

Vasco Road Landfill 4001 N. Vasco Road, Livermore, CA 94551 o 925.447.0491 republicservices.com

TV Tracking #: 566

1. D RECEIVED IN ENFORCEMENT: 08/31/2022

Direction of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V Reports Director of the Air Division, USEPA Region IX 75 Hawthorne Street San Francisco, CA 94105 Attn: Air-3

Subject: Combined NESHAP Semi-Annual Report, Bay Area Air Quality Management District Regulation 8, Rule 34, 40 Code of Federal Regulations (CFR) Subpart AAA Semi-Annual Report, and Title V Semi-Annual Monitoring Report Vasco Road Landfill, Livermore, California (Title V Facility No. A5095)

Dear Sir or Madam:

Vasco Road, LLC is pleased to submit the enclosed combined Bay Area Air Quality Management District (BAAQMD), Regulation 8, Rule 34 (8-34) Semi-Annual Report; Semi-Annual Startup, Shutdown and Malfunction (SSM) Plan Report, National Emissions Standards for Hazardous Air Pollutants (NESHAP) Semi- Annual Report, Title V Semi-Annual Monitoring Report, and the Title V Annual Compliance Certification (ACC) Report to the BAAQMD and the U.S. Environmental Protection Agency (USEPA) Region IX for the Vasco Road Landfill (Vasco).

The Title V Semi-Annual Monitoring Report, the BAAQMD Rule 8-34 Semi-Annual Report and the SSM Plan Report, and NESHAP cover the period from February 1, 2022 through July 31, 2022.

The Title V report meets the requirements specified in the Title V Permit, BAAQMD guidance on Title V report submittals, and BAAQMD Regulation 2, Rule 6. The Rule 8-34 report includes the information required by BAAQMD Rule 8-34-411, it satisfies the requirements under the New Source Performance Standards (NSPS) for municipal solid waste landfills (40 Code of Federal Regulations [CFR], Part 60, Subpart WWW), including 40 CFR 60.757(f) and also includes the Initial NESHAP subpart AAAA reporting requirements. The Semi-Annual SSM Plan Report satisfies the requirements under the NESHAP rule for semi-annual reporting of SSM Plan implementation including 40 CFR 63.10(d)(S). The Initial NESHAP reports need the requirement under 40 CFR 63.1981(h). The Title V reports and the SSM Plan report each includes a certification by the responsible official for Vasco.

Please note that as of June 21, 2021, the facility complies with the new Emission Guidelines (EG) requirements in California. The approved state plan for the EG includes compliance with Title 17 California Code of Regulations (CCR) Sections 95460 to 95476, known as AB 32 Landfill Methane Rule (LMR) and specific portions of 40 CFR Part 62 Subpart OOO. The major compliance provisions of Subpart WWW and OOO were replaced as of September 27, 2021 by the NESHAP 40 CFR 63, Subpart AAAA requirements, which essentially implement and enhance provisions of 40 CFR 60, Subparts XXX (which were updated NSPS for Municipal Solid Waste (MSW) landfills promulgated in 2016) as well as removing the SSM Plan requirements. However, because the Title V Permit references Subpart WWW and includes SSM Reporting, this semi-annual report will continue to include Subpart WWW and SSM requirements. References to Subpart WWW will be removed from all reports after a new Title V Permit is issued removing references to Subpart WWW and updating applicable regulations, or we otherwise obtain approval from the BAAQMD to only comply with the new requirements

If you have any questions regarding this submittal, please do not hesitate to reach Antonia Gunner at (619) 201-3764 or agunner@republicservices.com or Maria Bowen at (619) 455-9518 or mbowen@scsengineers.com.

Sincerely,

Josh Mills General Manager Vasco Road Landfill

cc: Antonia Gunner, Vasco Maria Bowen, SCS Engineers Hannah Morse, SCS Engineers

NESHAP/NSPS/BAAQMD Rule 8-34 Semi-Annual Report, SSM Plan Semi-Annual Report, and Title V Semi-Annual Report Vasco Road Landfill Livermore, California (Title V Facility No. 5095)

Prepared for:

Republic Services Vasco Road, LLC 4001 N. Vasco Road Livermore, CA 94551

For Submittal to:

Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

SCS ENGINEERS

01204082.06 Task 5 | August 2022

3843 Brickway Boulevard, Suite 208 Santa Rosa, CA 95403 707-546-9461 This submittal consisting of the New Source Performance Standards (NSPS)/Bay Area Air Quality Management District (BAAQMD) Rule 8-34 Semi-Annual/Initial National Emission Standards for Hazardous Air Pollutants (NESHAP) Report, the Semi-Annual Startup, Shutdown, and Malfunction (SSM) Plan Report, and the Title V Semi-Annual Monitoring Report for the Vasco Road Landfill in Livermore, California, dated August 2022, was prepared and reviewed by the following:

Hannah Morse Technical Associate SCS ENGINEERS

Maria Bowen Project Manager SCS ENGINEERS

Patrick S. Sullivan, REA, CPP, BCES Senior Vice President SCS ENGINEERS

Table of Contents

Sect	ion			Page				
SECT	ION I.	NSP	S/BAAQMD Rule 8-34 Semi-Annual Report	1				
1.0	Intro	duction		1				
	1.1	Update	ed NESHAP 40 CFR 63, Subpart AAAA	1				
2.0	Site E	Backgro	und Information	1				
	2.1 Existing Air Permits							
	2.2	Existing	g Landfill Gas Collection and Control System	2				
3.0	Repo	rting Re	equirements	2				
	3.1	Monito	ored Parameters	4				
		3.1.1	Gas Extraction System Downtime	6				
		3.1.2	Emission Control System Downtime	6				
		3.1.3	Individual Well Downtime	7				
		3.1.4	Flow Meter and Temperature Gauge Downtime	7				
		3.1.5	Flare Combustion Zone Temperature	7				
	3.2	Compo	onent Leak Quarterly Monitoring	8				
		3.2.1	First Quarter 2022 Monitoring	8				
		3.2.2	Second Quarter 2022 Monitoring	8				
	3.3	Contro	I Efficiency	8				
	3.4	Landfil	II Surface Emissions Monitoring	9				
		3.4.1	First Quarter 2022 Monitoring	9				
		3.4.1	Second Quarter 2022 Monitoring	9				
	3.5	Wellhe	ad Monthly Monitoring	9				
		3.5.1	Pressure	9				
		3.5.2	Oxygen	10				
		3.5.3	Temperature	10				
	3.6	Cover I	Integrity Monitoring	11				
	3.7	Gas Ge	eneration Estimate and Monthly Landfill Gas Flow Rates	11				
	3.8	Annual	I Waste Acceptance Rate and Refuse In Place	12				
		3.8.1	Non-Degradable Waste Areas	12				
	3.9	24 Hou	ur High Temperature	12				
	3.10	Treatm	nent System Monitoring Plan	12				
SECT	ION II.	. SSM	1 Plan Report	13				
SECT	ION II	I. Title	V Semi-Annual Report	14				

Tables

- Table 1 Reporting Requirements, Corresponding Regulatory References
- Table 2 Monitored Parameters, Corresponding Regulatory References
- Table 3a GCCS Downtime
- Table 3b Flare A-4 Downtime
- Table 4 Individual Well Startups, Shutdowns and Decommissions
- Table 5 Wells with Positive Pressure
- Table 6 Wells with Oxygen Exceedances
- Table 7 Wells with Temperature Exceedances

Appendices

- Appendix A Responsible Official Certification Form
- Appendix B Existing GCCS Layout
- Appendix C LFGTE Facility Downtime Logs
- Appendix D Excerpt from the 2022 A-4 Source Test Results
- Appendix E Surface Emission and GCCS Component Leak Monitoring Results
- Appendix F Title V Semi-Annual Report
- Appendix G Well Exceedance Documentation

SECTION I. NSPS/BAAQMD RULE 8-34 SEMI-ANNUAL REPORT

1.0 INTRODUCTION

On behalf of Republic Services Vasco Road, LLC, SCS Engineers (SCS) hereby submits this New Source Performance Standard (NSPS) Semi-Annual/Initial National Emission Standards for Hazardous Air Pollutants (NESHAP) Report of information and Bay Area Air Quality Management District (BAAQMD or District) Rule 8-34 Semi-Annual Report and Semi-Annual Start-up, Shutdown, and Malfunction (SSM) Plan Report for Vasco Road Landfill (Vasco Road or Landfill) for the period of February 1, 2022 through July 31, 2022 to the BAAQMD.

1.1 UPDATED NESHAP 40 CFR 63, SUBPART AAAA

Due to the site's permitted design capacity being over the 2.5 million Megagram/2.5 million cubic meter limits and having an uncontrolled non-methane organic compound (NMOC) content exceeding 50 Megagrams per year (mg/year), the major compliance provisions of Subpart WWW and OOO were replaced as of September 27, 2021 by the NESHAP 40 CFR 63, Subpart AAAA requirements, which essentially implement and enhance provisions of 40 CFR 60, Subparts XXX (which were updated NSPS for Municipal Solid Waste (MSW) landfills promulgated in 2016) as well as removing the SSM Plan requirements. However, because the Title V Permit references Subpart WWW and SSM, this semi-annual report will continue to include Subpart WWW and SSM requirements. References to Subpart WWW and SSM will be removed from all reports after a new Title V Permit is issued removing references to Subpart WWW and updating applicable regulations, or we otherwise obtain approval from the BAAQMD to only comply with the new requirements.

For the reporting period from February 1, 2022 through July 31, 2022, this Semi-Annual Report complies with the sections specified in Subpart WWW, 40 CFR 60.757(f), and Subpart AAAA, 40 CFR 63.1981(h), which describes the items to be submitted in an annual report for landfills using an active collection system. Moreover, this report also includes SSM reporting as it is listed in the Title V Permit, even though it is no longer contained in NESHAP Subpart AAAA. In accordance with NESHAP 40 CFR 63, Subpart AAAA, this report is submitted semi-annually. This report includes a certification signed by a Responsible Official which is provided in **Appendix A**.

2.0 SITE BACKGROUND INFORMATION

Vasco Road is located in Livermore, California and is owned and operated by Republic Services Vasco Road, LLC. The MSW landfill is located on Vasco Road about three miles north of Interstate 580 in an unincorporated portion of eastern Alameda County north of the City of Livermore. The Landfill lies within the Northern Diablo Range along the Altamont Anticline. The Landfill was permitted in 1962 and began accepting waste circa 1963. The 323-acre site is currently in operation, accepting nonhazardous solid waste and inert waste.

2.1 EXISTING AIR PERMITS

Vasco Road maintains a BAAQMD permit to operate (PTO) (Plant No. 5095), which includes conditions for the wellfield, collection system, and flare station (Condition No. 818). Permit Condition 818 incorporates all applicable requirements from NSPS Subpart WWW and BAAQMD Rule 8-34, which are addressed in this report. Vasco Road also maintains a Title V Permit (Facility No.

A5059), which was most recently renewed in February 4, 2019. The current permit is a Title V revision permit issued on November 6, 2019, expiring in February 3, 2024.

As discussed above, the permit incorporates the new EG requirements and specific parts of Subpart OOO which became effective June 21, 2021 and NESHAP which became effective September 27, 2021. As allowed by the regulations, Vasco has complied with the Subpart AAAA provisions in lieu of the equivalent Subpart OOO provisions. As the new rules are in effect, they are being implemented by the Landfill, and applications for the Title V Modification to add the new rule elements and remove the old NSPS Subpart WWW removed will be submitted accordingly.

A Gas Collection and Control System (GCCS) Design Plan was prepared for the site to review and determine the adequacy of the existing landfill gas (LFG) system. The current design of the system was determined to be adequate to comply with both NSPS and BAAQMD Rule 8-34 requirements. The system design is based on the density of wells calculated to sufficiently extract the maximum flow of LFG generated, according to the USEPA LFG emissions model (LandGEM). The GCCS is designed to control surface emissions, as well as to minimize subsurface lateral migration of LFG. Both the perimeter of the landfill and the landfill surface are monitored on a quarterly basis. Additional details regarding the GCCS are in the GCCS Design Plan that was previously submitted to the BAAQMD. A drawing showing the existing GCCS is provided in **Appendix B**.

2.2 EXISTING LANDFILL GAS COLLECTION AND CONTROL SYSTEM

The GCCS at Vasco Road consists of extraction wells used to collect the LFG from within the landfill (the "wellfield") and a piping system (the "collection system") used to convey the collected LFG to the control systems for destruction. The LFG is extracted from the landfill through a combination of vertical gas extraction wells and horizontal gas extraction trenches/pipes, as well as leachate from collection system components.

A LFG to energy (LFGTE) facility, which is permitted by the BAAQMD separately from Vasco Road as Facility No. 20432, has been the primary control system for Vasco Road's collected LFG since it began commercial operation in 2012. The LFGTE facility is owned and operated by Ameresco Vasco Road, LLC (Ameresco). The flare station, which is operated and maintained by Republic Services Vasco Road, LLC, consists of one enclosed flare (A-4) which acts as a supplementary emission control and/or backup control devices in the event that the LFGTE facility goes offline.

In the event the LFGTE facility and the LFG flare go off-line concurrently, an automatic valve is actuated that prevents LFG flow to the control systems. As a result, LFG flow from the collection system ceases entirely, such that there is no free-venting of uncombusted LFG to the atmosphere.

A diagram of the GCCS displaying system component locations is shown in the site plan(s) provided in **Appendix B**.

3.0 REPORTING REQUIREMENTS

The following information is required to be reported in a semi-annual report:

Table 1. Reporting Requirements, Corresponding Regulatory References

NSPS Subpart WWW	Updated NESHAP Subpart AAAA
40 CFR 60.757(f), (g)	40 CFR 63.1981(h), (i), (j), (k), (l)
Value and length of time for exceedance of applicable parameters monitored under 40 CFR 60.756(a), (b), (c), and (d).	Number of times that applicable parameters monitored under 40 CFR 63.1958(b), (c), and (d) were exceeded and when the gas collection and control system was not operating under 40 CFR 63.1958(e), including periods of SSM.
Description and duration of all periods when the gas stream is diverted from the control device.	Description and duration of all periods when the gas stream was diverted from the control device or treatment system through a bypass line or the indication of bypass flow as specified under 40 CFR 63.1961.
Description and duration of all periods when the control device was not operating for more than 1 hour.	Description and duration of all periods when the control device or treatment system was not operating and length of time the control device or treatment system was not operating.
All periods when the collection system was not operating in excess of 5 days.	All periods when the collection system was not operating.
The location of each 500 ppmv methane exceedance, and the concentration recorded at each location for which an exceedance was recorded in the previous month.	The location of each exceedance of the 500-ppm methane concentration as provided in 40 CFR 63.1958(d) and the concentration recorded at each location for which an exceedance was recorded in the previous month.
The date of installation and the location of each well or collection system expansion added pursuant to 40 CFR 60.755 paragraphs (a)(3), (b), and (c)(4).	The date of installation and the location of each well or collection system expansion added pursuant to 40 CFR 63.1960(a)(3) and (4), (b), and (c)(4).
Required information of the initial performance source test report pursuant to 40 CFR 60.757(g).	Required information of the initial performance source test report pursuant to 40 CFR 63.1981(i).
	For any corrective action analysis for which corrective actions are required in 40 CFR 63.1960(a)(3)(i) or (a)(5) and that take more than 60 days to correct the exceedance, the root cause analysis conducted.
	Each owner or operator required to conduct enhanced monitoring in 40 CFR 63.1961(a)(5) and (6) must include the results of all monitoring activities conducted during the period.
-	Where an owner or operator subject to the provisions of subpart 40 CFR

NSPS Subpart WWW	Updated NESHAP Subpart AAAA
40 CFR 60.757(f), (g)	40 CFR 63.1981(h), (i), (j), (k), (l)
	63.1981(k) seeks to demonstrate compliance with the operational standard for temperature in § 63.1958(c)(1) and a landfill gas temperature measured at either the wellhead or at any point in the well is greater than or equal to 76.7 degrees Celsius (170 degrees Fahrenheit) and the carbon monoxide concentration measured is greater than or equal to 1,000 ppmv, then you must report the date, time, well identifier, temperature and carbon monoxide reading via email to the Administrator within 24 hours of the measurement.
	Beginning no later than September 27, 2021, the owner or operator must submit reports electronically according to paragraphs 40 CFR 63.1981(I)(1) and (2) of this section.
-	Submit semi-annual CMS summary reports including required items listed in 40 CFR 63.10(e)(3)(vi)

3.1 MONITORED PARAMETERS

The following information is required to be monitored:

Table 2.	Monitored Parameters,	Corresponding Regulatory References
----------	-----------------------	-------------------------------------

NSPS Subpart WWW	Updated NESHAP Subpart AAAA
40 CFR 60.756(a), (b), (c), (d)	40 CFR 63.1961(a), (b), (f)
Vacuum applied to the extraction wells via the gas collection header is monitored on a monthly basis. A vacuum must be maintained at each wellhead to be in compliance with 40 CFR 60.753 (b).	Vacuum applied to the extraction wells via the gas collection header is monitored on a monthly basis. A vacuum must be maintained at each wellhead to be in compliance with 40 CFR 63.1961 (a)(1).
Nitrogen or oxygen content of LFG at the wellheads is monitored on a monthly basis. Nitrogen must be less than 20 percent (%) or oxygen less than five (5) % to comply with 40 CFR 60.753 (c).	Nitrogen or oxygen content of LFG at the wellheads is monitored on a monthly basis.
Temperature of the LFG at the wellheads is monitored on a monthly basis. Temperature must	Temperature of the LFG at the wellheads is monitored on a monthly basis. Temperature must be

NSPS Subpart WWW	Updated NESHAP Subpart AAAA
40 CFR 60.756(a), (b), (c), (d)	40 CFR 63.1961(a), (b), (f)
be maintained below 55 degrees C (131 degrees F) to comply with 40 CFR 60.753 (c).	maintained below 62.8 degrees C (145 degrees F) to comply with 40 CFR 63.1961(a)(3).
A temperature or flame presence monitoring device with a continuous recorder, and a gas flow rate measuring device, which records flow at least once every 15 minutes, must be installed at the flare station. The temperature/flame presence and LFG flow rate monitoring data are used to determine the amount of time the LFG collection and control systems are on-line and to ensure compliance with the minimum temperature requirement for enclosed flares. The flare monitoring devices must be operating continuously to comply with 40 CFR 60.756 (b) and to show that the flare is on-line at any time that the collection system is operating (in compliance with 40 CFR 60.753 (e) and (f)).	A temperature or flame presence monitoring device with a continuous recorder, and a gas flow rate measuring device, which records flow at least once every 15 minutes, must be installed at the flare station. The temperature/flame presence and LFG flow rate monitoring data are used to determine the amount of time the LFG collection and control systems are on- line and to ensure compliance with the minimum temperature requirement for enclosed flares. The flare monitoring devices must be operating continuously to comply with 40 CFR 63.1961(b) and to show that the flare is on-line at any time that the collection system is operating (in compliance with 40 CFR 63.1958 (e) and (f)).
Landfill surface emissions monitoring was performed on a quarterly basis to measure concentrations of total organic carbon (TOC) as methane. A portable flame ionization detector (FID) organic vapor analyzer, which meets NSPS specifications, was used to measure concentrations of TOC as methane (in compliance with 40 CFR 60.756(f).	Landfill surface emissions monitoring was performed on a quarterly basis to measure concentrations of TOC as methane. A portable FID organic vapor analyzer, which meets NSPS specifications, was used to measure concentrations of TOC as methane (in compliance with 40 CFR 63.1961(f)).
The landfill surface was inspected at least monthly for evidence of cracks or other surface integrity issues, in accordance with 40 CFR 60.755(c)(5).	The landfill surface was inspected at least monthly for evidence of cracks or other surface integrity issues, in accordance with 40 CFR 63.1960(c)(5).
Per 40 CFR 60 758(c)(1)(i), the average temperature of the flare for a 3-hour time period cannot fall below 28°C (50°F) less than the average operation temperature based on the most recent source test except during periods of SSM.	Per 40 CFR 63.1983(c)(1)(i), the average temperature of the flare for a 3-hour time period cannot fall below 28 °C (50 °F) less than the average operation temperature based on the most recent source test. Please note, continuous monitoring of temperature monitoring is required at all times except for periods of monitoring system malfunctions, repairs associated with monitoring system

NSPS Subpart WWW	Updated NESHAP Subpart AAAA
40 CFR 60.756(a), (b), (c), (d)	40 CFR 63.1961(a), (b), (f)
	malfunctions, and required monitoring system quality assurance or quality control activities (in compliance with 40 CFR 63.1961(h)).

3.1.1 Gas Extraction System Downtime

During the reporting period, the LFG extraction system was off-line on several occasions for a total of 19.77 hours. All shutdowns involved pre-programmed or manual system shutdowns for inspection, maintenance and/or repair of the GCCS, and thus meet the criteria for allowed GCCS downtime, as specified in Rule 8-34-113 and in accordance with the BAAQMD November 5, 2018 Compliance Advisory.

The typical operating scenario involves the LFGTE facility acting as the primary control device and the A-4 Flare acting as backup or supplemental control. In addition, if the LFGTE facility goes offline unexpectedly in the middle of the night, LFGTE facility staff must drive to the site and perform inspection and maintenance of their system prior to the LFGTE facility and/or LFG flare re-starting, as re-starting these control systems without someone first inspecting or conducting maintenance on these systems could cause damage to the systems. Republic staff are alerted each time the LFGTE facility goes offline, and during each shutdown, Republic staff are in close communications with LFGTE facility staff regarding their inspections and maintenance of the LFGTE facility system and their estimates on when the GCCS can be brought back online. There were no occasions during the reporting period in which the LFGTE facility shut down in the middle of the night when no LFGTE facility staff were onsite.

A summary of the GCCS downtime for this reporting period is provided in **Table 3a**, including the date, reason for the downtime, description of the corrective measure(s) implemented to resume GCCS operation, and the total elapsed time for each event. Gas extraction system downtime records are available for review at the site.

3.1.2 Emission Control System Downtime

A-4 Flare

During the reporting period, the flare was off-line on several occasions. A summary of A-4 Flare downtime is provided in **Table 3b**, including the date, reason for the downtime, and the total elapsed time for each event. Note that the LFGTE facility acts as the primary control device and the majority of collected LFG is sent to this facility. As a result, the flare has been offline on a regular basis. In the event the LFGTE facility shuts down, or additional control is required, the flare acts as a backup control device. In the event the LFGTE facility and the flare go offline concurrently, the collection system will automatically shut down resulting in the entire GCCS going offline. During the reporting period, the flare was offline for approximately 3,894.93 hours. Emission control system downtime records are available for review at the site.

As previously noted, whenever the LFGTE facility and the flare are offline concurrently, LFG flow to the control systems is automatically stopped. Therefore, during this reporting period, there were no

instances during which LFG flow passed through the control devices uncontrolled (i.e., free venting), and the collected LFG stream was never diverted from the control devices.

LFGTE Facility

During the reporting period, individual IC engines were offline on several occasions. In addition, there were several periods when the entire LFGTE facility was offline (both engines were offline concurrently). Downtime logs, which include individual IC engine shut downs, are included in **Appendix C**.

3.1.3 Individual Well Downtime

In some instances, the entire GCCS may not go off-line, but individual extraction wells may be taken off-line for inspection, maintenance, and/or repair, as well as for other unforeseen circumstances. These are generally planned events, although such events can occur without notice. Three (3) wells were taken off-line during the reporting period due to active fill. Six (6) wells were abandoned and six (6) new wells were started up during the reporting period. All well downtime complied with Rule 8-34.

Pursuant to permit condition No. 818, Part 2b, the owner/operator must notify the District of expected installation or decommissioning dates prior to commencing any component alterations. On May 20, 2022, a Well Decommissioning Notification Letter was submitted to the BAAQMD for the decommissioning of six (6) wells. Additionally, on June 6, 2022, a Well Startup Notification Letter was submitted to the BAAQMD for the start up of six (6) new wells.

Details of individual well shutdown and well startups occurring during the reporting period are provided in **Table 4**. Please see the Semi-Annual SSM Report included as Section II of this report for additional details.

3.1.4 Flow Meter and Temperature Gauge Downtime

The continuous operation of the GCCS is measured through the continuous measurement of LFG flow to the flare and the flare combustion temperature. As required by Rule 8-34, the A-4 Flare is equipped with a flow measuring device and a temperature gauge that provide continuous readout displays using digital chart recorders. During the reporting period, the flow meter and temperature gauge/recorder at the flare station did not go out of operation due to malfunction or other breakdown conditions. Continuous monitoring and calibration information are available for review at the site.

3.1.5 Flare Combustion Zone Temperature

Vasco Road is required by permit condition No. 818, Part 5 to operate the flare (A-4) in such a manner that the combustion zone temperature within the flare does not drop below the permitted limit of 1,402 degrees Fahrenheit (°F) (averaged over a 3-hour period) or a higher or lower temperature based on the most recent source test. From February 1, 2022 through May 12, 2022, the minimum temperature above which the flare was required to operate was 1,483 °F (source test results of 1533 °F minus 50 °F), based on the source test (conducted on May 7, 2021) results in the test report dated June 9, 2021. From May 12, 2022 through July 31, 2022, the minimum temperature above which the flare was required to operate was 1,426 °F (source test results of

1,476°F minus 50°F), based on the source test (conducted on March 29, 2022) results in the test report dated May 12, 2022.

During the reporting period, the average temperature for the A-4 Flare did not drop below the established minimum temperatures. From February 1, 2022 through July 31, 2022, there were zero (0) missing data events for the flare during the reporting period, except for periods excluded per 40 CFR 63.1961.

Please note the new NESHAP minimum temperature requirement is 82°F below the most recent source test. Due to Vasco's Title V permit still including the WWW requirement of 50°F below the most recent source test, the most stringent requirement was used for this report.

Flare temperature records are available for review at the site. Excerpts from the May 12, 2022 source test report, summarizing the test results for the flare are provided as **Appendix D**.

3.2 COMPONENT LEAK QUARTERLY MONITORING

During the reporting period, quarterly testing of the GCCS components for any leaks with a methane concentration of greater than 1,000 parts per million by volume (ppm_v), as required by BAAQMD Rule 8-34-503, was conducted. Testing in the wellfield and at the flare station was performed using an organic vapor analyzer (OVA), which was calibrated on the same day as the testing. Monitoring results and calibration records are provided in **Appendix D** and are available for review at the site.

3.2.1 First Quarter 2022 Monitoring

SCS Field Services (SCSFS) conducted the component leak testing of the wellfield and flare station on January 12, 2022. No component leaks above $1,000 \text{ ppm}_v$ were detected in the wellfield or at the flare station during the First Quarter 2022 monitoring event.

3.2.2 Second Quarter 2022 Monitoring

SCSFS conducted the component leak testing of the wellfield and flare station on April 7, 2022. No component leaks above $1,000 \text{ ppm}_v$ were detected in the wellfield or at the flare station during the Second Quarter 2022 monitoring events.

3.3 CONTROL EFFICIENCY

LFG Flare A-4 was also tested on March 29, 2022 to demonstrate compliance with the control efficiency standard of 98 percent NMOC destruction efficiency or outlet concentration of 30 ppm_v of NMOC as methane (for flares) as required by BAAQMD Rules 8-34-301.3, 8-34-412, 8-34-501.4, and Condition Number 818, Part 20. The NMOC destruction efficiency for the March 2022 source test was measured to be >99.37 percent by weight and the NMOC as methane concentration in the flare outlet was <3.9 ppmv. As such, flare A-4 is in compliance with the aforementioned rules and permit condition by meeting the exhaust ppmv limit.

Excerpts from the March 2022 source test report dated May 12, 2022, summarizing the test results, were provided in the previous semi-annual report.

3.4 LANDFILL SURFACE EMISSIONS MONITORING

Surface emissions monitoring (SEM) was conducted at Vasco Road on a quarterly basis during the reporting period, in accordance with BAAQMD Rule 8-34-303 and 8-34-506. The SEM events were conducted in accordance with the SEM plan in the landfill's GCCS Design Plan. Testing was performed using a Trimble SiteFID Landfill Gas Monitor Portable Flame Ionization Detector (FID), which was calibrated the same day as the testing. The results of this monitoring are summarized below. Reports for each quarterly monitoring event are provided in **Appendix D**. Records of SEM are available for review at the site.

3.4.1 First Quarter 2022 Monitoring

SCSFS technicians monitored the landfill surface for leaks with a methane concentration of greater than 500 ppm_v above background on January 10, 11, and 12, 2022. No surface emissions in excess of 500 ppm_v were detected during the First Quarter 2022 monitoring event. Based on these results not additional monitoring was required. The monitoring results are provided in the First Quarter 2022 SEM report (**Appendix D**).

3.4.1 Second Quarter 2022 Monitoring

SCSFS monitored the landfill surface for leaks with a methane concentration of greater than 500 ppm_v above background on April 6, 7, 8, 12, 18 and May 5, 2022. Surface emissions in excess of 500 ppm_v was detected at one (1) location during the Second Quarter 2022 monitoring event. The location with the exceedance and associated methane concentrations are provided in the Second Quarter 2022 SEM report (**Appendix D**).

SCSFS field technicians performed appropriate corrective actions, including flow increases to the surrounding extraction wells and borehole repairs. SCSFS completed the 10-day re-monitoring event for this location on April 18, 2022. All the locations were under the 500 ppm_v threshold and thus back in compliance. SCSFS performed the 1-month re-monitoring event, as required by NSPS/NESHAP, on May 5, 2022, and all locations remained in compliance.

3.5 WELLHEAD MONTHLY MONITORING

Monthly wellhead monitoring for pressure, temperature, and oxygen content was conducted by SCSFS from February 2022 through July 2022 to comply with BAAQMD Rules 8-34-305 and 8-34-414. The results of this monitoring are summarized below. Wellhead exceedances are provided in **Table 5, 6, and 7.**

Please note that during the reporting period, all wells were monitored.

3.5.1 Pressure

The majority of the operational extraction wells were under negative pressure during the monitoring events conducted during the reporting period, in accordance with BAAQMD Rules 8-34-305 and 8-34-414. Six (6) wells, VREW2201, VREW2202, VRE2204B, VREW2205, VRLRW003, and VRLRW004 exhibited positive pressure during this reporting period, the identification number and date that the well was operating with positive pressure are provided in **Table 5**. The table also includes corrective action and re-monitoring results. Corrective action and re-monitoring were

performed in accordance with the 5- and 15-day requirements specified in the NSPS/NESHAP regulations and in Rule 8-34.

One (1) well demonstrated positive pressure readings beyond 15 days and compliance will be achieved within 60 or 120 days and documented in the next semi-annual report.

Per 40 CFR 63.1960(a)(3)(i), a "root cause analysis" (RCA) is required if pressure exceedances cannot be corrected in 15 days. An additional "corrective action analysis" (CAA) and notification is required for corrective actions that require more than 60 days to complete. At the end of the reporting period, wells VEW2204B, VRLRW003, and VRLRW004 could not be corrected within 15 days and RCAs were required. See **Appendix G** for RCA forms, CAA forms, and 75-day notifications.

3.5.2 Oxygen

Vasco Road has elected to use oxygen as its compliance standard under Rule 8-34-305, rather than nitrogen. Per Vasco Road's PTO Condition No. 818, Part 3b(ii), the oxygen concentration limit does not apply to the wells listed below, provided that the oxygen concentration in the LFG at the main header does not exceed five percent oxygen by volume (dry basis) and the methane concentration in the LFG at the main header is greater than 35 percent by volume (dry basis). The oxygen Higher Operating Value (HOV) is approved for wells: EW-9 (VRLFEW09), EW-27 (VRLFEW27), EW-31A (VRLFEW31A), EW- 33A (VRLEW33A), and EW- 41R (VRLFEW41).

Pursuant to Title V Permit Condition 818, Part 3c(i-iv) the four vertical leachate recirculation wells (VRLRW001, VRLRW002, VRLRW003, and VRLRW004), and two vertical LFG extraction wells (VR12GT4R and VR12GT05) operate on a non-continuous basis and are subject to an alternative oxygen wellhead standard. Oxygen concentrations in these wells may not exceed 15 percent by volume. The wells may be disconnected from the vacuum system if the oxygen concentration is above 15 percent or the temperature is greater than 131°F.

The majority of the wells were operating within the regulatory limit of five (5) percent oxygen during the monitoring events conducted during the reporting period. The dates when wells were operating with excessive oxygen, and the well identification number, corrective actions, and re-monitoring results for these wells are provided in **Table 6**.

As of the end of this reporting period, all of the operating wells were operating with an oxygen concentration below the 5 or 15 percent limit except for wells VRLFEW19, VRLEW38A, and VREW2108. These wells will be returned to below the 5 percent limit as specified in BAAQMD Rule 8-34-414, and compliance will be documented in the next semi-annual report. Note under Subpart AAAA, which took effect September 27, 2021, oxygen above 5 percent is no longer an exceedance, but under BAAQMD Rule 8-34-414 and Subpart WWW it still is, and the Landfill will continue to follow these requirements.

As of the end of the previous reporting period, wells VREW1001, VREW116, VR12LR01, VRL0601R, and VR12GT03 were operating with an oxygen concentration above the 5 percent limit. These wells returned to compliance or were abandoned during this reporting period.

3.5.3 Temperature

BAAQMD Rule 8-34-305 requires the landfill gas temperature in each wellhead to measure less than 55 degrees Celsius (°C) or 131°F. However, Condition No. 818, Part 3b(i) in Vasco Road's BAAQMD PTO allows Vasco Road to operate wells EW- 9 (VRLFEW09), EW- 33A (VRLEW33A), and EW-44

(VRLFEW44) at an alternative temperature of 140°F. Subpart AAAA allows wellhead temperatures up to 145°F.

The majority of wells were operating within their respective limits of 131°F or 140°F during the monitoring events conducted during the reporting period. The dates when wells were operating above their respective temperature limits, and the well identification number, correction actions, and re-monitoring results for these wells are provided in **Table 7**.

As of the end of the reporting period, all the active wells were operating with temperature limits below their respective limits except for wells VREW2103, and VREW2104. These wells will be returned to below the 131°F or 140°F limit as specified in BAAQMD Rule 8-34-414, and compliance will be documented in the next semi-annual report.

As of the end of the previous reporting period, wells VREW2106, VREW2108, and VREW2109 were operating with a temperature higher than 131 °F. These wells returned to compliance during this reporting period. A higher operating value request of 150 °F was submitted on September 1, 2021 for wells VREW2103, VREW2106, VREW2108, and VREW2109.

Per 40 CFR 63.1960(a)(4)(i), an RCA is required if temperature exceedances cannot be corrected in 15 days. An additional CAA and notification is required for corrective actions that require more than 60 days to complete. At the end of the reporting period, wells VREW2103, VREW2103, VREW2104, VREW2106, VREW2107 could not be corrected within 15 days and RCAs were required. Moreover, wells VREW2103 and VREW2107 could not be corrected within 60 days and CAA and 75-day notifications were required. See **Appendix G** for RCA forms, CAA forms, and 75-day notifications.

Moreover, please note that there were no wells with temperature readings over 145°F, so no enhanced monitoring was required under Subpart AAAA.

3.6 COVER INTEGRITY MONITORING

Under BAAQMD Rule 8-34-510 and the NSPS/NESHAP, the landfill surface must be monitored at least monthly for evidence of cracks or other surface integrity issues, which could allow for surface emissions. During the reporting period, cover integrity monitoring was conducted by SCSFS in conjunction with the wellhead monitoring on February 13, March 27, April 28, May 26, June 26, and July 27, 2022 using procedures specified in the GCCS Design Plan. The observations during these monitoring events indicated the landfill surface was in good condition. In the event visual evidence suggested otherwise, the surface will be promptly repaired. Records of cover integrity monitoring are available for review upon request.

3.7 GAS GENERATION ESTIMATE AND MONTHLY LANDFILL GAS FLOW RATES

The Vasco Road GCCS has been operating under BAAQMD Regulation 8-34-404 (Less Than Continuous Operation) as of November 19, 2014.

Pursuant to Application Number (A/N) 26049 Condition 818 Part 1 (b), the owner/operator may operate the A-4 Flare on a less than continuous basis. If the three-month rolling average of LFG methane content exceeds 50 percent, the owner/operator shall attempt to restart the A-4 Flare within one week of discovery of this excess. If the restart is successful, the A-4 Flare shall operate continuously until the remaining amount of LFG available for flaring is less than 800 standard cubic

feet per minute (scfm) or the equivalent heat input rate for this excess LFG is less than 24 million British thermal units per hour (MMBTU/hour). The rolling average methane content is currently being calculated using the average of the inlet readings collected onsite.

3.8 ANNUAL WASTE ACCEPTANCE RATE AND REFUSE IN PLACE

Vasco Road is an active landfill that continues to accept refuse for disposal. From February 1, 2022 through July 31, 2022, the site accepted 210,179.41 tons of decomposable waste and cover material, resulting in a cumulative waste-in-place total of 18,681,049.29 tons as of July 31, 2022.

3.8.1 Non-Degradable Waste Areas

No areas of non-degradable waste deposition are known to exist. There are no landfill areas that are excluded from the collection system requirements.

3.9 24 HOUR HIGH TEMPERATURE

40 CFR 63.1981(k) and 40 CFR 62.16724(q) require the reporting of any landfill gas temperature measurements greater than or equal to 170°F. During the reporting period, there were no readings greater or equal to 170°F.

3.10 TREATMENT SYSTEM MONITORING PLAN

There are no vents within the treatment system, which allow venting of gas to the atmosphere, and the treatment system is not designed nor equipped to bypass a control device and vent directly to the atmosphere. A calibrated flow meter is installed to measure flow to the treatment system. Treated landfill gas, which cannot be routed for sale or beneficial use, is routed to a control system. Ameresco maintains and operates all monitoring systems associated with the treatment system in accordance with the site-specific treatment system monitoring plan required by §62.16726(b)(5)(ii) and §63.1983(b)(5)(ii). During this reporting period, per Ameresco there were no parameter exceedances of the Treatment Monitoring Plan.

SECTION II. SSM PLAN REPORT

As mentioned previously, Vasco Road is subject to 40 CFR Part 63, Subpart AAAA, the NESHAPS for MSW Landfills. Vasco Road maintains a SSM Plan which documents the procedures for operating and maintaining the affected elements of the GCCS during startup, shutdown, and malfunction (SSM). The SSM events that occurred during the reporting period of February 1, 2022 through July 31, 2022 are documented in this section.

During the reporting period, there were fourteen (14) SSM events involving shutdown of the entire GCCS. All of these startup/shutdown events were associated with a malfunction of the GCCS.

During the reporting period, there were nineteen (19) SSM events involving the wellfield as seven (7) wells was permanently decommissioned due to poor gas quality, six (6) wells were started up, three (3) wells were offline due to active fill and two (2) wells were not read due to unsafe conditions from construction. Additionally, there was one (1) well offline from the previous reporting period. There were no malfunctions of any of the wellfield components during the reporting period.

During the reporting period, there were no planned startups/shutdowns or malfunctions of LFG monitoring equipment (e.g. flow measuring/recording device, temperature measuring/recording device).

In each case described above, the SSM Plan was successfully implemented. Specific information regarding these SSMs are included in Tables 3a (GCCS Downtime), 3b (A-4 Flare Downtime), and 4 (Individual Well Startup, Shutdown, and Decommissions).

No revisions were made to the SSM Plan during this reporting period. A copy of the SSM Plan and all revisions/addenda are kept on file at the facility for at least five (5) years and are available to appropriate regulatory agency personnel for inspection.

SECTION III. TITLE V SEMI-ANNUAL REPORT

As specified in 40 Code of Federal Regulation (CFR) Part 70, reports of any required monitoring must be submitted at least every 6 months. All instances of deviations from permit requirements for the semi-annual reporting period, specified in the Landfill's Initial Title V Permit as August 1 through January 31 and February 1 through July 31, must be clearly identified in each report. This Title V Report covers the February 1, 2022 through July 31, 2022 reporting period.

This report has been prepared based on Table VII (Applicable Limits and Compliance Monitoring Requirements) of the Landfill's MFR Permit. The report includes a certification by a responsible official, consistent with §70.5(d).

The full Title V Semi-Annual Report, including certification by a responsible official, is provided as **Appendix E**.

Tables

Table 3a. GCCS Downtime Vasco Road Landfill, Livermore, California (February 1, 2022 through July 31, 2022)

GCCS Shutdown	Restarted	Downtime Hours	Reason for Downtime	Corrective Actions Taken
2/16/22 13:08	2/16/22 13:20	0.20	Offline due to sump repairs	Flare started
2/16/22 13:42	2/16/22 13:54	0.20	Offline due to sump repairs	Flare started
2/16/22 14:14	2/16/22 17:10	2.93	Offline due to sump repairs	Flare started
3/14/22 8:07	3/14/22 8:28	0.35	Offline due to flare maintanence prior to source test	Flare started
3/14/22 9:42	3/14/22 12:19	2.62	Offline due to flare maintanence prior to source test	Engine Started
4/5/22 6:20	4/5/22 6:44	0.40	Flare offline due to flame failure; Plant down due to forced utility shutdown	Flare started
4/30/22 16:55	4/30/22 18:36	1.68	Flare offline due to flame failure; Plant down due to forced utility shutdown	Flare started
5/3/22 21:02	5/3/22 21:06	0.07	Engine offline. High O2	Flare started
5/5/22 11:20	5/5/22 11:33	0.22	High Vacuum shutdown	Flare started
5/8/22 20:20	5/8/22 22:20	2.00	High Vacuum shutdown	Flare started
5/25/22 6:49	5/25/22 11:03	4.23	Plant shutdown for Construction Activity	Engine restarted
			No Downtime in June 2022	
7/1/22 9:00	7/1/22 11:32	2.53	High Vacuum shutdown	Flare started
7/22/22 8:20	7/22/22 10:35	2.25	High Vacuum shutdown	Flare started
7/22/22 10:35	7/22/22 10:40	0.08	High Vacuum shutdown	Flare started
	Total:	19.77		

Notes:

TSA = temperature swing adsorption, H2S = hydrogen sulfide, HVAC = Heating, Ventilation, and Air Conditioning

Downtimes listed represent periods when all landfill gas combustion devices were offline concurrently (no gas flow from the collection system). All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113 requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018.

Table 3b. Flare (A-4) DowntimeVasco Road Landfill, Livermore, California(February 1, 2022 through July 31, 2022)

Shutdown	C 1	Downtime	Dessen for Downtime
Snutdown	Startup ¹	Hours	Reason for Downtime
2/3/22 8:22	2/4/22 10:04	25.70	Automatic shutdown due to flame failure.
2/4/22 15:30	2/8/22 8:20	88.83	Automatic shutdown due to flame failure.
2/8/22 14:54	2/9/22 8:14	17.33	Automatic shutdown due to flame failure.
2/9/22 17:52	2/10/22 8:06	14.23	Automatic shutdown due to flame failure.
2/10/22 11:24	2/16/22 8:46	141.37	Automatic shutdown due to flame failure.
2/16/22 13:08	2/16/22 13:20	0.20	Automatic shutdown due to flame failure.
2/16/22 13:42	2/16/22 13:54	0.20	Automatic shutdown due to flame failure.
2/16/22 14:14	2/16/22 17:10	2.93	Automatic shutdown due to flame failure.
2/17/22 1:32	2/23/22 8:18	150.77	Automatic shutdown due to flame failure.
2/23/22 10:22	3/1/22 8:52	142.50	Automatic shutdown due to flame failure.
3/1/22 8:56	3/3/22 10:18	49.37	Automatic shutdown due to flame failure.
3/4/22 8:54	3/14/22 8:28	239.57	Automatic shutdown due to flame failure.
3/14/22 9:42	3/28/22 7:52	334.17	Automatic shutdown due to flame failure.
3/28/22 11:14	3/29/22 7:44	20.50	Automatic shutdown due to flame failure.
3/29/22 12:10	4/5/22 6:44	162.57	Automatic shutdown due to flame failure.
4/5/22 7:56	4/5/22 8:44	0.80	Automatic shutdown due to flame failure.
4/5/22 14:58	4/7/22 7:44	40.77	Automatic shutdown due to flame failure.
4/7/22 16:44	4/8/22 10:20	17.60	Automatic shutdown due to flame failure.
4/8/22 17:24	4/13/22 11:20	113.93	Automatic shutdown due to flame failure.
4/16/22 14:14	4/19/22 9:30	67.27	Automatic shutdown due to flame failure.
4/19/22 15:16	4/20/22 12:52	21.60	Automatic shutdown due to flame failure.
4/20/22 15:02	4/22/22 7:50	40.80	Automatic shutdown due to flame failure.
4/22/22 12:48	4/30/22 18:36	197.80	Automatic shutdown due to flame failure.
4/30/22 18:54	5/3/22 21:06	74.20	Automatic shutdown due to flame failure.
5/4/22 14:36	5/5/22 11:20	20.73	Automatic shutdown due to flame failure.
5/5/22 15:14	5/6/22 8:50	17.60	Automatic shutdown due to flame failure.
5/6/22 14:28	5/8/22 22:20	55.87	Automatic shutdown due to flame failure.
5/8/22 22:38	5/10/22 9:24	34.77	Automatic shutdown due to flame failure.
5/10/22 14:52	5/11/22 8:46	17.90	Automatic shutdown due to flame failure.
5/11/22 13:14	5/16/22 8:48	115.57	Automatic shutdown due to flame failure.
5/16/22 12:36	5/17/22 8:16	19.67	Automatic shutdown due to flame failure.
5/17/22 14:28	5/18/22 11:40	21.20	Automatic shutdown due to flame failure.
5/18/22 11:58	5/20/22 8:20	44.37	Automatic shutdown due to flame failure.
5/20/22 12:40	5/25/22 13:48	121.13	Automatic shutdown due to flame failure.
5/25/22 15:52	5/26/22 7:50	15.97	Automatic shutdown due to flame failure.
5/26/22 13:32	6/1/22 8:30	138.97	Automatic shutdown due to flame failure.

Table 3b. Flare (A-4) DowntimeVasco Road Landfill, Livermore, California(February 1, 2022 through July 31, 2022)

Shutdown	Startup ¹	Downtime Hours	Reason for Downtime	
6/1/22 14:34	6/2/22 8:34	18.00	Automatic shutdown due to flame failure.	
6/2/22 14:28	6/7/22 8:50	114.37	Automatic shutdown due to flame failure.	
6/7/22 10:06	6/8/22 11:34	25.47	Automatic shutdown due to flame failure.	
6/8/22 14:36	6/10/22 9:24	42.80	Automatic shutdown due to flame failure.	
6/10/22 12:14	6/21/22 9:54	261.67	Automatic shutdown due to flame failure.	
6/21/22 10:04	6/23/22 7:54	45.83	Automatic shutdown due to flame failure.	
6/23/22 14:30	6/27/22 8:48	90.30	Automatic shutdown due to flame failure.	
6/27/22 13:16	6/28/22 7:54	18.63	Automatic shutdown due to flame failure.	
6/28/22 13:20	7/1/22 11:32	70.20	Automatic shutdown due to flame failure.	
7/1/22 13:46	7/5/22 10:26	92.67	Automatic shutdown due to flame failure.	
7/5/22 13:14	7/6/22 7:52	18.63	Automatic shutdown due to flame failure.	
7/6/22 14:12	7/11/22 8:46	114.57	Automatic shutdown due to flame failure.	
7/11/22 14:26	7/13/22 8:04	41.63	Automatic shutdown due to flame failure.	
7/13/22 14:48	7/15/22 9:16	42.47	Automatic shutdown due to flame failure.	
7/15/22 9:32	7/19/22 7:48	94.27	Automatic shutdown due to flame failure.	
7/19/22 15:58	7/20/22 7:26	15.47	Automatic shutdown due to flame failure.	
7/20/22 12:48	7/22/22 7:06	42.30	Automatic shutdown due to flame failure.	
7/22/22 8:20	7/22/22 10:40	2.33	Automatic shutdown due to flame failure.	
7/25/22 13:24	8/1/22 0:00	154.60	Automatic shutdown due to flame failure.	
Total		3894.93		

Notes:

Events in bold type denotes Malfunction Events

¹The A-4 flare was offline at the end of the reporting period. For reporting purposes, the startup is calculated as having ended on August 1, 2022 at 0:00.

*Per the Startup, Shutdown, and Malfunction (SSM) forms, a flare flame failure shutdown is due to limited gas available while acting as a back-up device to the engine plant. In A-4 flare operated during all instances when the flow rate to the power generating facility was less than 1,200 scfm, in accordance with PTO Condition 818 Part 1(a). In All events where the entire GCCS was offline listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed

Table 4. Individual Well Startups, Shutdowns and Decommissions Vasco Road Landfill, Livermore, California (February 1, 2022 through July 31, 2022)

Well ID	Shutdown	Start-up	Days Offline	Reason for Shutdown		
VR12GT05	N/A	N/A	N/A	Well not read in April due to construction activities for new cell.		
VR12LR01	N/A	N/A	N/A	Well not read in April due to construction activities for new cell.		
VREW0901	4/18/2022	N/A	N/A	Well shutdown.		
VREW1001	5/5/2022	N/A	N/A	Well shutdown due to lack of flow.		
VREW2105	4/6/2022	6/28/2022	83.0	Well offline due to active fill.		
VREW2108	2/1/2022	5/10/2022	97.9	Well offline due to active fill.		
VREW2109	1/14/2022	3/8/2022	53.5	Well offline due to active fill.		
VREW2109	4/6/2022	Continuous	N/A	Well offline due to active fill.		
VREW2201	N/A	6/23/2022	N/A	New well startup		
VREW2202	N/A	6/23/2022	N/A	New well startup		
VREW2203	N/A	6/23/2022	N/A	New well startup		
VEW2204B	N/A	6/23/2022	N/A	New well startup		
VREW2205	N/A	6/23/2022	N/A	New well startup		
VREW2206	N/A	6/23/2022	N/A	New well startup		
VRL0601R	5/17/2022	N/A	N/A	Well shutdown due to lack of flow.		
VRLEW116	5/17/2022	N/A	N/A	Well shutdown due to lack of flow.		
VRLFEW09	5/17/2022	N/A	N/A	Well shutdown due to lack of flow.		
VRLFEW27	5/17/2022	N/A	N/A	Well shutdown due to lack of flow.		
VRLFEW98	5/17/2022	N/A	N/A	Well shutdown due to lack of flow.		

Note: All well downtime events listed are consistent with applicable Rule 8-34 provisions and BAAQMD permit conditions.

Table 5. Wells with Positive Pressure Vasco Road Landfill, Livermore, California (February 1, 2022 through July 31, 2022)

Well ID	Date	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	5-Day Corrective Action Date	Corrective Action	15-Day Follow- Up Pressure ["H2O]	15-Day Follow-Up Date	Comments	Additional Corrective Action
VEW2204B	6/23/2022	0.51	0.51	6/23/2022	Adjusted Valve	0.39	6/28/2022*	Newly installed well	RCA
VREW2201	6/23/2022	0.11	0	6/23/2022	Adjusted Valve	-0.05	6/28/2022	Newly installed well	N/A
VREW2202	6/23/2022	0.12	0	6/23/2022	Adjusted Valve	-0.18	6/28/2022	Newly installed well	N/A
VREW2205	6/23/2022	0.4	0	6/23/2022	Adjusted Valve	-0.24	6/28/2022	Newly installed well	N/A
VRLRW003	7/19/2022	5.05	5.1	7/19/2022	Adjusted Valve	-0.07	8/4/2022*	In compliance 8/4/22	RCA
VRLRW004	7/19/2022	5.12	5.13	7/19/2022	Adjusted Valve	-0.28	8/4/2022*	In compliance 8/4/22	RCA

Note: All required corrective action and remonitoring was completed in accordance with Rule 8-34 and NSPS/NESHAP timelines.

*Exceedance was not corrected in 15 days. Compliance will be achieved by the 120-day compliance dates specified above.

RCA = Root Cause Analysis, CAA = Corrective Action Analysis, 75-day = 75-Day Notification or request for additional time.

Table 6. Wells with Oxygen ExceedanceVasco Road Landfill, Livermore, California(February 1, 2022 through July 31, 2022)

Well ID	Date	Initial O2 [%]	5-Day Corrective Action Date	Corrective Action	Adjusted O2 [%]	15-Day Follow-Up Date	Comments
VREW1001	2/1/2022	16.8	2/1/2022	Adjusted Valve	4.5	2/24/2022	
VREW1001	3/17/2022	9.7	3/17/2022	Adjusted Valve	0	4/6/2022	
VRLEW116	2/1/2022	17.1	2/1/2022	Adjusted Valve	1.5	2/8/2022	
VRLEW116	2/16/2022	11.7	2/16/2022	Adjusted Valve	13.4	3/2/2022	In compliance on 3/17/22
VRLEW116	4/6/2022	18	4/6/2022	Adjusted Valve	18.2	4/18/2022	In compliance on 5/10/22
VRLEW146	2/1/2022	5.9	2/1/2022	Adjusted Valve	0	2/16/2022	
VRLEW147	5/20/2022	5.3	5/20/2022	Adjusted Valve	0.9	6/1/2022	
VRLFEW19	2/15/2022	12.7	2/15/2022	Adjusted Valve	13.6	2/16/2022	In compliance on 3/8/22
VRLFEW19	5/17/2022	5.1	5/17/2022	Adjusted Valve	14.8	6/2/22*	
VRLEW38A	4/22/2022	9.1	4/22/2022	Adjusted Valve	3.7	5/4/2022	
VRLEW38A	5/17/2022	7.5	5/17/2022	Adjusted Valve	1.5	5/23/2022	
VRLEW38A	6/1/2022	7.5	6/1/2022	Adjusted Valve	8.7	6/17/22*	
VRL0601R	2/1/2022	16.4	2/1/2022	Adjusted Valve	18.7	2/16/2022	Abandoned on 5/17/22
VREW0901	3/29/2022	6.4	3/29/2022	Adjusted Valve	2.6	4/18/2022	
VREW0911	7/20/2022	7.9	7/20/2022	Adjusted Valve	1	7/27/2022	
VRLFEW98	2/1/2022	20.8	2/1/2022	Adjusted Valve	14	2/15/2022	In compliance on 3/17/22
VRLFEW99	2/1/2022	15.3	2/1/2022	Adjusted Valve	0.3	2/15/2022	
VR12GT03	2/1/2022	7.1	2/1/2022	Adjusted Valve	2.7	2/16/2022	
VREW2108	5/10/2022	19.8	5/10/2022	Adjusted Valve	19.5	5/31/22*	
VREW2113	6/28/2022	10.9	6/28/2022	Adjusted Valve	0.6	7/11/2022	
VREW2113	7/19/2022	7.2	7/19/2022	Adjusted Valve	4.7	7/27/2022	
VREW2120	2/24/2022	7.8	2/24/2022	Adjusted Valve	0	3/10/2022	

Note: All required corrective action and remonitoring was completed in accordance with Rule 8-34 and NSPS/NESHAP timelines.

*Exceedance remains at end of reporting period. Compliance will be achieved by the 120-day compliance dates specified above.

Table 7. Wells with Temperature Exceedance Vasco Road Landfill, Livermore, California (February 1, 2022 through July 31, 2022)

Well ID	Date	Initial Temperature [°F]	Adjusted Temperature [°F]	5-Day Corrective Action Date	Corrective Action	15-Day Follow- Up Temperature [°F]	15-Day Follow-Up Date	Comments	Additional Corrective Action
VREW2103	2/24/2022	133.3	133.5	2/24/2022	Adjusted Valve	134.4	3/1/2022	In compliance on 3/17/22	RCA
VREW2103	4/25/2022	133.7	133.8	4/25/2022	Adjusted Valve	135.9	5/4/2022*		RCA, CAA, 75-day
VREW2104	4/6/2022	133.9	134.1	4/6/2022	Adjusted Valve	130.7	4/18/2022		N/A
VREW2104	6/28/2022	134.7	134.7	6/28/2022	Adjusted Valve	137.7	7/11/22*		RCA
VREW2106	2/24/2022	132.7	132.7	2/24/2022	Adjusted Valve	138	3/1/2022	In compliance on 3/17/22	RCA
VREW2106	4/6/2022	131.4	131.5	4/6/2022	Adjusted Valve	130.9	4/18/2022		N/A
VREW2106	5/10/2022	133.9	133.9	5/10/2022	Adjusted Valve	130.5	5/26/2022		N/A
VREW2107	4/6/2022	133.7	133.7	4/6/2022	Adjusted Valve	130.3	4/18/2022		N/A
VREW2107	5/10/2022	135.1	135	5/10/2022	Adjusted Valve	135	5/23/2022*	In compliance on 7/20/22	RCA, CAA, 75-day
VREW2109	3/8/2022	144.4	144.5	3/8/2022	Adjusted Valve	125.1	3/17/2022		N/A

Note: All required corrective action and remonitoring was completed in accordance with Rule 8-34 and NSPS/NESHAP timelines.

*Exceedance not corrected within 15 days. Compliance will be achieved by the 60 or 120-day compliance dates specified above.

RCA = Root Cause Analysis, CAA = Corrective Action Analysis, 75-day = 75-Day Notification or request for additional time.

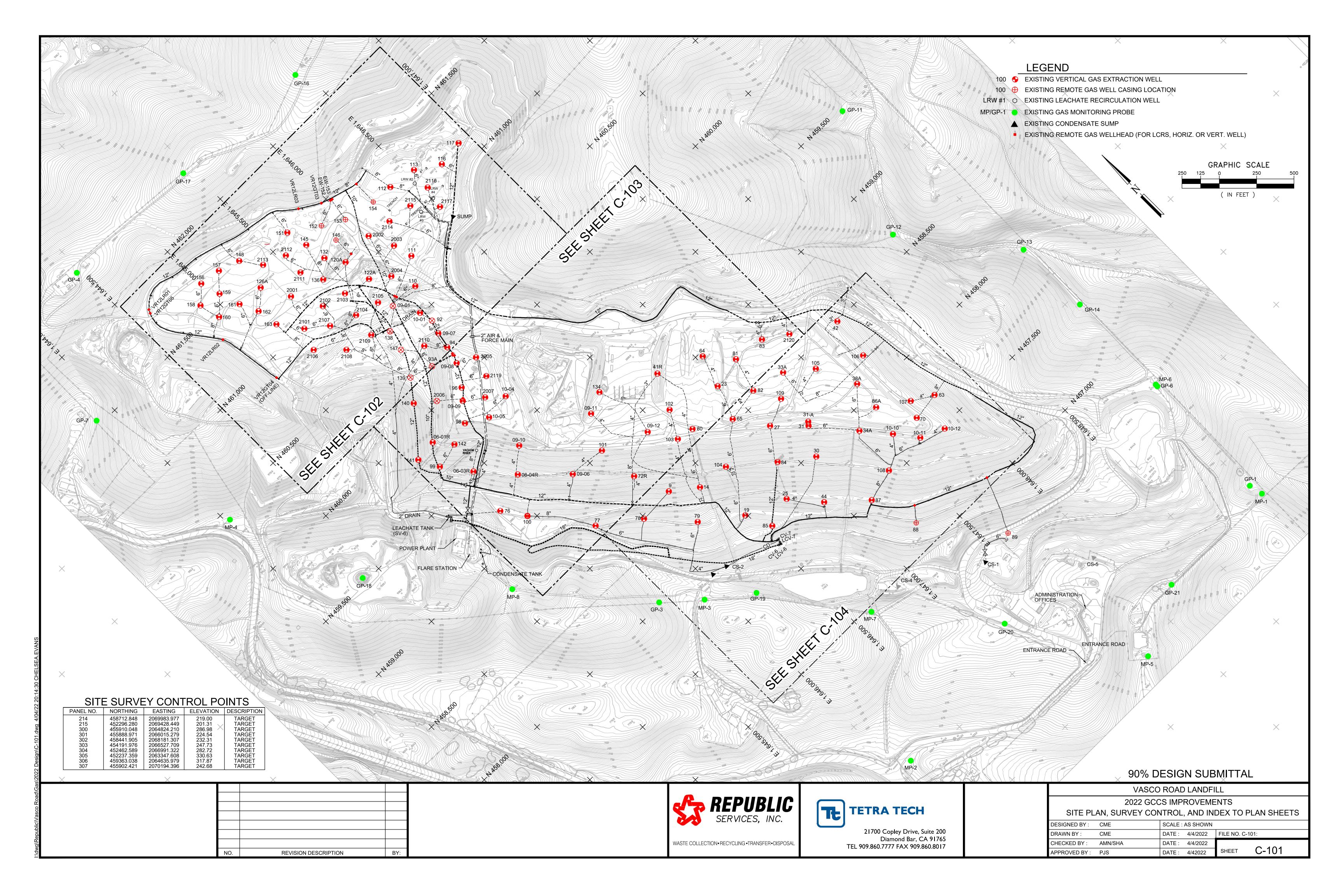
Appendix A – Responsible Official Certification Form

Certification of Truth and Accuracy and Completeness:

I certify the following:

Based on the information and belief formed after reasonable inquiry, the information in this document are true, accurate and complete:

08/29/2022


Signature of Responsible Official

Date

Josh Mills

Name of Responsible Official

Appendix B – Existing GCCS Layout

Appendix C – LFGTE Facility Downtime Logs

Vasco Monthly SSM Report

Eng	Start Time	End Time	Duration (HH:MM)	Eng Hours	Operator	Туре	Cause	Reason	Maintenance
1	1/24/22 7:04	2/3/22 9:01	241:57	44585	Mike Rogers	Planned	Ameresco	Engine	Replace, and Restart
2	2/1/22 16:59	2/1/22 19:11	2:12	44594	Mike Rogers	Unplanned	Ameresco	Other	Restart Only
2	2/2/22 10:30	2/2/22 10:48	0:18	44594	Mike Rogers	Unplanned	Ameresco	Engine	Reconfigure, and Restart
2	2/2/22 18:22	2/2/22 19:31	1:09	44595	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	2/3/22 9:49	2/3/22 10:12	0:23	44595	Mike Rogers	Planned	Ameresco	Generator	Restart Only
1	2/3/22 10:14	2/3/22 10:24	0:10	44595	Mike Rogers	Planned	Ameresco	Generator	Restart Only
2	2/4/22 9:56	2/4/22 15:24	5:28	44596	Mike Rogers	Planned	Ameresco	Engine	Replace, and Restart
2	2/4/22 15:36	2/4/22 16:15	0:39	44597	Mike Rogers	Unplanned	Ameresco	Engine	Reconfigure, and Restart
1	2/6/22 10:34	2/6/22 18:12	7:38	44598	Mike Rogers	Unplanned	Ameresco	Engine	Reconfigure, and Restart
1	2/9/22 8:11	2/9/22 17:45	9:34	44601	Mike Rogers	Planned	Ameresco	Engine	Replace, and Restart
1	2/10/22 8:01	2/10/22 11:16	3:15	44602	Mike Rogers	Planned	Ameresco	Engine	Reconfigure, and Restart
1	2/16/22 13:16	2/16/22 13:36	0:20	44609	Mike Rogers	Unplanned	Landfill / Wellfield	Landfill Vacuum / Gas Limited	Restart Only
2	2/16/22 13:16	2/16/22 18:19	5:03	44609	Mike Rogers	Unplanned	Landfill / Wellfield	Landfill Vacuum / Gas Limited	Restart Only
1	2/16/22 13:38	2/16/22 17:44	4:06	44609	Mike Rogers	Unplanned	Landfill / Wellfield	Landfill Vacuum / Gas Limited	Restart Only
1	2/16/22 17:49	2/16/22 18:07	0:18	44609	Mike Rogers	Unplanned	Landfill / Wellfield	Landfill Vacuum / Gas Limited	Restart Only
1	2/23/22 8:15	2/23/22 9:54	1:39	44615	Mike Rogers	Unplanned	Ameresco	Electrical	Restart Only
2	2/23/22 8:16	2/23/22 10:08	1:52	44615	Mike Rogers	Unplanned	Ameresco	Electrical	Restart Only

Lead Operator : Mike Rogers Month : February 2022

Vasco Monthly SSM Report

Eng	Start Time	End Time	Duration (HH:MM)	Eng Hours	Operator	Туре	Cause	Reason	Maintenance
1	3/14/22 8:07	3/14/22 12:19	4:12	44634	Joshua Crouse	Unplanned	Landfill / Wellfield	Landfill Vacuum / Gas Limited	Restart Only
2	3/14/22 8:07	3/14/22 12:31	4:24	44634	Joshua Crouse	Unplanned	Landfill / Wellfield	Landfill Vacuum / Gas Limited	Restart Only

Lead Operator : Mike Rogers

Month : March 2022

Vasco Monthly SSM Report

Eng	Start Time	End Time	Duration (HH:MM)	Eng Hours	Operator	Туре	Cause	Reason	Maintenance
1	4/5/22 6:20	4/5/22 7:48	1:28	44656	Mike Rogers	Unplanned	Electrical Utility	Other	Restart Only
2	4/5/22 6:20	4/5/22 7:43	1:23	44656	Mike Rogers	Unplanned	Electrical Utility	Other	Restart Only
1	4/8/22 10:14	4/8/22 17:33	7:19	44659	Mike Rogers	Proactive	Ameresco	Engine	Repair, and Restart
1	4/13/22 9:05	4/13/22 9:18	0:13	44664	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	4/13/22 9:20	4/14/22 14:04	28:44	44664	Mike Rogers	Unplanned	Ameresco	Engine	Reconfigure, and Restart
1	4/14/22 14:06	4/16/22 14:55	48:49	44666	Mike Rogers	Unplanned	Ameresco	Generator	Replace, and Restart
1	4/16/22 15:00	4/16/22 15:40	0:40	44668	Mike Rogers	Unplanned	Ameresco	Engine	Replace, and Restart
1	4/19/22 9:16	4/19/22 9:28	0:12	44670	Mike Rogers	Unplanned	Landfill / Wellfield	Landfill Vacuum / Gas Limited	Restart Only
1	4/20/22 12:44	4/20/22 12:57	0:13	44672	Mike Rogers	Unplanned	Landfill / Digester	Landfill Vacuum / Gas Limited	Restart Only
1	4/30/22 16:55	4/30/22 18:47	1:52	44682	Mike Rogers	Unplanned	Electrical Utility	Power Surge	Restart Only
2	4/30/22 16:55	4/30/22 18:48	1:53	44682	Mike Rogers	Unplanned	Electrical Utility	Power Surge	Restart Only

Lead Operator : Mike Rogers Month : April 2022

Vasco Monthly SSM Report

Eng	Start Time	End Time	Duration (HH:MM)	Eng Hours	Operator	Туре	Cause	Reason	Maintenance
1	5/3/22 18:40	5/4/22 7:14	12:34	44685	Mike Rogers	Unplanned	Landfill / Digester	Oxygen Levels	Restart Only
2	5/3/22 21:02	5/4/22 7:42	10:40	44685	Mike Rogers	Unplanned	Landfill / Digester	Oxygen Levels	Restart Only
2	5/4/22 8:34	5/4/22 18:13	9:39	44685	Mike Rogers	Planned	Ameresco	Engine	Replace, and Restart
2	5/4/22 18:33	5/4/22 18:45	0:12	44686	Mike Rogers	Unplanned	Ameresco	Other	Reconfigure, and Restart
1	5/5/22 8:51	5/5/22 11:33	2:42	44686	Mike Rogers	Unplanned	Landfill / Digester	Landfill Vacuum / Gas Limited	Restart Only
2	5/5/22 8:53	5/5/22 11:40	2:47	44686	Mike Rogers	Unplanned	Landfill / Digester	Landfill Vacuum / Gas Limited	Restart Only
1	5/8/22 3:26	5/8/22 4:48	1:22	44689	Mike Rogers	Unplanned	Ameresco	Engine	Reconfigure, and Restart
2	5/8/22 20:20	5/8/22 22:31	2:11	44690	Mike Rogers	Unplanned	Ameresco	Building / HVAC	Restart Only
1	5/8/22 20:20	5/8/22 22:32	2:12	44690	Mike Rogers	Unplanned	Ameresco	Building / HVAC	Restart Only
1	5/9/22 22:38	5/10/22 0:07	1:29	44691	Mike Rogers	Unplanned	Landfill / Digester	Oxygen Levels	Restart Only
1	5/10/22 21:27	5/10/22 22:32	1:05	44692	Mike Rogers	Unplanned	Landfill / Digester	Oxygen Levels	Restart Only
2	5/11/22 8:36	5/11/22 13:06	4:30	44692	Mike Rogers	Planned	Ameresco	Engine	Reconfigure, and Restart
1	5/11/22 22:48	5/12/22 0:04	1:16	44693	Mike Rogers	Unplanned	Landfill / Digester	Oxygen Levels	Reconfigure, and Restart
1	5/18/22 11:11	5/18/22 11:49	0:38	44699	Mike Rogers	Unplanned	Landfill / Digester	Oxygen Levels	Restart Only
1	5/25/22 6:49	5/25/22 11:03	4:14	44706	Mike Rogers	Planned	Ameresco	Engine	Replace, and Restart
2	5/25/22 6:49	5/25/22 15:44	8:55	44706	Mike Rogers	Unplanned	Landfill / Digester	Landfill Vacuum / Gas Limited	Restart Only
1	5/25/22 11:03	5/25/22 15:46	4:43	44706	Mike Rogers	Unplanned	Landfill / Digester	Landfill Vacuum / Gas Limited	Replace, and Restart
1	5/26/22 7:36	5/26/22 7:56	0:20	44707	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only

Lead Operator : Mike Rogers Month : May 2022

Vasco Monthly SSM Report

Eng	Start Time	End Time	Duration (HH:MM)	Eng Hours	Operator	Туре	Cause	Reason	Maintenance
1	6/3/22 11:24	6/3/22 11:34	0:10	44715	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	6/5/22 9:26	6/5/22 14:06	4:40	44717	Mike Rogers	Unplanned	Ameresco	Engine	Reconfigure, and Restart
1	6/6/22 0:19	6/6/22 1:08	0:49	44718	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	6/10/22 7:57	6/10/22 8:10	0:13	44722	Mike Rogers	Unplanned	Landfill / Digester	Landfill Vacuum / Gas Limited	Restart Only
1	6/11/22 0:58	6/11/22 1:51	0:53	44723	Mike Rogers	Unplanned	Ameresco	Engine	Reconfigure, and Restart
1	6/13/22 11:09	6/13/22 11:19	0:10	44725	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	6/14/22 0:28	6/14/22 7:03	6:35	44726	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	6/17/22 22:18	6/17/22 23:17	0:59	44730	Joshua Crouse	Unplanned	Ameresco	Engine	Restart Only
1	6/18/22 14:53	6/18/22 15:36	0:43	44731	Joshua Crouse	Unplanned	Ameresco	Engine	Restart Only
1	6/18/22 22:45	6/18/22 23:26	0:41	44731	Joshua Crouse	Unplanned	Ameresco	Engine	Restart Only
1	6/19/22 10:58	6/19/22 13:44	2:46	44731	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	6/26/22 7:41	6/26/22 8:46	1:05	44738	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	6/26/22 9:33	6/26/22 10:45	1:12	44738	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	6/26/22 22:53	6/26/22 23:46	0:53	44739	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only

Lead Operator : Mike Rogers Month : June 2022

Vasco Monthly SSM Report

Eng	Start Time	End Time	Duration (HH:MM)	Eng Hours	Operator	Туре	Cause	Reason	Maintenance
1	7/1/22 9:00	7/1/22 13:39	4:39	44743	Mike Rogers	Unplanned	Landfill / Digester	Landfill Vacuum / Gas Limited	Restart Only
2	7/1/22 9:00	7/1/22 13:38	4:38	44743	Mike Rogers	Unplanned	Landfill / Digester	Landfill Vacuum / Gas Limited	Restart Only
1	7/3/22 9:37	7/3/22 11:59	2:22	44745	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	7/4/22 23:31	7/5/22 0:34	1:03	44747	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	7/7/22 8:15	7/7/22 8:30	0:15	44749	Michael Rogers	Unplanned	Ameresco	Engine	Reconfigure, and Restart
1	7/9/22 3:13	7/9/22 5:50	2:37	44751	Donnie Bodkin	Unplanned	Ameresco	Engine	Restart Only
1	7/9/22 10:18	7/9/22 11:13	0:55	44751	Donnie Bodkin	Unplanned	Ameresco	Engine	Restart Only
1	7/15/22 7:14	7/15/22 9:11	1:57	44757	Donnie Bodkin	Unplanned	Ameresco	Engine	Restart Only
2	7/15/22 7:14	7/15/22 9:42	2:28	44757	Donnie Bodkin	Unplanned	Ameresco	Engine	Restart Only
1	7/22/22 8:12	7/22/22 10:35	2:23	44764	Mike Rogers	Unplanned	Landfill / Digester	Landfill Vacuum / Gas Limited	Reconfigure, and Restart
2	7/22/22 8:12	7/22/22 11:17	3:05	44764	Mike Rogers	Unplanned	Landfill / Digester	Landfill Vacuum / Gas Limited	Restart Only
1	7/22/22 10:35	7/22/22 15:45	5:10	44764	Mike Rogers	Unplanned	Ameresco	Generator	Reconfigure, and Restart
2	7/22/22 15:20	7/25/22 13:18	69:58	44765	Mike Rogers	Unplanned	Ameresco	Electrical	Replace, and Restart
1	7/26/22 21:40	7/26/22 22:42	1:02	44769	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
2	7/28/22 7:23	7/28/22 19:10	11:47	44770	Mike Rogers	Planned	Ameresco	Engine	Replace, and Restart
2	7/29/22 10:15	7/29/22 12:53	2:38	44771	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	7/29/22 20:35	7/29/22 22:08	1:33	44772	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	7/30/22 9:52	7/30/22 10:54	1:02	44772	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only
1	7/31/22 23:16	8/1/22 0:15	0:59	44774	Mike Rogers	Unplanned	Ameresco	Engine	Restart Only

Lead Operator : Mike Rogers Month : July 2022

Appendix D – Excerpt from the 2022 A-4 Source Test Results

Republic Services

BAAQMD Plant # 5095

Annual Compliance Test Report #22099 Landfill Gas Flare A-4

Located at: Vasco Road Landfill 4001 N. Vasco Road Livermore, CA 94550

Prepared for: **Republic Services** 901 Bailey Road Pittsburg, CA 94565

Attn: Antonia Gunner agunner@republicservices.com

For Submittal to: Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Attn: Gloria Espena/Marco Hernandez gespena@baaqmd.gov/mhernandez@baaqmd.gov sourcetest@baaqmd.gov

> Testing Performed on: March 29, 2022

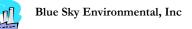
Final Report Submitted on: May 12, 2022

Performed and Reported by: Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706

Office (510) 508-3469/Mobile (510) 508-3469 bluesky@blueskyenvironmental.com

REVIEW AND CERTIFICATION

Team Leader:


The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report are authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for compliance purposes, it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (810) 923-3181.

1-1.K

Jeramie Richardson Project Manager Blue Sky Environmental, Inc.

TABLE OF CONTENTS

SECTI	ON 1. INTRODUCTION	
1.1.	Summary	4
SECTI	ON 2. SOURCE TEST PROGRAM	6
2.1.	Overview	6
2.2.	Pollutants Tested	6
2.3.	Test Date(s)	6
2.4.	SAMPLING AND OBSERVING PERSONNEL	6
2.5.	SOURCE/PROCESS DESCRIPTION	6
2.6.	Source Operating Conditions	7
SECTI	ON 3. SAMPLING AND ANALYSIS PROCEDURES	0
	JN 5. SAMPLING AND ANALISIS PROCEDURES	δ
3.1.	Port Location	
	Port Location	
3.1.		
3.1. 3.2.	Port Location Point Description/Labeling – Ports/Stack Sample Train Description Sampling Procedure Description	
3.1. 3.2. 3.3.	Port Location Point Description/Labeling – Ports/Stack Sample Train Description	
3.1. 3.2. 3.3. 3.4.	Port Location Point Description/Labeling – Ports/Stack Sample Train Description Sampling Procedure Description	
3.1. 3.2. 3.3. 3.4. 3.5. 3.6.	Port Location Point Description/Labeling – Ports/Stack Sample Train Description Sampling Procedure Description Instrumentation and Analytical procedures	

- В. Calculations
- Laboratory Reports С.
- D. Field Data Sheets
- Process Information
- F. G. QC Calibration Certificates and Quality Assurance Records
- Н.
- Sample Train Configuration and Stack Diagrams Related Correspondence (Source Test Plan and Email) Ι.
- BAAQMD Permit Conditions J.

SECTION 1. INTRODUCTION

1.1. Summary

Blue Sky Environmental, Inc. was contracted by Republic Services to perform emissions testing at the Vasco Road Landfill in Livermore, California. This compliance source test was conducted to demonstrate that Landfill Gas Flare A-4 is operating in compliance with condition 818 of the Bay Area Air Quality Management District (BAAQMD) permit to operate for Plant 5095.

Results of the test program are presented in this report. The source test information is summarized in Table 1-1. Test results derived from the source test are summarized in Table 1-2. Results for individual test runs are provided in Appendix A. The flare met all compliance emission criteria.

Test Location:	Vasco Road Landfill 4001 N. Vasco Road, Livermore, CA 94550			
Source Contact:	Antonia Gunner, Republic Services (619) 201-3764			
Source Tested:	Flare A-4 – 120 MMBtu/hr LFG Industrial Landfill Gas Flare			
Source Test Date:	March 29, 2022			
Test Objective:	Determine compliance with condition 818 of the Bay Area Air Quality Management District (BAAQMD) permit to operate for Plant 5095; BAAQMD Regulation 8, Rule 34; and the State Landfill Methane Gas Rule under AB32 for flare performance			
Test Performed by:	Blue Sky Environmental, Inc 624 San Gabriel Avenue, Albany, CA 94706 Jeramie Richardson (810) 923-3181 jrichardson@blueskyenvironmental.com			
Test Parameters:	Landfill Gas O ₂ , CO ₂ , BTU, THC, CH ₄ , NMOC, HHV, F-factor, sulfur species, volumetric flow rate <u>Flare Emissions</u> THC, CH ₄ , NMOC, NO _x , CO, O ₂ , moisture, volumetric flow rate			

Table 1-1. Source Test Information

Emission Parameter	Average Results (Flare A-4)	Permit Limit	Compliance Status
NO _x , ppmvd @ 15% O ₂	10.5	11	In Compliance
NO _x , lb/day	34.2	141.1	In Compliance
NO _x , lb/MMBtu	0.0427	0.049	In Compliance
CO, ppmvd @ 15% O ₂	21.7	73	In Compliance
CO, lb/MMBtu	0.0534	0.19	In Compliance
Total Reduced Sulfurs in Fuel as H ₂ S, ppmvd	54.4	320	In Compliance
SO ₂ , ppmvd <i>(Reg 9-1-302)</i>	0.0780	300	In Compliance
NMOC as CH ₄ , ppmvd @ 3% O ₂	<3.9	30	La Complianas
NMOC Destruction Efficiency, %	>99.37 %	or >98 %	In Compliance
CH ₄ Destruction Efficiency, % (AB32)	99.95 %	>99 %	In Compliance
THC (TOC) Destruction Efficiency, %	99.95 %	>98 %	In Compliance

Table 1-2. Compliance Summary

2.1. Overview

This annual source test was performed to demonstrate that landfill gas Flare A-4 is operating in compliance with condition 818 of the Bay Area Air Quality Management District (BAAQMD) permit to operate for Plant 5095, and BAAQMD Regulation 8, Rule 34. This testing also satisfies the compliance requirements outlined in the State Landfill Methane Gas Rule under AB32 for flare performance.

2.2. Pollutants Tested

The following U.S. Environmental Protection Agency (EPA) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample and Traverse Point Determination
EPA Method 3A	O2 and CO2 Emissions, Stack Gas Molecular Weight
EPA Method 10	CO Emissions
EPA Method 7E	NO _X Emissions and NO ₂ Converter Check
EPA Method 4, part 16.4	Moisture Calculation
EPA Method 18	CH4, THC, NMOC Emissions
EPA Method 19	Flow Rate Calculation DSCFM
EPA Method 25A	VOC Emissions
EPA Method 25C	TNMHC (NMOC) in fuel
ASTM D-1945/3588	BTU, F-Factor and Fixed Gases in fuel
ASTM D-5504	Sulfur Species, Hydrogen Sulfide (H ₂ S) and TRS
EPA Method TO-15	Toxic Organic Compounds

2.3. Test Date

Testing was conducted on March 29, 2022.

2.4. Sampling and Observing Personnel

Testing was conducted by Jeramie Richardson and Timothy Eandi representing Blue Sky Environmental, Inc.

Dan Haslam of SCS Engineers was on-site to coordinate flare operations.

BAAQMD was notified of the scheduled testing in a source test plan submitted on March 9, 2022. A Source Test Protocol acknowledgement (NST #7278) was received March 10, 2022; however, no agency observers from BAAQMD were present during testing. A copy of the source test protocol and email correspondence are provided in Appendix H.

2.5. Source/Process Description

Vasco Road Landfill (S-1), located in Livermore, California, is a multi-material landfill with a gas collection system that is abated by an industrial landfill gas flare (A-4) with a 120 MMBtu/hr

multiple nozzle burner. Collected landfill gas is either abated by the on-site landfill flare or vented to the off-site Ameresco Vasco Road, LLC Facility for processing and use as fuel.

2.6. Source Operating Conditions

The flare was operated on landfill gas under normal operating conditions during testing. The average exhaust temperature was 1,476 °F. The landfill gas (LFG) flowrate ranged from 1,183 to 1,205 SCFM. The operating exhaust temperature, and LFG flowrate records are provided in Appendix E.

LFG samples collected at the head of the flare had an average methane content of 46.2% and an oxygen content of 1.2%.

SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

3.1. Port Location

Sampling was conducted in the stack of the flare through ports that were accessed with a 45-foot boom lift. The ports were located approximately 35 feet above grade, five stack diameters downstream from the burners and one stack diameter upstream from the exhaust.

3.2. Point Description/Labeling – Ports/Stack

Blue Sky Environmental, Inc. conducted two perpendicular 8-point traverses of the stack to check for the presence of cyclonic flow. Sampling was performed for 2.5 minutes per point for a total of 16 points over the 40-minute test run. O₂ stratification was greater than 10%; therefore, subsequent CEM sampling was conducted using all traverse points.

3.3. Sample Train Description

Sampling system diagrams are provided in Appendix G. Additional descriptive information is included in the following section.

3.4. Sampling Procedure Description

Three consecutive 40-minute gaseous emissions tests were performed for oxides of nitrogen (NO_x) , carbon monoxide (CO), carbon dioxide (CO_2) , oxygen (O_2) , methane (CH_4) and nonmethane organic compounds (NMOC) at the flare exhaust stack. The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run. The gas flow was controlled with a rotameter to collect the 40-minute integrated samples.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. Any drift or bias was corrected using equation 100-3 from CARB Method 100. A NOx analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky Environmental collected a total of three integrated fuel samples by EPA Method 18 for off-site analysis by Atmospheric Analysis & Consulting, Inc., located in Ventura, California. The samples were collected in 6-liter SUMMA canisters and analyzed for nonmethane organic compounds (NMOCs) by EPA Method 25C, sulfur species (including H₂S and TRS) by ASTM D-5504, and HHV, F-factor, fixed gases, and C_1 - C_{6+} hydrocarbons by ASTM D-1945. The samples were also analyzed for toxic organic compounds by EPA Method TO-15.

The sampling and analysis procedures are summarized below:

EPA Method 1 - Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. A small portion of the sample is passed through a fuel cell type paramagnetic oxygen analyzer which measures the electrical current generated by the oxidation reaction at the gas/fuel cell interface. Carbon dioxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon dioxide absorbs infrared radiation

EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Nitric oxide is determined by passing the sample through a chemiluminescent analyzer. The chemiluminescent process is based on the light given off when nitric oxide and ozone react. Nitrogen dioxide (NO₂) concentrations are determined by passing the sample through a catalyst which reduces the NO₂ to NO. The total oxides of nitrogen concentration (NO₂ + NO) is then determined by chemiluminescence.

Section 16.2.2 of the method is used to determine the NO_X analyzer NO_2 to NO conversion efficiency.

EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Carbon monoxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon monoxide absorbs infrared radiation.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 psi is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 6C, 7E and 10 all defer to EPA Method

7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of a Honeywell DPR3000 strip chart recorder supported by a Data Acquisition System (DAS).

Instrument Linearity	≤2% Full Scale
Instrument Bias	≤5% Full Scale
System Response Time	$\leq \pm 2$ minutes
NO _x Converter Efficiency (EPA Method 7E)	≥ 90%
Instrument Zero Drift	≤± 3% Full Scale
Instrument Span Drift	≤± 3% Full Scale

System Performance Criteria

EPA Method 4 - Determination of Moisture Content in Stack Gas

This method is used to determine the moisture content of stack gas. The sample is extracted and condensed in Greenburg-Smith impingers immersed in an ice bath and in a final impinger silica gel trap. The moisture is condensed in a solution of de-ionized water, or solutions of another type of sampling train if the moisture is being determined as part of another sampling method, such as EPA Method 5, SCAQMD Method 201.7 or BAAQMD ST-32. The moisture gain in the impinger solutions and silica gel is determined volumetrically and gravimetrically respectively.

<u>QA/QC</u> procedures require that a minimum of 21 cubic feet of sample is pulled using a leak tight pump. The sample volume is measured with a calibrated dry gas meter. The impingers are immersed in an ice bath to maintain a gas outlet temperature of less than 68°F. Pre-test leak checks are performed for each run using a minimum 15 inches of mercury vacuum. Post-test leak checks are performed at the highest sample vacuum or greater. The leak test is acceptable if the leak rate is less than 0.02 cubic feet per minute or 4% of the average sampling rate, whichever is less. If the final leak check exceeds the criteria, either the volume is corrected based on the leak rate or the run is voided and repeated.

EPA Method 18 – Measurement of Gaseous Organic Compound Emissions by Gas Chromatography

This method is used to determine emissions of volatile organics by gas chromatography (GC). Gases are collected in a pre-evacuated 6-liter SUMMA canister with pre-set flow controller set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the target volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consists of capillary orifice tubing designed to sample for a pre-set duration of 0.5 hrs.

EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D-1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is

multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates. 301.

EPA Method 25A – Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This method is used to measure total hydrocarbons, methane, and non-methane hydrocarbons in stationary source emissions using a gas chromatograph with a flame ionization detector (GC/FID). Heated Teflon sample gas transfer lines are used to provide a continuous sample to the heated GC/FID hydrocarbon analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test.

EPA Method 25C – Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. Gases are collected in a pre-evacuated 6-liter SUMMA canister with pre-set flow controller set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consists of capillary orifice tubing designed to sample for a pre-set duration of 0.5 hrs. The sample is injected into a GC column where the methane and CO_2 are flushed through and removed then the NMOC (ROC) fraction is oxidized to form CO_2 then reduced to methane and analyzed.

ASTM D-1945 – Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed 7 days.

3.5.

EPA Compendium Method TO-15 – Determination of Toxic Organic Compounds in Ambient Air

This method is used to measure volatile organic compounds that are included in the hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990 by GC/MS (gas chromatography/mass spectroscopy). Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75hrs.

Principle Instrumentation Parameter TECO Model 42C NO_X/NO Chemiluminescence TECO Model 48C CO Gas Filter Correlation/IR TECO Model 55C NMOC/CH₄ Flame Ionization (FID) Servomex Model 1440 CO_2 Infrared (IR) Servomex Model 1440 O_2 Paramagnetic

The following continuous emissions analyzers were used:

Instrumentation and Analytical procedures

The analyzer data recording system consists of a Honeywell DPR300 strip chart recorder, supported by a Data Acquisition System (DAS). The instrument response is recorded on strip charts and DAS. The averages are corrected for drift using BAAQMD and EPA Method 7E equations. All system performance criteria were met.

3.6. Comments: Limitations and Data Qualifications

This source test was performed in accordance with the protocol submitted to BAAQMD. No deviations from the protocol or anomalies were observed during testing. The measured emissions from the flare comply with the permit limits.

Blue Sky Environmental has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text Review of calculations Review of CEMS data Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations, subsequent to this, and do not warranty the accuracy of information supplied by others.

SECTION 4. APPENDICES

- A. Tabulated Results
- B. Calculations
- C. Laboratory Reports
- D. Field Data Sheets
- E. Process Information
- F. QC Calibration Certificates and Quality Assurance Records
- G. Sample Train Configuration and Stack Diagrams
- H. Related Correspondence (Source Test Plan and Email)
- I. BAAQMD Permit Conditions

A Tabulated Results

TABLE #1

Republic Services - Vasco Road Landfill

Flare A-4

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	3/29/22	3/29/22	3/29/22		
Test Time	0844-0928	0956-1042	1109-1155		
Standard Temperature, °F	70	70	70		
Fuel:					
Flare Temperature, °F	1,476	1,475	1,476	1,476	
Fuel Flow Rate, DSCFM	1,205	1,195	1,183	1,194	
Fuel Heat Input, MMBtu/hr	33.7	33.2	33.2	33.4	
Inlet Hydrogen Sulfide (H2S), ppmvd (ASTM D5504)	49.1	52.7	44.9	48.9	
Inlet Total Reduced Sulfurs, ppmvd as H ₂ S (ASTM D5504)	54.2	58.3	50.8	54.4	320
Stack Gas:		•	•		
Exhaust Flow Rate, DSCFM (EPA Method 19)	24,158	22,754	23,066	23,326	
Oxygen (O ₂), % volume dry	16.2	16.0	16.1	16.1	
Carbon Dioxide (CO ₂), % volume dry	4.1	4.1	3.9	4.0	
Water Vapor (H2O), % volume (EPA Method 4)	5.4	4.5	6.1	5.3	
SO ₂ , ppmvd (calculated)	0.0757	0.0851	0.0731	0.0780	300
NO_X Emissions (reported as NO_2):					
NOx, ppmvd	8.5	8.7	8.5	8.6	
NOx, ppmvd @ 15% O ₂	10.7	10.6	10.4	10.5	11
NOx, lb/hr	1.46	1.42	1.39	1.43	
NOx, lb/day	35.1	34.1	33.4	34.2	141.1
NOx, lb/MMBtu	0.0434	0.0427	0.0419	0.0427	0.049
CO Emissions:	010 10 1	010121	010117	010 127	0.012
CO, ppmvd	18.2	17.4	17.2	17.6	
CO, ppmvd @ 15% O ₂	22.9	21.1	21.1	21.7	73
CO, lb/hr	1.91	1.72	1.73	1.78	15
CO, lb/day	45.7	41.3	41.4	42.8	
CO, lb/MMBtu	0.0565	0.0518	0.0520	0.0534	0.19
THC Emissions (reported as CH ₄):	0.0305	0.0510	0.0520	0.0551	0.17
THC, ppmv wet (EPA Method 25A)	10.9	10.1	14.1	11.7	
THC, ppmvd	11.5	10.1	15.0	12.4	
THC, lb/hr	0.692	0.596	0.862	0.716	
Methane (CH ₄) Emissions:	0.092	0.390	0.002	0.710	
CH ₄ , ppmv wet <i>(EPA Method 25A)</i>	10.9	10.1	14.1	11.7	
CH ₄ , ppmv wet (EFA Method 25A) CH ₄ , ppmvd	11.5	10.1	14.1	11.7	
CH ₄ , b/hr	0.692	0.596	0.862	0.716	
NMOC Emissions (reported as CH ₄):	0.092	0.390	0.002	0.710	
NMOC, ppmv wet (EPA Method 25A)	<1.0	<1.0	<1.0	<1.0	
NMOC, ppmvd	<1.1	<1.0	<1.0	<1.0	
NMOC, ppmvd @ 3% O ₂	<4.1	<3.8	<4.0	<3.9	30
NMOC, lb/hr	<0.063	<0.059	<0.06	<0.06	30
1111000, 10/ 111	~0.003	~0.039	~0.00	\0.00	
Inlet Hydrocarbons:					
Inlet NMOC, ppmvd (EPA Method 25C)	2,852	2,979	2,653	2,828	
Inlet NMOC, lb/hr	8.53	8.84	7.79	9.66	
NMOC Destruction Efficiency, %	>99.26%	>99.33%	>99.22%	>99.37%	>98%
Inlet CH ₄ ppmvd (ASTM D-1945)	463,000	459,000	464,000	462,000	
Inlet CH ₄ , lb/hr	1,385	1,362	1,363	1,578	
CH ₄ Destruction Efficiency, %	99.95%	99.96%	99.94%	99.95%	>99%
Inlet THC (TOC), ppmvd	465,852	461,979	466,653	464,828	22,0
Inlet THC (TOC), lb/hr	1,393	1,371	1,371	1,588	
THC (TOC) Destruction Efficiency, %	99.95%	99.96%	99.94%	99.95%	>98%

WHERE,

ppmvd = parts per million concentration by volume expressed on a dry gas basis lb/hr = pound per hour emission rate Tstd. = standard temperature (°R = °F+460) MW = molecular weight DSCFM = dry standard cubic feet per minute NO_X = oxides of nitrogen, reported as NO₂ (MW = 46) CO = carbon monoxide (MW = 28) CH₄ = methane (MW = 16) THC = total hydrocarbons, reported as CH₄ (MW = 16) NMOC = non-methane organic compounds, reported as CH₄ (MW = 16) SO₂ = sulfur dioxide

CALCULATIONS,

$$\begin{split} &15\% \ O_2 \ Correction = ppm \cdot 5.9 \ / \ (20.9 - \% O_2) \\ &3\% \ O_2 \ Correction = ppm \cdot 17.9 \ / \ (20.9 - \% O_2) \\ &b/hr = ppm \cdot 8.223 \ E-05 \cdot DSCFM \cdot MW \ / \ Tstd. \ ^R \\ &b/day = lb/hr \cdot 24 \\ &b/MMBu = Fd \cdot MW \cdot ppm \cdot 2.59E \cdot 9 \cdot 20.9 \ / \ (20.9 - \% O_2) \\ &Destruction \ Efficiency = \ (inlet, lb/hr - outlet, lb/hr) \ / \ inlet, lb/hr \\ \end{split}$$

<value = 2% of analyzer range

TABLE #2AP42 2.4-1 - Landfill Gas Samples

Republic Services - Vasco Road Landfill

Flare A-4

			Results			
Constituent	Method	Units	3/29/22	-11	3/29/22	
			R1-LFG	R2-LFG	R3-LFG	
1,1,1-Trichloroethane	EPA TO-15	ppb	<42.4	<47.9	<42.6	
1,1,2,2-Tetrachloroethane	EPA TO-15	ppb	<42.4	<47.9	<42.6	
1,1-Dichloroethane (Ethylidene Dichloride)	EPA TO-15	ppb	<42.4	<47.9	<42.6	
1,1-Dichloroethene (1,1-Dichloroethylene)	EPA TO-15	ppb	<42.4	<47.9	<42.6	
1,2-Dichloroethane (Ethylene Dichloride)	EPA TO-15	ppb	<42.4	<47.9	102	
2-Propanol (Isopropyl Alcohol, IPA)	EPA TO-15	ppb	3,840	4,910	4,610	
Acrylonitrile	EPA TO-15	ppb	<169	<191	<170	
Benzyl Chloride	EPA TO-15	ppb	<42.4	<47.9	<42.6	
Carbon Disulfide	EPA TO-15	ppb	<169	<191	<170	
Carbon Tetrachloride	EPA TO-15	ppb	<42.4	<47.9	<42.6	
Carbonyl sulfide (COS)	ASTM D-5504	ppm	1.08	0.88	1.26	
Chlorobenzene	EPA TO-15	ppb	<42.4	54.6	59.6	
Chlorodifluoromethane	EPA TO-15	ppb	145	225	249	
Chloroethane	EPA TO-15	ppb	<42.4	<47.9	43.4	
Chloroform	EPA TO-15	ppb	<42.4	<47.9	<42.6	
1,4-Dichlorobenzene	EPA TO-15	ppb	100	132	149	
Dichlorodifluoromethane (CFC-12)	EPA TO-15	ppb	72.0	101	106	
Dichlorofluoromethane	EPA TO-15	ppb	72.8	98.6	97.9	
Dichloromethane (Methylene Chloride)	EPA TO-15	ppb	<84.7	<95.7	<85.1	
Dimethyl Sulfide	ASTM D-5504	ppm	2.76	3.21	3.13	
Ethyl Mercaptan	ASTM D-5504	ppm	< 0.085	< 0.096	< 0.085	
Ethyl Benzene	EPA TO-15	ppb	2,000	2,590	2,850	
1,2 Dibromoethane (Ethylene Dibromide)	EPA TO-15	ppb	<42.4	<47.9	<42.6	
Trichlorofluoromethane (Fluorotrichloromethane)	EPA TO-15	ppb	<42.4	<47.9	<42.6	
Hexane	EPA TO-15	ppb	422	600	723	
Hydrogen sulfide	ASTM D-5504	ppm	49.1	52.7	44.9	
Methyl Mercaptan	ASTM D-5504	ppm	0.535	0.634	0.570	
2-Butanone (MEK)	EPA TO-15	ppb	4,840	6,410	7,600	
Tetrachloroethylene (Perchloroethylene)	EPA TO-15	ppb	47.4	52.6	61.3	
Trichloroethylene (Trichloroethene)	EPA TO-15	ppb	<42.4	<47.9	43.4	
Vinyl Chloride	EPA TO-15	ppb	<42.4	<47.9	<42.6	
m,p-Xylene	EPA TO-15	ppb	3,020	3,860	4,080	
o-Xylene	EPA TO-15	ppb	1,040	1,380	1,590	
Benzene	EPA TO-15	ppb	708	946	1,200	
Toluene	EPA TO-15	ppb	3,750	4,380	4,600	

< = less than the method reporting limit

Appendix E – Surface Emission and GCCS Component Leak Monitoring Results

SCS FIELD SERVICES

April 14, 2022 File No. 07221004.01

Ms. Antonia Gunner Republic Services – Vasco Road Landfill 4001 N. Vasco Road Livermore, California 94551

Subject: Vasco Road Landfill - Livermore, California

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring for First Quarter 2022.

Dear Ms. Gunner:

SCS Field Services (SCS-FS) is pleased to provide the Republic Services, with the enclosed report summarizing the surface emissions monitoring services provided at the Vasco Road Landfill (Site) during the first quarter 2022. This report includes the results of surface scan, component emissions and blower/flare station emissions monitoring for the Site for this monitoring period.

SCS-FS appreciates the opportunity to be of assistance to Republic Services on this project. As you review the enclosed information, please contact Art Jones (209) 345-2062, Michael Calmes at (209) 573-3364 or Whitney Stackhouse at (209) 338-7990 if you have any questions or comments.

Sincerely,

Whitney Stackhouse Project Manager SCS Field Services

Encl.

cc: Art Jones, SCS Field Services

Michael Calmes Project Manager SCS Field Services

Vasco Road Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring

First Quarter 2021

Presented to:

Ms. Antonia Gunner Republic Services – Vasco Road 4001 N. Vasco Road Livermore, California 94551

SCS FIELD SERVICES

File No. 07221004.01 | April 14, 2022

SCS FIELD SERVICES 4730 Enterprise Way Suite A Modesto, CA 95356

Vasco Road Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring First Quarter 2021

INTRODUCTION

This letter provides results of the January 10, 11 and 12, 2022, LMR and NSPS landfill surface emissions monitoring (SEM) performed by SCS Field Services (SCS) at the subject site. All work was performed in accordance with our approved Work Scope dated December 23, 2020, and the LMR requirements.

SUMMARY AND CONCLUSIONS

As stipulated in LMR, if uncorrectable exceedances within the 10-day limitation are detected or emissions are discovered during an inspection by Regulatory Agencies, the landfill must perform monitoring on a 25-foot pathway on a quarterly basis for active disposal sites. Upon completion of four consecutive SEM events without an uncorrectable exceedance of the 25 ppmv or 500 ppmv standards, other than non-repeatable momentary readings, the landfill may perform the monitoring on a 100-foot spacing on an annual basis for closed landfills or quarterly for active disposal sites. Therefore, based on the previous monitoring events, in which exceedances were observed, the monitoring at the Vasco Road Landfill was performed on 25-foot pathways in accordance with the LMR.

On, January 10, 11 and 12, 2022, SCS performed first quarter 2021 surface emissions monitoring testing as required by the Bay Area Air Quality Management District (BAAQMD). Instantaneous surface emissions monitoring results indicated that no locations exceeded the 500 ppmv maximum concentration during our monitoring (Table 1 in Attachment 3). Based on these monitoring results no additional follow up testing was required.

Also, during the instantaneous monitoring event, SCS performed concurrent integrated monitoring of the landfill surface. As required by the LMR, the landfill was divided into 50,000 square foot grid areas. The Vasco Road Landfill surface area was therefore divided into 233 grids, as shown on Figure 1 in Attachment 1. During this monitoring event, several grids were not monitored, in accordance with the regulations, due to ongoing active landfilling activities, unsafe conditions, or there was no waste in place prior to the monitoring event.

During the monitoring event, there were no grid areas observed to exceed the 25 ppmv LMR integrated average threshold (Table 2 in Attachment 4). Based on these monitoring results, no follow up monitoring is required at this time. These results are discussed in a subsequent section of this report.

In addition, quarterly monitoring of the pressurized piping or components of the Gas Collection and Control System (GCCS) that are under positive pressure must be performed quarterly. Results of the

testing of the landfill gas (LFG) Blower Flare Station (BFS) pressurized piping and components indicated that all test locations were in compliance with the 500 ppmv requirement.

Further, as required under the LMR, any location on the landfill that has an observed instantaneous methane concentration above 200 ppmv, must be stake-marked and Global Positioning System (GPS) located on a site figure. During this reporting period, one (1) location was observed to exceed the 200 ppmv, reporting threshold. When these readings are observed, the locations are reported to site personnel for tracking and/or remediation and will be reported in the next submittal of the annual LMR report.

Finally, to help prevent potential future exceedances, SCS recommends that the landfill surface be routinely inspected and any observed surface erosion be routinely repaired.

BACKGROUND

The Vasco Road Landfill is an active organic refuse disposal site. By way of background, organic materials buried in a landfill decompose anaerobically (in the absence of oxygen) producing a combustible gas which contains approximately 50 to 60 percent methane gas, 40 to 50 percent carbon dioxide, and trace amount of various other gases, some of which are odorous. The Vasco Road property contains a system to control the combustible gases generated in the landfill.

SURFACE EMISSIONS MONITORING

On January 10, 11 and 12, 2022, the instantaneous and integrated SEM was performed over the surface of the subject site. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring in the 50,000 square foot grids as required under the LMR. During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rules as required.

EMISSIONS TESTING INSTRUMENTATION/CALIBRATION

Instruments used to perform the landfill surface emission testing consisted of the following:

- Thermo Scientific TVA 2020 portable Flame Ionization Detector (FID). This instrument measures methane in air over a range of 1 to 50,000 ppmv. The TVA 2020 meets the State of California Air Resources Board (CARB) requirements for combined instantaneous and integrated monitoring and was calibrated in accordance with United States Environmental Protection Agency (US EPA) Method 21.
- Weather Anemometer with continuous recorder for meteorological conditions in accordance with the LMR.

Instrument calibration logs and weather information are shown in Attachments 5 and 6.

SURFACE EMISSIONS MONITORING PROCEDURES

Surface emissions monitoring was conducted in accordance with the LMR and NSPS requirements. Monitoring was performed with the FID inlet held within 3-inches of the landfill surface while a technician walked a grid in parallel paths not more than 25 -feet apart over the surface of the landfill. Cracks, holes and other cover penetrations in the surface were also tested. Surface emissions readings were monitored continuously and recorded every 5 seconds. Any areas in exceedance of the 200 or 500 ppmv standards (reporting and compliance levels, respectively) would be GPS tagged and stake-marked for on-site personnel to perform remediation or repairs.

The integrated average is based on the readings stored on the instrument, which are recorded every 5 seconds. The readings are then downloaded and the averages are calculated for each grid using SCS eTools®. All readings are maintained in this secure SCS Database. The readings are not provided in the report due to the volume of readings, but can be furnished upon request.

Recorded wind speed results are shown in Attachment 6. Wind speed averages were observed to remain below the alternative threshold of 10 miles per hour, and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within 72 hours of the monitoring events. Therefore, site meteorological conditions were within the alternatives of the LMR requirements on the above mentioned dates.

TESTING RESULTS

During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rule as required under the LMR and NSPS. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR or NSPS threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring (LMR).

On January 10, 11 and 12, 2022, SCS performed first quarter 2021 instantaneous emissions monitoring testing as required by the BAAQMD. During this monitoring, surface emissions results indicated that no locations exceeded the 500 ppmv maximum concentration. Based on these monitoring results no additional follow up testing was required. Results of the monitoring are shown in Attachments 2 and 3 (Table 1).

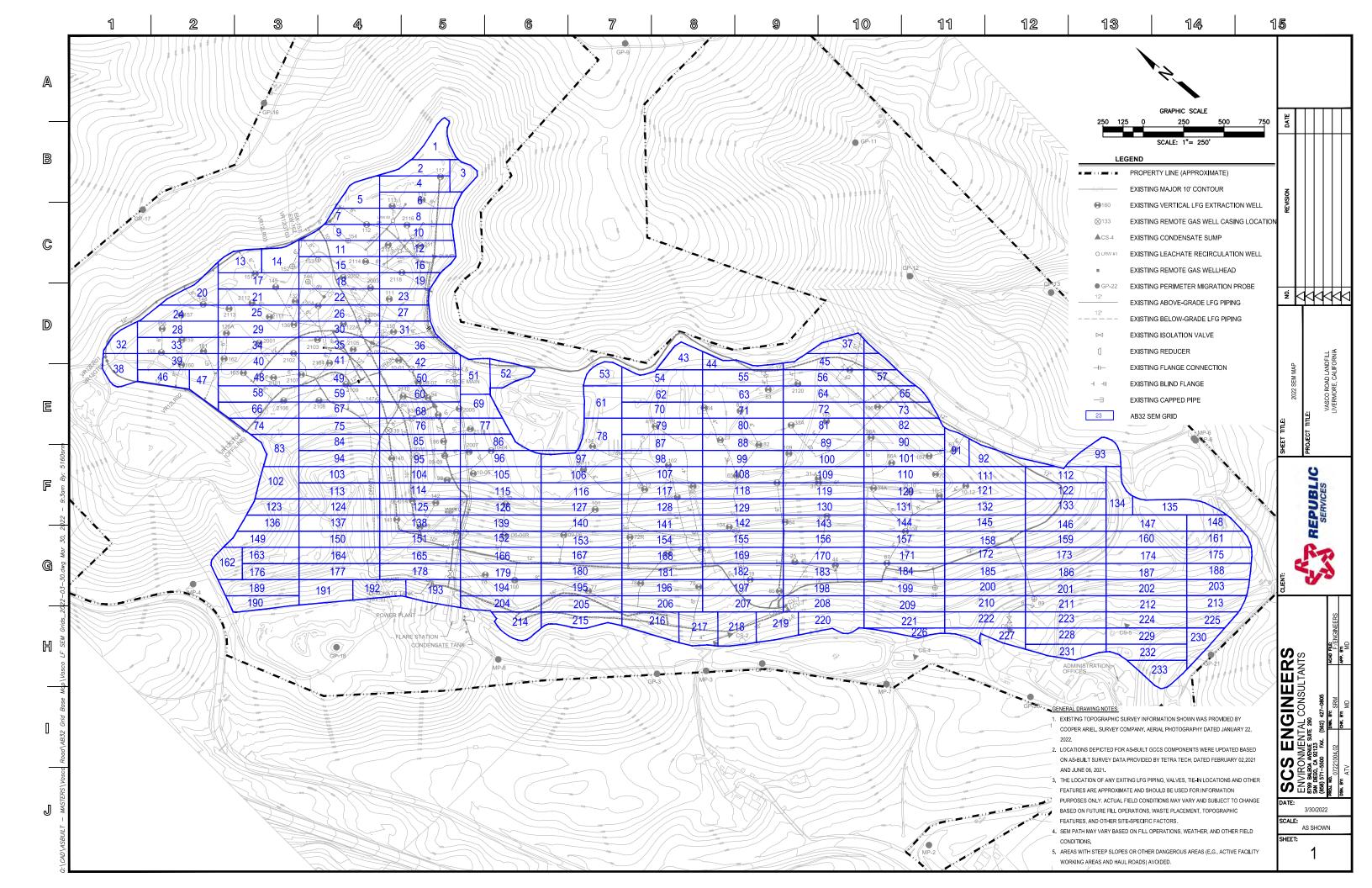
Additionally, no integrated exceedances (the calculated average of the instantaneous monitoring results) of the 25 ppmv requirement on January 10, 11 and 12, 2022, were observed, therefore no further testing was required. Results of the monitoring are shown in Attachment 4 (Table 2). Calibration logs for the monitoring equipment are provided in Attachment 5.

During this monitoring event, several grids were not monitored, in accordance with the LMR, due to active landfilling activities, unsafe conditions or no waste in place. SCS will continue to monitor all accessible locations during the second quarter 2022.

PRESSURIZED PIPE AND COMPONENT LEAK MONITORING

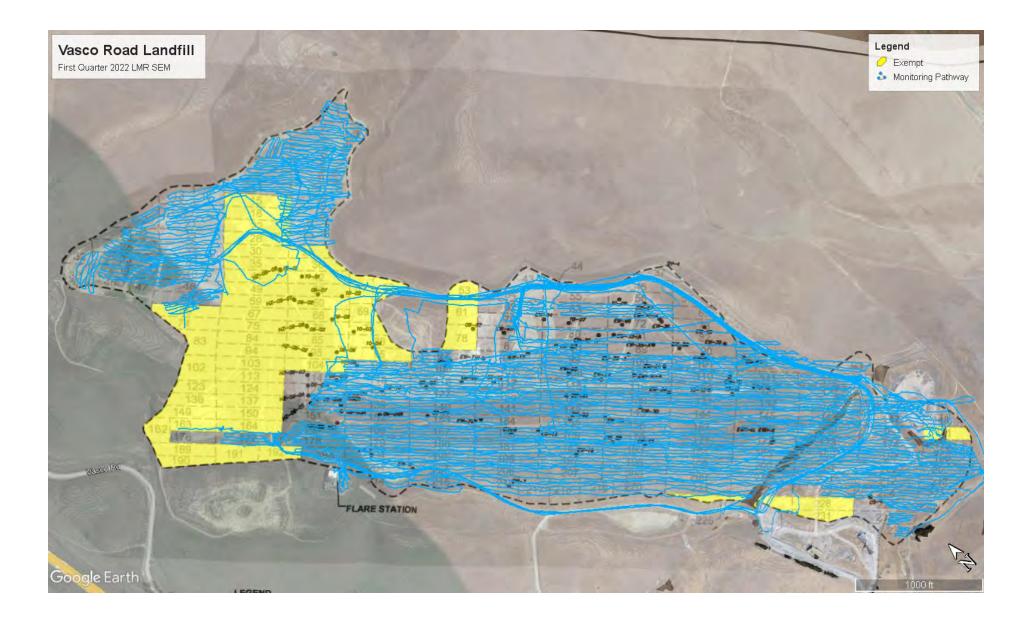
On January 12, 2022, quarterly leak monitoring was performed in accordance with the LMR. SCS performed LFG pressurized pipe and component leak monitoring at the BFS and power generation facility (reported separately). Monitoring was performed with the detector inlet held one-half of an inch from pressurized piping and associated components. No locations exceeding the 500 ppmv threshold were observed during our monitoring event. The maximum reading, which was 5.1 ppmv, was well below the maximum threshold (see Table 1 for component results). Therefore, all pressurized piping and components located at the LFG BFS were in compliance at the time of our testing.

PROJECT SCHEDULE


According to the LMR and NSPS, surface emissions monitoring at active landfills is required to be performed on a quarterly basis. Therefore, in accordance with our approved Work Scope, the second quarter 2022 (April through June) surface emissions testing event is scheduled to be performed by the end of May 2022 in accordance with the Republic SOP unless an alternative timeline is requested by site personnel.

STANDARD PROVISIONS

This report addresses conditions of the subject site during the testing dates only. Accordingly, we assume no responsibility for any changes that may occur subsequent to our testing which could affect the surface emissions at the subject site or adjacent properties.


Attachment 1

Landfill Grid

Attachment 2

Surface Pathway

First Quarter 2022 Initial LMR Surface Emissions Monitoring Pathway Vasco Road Landfill, Livermore, California Attachment 3

Instantaneous and Component Emissions Monitoring Results

First Quarter 2022

Table 1. Instantaneous Surface and ComponentEmissions Monitoring ResultsVasco Road Landfill, Livermore, California

Instantaneous Data Report for January 10, 11 and 12, 2022

Location (Surface)	Initial Monitoring Results (ppmv) 1/12/2022	First 10-Day Follow Up Monitoring Results (ppmv) NA	Second 10- Day Follow Up Monitoring Results (ppmv) NA	30-Day Follow Up Monitoring Results (ppmv) NA	Latitude	Longitude
Surface Reading in Grid VR008	372			-	37.759600	-121.722860

Pressurized Pipe and Component Results

Route	Date	Concentration (ppmv)
FLARE STATION	1/12/2022	5.1

No exceedances of the 500 ppmv threshold were observed during the first quarter 2022 monitoring.

Attachment 4

Integrated Monitoring Results

First Quarter 2022 Table 2. Integrated Surface Emissions Monitoring Results Vasco Road Landfill, Livermore, California

Point Name	Record Date	FID Concentration	Comments
		(ppm)	
VR 001	1/12/2022	2.14	
VR 002	1/12/2022	2.03	
VR 003	1/12/2022	1.93	
VR 004	1/12/2022	3.01	
VR 005	1/12/2022	2.61	
VR 006	1/12/2022	2.49	
VR 007	1/12/2022	2.71	
VR 008	1/12/2022	5.58	
VR 009	1/12/2022	3.57	
VR 010	1/12/2022	3.92	
VR 011	1/12/2022	2.52	
VR 012	1/12/2022	3.36	
VR 013	1/12/2022	5.22	
VR 014	1/12/2022	2.38	
VR 015			Exempt
VR 016	1/12/2022	2.51	
VR 017	1/12/2022	2.90	
VR 018			Exempt
VR 019	1/12/2022	2.51	
VR 020	1/12/2022	1.39	
VR 021	1/12/2022	1.68	
VR 022			Exempt
VR 023	1/12/2022	3.70	
VR 024	1/12/2022	3.19	
VR 025	1/12/2022	3.40	
VR 026			Exempt
VR 027	1/12/2022	6.87	
VR 028	1/12/2022	3.05	
VR 029	1/12/2022	3.28	
VR 030			Exempt
VR 031			Exempt
VR 032	1/12/2022	2.78	
VR 033	1/12/2022	2.80	
VR 034	1/12/2022	2.90	
VR 035			Exempt
VR 036			Exempt
VR 037	1/12/2022	2.44	- 177
VR 038	1/12/2022	2.81	
VR 039	1/12/2022	2.79	
VR 040	1/12/2022	2.76	
VR 040			Exempt
VR 042			Exempt
VR 043	1/12/2022	2.13	Exempt
VK 043	1/12/2022	2.13	

SCS DataServices - Secure Environmental Data

236- 3

Point Name	Record Date	FID Concentration (ppm)	Comments
VR 044	1/12/2022	2.29	
VR 045	1/12/2022	2.24	
VR 046	1/12/2022	1.64	
VR 047	1/12/2022	4.14	
VR 048	1/12/2022	2.29	
VR 049			Exempt
VR 050			Exempt
VR 051			Exempt
VR 052			Exempt
VR 053			Exempt
VR 054	1/12/2022	2.57	
VR 055	1/12/2022	2.29	
VR 056	1/12/2022	2.12	
VR 057	1/12/2022	2.22	
VR 058	1/11/2022	2.27	
VR 059			Exempt
VR 060			Exempt
VR 061			Exempt
VR 062	1/11/2022	1.70	
VR 063	1/11/2022	2.68	
VR 064	1/11/2022	2.02	
VR 065	1/12/2022	2.14	
VR 066			Exempt
VR 067			Exempt
VR 068			Exempt
VR 069			Exempt
VR 070	1/11/2022	0.87	
VR 071	1/11/2022	2.11	
VR 072	1/11/2022	1.29	
VR 073	1/11/2022	2.16	
VR 074			Exempt
VR 075			Exempt
VR 076			Exempt
VR 077			Exempt
VR 078			Exempt
VR 079	1/11/2022	2.23	·
VR 080	1/11/2022	2.52	
VR 081	1/11/2022	2.50	
VR 082	1/11/2022	3.63	
VR 083			Exempt
VR 084			Exempt
VR 085			Exempt
VR 086			Exempt
			-nompe

Point Name	Record Date	FID Concentration	Comments
		(ppm)	
VR 087	1/11/2022	1.49	
VR 088	1/11/2022	1.54	
VR 089	1/11/2022	1.73	
VR 090	1/11/2022	2.41	
VR 091	1/12/2022	1.32	
VR 092	1/12/2022	1.50	
VR 093	1/12/2022	1.47	
VR 094			Exempt
VR 095			Exempt
VR 096			Exempt
VR 097	1/12/2022	2.25	
VR 098	1/12/2022	2.02	
VR 099	1/12/2022	1.89	
VR 100	1/12/2022	1.82	
VR 101	1/12/2022	2.13	
VR 102			Exempt
VR 103			Exempt
VR 104			Exempt
VR 105	1/11/2022	2.64	
VR 106	1/11/2022	1.99	
VR 107	1/11/2022	1.82	
VR 108	1/11/2022	1.84	
VR 109	1/11/2022	1.89	
VR 110	1/11/2022	1.88	
VR 111	1/11/2022	1.85	
VR 112	1/11/2022	2.62	
VR 113			Exempt
VR 114	1/11/2022	4.42	
VR 115	1/11/2022	2.49	
VR 116	1/11/2022	1.60	
VR 117	1/11/2022	1.48	
VR 118	1/11/2022	1.48	
VR 119	1/11/2022	1.34	
VR 120	1/11/2022	1.36	
VR 121	1/11/2022	1.86	
VR 122	1/11/2022	3.25	
VR 123			Exempt
VR 124			Exempt
VR 125	1/11/2022	8.81	
VR 126	1/11/2022	5.46	
VR 127	1/11/2022	1.63	
VR 128	1/11/2022	1.45	
VR 129	1/11/2022	1.50	

20-2

Point Name	Record Date	FID Concentration (ppm)	Comments
VR 130	1/11/2022	1.41	
VR 131	1/11/2022	1.37	
VR 132	1/11/2022	2.08	
VR 133	1/11/2022	4.04	
VR 134	1/11/2022	2.41	
VR 135	1/11/2022	1.69	
VR 136			Exempt
VR 137			Exempt
VR 138	1/11/2022	9.87	
VR 139	1/11/2022	3.91	
VR 140	1/11/2022	1.76	
VR 141	1/11/2022	1.33	
VR 142	1/11/2022	1.37	
VR 143	1/11/2022	1.35	
VR 144	1/11/2022	1.36	
VR 145	1/11/2022	1.74	
VR 146	1/11/2022	2.46	
VR 147	1/11/2022	2.05	
VR 148	1/11/2022	1.70	
VR 149			Exempt
VR 150			Exempt
VR 151	1/11/2022	5.47	
VR 152	1/11/2022	3.65	
VR 153	1/11/2022	2.36	
VR 154	1/11/2022	1.17	
VR 155	1/11/2022	1.22	
VR 156	1/11/2022	1.15	
VR 157	1/11/2022	1.10	
VR 158	1/11/2022	1.04	
VR 159	1/11/2022	1.22	
VR 160	1/11/2022	1.82	
VR 161			Exempt
VR 162			Exempt
VR 163			Exempt
VR 164			Exempt
VR 165	1/10/2022	5.53	
VR 166	1/10/2022	5.33	
VR 167	1/10/2022	3.18	
VR 168	1/10/2022	2.13	
VR 169	1/10/2022	2.19	
VR 170	1/10/2022	2.10	
VR 171	1/10/2022	2.04	
VR 172	1/10/2022	2.10	

SCS DataServices - Secure Environmental Data

236- 3

Point Name	Record Date	FID Concentration (ppm)	Comments
VR 173	1/10/2022	1.31	
VR 174	1/10/2022	1.64	
VR 175	1/10/2022	2.09	
VR 176	1/10/2022	0.68	
VR 177	1/10/2022	1.54	
VR 178	1/10/2022	3.60	
VR 179	1/10/2022	2.82	
VR 180	1/10/2022	1.64	
VR 181	1/10/2022	1.12	
VR 182	1/10/2022	1.17	
VR 183	1/10/2022	1.22	
VR 184	1/10/2022	1.22	
VR 185	1/10/2022	1.34	
VR 186	1/10/2022	1.91	
VR 187	1/10/2022	2.58	
VR 188	1/10/2022	3.50	
VR 189			Exempt
VR 190			Exempt
VR 191			Exempt
VR 192			Exempt
VR 193	1/10/2022	3.33	
VR 194	1/10/2022	3.08	
VR 195	1/10/2022	1.90	
VR 196	1/10/2022	1.32	
VR 197	1/10/2022	1.42	
VR 198	1/10/2022	1.45	
VR 199	1/10/2022	1.47	
VR 200	1/10/2022	1.52	
VR 201	1/10/2022	1.90	
VR 202	1/10/2022	9.58	
VR 203	1/10/2022	2.57	
VR 204	1/10/2022	3.53	
VR 205	1/10/2022	2.39	
VR 206	1/10/2022	1.68	
VR 207	1/10/2022	1.48	
VR 208	1/10/2022	1.40	
VR 209	1/10/2022	1.38	
VR 210	1/10/2022	1.41	
VR 211	1/10/2022	1.91	
VR 212	1/10/2022	4.12	
VR 213	1/10/2022	2.30	
VR 214	1/11/2022	1.98	
VR 215	1/11/2022	2.51	

SCS DataServices - Secure Environmental Data

236- 3

Point Name	Record Date	FID Concentration (ppm)	Comments
VR 216	1/10/2022	3.01	
VR 217	1/10/2022	2.46	
VR 218	1/10/2022	2.28	
VR 219	1/10/2022	2.23	
VR 220	1/10/2022	2.14	
VR 221	1/10/2022	2.11	
VR 222	1/10/2022	1.58	
VR 223	1/10/2022	1.74	
VR 224	1/10/2022	2.06	
VR 225	1/10/2022	2.23	
VR 226			Exempt
VR 227			Exempt
VR 228			Exempt
VR 229	1/10/2022	1.76	
VR 230	1/10/2022	1.95	
VR 231			Exempt
VR 232	1/10/2022	1.64	
VR 233	1/10/2022	1.41	

Calibration Logs

1		CALIBRATION AN	ND PERTINENT DATA	
Date:	[-[]-72		Site Name:	CO
Inspector(s)	Bryan C)	Instrument: TVAZOZO	
WEATHER OBSI	ERVATIONS			
Wind Speed:	МРН	Wind NW	Barometric 30. Pressure:	39 _{"Hg}
Air Temperature:	<u>U3</u>	General Weathe Conditions	er Clegr	
CALIBRATION IN	FORMATION			
Pre-monitoring Ca	alibration Precision Check			
and calculate the	average algebraic differenc less than or equal to 10% oj	e between the instrument	nts by alternating zero air and the calibra reading and the calibration gas as a perce Cal Gas Concentratior	ntage. The calibration
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
2	0.0	500	ŏ	4
3	6.0	SUD	0	9
Calibration Precisio	on= Average Difference/Cal	Average Difference: Gas Conc. X 100%	*Perform recalibration if average difference is greater to	 an 10
		= 100%-	/500 x 100%	
		= 100	%	
Span Sensitivity:				
<u>Trial 1:</u> Coun	ts Observed for the Span=	142792	Trial 3: Counts Observed for the Spar	142092
Trial 2:	rs Observed for the Zero=	3 (18) 142.436	Counters Observed for the Zerc	2010
Counte	rs Observed for the Zero=	3729		
Post Monitoring Cali	ibration Check			
Zero Air Reading:	1.3 ppm	Cal Gas Reading:	50 Y ppm	
BACKGROUND COI	NCENTRATIONS CHECKS		7.5	
Jpwind Location Des	scription:	Grid 76	Reading:	_ ppm
Downwind Location	Description: —	Flare	Reading: 1.9	_ ppm
exce	eeded 20 miles per hour N	o rainfall had occurred wi	e alternative requested 10 miles per hour thin the previous 24 hours of the monitor ernatives of the LMR requirements on the	ing event. Therefore, site
DataServi	ces – Secure E	nvironmental	Data 🚽	2

e

SCS DataServices – Secure Environmental	Data
---	------

		ND PERTINENT DATA
	Date: 1-11-72	Site Name: V95CO
	Inspector(s): Brians	Instrument: TVAZOZO
	WEATHER OBSERVATIONS	
مرور ا	Wind Speed: MPH Direction:	N Barometric 30,39 "Hg
	Air 43 General Weath Temperature: F Condition	I IF CAL
	CALIBRATION INFORMATION	*
	Pre-monitoring Calibration Precision Check	
	and calculate the average algebraic difference between the instrumen precision must be less than or equal to 10% of the calibration gas value	e.
	Instrument Serial Number:	Cal Gas Concentration: 500
	Trial Zero Air Reading Cal Gas Reading 1 • 0.1 505	[Cal Gas ConcCal Gas Reading] Response Time (seconds)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Average Difference:	7
		*Perform recalibration if average difference is greater than 10
	Calibration Precision= Average Difference/Cal Gas Conc. X 100%	%- <u>48.6</u> /500 x 100%
	= 98.6	%
	Span Sensitivity:	
	Counts Observed for the Span=	$\frac{\text{Trial 3:}}{\text{Counts Observed for the Span=} \frac{167389}{10018}$
	Counters Observed for the Zero= 40 M	Counters Observed for the Zero= 4010
	Counts Observed for the Span= 10952 Counters Observed for the Zero= 4049	
	Post Monitoring Calibration Check	
	Zero Air Cal Gas	
8	Reading: ppm Reading:	<u>498</u> ppm
	BACKGROUND CONCENTRATIONS CHECKS	a
	Upwind Location Description: 611276 Downwind Location Description: Flare	Reading:
	Downwind Location Description: Flare	Reading: 1,3 ppm
	exceeded 20 miles per hour. No rainfall had occurred w	the alternative requested 10 miles per hour and no instantaneous speeds within the previous 24 hours of the monitoring event. Therefore, site alternatives of the LMR requirements on the above mentioned date.

			CALIBRATION AN			•2
		1/1121			Valla	
	Date:	Dalle		Site Name:	Pasco	
	Inspector(s):	VIII O		Instrument:	TV4-2020	
\bigcirc	WEATHER OBS	ERVATIONS				
			···· 1 -1			
	Wind Speed:	МРН	Wind Direction:	/	Barometric Pressure: 30	7 "Hg
	Air	117		-		
	Temperature:	43 -	General Weathe Condition	1 1 1 1		
	CALIDRATION			-10-1	=	
	CALIBRATION II	VFURMATION				
	Pre-monitoring C	alibration Precision Check				
	Procedure: Calibr	ate the instrument. Make a	total of three measureme	nts by alternating	a zero air and the calibrati	on gas. Record the readings
	and calculate the	average algebraic difference	e between the instrument	reading and the	calibration gas as a percer	ntage. The calibration
	precision must be	less than or equal to 10% o	j the calibration gas value.			
	Instrument Serial	Number: 14/1	2		Cal Gas Concentration:	500
	Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas C	oncCal Gas Reading	Bospence Time (august)
	1	.0	594	Teal Gas e	3	Response Time (seconds)
	2	1/2	502		2	3
			4019	1		3
			Average Difference:		2	
				*Perform recalibration	if average difference is greater than	
()	Calibration Precisio	n= Average Difference/Cal	Gas Conc. X 100%		2	
1				2		
			= 100%-		/500 x 100%	
			= 99/2	%	2	
	Span Sensitivity:					
	Trial 1:		16720	Trial 3:		100
	Coun	ts Observed for the Span=	6/110		ts Observed for the Span=	109056
	Counte	rs Observed for the Zero=	36(2	Counta	rs Observed for the Zero=	3507
1	Trial 2:		167 100	Counte	is observed for the zero=	121/
	Count	is Observed for the Span=	02180			
	Counter	rs Observed for the Zero=	305do			
			1 te			
P	ost Monitoring Cali	bration Check				
z	iero Air	a I	Cal Gas	01		
R	eading:	ppm	Reading	305	nqq	
В	ACKGROUND CON	CENTRATIONS CHECKS				
			6-2 1-21			
U	pwind Location Des	cription: –	511016	R	eading:	ppm
Do	ownwind Location (Description:	Grid 76 Flare	R	eading:	ppm
1						
No	otes: Wind	d speed averages were obs	erved to remain below the	e alternative requ	ested 10 miles per hour a	nd no instantaneous speeds
	mete	eded 20 miles per hour. N eorological conditions were	e within the requested alte	min the previous matives of the LP	24 nours of the monitorin MR requirements on the a	g event. Ineretore, site bove mentioned date
CAR						and mentioned date.
SUSI	DataServia	es - Secure E	nvironmental	Pata	0256 0 2	

		CALIBRATION AN	IN PERTINENT		
	01-11-91				
Date:	1 inn n	1	Site Name:	[asco	
Inspector(s)	6/019 10		Instrument	TVAZOZO	
WEATHER OF	BSERVATIONS				
	7	Wind 11	A	Barometric 3	
Wind Spee	d: MPH	Direction:	<u> </u>	Pressure:	"Hg
A Temperature	ir 43 "F	General Weathe Conditions			
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	brate the instrument. Make one average algebraic different	ce between the instrument r	its by alternating ze reading and the cali	ro air and the calibratio bration aas as a percen	n gas. Record the readings tage. The calibration
precision must b	be less than or equal to 10% o	of the calibration gas value.		5 <i>F</i>	
Instrument Seria	al Number: 163	3		Cal Gas Concentration	500
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas Con	-Cal Gas Reading	Response Time (seconds)
1	10	509		0	3
2	- 'h	30		1	3
		201		3	
		Average Difference:		1.3	
			"Perform recalibration if a	erage difference is greater than	10
Calibration Precis	sion= Average Difference/Cal	Gas Conc. X 100%		2	
		= 100%-	1.3 /50	00 x 100%	
		96. 7		10076 10076	
		= 19,7	%		
Span Sensitivity:					
<u>Trial 1:</u> Cou	unts Observed for the Span=	(788(2)	Trial 3:	Observed for the Span=	176200
		3118			10119
Coun Trial 2:	ters Observed for the Zero=	110	Counters (Observed for the Zero=-	5000
	ints Observed for the Span= $($	79672			67 80 A
Count	ters Observed for the Zero=	2973 30	old		
Post Monitoring Ca	alibration Check	MM			
Zero Air		141	0		
Reading:	D ppm	Cal Gas Reading:	567 -		
				,	
BACKGROUND CO	ONCENTRATIONS CHECKS				
Upwind Location D	escription:	Grid 76 Flase	Rea	ding: <u>1,1</u>	ipm
Downwind Location	Description:	Flare	Read	ding: <u>1, 7</u> p	pm
exc	ind speed averages were obs ceeded 20 miles per hour. N	lo rainfall had occurred with	nin the previous 24	hours of the monitoring	event. Therefore, site
me	eteorological conditions were	e within the requested alter	rnatives of the LMR	requirements on the ab	ove mentioned date.
DataSam	cas - Sacura E		A CONTRACT OF A	NUT STANDARD	1

scs s - Secure Environmental Data

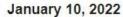
Date: U	1		CALIBRATION AN	ID PERTINE	NT DATA	
Inspector(s): Michael M Instrument: DVAZOZO Instrument: TVAZOZO	Date	11-11-21			Vasco	
WEATHER OBSERVATIONS Wind Multiple Barometric 3 C "ink Wind Speed:		Michael	n	Site Name:	rusco -	······································
Wind Speed: NRH Wind Wind Barometric 3 construction 1 ag Ar 4r 4r 3 construction General Weather Conditions: Child CALIBRATION INFORMATION Pre-monitoring Calibration Precision Check Proceedure: Colibrate the unstrument. Weak a total of three measurements by atternating zero air and the colibration gos: a percentage. The colibration gos as a percentage. The colibration for the Span		richaet	101	Instrument:	_1VA-2020	
Wind Speed: MPH Direction (V) Pressure: "ng Air Air Callbant: Candition: Condition: Candition:	WEATHER OB:	SERVATIONS				
Temperature:	Wind Speed	МРН	Wind Wind Direction:		Barometric Pressure:	> ── ^{──} ^{──}
Pre-monitoring Calibration Precision Check Procedure: Collibrate the instrument: Make a total of three measurements by alternating zero air and the collibration gas. Becond the rece precision must be less than or equal to 10% of the collibration gas value. Instrument Serial Number: Instrument Serial Number:	Air Temperature	43 .			2	
Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas as a percentage. The calibration gas walve. Instrument Serial Number:	CALIBRATION I	NFORMATION				
and colculate the average algebraic difference between the instrument reading and the colibration gas as a percentage. The colibration gas value. Instrument Serial Number:	Pre-monitoring (Calibration Precision Check				
Trial Zero Air Reading Cal Gas Reading I Cal Gas ConcCal Gas Reading Response Time (set a concernent of a concernent a concernent a concernent of a conconcernent a concernent a conconcernent a concernent a	precision must be	e average algebraic differer e less than or equal to 10%	nce between the instrument	reading and the	calibration gas as a percen	ntage The calibration
1 1	Trial	Zero Air Roading				
2 3			S Car Gas Reading	Cal Gas C	oncCal Gas Reading	
Average Difference: Image: Calibration Precision= Average Difference/Cal Gas Conc. X 100% = 100%		13	300		0	
Calibration Precision= Average Difference/Cal Gas Conc. X 100% = 100%			1001	1		5
Trial 1: Counts Observed for the Span= 399996 Trial 3: Counts Observed for the Span= 29788 Counts Observed for the Span= 297977 Trial 2: Counts Observed for the Span= 4459448 Counters Observed for the Zero= 297777 Post Monitoring Calibration Check Cal Gas 4977 ppm BACKGROUND CONCENTRATIONS CHECKS Vind Location Description: Condet for the Served to remain below the alternative requested 10 miles per hour and no instantaneous speceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site				• 3	/500 x 100%	
Counts Observed for the Span= 29996 Intersection Counters Observed for the Zero= 2988 Counters Observed for the Span= Initial: Counters Observed for the Zero= 2988 Initial: Counters Observed for the Zero= 2988 Initial: Counters Observed for the Zero= 29796 Initial: Counts Observed for the Zero= 29796 Initial: Counters Observed for the Zero= 29797 Post Monitoring Calibration Check Cal Gas Reading: 497 Reading: 1.0 ppm Reading: 497 BACKGROUND CONCENTRATIONS CHECKS Reading: 1.1 ppm Downwind Location Description: Flac Reading: 1.1 ppm Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous sp exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site of the spinor of the monitoring event.	5			<u> </u>	/500 x 100%	
Trial 2: Countes Observed for the Span= (459448) Counters Observed for the Zero= 29773 Post Monitoring Calibration Check Cal Gas Zero Air Cal Gas Reading: 1.0 ppm BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: 6 md 76 Post Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous served 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site				• <u>3</u> %	/500 x 100%	
Counts Observed for the Span= 459448 Counters Observed for the Zero= 20173 Post Monitoring Calibration Check Zero Air Cal Gas Reading: 1.0 ppm BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Grid 76 Post Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous sp exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	Trial 1:	nts Observed for the Span=	= 100%- = 99.9	% Trial 3:		[3578
Post Monitoring Calibration Check Zero Air Reading: LO ppm Cal Gas Reading: 497 ppm BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Downwind Location Description: Flace Reading: LI ppm Reading	<u>Trial 1:</u> Coun		= 100% = 99.9 (39996) 200500	% Trial 3: Coun	ts Observed for the Span=	[3578 2971
Zero Air I.O.ppm Cal Gas Reading: I.O.ppm Reading: 49.7 ppm BACKGROUND CONCENTRATIONS CHECKS Grid 76 Reading: I.I.ppm Downwind Location Description: Grid 76 Reading: I.I.ppm Downwind Location Description: Flacc Reading: I.I.ppm Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous sp exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	Trial 1: Coun Counte Trial 2: Coun	ers Observed for the Zero= ts Observed for the Span=	= 100%- = 99.9 (39996 2988 [45548	% Trial 3: Coun	ts Observed for the Span=	[3578 2971
Reading: 1.0 ppm Reading: 49.7 ppm BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Grid 76 Reading: 1.1 ppm Downwind Location Description: Flarc Reading: 1.1 ppm Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous sp exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	Trial 1: Coun Counte Trial 2: Coun	ers Observed for the Zero= ts Observed for the Span=	= 100%- = 99.9 (39996 2988 [45548	% Trial 3: Coun	ts Observed for the Span=	[3578 2971
BACKGROUND CONCENTRATIONS CHECKS Upwind Location Description: Grd76 Downwind Location Description: Flace Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous sp exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	Trial 1: Counte Trial 2: Counte	ers Observed for the Zero= ts Observed for the Span= ers Observed for the Zero=	= 100%- = 99.9 (39996 2988 [45548	% Trial 3: Coun	ts Observed for the Span=	[3578 2971
Upwind Location Description: Grd76 Reading: Ul ppm Downwind Location Description: Flacc Reading: I.1 ppm Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous sp exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site	Trial 1: Counte Trial 2: Counte Post Monitoring Cali Zero Air	ers Observed for the Zero= ts Observed for the Span= ers Observed for the Zero=	= 100%- = 99.9 (39996 2988 [45548 2973	% Trial 3: Coun	ts Observed for the Span=	[3578 2971
Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous sp exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, sit	Trial 1: Counte Trial 2: Counte Post Monitoring Cali Zero Air	ers Observed for the Zero= ts Observed for the Span= ers Observed for the Zero= libration Check	= 100%- = 99.9 (39996 2988 (45948 2973 (45948 2973)	% Trial 3: Counte	ts Observed for the Span=	[3578 2971
Notes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous sp exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, sit	Trial 1: Counte Trial 2: Counte Post Monitoring Cal Zero Air Reading:	ers Observed for the Zero= ts Observed for the Span= ers Observed for the Zero= libration Check	= 100%- = 99.9 (39996 2988 (45548 2973) Cal Gas Reading:	% Trial 3: Counte	ts Observed for the Span=	[3578 2971
exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, sit	Trial 1: Counte Trial 2: Counte Post Monitoring Cali Zero Air Reading: BACKGROUND COI	ers Observed for the Zero= ts Observed for the Span= ers Observed for the Zero= ibration Check	= 100%- = 99.9 (39996 2988 (45548 2973) Cal Gas Reading:	% T <u>rial 3:</u> Counte Counte	ts Observed for the Span= ars Observed for the Zero	2971
	Trial 1: Counte Trial 2: Counte Post Monitoring Cali Zero Air Reading: BACKGROUND COI	ers Observed for the Zero= ts Observed for the Span= ers Observed for the Zero= ibration Check NCENTRATIONS CHECKS scription:	= 100%- = 99.9 (39996 2988 (45548 2973) Cal Gas Reading:	% Trial 3: Counte Counte	ts Observed for the Span= ars Observed for the Zero-	29.71 ppm

1		CALIBRATION AI	ND PERTINE	IT DATA	
Date:	1/12/22		Site Name	Valo	
Inspector(s):	Brian S		Instrument:	TVAZOZO	
WEATHER OB	SERVATIONS				
	Yes.	Wind A.		8arometric -	
Wind Speed	ANEMPH	Direction:		Pressure: 30.2	9 "Hg
Air Temperature	111	General Weath Condition		_	
CALIBRATION	INFORMATION		ŗ		
Pre-monitoring	Calibration Precision Check				
Procedure: Calib	rate the instrument. Make	a total of three measureme	ents by alternatina	zero air and the calibrati	on aas Record the reading
and calculate the	e average algebraic differen	ce between the instrument	reading and the c	alibration gas as a percei	itage. The calibration
precision must p	e less than or equal to 10% o	of the calibration gas value			
nstrument Seria	Number:			Cal Gas Concentration	_500
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	onc -Cal Gas Reading	Response Time (second
1	9.0	499		2	3
3	0.0	50			3
alibration Precis	ion≈ Average Difference/Cal		498	/500 x 100%	
	ion≃ Average Difference/Cal		<u>498</u> %	/500 x 100%	
an Sensitivity: ial 1:		= 100%- = 99.6	% Trial 3:		1100.001
an Sensitivīty: <mark>ial 1:</mark> Cou	nts Observed for the Span=	= 100%- = 99.6 [16/928	% Triał 3: Count	s Observed for the Span-	
an Sensitivity: ial 1: Cou Count ial 2:	nts Observed for the Span= ers Observed for the Zero=	= 100%- = 99.6 16/928 3952	% Triał 3: Count		2022
an Sensitivity: ial 1: Cou Count ial 2:	nts Observed for the Span=	= 100%- = 99.6 [6/928 3952 [6[42-0	% Triał 3: Count	s Observed for the Span-	
aan Sensitivīty: <mark>ial 1:</mark> Cou Count i <mark>al 2:</mark> Cour	nts Observed for the Span= ers Observed for the Zero=	= 100%- = 99.6 16/928 3952	% Triał 3: Count	s Observed for the Span-	
oan Sensitivîty: fal 1: Cou Count ial 2: Count	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero=	= 100%- = 99.6 [6/928 3952 [6[42-0	% Triał 3: Count	s Observed for the Span-	
an Sensitivity: ial 1: Cou Count ial 2: Count st Monitoring Ca ro Air	nts Observed for the Span= ers Observed for the Zero= nts Observed for the Span= ers Observed for the Zero= alibration Check	= 100%- = 99.6 [6/928 3952 [6[42-0	% Triał 3: Count	s Observed for the Span-	
aan Sensitivīty: ial 1: Count i al 2: Count St Monitoring Ca ro Air ading:	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check	= 100% = 997.6 [16/928 3952 16[42-0 3938 Cal Gas Reading.	% Trial 3: Counte	s Observed for the Span-	
oan Sensitivīty: ial 1: Count ial 2: Count st Monitoring Ca o Air ading:	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ers Observed for the Zero= alibration Check	= 100% = 99.6 16/928 3952 16(42-0 3938 Cal Gas Reading	% Trial 3: Counte Counte	s Observed for the Span=	
oan Sensitivīty: ial 1: Count ial 2: Count st Monitoring Ca o Air ading:	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ers Observed for the Zero= alibration Check	= 100% = 99.6 16/928 3952 16(42-0 3938 Cal Gas Reading	% Trial 3: Counte Counte	s Observed for the Span=	
aan Sensitivity: ial 1: Court Count ial 2: Count St Monitoring Ca st Monitoring Ca o Air ading: CKGROUND CC wind Location De	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ers Observed for the Zero= alibration Check OUCENTRATIONS CHECKS escription	= 100% = 997.6 [16/928 3952 16[42-0 3938 Cal Gas Reading.	% Trial 3: Counte Counte	s Observed for the Span= rs Observed for the Zero=	3972
aan Sensitivity: ial 1: Count Count ial 2: Count Cou	nts Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ers Observed for the Zero= alibration Check OUCENTRATIONS CHECKS escription	= 100% $= 97.6$ $16/92%$ 3952 $16(42-0)$ $393%$ Cal Gas Reading $Grid 192-$ Flace served to remain below the remain belo	%	rs Observed for the Span= rs Observed for the Zero= pm eading: <u>1.3</u> eading: <u>1.1</u> ested 10 miles per hour a 24 hours of the monitorir	ppm ppm nd no instantaneous speed g event. Therefore, site

SCS DataServices – Secure Environmental Data	A fai	
--	-------	--

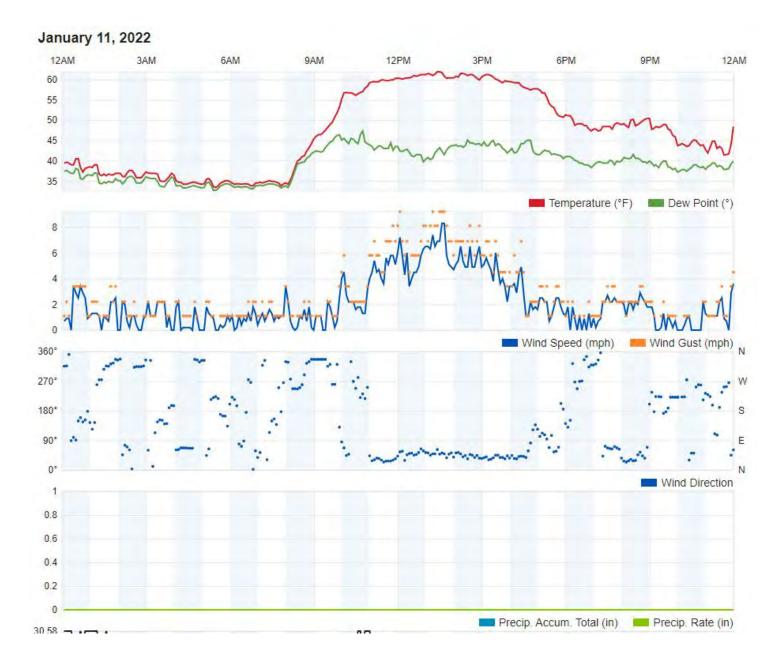
4		JUIN MUL LINNJUN	JINI VIVI CHIL	UNIIV		
	*	CALIBRATION AND	D PERTINEN	IT DATA		
Date:	1-12-27	2	Site Name:	Vaso	0	
Inspector(s):	-lam M		Instrument:	TV4-ZC	020	
WEATHER OBSE	RVATIONS					
Wind Speed:	Мрн	Wind Direction: N	2	Barometric Pressure: _	30	Hg
Air Temperature:	47	General Weather Conditions:	Clear	-		
CALIBRATION IN	FORMATION		~			
	libration Precision Check					
and calculate the a	te the instrument, Make a average algebraic differenc less than or equal to 10% o	e between the instrument r	its by alternating reading and the o	calibration gas	as a percenti	age. The calibration
Instrument Serial I	Number:			Cal Gas Cond		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Re	ading	Response Time (seconds
2		400d		1		3
3		490		1		Y
X		= 100%- = 99.7	<u> </u>	_/500 x 100%		
Span Sensitivity:		1 2201	Taial 2.			
	its Observed for the Span=	170384 4100		nts Observed fo		(69392 4/94
Counte Trial 2:	ers Observed for the Zero=	1169	Count	ters Observed f	or the Zero=	
	its Observed for the Span=	4/22				
Counte	ers Observed for the Zero=	1177				
Post Monitoring Ca	libration Check					
Zero Air Reading:	1.8 ppm	Cal Gas Reading:	496	ppm		
ACKGROUND CC	INCENTRATIONS CHECKS	;			21 . LA	
Jpwind Location De	escription:	Gord 92		Reading:	1.3	ppm
Oownwind Location	Description	Flate	÷	Reading:	1.4	ppm
ex	nd speed averages were of ceeded 20 miles per hour. eteorological conditions we	No rainfall had occurred w	vithin the previou	us 24 hours of t	he monitori	ng event. Therefore, site

PLACE PAR

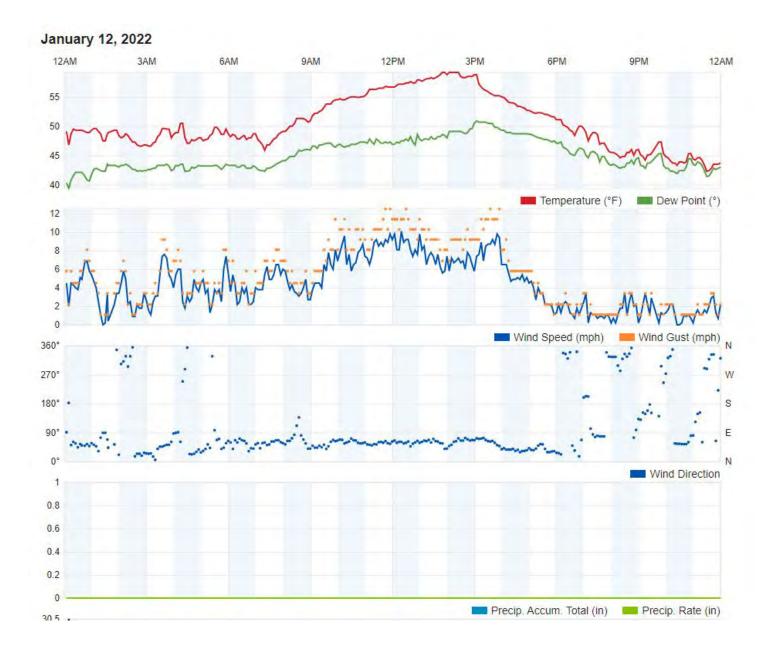

I SUMME EMISSION AS INVENTION
CALIBRATION AND PERTINENT DATA
Date: 91-17-22 Site Name: VOLSCO
Inspector(s): MIGNARIM Instrument: TVA-2020
WEATHER OBSERVATIONS
Wind Speed: MPH Direction: Barometric 30 "Hg
Air General Weather Clear
CALIBRATION INFORMATION
Pre-monitoring Calibration Precision Check
Procedure: Calibrate the instrument. Make a total of three measurements by alternating zero air and the calibration gas. Record the reading and calculate the average algebraic difference between the instrument reading and the calibration gas as a percentage. The calibration precision must be less than or equal to 10% of the calibration gas value.
Instrument Serial Number: Cal Gas Concentration: 500
TrialZero Air ReadingCal Gas Reading[Cal Gas ConcCal Gas Reading]Response Time (secon1105063
2 3
3 60/ 50/
Average Difference: 8 *Perform recalibration if average difference is greater than 10 Calibration Precision= Average Difference/Cal Gas Conc. X 100%
= 100%- / 500 x 100%
= 98.7%
Span Sensitivity:
$\frac{\text{Trial 1:}}{\text{Counts Observed for the Span} = (37900)} \text{Trial 3:} \text{Counts Observed for the Span} = (4072)$
Counters Observed for the Zero= 3099 Counters Observed for the Zero= 3051
Counts Observed for the Span= (40280)
Counters Observed for the Zero= 306
ost Monitoring Calibration Check
leading: Log ppm Cal Gas <u>490</u> ppm
ACKGROUND CONCENTRATIONS CHECKS
Powind Location Description: <u>Grv/192</u> Reading: <u>1.3</u> ppm
ownwind Location Description:
otes: Wind speed averages were observed to remain below the alternative requested 10 miles per hour and no instantaneous spe exceeded 20 miles per hour. No rainfall had occurred within the previous 24 hours of the monitoring event. Therefore, site meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date.

pataServices — Secure Environmental Data 💦 🔗 🖓

-	CALIBRATION AN	D PERTINENT DATA		
Date: 1/12/22		Site Name:	7.0	a.
Inspector(s): RoberT	m	Instrument: TVA	2020	a)
WEATHER OBSERVATIONS				-
Wind Speed: MPH	Wind Direction: MVE	Barometri Pressure	с <u>30.29</u> "Нв	
Air Temperature: <u> </u>	General Weathe Conditions	and the second sec		
CALIBRATION INFORMATION				
Pre-monitoring Calibration Precision Check				
Procedure: Calibrate the instrument. Make and calculate the average algebraic differen precision must be less than or equal to 10% Instrument Serial Number:	nce between the instrument i	reading and the calibration gc	the calibration gas. Record th is as a percentage. The calibra incentration:	e readings Ition
Trial Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas	Reading Response Tim	e (seconds)
$\frac{1}{2}$	508	13	3	
3 0.0	500	0	3	
Calibration Precision= Average Difference/Ca	al Gas Conc. X 100% = 100%- = 98.8	<u>/94</u> /500 x 100%		
Span Sensitivity				
Trial 1: Counts Observed for the Span= Counters Observed for the Zero= Trial 2:	166536	Trial 3: Counts Observed : Counters Observed	2000	
Counts Observed for the Span=	167064			
Counters Observed for the Zero=	3055			
Post Monitoring Calibration Check				
Zero Air Reading: <u>1.5</u> ppm	Cal Gas Reading:	508 ppm	a f	
BACKGROUND CONCENTRATIONS CHECK	5 Gry 192	• Reading:	(.3 ppm	
Downwind Location Description:	Flare,	Reading:	(. 4 ppm	
Notes: Wind speed averages were o exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred wit	e alternative requested 10 mil hin the previous 24 hours of t	es per hour and no instantane he monitoring event. Therefo	re, site


SCS DataServices – Secure Environmental D	Data 🚽	Sice De	
SCS DataServices - Secure Environmental D	Data 🚽	I Ster De	

Weather Data



First Quarter 2022 Weather Data for January 10, 2022 Vasco Road Landfill, Livermore, California

First Quarter 2022 Weather Data for January 11, 2022 Vasco Road Landfill, Livermore, California

First Quarter 2022 Weather Data for January 12, 2022 Vasco Road Landfill, Livermore, California

SCS FIELD SERVICES

August 9, 2022 File No. 07221004.01

Ms. Antonia Gunner Republic Services – Vasco Road Landfill 4001 N. Vasco Road Livermore, California 94551

Subject: Vasco Road Landfill - Livermore, California

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring for Second Quarter 2022.

Dear Ms. Gunner:

SCS Field Services (SCS-FS) is pleased to provide the Republic Services, with the enclosed report summarizing the surface emissions monitoring services provided at the Vasco Road Landfill (Site) during the second quarter 2022. This report includes the results of surface scan, component emissions and blower/flare station emissions monitoring for the Site for this monitoring period.

SCS-FS appreciates the opportunity to be of assistance to Republic Services on this project. As you review the enclosed information, please contact Art Jones (209) 345-2062, Michael Calmes at (209) 573-3364 or Whitney Stackhouse at (209) 338-7990 if you have any questions or comments.

Sincerely,

Whitney Stackhouse Project Manager SCS Field Services

Encl.

cc: Art Jones, SCS Field Services

Michael Calmes Project Manager SCS Field Services

Vasco Road Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring

Second Quarter 2022

Presented to:

Ms. Antonia Gunner Republic Services – Vasco Road 4001 N. Vasco Road Livermore, California 94551

SCS FIELD SERVICES

File No. 07221004.01 | August 9, 2022

SCS FIELD SERVICES 4730 Enterprise Way Suite A Modesto, CA 95356

Vasco Road Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring Second Quarter 2022

INTRODUCTION

This letter provides results of the April 6, 7, 8, 12, 18 and May 5, 2022, LMR and NSPS landfill surface emissions monitoring (SEM) performed by SCS Field Services (SCS) at the subject site. All work was performed in accordance with our approved Work Scope dated December 23, 2020, and the LMR requirements.

SUMMARY AND CONCLUSIONS

As stipulated in LMR, if uncorrectable exceedances within the 10-day limitation are detected or emissions are discovered during an inspection by Regulatory Agencies, the landfill must perform monitoring on a 25-foot pathway on a quarterly basis for active disposal sites. Upon completion of four consecutive SEM events without an uncorrectable exceedance of the 25 ppmv or 500 ppmv standards, other than non-repeatable momentary readings, the landfill may perform the monitoring on a 100-foot spacing on an annual basis for closed landfills or quarterly for active disposal sites. Therefore, based on the previous monitoring events, in which exceedances were observed, the monitoring at the Vasco Road Landfill was performed on 25-foot pathways in accordance with the LMR.

On, April 6, 7, 8, 12, 18 and May 5, 2022, SCS performed second quarter 2021 surface emissions monitoring testing as required by the Bay Area Air Quality Management District (BAAQMD). Instantaneous surface emissions monitoring results indicated that one (1) location exceeded the 500 ppmv maximum concentration during our monitoring (Table 1 in Attachment 3). The required 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring indicated that the location had returned to below regulatory compliance limits following system adjustments and remediation (installation of new bentonite plugs and cover soil compaction) by SCS personnel. Based on these monitoring results no additional follow up testing was required.

Also, during the instantaneous monitoring event, SCS performed concurrent integrated monitoring of the landfill surface. As required by the LMR, the landfill was divided into 50,000 square foot grid areas. The Vasco Road Landfill surface area was therefore divided into 233 grids, as shown on Figure 1 in Attachment 1. During this monitoring event, several grids were not monitored, in accordance with the regulations, due to ongoing active landfilling activities, unsafe conditions, or there was no waste in place prior to the monitoring event.

During the monitoring event, there were no grid areas observed to exceed the 25 ppmv LMR integrated average threshold (Table 2 in Attachment 4). Based on these monitoring results, no follow up monitoring is required at this time. These results are discussed in a subsequent section of this report.

In addition, quarterly monitoring of the pressurized piping or components of the Gas Collection and Control System (GCCS) that are under positive pressure must be performed quarterly. Results of the testing of the landfill gas (LFG) Blower Flare Station (BFS) pressurized piping and components indicated that all test locations were in compliance with the 500 ppmv requirement.

Further, as required under the LMR, any location on the landfill that has an observed instantaneous methane concentration above 200 ppmv, must be stake-marked and Global Positioning System (GPS) located on a site figure. During this reporting period, two (2) locations were observed to exceed the 200 ppmv, reporting threshold. When these readings are observed, the locations are reported to site personnel for tracking and/or remediation and will be reported in the next submittal of the annual LMR report.

Finally, to help prevent potential future exceedances, SCS recommends that the landfill surface be routinely inspected and any observed surface erosion be routinely repaired.

BACKGROUND

The Vasco Road Landfill is an active organic refuse disposal site. By way of background, organic materials buried in a landfill decompose anaerobically (in the absence of oxygen) producing a combustible gas which contains approximately 50 to 60 percent methane gas, 40 to 50 percent carbon dioxide, and trace amount of various other gases, some of which are odorous. The Vasco Road property contains a system to control the combustible gases generated in the landfill.

SURFACE EMISSIONS MONITORING

On April 6, 7, 8, 12, 18 and May 5, 2022, the instantaneous and integrated SEM was performed over the surface of the subject site. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring in the 50,000 square foot grids as required under the LMR. During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rules as required.

EMISSIONS TESTING INSTRUMENTATION/CALIBRATION

Instruments used to perform the landfill surface emission testing consisted of the following:

- Thermo Scientific TVA 2020 portable Flame Ionization Detector (FID). This instrument measures methane in air over a range of 1 to 50,000 ppmv. The TVA 2020 meets the State of California Air Resources Board (CARB) requirements for combined instantaneous and integrated monitoring and was calibrated in accordance with United States Environmental Protection Agency (US EPA) Method 21.
- Weather Anemometer with continuous recorder for meteorological conditions in accordance with the LMR.

Instrument calibration logs and weather information are shown in Attachments 5 and 6.

SURFACE EMISSIONS MONITORING PROCEDURES

Surface emissions monitoring was conducted in accordance with the LMR and NSPS requirements. Monitoring was performed with the FID inlet held within 3-inches of the landfill surface while a technician walked a grid in parallel paths not more than 25 -feet apart over the surface of the landfill. Cracks, holes and other cover penetrations in the surface were also tested. Surface emissions readings were monitored continuously and recorded every 5 seconds. Any areas in exceedance of the 200 or 500 ppmv standards (reporting and compliance levels, respectively) would be GPS tagged and stake-marked for on-site personnel to perform remediation or repairs.

The integrated average is based on the readings stored on the instrument, which are recorded every 5 seconds. The readings are then downloaded and the averages are calculated for each grid using SCS eTools®. All readings are maintained in this secure SCS Database. The readings are not provided in the report due to the volume of readings, but can be furnished upon request.

Recorded wind speed results are shown in Attachment 6. Wind speed averages were observed to remain below the alternative threshold of 10 miles per hour, and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within 72 hours of the monitoring events. Therefore, site meteorological conditions were within the alternatives of the LMR requirements on the above mentioned dates.

TESTING RESULTS

During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rule as required under the LMR and NSPS. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR or NSPS threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring (LMR).

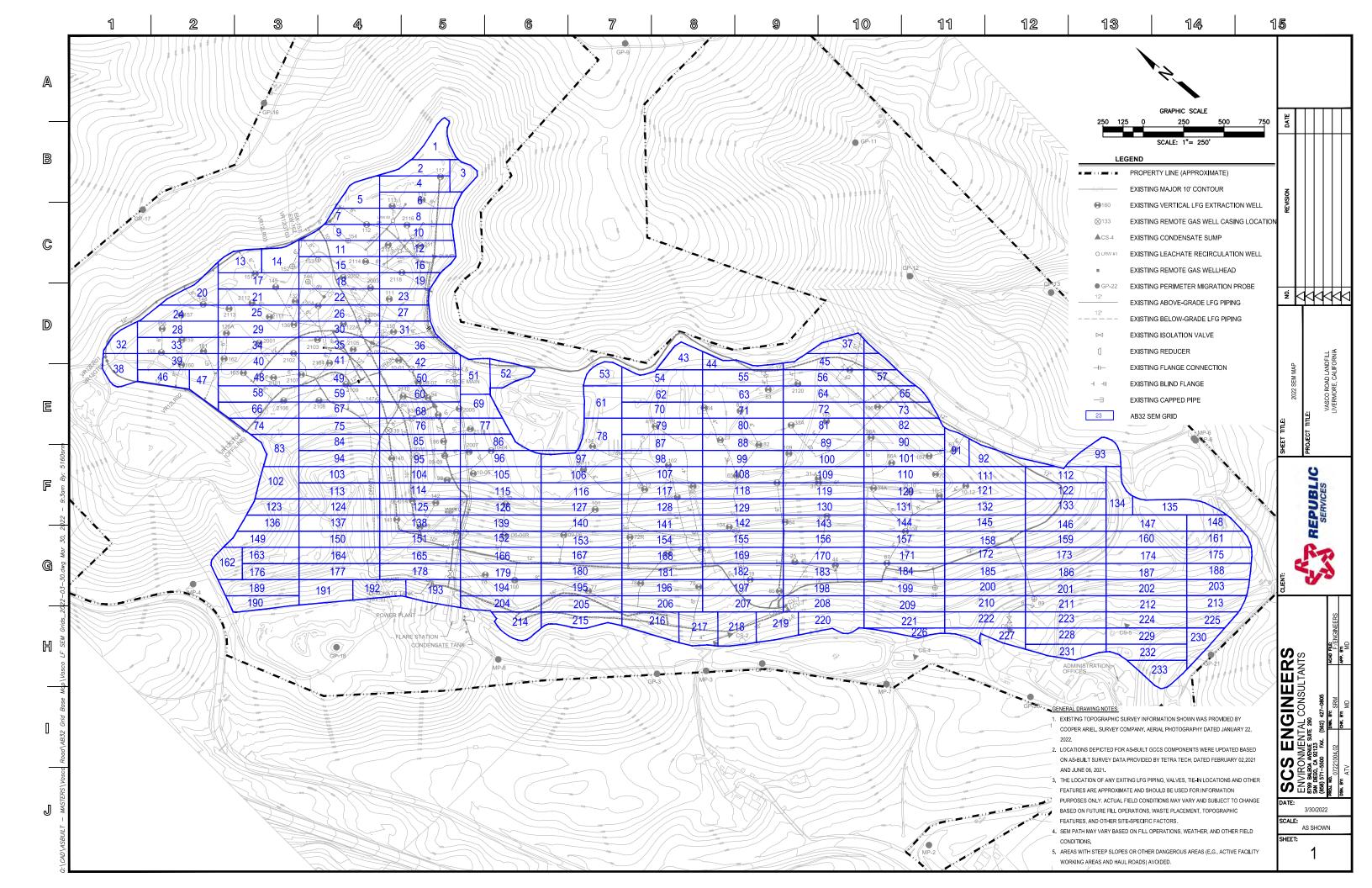
On April 6, 7, 8, 12, 18 and May 5, 2022, SCS performed second quarter 2021 instantaneous emissions monitoring testing as required by the BAAQMD. During this monitoring, surface emissions results indicated that one (1) location exceeded the 500 ppmv maximum concentration. The required first 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring performed on April 18 and May 5, 2022, respectively, indicated that the location had returned to compliance following system adjustments and remediation (borehole repairs using bentonite and cover soil compaction) performed by SCS personnel. Based on these monitoring results no additional follow up testing was required. Results of the monitoring are shown in Attachments 2 and 3 (Table 1).

Additionally, no integrated exceedances (the calculated average of the instantaneous monitoring results) of the 25 ppmv requirement on April 6, 7, 8, 12, 18 and May 5, 2022, were observed, therefore no further testing was required. Results of the monitoring are shown in Attachment 4 (Table 2). Calibration logs for the monitoring equipment are provided in Attachment 5.

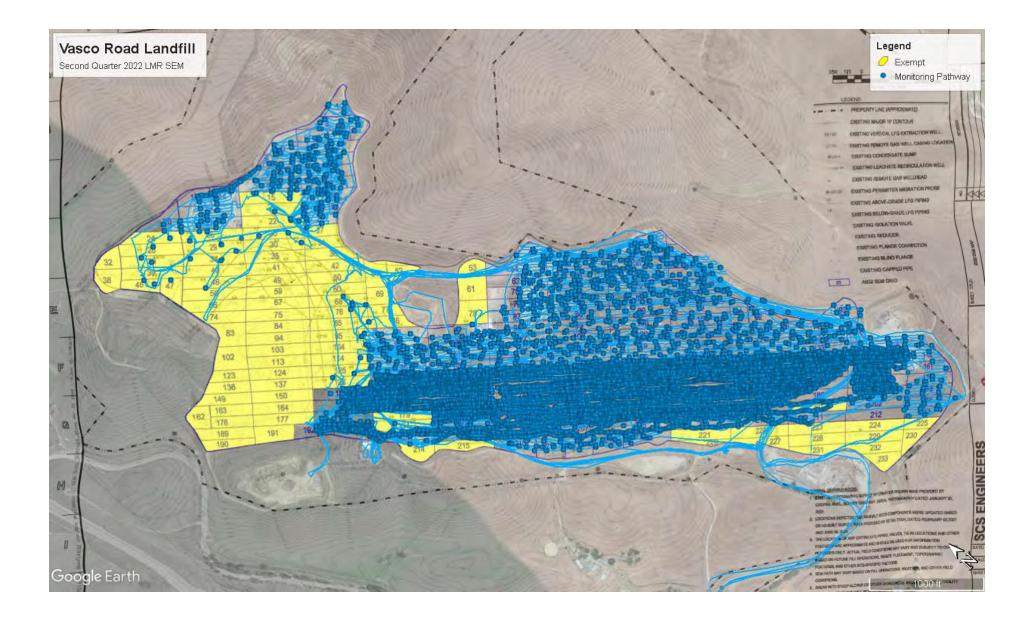
During this monitoring event, several grids were not monitored, in accordance with the LMR, due to active landfilling activities, unsafe conditions or no waste in place. SCS will continue to monitor all accessible locations during the third quarter 2022.

PRESSURIZED PIPE AND COMPONENT LEAK MONITORING

On April 7, 2022, quarterly leak monitoring was performed in accordance with the LMR. SCS performed LFG pressurized pipe and component leak monitoring at the BFS and power generation facility (reported separately). Monitoring was performed with the detector inlet held one-half of an inch from pressurized piping and associated components. No locations exceeding the 500 ppmv threshold were observed during our monitoring event. The maximum reading, which was 4.00 ppmv, was well below the maximum threshold (see Table 1 for component results). Therefore, all pressurized piping and components located at the LFG BFS were in compliance at the time of our testing.


PROJECT SCHEDULE

According to the LMR and NSPS, surface emissions monitoring at active landfills is required to be performed on a quarterly basis. Therefore, in accordance with our approved Work Scope, the third quarter 2022 (July through September) surface emissions testing event is scheduled to be performed by the end of August 2022 in accordance with the Republic SOP unless an alternative timeline is requested by site personnel.


STANDARD PROVISIONS

This report addresses conditions of the subject site during the testing dates only. Accordingly, we assume no responsibility for any changes that may occur subsequent to our testing which could affect the surface emissions at the subject site or adjacent properties.

Landfill Grid

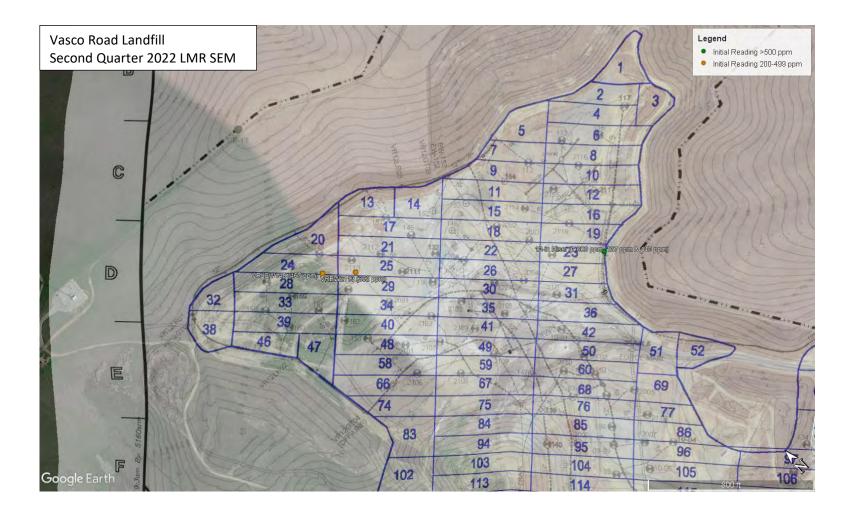
Surface Pathway

Second Quarter 2022 Initial LMR Surface Emissions Monitoring Pathway Vasco Road Landfill, Livermore, California

Instantaneous and Component Emissions Monitoring Results

Second Quarter 2022

Table 1. Instantaneous Surface and ComponentEmissions Monitoring ResultsVasco Road Landfill, Livermore, California


Instantaneous Data Report for April 6, 7, 8, 12, 18 and May 5, 2022

Location (Surface)	Initial Monitoring Results (ppmv) 4/8/2022	Initial Monitoring Results (ppmv) 4/12/2022	First 10- Day Follow Up Monitoring Results (ppmv) 4/18/2022	Second 10- Day Follow Up Monitoring Results (ppmv) NA	30-Day Follow Up Monitoring Results (ppmv) 5/5/2022	Latitude	Longitude
12-in Riser	7,600		137	NA	440	37.758867°	-121.724433°
VRLEW148		467	NA	NA	NA	37.761267°	-121.728167°
VREW2113		302	NA	NA	NA	37.760983°	-121.727750°

Pressurized Pipe and Component Results

Route	Date	Concentration (ppmv)
FLARE STATION	4/7/2022	4.00

No other exceedances of the 200 or 500 ppmv threshold were observed during the second quarter 2022 monitoring.

Second Quarter 2022 Initial Instantaneous Emissions Monitoring Location Greater Than 200 ppm and 500 ppmv Vasco Road Landfill, Livermore, California

Integrated Monitoring Results

Point Name	Record Date	FID Concentration (ppm)	Comments
VR 001	4/7/2022 10:24	1.08	
VR 002	4/7/2022 10:44	0.90	
VR 003	4/7/2022 10:44	0.90	
VR 004	4/7/2022 11:27	1.37	
VR 005	4/7/2022 11:00	1.47	
VR 006	4/7/2022 11:16	1.96	
VR 007	4/7/2022 12:33	1.75	
VR 008	4/7/2022 12:48	2.32	
VR 009	4/7/2022 13:31	1.82	
VR 010	4/7/2022 13:30	2.08	
VR 011	4/7/2022 13:55	1.59	
VR 012	4/7/2022 13:59	1.42	
VR 013	4/8/2022 10:29	5.39	
VR 014	4/8/2022 10:28	2.31	
VR 015			Active
VR 016	4/8/2022 08:25	3.49	
VR 017	4/8/2022 10:43	1.84	
VR 018			Active
VR 019	4/8/2022 08:39	8.32	
VR 020	4/8/2022 11:05	1.44	
VR 021	4/8/2022 10:56	1.79	
VR 022			Active
VR 023	4/8/2022 09:01	7.01	
VR 024			Active
VR 025			Active
VR 026			Active
VR 027			Active
VR 028			Active
VR 029			Active
VR 030			Active
VR 031			Active
VR 032			Active
VR 033			Active
VR 034			Active
VR 035			Active
VR 036			Active
VR 037	4/7/2022 14:16	5.39	
VR 038			Active
VR 039			Active
VR 040			Active

Point Name	Record Date	FID Concentration (ppm)	Comments
VR 041			Active
VR 042			Active
VR 043	4/7/2022 13:32	2.76	
VR 044	4/7/2022 13:29	2.58	
VR 045	4/7/2022 13:47	3.31	
VR 046			Active
VR 047			Active
VR 048			Active
VR 049			Active
VR 050			Active
VR 051			Active
VR 052			Active
VR 053			Active
VR 054	4/7/2022 12:03	1.74	
VR 055	4/7/2022 12:12	1.77	
VR 056	4/7/2022 12:25	2.02	
VR 057	4/7/2022 12:24	1.99	
VR 058			Active
VR 059			Active
VR 060			Active
VR 061			Active
VR 062	4/7/2022 11:00	1.54	
VR 063	4/7/2022 11:01	1.51	
VR 064	4/7/2022 11:01	1.60	
VR 065	4/7/2022 11:01	1.64	
VR 066			Active
VR 067			Active
VR 068			Active
VR 069			Active
VR 070	4/7/2022 10:11	1.49	
VR 071	4/7/2022 10:00	1.37	
VR 072	4/7/2022 10:03	1.49	
VR 073	4/7/2022 10:11	1.57	
VR 074			Active
VR 075			Active
VR 076			Active
VR 077			Active
VR 078			Active
VR 079	4/7/2022 08:51	1.22	
VR 080	4/7/2022 08:50	1.25	

Point Name	Record Date	FID Concentration (ppm)	Comments
VR 081	4/7/2022 08:47	1.32	
VR 082	4/7/2022 08:49	1.31	
VR 083			Active
VR 084			Active
VR 085			Active
VR 086			Active
VR 087	4/7/2022 13:49	2.25	
VR 088	4/7/2022 14:20	2.00	
VR 089	4/7/2022 14:17	2.07	
VR 090	4/7/2022 14:27	2.04	
VR 091	4/7/2022 14:02	2.28	
VR 092	4/7/2022 12:40	1.92	
VR 093	4/12/2022 14:43	1.85	
VR 094			Active
VR 095			Active
VR 096	4/7/2022 12:20	1.89	
VR 097	4/7/2022 11:46	1.19	
VR 098	4/7/2022 12:38	1.73	
VR 099	4/7/2022 12:53	1.93	
VR 100	4/7/2022 12:34	1.74	
VR 101	4/7/2022 12:43	1.92	
VR 102			Active
VR 103			Active
VR 104			Active
VR 105	4/7/2022 09:35	2.14	
VR 106	4/7/2022 10:00	1.42	
VR 107	4/7/2022 09:47	1.56	
VR 108	4/7/2022 09:41	1.47	
VR 109	4/7/2022 09:48	1.49	
VR 110	4/7/2022 09:47	1.49	
VR 111	4/7/2022 09:51	1.53	
VR 112	4/7/2022 09:23	1.59	
VR 113			Active
VR 114			Active
VR 115	4/7/2022 11:25	3.42	
VR 116	4/7/2022 11:24	1.64	
VR 117	4/7/2022 11:30	1.71	
VR 118	4/7/2022 11:21	1.58	
VR 119	4/7/2022 11:24	1.61	
VR 120	4/7/2022 11:22	1.61	

Second Quarter 2022 Table 2. Integrated Surface Emissions Monitoring Results Vasco Road Landfill, Livermore, California

Point Name	Record Date	FID Concentration (ppm)	Comments
VR 121	4/7/2022 11:37	1.69	
VR 122	4/7/2022 11:27	2.28	
VR 123			Active
VR 124			Active
VR 125			Active
VR 126	4/7/2022 14:29	4.74	
VR 127	4/7/2022 14:25	2.28	
VR 128	4/7/2022 14:21	2.27	
VR 129	4/7/2022 14:16	2.30	
VR 130	4/7/2022 14:20	2.62	
VR 131	4/7/2022 14:41	2.66	
VR 132	4/7/2022 14:24	2.58	
VR 133	4/7/2022 14:44	3.64	
VR 134	4/12/2022 14:37	1.81	
VR 135	4/12/2022 14:21	2.14	
VR 136			Active
VR 137			Active
VR 138			Active
VR 139	4/12/2022 11:26	1.63	
VR 140	4/12/2022 11:33	1.52	
VR 141	4/12/2022 11:34	1.47	
VR 142	4/12/2022 11:37	1.49	
VR 143	4/12/2022 12:05	1.51	
VR 144	4/12/2022 11:31	1.51	
VR 145	4/12/2022 11:30	1.50	
VR 146	4/12/2022 11:30	1.50	
VR 147	4/12/2022 11:26	1.84	
VR 148	4/12/2022 15:38	1.96	
VR 149			Active
VR 150			Active
VR 151	4/12/2022 09:18	1.36	
VR 152	4/12/2022 09:12	1.39	
VR 153	4/12/2022 09:13	1.37	
VR 154	4/8/2022 09:59	1.13	
VR 155	4/8/2022 09:53	1.20	
VR 156	4/8/2022 09:47	1.13	
VR 157	4/8/2022 09:48	1.09	
VR 158	4/8/2022 09:50	1.26	
VR 159	4/8/2022 09:47	1.51	
VR 160	4/8/2022 15:15	3.57	

SCS DataServices - Secure Environmental Data

Second Quarter 2022 Table 2. Integrated Surface Emissions Monitoring Results Vasco Road Landfill, Livermore, California

Point Name	Record Date	FID Concentration (ppm)	Comments
VR 161	4/12/2022 16:19	1.79	
VR 162			Active
VR 163			Active
VR 164			Active
VR 165	4/12/2022 10:23	1.39	
VR 166	4/12/2022 10:29	1.67	
VR 167	4/8/2022 11:15	1.76	
VR 167	4/12/2022 10:24	1.52	
VR 168	4/8/2022 12:49	0.64	
VR 169	4/8/2022 12:55	0.60	
VR 170	4/8/2022 12:38	0.74	
VR 171	4/8/2022 12:23	1.00	
VR 172	4/8/2022 12:20	1.07	
VR 173	4/8/2022 12:45	1.12	
VR 174	4/8/2022 15:32	4.97	
VR 175	4/12/2022 16:45	1.90	
VR 176			Active
VR 177			Active
VR 178	4/7/2022 14:58	5.00	
VR 179			Health and Safety Concern-Overgrown Vegetation
VR 180	4/8/2022 11:21	0.99	
VR 181	4/8/2022 11:27	1.05	
VR 182	4/8/2022 11:26	1.26	
VR 183	4/8/2022 11:23	1.18	
VR 184	4/8/2022 11:23	0.94	
VR 185	4/8/2022 11:19	1.18	
VR 186	4/8/2022 11:10	1.27	
VR 187	4/8/2022 15:43	3.77	
VR 188	4/12/2022 16:37	3.12	
VR 189			Active
VR 190			Active
VR 191			Active
VR 192	4/12/2022 09:42	0.86	
VR 193	4/12/2022 09:42	0.89	
VR 194			Health and Safety Concern-Overgrown Vegetation
VR 195	4/7/2022 15:37	3.83	
VR 196	4/8/2022 14:34	1.88	
VR 197	4/8/2022 14:45	1.37	
VR 198	4/8/2022 14:40	1.24	
VR 199	4/8/2022 14:42	1.24	

SCS DataServices - Secure Environmental Data

Second Quarter 2022 Table 2. Integrated Surface Emissions Monitoring Results Vasco Road Landfill, Livermore, California

Point Name	Record Date	FID Concentration (ppm)	Comments
VR 200	4/8/2022 14:53	1.28	
VR 201			Health and Safety Concern-Overgrown Vegetation
VR 202	4/12/2022 14:48	3.02	
VR 203	4/12/2022 16:19	1.51	
VR 204	4/12/2022 11:59	1.20	
VR 205	4/12/2022 11:31	1.25	
VR 206	4/12/2022 11:15	1.23	
VR 207	4/12/2022 11:54	1.33	
VR 208	4/12/2022 11:00	1.28	
VR 209	4/12/2022 11:11	1.32	
VR 210	4/12/2022 11:12	1.34	
VR 211	4/12/2022 11:00	1.46	
VR 212	4/12/2022 08:42	12.46	
VR 213	4/12/2022 15:53	1.57	
VR 214			Health and Safety Concern-Overgrown Vegetation
VR 215			Health and Safety Concern-Overgrown Vegetation
VR 216	4/12/2022 13:20	1.03	
VR 217	4/12/2022 13:37	0.95	
VR 218	4/12/2022 13:30	0.98	
VR 219	4/12/2022 13:25	0.97	
VR 220	4/12/2022 13:26	0.96	
VR 221			Health and Safety Concern-Overgrown Vegetation
VR 222			Health and Safety Concern-Overgrown Vegetation
VR 223			Health and Safety Concern-Overgrown Vegetation
VR 224			Health and Safety Concern-Overgrown Vegetation
VR 225			Health and Safety Concern-High Traffic Area
VR 226			Health and Safety Concern-Overgrown Vegetation
VR 227			Health and Safety Concern-Overgrown Vegetation
VR 228			Health and Safety Concern-Overgrown Vegetation
VR 229			Health and Safety Concern-High Traffic Area
VR 230			Health and Safety Concern-High Traffic Area
VR 231			Health and Safety Concern-High Traffic Area
VR 232			Health and Safety Concern-High Traffic Area
VR 233			Health and Safety Concern-High Traffic Area

Attachment 5

Calibration Logs

		SURFACE EMISS			
Date:	4/6/20		Site Name:	Vasco	×.
Inspector(s):	Deft D	Dod.	Instrument:	TVA 2020	
WEATHER OB			matument		
		Wind			
Wind Speed	:МРН	Direction:		Barometric Pressure: <u>36511</u>	"Hg
Air Temperature	 /	General Weathe Conditions		-	
CALIBRATION	INFORMATION		•		
Pre-monitoring	Calibration Precision Check				
and calculate th	prate the instrument. Make a e average algebraic difference be less than or equal to 10% of al Number:	e between the instrument	reading and the c	zero air and the calibratic alibration gas as a percen Cal Gas Concentration:	on gas. Record the readin tage. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading		oncCal Gas Reading	
1		500		oncCar Gas Reading	Response Time (secon
2 3	-0:1	Average Difference:	3 1 *Perform recalibration	3 If average difference is greater than]
3	sion= Average Difference/Cal		<u> (.3</u> %	3 If average difference is greater than /500 x 100% 74] 10
3	sion= Average Difference/Cal	Gas Conc. X 100%	<u> (.3</u> %	/500 × 100%	
3 Calibration Precis Span Sensitivity: Trial 1:	sion= Average Difference/Cal	Gas Conc. X 100% = 100%- =	(.3 % 99.7	/500 × 100%	
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cour		Gas Conc. X 100% = 100%- =	(.) % 99.; Trial 3: Count	/500 × 100% 74	148476
3 Calibration Precis Span Sensitivity: Trial 1: Cour Trial 2:	unts Observed for the Span≃	Gas Conc. X 100% = 100%- =	(.) % 99.; Trial 3: Count	/500 × 100% 74 ts Observed for the Span=	148476
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cour <u>Cour</u> Trial 2: Cou	unts Observed for the Span= - iters Observed for the Zero=	Gas Conc. X 100% = 100%- = [46268 3749	(.) % 99.; Trial 3: Count	/500 × 100% 74 ts Observed for the Span=	148476
3 Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cour <u>Cour</u> Trial 2: Cou	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= ters Observed for the Zero=	Gas Conc. X 100% = 100%- = [46268 3749 [47088]	(.) % 99.; Trial 3: Count	/500 × 100% 74 ts Observed for the Span=	148476
3 Calibration Precis Span Sensitivity: Trial 1: Cour Trial 2: Cour Cour	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= ters Observed for the Zero=	Gas Conc. X 100% = 100%- = [46268 3749 [47088]	(.3 % 99.7 Trial 3: Counte	/500 × 100% 74 ts Observed for the Span=	148476
3 Calibration Precis Span Sensitivity: Trial 1: Cour Trial 2: Cour Trial 2: Cour Cour Post Monitoring C Zero Air Reading:	unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= ters Observed for the Zero= Calibration Check	Gas Conc. X 100% = 100%- = [96268 3799 [97088 3666 3666 Cal Gas Reading:	(.) % 99.; Trial 3: Counte	/500 x 100% 74 ts Observed for the Span= rs Observed for the Zero=	148476
3 Calibration Precis Span Sensitivity: Trial 1: Cour Trial 2: Cour Trial 2: Cour Cour Post Monitoring C Zero Air Reading:	unts Observed for the Span= aters Observed for the Zero= unts Observed for the Span= ters Observed for the Zero= Calibration Check Concentrations Checks	Gas Conc. X 100% = 100%- = [96268 3799 [97088 3666 3666 Cal Gas Reading:	(.) % 99.; Trial 3: Counte	/500 x 100% 74 ts Observed for the Span= rs Observed for the Zero=	148476
3 Calibration Precis Span Sensitivity: Trial 1: Cour Trial 2: Cour Trial 2: Cour Cour Cour Cour Cour Cour Cour Cour	unts Observed for the Span= aters Observed for the Zero= unts Observed for the Span= ters Observed for the Zero= Calibration Check Calibration Check Concentrations checks Description:	Gas Conc. X 100% = 100%- = [46268 3749 [47088 3666 3666	(.) % 99.; Trial 3: Counte	/500 x 100% 74 ts Observed for the Span= rs Observed for the Zero=	148476 3655

meteorological conditions were within the requested alternatives of the p	and requirements on th	ie.
S DataServines - Secure Environmental Data	i chaite a f	1

			SURFACE EMISSI		FORING	and the second
0		12 ⁴ - 2	CALIBRATION AN	D PERTINEN	IT DATA	
	Date:	4/6/22		Site Name:	Vasco	
	inspector(s)	XXXXXXX E	Man O	Instrument:	TVA 2020	
	WEATHER OB	SERVATIONS			#i	
		(2	Wind 🧹		Barometric	
	Wind Speed	: МРН	Direction:		Pressure: 30:11	
	Ai Temperature		General Weathe Conditions	Clear	_	
	CALIBRATION	INFORMATION				
	Pre-monitoring	Calibration Precision Check				
	and calculate th	orate the instrument. Make of e average algebraic difference be less than or equal to 10% of al Number:	ce between the instrument	nts by alternating reading and the o	g zero air and the calibration calibration gas as a percent Cal Gas Concentration:	n gas. Record the readings age. The calibration 500ppm
	Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
	1	1999 0	503		3	(
	3	ŏ	500	C		i
	Calibration Preci	sion= Average Difference/Ca	l Gas Conc. X 100% = 100%-	1.7) if average difference is greater than /500 x 100%	10
			=	% 99.74	1	
	Span Sensitivity:					
		unts Observed for the Span=	124920		nts Observed for the Span=	127624 4293
	Cour Trial 2:	iters Observed for the Zero=		Counte	ers Observed for the Zero=	1015
	Cou	unts Observed for the Span=				
	Coun	ters Observed for the Zero=	4333			
	Post Monitoring (Calibration Check				
	Zero Air Reading:	1.8 ppm	Cal Gas Reading	508	ppm	
	BACKGROUND C	ONCENTRATIONS CHECKS				
\cup	Upwind Location I	Description:	for dax	I	Reading: 2.4	opm
	Downwind Locatic	an Description:	Flare	1	Reading: 3.9	opm
	e	Vind speed averages were of xceeded 20 miles per hour. neteorological conditions we	No rainfall had occurred wi	thin the previous	24 hours of the monitoring	gevent. Therefore, site

			SURFACE EMISS	IONS MONIT	ORING	
0		28 97	CALIBRATION AN	ID PERTINEN	IT DATA	λ.
-	Date:	4/10/22		Site Name:	Vasco	
	Inspector(s):	Junior	\checkmark	Instrument:	TVA 2020	
	WEATHER OB	SERVATIONS				
		6	Wind		Barometric	
	Wind Speed	d:MPH	Direction: <u>Sw</u>	-	Pressure: 30.[]	"Hg
	Ai Temperature		General Weathe Condition:	s: Clear	-	
	CALIBRATION	INFORMATION				
	Pre-monitoring	Calibration Precision Check				
	and calculate th	brate the instrument. Make ne average algebraic differer be less than or equal to 10%	ice between the instrument	reading and the o	zero air and the calibrati alibration gas as a percer	on gas. Record the readings ntage. The calibration
	Instrument Seria	al Number: <u>541</u>	9		Cal Gas Concentration:	500ppm
	Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
	2	0	\$03	2		2
100	3	0	499	1		1
	Calibration Preci	sion= Average Difference/Ca	al Gas Conc. X 100% = 100%- =	2.3 * 99.5	/500 x 100%	
	Span Sensitivity:					
	Trial 1:	unts Observed for the Span-	57028	Trial 3: Coun	ts Observed for the Span	58308
		nters Observed for the Zero-	4608	Counte	ers Observed for the Zero-	4489
	<u>Trial 2:</u> Co	unts Observed for the Span-	156340			
	Cour	nters Observed for the Zero=	4560			
	Post Monitoring (Calibration Check				
	Zero Air Reading:	0.4	Cal Gas Reading:	INA		
			3	<u>urio</u>	opm	
< 3	BACKGROUND	CONCENTRATIONS CHECK			2 /1	
\sim	Upwind Location	Description:	for deck	-	Reading: 219	ppm
	Downwind Locatio	on Description:	Hore		Reading: 3,9	ppm
	e n	exceeded 20 miles per hour. neteorological conditions w	No rainfall had occurred w ere within the requested alt	ithin the previous ernatives of the L	24 hours of the monitorin MR requirements on the a	above mentioned date.
and the second second	I B COLOR OF COLOR	Gens - Sacura	Search a provident	Distant	-lon to the	

		SURFACE EMISSI CALIBRATION AN			
Date:	4/16/22		Site Name:	Vasco	
inspector(s):	Don 9		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			(3)	
Wind Speed	а:мрн	Wind Direction:	-	Barometric Pressure: <u>30' 11</u>	"Hg
Ai Temperature	-1/	General Weathe Conditions	Clear	21	
CALIBRATION	INFORMATION			Б.	
Pre-monitoring	Calibration Precision Check				
and calculate th	brate the instrument. Make a he average algebraic difference be less than or equal to 10% of	e between the instrument the calibration gas value.	reading and the c		
Instrument Seria	al Number: 1213	5		Cal Gas Concentration:	500ppm
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (seconds)
2	0	500		2	
3	0	307	<u> </u>		L L
Calibration Preci	ision= Average Difference/Cal	= 100%-	*Perform recalibration 0.3 % 99.9		10
Span Sensitivity:			Trial 3:		100
Trial 1: Co	ounts Observed for the Span=	127668		ts Observed for the Span≃	136012
	nters Observed for the Zero=	2436	Counte	ers Observed for the Zero=	2434
<u>Trial 2:</u> Co	ounts Observed for the Span=	133504			
Cou	nters Observed for the Zero=	2430			
Post Monitoring	Calibration Check				
Zero Air Reading:	21 ppm	Cal Gas Reading:	487	ppm	
BACKGROUND	CONCENTRATIONS CHECKS			2	4
Upwind Location	Description:	for deck Flam		Reading:	ppm 3.9
Downwind Locati	ion Description:	Flare		Reading:	ppm
	Wind speed averages were ob			uested 10 miles per hour a 24 hours of the monitorin	

meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned date. _____

		SURFACE EMISSI			
Date:	4-7-2	2	Site Name:	vasco	
Inspector(s):	Janior	\checkmark	Instrument:	TVA 2020	
VEATHER OBSE	RVATIONS			к.	
	2	Wind Cool		Barometric 30. 1	2
Wind Speed:	МРН	Direction:	-	Pressure:	🖌 "Hg
Air Temperature:	52.	General Weather Conditions:	Clack		
CALIBRATION IN	IFORMATION				
Pre-monitoring Ca	alibration Precision Check				
	less than or equal to 10% o	te between the instrument r f the calibration gas value.	eading and the i	Cal Gas Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	concCal Gas Reading	Response Time (second
2	ð	498		2	Ĩ
3	Ø	499			i.
		= 100%-	1.6 % 99.18	_/500 × 100%	
oan Sensitivity:		=	% 11.60		
rial 1:	nts Observed for the Span=	167616	Trial 3: Cour	nts Observed for the Span≈	164424
Counte	ers Observed for the Zero=	4924	Count	ers Observed for the Zero=	4836
r <mark>ial 2:</mark> Coun	ts Observed for the Span=	66688			
Counte	ers Observed for the Zero=	48 29			
ost Monitoring Ca	libration Check				
ero Air eading:	2 ppm	Cal Gas Reading:	474	ppm	
CKGROUND CO	NCENTRATIONS CHECKS				
wind Location De	escription:	053		Reading: 5.4	opm
wnwind Location	Description:	9217		Reading: Sc /	opm
exc	eeded 20 miles per hour.	served to remain below the No rainfall had occurred with re within the requested alter	thin the previous		gevent. Therefore, site

	meteorological containens were within the requested atteinatives of the camined and include of the abe
12	BabaSanvines - Secure Environmental Data

SES

			ONS MONITORING D PERTINENT DATA	
Date:	4-7-2	22	Site Name:	
Inspector(s)	TOFFI	Dove	Instrument: TVA 2020	
WEATHER OB	SERVATIONS		ĩ	
	7	Wind C. I	Barometric	
Wind Speed	и:Мрн	Direction:	Barometric Pressure: 30.6	2 "Hg
Ai Temperature	ir <u>52</u> *F	General Weathe Conditions	Clear	
CALIBRATION	INFORMATION			
Pre-monitoring	Calibration Precision Che	ck		
and calculate th	he average algebraic diffe be less than or equal to 10	ke a total of three measuremen rence between the instrument が of the calibration gas value.	nts by alternating zero air and the calibratio reading and the calibration gas as a percent Cal Gas Concentration:	n gas. Record the readings age. The calibration 500ppm
Trial	Zero Air Reading	Cal Car Boarding		
1		Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
2	0	498	2	2
3	0	501		
		= 100%-	/500 x 100%	
		=	% 19. 8	
pan Sensitivity: rial 1:			Trial 2.	
	unts Observed for the Spa	an= 38360	Trial 3: Counts Observed for the Span=	142044
	nters Observed for the Ze	ro= 3949	Counters Observed for the Zero=	3900
rial 2: Co	unts Observed for the Spa	an= 140508		
Cour	nters Observed for the Zer	ro= 3938		
	Calibration Check			
ero Air eading:	2. ²	Cal Gas Reading:	ppm	
			· · · ·	
	CONCENTRATIONS CHE	a ~~~	5 (
1		51 56	Reading:	opm
owind Location I		9 2.14	27	
1		9214	Reading: 3.7	opm

<u>_</u>____

	meteorological conditions were within the requested alternatives o	f the LMR requirements on the above
The second s	Services - Serve Environmental Data	

Date:	1	CALIBRA) PERTINE	TORING NT DATA	
	4-7-22			Site Name:	ilasco	
Inspector(s):	Don G	iloson	-	Instrument	TVA 2020	
WEATHER OBS		10001		nistrument,	1 VA 2020	<u>_</u>
WEATHER OD.	PERAMIONS					
Wind Speed:	:MPH	Wind Direction:	W		Pressure: 30. (("Нg
Air Temperature:		Gen	eral Weather Conditions:	Class.	7	
CALIBRATION I	INFORMATION		×			
^o re-monitoring (Calibration Precision	Check				
and calculate the	e average algebraic a e less than or equal t	Make a total of three i lifference between the o 10% of the calibratio	instrument re	ts by alternatin eading and the	g zero air and the calibratic calibration gas as a percen Cal Gas Concentration:	tage. The calibration
rial	Zero Air Readir	ng Cal Gas F	Reading	ICal Gas (ConcCal Gas Reading	Response Time (second
1	0	501	i du di li b	1		4
2	/	500		(5
3	Ö	SOO		Ö		3
anuration Precis	ion= Average Differe		/0/0			
anuration Precis	ion- Average omere		100%-	.6	_/500 x 100%	
anui aliun Precis	ion- Average omere	= 9		~ 6 %	_/500 x 100%	
an Sensitivity:	ion- Average omere	= 9	100%	~ 6	_/500 x 100%	
an Sensitivity:		= 9	************************************	% " Trial 3: Cou	_/500 x 100% nts Observed for the Span=	134240
pan Sensitivity: ial 1: Cou Count		= =9 Span= <u>12807</u>	************************************	Cou		the lib DA
oan Sensitivity: ial 1: Cou Count ial 2:	unts Observed for the ters Observed for the	= =9 Span= <u>12807</u>	001 9. J 9 2	Cou	nts Observed for the Span=	the lib DA
oan Sensitivity: ial 1: Cou Count ial 2: Cou	unts Observed for the ters Observed for the ints Observed for the	= =9 Span= <u>12807</u> = Zero= 4920	100%- (9, 7) ? Z	Cou	nts Observed for the Span=	the lib DA
oan Sensitivity: ial 1: Count ial 2: Count Count	unts Observed for the ters Observed for the ints Observed for the	= Span= <u>12807</u> Zero= <u>4920</u> Span= <u>12964</u>	100%- (9, 7) ? Z	Cou	nts Observed for the Span=	the lib DA
ban Sensitivity: ial 1: Count ial 2: Count st Monitoring Ca ro Air	unts Observed for the ters Observed for the ints Observed for the ters Observed for the alibration Check	= = Span= <u>12807</u> = Zero= <u>4920</u> Span= <u>12966</u> Zero= <u>4858</u>	100% Q Z 44 al Gas	Cou	nts Observed for the Span= ers Observed for the Zero=	the lib DA
aan Sensitivity: ial 1: Count ial 2: Count st Monitoring Ca ro Air ading:	unts Observed for the ters Observed for the ints Observed for the ters Observed for the alibration Check	= Span= <u>12807</u> Zero= <u>4920</u> Span= <u>12964</u> Zero= <u>4858</u> Ca Ra	100%- 9.8 9 2 14	Cou	nts Observed for the Span=	the lib Dh
an Sensitivity: ial 1: Count ial 2: Count st Monitoring Ca ro Air ading:	unts Observed for the ters Observed for the unts Observed for the ters Observed for the alibration Check	= Span= <u>12807</u> Zero= <u>4920</u> Span= <u>12964</u> Zero= <u>4858</u> Ca Ra	100% Q Z 44 al Gas	Cou	nts Observed for the Span= ers Observed for the Zero= ppm	C 4777
aan Sensitivity: ial 1: Count ial 2: Count st Monitoring Ca ro Air ading:	unts Observed for the ters Observed for the unts Observed for the alibration Check	= Span= <u>12807</u> Zero= <u>4920</u> Span= <u>12964</u> Zero= <u>4858</u> Ca Ra	100% Q Z 44 al Gas	Cou	nts Observed for the Span= ers Observed for the Zero=	the lib Dr

		itere intrinit ine requested at	reentacites of the child require	and the above
SCS Data Sca	artees = Seame	Invitonmentel	libirsin - lov-	

				ONS MONIT			
Date:	4-7-77				1/100		
	<u>4-7-22</u> Rryan	2	-	Site Name:	Vasc	0	
Inspector(s):	Bryan	0	·	Instrument:	TVA 202	20	
WEATHER OBS	ERVATIONS					(E)	
Wind Speed:	MP		ind on: <u>6</u>		Barome Pressu	3	"Hg
Air		(General Weather				
Temperature:			Conditions	Sunny			
CALIBRATION I	VFORMATION			1			
Pre-monitoring C	alibration Precision	Check					
and calculate the	average algebraic a less than or equal to	lifference between	the instrument r		calibration (n gas. Record the reading. age. The calibration 500ppm
Trial	Zero Air Readir	ng Cal G	as Reading	I Cal Gas C	oncCal Ga	s Reading	Response Time (second
1	0	49	9	/		5 neoding 1	Response fine (second
2	0	49	9	1			
3		49	?	(
	on= Average Differe	-,	= 100%-	1	/500 x 100	%	
			= m9,8	%			
pan Sensitivity:							
rial 1:	nts Observed for the	Span= 1463	60	Trial 3: Cour	ts Observe	d for the Span≃	143804
Cour			82				
Count	ers Observed for the	Zero= 🛔 30	218			d for the Zero=	2902
Count ial 2: Cour	ers Observed for the	Span= 149	1			d for the Zero=	2902
Count ial 2: Cour	ers Observed for the	Span= 149	1			d for the Zero=	2902
Count ial 2: Cour	ers Observed for the nts Observed for the ers Observed for the	Span= 149	1			d for the Zero=	2902
Count ial 2: Court Count	ers Observed for the nts Observed for the ers Observed for the	Span= 149	1			d for the Zero=	2902
Count ial 2: Court Count St Monitoring Ca ro Air ading:	ers Observed for the nts Observed for the ers Observed for the libration Check	Span= <u> 49</u> Zero= <u>296</u>	Cal Gas		ers Observe	d for the Zero=	2902
Count ial 2: Court Count St Monitoring Ca ro Air ading:	ers Observed for the nts Observed for the ers Observed for the libration Check	Span= <u> 49</u> Zero= <u>296</u>	Cal Gas	Counti	ppm		<u>2902</u>
Count ial 2: Count Count ost Monitoring Ca ro Air ading: 2 ACKGROUND CC	ers Observed for the nts Observed for the ers Observed for the libration Check ppm DNCENTRATIONS C escription:	Span= <u> 49</u> Zero= <u>296</u>	Cal Gas	Counti	ppm	5.6	

	0				
SCS Detestant	nas — Stantu	ne lanviten	nan san kadi tiba	-349	lain an Em-

		SURFACE EMISSI			
	an la l	CALIBRATION AN	DPERTINE	NIDATA	
Date:	4/8/22		Site Name:	Vasco	
Inspector(s):	Junior		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			÷	
		Wind r			
	: МРН	Direction:	-	Barometric Pressure: <u>30:0</u>	5 "Hg
Aiı Temperature	<u>53</u> •	General Weathe Conditions	Clear	_	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	rate the instrument. Make a e average algebraic difference e less than or equal to 10% oj	e between the instrument	reading and the	g zero air and the calibratior calibration gas as a percent	n gas. Record the readings age. The calibration
Instrument Seria	Number: 54	9		Cal Gas Concentration:	500ppm
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds)
2	<u> </u>	492		93	
3	0	499		F	
Calibration Precis	sion= Average Difference/Cal			n if average difference is greater than 1	
		=	%	5	
)
pan Sensitivity: rial 1:			Trial 3:		0
Сон	unts Observed for the Span=	- 181996		nts Observed for the Span=	168488
	ters Observed for the Zero=	44/3	Count	ers Observed for the Zero=	4787
rial 2: Cou	unts Observed for the Span=	176244			
Coun	ters Observed for the Zero=	4833			
ost Monitoring C	alibration Check				
ero Air eading:	<u> </u>	Cal Gas Reading:	493	ppm	
ACKGROUND C	ONCENTRATIONS CHECKS			/	
pwind Location [Description: -	Plant		Reading: Z.4	ppm
ownwind Locatio	on Description:	(7148		Reading: 2.(opm
e	/ind speed averages were ob: xceeded 20 miles per hour. N neteorological conditions wer	Io rainfall had occurred wi	thin the previou	s 24 hours of the monitoring	event. Therefore, site

SCS DeteSouries - Service Environmented	Distika	-lon-m	S EN

			SURFACE EMISS		ORING	
			CALIBRATION AN	ID PERTINEN	IT DATA	Ψ.
\bigcirc	Date:	4/8/2.	2	Site Name:	Vasco	
	Inspector(s):	Don G		Instrument:	TVA 2020	
	WEATHER OB	SERVATIONS			20	
	Wind Speed	:мрн	Wind Direction: WN		Barometric Pressure: 30105	"Hg
	Ain Temperature		General Weath Condition	er s: <u>Clecu</u>	-	
	CALIBRATION	INFORMATION				
	Pre-monitoring	Calibration Precision Check				
-	and calculate th	e average algebraic differe	e a total of three measureme nce between the instrument of the calibration gas value	reading and the		
	Instrument Seria	al Number:5	115		Cal Gas Concentration:	500ppm
	Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
	2	Õ	50)			5
	3	.01	502		2	3
	Calibration Preci	sion= Average Difference/C	Average Difference: al Gas Conc. X 100% = 100%	*Perform recalibration	/500 x 100%	n 10
	Shap Soprifivity		= 99.7	%		
8	Span Sensitivity: <u> <u> <u> </u> <u> </u></u></u>		102(72	Trial 3:		120291
		unts Observed for the Span			nts Observed for the Span=	1404
I	rial 2:	nters Observed for the Zero unts Observed for the Span		Count	ers Observed for the Zero=	
		iters Observed for the Zero	A STATE OF A			
Ρ	ost Monitoring (Calibration Check				
	ero Air eading:	{ ppm	Cal Gas Reading:	536	ppm	
в	ACKGROUND C	ONCENTRATIONS CHECK	<s< td=""><td></td><td></td><td></td></s<>			
U	pwind Location I	Description	Plant		Reading: 1.8	ppm
D	ownwind Locatic	on Description.	(7148	ti -	Reading: 2.3	ppm
N	e	xceeded 20 miles per hour	observed to remain below t . No rainfall had occurred w vere within the requested al	ithin the previous	24 hours of the monitoring	
SES	Surger Stones	ices - Secure	Environmental	Distig		10

1		SURFACE EMISSI			
Date:	4/0/22	2	Site Name:	Vasco	
Inspector(s)	Bryen	0	Instrument:	TVA 2020	
WEATHER OB			-	-	
	2	Wind		Barometric	
Wind Speed	МРН	Direction:	<u> </u>	Pressure: 30'.0	S"Hg
Ai Temperature		General Weathe Conditions	Clear	<u> </u>	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th	brate the instrument. Make one average algebraic difference of the second second second second second second se al Number:	ce between the instrument	reading and the		
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas (ConcCal Gas Reading	Response Time (second
1	0	<u>497</u>	5		· Z
2	0	500	0		-3
alibration Preci	sion= Average Difference/Ca	Gas Conc. X 100%	2	/500 x 100%	
		= 99.6	%		
pan Sensitivity:					
<u>rial 1:</u> Co	unts Observed for the Span=	138580	Trial 3: Cou	nts Observed for the Span=	139464
	nters Observed for the Zero=	3994	Count	ers Observed for the Zero=	3889
rial 2: Co	unts Observed for the Span=	135832	5		
Cour	nters Observed for the Zero=	3944			
ost Monitoring (Calibration Check				
ero Air eading:	ppm	Cal Gas Reading:	586	ppm	
ACKGROUND	CONCENTRATIONS CHECKS	01			
pwind Location	Description:	Mant		Reading: 1.8	mqq
ownwind Locatio	on Description:	G 148		Reading: 2.3	opm
e	Vind speed averages were of exceeded 20 miles per hour. neteorological conditions we	No rainfall had occurred wi	ithin the previou		event. Therefore, site

SCS DataServices - Secure Environmental Data

			SURFACE EMISSI		ORING	
			CALIBRATION AN			
Date:		4.12.22		Site Name:	Vas (v	
Inspec	ctor(s):	JR		Instrument:	TVA 2020	
WEAT		SERVATIONS			2	
			L			
Wi	nd Speed	:С_мрн	Wind Direction:	-	Barometric Pressure:	"Hg
Tem	Air perature:		General Weathe Conditions	- sunc	4	
CALIB	RATION	INFORMATION		1		
Pre-mo	onitoring	Calibration Precision Check				
and ca	lculate th	rate the instrument. Make o e average algebraic differen e less than or equal to 10% o	ce between the instrument	nts by alternating reading and the c	zero air and the calibration alibration gas as a percente	ngas. Record the readings age. The calibration
Instrun	nent Seria	Number:)6		Cal Gas Concentration:	500ppm
Trial		Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (seconds)
	1 2	0	500	6		- F
	3	3	500	0		X X
				· · · · · · · · · · · · · · · · · · ·	~	<u> </u>
			Average Difference:	*Perform recalibration	if average difference is greater than 1	0
		sion= Average Difference/Ca	Gas Conc. X 100% = 100%- = $97.\%$	<u>16</u> %	/500 x 100%	~
Trial 1:	nsitivity:			Trial 3:		
	Соц	unts Observed for the Span=	URINK TON	Coun	ts Observed for the Span=	
		ters Observed for the Zero=			rs Observed for the Zero=	5446
<u>Trial 2:</u>	Cou	ints Observed for the Span=	MUM EUNIG	-7 19 17	92	
	Coun	ters Observed for the Zero=	HIMMAR			
Post Mo	nitoring C	alibration Check	5453		1965 201	
Zero Air Reading:	-	-lppm	Cal Gas Reading:	SOY	opm	
BACKGR		ONCENTRATIONS CHECKS	5			
Upwind (ocation [Description:	En tranec Plave		Reading: 13 p	pm
Downwir	nd Locatio	n Description	Flare	19	Reading: <u>Z.4</u> p	ppm
Notes:	e	/ind speed averages were of xceeded 20 miles per hour. reteorological conditions we	No rainfall had occurred wi	thin the previous	24 hours of the monitoring	event. Therefore, site

	-			
the second s	of Personal Address of the second sec	and share the second state of the second state of the		
REALS IN COMPANY AND A REAL PROPERTY OF	the second second second second second	and the second	100 2	A CONTRACT OF A CONTRACT
SES BATHSONVIORS	- NEALINE FRANK	allas Liste Kall Dist	in a state of the	- Detering the state of the state

		SURFACE EMISSI	ONS MONIT	ORING	
		CALIBRATION AN	D PERTINEN	T DATA	
Date:	4.12.7	22	Site Name:	VASLO	
inspector(s):	Jon 9		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS				
Wind Speed	:МРН	Wind Direction:	-	Barometric Pressure:	"Hg
Ai Temperature	75	General Weathe Conditions	sunny	×	
CALIBRATION	INFORMATION		1		
Pre-monitoring	Calibration Precision Check				
and calculate th precision must b	e average algebraic differen ne less than or equal to 10%	a total of three measurement nee between the instrument of the calibration gas value	reading and the c	alibration gas as a percent	age. The calibration
Instrument Seria		<u>d</u> 1		Cal Gas Concentration:	500ppm
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (seconds)
2	2	501			3
	UU			12	//
/		Average Difference:	*Perform recalibration	2 if average difference is greater than :	10
Calibration Preci	sion= Average Difference/Ca	al Gas Conc. X 100%			
		= 100%-	1.3	/500 x 100%	
		=99,1	%	,	
Span Sensitivity:					
<u>Trial 1:</u> Co	unts Observed for the Span	133704		ts Observed for the Span=	
Cour Trial 2:	nters Observed for the Zero-	= 1019		rs Observed for the Zero=	4992
	unts Observed for the Span-		->13415	2	
Cour	ters Observed for the Zero	500			16
Post Monitoring (Calibration Check				
Zero Air Reading:	 ppm	Cal Gas Reading:	498	opm	
BACKGROUND C	ONCENTRATIONS CHECK	S			
Upwind Location	Description:	Entrance Plare	F		opm
Downwind Locatio	on Description:	Plare	F	leading: $\overline{2.4}$	opm
e	xceeded 20 miles per hour.	bbserved to remain below th No rainfall had occurred wi ere within the requested alt	thin the previous	24 hours of the monitoring	gevent. Therefore, site

	meteorological conditions were within the requested alternatives of the LMR requirements on the above
SES	Dourservices - Secure Environmental Data

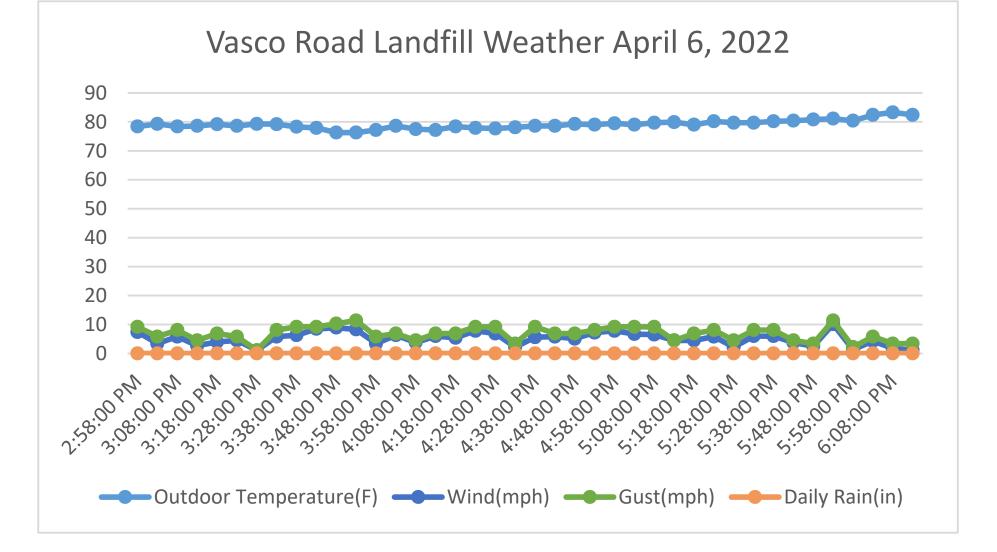
		SURFACE EMISSI			
Date:	4.12.2		Site Name:	VASCO	
Inspector(s)	a. A	N.	instrument:	TVA 2020	
Companya (OBSERVATIONS		instrument.	107/2020	
	-				
Wind Spe	eed: 6 MPH	Wind Direction:		Barometric Pressure: <u>30</u>	"Hg
Temperati	Air ure: 55 °F	General Weathe Conditions	sannu	7	
CALIBRATIC	IN INFORMATION		/		
Pre-monitori	ng Calibration Precision Check				
and calculate precision mu	alibrate the instrument. Make e the average algebraic differen st be less than or equal to 10% erial Number:	nce between the instrument	reading and the	calibration gas as a percent	age. The calibration
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (secon
1 2	2	498	5		5
3	Ň	.50	4		4
	ecision= Average Difference/C	= 100%- - 69 1	1.6	_/500 x 100%	
Span Sensitivi	hus	-116	70		
Trial 1:		MADAU	Trial 3:		
	Counts Observed for the Span	198827	Cour	its Observed for the Span=	149928
	ounters Observed for the Zero	<u> </u>	Counte	ers Observed for the Zero=	4120
<u>Trial 2:</u>	Counts Observed for the Span		-> 149	028	
Co	ounters Observed for the Zero	Supports			
Post Monitorir	g Calibration Check	4113			
Zero Air Reading:	<u>~ 0-3</u> ppm	Cal Gas Reading:	530	ppm	
BACKGROUNI	O CONCENTRATIONS CHECK	^S A			
Jpwind Locatic	on Description:	Place Entrance		Reading: 13	ppm
Downwind Loca	ation Description:	Entrance		Reading: <u>2.4</u>	opm
Votes:	Wind speed averages were on exceeded 20 miles per hour. meteorological conditions w	No rainfall had occurred wi	ithin the previous	24 hours of the monitoring	g event. Therefore, site

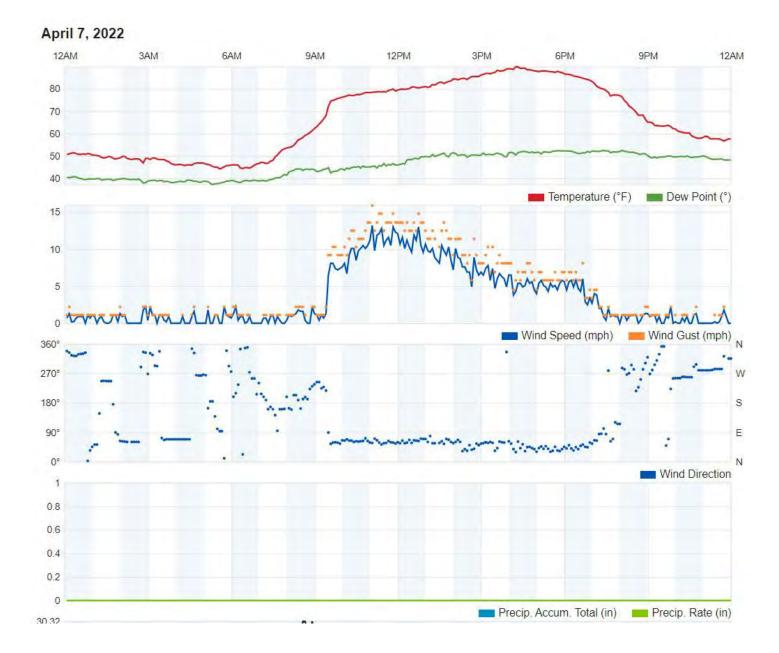
	meteorological conditions were within the requested alternatives of the LMR requirements on the above mentioned dat
365	DataSaurines - Secure Environmental Data

		CALIDDATION A	10142 10101418 019840	
	11 10	CALIBRATION AI	ND PERTINENT DATA	
Date	4-10-	-22	Site Name)
Inspector(s)=	Deft.	fore	Instrument:TV4-ZOZO	
WEATHER OBS	ERVATIONS			
	19			,
Wind Speed	МРН	Direction HC	Barometric 30	.// _{"Hg}
Air Temperature:	F-	General Weathe Condition		
CALIBRATION IN	FORMATION			
Pre-monitoring C	alibration Precision Check			
Dropoduro, Calib				
Procedure: Calibre	ate the instrument Make a	total of three measureme	nts by alternating zero air and the calibrat	ion gas Record the re
and concurrence the	average argebraic argeren	ce between the instrument of the calibration gas value.	reading and the calibration gas as a perce	ntage. The calibratio
precision mase be		of the calibration gas value.		
Instrument Serial i	Number: 542	0		END
			Cal Gas Concentration	-200
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Conc -Cal Gas Reading	December Time (
1	0	501	feer ous conce-car das reading	Response Time (s
2	-0.1	499	1	1 5
3	0	500	0	1
		= 100%-	1.5 /500 x 100%	
			at Cil	
		÷	% (19.7	
Span Sensitivity:			,	
Trial 1:		0.1.1	Trial 3:	
Count	s Observed for the Span=	15044	Counts Observed for the Span=	1376 -9
1	-	The second	counts observed for the span=	101001
Counter	s Observed for the Zero=	3805	Counters Observed for the Zero=	3779
Trial 2:		C	councers observed for the zero-	
Counts	s Observed for the Span=	135416		
· · · · ·	-	2001		
Counter	s Observed for the Zero=	3201		
Post Monitoring Calib	pration Check			
Zero Air	5	Cal Gas	FAC	
Reading:	ppm	Reading	SLS ppm	
		_	Phone Phone	
BACKGROUND CON	CENTRATIONS CHECKS			
		0	03	
Upwind Location Desc	cription:	- Widec K	Reading: 2.5	moo
		51.M.		he he is a
Downwind Location D	escription:	- lare	Reading: 2.8	maa
		<i>y.</i>		
Notes: Wind	speed averages were obs	erved to remain below the	alternative requested 10 miles per hour a	nd no instantaneous «
EXCEE	aed 20 miles per hour. No	o raintall had occurred with	nin the previous 24 hours of the monitoria	event Therefore d
mete	orological conditions were	within the requested alter	natives of the LMR requirements on the a	bove mentioned data
				vere menuoneu uale
		A REAL PROPERTY AND A REAL		
POIGSENVIG	es – Secure Er	viropmontal	Data	

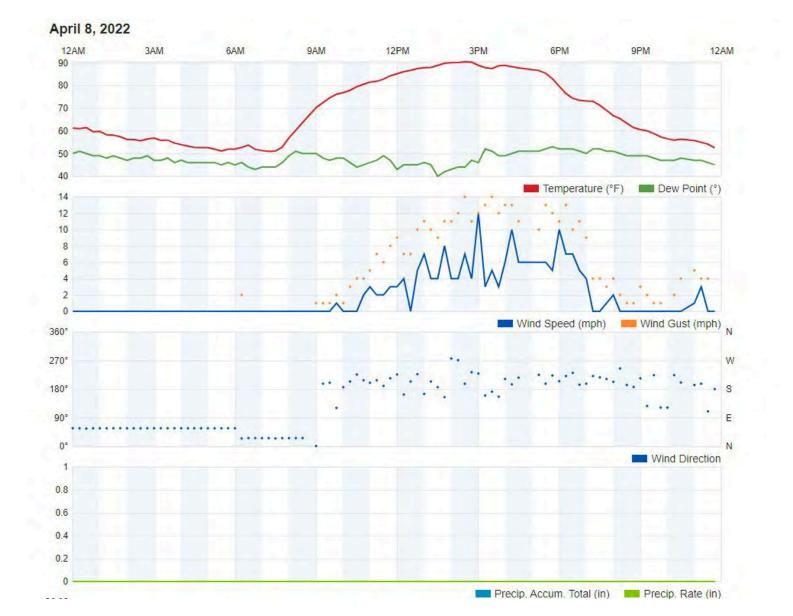
Wind Sp Temperat CALIBRATIC Pre-monitori Procedure: Co and calculate	OBSERVATIONS eed: <u>D</u> MPH Air ure: <u>62</u> °F DN INFORMATION ng Calibration Precision Che alibrate the instrument. Mo the average algebraic diffe st be less than or equal to 10 erial Number: <u>54</u>		ents by alternating	VASCO TVAZOZO Barometric Pressure: 30.0	on age. Record the use
WEATHER Wind Sp Temperat CALIBRATIC Pre-monitori Procedure: Co and calculate precision mus Instrument Se Trial	OBSERVATIONS eed: <u>D</u> MPH Air ure: <u>62</u> °F DN INFORMATION ng Calibration Precision Che alibrate the instrument. Mo the average algebraic diffe st be less than or equal to 10 erial Number: <u>54</u>	Wind Direction: New General Weath Condition eck ake a total of three measurement erence between the instrumen	ner ns: <u>Cleav</u> ents by alternating t reading and the c	Barometric Pressure: 30.0	on age. Record the use
Wind Sp Temperat CALIBRATIC Pre-monitori Procedure: Co and calculate precision mus Instrument Se Trial	eed: 10 MPH Air ure: 62 °F DN INFORMATION ng Calibration Precision Che alibrate the instrument. Mo the average algebraic diffe st be less than or equal to 10 erial Number:	Direction: New Condition General Weath Condition eck ake a total of three measuremen erence between the instrumen	ents by alternating	Pressure: 30.0	on age. Record the use
Temperat CALIBRATIC Pre-monitori Procedure: Co and calculate precision mus Instrument Se Trial	Air ure:*F DN INFORMATION ng Calibration Precision Che alibrate the instrument. Mo the average algebraic diffe the average algebraic diffe the less than or equal to 10 erial Number:	Direction: New Condition General Weath Condition eck ake a total of three measuremen erence between the instrumen	ents by alternating	Pressure: 30.0	on age. Record the use
Temperat CALIBRATIC Pre-monitori Procedure: Co and calculate precision mus Instrument Se Trial	Air ure:*F DN INFORMATION ng Calibration Precision Che alibrate the instrument. Mo the average algebraic diffe the average algebraic diffe the less than or equal to 10 erial Number:	General Weath Condition eck ake a total of three measureme erence between the instrumen	ents by alternating	Pressure: 30.0	on age. Record the use
CALIBRATIC Pre-monitori Procedure: Co and calculate precision mus Instrument Se Trial	ure:*F DN INFORMATION ng Calibration Precision Che alibrate the instrument. Mo the average algebraic diffe the average algebraic diffe the less than or equal to 10 erial Number:	Condition eck ake a total of three measureme erence between the instrumen	ents by alternating	zero air and the calibrati alibration gas as a percer	on gas. Record the rec Itage. The calibration
Pre-monitori Procedure: Co and calculate precision mus Instrument Se Trial 1	ng Calibration Precision Che alibrate the instrument. Mo the average algebraic diffe st be less than or equal to 10 erial Number:	еск ake a total of three measureme ereпce between the instrumen	ents by alternating t readina and the c	zero air and the calibrati alibration gas as a percer	on gas. Record the rec Itage. The calibration
Procedure: Co and calculate precision mus Instrument Se Trial 1	alibrate the instrument. Mo the average algebraic diffe st be less than or equal to 10 erial Number:	ake a total of three measurem erence between the instrumen	t readina and the c	zero air and the calibrati alibration gas as a percer	on gas. Record the rec Itage. The calibration
Procedure: Co and calculate precision mus Instrument Se Trial 1	alibrate the instrument. Mo the average algebraic diffe st be less than or equal to 10 erial Number:	ake a total of three measurem erence between the instrumen	t readina and the c	zero air and the calibrati alibration gas as a percer	on gas. Record the rec Itage. The calibration
Instrument Se Trial	erial Number:	erence between the instrumen	t readina and the c	zero air and the calibration alibration gas as a percer	on gas. Record the rec itage. The calibration
Instrument Se Trial	erial Number: <u>54</u>	0% of the calibration gas value	2		
Trial 1		19			
1				Cal Gas Concentration;	500
	Zero Air Reading	Cal Gas Reading	Cal Gas Co	ncCal Gas Reading	Response Time (se
	0	500 500	0		
3	0	499	0		1
					2
		=99.7	%		
Span Sensitivity					
Trial 1:			Trial 3:		
C	ounts Observed for the Spa	an= 171576		S Observed for the Span=	158302
Cou Trial 2:	unters Observed for the Zer	ro= <u>SIII</u>	Counters	s Observed for the Zero=	4761
	ounts Observed for the Spa	n=158988	-		
Cou	inters Observed for the Zer	0= 4847			
	Calibration Check				
ero Air					
eading:	0,4ppm	Cal Gas Reading:	485 pr	ט ת ו	
ACKGROUND	CONCENTRATIONS CHEC	CKS	100		
owind Location	Description:	office	Re	ading:	ppm
wnwind Locati	on Description:	-C7)		08	ppm
6	exceeded 20 miles per hou	observed to remain below th r. No rainfall had occurred wi were within the requested alte	thin the previous 24	sted 10 miles per hour ar 4 hours of the monitoring	nd no instantaneous sp z event . Therefore .sit
ł			Data		

scs

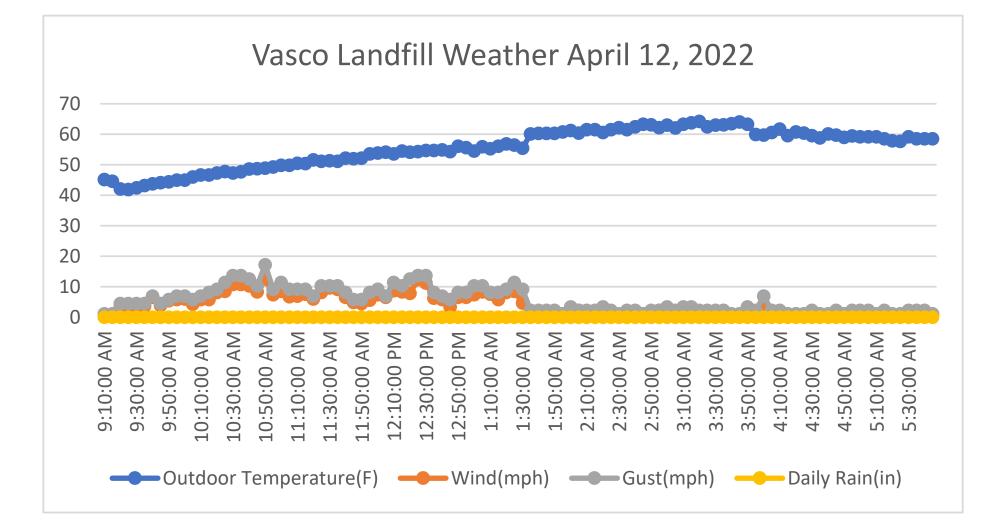

1		CALIBRATION AN		I DAIA	
Date:	5-5-22		Site Name:	Vasco	
Inspector(s)	RE Ras	shad Warr	Mastrument:	TVAZOZO	
WEATHER	OBSERVATIONS				
Wind Spe	eed: MPH	Wind Direction: NE		Barometric Pressure: 30.0	≤ ″н _g
Temperatu	Air ure: 62 *F	General Weathe Condition:	er s:Clear	1	
CALIBRATIO	IN INFORMATION				
Pre-monitorir	ng Calibration Precision Check	<			
una cancarate	alibrate the instrument. Make the average algebraic differe t be less than or equal to 10% rial Number:	ence between the instrument	reading and the c	alibration gas as a perce Cal Gas Concentration	ntage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time
2	0.1	503	3		2
3	D	500	0		1
Calibration Pred	cision= Average Difference/C	Average Difference: al Gas Conc. X 100% = 100%-	N N	f average difference is greater that /500 x 100%	n 10
		al Gas Conc. X 100%	N N	×	n 10
Span Sensitivity: Trial 1:		al Gas Conc. X 100% = 100%- = ? 0 8	% Trial 3:	/500 x 100%	
Span Sensitivity: Trial 1: Co	ounts Observed for the Span	al Gas Conc. X 100% = 100%- = 9 0 8 = <u>124792</u>	% Trial 3:	×	
Span Sensitivity: Trial 1: Cou		al Gas Conc. X 100% = 100%- = 9 0 8 = <u>124792</u>	% Trial <u>3:</u> Count:	/500 x 100%	129336
Span Sensitivity: Trial 1: Cou Trial 2:	ounts Observed for the Span	al Gas Conc. X 100% = 100%- = 988 = 124792 = 3654	% Trial <u>3:</u> Count:	'500 x 100% s Observed for the Span=	129336
Span Sensitivity: Trial 1: Cou Trial 2: Co	ounts Observed for the Span Inters Observed for the Zero	al Gas Conc. X 100% = 100% = 90% = 124792 = 3654 = 132144	% Trial <u>3:</u> Count:	'500 x 100% s Observed for the Span=	129336
Span Sensitivity: Trial 1: Cou Trial 2: Cou Cour	cunts Observed for the Span Inters Observed for the Zero Dunts Observed for the Span	al Gas Conc. X 100% = 100% = 90% = 124792 = 3654 = 132144	% Trial <u>3:</u> Count:	'500 x 100% s Observed for the Span=	129336
Span Sensitivity: Trial 1: Cou Trial 2: Cou Ost Monitoring	unts Observed for the Span Inters Observed for the Zeros Dunts Observed for the Span Inters Observed for the Zeros	al Gas Conc. X 100% = 100% = 90% = 124792 = 3654 = 132144	% Trial <u>3:</u> Count:	'500 x 100% s Observed for the Span=	129336
Span Sensitivity: Trial 1: Cou Cou Trial 2: Cou Cou	unts Observed for the Span Inters Observed for the Zeros Dunts Observed for the Span Inters Observed for the Zeros	al Gas Conc. X 100% = 100% = 90% = 124792 = 3654 = 132144 = 3512	% Trial 3: Counter	'500 x 100% s Observed for the Span=	129336
Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Cour Co	unts Observed for the Span Inters Observed for the Zeros Dunts Observed for the Span Inters Observed for the Zeros	al Gas Conc. X 100% = 100% - = 90% = 124792 = 3654 = 132144 = 3512 Cal Gas Reading:	% Trial 3: Counter	/500 x 100% s Observed for the Span= s Observed for the Zero=	129336
Span Sensitivity: Frial 1: Cou Trial 2: Cou Cour	conts Observed for the Spans Inters Observed for the Zeros Dunts Observed for the Spans Inters Observed for the Zeros Calibration Check	al Gas Conc. X 100% = 100% - = 90% = 124792 = 3654 = 132144 = 3512 Cal Gas Reading:	7 % <u>Trial 3:</u> Counter Counter	/500 x 100% s Observed for the Span= s Observed for the Zero=	129336
Span Sensitivity: Trial 1: Cou Trial 2: Cou Trial 2: Cou Cour Co	inters Observed for the Spanson ounts Observed for the Zeroson ounts Observed for the Spanson nters Observed for the Zeroson Calibration Check	al Gas Conc. X 100% = 100%- = 9 0 8 = 124792 = 3654 = 132144 = 3512 Cal Gas Reading:	% Trial 3: Counter	$\sqrt{500 \times 100\%}$ s Observed for the Span= s Observed for the Zero=	129336 3460
Span Sensitivity: Trial 1: Co Cou Trial 2: Co Cour ost Monitoring of ero Air eading: ACKGROUND Co pwind Location pwnwind Location	inters Observed for the Spanson ounts Observed for the Zeroson ounts Observed for the Spanson nters Observed for the Zeroson Calibration Check	al Gas Conc. X 100% = 100% = 90% = 124792 = 3659 = 132199 = 3572 Cal Gas Reading: S OFFICC G bserved to remain below the No rainfall had occurred with	% Trial 3: Counter Counter Counter Re Re alternative reque hin the previous 2	$\sqrt{500 \times 100\%}$ s Observed for the Span= s Observed for the Zero= ading: 2.8 sted 10 miles per hour and 4 hours of the monitorin	ppm ppm nd no instantaneous g event. Therefore

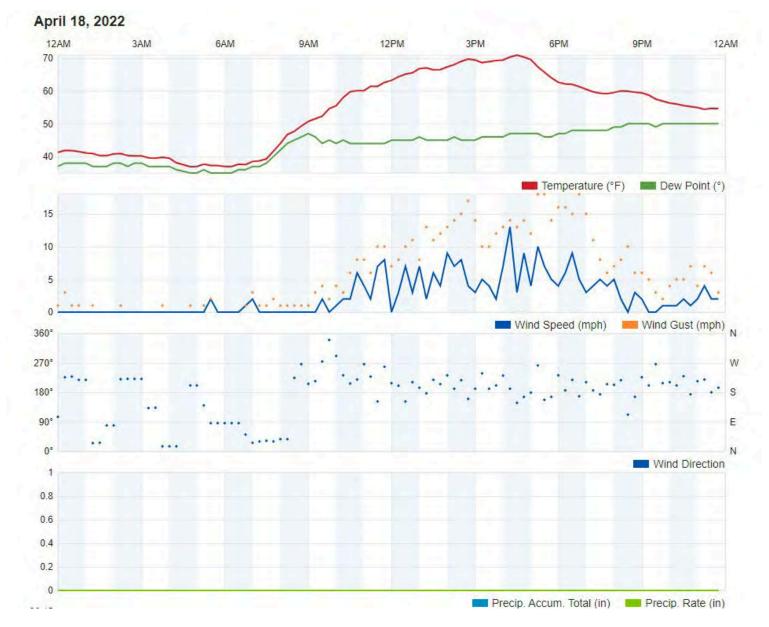

		CALIDITATION A	ND PERTINEN	DATA	
Date:	5-5-22		Site Name:	Vasco	
Inspector(s):	Bryano		Instrument:	_Vasco _TVAZOZO	
WEATHER OF	BSERVATIONS				
Wind Speed	d: Мрн	Wind Direction: NE		Barometric Pressure: <u>30,0</u>	3 "Hg
Ai Temperature	ir e: <u>62</u> °F	General Weath Condition			
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
una curcarute th	brate the instrument. Make be average algebraic differen be less than or equal to 10% al Number:	ce between the instrument	reading and the co	tero air and the calibration libration gas as a percen Cal Gas Concentration:	n gas. Record the read tage. The calibration
Trial	Zero Air Reading	Cal Gas Reading			
1	<u>6</u>	500		ncCal Gas Reading	Response Time (sec
2	-0.1	500	0		2
3	0	500			1
		601 ₌	%	500 x 100%	
1					
Span Sensitivity					
Trial 1:	nts Observed for the Span=	122096	Trial 3: Counts	Observed for the Span=	119944
Cou			Counts	Observed for the Span=	
<u>Trial 1:</u> Cou Count Trial 2:	ters Observed for the Zero=	5102	Counts	Observed for the Span= Observed for the Zero=	State of the second
<u>Trial 1:</u> Cou <u>Count</u> <u>Trial 2:</u> Cour	ters Observed for the Zero=	5102 157672	Counts		
Trial 1: Cou Count Trial 2: Court Count	ters Observed for the Zero= nts Observed for the Span= ers Observed for the Zero=	5102 157672	Counts		
<u>Trial 1:</u> Count Trial 2: Count Count Post Monitoring Ca	ters Observed for the Zero= nts Observed for the Span= ers Observed for the Zero=	5102 157672	Counts	Observed for the Zero=	
Trial 1: Count Trial 2: Count Count Post Monitoring Ca ero Air eading:	ters Observed for the Zero= nts Observed for the Span= ers Observed for the Zero= libration Check	5102 157672 4949 Cal Gas	Counts	Observed for the Zero=	
Trial 1: Count Trial 2: Count Count Post Monitoring Ca Post Monitoring Ca ero Air eading: ACKGROUND CO	ters Observed for the Zero= nts Observed for the Span= ers Observed for the Zero= libration Check O.S. ppm PNCENTRATIONS CHECKS	5102 157672 4949 Cal Gas	Counts	Observed for the Zero=	
Trial 1: Count Trial 2: Count Count Count Post Monitoring Ca Post Monitoring Ca Post Monitoring Ca Post Monitoring Ca Post Monitoring Ca Carter Air Reading:	ters Observed for the Zero= nts Observed for the Span= ers Observed for the Zero= alibration Check O.O. ppm PNCENTRATIONS CHECKS escription:	5102 157672 4949 Cal Gas Reading: C	Counts <u>Counters</u> 517 pp Rea	Observed for the Zero=	4764
Trial 1: Count Trial 2: Count Trial 2: Count Count Post Monitoring Ca Post Monitoring Ca Zero Air Reading: Count Reading: Count Post Monitoring Ca Count Post Monitoring Ca Count Co	ters Observed for the Zero= nts Observed for the Span= ers Observed for the Zero= alibration Check O.O. ppm PNCENTRATIONS CHECKS escription:	SIO2 157672 4949 Cal Gas Reading: C Office C Served to remain below the to rainfall had occurred with	Counts <u>Counters</u> 517 pp Rea Rea e alternative reques hin the previous 24	Observed for the Zero= m ading: $\underline{1.1}$ p ading: $\underline{2.7}$ p ted 10 miles per hour an hours of the monitoring	ppm pm d no instantaneous spr event. Therefore site

RCC D C C	A STREET WARDER		
SCS DataServices	- Secure	Environmental	Data

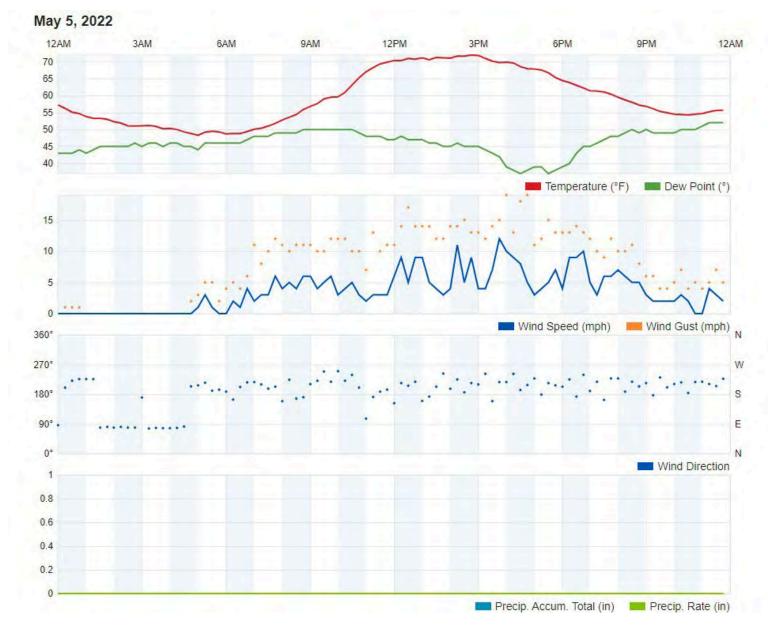

Attachment 6

Weather Data





Second Quarter 2022 Weather Data for April 7, 2022 Vasco Road Landfill, Livermore, California



Second Quarter 2022 Weather Data for April 8, 2022 Vasco Road Landfill, Livermore, California

Second Quarter 2022 Weather Data for April 18, 2022 Vasco Road Landfill, Livermore, California

Second Quarter 2022 Weather Data for May 5, 2022 Vasco Road Landfill, Livermore, California Appendix F – Title V Semi-Annual Report

TITLE V SEMI-ANNUAL MONITORING REPORT

SITE:			FACILITY ID#:	
VASCO ROAD	LANDFILL			A5095
REPORTING PERIOD:	from	through	1	
	02/01/2022	_	07/31/2022	

CERTIFICATION:

I declare, under penalty of perjury under the laws of the state of California, that, based on information and belief formed after reasonable inquiry, all information provided in this reporting package is true, accurate, and addresses all deviations during the reporting period:

08/29/2022

Signature of Responsible Official

Date

Josh Mills Name of Responsible Official (please print)

General Manager _____ Title of Responsible Official (please print)

Mail to:

Director of Compliance and Enforcement BAAQMD 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V reports

TITLE V SEMI-ANNUAL MONITORING REPORT

SITE:			FACILITY ID#:	
VASCO ROAD	LANDFILL			A5095
REPORTING PERIOD:	from	through	ו	
	02/01/2022	_	07/31/2022	

List of Permitted Sources and Abatement Device

Permit Unit Number	Equipment Description				
S-#	Description				
S-1	Vasco Road Landfill – Waste Decomposition Process; Equipped with				
5-1	Gas Collection System; Abated by A-4 Landfill Gas Flare				
S-12	Vasco Road Landfill – Waste and Cover Material Dumping				
S-13	Vasco Road Landfill – Excavating, Bulldozing and Compacting				
5-15	Activities				
S-7	Non-retail Gasoline Dispensing Facility				
S-14	Green Waste Processing Operation; A-14 Water Sprayer				
S-15	Wood Waste Processing Operation; A-15 Water Sprayer				
A-4	Landfill Gas Flare				

Notes:

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 Vasco Road Landfill, A-4 Landfill Gas FLARE; S-12 Waste and Cover Material Dumping; S-13 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Collection System Installation Dates	BAAQMD 8-34-501.7 and 501.8 and BAAQMD Condition # 818, Parts 22b-c and 22e-g	Records	Periodic / On event basis	BAAQMD 8-34- 304.1	For Inactive/Closed Areas: collection system components must be installed and operating by 2 years + 60 days after initial waste placement	Continuous	N/A
Collection System Installation Dates	BAAQMD 8-34-501.7 and 501.8 and BAAQMD Condition # 818, Parts 22a-c and 22e-g	Records	Periodic / On event basis	BAAQMD 8-34- 304.2	For Active Areas: Collection system components must be installed and operating by 5 years + 60 days after initial waste placement	Continuous	N/A
Collection System Installation Dates	BAAQMD 8-34-501.7 and 501.8 and BAAQMD Condition # 818, Parts 22a-c and 22e-g	Records	Periodic / On event basis	BAAQMD 8-34- 304.3	For Any Uncontrolled Areas or Cells: collection system components must be installed and operating within 60 days after the uncontrolled area or cell accumulates 1,000,000 tons of decomposable waste	Continuous	N/A

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 Vasco Road Landfill, A-4 Landfill Gas FLARE; S-12 Waste and Cover Material Dumping; S-13 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Gas Flow	BAAQMD 8-34-501.10	Gas Flow Meter and Recorder (every 15 minutes)	Continuous	BAAQMD 8-34-301 and 301.1	Landfill gas collection system shall operate continuously and all collected gases shall be vented to a properly operating control system	Continuous	N/A
Gas Flow	BAAQMD 8-34-404, 8-34- 501.1, 8-34-501.2, 8-34-501.5, 8-34- 501.10, 8-34-508, and BAAQMD Condition # 818, Part 22g	Records of Landfill Gas Flow Rates, Collection and Control Systems Downtime, and Collection System Components	Periodic / Daily	BAAQMD Condition # 818, Parts 1-3	Landfill gas collection system shall operate continuously and all collected gases shall be vented to a properly operating control system; Except That Flare A-4 May Operate Less Than Continuously If: LFG Flow to Energy Plant is > 1200 scfm AND Remaining LFG Flow Available for A-4 is < 800 scfm (< 24 MM BTU/hour)	Continuous	N/A

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 Vasco Road Landfill, A-4 Landfill Gas FLARE; S-12 Waste and Cover Material Dumping; S-13 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Collection and Control Systems Shutdown Time	BAAQMD 8-34- 501.1	Operating Records	Periodic / Daily	BAAQMD 8-34- 113.2	≤ 240 hours per year and ≤ 5 consecutive days	Continuous	N/A
Periods of Inoperation for Parametric Monitors	BAAQMD 1-523.4	Operating Records for All Parametric Monitors	Periodic / Daily	BAAQMD 1-523.2	 ≤ 15 consecutive days per incident and ≤ 30 calendar days per 12-month period 	Continuous	N/A
Continuous Monitors	40 CFR 60.7(b)	Operating Records for All Continuous Monitors	Periodic / Daily	40 CFR 60.13(e)	Requires Continuous Operation except for breakdowns, repairs, calibration, and required span adjustments	Continuous	N/A
Wellhead Pressure	BAAQMD 8-34-414, 501.9 and 505.1	Monthly Inspection and Records	Periodic / Monthly	BAAQMD 8-34- 305.1	< 0 psig	Continuous	N/A
Temperature of Gas at Wellhead	BAAQMD 8-34-414, 501.9 and 505.2	Monthly Inspection and Records	Periodic / Monthly	BAAQMD 8-34- 305.2	< 55 °C (< 131 °F), except for components identified in Condition # 818, Part 3b(i)	Continuous	N/A

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 Vasco Road Landfill, A-4 Landfill Gas FLARE; S-12 Waste and Cover Material Dumping; S-13 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Temperature of Gas at Specified Well- heads	BAAQMD 8-34-414, 501.9 and 505.2	Monthly Inspection and Records	Periodic / Monthly	BAAQMD Condition # 818, Part 3b(i)	< 140 °F	Continuous	N/A
Gas Concentrations in LFG at Wellhead	BAAQMD 8-34-414, 501.9 and 505.3 or 505.4	Monthly Inspection and Records	Periodic / Monthly	BAAQMD 8-34-305.3 or 305.4	$N_2 < 20\%$ (by volume, dry basis) OR $O_2 < 5\%$ (by volume, dry basis), except for components identified in Condition # 818, Part 3b(ii)	Continuous	N/A
Gas Concentrations in LFG at Header	BAAQMD 8-34-414 and 8-34- 501.4 and BAAQMD Condition # 818, Part 3b(ii)	Monthly Inspection and Records	Periodic / Monthly	BAAQMD Condition # 818, Part 3b(ii)	O2 < 5% (by volume, dry basis) and CH4 > 35% (by volume, dry basis)	Continuous	N/A
Well Shutdown Limits	BAAQMD 8-34-116.5 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 116.2	< 5 wells at a time or < 10% of total collection system, whichever is less	Continuous	N/A

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 Vasco Road Landfill, A-4 Landfill Gas FLARE; S-12 Waste and Cover Material Dumping; S-13 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Well Shutdown	BAAQMD	Records	Periodic / Daily	BAAQMD 8-34-	< 24 hours per well	Continuous	N/A
Limits	8-34-116.5 and 501.1			116.3			
Well Shutdown Limits	BAAQMD 8-34-117.6 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 117.4	< 5 wells at a time or < 10% of total collection system, whichever is less	Continuous	N/A
Well Shutdown Limits	BAAQMD 8-34-117.6 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 117.5	< 24 hours per well	Continuous	N/A
TOC (Total Organic Com- pounds Plus Methane)	BAAQMD 8-34- 501.6 and 503 and BAAQMD Condition # 818, Part 3b(iii)	Quarterly Inspection of collection and control system components with OVA and Records	Periodic / Quarterly	BAAQMD 8-34- 301.2	Component Leak Limit: < 1000 ppmv as methane	Continuous	N/A

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 VASCO ROAD LANDFILL, A-4 LANDFILL GAS FLARE; S-12 WASTE AND COVER MATERIAL DUMPING; S-13 EXCAVATING, BULLDOZING, AND COMPACTING ACTIVITIES	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
TOC	BAAQMD 8-34-415, 416, 501.6, 506 and 510 and BAAQMD Condition # 818, Part 3b(iii)	Monthly Visual Inspection of Cover, Quarterly Inspection with OVA of Surface, Various Re- inspection Times for Leaking Areas, and Records	Periodic / Monthly, Quarterly, and on an Event Basis	TOC BAAQMD 8- 34-303	Surface Leak Limit: < 500 ppmv as methane at 2 inches above surface	Continuous	N/A
Non-Methane Organic Com- pounds (NMOC)	BAAQMD 8-34-412 and 8-34- 501.4 and BAAQMD Condition # 818, Part 20	Annual Source Tests and Records	Periodic / Annual	BAAQMD 8-34- 301.3	NMOC Destruction Efficiency: > 98% removal by weight OR NMOC Outlet Concentration: < 30 ppmv, dry basis @ 3% O2, expressed as methane (applies to flare only)	Continuous	N/A

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 Vasco Road Landfill, A-4 Landfill Gas FLARE; S-12 Waste and Cover Material Dumping; S-13 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Temperature of Combustion Zone (CT)	BAAQMD 8-34-501.3, and 507, and BAAQMD Condition # 818, Part 4	Temperature Sensor and Recorder (continuous)	Continuous	BAAQMD Condition # 818, Part 5	Flare CT > 1402 °F, averaged over any 3-hour period	Continuous	N/A
Opacity	BAAQMD Condition # 818, Part 22d	Records of all site watering and road cleaning events	Periodic / On event basis, Monthly	BAAQMD 6-1-301 and SIP 6-301	Ringelmann No. 1 for ≤ 3 minutes/hr (applies to active landfill operations)	Continuous	N/A
Opacity	None	N/A	None	BAAQMD 6-1-301 and SIP 6-301	Ringelmann No. 1 for < 3 minutes/hr (applies to flare)	Continuous	N/A
TSP	None	N/A	None	BAAQMD 6-1-310.1 and SIP 6-310	< 0.15 grains/dscf (applies to flare only)	Continuous	N/A
NO _x	BAAQMD Condition # 818, Part 20	Annual Source Test	Periodic / Annual	BAAQMD Condition # 818, Part 8	Flare Outlet Concentration: < 11 ppmv of NOx @ 15% O2, dry basis OR Flare Outlet Emission Rate: < 0.049 pounds of NO2 per MM BTU	Continuous	N/A

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 VASCO ROAD LANDFILL, A-4 LANDFILL GAS FLARE; S-12 WASTE AND COVER MATERIAL DUMPING; S-13 EXCAVATING, BULLDOZING, AND COMPACTING ACTIVITIES	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
CO	BAAQMD Condition # 818, Part 20	Annual Source Test	Periodic / Annual	BAAQMD Condition # 818, Part 10	Flare Outlet Concentration: < 73 ppmv of CO @ 15% O2, dry basis OR Flare Outlet Emission Rate: < 0.19 pounds of CO per MM BTU	Continuous	N/A
SO ₂	None	N/A	None	BAAQMD 9-1-301	Property Line Ground Level Limits: < 0.5 ppm for 3 minutes and < 0.25 ppm for 60 min. and <0.05 ppm for 24 hours (applies to flare only)	Continuous	N/A
SO ₂	None	N/A	None	BAAQMD Regulation 9-1-302	≤ 300 ppm, (dry basis) (applies to flare only)	Continuous	N/A
Sulfur Content in Landfill Gas	BAAQMD Condition # 818, Parts 12, 21	Sulfur analysis of landfill gas	Periodic / Quarterly	BAAQMD Condition # 818, Part 12	Annual Average TRS < 320 ppmv, expressed as H2S (dry basis)	Continuous	N/A

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 Vasco Road Landfill, A-4 Landfill Gas FLARE; S-12 Waste and Cover Material Dumping; S-13 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
H ₂ S	None	N/A	None	BAAQMD 9-2-301	Property Line Ground Level Limits: < 0.06 ppm, averaged over 3 minutes and < 0.03 ppm, averaged over 60 minutes	Continuous	N/A
Heat Input	BAAQMD 8-34- 501.10 and 508 and BAAQMD Condition # 818, Parts 3b(ii), 13 and 22g	Gas Flow Rate Meter, LFG Methane Analyses, Calculations and Records	Continuous, Periodic / Daily, and Periodic / Monthly	BAAQMD Condition # 818, Part 13	< 2880 MM BTU per day and < 1,051,200 MM BTU per 12-month period	Continuous	N/A
Vehicle Traffic	BAAQMD Condition # 818, Part 22a	Records	Periodic / Daily	BAAQMD Condition # 818, Part 14a	< 625 vehicles per day	Continuous	N/A

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 Vasco Road Landfill, A-4 Landfill Gas FLARE; S-12 Waste and Cover Material Dumping; S-13 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Amount of Material Accepted	BAAQMD Condition # 818, Part 22a	Records	Periodic / Daily	BAAQMD Condition # 818, Part 14	< 2518 tons per day of solid waste and < 23,800,000 tons (cumulative) of decomposable materials and < 31,650,000 yd3 (cumulative) amount of all wastes and cover materials	Continuous	N/A
Total Carbon Emissions	BAAQMD Condition # 818, Part 18	Records	Periodic / Daily	BAAQMD 8-2-301	< 15 pounds per day Or < 300 ppmv, dry basis (applies only to aeration of or use as cover soil of soil containing < 50 ppmw of volatile organic compounds)	Continuous	N/A
Organic Content of Soil	BAAQMD Condition # 818, Part 18	Records	Periodic / Daily	BAAQMD Condition # 818, Part 15	< 50 ppmw of VOC in soil or < 50 ppmv of VOC, expressed as C1, measured 3 inches above soil	Continuous	N/A

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 Vasco Road Landfill, A-4 Landfill Gas FLARE; S-12 Waste and Cover Material Dumping; S-13 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Amount of VOC Laden Soil Accepted	BAAQMD Condition # 818, Part 18	Records	Periodic / On event basis	BAAQMD Condition # 818, Part 16a-b	< 10,000 tons per consecutive 12-month period for soil with high chlorinated compound concentration and < 170,000 tons per consecutive 12-month period	Continuous	N/A
TAC Concentration Limits for VOC- laden Soil	BAAQMD Condition # 818, Part 18	Records	Periodic / On event basis	BAAQMD Condition # 818, Part 16a-b	for other VOC laden soil Compound < ppmw Benzene 0.50 Carbon Tetrachloride 0.50 Chloroform 6.00 1,4 Dichlorobenzene 7.50 1,2 Dichloroethane 0.50 Tetrachloroethylene 0.70 Trichloroethylene 0.50 Vinyl Chloride 0.20	Continuous	N/A

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 Vasco Road Landfill, A-4 Landfill Gas FLARE; S-12 Waste and Cover Material Dumping; S-13 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Amount of Metal Laden Soil Accepted	BAAQMD Condition # 818, Part 18	Records	Periodic / On event basis	BAAQMD Condition # 818, Part 16	< 180,000 tons per consecutive 12-month period	Continuous	N/A
TAC Concen- tration Limits for Metal- Laden Soil	BAAQMD Condition # 818, Part 18	Records	Periodic / On event basis	BAAQMD Condition # 818, Part 16	Arsenic < 130 ppmw Beryllium < 75 ppmw Cadmium < 100 ppmw Chromium VI < 7 ppmw Copper < 2500 ppmw Lead < 1000 ppmw Mercury < 20 ppmw Nickel < 2000 ppmw Selenium < 100ppmw Zinc < 5000 ppmw	Continuous	N/A
Startup Shutdown or Malfunction Procedures	40 CFR 63.1980(a- b)	Records (all occurrences, duration of each, corrective actions)	Periodic / On event basis	40 CFR 63.6(e)	Minimize Emissions by Implementing SSM Plan	Continuous	N/A

Site: Vasco Road Landfill	Facility ID#: A5095
Permitted Unit: S-1 Vasco Road Landfill, A-4 Landfill Gas FLARE; S-12 Waste and Cover Material Dumping; S-13 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Trackout onto Paved Roadways	BAAQMD 6-6-501	Records	Periodic / Daily	BAAQMD 6-6-301	Trackout causing visible emissions: < 25 linear feet for no more than 4 hours; and Trackout remaining on adjacent paved public roadway or paved shoulder: < 1 quart at end of each workday	Continuous	N/A
Visible Emissions from Cleaning Trackout	BAAQMD 6-6-501	Records	Periodic / Daily	BAAQMD 6-6-302	< Ringelmann No. 1 Limitation for no more than 3 minutes in any 60-minute period	Continuous	N/A

Site: Vasco Road Landfill			Facility ID#:	A509	95
Permitted #9551	Unit:	S-7 NON-RETAIL GASOLINE DISPENSING FACILITY	Reporting Period:	from	02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	n of Limit Limit		Corrective Actions Taken
Gasoline Throughput	BAAQMD 8-7-503.1	Records	Periodic / Annual	BAAQMD Condition # 7523	< 400,000 gallons per 12-month period	Continuous	N/A
Exempt Throughput	BAAQMD 8-7-501 and 8-7-503.2	Records	Periodic / On event basis	BAAQMD 6-1-310	< 1000 gallons per facility for tank integrity leak checking	Continuous	N/A
Organic Compounds	CARB EO G-70-116-F, paragraph 19 and BAAQMD 8-7-301.13 and 8-7- 407	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	BAAQMD 8-7-301.6	All Phase I Equipment (except components with allowable leak rates) shall be leak free (<3 drops/minute) and vapor tight	Continuous	N/A
Organic Compounds	CARB EO G-70-116-F, paragraph 19 and BAAQMD 8-7-301.13 and 8-7- 407	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	BAAQMD 8-7-302.5	All Phase II Equipment (except components with allowable leak rates or at the nozzle/fill- pipe interface) Shall Be: leak free (<3 drops/minute) and vapor tight	Continuous	N/A
Organic Compounds	SIP 8-5-403 and 8- 5-503	Annual Inspection with Portable Hydro-carbon Detector	Periodic / On event basis	SIP 8-5-303.2	Tank Pressure Vacuum Valve Shall Be: Gas Tight or < 500 ppmv (expressed as	Continuous	N/A

Site: V	Facility ID#:	A5095		
Permitted U #9551	nit: S-7 Non-Retail Gasoline Dispensing Facility	Reporting Period:	from	02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
					methane) above background for PRVs (as defined in SIP 8- 5-206)		
Organic Compounds	CARB EO G-70-116-F, paragraph 19 and BAAQMD 8-7-301.13 and 8-7- 407	Annual Check for Vapor Tightness and Proper Operation of Vapor Recovery System	Periodic / Annual	CARB EO G-70-116- F, paragraph 10	Any Emergency Vent or Manway Shall Be: leak free	Continuous	N/A
Defective Component Repair/ Replacement Time Limit	BAAQMD 8-7-503.2	Records	Periodic / On event basis	BAAQMD 8-7-302.4	≦ 7 days	Continuous	N/A
Liquid Removal Rate	CARB EO G-70-116-F	CARB Certification Procedures	Periodic / On event basis	BAAQMD 8-7-302.8	 5 ml per gallon dispensed, when dispensing rate 5 gallons/minute 	Continuous	N/A
Liquid Retain from Nozzles	CARB EO G-70-116-F	CARB Certification Procedures	Periodic / On event basis	BAAQMD 8-7-302.12	≤_100 ml per 1000 gallons dispensed	Continuous	N/A
Nozzle Spitting	CARB EO G-70-116-F	CARB Certification Procedures	Periodic / On event basis	BAAQMD 8-7-302.13	<u>≤</u> 1.0 ml per nozzle per test	Continuous	N/A
Pressure- Vacuum Valve Settings	CARB EO G-70-116-F	CARB Certification Procedures	Periodic / On event basis	BAAQMD 8-7-316 and CARB EO G-70-116- F, paragraph 14	Pressure Setting: > 2.5 inches of water, gauge	Continuous	N/A

Site: V	Facility ID#:	A5095		
Permitted Ur #9551	it: S-7 Non-RETAIL GASOLINE DISPENSING	FACILITY Reporting Period:	from	02/01/2022 through 07/31/2022

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Pressure-	SIP 8-5-403	Semi-Annual Inspection	Periodic / On	SIP	Pressure Setting:	Continuous	N/A
Vacuum	and	and	event basis	8-5-303.1	> 10% of maximum		
Valve	CARB EO	CARB Certification			working pressure or		
Settings	G-70-116-	Procedures			> 0.5 psig		
Disconnectio	CARB EO	Annual Check for Vapor	Periodic /	CARB EO G-70-116-	≤ 10 ml per	Continuous	N/A
n Liquid	G-70-116-F,	Tightness and Proper	Annual	F, paragraph 12	disconnect, averaged		
Leaks	paragraph 19 and	Operation of Vapor			over 3 disconnect		
	BAAQMD	Recovery System			operations		
	8-7-301.13 and 8-7-						
	407						

Site: Vasco Road Landfill		Facility ID#:	A509	5	
Permitted L	Unit:	S-14 GREENWASTE PROCESSING OPERATION, A-14	Reporting Period:	from	02/01/2022 through 07/31/2022
WATER SPRAYE	ĒR				

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Waste Processing Limit	BAAQMD Condition # 25515 Part 1	Records	Periodic / Annual	BAAQMD Condition # 25515 Part 1	≤ 16,000 tons of green waste per 12-month period	Continuous	N/A
Opacity	BAAQMD Condition # 25515, Part 2	Observation of Source in Operation	Periodic / On event basis	BAAQMD 6-1-301 and SIP 6-301	< Ringelmann 1.0 for 3 minutes in any hour	Continuous	N/A
TSP	None	N/A	None	BAAQMD 6-1-311.1 and SIP 6-311	E = $4.10(P)^{0.67}$ where: E = Allowable Emission Rate (lb/hr); and P = Process Weight Rate (lb/hr) Maximum Allowable Emission Rate = 40 lb/hr For P >55,116 lb/hr	Continuous	N/A
Total Carbon Emissions	None	N/A	None	BAAQMD 8-2-301	 ≤ 15 pounds/day or ≤ 300 ppm, dry basis and vapor tight 	Continuous	N/A

Site: Vasco Road Landfill		Facility ID#:	A509	5	
Permitted U	nit:	S-15 WOODWASTE PROCESSING OPERATION, A-15	Reporting Period:	from	02/01/2022 through 07/31/2022
WATER SPRAYER	र				

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Waste Processing Limit	BAAQMD Condition # 25516 Part 1	Records	Periodic / Annual	BAAQMD Condition # 25516 Part 1	≤ 5,000 tons of wood waste per 12-month period	Continuous	N/A
Opacity	BAAQMD Condition # 25516, Part 2	Observation of Source in Operation	Periodic / On event basis	BAAQMD 6-1-301 and SIP 6-301	< Ringelmann 1.0 for 3 minutes in any hour	Continuous	N/A
TSP	None	N/A	None	BAAQMD 6-1-311.1 and SIP 6-311	E = $4.10(P)^{0.67}$ where: E = Allowable Emission Rate (Ib/hr); and P = Process Weight Rate (Ib/hr) Maximum Allowable Emission Rate = 40 Ib/hr For P >55,116 Ib/hr	Continuous	N/A

Appendix G – Well Exceedance Documentation

Root Cause Analysis and Corrective Analysis Forms

Date of Initial Exceedance:	2/24/2022
Collection Device ID:	VREW2103
Temperature Reading:	133.3

Root Cause Analysis					
Has the owner/operator received approval from the state					
agency to operate at a temperature higher than 55°C (131°F) \Box Yes \boxtimes N					
for this well?					
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).				
• If NO, continue the form.					
Describe what was inspected.					
HOV Requested, CO testing and lab data previously pulled a	t startup. All	components			
tested.					
Describe what was determined to be the root cause of the exce	edance.				
In an area that has excessive heat, well is being adjusted to maximize LFG and heat					
extraction					
Determine the required next steps.					
HOV submitted to air board. Waiting approval.					
Was the temperature exceedance remediated within 60 days	⊠ Voc				
since the initial exceedance? \square No					
If YES, keep records of Root Cause Analysis. No reporting required.					
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit					
Notification to state agency within 75 days of initial exceedance.					

Date of Initial Exceedance:	2/24/2022
Collection Device ID:	VREW2106
Temperature Reading:	132.7

Root Cause Analysis				
Has the owner/operator received approval from the state				
agency to operate at a temperature higher than 55°C (131°F) \Box Yes \boxtimes No				
for this well?				
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).			
• If NO, continue the form.				
Describe what was inspected.				
HOV Requested, CO testing and lab data previously pulled	at startup. All	components		
tested	_	_		
Describe what was determined to be the root cause of the exce	edance.			
In an area that has excessive heat, well is being adjusted	In an area that has excessive heat, well is being adjusted to maximize LFG and heat			
extraction				
Determine the required next steps.				
HOV submitted to air board. Waiting approval.				
Was the temperature exceedance remediated within 60 days	V voc			
since the initial exceedance? \square No				
If YES, keep records of Root Cause Analysis. No reporting required.				
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit				
Notification to state agency within 75 days of initial exceed				

Date of Initial Exceedance:	4/25/2022
Collection Device ID:	VREW2103
Temperature Reading:	133.7

Root Cause Analysis				
Has the owner/operator received approval from the state				
agency to operate at a temperature higher than 55°C (131°F) \Box Yes \boxtimes No				
for this well?				
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).			
• If NO, continue the form.				
Describe what was inspected.				
All components tested. HOV needed				
Describe what was determined to be the root cause of the exce	edance.			
Flow was adjusted – system expansion in process				
Determine the required next steps.				
Was the temperature exceedance remediated within 60 days	□ Yes			
since the initial exceedance? \Box Yes \boxtimes No				
• If YES, keep records of Root Cause Analysis. No reporting required.				
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit				
Notification to state agency within 75 days of initial exceedance.				

Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	4/25/2022
Collection Device ID:	VREW2103
Temperature Reading:	133.7

Corrective Action Analysis

Describe the corrective actions taken to remediate exceedance.

Well has been adjusted and tested. It is in hot area that is showing signs of flipped reaction. All components have been tested and ground is secure.

Implementation Schedule				
4/25/2022				
Expected Completion Date: TBD; Date HOV Approved				
Provide a description of proposed repairs and/or remedial action required and				
supporting information for implementation timeframe.				
HOV application was submitted September 1, 2021. Continued adjustment and monitoring				
of well for CO.				

Final Steps		
Determine the required next steps.		
Is the remediation expected to take less than 120 days since initial exceedance per implementation schedule?	□ Yes	🖾 No
 If YES, send notification to state agency within 75 days of a Root Cause Analysis, Corrective Action Analysis, and Imple next Annual Report. If NO, send Root Cause Analysis, Corrective Action Analysis, Schedule to state agency within 75 days for approval and in Report. 	mentation Sch and Impleme	nedule in the ntation

Date of Initial Exceedance:	5/10/2022
Collection Device ID:	VREW2107
Temperature Reading:	135.0

Root Cause Analysis				
Has the owner/operator received approval from the state				
agency to operate at a temperature higher than 55°C (131°F)	\Box Yes	🖾 No		
for this well?				
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).			
• If NO, continue the form.				
Describe what was inspected.				
All components tested.				
Describe what was determined to be the root cause of the exceedance.				
Flow was adjusted – system expansion in process				
Determine the required next steps.				
Was the temperature exceedance remediated within 60 days	□ Yes	🖂 No		
since the initial exceedance?				
 If YES, keep records of Root Cause Analysis. No reporting required. 				
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit				
Notification to state agency within 75 days of initial exceedance.				

Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	5/10/2022
Collection Device ID:	VREW2107
Temperature Reading:	135.0

Corrective Action Analysis

Describe the corrective actions taken to remediate exceedance.

Well has been adjusted and tested. It is in hot area that is showing signs of flipped reaction. All components have been tested and ground is secure.

5/10/2022			
7/20/2022			
roposed repairs and/or remedial action required and			
supporting information for implementation timeframe.			
Continued adjustment and monitoring of well for CO. Well was in compliance on $7/20/22$			
with temperature reading of 127.7 degrees farenheit.			

Final Steps		
Determine the required next steps.		
Is the remediation expected to take less than 120 days since initial exceedance per implementation schedule?	□ Yes	🖾 No
 If YES, send notification to state agency within 75 days of i Root Cause Analysis, Corrective Action Analysis, and Imple next Annual Report. If NO, send Root Cause Analysis, Corrective Action Analysis, Schedule to state agency within 75 days for approval and in Report. 	mentation Sch and Impleme	nedule in the ntation

PRESSURE EXCEEDANCE

Date of Initial Exceedance:	6/23/2022
Collection Device ID:	VEW2204B
Pressure Reading:	0.51

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature.			
Use of a geomembrane or synthetic cover.	□ Yes	🖾 No	
A decommissioned well.	🗆 Yes	🛛 No	
• If YES to ANY of the above, exempt as per 40 CFR 62.16720	(a)(3)(iii)/ 40 CF	'R §63.1958(b).	
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Lateral lines were inspected			
Describe what was determined to be the root cause of the exceedance.			
Lateral failure below grade			
Determine the required next steps.			
New lateral pipeline will be installed upon fill activity			
Was the positive pressure remediated within 60 days since	🖂 Yes	🗆 No	
the initial exceedance?			
If YES, keep records of Root Cause Analysis. No reporting required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to state agency within 75 days of initial exceedance.			

Date of Initial Exceedance:	6/28/2022
Collection Device ID:	VREW2104
Temperature Reading:	134.7

Root Cause Analysis			
Has the owner/operator received approval from the state			
agency to operate at a temperature higher than 55°C (131°F)	\Box Yes	🖾 No	
for this well?			
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).		
• If NO, continue the form.			
Describe what was inspected.			
CO testing and lab data previously pulled at startup. All components tested.			
Describe what was determined to be the root cause of the exceedance.			
In an area that has excessive heat, well is being adjusted to maximize LFG and heat			
extraction			
Determine the required next steps.			
HOV request			
Was the temperature exceedance remediated within 60 days	🖂 Yes	🗆 No	
since the initial exceedance?			
• If YES, keep records of Root Cause Analysis. No reporting required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
 If NO, continue with Corrective Action Analysis and Implem 	ientation Plan	and submit	

PRESSURE EXCEEDANCE

Date of Initial Exceedance:	7/19/2022
Collection Device ID:	VRLRW003
Pressure Reading:	5.05

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature. □ Yes ⊠ No			
Use of a geomembrane or synthetic cover.	\Box Yes	🖾 No	
A decommissioned well.	🗆 Yes	🖾 No	
• If YES to ANY of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Lateral lines were inspected			
Describe what was determined to be the root cause of the exceedance.			
Lateral failure below grade			
Determine the required next steps.			
New lateral pipeline will be installed upon fill activity			
Was the positive pressure remediated within 60 days since	🖂 Yes	🗆 No	
the initial exceedance?			
If YES, keep records of Root Cause Analysis. No reporting required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to state agency within 75 days of initial exceedance.			

PRESSURE EXCEEDANCE

Date of Initial Exceedance:	7/19/2022
Collection Device ID:	VRLRW004
Pressure Reading:	5.12

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature.	\Box Yes	🖾 No	
Use of a geomembrane or synthetic cover.	🗆 Yes	🖾 No	
A decommissioned well.	🗆 Yes	🖾 No	
• If YES to ANY of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Inspected lateral pipeline			
Describe what was determined to be the root cause of the exceedance.			
Below grade Lateral pipeline failure			
Determine the required next steps.			
New lateral pipeline will be installed upon fill activity			
Was the positive pressure remediated within 60 days since	🖂 Yes	🗆 No	
the initial exceedance?			
• If YES, keep records of Root Cause Analysis. No reporting required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to state agency within 75 days of initial exceedance.			

75-Day Notifications

July 8, 2022

Loi Chau Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: 75-Day Request for Extended Implementation Schedule of Temperature Exceedance Vasco Road Landfill, Livermore, California Facility Number A5095

Dear Ms. Chau,

On behalf of Vasco Road Landfill (Vasco), SCS Engineers (SCS) hereby provides the Bay Area Air Quality Management District (BAAQMD) with a 75-day request for extended implementation schedule pursuant to the compliance provisions identified in 40 Code of Federal Regulations (CFR) 62.16724(k)(1) and 63.1960(a)(4) for temperature exceedance. On June 21, 2021, Vasco became subject to the California Emissions Guidelines (EG) Rule, which includes compliance with Title 17 California Code of Regulations (CCR) Sections 95460 to 95476, known as AB 32 Landfill Methane Rule (LMR), and specific portions of 40 CFR Part 62 Subpart 000. The federal National Emission Standards for Hazardous Air Pollutants (NESHAP) 40 CFR Part 63, Subpart AAAA rule came into effect on September 27, 2021, superseding the major compliance provisions of the California EG Rule. This changed the wellhead temperature limit from 131 degrees Fahrenheit (°F) to 145°F However, because Vasco is still subject to BAAQMD Regulation 8, Rule 34 as well as the site's permit to operate (PTO) which incorporate the outdated New Source Performance Standards (NSPS) wellhead requirements, the site must still operate wells below 131°F, and we are providing this notification out of an abundance of caution until the outdated requirements can be removed from the PTO.

Well VREW2103 had an initial temperature exceedance reading of 133.7 °F on April 25, 2022. Corrective actions were initiated within 5 days; however, the well could not be brought back into compliance within 15 days. As required under 40 CFR 62.16724(k)(1) and 63.1960(a)(4), a root cause analysis was completed within 60 days from the original exceedance. In addition, a corrective action analysis was conducted as required for wells that could not be remediated in 60 days. All the steps for compliance were conducted, however, the well will not be able to come back into compliance within the 120-day timeframe from the original exceedance (August 23, 2022). As such, this request for extended implementation schedule is required and Vasco requests an extended corrective action timeline beyond 120-days for well VREW2103. Additionally, SCS has performed carbon monoxide (CO) monitoring at the well, which showed normal landfill decomposition at the well. This notification is being submitted due to the 131°F limit in the BAAQMD rules and Permit to Operate. As the wellhead temperature is under 145°F, Vasco is in compliance with the federal NESHAP Subpart AAAA rule, which allows for wellhead temperatures of up to 145°F. As required under 40 CFR 62.16724(k)(1) and 63.1960(a)(4), this submittal contains the root cause analysis, corrective action analysis and proposed implementation schedule (see attached).

Please note that a Request for Higher Operating Value (HOV) for the aforementioned well was submitted to the BAAQMD for review and approval on September 1, 2021.

Loi Chau July 8, 2022 Page 2

If you have any questions, please contact Maria Bowen of SCS at (619) 455-9518.

Sincerely,

Hannah Morse Technical Associate SCS Engineers

Maria Bowen Project Manager SCS Engineers

- cc: Antonia Gunner, Vasco Road Lochlin Caffey, Vasco Road Art Jones, SCSFS Michael Calmes, SCSFS Administrator, U.S. EPA Region 9
- Attachments Root Cause Analysis Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	4/25/2022
Collection Device ID:	VREW2103
Temperature Reading:	133.7

Root Cause Analysis			
Has the owner/operator received approval from the state			
agency to operate at a temperature higher than 55°C (131°F)	\Box Yes	🖾 No	
for this well?			
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).		
• If NO, continue the form.			
Describe what was inspected.			
All components tested. HOV needed			
Describe what was determined to be the root cause of the exceedance.			
Flow was adjusted – system expansion in process			
Determine the required next steps.			
Was the temperature exceedance remediated within 60 days	□ Yes	M No	
since the initial exceedance?	\square res	🖾 No	
• If YES, keep records of Root Cause Analysis. No reporting re	equired.		
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to state agency within 75 days of initial exceedance.			

Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	4/25/2022
Collection Device ID:	VREW2103
Temperature Reading:	133.7

Corrective Action Analysis

Describe the corrective actions taken to remediate exceedance.

Well has been adjusted and tested. It is in hot area that is showing signs of flipped reaction. All components have been tested and ground is secure.

4/25/2022		
TBD; Date HOV Approved		
Provide a description of proposed repairs and/or remedial action required and		
supporting information for implementation timeframe.		
HOV application was submitted September 1, 2021. Continued adjustment and monitoring		

Final Steps		
Determine the required next steps.		
Is the remediation expected to take less than 120 days since initial exceedance per implementation schedule?	□ Yes	🖾 No
 If YES, send notification to state agency within 75 days of a Root Cause Analysis, Corrective Action Analysis, and Imple next Annual Report. If NO, send Root Cause Analysis, Corrective Action Analysis, Schedule to state agency within 75 days for approval and in Report. 	mentation Sch and Impleme	nedule in the ntation

SCS ENGINEERS

August 31, 2022

Loi Chau Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: 75-Day Notification of Temperature Exceedance Vasco Road Landfill, Livermore, California Facility Number A5095

Dear Ms. Chau,

On behalf of Vasco Road Landfill (Vasco), SCS Engineers (SCS) hereby provides the Bay Area Air Quality Management District (BAAQMD) with a 75-day notification pursuant to the compliance provisions identified in 40 Code of Federal Regulations (CFR) 62.16724(k)(2) and 63.1960(a)(4) for temperature exceedance. On June 21, 2021, Vasco became subject to the California Emissions Guidelines (EG) Rule, which includes compliance with Title 17 California Code of Regulations (CCR) Sections 95460 to 95476, known as AB 32 Landfill Methane Rule (LMR), and specific portions of 40 CFR Part 62 Subpart 000. The federal National Emission Standards for Hazardous Air Pollutants (NESHAP) 40 CFR Part 63, Subpart AAAA rule came into effect on September 27, 2021, superseding the major compliance provisions of the California EG Rule. This changed the wellhead temperature limit from 131 degrees Fahrenheit (°F) to 145°F However, because Vasco is still subject to BAAQMD Regulation 8, Rule 34 as well as the site's permit to operate (PTO) which incorporate the outdated New Source Performance Standards (NSPS) wellhead requirements, the site must still operate wells below 131°F, and we are providing this notification out of an abundance of caution until the outdated requirements can be removed from the PTO.

Well VREW2107 had an initial temperature exceedance reading of 135.0 °F on May 10, 2022. Corrective actions were initiated within 5 days; however, the well could not be brought back into compliance within 15 days. As required under 40 CFR 62.16724(k)(1) and 63.1960(a)(4), a root cause analysis was completed within 60 days from the original exceedance. In addition, a corrective action analysis was conducted as required for wells that could not be remediated in 60 days. All the steps for compliance were conducted, and the well came back into compliance in 70 days, on July 20, 2022.

This notification is being submitted due to the 131°F limit in the BAAQMD rules and Permit to Operate. As the wellhead temperature is under 145°F, Vasco is in compliance with the federal NESHAP Subpart AAAA rule, which allows for wellhead temperatures of up to 145°F. As required under 40 CFR 62.16724(k)(1) and 63.1960(a)(4), this submittal contains the root cause analysis and corrective action analysis.

If you have any questions, please contact Maria Bowen of SCS at (619) 455-9518.

Loi Chau August 31, 2022 Page 2

Sincerely,

Anne Liu Project Professional SCS Engineers

Λ

Maria Bowen Project Manager SCS Engineers

cc: Antonia Gunner, Vasco Road Joshua Mills, Vasco Road Art Jones, SCSFS Michael Calmes, SCSFS Administrator, U.S. EPA Region 9

Attachments Root Cause Analysis Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	5/10/2022
Collection Device ID:	VREW2107
Temperature Reading:	135.0

Root Cause Analysis			
Has the owner/operator received approval from the state			
agency to operate at a temperature higher than 55°C (131°F)	\Box Yes	🖾 No	
for this well?			
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 63.1958(c).			
• If NO, continue the form.			
Describe what was inspected.			
All components tested.			
Describe what was determined to be the root cause of the exceedance.			
Flow was adjusted – system expansion in process			
Determine the required next steps.			
Was the temperature exceedance remediated within 60 days	□ Yes	🖂 No	
since the initial exceedance?			
• If YES, keep records of Root Cause Analysis. No reporting required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to state agency within 75 days of initial exceedance.			

Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	5/10/2022
Collection Device ID:	VREW2107
Temperature Reading:	135.0

Corrective Action Analysis

Describe the corrective actions taken to remediate exceedance.

Well has been adjusted and tested. It is in hot area that is showing signs of flipped reaction. All components have been tested and ground is secure.

5/10/2022		
7/20/2022		
Provide a description of proposed repairs and/or remedial action required and		
supporting information for implementation timeframe.		
Continued adjustment and monitoring of well for CO. Well was in compliance on 7/20/22		
with temperature reading of 127.7 degrees Fahrenheit.		

Final Steps		
Determine the required next steps.		
Is the remediation expected to take less than 120 days since initial exceedance per implementation schedule?	🛛 Yes	□ No
 If YES, send notification to state agency within 75 days of i Root Cause Analysis, Corrective Action Analysis, and Imple next Annual Report. If NO, send Root Cause Analysis, Corrective Action Analysis, Schedule to state agency within 75 days for approval and in Report. 	mentation Sch and Impleme	nedule in the ntation