ Counters Observed for the Zero=	= 100%- = 99,97 147928	% F <u>rial 3:</u> Cou		
oan Sensitivity: ial 1: Counts Observed for the Span=_	= 100%- = 919,79 <u>147928</u> <u>3912</u>	% F <u>rial 3:</u> Cou	nts Observed for the Span=_	
oan Sensitivity: ial 1: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> ial 2: Counts Observed for the Span=	= 100%- = 919,97 <u>147928</u> <u>3912</u> [4768]	% F <u>rial 3:</u> Cou	nts Observed for the Span=_	
oan Sensitivity: ial 1: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> ial 2: Counts Observed for the Span= <u>Counters Observed for the Zero=</u>	= 100%- = 919,97 <u>147928</u> <u>3912</u> [4768]	% F <u>rial 3:</u> Cou	nts Observed for the Span=_	
Dan Sensitivity: Tial 1: Counts Observed for the Span= Counters Observed for the Zero= Tial 2: Counts Observed for the Span= Counters Observed for the Zero= Dest Monitoring Calibration Check	$= 100\%$ $= 99.9\%$ $\frac{147928}{3912}$ $\frac{147681}{3924}$	% F <u>rial 3:</u> Cou	nts Observed for the Span=_	
ban Sensitivity: ial 1: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> ial 2: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> Dest Monitoring Calibration Check ero Air	$= 100\%$ $= 99.9\%$ $\frac{147928}{3912}$ $\frac{147681}{3924}$ Cal Gas	% F <u>rial 3:</u> Cou	nts Observed for the Span=_ ers Observed for the Zero=	
Dan Sensitivity: Tial 1: Counts Observed for the Span= Counters Observed for the Zero= Tial 2: Counts Observed for the Span= Counters Observed for the Zero= Dest Monitoring Calibration Check	$= 100\%$ $= 99.9\%$ $\frac{147928}{3912}$ $\frac{147681}{3924}$	% F <u>rial 3:</u> Cou	nts Observed for the Span=_	
ban Sensitivity: ial 1: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> ial 2: Counts Observed for the Span= <u>Counters Observed for the Zero=</u> Dest Monitoring Calibration Check ero Air	$= 100\%$ $= 99.9\%$ $\frac{147928}{3912}$ $\frac{147681}{3924}$ Cal Gas	% F <u>rial 3:</u> Cou	nts Observed for the Span=_ ers Observed for the Zero=	
Dan Sensitivity: Tial 1: Counts Observed for the Span= Counters Observed for the Zero= Tial 2: Counts Observed for the Span= Counters Observed for the Zero= Dist Monitoring Calibration Check aro Air Brading: Councentrations Checks	$= 100\%$ $= 99.9\%$ $\frac{147928}{3912}$ $\frac{147681}{3924}$ Cal Gas Reading:	% T <u>rial 3:</u> Coun Coun	nts Observed for the Span=_ eers Observed for the Zero=	
Dan Sensitivity: Tial 1: Counts Observed for the Span= Counters Observed for the Zero= Tial 2: Counts Observed for the Span= Counters Observed for the Zero= Dist Monitoring Calibration Check aro Air Brading: Councentrations Checks	$= 100\%$ $= 99.9\%$ $\frac{147928}{3912}$ $\frac{147681}{3924}$ Cal Gas	% T <u>rial 3:</u> Coun Coun	nts Observed for the Span= rers Observed for the Zero= _ppm Reading:	3943

	SURFACE EMISSI			
Date:		Site Name:	Newsy	
Inspector(s): Pablo Y	R	Instrument:	TVA 2020	
WEATHER OBSERVATIONS			+	
Wind Speed: MPH	Wind Direction: <u>NP</u>	_	Barometric Pressure: 30	"Hg
Air <u>54</u> °F	General Weather Conditions		_	
CALIBRATION INFORMATION				
Pre-monitoring Calibration Precision Check				
Procedure: Calibrate the instrument. Make and calculate the average algebraic differen precision must be less than or equal to 10% of \mathcal{V}	ice between the instrument i		calibration gas as a percentag	ge. The calibration
nstrument Serial Number:	12		Cal Gas Concentration:	500ppm
Trial Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (second
2 7	501		1	
3	En7		2	
	Average Difference:	*Perform recalibration	n if average difference is greater than 10	
		2	n if average difference is greater than 10	
Calibration Precision= Average Difference/Ca	al Gas Conc. X 100% = 100%- - 995	2		
Calibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span=	al Gas Conc. X 100% = 100%- = 995 = 148×76 = 28×26	% Trial 3: Cou	_/500 × 100% nts Observed for the Span=	148356
Calibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span= Counters Observed for the Zero=	al Gas Conc. X 100% = 100%- = 995 = 148×76 = 28×26	% Trial 3: Cou	_/500 x 100%	148356 39856
Calibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span= Counters Observed for the Zero= rial 2: Counts Observed for the Span=	al Gas Conc. X 100% = 100%- = 99.8 = $148 - 76$ = 3920 = $148 - 92$	% Trial 3: Cou	_/500 × 100% nts Observed for the Span=	148356 3986
alibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span= Counters Observed for the Zero= rial 2: Counts Observed for the Span= Counters Observed for the Span=	al Gas Conc. X 100% = 100%- = 99.8 = $148 - 76$ = 3920 = $148 - 92$	% Trial 3: Cou	_/500 × 100% nts Observed for the Span=	148356 39856
Calibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span= Counters Observed for the Zero= rial 2: Counts Observed for the Span= Counters Observed for the Span= Counters Observed for the Zero=	al Gas Conc. X 100% = 100%- = 99.8 = $148 > 76$ = 3920 = $148 - 92$ = 3920 = $148 - 92$ = 3920 = 3933	% Trial 3: Cou	_/500 × 100% nts Observed for the Span=	148356 3985
Counters Observed for the Spans Counters Observed for the Spans Counters Observed for the Spans Counters Observed for the Zeros Counters Observed for the Spans Counters Observed for the Spans Counters Observed for the Spans Counters Observed for the Zeros	al Gas Conc. X 100% = 100%- = 99.8 = $148 - 76$ = 3920 = $148 - 92$	% Trial 3: Cou	_/500 × 100% nts Observed for the Span=	148356
Calibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span= Counters Observed for the Zero= rial 2: Counts Observed for the Span= Counters Observed for the Span= Counters Observed for the Zero= ost Monitoring Calibration Check ero Air eading:	al Gas Conc. X 100% = 100%- = 995 = 148×76 = 3920 = 148×92 = 3920 = 148×92 = 3920 Cal Gas Reading:	% Trial 3: Cou	_/500 × 100% nts Observed for the Span=	14835E
Calibration Precision= Average Difference/Ca pan Sensitivity: rial 1: Counts Observed for the Span= Counters Observed for the Zero= rial 2: Counts Observed for the Span= Counters Observed for the Zero= ost Monitoring Calibration Check ero Air	al Gas Conc. X 100% = 100%- = 995 = 148×76 = 3920 = 148×92 = 3920 = 148×92 = 3920 Cal Gas Reading:	% Trial 3: Cou	_/500 × 100% Ints Observed for the Span= ters Observed for the Zero=	148356 39856

		SURFACE EMISSIO			post
	1	CALIBRATION ANI	D PERTINEN	IT DATA	, -
Date:	4-12-21		Site Name:	Naby	
nspector(s):	4-12-21 Liam McC	hinn	Instrument:	TVA 2020	
VEATHER OBS	\bigcirc			4	
Wind Speed:	<u></u> мрн	Wind Direction:	1.	Barometric Pressure: <u>30</u>	"Hg
Air Temperature:	64 °F	General Weather Conditions:	clean	£ ,	
CALIBRATION I	NFORMATION				
re-monitoring (Calibration Precision Check				
and calculate the	rate the instrument. Make a e average algebraic difference e less than or equal to 10% o l Number: <u>54/5</u>	te between the instrument r f the calibration gas value.	reading and the o		
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
1	1	500	0	61	1
2	5	501	Ĩ		5
3	7,	502	2		F
		= 100%- = 99,7	%	/500 x 100%	
pan Sensitivity:					
Jan Sensitivity.					
rial 1: Cou	unts Observed for the Span=	1-44-839	<u>Trial 3:</u> Cour	nts Observed for the Span=	143214
r <mark>ial 1:</mark> Cou	unts Observed for the Span= nters Observed for the Zero=	1-44-839	Cour	nts Observed for the Span=	143214 4758
rial 1: Cou Coun		1-44839 4723	Cour	nts Observed for the Span= ers Observed for the Zero=	143214 4758
r <u>ial 1:</u> Cou Coun rial 2: Cou	nters Observed for the Zero=	1-44839 4723 144615	Cour	nts Observed for the Span= ers Observed for the Zero=	143214 4758
r <u>ial 1:</u> Cou Coun r <u>ial 2:</u> Cou Coun	nters Observed for the Zero= unts Observed for the Span=	1-44839 4723 144615	Cour	nts Observed for the Span= ers Observed for the Zero=	143214 4758
r <u>ial 1:</u> Cou Coun rial 2: Coun Coun Dost Monitoring C	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	1-44-8-39 4723 144615 4732 Cal Gas	Cour	ers Observed for the Zero=	143214 4758
r <u>ial 1:</u> Coun r <u>ial 2:</u> Coun Coun Coun cost Monitoring C ero Air eading:	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	1-44-8-39 4723 144615 4732 Cal Gas Reading:	Cour	nts Observed for the Span= ers Observed for the Zero=	143214 4758
r <u>ial 1:</u> Coun r <u>ial 2:</u> Coun Coun Coun cost Monitoring C ero Air eading:	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	1-44-8-39 4723 144615 4732 Cal Gas Reading:	Count	ers Observed for the Zero= ppm	4758
r <u>ial 1:</u> Coun r <u>ial 2:</u> Coun Coun Coun cost Monitoring C ero Air eading:	aters Observed for the Zero= unts Observed for the Span= aters Observed for the Zero= Calibration Check	1-44-8-39 4723 144615 4732 Cal Gas Reading:	Count	ppm Reading: <u>1, 2</u>	425 8
rial 1: Coun rial 2: Coun Coun Coun Coun Coun Coun Coun Coun	nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check Calibration Check CONCENTRATIONS CHECKS Description:	1-44-8-39 4723 144615 4732 Cal Gas Reading:	Count	ppm Reading: <u>ノ, こ</u>	4758

			-	1	1e
		SURFACE EMISS	ONS MONIT	TORING	
		CALIBRATION AN	D PERTINE	IT DATA	
Date:		21	Site Name:	Newby	
Inspector(s):	Ciam McC	ZININ	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			÷	
Wind Speed	: <u>5</u> мрн	Wind Direction: NE	_	Barometric Pressure: <u>3</u> 0	Hg
Ai Temperature	<u> </u>	General Weathe Conditions		<u>_</u>	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
	ne average algebraic differen be less than or equal to 10% al Number:		-	calibration gas as a percent Cal Gas Concentration	
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (se
1	. 2	yag	1	2	
2	4				
3	ision= Average Difference/C	Average Difference:	*Perform recalibratio	n if average difference is greater than] 10
3	ision= Average Difference/C		. 2	n if average difference is greater than /500 x 100%	10
3	ision= Average Difference/C	al Gas Conc. X 100%] 10
3 Calibration Prec		al Gas Conc. X 100%	- <u>\.3</u> %		10
3 Calibration Prec Span Sensitivity: Trial 1: Co	ounts Observed for the Span	fal Gas Conc. X 100% = 100% = 9.9.7 $fal Gas Conc. X 100% = 9.9.7$	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou		fal Gas Conc. X 100% = 100% = 9.9.7 $fal Gas Conc. X 100% = 9.9.7$	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100%	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2:	ounts Observed for the Span	al Gas Conc. X 100% = 100% = 9.9.7 $= 143.940 = 4771$	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ounts Observed for the Span Inters Observed for the Zero	$al Gas Conc. \times 100\%$ $= 100\%$ $= 99.7$ $= 143.940$ $= 4771$ $= 143754$	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ounts Observed for the Span Inters Observed for the Zero Dunts Observed for the Span	$al Gas Conc. \times 100\%$ $= 100\%$ $= 99.7$ $= 143.940$ $= 4771$ $= 143754$	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ounts Observed for the Span Inters Observed for the Zero Dunts Observed for the Span Inters Observed for the Zero	$al Gas Conc. \times 100\%$ $= 100\%$ $= 99.7$ $= 143.940$ $= 4771$ $= 143754$	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ounts Observed for the Span Inters Observed for the Zero Dounts Observed for the Span Inters Observed for the Zero Calibration Check	al Gas Conc. X 100% $= 100%$ $= 99.7$ $= 143 940$ $= 4771$ $= 143754$ $= 473754$ $= 473754$ Cal Gas Reading:	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ounts Observed for the Span inters Observed for the Zero ounts Observed for the Span inters Observed for the Zero Calibration Check	al Gas Conc. X 100% $= 100%$ $= 99.7$ $= 143 940$ $= 4771$ $= 143754$ $= 473754$ $= 473754$ Cal Gas Reading:	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	14390
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND Jpwind Location	ounts Observed for the Span inters Observed for the Zero ounts Observed for the Span inters Observed for the Zero Calibration Check	al Gas Conc. X 100% $= 100%$ $= 99.7$ $= 143 940$ $= 4771$ $= 143754$ $= 473754$ $= 473754$ Cal Gas Reading:	- <u>\</u> .3 % <u>Trial 3:</u> Cou	_/500 x 100% nts Observed for the Span= ters Observed for the Zero=	14390 4765

a transfer and the second second	Environmental Da	and the second second
A TE R. M M M M M M M M		

			ONS MONITORING	pesa	
		CALIBRATION AND	PERTINENT DATA	·	
Date: _	4-12-2	l	Site Name: Nee	iby	
Inspector(s):	Don Gib:	son	Instrument:TVA 2020		
WEATHER OBSE	RVATIONS				
Wind Speed:	7МРН	Wind Direction:	Barometric Pressure:	-30"Hg	
Air Temperature:	64 °F	General Weather Conditions:	Clear		
CALIBRATION IN	FORMATION				
Pre-monitoring Ca	libration Precision Chec	k			
and calculate the d	average algebraic differ less than or equal to 10		eading and the calibration gas a	e calibration gas. Record the reac as a percentage. The calibration centration: 500ppm	lings
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Rea	ading Response Time (sec	onds)
1	1	499	(7	
2	2	501	1	2	
3	Ĩ	- 502	2	>	
		= 100%- = 99,7	<u>/,</u> /500 x 100%		
ipan Sensitivity:			-		
frial 1:		ŀ	Trial 3:		
Cour	its Observed for the Spa	$m = \frac{167813}{100000000000000000000000000000000000$	Counts Observed for	r the Span= 168-04	1
	ers Observed for the Zei	10= 5818	Counters Observed for	r the Zero= 3841	_
		$n = \frac{167925}{1000000000000000000000000000000000000$			
Counte	ers Observed for the Zer	= 3834			
ost Monitoring Ca	libration Check				
ero Air eading:	/) ppm	Cal Gas Reading:	500 ppm		
	DIVICENTRATIONS CHE		<u> </u>		
pwind Location De			Reading:	1.2 ppm	
ownwind Location	Description:	Entrance Grid 1	Reading:	ppm	
exe	ceeded 20 miles per ho	ur. No rainfall had occurred wit	hin the previous 24 hours of the	s per hour and no instantaneous s e monitoring event. Therefore, si nts on the above mentioned date.	te

				Y	1e
		SURFACE EMISS			
		CALIBRATION AN	ID PERTINEN	NT DATA	
Date:	4-12-:	21	Site Name:	Newby	
Inspector(s);	Don 61350	01	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
	~	Wind		Barometric	
Wind Speed	d:МРН	Direction:		Pressure: 30	-"Hg
Ai Temperature		General Weath Condition	1 -	(
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check	(
		e a total of three measureme			
and calculate the average algebraic difference between the instrument r precision must be less than or equal to 10% of the calibration gas value. Instrument Serial Number:				Cal Gas Concentration:	500ppm
T-I-I	Zara Ala Dandina		10-10-10		
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (se
2			1		3
	.0	LIQQ			
3 Calibration Prec	ision= Average Difference/C	Average Difference:	*Perform recalibratio	on if average difference is greater than]
	Z	Average Difference:	12	2 on if average difference is greater than /500 x 100%]
	Z	Average Difference:	12]
	Z	Average Difference:	12]
Calibration Prec	ision= Average Difference/C	Average Difference:	12] 10
Calibration Prec Span Sensitivity: Trial 1:	ision= Average Difference/C	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7	<u>\-</u> <u>}</u> %	_/500 x 100%	11990
Calibration Prec Span Sensitivity: Trial 1:	ision= Average Difference/C	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7	<u>\-</u> <u>}</u> %		11990
Calibration Prec Span Sensitivity: Trial 1: Co	ision= Average Difference/C	Average Difference: Cal Gas Conc. X 100% = 100% = $9\%.7$, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2:	ision= Average Difference/C	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 m = 168640 m = 3824	, % <u>Trial 3:</u> Cou	_/500 x 100%	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2:	ision= Average Difference/C	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 m = 168640 m = 3824	, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Difference/C	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 n = 168690 n = 168572 n = 168572	, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Difference/C : : : : : : : : : : : : : : : : : : :	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 n = 168690 n = 168572 n = 168572	, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring	ision= Average Difference/C : : : : : : : : : : : : : : : : : : :	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 n = 168690 n = 168572 n = 168572	, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air	ision= Average Difference/C : : : : : : : : : : : : : : : : : : :	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 m = 1686% m = 168572 m = 168572 m = 3851	, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ision= Average Difference/C : : : : : : : : : : : : : : : : : : :	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 m = 1686% m = 168572 m = 168572 m = 168572 m = 168572 m = 168572 m = 168572 m = 168572	, % <u>Trial 3:</u> Cou	_/500 x 100% Ints Observed for the Span= ters Observed for the Zero=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND	ision= Average Difference/C ision= Average Difference/C ounts Observed for the Spar inters Observed for the Zerc ounts Observed for the Zerc calibration Check ppm CONCENTRATIONS CHEC	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 m = 1686% m = 168572 m = 168572 m = 168572 m = 168572 m = 168572 m = 168572 m = 168572	500	_/500 x 100% Ints Observed for the Span= ters Observed for the Zero=	16870
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND Upwind Location	ision= Average Difference/C ision= Average Difference/C ounts Observed for the Spar inters Observed for the Zerc ounts Observed for the Zerc calibration Check ppm CONCENTRATIONS CHEC	Average Difference: Cal Gas Conc. X 100% = 100% = 99.7 = 16860 = 382.9 = 168572 = 3851 Cal Gas Reading: KS	500	_/500 x 100% Ints Observed for the Span= ters Observed for the Zero=	16870

		SURFACE EMISS			Dos7
	1	CALIBRATION AN	ND PERTINE	NT DATA	
Date:	-12-21 ryan O		Site Name:	Naby	
nspector(s): <u>B</u>	ryam O	choq	Instrument:	TVA 2020	
WEATHER OBSERVA	TIONS			· · · ·	
Wind Speed:	7МРН	Wind Direction:	_	Barometric Pressure: <u>30</u>	Чд
Air Temperature: 6	4_•F	General Weath Conditior		_	
CALIBRATION INFOR	MATION				
Pre-monitoring Calibra	ition Precision Check				
and calculate the aver	age algebraic differen		t reading and the	ng zero air and the calibratio e calibration gas as a percent	
nstrument Serial Num	ber: <u>121</u> :red	5		Cal Gas Concentration:	500ppm
rial 1	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (second
2	-4	501	- /		4
3		499	1		2
		= 1009	- 16	/500 x 100%	
		= 99/	7%		
pan Sensitivity:					
rial 1:	bserved for the Span=	131413	Trial 3: Con	unts Observed for the Span=	1318-39
Counters C)bserved for the Zero≖	3122		nters Observed for the Zero=	~
rial 7.		132814			
Counters C	bserved for the Zero=	3120			
ost Monitoring Calibra	ition Check				
ero Air		Cal Gas	5730		
eading:	<u>С</u> ррт	Reading	500	_ppm	
ACKGROUND CONC	ENTRATIONS CHECK			1 ~	
owind Location Descri	ption:	Entrance Game	-	Reading: 1/2	ppm
ownwind Location De	scription:	Grid 1	-	Reading:	ppm
exceed	led 20 miles per hour.	No rainfall had occurred	within the previo	equested 10 miles per hour a us 24 hours of the monitorir e LMR requirements on the a	ng event. Therefore, site

					Pre
		SURFACE EMISSI	ONS MONI	TORING	
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	4-12-72		Site Name:	Newby	
Inspector(s):	Bryan	0	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed:	:_5мрн	Wind Direction: <u>NF</u>	-	Barometric Pressure: 30	"Hg
Air Temperature:	-11	General Weather Conditions		\mathbf{X}	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	prate the instrument. Make a e average algebraic difference ne less than or equal to 10% o	e between the instrument i f the calibration gas value.			
Instrument Seria	al Number: 1215			Cal Gas Concentration	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
1		500	2		4
2	0	010.0		7	5
		= 100%-	1.6	/500 x 100%	
		= 99.7	%		
Span Sensitivity:					
<u>Frial 1:</u> Co	unts Observed for the Span=	152516	Trial 3: Col	unts Observed for the Spar	=1328-13
	nters Observed for the Zero=	0		iters Observed for the Zero	2 1
rial 2:	unts Observed for the Span=				2000
	nters Observed for the Zero=	0-1-			
	Calibration Check				
ero Air		Cal Gas			
eading:	ppm	Reading:	500	_ ppm	
ACKGROUND	CONCENTRATIONS CHECKS				
pwind Location	Description:	Entrance	-	Reading: 1.3	_ppm
ownwind Locati	on Description:	Gridt		Reading: 15	_ ppm
	Wind speed averages were of exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	ithin the previo	us 24 hours of the monitor	ing event. Therefore, site

		SURFACE EMIS			post
		CALIBRATION A	ND PERTINEN	ΙΤ ΟΑΤΑ	/-
Date:	4-13-21		Site Name:	Maby	
Inspector(s):	4-13-21 Bryan	Ochoa	Instrument:	TVA 2020	
WEATHER OBS	9			A.,	
Wind Speed:	МРН	Wind Direction: <u>C</u>	<u>Ju</u>	Barometric Pressure: <u> </u>	"Нg
Air		General Weat	her ons: <u>Clea</u> u		
Temperature:	62_°F	Conditio	ons: <u>Clear</u>		
CALIBRATION I	NFORMATION				
Pre-monitoring (Calibration Precision Check	¢			
Procedure: Calib	rate the instrument. Make	e a total of three measuren	nents by alternating	g zero air and the calibration	aas. Record the readinas
and calculate the	e average algebraic differe	ence between the instrume	nt reading and the	calibration gas as a percent	
precision must b	e less than or equal to 10%	6 of the calibration gas valu	ue. S		
Instrument Seria	1 Number: 121	5		Cal Gas Concentration:	500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds
1	1	500	0		3
2	2	501	1		2
3	1	502	5		2
		Average Difference:	116		
			1%- <u>Irb</u>	/500 x 100%	
		= 919,0	> %		
pan Sensitivity:					
T <mark>rial 1:</mark> Co	unts Observed for the Spa	n= 131876	Trial 3: Cou	nts Observed for the Span=	152974
	nters Observed for the Zero		Count	nts Observed for the Span= ers Observed for the Zero=	3145
and at		n= 132920			-1
	nters Observed for the Zero		_		
	Calibration Check				
ero Air eading:	ppm	Cal Gas Reading:	500	ppm	
	CONCENTRATIONS CHEC	CKS			
pwind Location	Description:	Entrance		Reading: 112	ppm
ownwind Locatio	on Description:	Entrance Grid (_	Reading: 1,3	opm

				P	re
		SURFACE EMISSI			
		CALIBRATION AN	D PERTINE	NT DATA	
Date:	4-13-20	150	Site Name:	Membu	
Inspector(s):	4-13-20 Brijer	0 1	instrument:	TVA 2020	
WEATHER OBS	SERVATIONS				
Wind Speed:	5МРН	Wind Direction: 53F		Barometric Pressure: <u>30</u>	"Hg
Air Temperature:		General Weathe Conditions		<u>s</u>	
	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	orate the instrument. Make a e average algebraic difference e less than or equal to 10% o I Number:	e between the instrument f the calibration gas value.	reading and the	-	tage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1	. \	501			
2	.0	499		1	
alibration Preci	sion= Average Difference/Cal	Gas Conc. X 100%	\	_/500 x 100%	
		= 99.8	%		
pan Sensitivity:		· (-			
frial 1: Co	unts Observed for the Span=	130640		ints Observed for the Span=	
Cour rial 2:	nters Observed for the Zero=	3026	Coun	ters Observed for the Zero=	3108
	unts Observed for the Span=	32680	1.000		
Cou	nters Observed for the Zero=	3217			
ost Monitoring	Calibration Check				
ero Air eading:	O ppm	Cal Gas Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECKS				
pwind Location	Description:	Entranc	e	Reading: 1,5	ppm
ownwind Locati	on Description:	Grid1		Reading:	ppm
	Wind speed averages were of exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	vithin the previo	us 24 hours of the monitori	ng event. Therefore, site

SCS DataServices - Secure Environmental Data

		ONS MONITORING D PERTINENT DATA	po57-
11-13-71			
nspector(s); Don Gilber		Site Name: Newby	
nspector(s); Don Gilber	m	Instrument:TVA 2020	
VEATHER OBSERVATIONS			
Wind Speed: 5 MPH	Wind Direction: <u>L/J/L</u>	Barometric Pressure: <u>50</u>	"Hg
Air Temperature: <u>6</u> 7 °F	General Weather Conditions	01 -	
ALIBRATION INFORMATION			
re-monitoring Calibration Precision Check			
rocedure: Calibrate the instrument. Make	a total of three measuremer	nts by alternating zero air and the calibratio	n aas. Record the reading
nd calculate the average algebraic differen	nce between the instrument i	reading and the calibration gas as a percent	
recision must be less than or equal to 10%	of the calibration gas value.		
nstrument Serial Number:	0	Cal Gas Concentration;	500ppm
rial Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (second
1 3	50/	1	8
2	502	2	2
3	SGL	1	2
alibration Precision= Average Difference/C	Average Difference:	*Perform recallbration if average difference is greater than] 10
alibration Precision= Average Difference/C	al Gas Conc. X 100%] 10
alibration Precision= Average Difference/C	al Gas Conc. X 100% = 100%-	<u>/, 3</u> /500 x 100%] 10
libration Precision= Average Difference/C	al Gas Conc. X 100%	<u>/, 3</u> /500 x 100%] 10
	al Gas Conc. X 100% = 100%-	<u>/, 3</u> /500 x 100%] 10
an Sensitivity:	al Gas Conc. X 100% = 100%- = 99,7	<u>/, 5</u> /500 x 100%	
oan Sensitivity: <u>ial 1:</u> Counts Observed for the Span	al Gas Conc. X 100% = 100%- = 99,7 = <u>166814</u>	<u>/, 5</u> /500 x 100%	
oan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2:	tal Gas Conc. X 100% = 100%- = 99.7 = 166814 = 3783	<u>/, 3</u> /500 x 100%	
oan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span	a Gas Conc. X 100% = 100% = 99.7 $a = 166814$ $a = 3783$ $a = 165148$	<u>/, 5</u> /500 x 100%	
oan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2:	a Gas Conc. X 100% = 100% = 99.7 $a = 166814$ $a = 3783$ $a = 165148$	<u>/, 5</u> /500 x 100%	
oan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero	a Gas Conc. X 100% = 100% = 99.7 $a = 166814$ $a = 3783$ $a = 165148$	<u>/, 5</u> /500 x 100%	
ban Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero ost Monitoring Calibration Check	a Gas Conc. X 100% = 100% = 99.7 $a = 166814$ $a = 3783$ $a = 165148$	<u>/, 5</u> /500 x 100%	
aan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero st Monitoring Calibration Check ro Air	al Gas Conc. X 100% $= 100%$ $= 99.77$ $= 166814$ $= 3783$ $= 165148$ $= 3954$	<u>/, 5</u> /500 x 100%	
aan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero ost Monitoring Calibration Check ro Air ro Air ro Air	al Gas Conc. X 100% $= 100%$ $= 997.7$ $= 166814$ $= 3783$ $= 165148$ $= 3554$ Cal Gas Reading:	<u>/,</u> /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	
Dan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero ost Monitoring Calibration Check ro Air ading: COUNCENTRATIONS CHECK	tal Gas Conc. X 100% = 100%- = 99.77 = 16514 = 165148 = 3783 = 165148 Cal Gas Reading: KS	<u>1,3</u> /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	
ban Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero bast Monitoring Calibration Check	al Gas Conc. X 100% $= 100%$ $= 997.7$ $= 166814$ $= 3783$ $= 165148$ $= 3554$ Cal Gas Reading:	<u>1,3</u> /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	166726 3736

					Pre
		SURFACE EMISSIO	ONS MONI	TORING	
		CALIBRATION AND	D PERTINE	NT DATA	
Date:	4-13-20	150	Site Name:	Newbu	
Inspector(s):	Dong	1	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			~	
		Wind		Barometric	
Wind Speed	МРН	Direction:		Pressure: 30	"Hg
Air Temperature:		General Weather Conditions:		ST .	
	INFORMATION				
re-monitoring	Calibration Precision Check				
Procedure: Calib	arate the instrument Make	a total of three measuremen	its hy alternativ	a zero air and the calibrati	on and Pacord the readings
		ice between the instrument r			
	e less than or equal to 10%		-		-
nstrument Seria	al Number: <u>12</u>	20		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds
1		502		2	24
2	.0	501		1	5
3		499	1	1	3
		= 100%-	1.3	/500 x 100%	
		= 99.7	-		
		= \ \- (%		
pan Sensitivity:					
rial 1: Co	ounts Observed for the Span	166772	Trial 3: Cou	unts Observed for the Span	165039
Cou	nters Observed for the Zero-	3765	Cour	iters Observed for the Zero:	- 3151
rial 2: Co	ounts Observed for the Span-	165704			
	nters Observed for the Zero-	0101			
ost Monitoring	Calibration Check				
ero Air		Cal Gas			
eading:	ppm	Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECK				
pwind Location	Description:	Entran	icl	Reading: 1.3	ppm
ownwind Locati	ion Description:	Carid 1		Reading:	_ppm
		observed to remain below th . No rainfall had occurred wi			

res of the LMR requirements on the abov

	SURFACE EMISSIO		Pre
	CALIBRATION AND		
11	CALIBRATION AND	PERTINENT DATA	
Date: 9-15	.2021	Site Name: Newby	
Inspector(s): Pala	OR	Instrument: TVA 2020	
WEATHER OBSERVATIONS		÷	
	Wind	Barometric	
Wind Speed: 5	APH Direction: <u>55 F</u>	Pressure: 30	"Hg
Air 50 Temperature:°	General Weather F Conditions:	clear	
CALIBRATION INFORMATION			
Pre-monitoring Calibration Precision	on Check		
		by alternating zero air and the calibration	
	ic difference between the instrument rec al to 10% of the calibration gas value.	ading and the calibration gas as a percento	ige. The calibration
recision must be less than or equi	a to 10% of the calibration gas value.		
nstrument Serial Number;	5421	Cal Gas Concentration:	500ppm
rial Zero Air Re		[Cal Gas ConcCal Gas Reading]	Response Time (seconds)
1 1	502	2	4
2	500	0	3
3 • \	498	2	3
Calibration Precision= Average Diff			
	= 100%	2.6 /500 x 100%	
	= 99.4 %	<u>6</u>	
pan Sensitivity:		rial 3:	
			152 103
Counts Observed for	the Span= 107012	Counts Observed for the Span=	
Counts Observed for Counters Observed for	the Span= 107012		152 (03 39 79
Counts Observed for Counters Observed for rial 2:	the Span= 107012	Counts Observed for the Span=	
Counts Observed for Counters Observed for rial 2:	the Span= 101912 the Zero= 3918 the Span= 150808	Counts Observed for the Span=	
Counts Observed for Counters Observed for Trial 2: Counts Observed for Counters Observed for	the Span= 101912 the Zero= 3918 the Span= 150808	Counts Observed for the Span=	
Counts Observed for Counters Observed for rial 2: Counts Observed for Counters Observed for ost Monitoring Calibration Check	the Span= 141412 the Zero= 3918 the Span= 150808 the Zero= 3946	Counts Observed for the Span=	
Counts Observed for <u>Counters Observed for</u> <u>rial 2:</u> Counts Observed for <u>Counters Observed for</u> ost Monitoring Calibration Check	the Span= 141412 the Zero= 3918 the Span= 150808 the Zero= 3946 Cal Gas	Counts Observed for the Span=	
Counts Observed for <u>Counters Observed for</u> <u>rial 2:</u> Counts Observed for <u>Counters Observed for</u> ost Monitoring Calibration Check ero Air eading: pr	the Span= 141412 the Zero= 3418 the Span= 150808 the Zero= 3446 Cal Gas mean Reading:	Counts Observed for the Span= Counters Observed for the Zero=	
Counts Observed for <u>rial 2:</u> Counters Observed for <u>Counters Observed for</u> <u>Counters Observed for</u> ost Monitoring Calibration Check ero Air eading: <u>D</u> pp ACKGROUND CONCENTRATION	the Span= <u>141414</u> the Zero= <u>3918</u> the Span= <u>150808</u> the Zero= <u>3946</u> Cal Gas Reading:	Counts Observed for the Span= Counters Observed for the Zero=	
Counters Observed for Trial 2: Counts Observed for Counters Observed for Post Monitoring Calibration Check Pero Air	the Span= 141412 the Zero= 3418 the Span= 150808 the Zero= 3446 Cal Gas mean Reading:	Counts Observed for the Span= <u>Counters Observed for the Zero=</u> <u>500</u> ppm Reading: <u>1.2</u>	3979
Counts Observed for Counters Observed for Counts Observed for Counters Observed for Counters Observed for Ost Monitoring Calibration Check ero Air eading: ACKGROUND CONCENTRATION Ipwind Location Description: Cownwind Location Description:	the Span= 141414 the Zero= 3918 the Span= 150808 the Zero= 3946 Cal Gas Reading: NS CHECKS <u>Entrance</u> <u>Grit1</u>	Counts Observed for the Span= <u>Counters Observed for the Zero=</u> <u>Soco</u> ppm Reading: <u>1.2</u> Reading: <u>(.3</u>	99 79 ppm
Counts Observed for Counters Observed for Counts Observed for Counters Observed for Counters Observed for Ost Monitoring Calibration Check ero Air eading: pr ACKGROUND CONCENTRATION pwind Location Description: ownwind Location Description: otes: Wind speed average	the Span= 161916 the Zero= 3918 the Span= 150808 the Zero= 3946 Cal Gas Reading: NS CHECKS <u>Entrance</u> <u>Grit1</u> ges were observed to remain below the	Counts Observed for the Span= <u>Counters Observed for the Zero=</u> <u>Soco</u> ppm Reading: <u>1.2</u> Reading: <u>(.3</u>) alternative requested 10 miles per hour ar	ppm ppm nd no instantaneous speeds
Counts Observed for Counters Observed for Counts Observed for Counters Observed for Counters Observed for Ost Monitoring Calibration Check ero Air eading: ACKGROUND CONCENTRATION pwind Location Description: ownwind Location Description: otes: Wind speed average exceeded 20 miles	the Span= 161918 the Zero= 3918 the Span= 150808 the Zero= 3946 Cal Gas Reading: NS CHECKS <u>Entrance</u> <u>Grit1</u> ges were observed to remain below the sper hour. No rainfall had occurred with	Counts Observed for the Span= <u>Counters Observed for the Zero=</u> <u>SOO</u> ppm Reading: <u>1.2</u> Reading: <u>(.3)</u> alternative requested 10 miles per hour ar hin the previous 24 hours of the monitoring	ppm ppm d no instantaneous speeds g event. Therefore, site
Counts Observed for Counters Observed for Counts Observed for Counters Observed for Counters Observed for Observed for Counters Observed for Counters Observed for Observed for Counters Observed for	the Span= 161918 the Zero= 3918 the Span= 150808 the Zero= 3946 Cal Gas Reading: NS CHECKS <u>Entrance</u> <u>Grit1</u> ges were observed to remain below the sper hour. No rainfall had occurred with	Counts Observed for the Span= <u>Counters Observed for the Zero=</u> <u>Soc</u> ppm Reading: <u>1.2</u> Reading: <u>(.3)</u> alternative requested 10 miles per hour arbin the previous 24 hours of the monitoring rnatives of the LMR requirements on the alternative of the LMR requirements of the	ppm ppm nd no instantaneous speeds g event. Therefore, site bove mentioned date.

SCS DataServices — Secure Environmental Data

		SURFACE EMIS			
		CALIBRATION /	AND PERMINER	NIDAIA	
Date:	046-13-202 Pablo R	-1	Site Name:	Newby	
Inspector(s):	Pablo R	ivera	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	: мрн	Wind Direction:/パパ		Barometric Pressure: <u>30</u>	- "Нg
Ai Temperature		General Wea Conditi	ions: <u>Clear</u>	_	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Ch	eck			
and calculate th	e average algebraic diff be less than or equal to 1 ۲۲	ake a total of three measure ference between the instrum 10% of the calibration gas va	ent reading and the		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (se
1	0	499	1000 000 0	(3
2	1,	502		2	3
		-01)	3
3 Calibration Prec	O	Average Difference		3. 3	10
		Average Difference e/Cal Gas Conc. X 100% = 10	*Perform recalibratio		10
Calibration Prec	ision= Average Differenc	Average Difference	*Perform recalibratio	on if average difference is greater than] 10
Calibration Preci Span Sensitivity:	ision= Average Differenc	Average Difference e/Cal Gas Conc. X 100% = 10	*Perform recalibratio	on if average difference is greater than	10
Calibration Preci Span Sensitivity: Trial 1:	ision= Average Differenc	Average Difference re/Cal Gas Conc. X 100% = 10 = 99.3 pan= <u>1571963</u>	*Perform recalibratio	on if average difference is greater than	150 903
Calibration Preci Span Sensitivity: Trial 1: Cou	ision= Average Differenc	Average Difference e/Cal Gas Conc. X 100% = 10 = 99.3 pan= <u>15-1963</u>	*Perform recalibratio	on if average difference is greater than /500 x 100%	150 803
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2:	ision= Average Differenc	Average Difference e/Cal Gas Conc. X 100% = 10 = 99.3 pan= <u>1571963</u> ero= <u>39.76</u>	*Perform recalibratio	on if average difference is greater than /500 x 100% ints Observed for the Span=	150 803
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Differenc ounts Observed for the S nters Observed for the Z	Average Difference $e/Cal Gas Conc. \times 100\%$ = 10 = 99.3 pan= <u>151963</u> ero= 39.76 pan= <u>151454</u> = 29.3	*Perform recalibratio	on if average difference is greater than /500 x 100% ints Observed for the Span=	150 803
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Difference bunts Observed for the S nters Observed for the Z bunts Observed for the S	Average Difference $e/Cal Gas Conc. \times 100\%$ = 10 = 99.3 pan= <u>151963</u> ero= 39.76 pan= <u>151454</u> = 29.3	*Perform recalibratio	on if average difference is greater than /500 x 100% ints Observed for the Span=	150 803
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring	ision= Average Difference ounts Observed for the S nters Observed for the Z ounts Observed for the S nters Observed for the S	Average Difference e/Cal Gas Conc. X 100% = 10 = 99.3 pan= 151962 ero= 39.76 pan= 151454 ero= 39.50	*Perform recalibratio	on if average difference is greater than /500 x 100% ints Observed for the Span=	150 803
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Difference ounts Observed for the S nters Observed for the Z ounts Observed for the S nters Observed for the S	Average Difference $e/Cal Gas Conc. \times 100\%$ = 10 = 99.3 pan= <u>151963</u> ero= 39.76 pan= <u>151454</u> = 29.3	*Perform recalibratio	on if average difference is greater than /500 x 100% ints Observed for the Span=	150 803
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ision= Average Difference ounts Observed for the S nters Observed for the Z ounts Observed for the S nters Observed for the Z Calibration Check	Average Difference $e/Cal Gas Conc. \times 100\%$ = 10 = 99.3 pan= 157963 ero= 39.76 pan= 157454 ero= 39.50 Cal Gas Reading:	*Perform recalibratio	on if average difference is greater than /500 x 100% unts Observed for the Span= ters Observed for the Zero=	150 803
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ision= Average Difference bunts Observed for the S <u>inters Observed for the Z</u> bunts Observed for the S <u>inters Observed for the Z</u> Calibration Check	Average Difference $e/Cal Gas Conc. \times 100\%$ = 10 = 99.3 pan= 151963 ero= 39.76 pan= 151454 ero= 39.50 Cal Gas Reading: HECKS	*Perform recalibratio	ppm Reading: <u>1. Z</u>	150 803
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND Jpwind Location	ision= Average Difference bunts Observed for the S <u>inters Observed for the Z</u> bunts Observed for the S <u>inters Observed for the Z</u> Calibration Check	Average Difference $e/Cal Gas Conc. \times 100\%$ = 10 = 99.3 pan= 157963 ero= 39.76 pan= 157454 ero= 39.50 Cal Gas Reading:	*Perform recalibratio		150 903 39 90

					Pre
4		SURFACE EMISS	IONS MONI	TORING	
		CALIBRATION AN	ND PERTINE	NT DATA	
Date:	4-13-2021 (084		Site Name:	Newby	
Inspector(s):	(084		Instrument:	TVA 2020	
WEATHER OBS					
Wind Speed:	5МРН	Wind Direction: 55E		Barometric Pressure: <u>30</u>	"Hg
Air Temperature:	~ ^	General Weath Condition	er ns: Clear	_	
CALIBRATION I	NFORMATION				
² re-monitoring (Calibration Precision Check				
and calculate the	rate the instrument. Make of e average algebraic difference e less than or equal to 10% of I Number: <u>541</u>	ce between the instrumen	t reading and the		
rial	Zero Air Reading	Cal Gas Reading	I Cal Gas (ConcCal Gas Reading	Response Time (seconds
1	v l	501			3
2		501		1	2
3	0	501		1	4
	sion= Average Difference/Ca	= 100%	2.3	_/500 x 100%	
		= 99.5	%		
pan Sensitivity:			1		
rial 1: Cou	unts Observed for the Span=	174524	Trial 3: Cou	nts Observed for the Span=	
	ters Observed for the Zero=	uaud	Coun	ters Observed for the Zero=	49 53
r <mark>ial 2:</mark> Cou	unts Observed for the Span=	175820			
Coun	ters Observed for the Zero=	4903			
ost Monitoring C	Calibration Check				
ero Air eading:	0ppm	Cal Gas Reading:	500	ppm	
ACKGROUND C	ONCENTRATIONS CHECK	S			
owind Location I	Description:	Entroin ce Gnid 1	-	Reading: 1.8	ppm
ownwind Locatio	on Description:	Grit 1		Reading: 1.4	ppm
e	Vind speed averages were o exceeded 20 miles per hour. neteorological conditions we	No rainfall had occurred	within the previou	us 24 hours of the monitorin	g event. Therefore, site
the second second	vices - Secure	the second s	- Interior		*

		SURFACE EMISSI			
	al da a a				
Date:	04-23-202	<i>.</i> l	Site Name:	Wenby	
Inspector(s):	Cody		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	: МРН	Wind Direction:	_	Barometric Pressure: <u>30</u>	"Нд
Ai Temperature		General Weathe Conditions	s: Cleaw	<u>.</u>	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	brate the instrument. Make be average algebraic differen be less than or equal to 10% al Number:	ice between the instrument of the calibration gas value.	reading and the		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (secor
1		500		0	
2	- 1	499		2	
Calibration Preci	ision= Average Difference/Ca		*Perform recalibration	Z - 6 In if average difference is greater than] 10
Calibration Preci	ision= Average Difference/Ca	al Gas Conc. X 100% = 100%-	*Perform recalibration] 10
		al Gas Conc. X 100%	*Perform recalibration	n if average difference is greater than] 10
Span Sensitivity: Trial 1:		al Gas Conc. X 100% = 100% = 9H. H	*Perform recalibration - '2 - 6 % Trial 3:	n if average difference is greater than	
Span Sensitivity: Trial 1: Cc		al Gas Conc. X 100% = 100% = 92.44 = 175.820	*Perform recalibration	n if average difference is greater than _/500 x 100% nts Observed for the Span=	174720
Span Sensitivity: Trial 1: Co Cou Trial 2:	ounts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100% = $9A.W$ = $175 890$ = $49 33$	*Perform recalibration	n if average difference is greater than _/500 x 100%	174720
Span Sensitivity: Trial 1: Cou Trial 2: Co	ounts Observed for the Span nters Observed for the Zero ounts Observed for the Span	al Gas Conc. X 100% = 100% = $9A.W$ = 175800 = 4933 = 175260	*Perform recalibration	n if average difference is greater than _/500 x 100% nts Observed for the Span=	174720
Span Sensitivity: Trial 1: Cou Trial 2: Cou Cou	ounts Observed for the Span nters Observed for the Zero	al Gas Conc. X 100% = 100% = $9A.W$ = 175800 = 4933 = 175260	*Perform recalibration	n if average difference is greater than _/500 x 100% nts Observed for the Span=	174720
Span Sensitivity: Trial 1: Cou Trial 2: Cou Cou	ounts Observed for the Span nters Observed for the Zeros ounts Observed for the Span nters Observed for the Zeros	al Gas Conc. X 100% = 100% = $9A.W$ = 175800 = 4933 = 175260	*Perform recalibration	n if average difference is greater than _/500 x 100% nts Observed for the Span=	174720
Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	punts Observed for the Spans nters Observed for the Zeros punts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% = $9A.W$ = $175 880$ = $49 33$ = $175 260$ = $HQ II$ Cal Gas Reading:	*Perform recalibration 7 - 6 % Trial 3: Count	n if average difference is greater than _/500 x 100% nts Observed for the Span= ters Observed for the Zero=	174720
Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ounts Observed for the Spans nters Observed for the Zeros ounts Observed for the Spans nters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% = $9A.W$ = $175 890$ = $49 33$ = $175 260$ = $49 11$ Cal Gas Reading: XS	*Perform recalibration 7 - 6 % Trial 3: Count	ppm	174720
Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND	ounts Observed for the Spans nters Observed for the Zeros ounts Observed for the Spans nters Observed for the Zeros Calibration Check Description:	al Gas Conc. X 100% = 100% = $9A.W$ = $175 880$ = $49 33$ = $175 260$ = $HQ II$ Cal Gas Reading:	*Perform recalibration 7 - 6 % Trial 3: Count	ppm Reading: <u>1.3</u>	174723 4994

		SURFACE EMISSI			
		CALIBRATION AN	D PERTINENT DA	TA	
Date:	4-13-20	21	Site Name:	venby	
Inspector(s):	Hunter	0	instrument: TVA	2020	
WEATHER OB	SERVATIONS			T	
Wind Speec	H:MPH	Wind Direction: <u>SSE</u>		essure: <u>30</u>	9 "Нg
Ai Temperature		General Weather Conditions			
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
	brate the instrument. Make a	total of three measuremer	its by alternating zero a	ir and the calibratic	in ans Record the read
and calculate th	he average algebraic difference	e between the instrument i	reading and the calibrat		-
precision must i	be less than or equal to 10% of	f the calibration gas value.	•		
Instrument Seri	al Number: 5416	5	Cal	Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCa	al Gas Reading	Response Time (sec
1 2	,1	500 500	0		<u> </u>
3	.0	501	0		3
5		201			
		Average Difference:	*Perform recalibration if averag	e difference is greater than]
	ision= Average Difference/Cal	Average Difference:	*Perform recalibration if averag	e difference is greater than]
		Average Difference: Gas Conc. X 100%	*Perform recalibration if averag]
		Average Difference: Gas Conc. X 100% = 100%-	3 /500 ×]
		Average Difference: Gas Conc. X 100%	3 /500 ×]
Calibration Prec	ision= Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100%-	<u> </u>]
Calibration Prec Span Sensitivity: Trial 1: Co	ision= Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UM DOG & D	<u> </u>	x 100%]
Calibration Prec Span Sensitivity: Trial 1: Соц	ision= Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UM DOG & D	<mark>3</mark> /500 × % <u>Trial 3:</u> Counts Obs	x 100%] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2:	ision= Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UU0980 UU0980 UU0980	<mark>3</mark> /500 × % <u>Trial 3:</u> Counts Obs	erved for the Span=] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Difference/Cal punts Observed for the Span= inters Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UU0980 UB39 UB39 JU2108	<mark>3</mark> /500 × % <u>Trial 3:</u> Counts Obs	erved for the Span=] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Cou	ision= Average Difference/Cal punts Observed for the Span= inters Observed for the Zero= punts Observed for the Span=	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UU0980 UB39 UB39 JU2108	<mark>3</mark> /500 × % <u>Trial 3:</u> Counts Obs	erved for the Span=] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Cou	ision= Average Difference/Cal punts Observed for the Span= inters Observed for the Zero= punts Observed for the Span= inters Observed for the Span=	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UU0980 UB39 UB39 JU2108	<mark>3</mark> /500 × % <u>Trial 3:</u> Counts Obs	erved for the Span=] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ision= Average Difference/Cal punts Observed for the Span= inters Observed for the Zero= punts Observed for the Span= inters Observed for the Span= Calibration Check	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UU0980 UB39 UB39 UB39 UB39 UB39 Cal Gas Reading:	• 3 /500 × % <u>Trial 3:</u> Counts Obs Counters Obs	erved for the Span=] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading:	ision= Average Difference/Cal punts Observed for the Span= inters Observed for the Zero= punts Observed for the Span= inters Observed for the Span= Calibration Check ppm CONCENTRATIONS CHECKS	Average Difference: Gas Conc. X 100% = 100%- = 9(9.9) UU0980 UB39 UB39 UU0980 Cal Gas Reading:	• 3 /500 × % <u>Trial 3:</u> Counts Obs Counters Obs	erved for the Span= served for the Zero=] 10 1432 <i>9</i> 0
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Zero Air Reading: BACKGROUND	ision= Average Difference/Cal punts Observed for the Span= inters Observed for the Zero= punts Observed for the Span= inters Observed for the Span= Calibration Check ppm CONCENTRATIONS CHECKS	Average Difference: Gas Conc. X 100% = 100%- = 99.9 UU0980 UB39 UB39 UB39 UB39 UB39 Cal Gas Reading:	 3 /500 × % Trial 3: Counts Obs Counters Obs Counters Obs 	erved for the Span= served for the Zero=] 10 10 10 10 10 10 10 10

	SURFACE EMISSIO	ONS MONITORIN	G	
	CALIBRATION AND	D PERTINENT DAT	Ά	
Date: 04-13-20 nspector(s): Hunter	2(Site Name: Ne	wby	
nspector(s): <u>Hunter</u>		Instrument:	020	
WEATHER OBSERVATIONS			12	
Wind Speed: MPH	Wind Direction: WMW	Baron Pres	netric isure: <u>30</u>	"Hg
Air 62 °F	General Weather Conditions:	clear,		
CALIBRATION INFORMATION				
re-monitoring Calibration Precision Check				
rocedure: Calibrate the instrument. Make nd calculate the average algebraic differer recision must be less than or equal to 10%	nce between the instrument r	eading and the calibratic		
nstrument Serial Number: 5415	5	Cal Ga	as Concentration:	500ppm
rial Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal	Gas Reading	Response Time (seconds
	501			3
2 .1	502	2		14
3 . 7	500	0		3
alibration Precision= Average Difference/Ca		*Perform recalibration if average of	/	10
alibration Precision= Average Difference/Ca	al Gas Conc. X 100% = 100%-		/	10
	al Gas Conc. X 100% = 100%-	*Perform recalibration if average of the second sec	/	10
alibration Precision= Average Difference/Ca pan Sensitivity: tial 1: Counts Observed for the Span	al Gas Conc. X 100% = 100% = $QQ_c G$	*Perform recalibration if average of 1.6 /500 x 1 %	/	
oan Sensitivity: ial 1:	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = <u>140205</u>	*Perform recalibration if average of 1.6 /500 x 1 % /50	.00% ved for the Span=	140100
oan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2:	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = 140205 = 4968	*Perform recalibration if average of 1.6 /500 x 1 % /50	.00%	140100
oan Sensitivity: f <mark>ial 1:</mark> Counts Observed for the Span Counters Observed for the Zero	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = $\underline{ 40205}$ = 4968 = $\underline{ 39098}$ $\underline{ 4022}$	*Perform recalibration if average of 1.6 /500 x 1 % /50	.00% ved for the Span=	140100
oan Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = $\underline{ 40205}$ = 4968 = $\underline{ 39098}$ $\underline{ 4022}$	*Perform recalibration if average of 1.6 /500 x 1 % /50	.00% ved for the Span=	140100
ban Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero St Monitoring Calibration Check the Air	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = 140205 = <u>13968</u> = <u>13998</u> = <u>13923</u> Cal Gas	*Perform recalibration if average of 	.00% ved for the Span=	140100
ban Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero Dist Monitoring Calibration Check ading: Dist Counters Observed for the Zero	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = $\frac{ 40205 }{ 968 }$ = $13Q_{c}Q98$ = $13Q_{c}Q98$ = 4823 Cal Gas Reading:	*Perform recalibration if average of 1.6 /500 x 1 % /50	.00% ved for the Span=	140100
ban Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero ost Monitoring Calibration Check tro Air eading: COUND CONCENTRATIONS CHECK	al Gas Conc. X 100% = 100% - = $QQ_{c}G$ = 140205 = 1308 = 13098 = 13998 = 139298 = 13923 Cal Gas Reading:	*Perform recalibration if average of 	.00% eved for the Span= erved for the Zero=	140100 47999
Dan Sensitivity: fiel 1: Counts Observed for the Span Counters Observed for the Zero fiel 2: Counts Observed for the Span Counters Observed for the Span Counters Observed for the Zero bit Monitoring Calibration Check ero Air Bading:	al Gas Conc. X 100% = 100%- = $QQ_{c}G$ = $\frac{ 40205 }{ 968 }$ = $13Q_{c}Q98$ = $13Q_{c}Q98$ = 4823 Cal Gas Reading:	*Perform recalibration if average of 1.6 /500 x 1 % Trial 3: Counts Obser Counters Obser 5.00 ppm Reading	.00% rved for the Span= rved for the Zero= (. 3	<u>ррт</u>
ban Sensitivity: ial 1: Counts Observed for the Span Counters Observed for the Zero ial 2: Counts Observed for the Span Counters Observed for the Zero St Monitoring Calibration Check aro Air Bading: Councers Observed for the Zero ppm ACKGROUND CONCENTRATIONS CHECK powind Location Description: Description:	al Gas Conc. X 100% = 100% - = $QQ_{c}G$ = 140205 = 1308 = 13098 = 13998 = 139298 = 13923 Cal Gas Reading:	*Perform recalibration if average of 1.6 /500 x 1 % Trial 3: Counts Obser Counters Obser Soco ppm Reading Reading	.00% rved for the Span= rved for the Zero= (. 3) (. 4)	<u>ррт</u> ррт

					110
		SURFACE EMIS			
1	2 1 ⁴	CALIBRATION A	ND PERTINE	NT DATA	
Date:	04-22-21 Bryan		Site Name:	Newby	
Inspector(s):	Bryan		Instrument:	TVA 2020	
WEATHER O	BSERVATIONS				
Wind Spee	d: 3.3 MPH	Wind Direction:	_	Barometric Pressure: 30	Hg
A Temperatur	e: 59 °F	General Weath Condition		4	
CALIBRATION	INFORMATION				
Pre-monitoring	g Calibration Precision Check				
Instrument Seri		0		Cal Gas Concentration:	500ppm
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (secon
-				0	3
2		449			3
3	ision= Average Difference/Cal			D. 3 n if average difference is greater than	3 3 10
3	, j , l	<u>ح</u> 00 Average Difference; Gas Conc. X 100% = 100%	6- <u>0.3</u>	0 0.3	3
3 Calibration Prec	ision= Average Difference/Cal	<u>ح</u> 00 Average Difference; Gas Conc. X 100%	6- <u>0.3</u>	D. 3 n if average difference is greater than	3
3 Calibration Prec Span Sensitivity: Frial 1:	ision= Average Difference/Cal	500 Average Difference; Gas Conc. X 100% = 100% = びの.C	6- <u>0 · 3</u> 2∜ % <u>Trial 3:</u>	D D n if average difference is greater than /500 x 100%	3
3 Calibration Prec Span Sensitivity: Trial 1: Co	ision= Average Difference/Cal	$\frac{500}{\text{Average Difference;}}$ Gas Conc. X 100% $= 100\%$ $= 0101.C$ 102.856	6- <u>().3</u> ∛% Cour	D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2:	sion= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero=	$\frac{500}{\text{Average Difference;}}$ Gas Conc. X 100% $= 100\%$ $= 010.C$ 102856 192856 1560	6- <u>().3</u> ∛% Cour	D D n if average difference is greater than /500 x 100%	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	sion= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero=	$\frac{500}{\text{Average Difference;}}$ Gas Conc. X 100% $= 100\%$ $= 010.0$ 102.856 192.856 195.60 193200	6- <u>() . 3</u> ∛ % Cour	D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Frial 2: Cou	sion= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero=	$\frac{500}{\text{Average Difference;}}$ Gas Conc. X 100% $= 100\%$ $= 010.C$ 102856 192856 1560	6- <u>() . 3</u> ∛ % Cour	D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou	sion= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero=	$\frac{500}{\text{Average Difference;}}$ Gas Conc. X 100% $= 100\%$ $= 010.0$ 102.856 192.856 195.60 193200	6- <u>() . 3</u> ∛ % Cour	D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring ero Air	s i s i sion= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero= punts Observed for the Span= nters Observed for the Span=	500 Average Difference: Gas Conc. X 100% = 100% = 010 = 010 = 010 - 010 = 010 - 010 = 010 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 0100 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 <tr< td=""><td>6- <u>() . 3</u> 7 % Trial 3: Count Count</td><td>D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=</td><td>3] 10 193690</td></tr<>	6- <u>() . 3</u> 7 % Trial 3: Count Count	D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=	3] 10 193690
3 Calibration Prec Span Sensitivity: Frial 1: Cou Trial 2: Cou Post Monitoring ero Air	s i s i sion= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero= punts Observed for the Span= nters Observed for the Span=	$\frac{500}{\text{Average Difference;}}$ Gas Conc. X 100% $= 100\%$ $= 010.C$ 102.856 192.856 195.60 195.60 195.200 195.54	6- <u>0.3</u> % <u>Trial 3:</u> <u>Counte</u> <u>Counte</u>	D 3 n if average difference is greater than _/500 x 100% nts Observed for the Span=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Sost Monitoring ero Air eading:	ision= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero= punts Observed for the Zero= nters Observed for the Span= nters Observed for the Zero= Calibration Check	500 Average Difference: Gas Conc. X 100% = 100% = 010.0 102.856 102.856 103.00 103.200 103.200 105.54 Cal Gas Reading:	6- <u>0.3</u> % <u>Trial 3:</u> <u>Counte</u> <u>Counte</u>	D D J n if average difference is greater than /500 x 100% nts Observed for the Span= ers Observed for the Zero=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring tero Air teading: Court SACKGROUND (ision= Average Difference/Cal punts Observed for the Span= <u>inters Observed for the Zero=</u> punts Observed for the Span= <u>inters Observed for the Zero=</u> Calibration Check <u>D</u> ppm CONCENTRATIONS CHECKS	500 Average Difference: Gas Conc. X 100% = 100% = 010.0 102.856 102.856 103.00 103.200 103.200 105.54 Cal Gas Reading:	6- <u>0.3</u> γ % Trial 3: Court Counte	D D D J n if average difference is greater than /500 x 100% nts Observed for the Span= ers Observed for the Zero=	3] 10 193690
3 Calibration Prec Span Sensitivity: Trial 1: Cou Frial 2: Cou Post Monitoring Sero Air Leading:	ision= Average Difference/Cal punts Observed for the Span= nters Observed for the Zero= punts Observed for the Span= nters Observed for the Zero= Calibration Check Concentrations checks Description:	500 Average Difference: Gas Conc. X 100% = 100% = 010.0 102.856 102.856 103.00 103.200 103.200 105.54 Cal Gas Reading:	6- <u>0.3</u> γ % Trial 3: Court Counte	ppm Reading: <u>1.2</u>	3] 10 10 10 10 10 10 10 10 10 10 10 10 10

		SURFACE EMISSIO	NS MONITORING	1	
		CALIBRATION AND	PERTINENT DATA	4	
Date:	4-22-21		Site Name: Ne	uby	<u> </u>
Inspector(s):	Bryan C	2	Instrument:TVA 20	20	
WEATHER OB	SERVATIONS				
Wind Speed	н: <u>5</u> мрн	Wind Direction:	Barome Press	etric ure: <u>30</u>	"Hg
Ai. Temperature	I V.	General Weather Conditions:	Sunny		
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th		a total of three measurement ice between the instrument re of the calibration gas value.			
Instrument Seria	al Number:	.15	Cal Gas	Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal G	ias Reading I	Response Time (seconds
1		500	0	inter inter an inter int	A A
2	1	1 20 1	7		
2		1 2 () /			
3	ision= Average Difference/Ca		Perform recalibration if average dif	fference is greater than]
3			Perform recalibration if average dif	-]
3 Calibration Preci	ision= Average Difference/Ca	al Gas Conc. X 100%	1	-]
3 Calibration Preci pan Sensitivity:	ision= Average Difference/Ca	al Gas Conc. X 100% = 100%- = 997, 109	/500 x 10 %	-]
3 Calibration Preci pan Sensitivity:	ision= Average Difference/Ca	al Gas Conc. X 100% = 100% - = 9%	/500 x 10 %	00%	129872
3 Calibration Preci Span Sensitivity: Frial 1: Cou	ision= Average Difference/Ca	al Gas Conc. X 100% = 100%- = 99749 = $(28763)^{1}$	/500 x 10 %	00% red for the Span=	1291872
3 Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2:	ision= Average Difference/Ca	al Gas Conc. X 100% = 100% = 99.7 = (287.63) = 284.6	/500 x 10 % Trial 3: Counts Observ	00% red for the Span=	1291872
3 Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou	ision= Average Difference/Ca : : : : : : : : : : : : : : : : : : :	al Gas Conc. X 100% = 100%- = 997 = 997 = 28763 = 2846 = 31472	/500 x 10 % Trial 3: Counts Observ	00% red for the Span=	1291872
3 Calibration Preci Span Sensitivity: Irial 1: Cou Irial 2: Cou Cou	ision= Average Difference/Ca : : : : : : : : : : : : : : : : : : :	al Gas Conc. X 100% = 100%- = 997 = 997 = 28763 = 2846 = 31472	/500 x 10 % Trial 3: Counts Observ	00% red for the Span=	1291872
3 Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Cou Post Monitoring ero Air	ision= Average Difference/Ca : : : : : : : : : : : : : : : : : : :	al Gas Conc. X 100% = 100%- = 997 = 997 = 28763 = 2846 = 31472	/500 x 10 % Trial 3: Counts Observ	00% red for the Span=	1291872
3 Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Tero Air Leading:	ision= Average Difference/Ca ounts Observed for the Span- unters Observed for the Zero= punts Observed for the Zero= calibration Check	al Gas Conc. X 100% = 100% - = 997 = 997 = 28763 = 28763 = 28763 = 28763 = 28763 = 289763 = 28976	/500 x 10 % Counts Observ Counters Observ	00% red for the Span=	1291872
3 Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring Tero Air Leading:	ision= Average Difference/Ca : : : : : : : : : : : : :	al Gas Conc. X 100% = 100% - = 997 = 997 = 28763 = 28763 = 28763 = 28763 = 28763 = 289763 = 28976	/500 x 10 % Counts Observ Counters Observ	00% red for the Span=	1291872

-					eve
		SURFACE EMISS			
		CALIBRATION AN	ID PERTINE	NT DATA	
Date:	04-22-21		Site Name:	Newby	
Inspector(s):	Pablo River	a	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			-	
Wind Speed:	3.8 MPH	Wind Direction: W	-	Barometric Pressure: 50	"Hg
Air Temperature:	58 °F	General Weathe Conditions	s: Cloudy	-	
CALIBRATION I	NFORMATION				
Due vereniterien (Calibration Precision Check				
and calculate the	e average algebraic differer e less than or equal to 10%	a total of three measurement ace between the instrument of the calibration gas value.	reading and the	calibration gas as a percent	age. The calibration
rial	Zero Air Pooding	Col Cas Roading	10-10-10		
1	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (second
2	21	501	1	1	4
3	iñ	498		2	11
		= 100%-	1.3	/500 x 100%	
		= QQ.7	%		
oan Sensitivity:					
ial 1: Cou	nts Observed for the Span=	152600	Trial 3: Cour	its Observed for the Span=	154780
Count	ters Observed for the Zero=	4830	Count	- ers Observed for the Zero=	4990
ial 2:	nts Observed for the Span=				
Count	ers Observed for the Zero≈	4877			
st Monitoring Ca	alibration Check				
ro Air	-0	Cal Gas	500		
ading:	ppm	Reading:	500	ppm	
CKGROUND CO	DNCENTRATIONS CHECK	5			
wind Location D	escription:	Flave		Reading: 1, 2	pm
wnwind Location	Description;	UNIGI		Reading: L P	pm
ex	ceeded 20 miles per hour.	bserved to remain below th No rainfall had occurred wi ere within the requested alto	thin the previous	24 hours of the monitoring	event. Therefore, site
and the second second	the state of the s	Environmental	The second s		
and a start of the	CARDUAR SIL	THE REAL PARTY AND	A BASK		

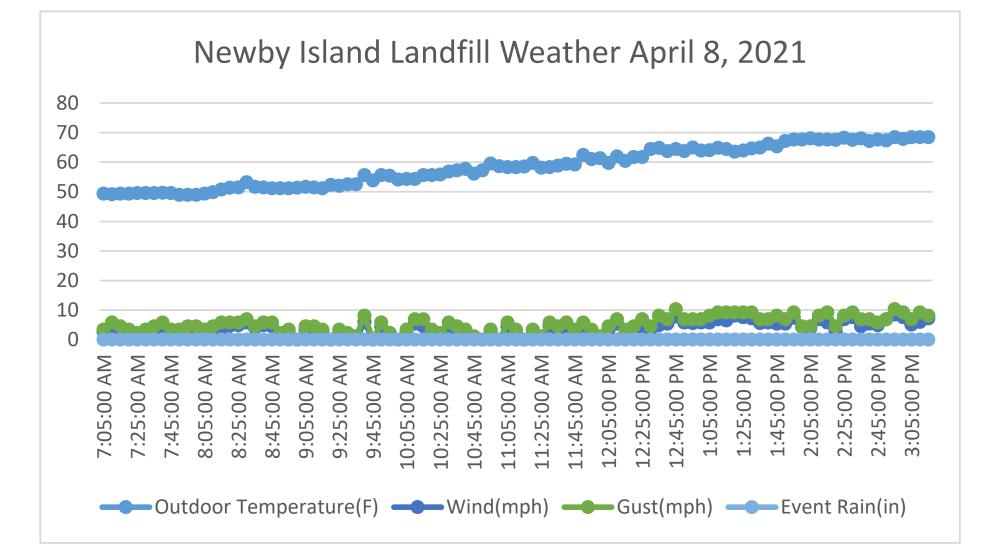
THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	
SCS DaleServices	Secure Environmental Data
THE PARAMENTER AND THE PARAMETER	CA-S-L-AR-S-W-SLAWARDAR SLAWARD-JABCAL SCALAR

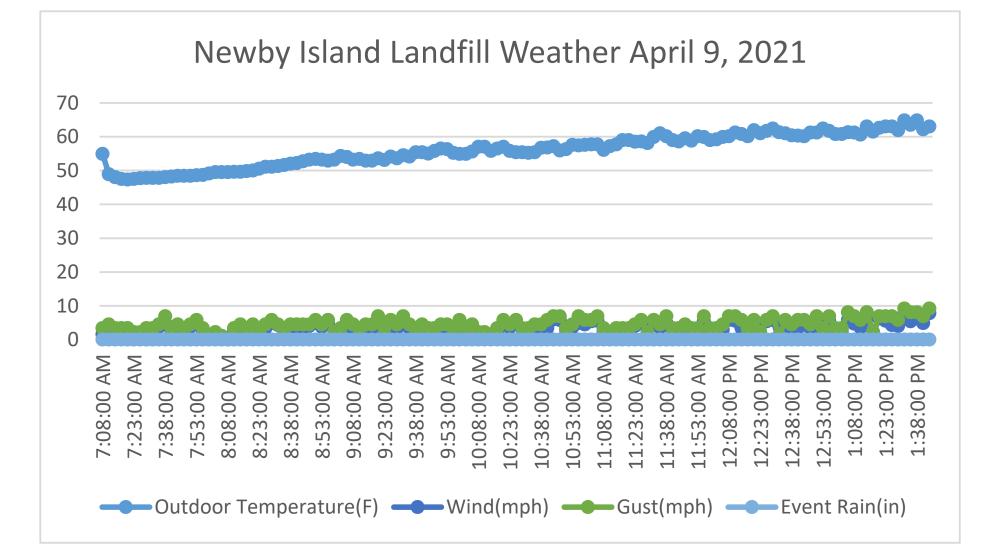
					VOST
		SURFACE EMISSION			
	11 20 21	CALIBRATION AN		21	
Date:	9-22-21		Site Name:	Newbu	
Inspector(s):	Pablo R		Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS			- • 1	
Wind Speed:	5 мрн	Wind Direction:		Barometric Pressure: <u>5</u> 0	"Нд
Air Temperature:	68 °F	General Weather Conditions		20	
CALIBRATION II	NFORMATION				
Pre-monitoring C	alibration Precision Check				
and calculate the	rate the instrument. Make a average algebraic difference	e between the instrument i	reading and the		
nstrument Serial	Number: 547	21		Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	I Cal Gas	ConcCal Gas Reading	Response Time (seconds
1		502	Tear Das		1 C
2	.Ô	500		(2)	5
3	-1	501		1	2
		= 100%-	1	_/500 x 100%	
		= 99.6	%		
pan Sensitivity:					
rial 1:		ITIANT	Trial 3:		0,-, 071
Cou	ints Observed for the Span=	151381	Cou	nts Observed for the Span-	151016
	ters Observed for the Zero=	4811	Coun	ters Observed for the Zero=	4862
<u>rial 2:</u> Cou	ints Observed for the Span=	151592			
Coun	ters Observed for the Zero=	48 39			
ost Monitoring C	alibration Check				
ero Air		Cal Gas			
eading:	ppm	Reading:	500	ppm	
ACKGROUND C	ONCENTRATIONS CHECKS				
pwind Location [Description:	Flare		Reading: 1.2	_ppm
ownwind Locatio	on Description:	Cavid		Reading: 1.4	ppm
e	Vind speed averages were ob xceeded 20 miles per hour. I neteorological conditions we	No rainfall had occurred w	ithin the previou	us 24 hours of the monitori	ng event. Therefore, site

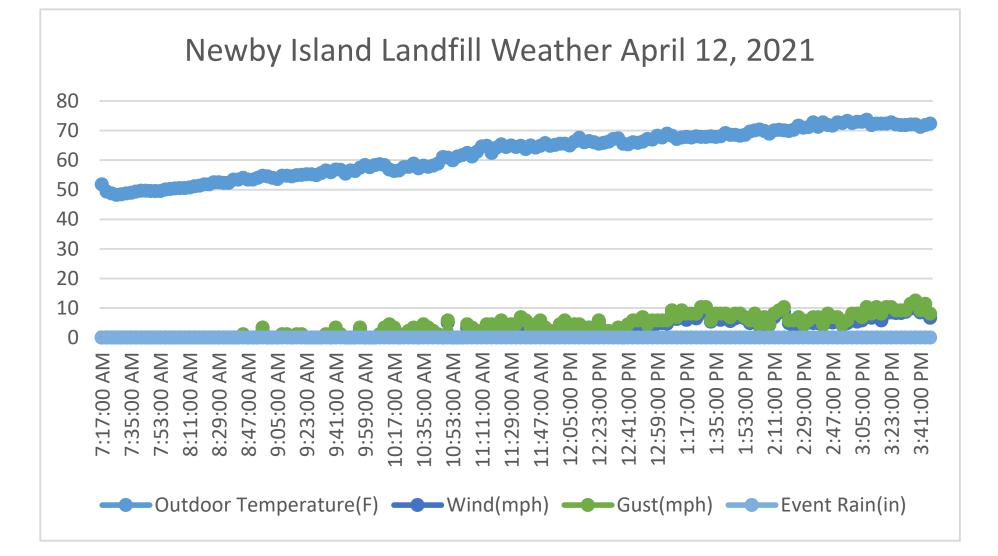
			V.	st
		CALIBRATION AND	D PERTINENT DATA	
Date:	5-11-21		Site Name: Newby	
Inspector(s):	Hunter	Oft	Instrument:	
WEATHER OBS	SERVATIONS		х.	
Wind Speed:	мрн	Wind Direction:	Barometric Pressure: <u>SO</u>	Hg
Air Temperature:	- <u>10</u> *F	General Weather Conditions:		
CALIBRATION	INFORMATION			
Pre-monitoring (Calibration Precision Check			
and calculate th		e between the instrument r	nts by alternating zero air and the calibratic reading and the calibration gas as a percen	
nstrument Seria	al Number: <u>542</u>	_\	Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1	L N	500	0	5
2	0	501)	3
3	<u> </u>	501		5
alibration Preci	sion= Average Difference/Cal	Gas Conc. X 100% = 100%-	/500 x 100%	
		= 99.8	%	
pan Sensitivity:				
Trial 1:		22001	Trial 3:	122 111
Co	ounts Observed for the Span=	152186	Counts Observed for the Span=	
	nters Observed for the Zero=		Counters Observed for the Zero=	3726
rial 2: Co	unts Observed for the Span=	133049		
Cour	nters Observed for the Zero=	3710		
ost Monitoring	Calibration Check			
ero Air leading:		Cal Gas Reading:	500	
	ppm	neading.	ppm	
ACKGROUND	CONCENTRATIONS CHECKS	000011	1.0	
pwind Location	Description:	C-(V101	Reading:	ppm
ownwind Locati	on Description:	Flark	Reading:	ppm
	exceeded 20 miles per hour.	No rainfall had occurred w	ne alternative requested 10 miles per hour a ithin the previous 24 hours of the monitoria ternatives of the LMR requirements on the	ng event. Therefore, site

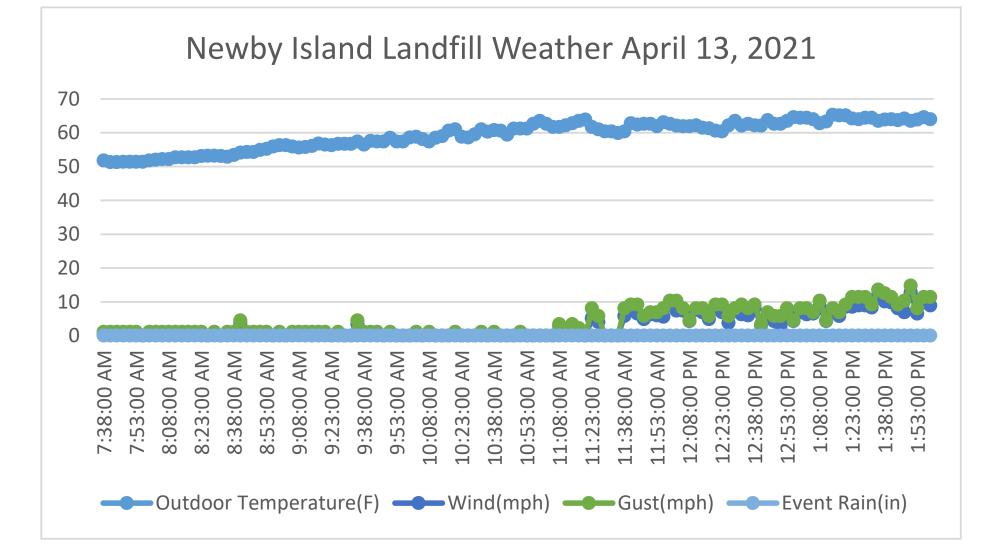
			YE	St
	SURFACE EMISSIC			
	CALIBRATION AND	PERTINENT DA	A	
Date: 6-11-21		Site Name:	entry	
nspector(s): <u>Von</u> (1		Instrument: TVA	2020	
VEATHER OBSERVATIONS			*	
Wind Speed: MPH	Wind Direction:		netric ssure: <u>30</u>	"Нд
Air Temperature:°F	General Weather Conditions:	SUNNY		
CALIBRATION INFORMATION				
re-monitoring Calibration Precision Check				
Procedure: Calibrate the instrument. Make a and calculate the average algebraic difference precision must be less than or equal to 10% of	e between the instrument r	eading and the calibration		
nstrument Serial Number:	5	Cal G	as Concentration;	500ppm
rial Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal	Gas Reading	Response Time (seconds)
	501	-		4
2	500	0		5
3	- 50C			
alibration Precision= Average Difference/Cal	Gas Conc. X 100% = 100%-	/500 x	100%	
pan Sensitivity:	= 998	%		
rial 1:	1211597	Trial 3:		125740
Counts Observed for the Span=	12/12/12	Counts Obse	rved for the Span=	100091
Counters Observed for the Zero=	4146	Counters Obse	rved for the Zero=	401-1
Counts Observed for the Span=	10/140			
Counters Observed for the Zero=	9101			
ost Monitoring Calibration Check				
ero Air eading:ppm	Cal Gas Reading:	<u>500</u> ppm		
ACKGROUND CONCENTRATIONS CHECKS				
pwind Location Description:	cal	Reading	1.2	ppm
ownwind Location Description:	Plave	Reading	1.4	ppm
otes: Wind speed averages were ob exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred wi	thin the previous 24 hou	rs of the monitorir	ng event. Therefore, site

			ONS MONITORING	
		CALIBRATION AND	D PERTINENT DATA	
Date:	5-11-21		Site Name: Newby	
nspector(s):	Bryan	C	Instrument:	
NEATHER OB	SERVATIONS		£	
Wind Speed	н:мрн	Wind Direction:	Barometric Pressure: <u>30</u>	"Нg
Ai Temperature		General Weather Conditions:		
	INFORMATION			
Pre-monitoring	Calibration Precision Check			
and calculate th		e between the instrument r	ts by alternating zero air and the calibra eading and the calibration gas as a perc	
nstrument Seria	al Number:	5	Cal Gas Concentration	n: 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1	.0	500		V V
2	.2	502	2	4
3		500	0	3
		Average Difference:	*Perform recalibration if average difference is greater t	han 10
Calibration Preci	ision= Average Difference/Cal		*Perform recalibration if average difference is greater t	han 10
2)		Gas Conc. X 100%	1	han 10
pan Sensitivity:		Gas Conc. X 100% = 100%- = 797 8	<u> </u> /500 x 100% %	han 10
pan Sensitivity: 'rial 1:		Gas Conc. X 100% = 100%- = 797 8	1	140.08
pan Sensitivity: rial 1: Cou rial 2:	ounts Observed for the Span= Inters Observed for the Zero=	Gas Conc. X 100% = 100%- = 797 8	<u>/</u> 500 x 100% % Trial 3:	n= 12286
pan Sensitivity: rial 1: Cou rial 2: Cou	ounts Observed for the Span= Inters Observed for the Zero= Dunts Observed for the Span=	Gas Conc. X 100% = 100%- = 797 8	/500 x 100% % <u>Trial 3:</u> Counts Observed for the Spa	n= 12286
pan Sensitivity: rial 1: Cou rial 2: Cou	ounts Observed for the Span= Inters Observed for the Zero=	Gas Conc. X 100% = 100%- = 797 8	/500 x 100% % <u>Trial 3:</u> Counts Observed for the Spa	n= 12286
pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring	ounts Observed for the Span= Inters Observed for the Zero= Dunts Observed for the Span=	Gas Conc. X 100% = 100%- = 797 8	/500 x 100% % <u>Trial 3:</u> Counts Observed for the Spa	n= 12286
pan Sensitivity: rial 1: Cou rial 2: Cou Cou	ounts Observed for the Span= Inters Observed for the Zero= ounts Observed for the Span= Inters Observed for the Zero=	Gas Conc. X 100% = 100%- = 797 8	/500 x 100% % <u>Trial 3:</u> Counts Observed for the Spa	n= 12286
pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring ero Air eading:	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero= Calibration Check	Gas Conc. X 100% = 100%- = 98 	/500 x 100% % <u>Trial 3:</u> Counts Observed for the Spa Counters Observed for the Zer	n= 12286
pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring ero Air eading:	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero= Calibration Check	Gas Conc. X 100% = 100%- = 98 	/500 x 100% % <u>Trial 3:</u> Counts Observed for the Spa Counters Observed for the Zer	n= 12286


			Vre	
		SURFACE EMISSIC	ONS MONITORING	
		CALIBRATION AND	PERTINENT DATA	
ate:	Don Gibs	(Site Name:	
spector(s):	Don Gibs	ion	Instrument: TVA 2020	
EATHER OB	SERVATIONS			
Wind Speed	:	Wind Direction: <u>SE</u>	Barometric Pressure: 29	Hg
Air Temperature		General Weather Conditions:	Sunny	
ALIBRATION	INFORMATION			
e-monitoring	Calibration Precision Check			
nd calculate th	he average algebraic different be less than or equal to 10% of \mathcal{C}	ce between the instrument r	ts by alternating zero air and the calibratio eading and the calibration gas as a percen Cal Gas Concentration:	itage. The calibration
ial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1	~ O	Sol	7	
2	1	501	T	2
3	1 1	199	1	P
-4		= 100%- = 99.°	<u>/.</u> /500 x 100%	
an Sensitivity:				
al 1:		1000000	Trial 3:	10 01 0 01
	ounts Observed for the Span=	155812	Counts Observed for the Span-	165628
	nters Observed for the Zero=	5094	Counters Observed for the Zero-	= 4675
al 2: Co	ounts Observed for the Span=	139920		
Cou	nters Observed for the Zero=	4840		
st Monitoring	Calibration Check			
ro Air ading:	ppm	Cal Gas Reading:	SO ppm	
CKGROUND	CONCENTRATIONS CHECK	s ()		
wind Location	Description:	flore	Reading: 112	ppm
wnwind Locat	ion Description: (arid L	Reading: <u>17</u>	_ppm
	exceeded 20 miles per hour.	No rainfall had occurred wi	e alternative requested 10 miles per hour thin the previous 24 hours of the monitori ernatives of the LMR requirements on the	ng event. Therefore, site


			VYE	
			ONS MONITORING	
		CALIBRATION ANI	D PERTINENT DATA	
Date:	5-11-21		Site Name: Menby	
Inspector(s):	brgan		Instrument: TVA 2020	
WEATHER OBS	SERVATIONS		· ·	
Wind Speed:	мрн	Wind Direction: <u>SE</u>	Barometric Pressure: 29	"Hg
Air Temperature:	1 1	General Weather Conditions:	Scence	
CALIBRATION I	INFORMATION			
Pre-monitoring (Calibration Precision Check			
and calculate the	e average algebraic difference le less than or equal to 10% of	e between the instrument i	nts by alternating zero air and the calibration reading and the calibration gas as a percer Cal Gas Concentration:	ntage. The calibration
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
1	, O	500	0	9
2	el	500	0	2
3	0	500	0	< <
	_	= 100%-	<u>/00</u> /500 x 100%	
		= 100	%	
pan Sensitivity: rial 1:			Trial 3:	2 1
Co	unts Observed for the Span=		Counts Observed for the Span	anal.
	nters Observed for the Zero=	2901	Counters Observed for the Zero	= 2924
rial 2: Co	unts Observed for the Span=	12(932		
Cour	nters Observed for the Zero=	2957		
ost Monitoring (Calibration Check			
ero Air eading:	ppm	Cal Gas Reading:	SOO ppm	
ACKGROUND	CONCENTRATIONS CHECKS	\cap	A -	
pwind Location	Description:	Flare.	Reading: 1.2 Reading: 1.2	_ppm
ownwind Locati	on Description:	Grid I	Reading:	ppm
e	exceeded 20 miles per hour.	No rainfall had occurred w	ne alternative requested 10 miles per hour ithin the previous 24 hours of the monitori cernatives of the LMR requirements on the	ing event. Therefore, site


		SURFACE EMISSIC	ONS MONITORING	
	0	CALIBRATION AND	PERTINENT DATA	
Date:	5-11-21		Site Name: Alex low	
Inspector(s):	Hunter	0	Instrument: TVA 2020	
WEATHER OB	SERVATIONS		4	
Wind Speed	н:мрн	Wind Direction: <u>S</u>	Barometric Pressure: 29	Hg
Ai Temperature		General Weather Conditions:	Sanne	
CALIBRATION	INFORMATION		/	
^o re-monitoring	Calibration Precision Check			
			s by alternating zero air and the calibratic ading and the calibration gas as a percen	
	be less than or equal to 10% o		2	
nstrument Seria	al Number: 547	21	Cal Gas Concentration:	500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1		498	2	
2	0	499	1	1
		1 Ard a	1.	
3 Calibration Prec	ision= Average Difference/Ca		Perform recallibration if average difference is greater than]] 10
1.5	ision= Average Difference/Ca	l Gas Conc. X 100%	Perform recalibration if average difference is greater than $1.3 /500 \times 100\%$	10
16	ision= Average Difference/Ca	l Gas Conc. X 100%] 10
Calibration Prec		l Gas Conc. X 100%] 10
Calibration Prec		I Gas Conc. X 100% = 100%- = 9,9,7		
Calibration Prec Span Sensitivity: Trial 1: Cou		$I \text{ Gas Conc. X 100\%} = 100\% - \frac{134732}{134732}$	<u>1,3</u> /500 x 100% %	133250
Calibration Preci pan Sensitivity: rial 1: Cou rial 2:	ounts Observed for the Span=	I Gas Conc. X 100% = 100% = 9.9.7 $= 9.9.7$ $= 134732 = 3.783$	1.3 /500 x 100% % Frial 3: Counts Observed for the Span=	133250
Calibration Preci Span Sensitivity: Trial 1: Cou Trial 2: Cou	ounts Observed for the Span= Inters Observed for the Zero=	I Gas Conc. X 100% = 100% = 9.9.7 = 9.9.7 = 3.183 = 3.183 = 1.32617	1.3 /500 x 100% % Frial 3: Counts Observed for the Span=	133250
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Cou	ounts Observed for the Span= Inters Observed for the Zero= Dounts Observed for the Span=	I Gas Conc. X 100% = 100% = 9.9.7 = 9.9.7 = 3.183 = 3.183 = 1.32617	1.3 /500 x 100% % Frial 3: Counts Observed for the Span=	133250
Calibration Prec pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring	ounts Observed for the Span= Inters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero=	I Gas Conc. X 100% = 100% = 9.9.7 = 9.9.7 = 132612 = 3.748	1.3 /500 x 100% % Frial 3: Counts Observed for the Span=	133250
alibration Preci pan Sensitivity: rial 1: Cou rial 2: Cou cost Monitoring ero Air	ounts Observed for the Span= Inters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero=	I Gas Conc. X 100% = 100% = 9.9.7 = 9.9.7 = 3.183 = 3.183 = 1.32617	1.3 /500 x 100% % Frial 3: Counts Observed for the Span=	133250
Calibration Preci pan Sensitivity: rial 1: Cou rial 2: Cou rial 2: Cou ost Monitoring ero Air eading:	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= inters Observed for the Zero= Calibration Check	I Gas Conc. X 100% = 100% = 9.9.7 for 134732 = 3183 = 132612 = 3748 Gas $I Cal Gas$ $Reading: = -100% = -10% = -100% = -10% =$	<u>1.3</u> /500 x 100% Frial 3: Counts Observed for the Span= Counters Observed for the Zero=	133250
Calibration Preci pan Sensitivity: rial 1: Cou rial 2: Cou ost Monitoring ero Air eading: ACKGROUND	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	I Gas Conc. X 100% = 100% = 9.9.7 for 134732 = 3183 = 132612 = 3748 Gas $I Cal Gas$ $Reading: = -100% = -10% = -100% = -10% =$	<u>1.3</u> /500 x 100% Frial 3: Counts Observed for the Span= Counters Observed for the Zero=	133250
Calibration Prec Span Sensitivity: Trial 1: Cou Trial 2: Cou Post Monitoring ero Air seading: Cou Post Monitoring ero Air seading: Cou	ounts Observed for the Span= inters Observed for the Zero= ounts Observed for the Span= nters Observed for the Zero= Calibration Check ppm CONCENTRATIONS CHECKS	I Gas Conc. X 100% = 100% = 9.9.7 for 134732 = 3183 = 132612 = 3748 Gas $I Cal Gas$ $Reading: = -100% = -10% = -100% = -10% =$	1.3 /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	133250


Attachment 6


Weather Data

Second Quarter 2021 LMR Surface Emissions Monitoring Weather Data April 22, 2021 Newby Island Landfill, Milpitas, California

Second Quarter 2021 LMR Surface Emissions Monitoring Weather Data May 11, 2021 Newby Island Landfill, Milpitas, California

Appendix E – Title V Semi-Annual Report

TITLE V SEMI-ANNUAL MONITORING REPORT

SITE:			FACILITY ID#:	
NEWBY ISLAN	D LANDFILL			A9013
REPORTING PERIOD:	from	through	1	
	02/01/2021		07/31/2021	

CERTIFICATION:

I declare, under penalty of perjury under the laws of the state of California, that, based on information and belief formed after reasonable inquiry, all information provided in this reporting package is true, accurate, and addresses all deviations during the reporting period:

08/31/21

Signature of Responsible Official

Date

Daniel North Name of Responsible Official (please print)

<u>General Manager</u> Title of Responsible Official (please print)

Mail to:

Director of Compliance and Enforcement BAAQMD 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V reports

TITLE V SEMI-ANNUAL MONITORING REPORT

SITE:			FACILITY ID#:	
NEWBY ISLAN		A9013		
REPORTING PERIOD:	from	through	ו	
	02/01/2021	_	07/31/2021	

List of Permitted Sources and Abatement Device

Permit Unit Number	Equipment Description		
S-#	Description		
6.2	Newby Island Sanitary Landfill – Waste Decomposition Process;		
S-2	Equipped with Landfill Gas Collection System		
S-5	Newby Island Sanitary Landfill – Waste and Cover Material Dumping		
S-6	Newby Island Sanitary Landfill – Excavating, Bulldozing and		
3-0	Compacting Activities		
S-3	Composting Operation; A-3 Water Truck		
S-4	Non-retail Gasoline Dispensing Facility		
S-8 and S-9	Horizontal Grinder/Operations, Trommel Screen/Operations		
A-2	Landfill Gas Flare		
A-3	Landfill Gas Flare		

Newby also maintains a Title V Permit (Facility No. A9013), which expired on December 20, 2017. On June 20, 2017, a Title V Renewal Application was submitted to the Bay Area Air Quality Management District (BAAQMD). The site currently operates under an application shield.

The conditions listed below are incorporated in the BAAQMD Permit to Operate (PTO) that expired August 1, 2021, but has not yet been incorporated into the Title V permit. All conditions have been reviewed for compliance, and the site is in compliance.

- Condition #24887 applies to S#4
- Condition #26046 applies to S#7, 8, 9, 10
- Condition #26606 applies to S#1008
- Condition #26607 applies to S#1040
- Condition #26608 applies to S#1009
- Condition #26609 applies to S#1042
- Condition #26610 applies to S#1043
- Condition #26611 applies to S#1038

Newby also maintains an Authority to Construct (ATC) Application Number (A/N) 28472 for the S-1003 Covered Aerated Static Pile (CASP) Composting Operation and the S-15 Mixed Waste Stockpiles. The ATCs for the S-1003 CASP Composting Operation and S-15 Mixed Waste Stockpiles were issued on November 21, 2017, were extended via approval email from the Bay

Area Air Quality District (BAAQMD) on November 21, 2019, and will expire on November 21, 2021. All conditions have been reviewed for compliance and there was one deviation of the ATC this reporting period.

 On May 27, 2021, Notice of Violation (NOV) Number A59433 was issued by BAAQMD Inspector, Mr. Jay Patel, to Newby Island for an alleged violation of CASP ATC Condition No. 26632, Part 9. Per the NOV, IDCC allegedly failed to comply with CASP ATC Condition No. 26632 Part 9 requirements to immediately initiate corrective actions and maintain records for temperatures that exceeded 180 degrees Fahrenheit (°F) for over six consecutive hours. The NOV was based on records from September 2019 through December 2020. For additional information, including corrective actions taken, please refer to the June 4, 2021 10-day Response Letter.

TITLE V SEMI-ANNUAL MONITORING REPORT

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Collection	BAAQMD	Records	Periodic /	BAAQMD 8-34-	For Active Areas:	Continuous	N/A
System	8-34-501.7 and		On event	304.2	Collection system		
Installation	501.8 and		basis		components must be		
Dates	BAAQMD				installed and operating		
	Condition # 10423,				by 5 years + 60 days		
	Part 13b, 13c, 13f,				after initial waste		
	13g				placement		
Collection	BAAQMD	Records	Periodic /	BAAQMD 8-34-	For Any Uncontrolled	Continuous	N/A
System	8-34-501.7 and		On event	304.3	Areas or Cells: collection		
Installation	501.8 and		basis		system components		
Dates	BAAQMD				must be installed and		
	Condition # 10423,				operating within 60 days		
	Part 13b, 13c, 13f,				after the uncontrolled		
	13g				area or cell accumulates		
					1,000,000 tons of		
					decomposable waste		

TITLE V SEMI-ANNUAL MONITORING REPORT

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and	Reporting Period: from 02/01/2021 through 07/31/2021
COMPACTING ACTIVITIES	

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Gas Flow	BAAQMD 8-34-501.10 and 508	Gas Flow Meter and Recorder (every 15 minutes)	Continuous	BAAQMD 8-34- 301 and 301.1	Landfill gas collection system shall operate continuously and all collected gases shall be vented to a properly operating control system	Intermittent	On March 10, 2021, a utility outage occurred at the site causing the A-2 and A-3 Flares to automatically shut down. For additional information, including corrective actions taken, please refer to the March 20, 2021 30-day Breakdown Report for RCA IDs 07Y71

TITLE V SEMI-ANNUAL MONITORING REPORT

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
						Intermittent	On June 14, 2021, the
							BAAQMD inspector, Jay
							Patel, issued NOV A55722 for
							failure to operate the gas
							collection and control system
							(GCCS) continuously during
							Reportable Compliance
							Activity (RCA) events 07Y73
							and 07Y74; 07Y89 and
							07Y90; 07Y92 and 07Y93;
							07Z38 and 07Z39; 07Z82 and
							07Z86; 07Z83 and 07Z87;
							07Z84 and 07Z88; 07Z85 and
							07Z89. For additional
							information, including
							corrective actions taken,
							please refer to the June 24,
							2021 10-day Response Letter
							and the respective 30-day
							Breakdown Reports.

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
						Intermittent	On July 10, 2021, the power supply at the site was tripped, causing the GCCS to shut down. For additional information, including corrective actions taken, please refer to the July 20, 2021 30-day Breakdown Report for RCA IDs 08A51 and 08A52.
						Intermittent	On July 15, 2021, low flow alarms were triggered during planned maintenance on Condensate Sump 18. For additional information, including corrective actions taken, please refer to the July 23, 2021 30-day Breakdown Report for RCA IDs 08A58 and 08A59.

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 WASTE DECOMPOSITION PROCESS WITH GAS COLLECTION SYSTEM, A-2 AND A-3 LANDFILL GAS FLARE; S-5 WASTE AND COVER MATERIAL DUMPING; S-6 EXCAVATING, BULLDOZING, AND COMPACTING ACTIVITIES	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
						Intermittent	On July 22, 2021, a flame failure condition occurred at the A-2 and A-3 Flares, brought about by surging in the header, leading to an automatic shutdown of GCCS. For additional information, including corrective actions taken, please refer to the July 30, 2021 30-day Breakdown Report for RCA IDs 08A73 and 08A74.
Gas Flow	BAAQMD Condition # 10423, Parts 13f-h	Records of Landfill Gas Flow Rates, Collection and Control Systems Downtime, and Collection System Components	Periodic / Daily	BAAQMD Condition # 10423, Parts 5 and 6	Landfill gas collection system shall operate continuously and all collected gases shall be vented to a properly operating control system	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Collection and	BAAQMD	Operating	Periodic /	BAAQMD 8-34-	240 hours per year and	Continuous	N/A
Control	8-34-501.1	Records	Daily	113.2	5 consecutive days		
Systems							
Shutdown							
Time							
Periods of	BAAQMD	Operating	Periodic /	BAAQMD 1-523.2	\leq 15 consecutive days	Continuous	N/A
Inoperation for	1-523.4	Records for	Daily		per incident and		
Parametric		All Parametric			\leq 30 calendar days per		
Monitors		Monitors			12-month period		
Continuous	40 CFR 60.7(b)	Operating	Periodic /	40 CFR 60.13(e)	Requires Continuous	Continuous	N/A
Monitors		Records for	Daily		Operation except for		
		All			breakdowns, repairs,		
		Continuous			calibration, and required		
		Monitors			span adjustments		
Wellhead	BAAQMD	Monthly	Periodic /	BAAQMD 8-34-	< 0 psig (applies to all	Continuous	N/A
Pressure	8-34-414, 501.9	Inspection	Monthly	305.1	wells or collectors that		
	and 505.1	and Records			are connected to the		
					vacuum system)		
Temperature of	BAAQMD	Monthly	Periodic /	BAAQMD 8-34-	< 55 °C (< 131 °F),	Continuous	N/A
Gas at	8-34-414, 501.9	Inspection	Monthly	305.2	except for components		
Wellhead	and 505.2	and Records			identified in Condition		
					# 818, Part 3b(i)		

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Temperature of	BAAQMD	Monthly	Periodic /	BAAQMD 8-34-	<63 C (<145 F)	Continuous	N/A
Gas at	8-34-414, 501.9,	Inspection	Monthly	305	(Alternative wellhead		
Wellheads	505.2, and	and Records		and	temperature limit that		
	BAAQMD			BAAQMD	applies only to wells		
	Condition 10423,			Condition 10423,	specified in BAAQMD		
	part 6d(ii)			part 6d(i)	Condition # 10423, Part		
					6d(i))		
Gas	BAAQMD	Monthly	Periodic /	BAAQMD	N ₂ < 20%	Continuous	N/A
Concentration	8-34-414, 501.9	Inspection	Monthly	8-34-305.3 or	(by volume, dry basis)		
at Wellhead	and 505.3 or 505.4	and Records		305.4	OR		
					O ₂ < 5%		
					(Applies to all wells or		
					collectors that are		
					connected to the vacuum		
					system, except wells		
					specified in BAAQMD		
					Condition # 10423, Part		
					6c(i))		N1/A
Gas	BAAQMD	Monthly	Periodic /	BAAQMD 8-34-	O2 < 15%	Continuous	N/A
Concentrations	8-34-414, 501.9,	Inspection	Monthly	305	(Alternative wellhead		
at Header	and 505.3 or	and Records		and	oxygen concentration		
	505.4, and			BAAQMD	limit that applies only to		
	BAAQMD			Condition #	wells specified in		
	Condition 10423			10423, Part 6c(i)	BAAQMD Condition #		
	part 6c(ii)				10423, Part 6c(i))		

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Well Shutdown Limits	BAAQMD 8-34-116.5 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 116.2	No more than 5 wells at a time or 10% of total collection system, whichever is less	Continuous	N/A
Well Shutdown Limits	BAAQMD 8-34-116.5 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 116.3	< 24 hours per well	Continuous	N/A
Well Shutdown Limits	BAAQMD 8-34-117.6 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 117.4	No more than 5 wells at a time or 10% of total collection system, whichever is less	Continuous	N/A
Well Shutdown Limits	BAAQMD 8-34-117.6 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 117.5	<24 hours per well or <5 days per well for component replacement	Continuous	N/A
TOC (Total Organic Com- pounds Plus Methane)	BAAQMD 8-34-501.6 and 503	Quarterly Inspection of collection and control system components with portable analyzer and Records	Periodic / Quarterly	BAAQMD 8-34- 301.2	Component Leak Limit: < 1000 ppmv as methane	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
TOC	BAAQMD 8-34-415, 416, 501.6, 506 and 510	Monthly Visual Inspection of Cover, Quarterly Inspection of Surface with portable analyzer, Various Reinspection Times for Leaking Areas, and Records	Periodic / Monthly, Quarterly, and on an Event Basis	BAAQMD 8-34- 303	Surface Leak Limit: < 500 ppmv as methane at 2 inches above surface	Continuous	N/A
Non-Methane Organic Com- pounds (NMOC)	BAAQMD 8-34- 412 and 8-34- 501.4 and BAAQMD Condition # 10423, Part 11b	Annual Source Tests and Records	Periodic / Annual	BAAQMD 8-34- 301.3	 > 98% removal by weight OR < 30 ppmv, dry basis @ 3% O2, expressed as methane (applies to flares only) 	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Temperature of Combustion Zone (CT)	BAAQMD 8-34-501.3 and 507, SIP 8-34- 501.3 and BAAQMD Condition # 10423, Parts 11	Temperature Sensor and Recorder (continuous)	Continuous	BAAQMD Condition # 10423, Part 9	CT > 1525 °F, averaged over any 3- hour period (applies to A-1/A-3 only) CT > 1400 °F, averaged over any 3- hour period (applies to A-2 only)	Continuous	N/A
Total Carbon	BAAQMD Condition # 10423, Part 3	Records	Periodic / Daily	BAAQMD 8-2-301	 < 15 pounds/day or < 300 ppm, dry basis (applies only to aeration of or use as cover soil of soil containing < 50 ppmw of volatile organic compounds) 	TBD	At the time of the submittal of this report, VOC soil records were not available to SCS Engineers (SCS) for review. SCS will submit a Title V semi-annual report amendment to confirm compliance once records are available for review.
Amount of Contaminated Soil Aerated or Used as Cover	BAAQMD Condition # 10423, Part 2m	Records	Periodic / On Event Basis	BAAQMD 8-40- 116.1 and BAAQMD Condition # 10423, Parts 2 and 3	< 1 cubic yard per project	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Amount of	BAAQMD	Records	Periodic /	BAAQMD 8-40-	< 8 cubic yards per	Continuous	N/A
Contaminated	8-40-116.2 and		On Event	116.2 and	project, provided organic		
Soil Aerated or	BAAQMD		Basis	BAAQMD	content		
Used as Cover	Condition # 10423,			Condition #10423,	< 500 ppmw		
	Part 2m			Parts 2 and 3	and limited to 1 exempt		
					project per 3 month		
					period		
Amount of	BAAQMD	Records	Periodic /	BAAQMD 8-40-	Prohibited for Soil with	Continuous	N/A
Contaminated	Condition # 10423,		On Event	301 and BAAQMD	Organic Content >50		
Soil Aerated or	Part 2m		Basis	Condition #10423,	ppmw unless exempt per		
Used as Cover				Parts 2 and 3	BAAQMD 8-40-116, 117,		
					or 118		
Amount of	None	N/A	None	BAAQMD 8-40-	Soil Contaminated by	Continuous	N/A
Accidental				117 and BAAQMD	Accidental Spillage of		
Spillage				Condition #	< 5 Gallons of Liquid		
				10423,	Organic Compounds		
				Parts 2 and 3			
Total Aeration	BAAQMD	Records	Periodic /	BAAQMD 8-40-	< 150 pounds VOC per	Continuous	N/A
Project	Condition #10423,		On Event	118 and BAAQMD	project and toxic air		
Emissions	Part 2m		Basis	Condition #	contaminant emissions		
				10423,	per year < BAAQMD		
				Parts 2 and 3	Table 2-1-316 limits		

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Opacity	BAAQMD Condition # 10423, Part 13e	Records of all site watering and road cleaning events	Periodic / On event basis, Monthly	BAAQMD 6-1-301 and SIP 6-301	Ringelmann No. 1 for ≤ 3 minutes/hr (applies to S-1)	Continuous	N/A
Opacity	None	N/A	None	BAAQMD 6-1-301 and SIP 6-301	Ringelmann No. 1 for < 3 minutes/hr (applies to flares)	Continuous	N/A
TSP	None	N/A	None	BAAQMD 6-1- 310.1 and SIP 6- 310	< 0.15 grains/dscf (applies to flares only)	Continuous	N/A
SO ₂	None	N/A	None	BAAQMD 9-1-301	Property Line Ground Level Limits: < 0.5 ppm for 3 minutes and < 0.25 ppm for 60 min. and <0.05 ppm for 24 hours (applies to flares only)	Continuous	N/A
SO ₂	BAAQMD Condition # 10423, Parts 10 and 13j	Sulfur analysis of landfill gas and Records	Periodic / Quarterly	BAAQMD Regulation 9-1- 302	Exhaust Gas from Flare: < 300 ppm (dry basis) (applies to flares only)	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and	Reporting Period: from 02/01/2021 through 07/31/2021
COMPACTING ACTIVITIES	

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Total Sulfur	BAAQMD	Sulfur	Periodic /	BAAQMD	< 1300 ppmv	Continuous	N/A
Content in	Condition # 10423,	analysis of	Quarterly	Condition #	instantaneous		
Landfill Gas	Parts 10a and 13j	landfill gas		10423,	concentration		
		, C		Part 10a	(expressed as H2S)		
Total Sulfur	BAAQMD	Sulfur	Periodic /	BAAQMD	< 300 ppmv annual	Intermittent	On March 31, 2021, during the
Content in	Condition # 10423,	analysis of	Quarterly	Condition #	average		1Q 2021 monitoring event, an
Landfill Gas	Parts 10a and 13j	landfill gas		10423,	(expressed as H2S)		exceedance of the annual
		and Records		Part 10a			integrated average of 300
							parts per million by volume
							(ppmv) for total reduced sulfur
							compounds (TRS) in the
							collected landfill gas (LFG) at
							Newby Island was discovered.
							For additional information,
							including corrective actions
							taken, please see the April 8,
							2021 30-Day Response
							Letter. As of June 30, 2021,
							the site is in compliance with
							the annual integrated average
							of 300 ppmv.

Site: Newby Island Landfill	Facility ID#: A9013
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
NOx	BAAQMD Condition 10423, Part 11d	Annual Source Test & Records	Periodic / Annual	BAAQMD Condition # 10423, Part 10b	Applies to Exhaust Gas from Flares: < 60 ppm corrected to 15% oxygen, dry basis (< 0.05 pounds NOx per million BTU LFG)	Continuous	N/A
H ₂ S	None	N/A	None	BAAQMD 9-2-301	Property Line Ground Level Limits: < 0.06 ppm, averaged over 3 minutes and < 0.03 ppm, averaged over 60 minutes	Continuous	N/A
Amount of Waste Accepted	BAAQMD Condition # 10423, Part 13a	Records	Periodic / Daily	BAAQMD Condition # 10423, Part 1	4,000 tons/day and < 39,000,000 tons (predicted cumulative amount of all wastes) and < 50,800,000 yd3 (cumulative amount of all wastes and cover materials)	Continuous	N/A

Site: Newby Island Landfill	Facility ID#: A9013	
Permitted Unit: S-2 Waste Decomposition Process with Gas Collection System, A-2 and A-3 landfill gas flare; S-5 Waste and Cover Material Dumping; S-6 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2021 through 07/31/2021	

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Heat Input	BAAQMD	Records	Periodic /	BAAQMD	< 2,006 MM BTU per day	Continuous	N/A
A-1/A-3	Condition # 10423,		Daily	Condition #	and		
	Parts 8 and 13h			10423,	< 732,095 MM BTU per		
				Part 8	year		
Heat Input,	BAAQMD	Records	Periodic /	BAAQMD	< 1,800 MM BTU per day	Continuous	N/A
A-2	Condition # 10423,		Daily	Condition #	and		
	Parts 8 and 13h			10423,	< 657,000 MM BTU per		
				Part 8	year		

Site:	Newby Island Landfill	Facility ID#:	A901	3
Permitted U	nit: S-3 COMPOSTING OPERATION; A-3 WATER TRUCK	Reporting Period:	from	02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Opacity	BAAQMD Condition # 8178, Parts 3 and 4	Observation of Operations and Records	Periodic / On Event Basis	BAAQMD Regulation 6-1-301 and SIP 6-301	< Ringelmann 1.0 for 3 minutes in any hour	Continuous	N/A
Opacity	BAAQMD Condition # 8178, Parts 3 and 4	Observation of Operations and Records	Periodic / On Event Basis	BAAQMD Condition # 8178, Part 3	< Ringelmann 1.0	Continuous	N/A

Site:	Newby	Island Landfill	Facility	ID#:	A901	3
Permittee	d Unit:	S-4 NON-RETAIL GASOLINE DISPENSING FACILITY	Reportir	ng Period:	from	02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Gasoline Throughput	BAAQMD 8-7-503.1	Records	Periodic / Annual	BAAQMD Condition # 14098	940,000 gallons per 12-month period	Continuous	N/A
Throughput (exempt from Phase I)	BAAQMD 8-7-501 and 8-7-503.2	Records	Periodic / On event basis	BAAQMD 8-7-114	1000 gallons per facility for tank integrity leak checking	Continuous	N/A
Organic Compounds	None	N/A	None	SIP 8-5-303.2	Tank Pressure Vacuum Valve Shall Be: Gas Tight or < 500 ppmv (expressed as methane) above background for PRVs (as defined in SIP 8-5-206)	Continuous	N/A
Organic Compounds	None	Equipment must be precertified by CARB	None	BAAQMD 8-7-301.2	All Phase I Systems Shall Meet the Emission Limitations of the Applicable CARB Certification	Continuous	N/A
Organic Compounds	CARB EO G-70-148-A paragraph 21	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	BAAQMD 8-7-301.6	All Phase I Equipment (except components with allowable leak rates) shall be leak free (<3 drops/minute) and vapor tight	Continuous	N/A

Site: Newby Island Landfill			Facility ID	#:	A901	3
Permitted	Unit:	S-4 Non-Retail Gasoline Dispensing Facility	Reporting	Period:	from	02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Organic Compounds	CARB EO G-70-148-A paragraph 21	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	BAAQMD 8-7-302.5	All Phase II Equipment (except components with allowable leak rates or at the nozzle/fill-pipe interface) Shall Be: leak free (<3 drops/minute) and vapor tight	Continuous	N/A
Organic Compounds	CARB EO G-70-148-A paragraph 21	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	CARB EO G-70-148-A paragraph 10	Any Emergency Vent or Manway Shall Be: leak free	Continuous	N/A
Defective Component Repair/ Replacement Time Limit	BAAQMD 8-7-503.2	Records	Periodic / On Event Basis	BAAQMD 8-7-302.4	< 7 days	Continuous	N/A
Liquid Removal Rate	CARB EO G-70-52-AM	CARB Certification Procedures	Periodic / On Event Basis	BAAQMD 8-7-302.8	 > 5 ml per gallon dispensed, when dispensing rate > 5 gallons/minute 	Continuous	N/A

Site: Newby Island Landfill		Facility ID)#:	A901	3	
Permitted	Unit:	S-4 Non-Retail Gasoline Dispensing Facility	Reporting	Period:	from	02/01/2021 through 07/31/2021

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Liquid Retain from Nozzles	CARB EO G-70-52-AM	CARB Certification Procedures	Periodic / On Event Basis	BAAQMD 8-7-302.12	< 100 ml per 1000 gallons dispensed	Continuous	N/A
Nozzle Spitting	CARB EO G-70-52-AM	CARB Certification Procedures	Periodic / On Event Basis	BAAQMD 8-7-302.13	< 1.0 ml per nozzle per test	Continuous	N/A
Pressure- Vacuum Valve Settings	CARB EO G-70-148-A	CARB Certification Procedures	Periodic / On Event Basis	BAAQMD 8-7-316 and CARB EO G-70-148-A, paragraph 14	Pressure Setting: > 2.5 inches of water, gauge	Continuous	N/A
Pressure- Vacuum Valve Settings	None	N/A	None	SIP 8-5-303.1	Pressure Setting: > 10% of maximum working pressure or > 0.5 psig	Continuous	N/A
Disconnection Liquid Leaks	CARB EO G-70-148-A paragraph 21	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	CARB EO G-70-148-A paragraph 12	10 ml per disconnect, averaged over 3 disconnect operations	Continuous	N/A

Site: Newby Island Landfill	Facility ID#:	49013
Permitted Unit: S-8 HORIZONTAL GRINDER OPERATIONS/ S-9	Reporting Period: f	from 02/01/2021 through 07/31/2021
TROMMEL SCREEN/OPERATIONS		

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Opacity	None	N/A	None	BAAQMD 6-1-301 and SIP 6-301	Ringelmann 1.0 for <3 minutes in any hour	Continuous	N/A
Particulate Matter (PM)	None	N/A	None	BAAQMD 6-1-311 And SIP 6-311	E = $0.026(P)^{0.67}$ where: E = Allowable Emission Rate (lb/hr); and P = Process Weight Rate (lb/hr) Maximum Allowable Emission Rate = 40 lb/hr For P >57,320 lb/hr (or P > 28.66 tons/hr)	Continuous	N/A