

Keller Canyon Landfill 901 Bailey Road Pittsburg, CA 94565 o 925.232.2999 republicservices.com

TV Tracking #: 805 (Annual)

September 29, 2023

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V Reports 1. D RECEIVED IN 09/29/2023 ENFORCEMENT:

TV Tracking #: 804 (Semi-Annual)

Director of the Air Division, USEPA Region IX 75 Hawthorne Street San Francisco, CA 94105 Attn: Air-3

Subject: Combined NESHAP Report, 8-34 Semi-Annual Report, 40 CFR Subpart AAA Semi-Annual Report, SSM Plan Report, Title V Semi-Annual Monitoring Report and Title V Annual Compliance Certification Keller Canyon Landfill, Pittsburg, California (Title V Facility No. A4618)

Dear Sir or Madam:

Keller Canyon Landfill Company, LLC is pleased to submit the enclosed combined National Emission Standards for Hazardous Air Pollutants (NESHAP) report, Bay Area Air Quality Management District (BAAQMD), Regulation 8, Rule 34 Semi-Annual Report; Semi-Annual Startup, Shutdown and Malfunction (SSM) Plan Report; Title V Semi-Annual Monitoring Report and Title V Annual Compliance Certification (ACC) to the BAAQMD and the U.S. Environmental Protection Agency (EPA) Region IX for the Keller Canyon Landfill (Keller).

The NESHAP Report, Title V Semi-Annual Monitoring Report, BAAQMD Rule 8-34 Semi-Annual Report, and the SSM Plan Report cover the period from March 1, 2023 through August 31, 2023. The Title V ACC Report covers the period from September 1, 2022 through August 31, 2023.

The Title V report meets the requirements specified in the Title V permit, BAAQMD guidance on Title V report submittals, and Regulation 2, Rule 6. The Rule 8-34 report includes the information required by BAAQMD Rule 8-34-411 and also satisfies the requirements under the New Source Performance Standards (NSPS) for municipal solid waste landfills (40 Code of Federal Regulation [CFR] Part 60, Subpart WWW and applicable sections of 40 CFR Part 62, Subpart OOO which became effective on July 21, 2021), including 40 CFR 60.757(f)/40 CFR 62.16724(h). The Semi-Annual SSM Plan Report satisfies the requirements under the NESHAP rule for semi-annual reporting of SSM Plan implementation including 40 CFR 63.10(d)(S). The Title V reports and the SSM Plan report each includes a certification by the responsible official for Keller.

If you have any questions regarding this submittal, please do not hesitate to reach out to Antonia Gunner at (619) 201-3764 or agunner@republicservices.com or Maria Bowen at (619) 455-9518 or mbowen@scsengineers.com.

Sincerely,

Josh Mills General Manager Keller Canyon Landfill

cc: Antonia Gunner, Keller Maria Bowen, SCS Engineers Hannah Morse, SCS Engineers

NESHAP Report/NSPS/BAAQMD Rule 8-34 Semi-Annual Report, and SSM Plan Semi-Annual Report Keller Canyon Landfill Pittsburg, California (Title V Facility No. 4618)

Prepared for:

Keller Canyon Landfill Company, LLC 901 Bailey Road Pittsburg, CA 94565

For Submittal to:

Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

SCS ENGINEERS

01205161.01 Task 1 | September 2023

3843 Brickway Boulevard, Suite 208 Santa Rosa, CA 95403 707-546-9461 This submittal consisting of the New Source Performance Standards (NSPS)/Bay Area Air Quality Management District (BAAQMD) Rule 8-34 Semi-Annual/National Emission Standards for Hazardous Air Pollutants (NESHAP) Report, and the Semi-Annual Startup, Shutdown, and Malfunction (SSM) Plan Report for the Keller Canyon Landfill in Pittsburg, California, dated September 2023, was prepared and reviewed by the following:

Hannah Morse Staff Professional SCS ENGINEERS

Maria Bowen Project Manager SCS ENGINEERS

Patrick S. Sullivan, REA, CPP, BCES Senior Vice President SCS ENGINEERS

Table of Contents

Sect	ion		F	age				
SECT	ION I.	NSP	S/NESHAP/BAAQMD Rule 8-34 Semi-Annual Report	1				
1.0	Introduction1							
	1.1 UpdateD NESHAP 40 CFR 63, Subpart AAAA1							
2.0	Site E	Backgro	und Information	1				
	2.1	Existing	g Air Permits	1				
	2.2	Existing	g Landfill Gas Collection and Control System	2				
3.0	Repo	rting Re	equirements	2				
	3.1	Monito	ored Parameters	4				
		3.1.1	Gas Extraction System Downtime	5				
		3.1.2	Emission Control System Downtime	6				
		3.1.3	Individual Well Downtime	7				
		3.1.4	Flow Meter and Temperature Gauge Downtime	7				
		3.1.5	Flare Combustion Zone Temperature	7				
	3.2	Compo	onent Leak Quarterly Monitoring	8				
		3.2.1	First Quarter 2023 Monitoring	8				
		3.2.2	Second Quarter 2023 Monitoring	8				
	3.3	Contro	I Efficiency	8				
	3.4	Landfill Surface Emissions Monitoring						
		3.4.1	First Quarter 2023 Monitoring	9				
		3.4.1	Second Quarter 2023 Monitoring	9				
	3.5	Wellhead Monthly Monitoring						
		3.5.1	Pressure	10				
		3.5.2	Oxygen	10				
		3.5.3	Temperature	11				
		3.5.1	Root Cause Analysis	11				
	3.6	Cover I	Integrity Monitoring	12				
	3.7	Gas Ge	eneration Estimate and Monthly Landfill Gas Flow Rates	12				
	3.8	Annual	I Waste Acceptance Rate and Refuse In Place	12				
		3.8.1	Non-Degradable Waste Areas	12				
	3.9	24 Hou	ur High Temperature	12				
	3.10	Treatm	nent System Monitoring Plan	12				
SECT	ION II.	SSM	SECTION II. SSM Plan Report					

Tables

- Table 1 Reporting Requirements, Corresponding Regulatory References
- Table 2 Monitored Parameters, Corresponding Regulatory References
- Table 3a GCCS Downtime
- Table 3b Flare A-1 Downtime
- Table 3c Flare A-2 Downtime
- Table 4 Individual Well Startups, Shutdowns and Decommissions
- Table 5 Wells with Positive Pressure
- Table 6 Wells with Oxygen Exceedances
- Table 7 Wells with Temperature Exceedances

Appendices

- Appendix A Responsible Official Certification Form
- Appendix B Existing GCCS Layout
- Appendix C LFGTE Facility Downtime Logs
- Appendix D Excerpt from the 2023 A-2 Source Test Results (report dated March 17, 2023)
- Appendix E Surface Emission and GCCS Component Leak Monitoring Results
- Appendix F Well Exceedance Documentation

SECTION I. NSPS/NESHAP/BAAQMD RULE 8-34 SEMI-ANNUAL REPORT

1.0 INTRODUCTION

On behalf of Keller Canyon Landfill Company, LLC (KCLC), SCS Engineers (SCS) hereby submits this New Source Performance Standard (NSPS), National Emissions Standard for Hazardous Air Pollutants (NESHAP), and Bay Area Air Quality Management District (BAAQMD or District) Rule 8-34 Semi-Annual Report and Semi-Annual Start-up, Shutdown, and Malfunction (SSM) Plan Report for the period of March 1, 2023 through August 31, 2023 to the BAAQMD.

1.1 UPDATED NESHAP 40 CFR 63, SUBPART AAAA

Due to the site's permitted design capacity being over the 2.5 million Megagram/2.5 million cubic meter limits and having an uncontrolled non-methane organic compound (NMOC) content exceeding 50 Megagrams per year (mg/year), as of September 27, 2021, the site became subject to the NESHAP under 40 CFR 63, Subpart AAAA, which essentially implement and enhance provisions of 40 CFR 60, Subparts XXX (which were updated NSPS for Municipal Solid Waste (MSW) landfills promulgated in 2016) as well as remove the SSM Plan requirements. However, because the Title V Permit references, Subpart WWW and the outdated SSM requirements, this semi-annual report will continue to include Subpart WWW and SSM requirements. References to Subpart WWW will be removed from all reports after a new Title V Permit is issued removing references to Subpart WWW and updating applicable regulations, or we otherwise obtain approval from the BAAQMD to only comply with the new requirements. KCLC has chosen to comply with provisions of Subpart AAAA in lieu of equivalent provisions of Subpart OOO (or XXX), as allowed by the regulation.

For the entire reporting period from March 1, 2023 through August 31, 2023, this Semi-Annual Report complies with the sections specified in Subpart WWW, 40 CFR 60.757(f), and Subpart AAAA, 40 CFR 63.1981(h), which describes the items to be submitted in an annual report for landfills using an active collection system. In accordance with NESHAP 40 CFR 63, Subpart AAAA, this report is submitted semi-annually. This report includes a certification signed by a Responsible Official which is provided in **Appendix A**.

2.0 SITE BACKGROUND INFORMATION

The Keller Canyon Landfill (Keller or Site) is located in Pittsburg, California and is owned and operated by KCLC. The Landfill began accepting waste circa 1992. The site is currently in operation, accepting nonhazardous solid waste and inert waste.

2.1 EXISTING AIR PERMITS

Keller maintains a BAAQMD permit to operate (PTO) (Plant No. 4618), which includes conditions for the wellfield, collection system, and flare station (Condition No. 17309). This condition incorporates all applicable requirements from NSPS Subpart WWW and BAAQMD Rule 8-34, which are addressed in this report. Keller also maintains a Title V Permit (Facility No. A4618), which was issued on August 18, 2021 and expires on August 17, 2025.

As the new rules are in effect, they are being implemented by the Landfill, and applications for the Title V Modification to add the new rule elements, specific parts of NSPS Subpart 000 and NESHAP, and remove the old NSPS Subpart WWW removed will be submitted accordingly.

A Gas Collection and Control System (GCCS) Design Plan was prepared for the site to review and determine the adequacy of the existing landfill gas (LFG) system. The current design of the system was determined to be adequate to comply with both NSPS, NESHAP and BAAQMD Rule 8-34 requirements. The system design is based on the density of wells calculated to sufficiently extract the maximum flow of LFG generated, according to the United States Environmental Protection Agency (USEPA) LFG emissions model (LandGEM). The GCCS is designed to control surface emissions, as well as to minimize subsurface lateral migration of LFG. Both the perimeter of the landfill and the landfill surface are monitored on a quarterly basis. Additional details regarding the GCCS are in the GCCS Design Plan that was previously submitted to the BAAQMD. A drawing showing the existing GCCS is provided in **Appendix B**.

2.2 EXISTING LANDFILL GAS COLLECTION AND CONTROL SYSTEM

The GCCS at Keller consists of extraction wells used to collect the LFG from within the landfill (the "wellfield") and a piping system (the "collection system") used to convey the collected LFG to the control systems for destruction. The LFG is extracted from the landfill through a combination of vertical gas extraction wells and horizontal gas extraction trenches/pipes, as well as leachate from collection system components.

KCLC, LLC owns and operates the wellfield and the two enclosed flares, the A-1 Flare and A-2 Flare, permitted under the BAAQMD Title V Permit Facility Number A4618. Ameresco – Keller Canyon, LLC (Ameresco) owns and operates two internal combustion (IC) engines fueled by LFG diverted from the GCCS. Ameresco maintains and reports via a separate BAAQMD Title V Permit (Facility Number B7667). In September 2023, the permitted A-3 flare begun construction, in accordance with application No. 28642, to replace the A-1 Flare.

In the event the LFGTE facility goes offline and the LFG flares goes off-line concurrently, an automatic valve is actuated that prevents LFG flow to the control systems. As a result, LFG flow from the collection system ceases entirely, such that there is no free-venting of uncombusted LFG to the atmosphere.

A diagram of the GCCS displaying system component locations is shown in the site plan(s) provided in **Appendix B**.

3.0 REPORTING REQUIREMENTS

The following information is required to be reported in a semi-annual report:

Fable 1.	Reporting Requirements, Corresponding Regulatory R	eferences
----------	--	-----------

NSPS Subpart WWW	Updated NESHAP Subpart AAAA
40 CFR 60.757(f), (g)	40 CFR 63.1981(h), (i), (j), (k), (l)
Value and length of time for exceedance of applicable parameters monitored under 40 CFR 60.756(a), (b), (c), and (d).	Number of times that applicable parameters monitored under 40 CFR 63.1958(b), (c), and (d) were exceeded and when the gas collection and control

NSPS Subpart WWW	Updated NESHAP Subpart AAAA
40 CFR 60.757(f), (g)	40 CFR 63.1981(h), (i), (j), (k), (l)
	system was not operating under 40 CFR 63.1958(e), including periods of SSM.
Description and duration of all periods when the gas stream is diverted from the control device.	Description and duration of all periods when the gas stream was diverted from the control device or treatment system through a bypass line or the indication of bypass flow as specified under 40 CFR 63.1961.
Description and duration of all periods when the control device was not operating for more than 1 hour.	Description and duration of all periods when the control device or treatment system was not operating and length of time the control device or treatment system was not operating.
All periods when the collection system was not operating in excess of 5 days.	All periods when the collection system was not operating.
The location of each 500 ppmv methane exceedance, and the concentration recorded at each location for which an exceedance was recorded in the previous month.	The location of each exceedance of the 500-ppm methane concentration as provided in 40 CFR 63.1958(d) and the concentration recorded at each location for which an exceedance was recorded in the previous month.
The date of installation and the location of each well or collection system expansion added pursuant to 40 CFR 60.755 paragraphs (a)(3), (b), and (c)(4).	The date of installation and the location of each well or collection system expansion added pursuant to 40 CFR 63.1960(a)(3) and (4), (b), and (c)(4).
Required information of the initial performance source test report pursuant to 40 CFR 60.757(g).	Required information of the initial performance source test report pursuant to 40 CFR 63.1981(i).
	For any corrective action analysis for which corrective actions are required in 40 CFR 63.1960(a)(3)(i) or (a)(5) and that take more than 60 days to correct the exceedance, the root cause analysis conducted.
	Each owner or operator required to conduct enhanced monitoring in 40 CFR 63.1961(a)(5) and (6) must include the results of all monitoring activities conducted during the period.
	Where an owner or operator subject to the provisions of subpart 40 CFR 63.1981(k) seeks to demonstrate compliance with the operational standard for temperature in § 63.1958(c)(1) and a landfill gas temperature measured at either the wellhead or at any point in the well is greater than or equal to 76.7 degrees Celsius (170 degrees Fahrenheit) and the carbon monoxide concentration measured is greater than or equal to 1,000 ppmv, then you must report the date, time, well identifier, temperature

NSPS Subpart WWW	Updated NESHAP Subpart AAAA
40 CFR 60.757(f), (g)	40 CFR 63.1981(h), (i), (j), (k), (l)
	and carbon monoxide reading via email to the Administrator within 24 hours of the measurement.
	Beginning no later than September 27, 2021, the owner or operator must submit reports electronically according to paragraphs 40 CFR 63.1981(I)(1) and (2) of this section.
	Submit semi-annual CMS summary reports including required items listed in 40 CFR 63.10(e)(3)(vi)

Note that BAAQMD Rule 8-34 incorporates the NSPS Subpart WWW requirements in various instances.

3.1 MONITORED PARAMETERS

The following information is required to be monitored:

NSPS Subpart WWW	Updated NESHAP Subpart AAAA
40 CFR 60.756(a), (b), (c), (d)	40 CFR 63.1961(a), (b), (f)
Vacuum applied to the extraction wells via	Vacuum applied to the extraction wells via
the gas collection header is monitored on a	the gas collection header is monitored on
monthly basis. A vacuum must be	a monthly basis. A vacuum must be
maintained at each wellhead to be in	maintained at each wellhead to be in
compliance with 40 CFR 60.753 (b).	compliance with 40 CFR 63.1961 (a)(1).
Nitrogen or oxygen content of LFG at the wellheads is monitored on a monthly basis. Nitrogen must be less than 20 percent (%) or oxygen less than five (5) % to comply with 40 CFR 60.753 (c).	Nitrogen or oxygen content of LFG at the wellheads is monitored on a monthly basis.
Temperature of the LFG at the wellheads is	Temperature of the LFG at the wellheads is
monitored on a monthly basis.	monitored on a monthly basis.
Temperature must be maintained below 55	Temperature must be maintained below
degrees C (131 degrees F) to comply with	62.8 degrees C (145 degrees F) to comply
40 CFR 60.753 (c).	with 40 CFR 63.1961(a)(3).
A temperature or flame presence	A temperature or flame presence
monitoring device with a continuous	monitoring device with a continuous
recorder, and a gas flow rate measuring	recorder, and a gas flow rate measuring
device, which records flow at least once	device, which records flow at least once
every 15 minutes, must be installed at the	every 15 minutes, must be installed at the
flare station. The temperature/flame	flare station. The temperature/flame
presence and LFG flow rate monitoring	presence and LFG flow rate monitoring
data are used to determine the amount of	data are used to determine the amount of
time the LFG collection and control	time the LFG collection and control
systems are on-line and to ensure	systems are on-line and to ensure
compliance with the minimum temperature	compliance with the minimum
requirement for enclosed flares. The flare	temperature requirement for enclosed

Table 2. Monitored Parameters, Corresponding Regulatory References

i,		
	NSPS Subpart WWW	Updated NESHAP Subpart AAAA
	40 CFR 60.756(a), (b), (c), (d)	40 CFR 63.1961(a), (b), (f)
	monitoring devices must be operating continuously to comply with 40 CFR 60.756 (b) and to show that the flare is on- line at any time that the collection system is operating (in compliance with 40 CFR 60.753 (e) and (f)).	flares. The flare monitoring devices must be operating continuously to comply with 40 CFR 63.1961(b) and to show that the flare is on-line at any time that the collection system is operating (in compliance with 40 CFR 63.1958 (e) and (f)).
	Landfill surface emissions monitoring was performed on a quarterly basis to measure concentrations of total organic carbon (TOC) as methane. A portable flame ionization detector (FID) organic vapor analyzer, which meets NSPS specifications, was used to measure concentrations of TOC as methane (in compliance with 40 CFR 60.756(f).	Landfill surface emissions monitoring was performed on a quarterly basis to measure concentrations of TOC as methane. A portable FID organic vapor analyzer, which meets NSPS specifications, was used to measure concentrations of TOC as methane (in compliance with 40 CFR 63.1961(f)).
	The landfill surface was inspected at least monthly for evidence of cracks or other surface integrity issues, in accordance with 40 CFR 60.755(c)(5).	The landfill surface was inspected at least monthly for evidence of cracks or other surface integrity issues, in accordance with 40 CFR 63.1960(c)(5).
	Per 40 CFR 60 758(c)(1)(i), the average temperature of the flare for a 3-hour time period cannot fall below 28°C (50°F) less than the average operation temperature based on the most recent source test except during periods of SSM.	Per 40 CFR 63.1983(c)(1)(i), the average temperature of the flare for a 3-hour time period cannot fall below 28 °C (50 °F) less than the average operation temperature based on the most recent source test. Please note, continuous monitoring of temperature monitoring is required at all times except for periods of monitoring system malfunctions, repairs associated with monitoring system malfunctions, and required monitoring system quality assurance or quality control activities (in compliance with 40 CFR 63.1961(h)).

Note that BAAQMD Rule 8-34 incorporates the NSPS Subpart WWW requirements in various instances.

3.1.1 Gas Extraction System Downtime

During the reporting period, the LFG extraction system was offline, per condition No. 20 of the PTO, on several occasions for a total of 403.41 hours. During this reporting period, 328.43 of the downtime hours were a result of construction and were covered under the BAAQMD approved 118 Plans in place. Site submitted two 118 plans during the reporting period, covering the time period of March 14, 2023 through June 1, 2023 and July 5, 2023 through October 6, 2023. Shutdowns involved pre-programmed or manual system shutdowns for inspection, maintenance and/or repair of the GCCS, and thus meet the criteria for allowed GCCS downtime, as specified in Rule 8-34-113 and in accordance with the BAAQMD November 5, 2018 Compliance Advisory with one (1) exception. The event occurred on July 7, 2023 and was due to air compressor failure.

A Reportable Compliance Activity (RCA) form was submitted to the BAAQMD on July 7, 2023, to request breakdown relief and to report the parametric excursion for the downtime event. BAAQMD

issued RCA and Breakdown IDS of 08T40 and 08T41. The 10- and 30-Day Breakdown report was submitted on July 17, 2023.

Pursuant to Title V Permit Condition 17309, Part 20, collected LFG shall be vented to either:

- (a) Two on-site flares operating concurrently, or
- (b) One on-site flare and two off-site engines operating concurrently.

Apart from the events described above, there were no instances during the reporting period during which both flares were not operating concurrently while one or more engines were offline, or engines were operating concurrently without operation of at least one flare, outside of collection system installation, maintenance, or repair performed in compliance with Regulation 8-34-113, 116, 117, and 118.

A summary of the GCCS downtime for this reporting period is provided in **Table 1a**, including the date, reason for the downtime, description of the corrective measure(s) implemented to resume GCCS operation, and the total elapsed time for each event. Gas extraction system downtime records are available for review at the site. GCCSs are "closed" systems designed and constructed with mechanisms to prevent the uncontrolled release of LFG to the atmosphere. These automated mechanisms, as well additional manual shutdown procedures, are standard work practices that are implemented during all system shutdowns to minimize emissions of methane to the atmosphere. As noted above, collected LFG was at no time diverted from the flare, because the blowers automatically shut down whenever the flare shuts down. Thus, collected LFG was at no time diverted from both control devices during the reporting period.

3.1.2 Emission Control System Downtime

A-1 Flare

During the reporting period, the flare was off-line on several occasions. A summary of A-1 Flare downtime is provided in **Table 1b**, including the date, reason for the downtime, and the total elapsed time for each event. During the reporting period, the flare was offline over a cumulative period of approximately 1,557.55 hours. During the reporting period, 1,405.20 of the downtime hours were a result of construction and are covered under the BAAQMD approved 118 Plan. Emission control system downtime records are available for review at the site. A-1 flare is due to be replaced by the A-3 flare in late September.

A-2 Flare

During the reporting period, the flare was off-line on several occasions. A summary of A-2 Flare downtime is provided in **Table 1c**, including the date, reason for the downtime, and the total elapsed time for each event. During the reporting period, the flare was offline over a cumulative period of approximately 190.90 hours. During the reporting period, 130.87 of the downtime hours were a result of construction and are covered under the BAAQMD approved 118 Plan. Emission control system downtime records are available for review at the site.

LFGTE Facility

During the reporting period, individual IC engines were offline on several occasions. In addition, there were several periods when the entire LFGTE facility was offline (both engines were offline

concurrently). Downtime logs, which include individual IC engine shut downs, are included in **Appendix C**.

As previously noted, whenever the LFGTE facility and the flares are offline concurrently, LFG flow to the control systems is automatically stopped. Therefore, during this reporting period, there were no instances during which LFG flow passed through the control devices uncontrolled (i.e., free venting), and the collected LFG stream was never diverted from the control devices.

3.1.3 Individual Well Downtime

In some instances, the entire GCCS may not go off-line, but individual extraction wells may be taken off-line for inspection, maintenance, and/or repair, as well as for other unforeseen circumstances. These are generally planned events, although such events can occur without notice. During the reporting period, several wells were temporarily taken offline due to well raising/active filling.

Sixteen (16) wells were taken off-line during the reporting period due to proximity to active fill and well raising. Seven (7) wells were abandoned due to poor gas production, and twelve (12) new wells were started up during the reporting period.

Details of individual well shutdown and well startups occurring during the reporting period are provided in **Table 2**. Please see the Semi-Annual SSM Report included as Section II of this report for additional details.

3.1.4 Flow Meter and Temperature Gauge Downtime

The continuous operation of the GCCS is measured through the continuous measurement of LFG flow to the flare and the flare combustion temperature. As required by Rule 8-34, the Keller flares are equipped with a flow measuring device and a temperature gauge that provide continuous readout displays using digital chart recorders. During the reporting period, the flow meter and temperature gauge/recorder at the flare station did not go out of operation due to malfunction or other breakdown conditions. Continuous monitoring and calibration information are available for review at the site.

3.1.5 Flare Combustion Zone Temperature

Keller is required by permit condition No. 17309, Part 23 to operate the A-1 and A-2 Flares in such a manner that the combustion zone temperature within the flares do not drop below the permitted limit of 1,504 and 1,400 degrees Fahrenheit (°F) (averaged over a 3-hour period), respectively, or a higher or lower temperature based on the most recent source test.

From March 1, 2023 through August 31, 2023, the minimum temperature above which the A-1 Flare was required to operate was 1,536°F (test temperature of 1,586°F minus 50°F) based on the 2022 source test, for which the final report was issued on September 29, 2022.

From March 1, 2023 through March 16, 2023, the minimum temperature above which the A-2 Flare was required to operate was 1,513°F (test temperature of 1,563°F minus 50°F), based on the source test results in the test report dated March 19, 2022. From March 17, 2023 through August 31, 2023, the minimum temperature above which the A-2 Flare was required to operate was

1,501°F (test temperature of 1,551°F minus 50°F), based on the source test results in the test report dated March 17, 2023.

During the reporting period, the A-1 Flare operated above the permitted limit of 1,504 °F at all times, except during periods that can be excluded from the average temperature. The flare operating records also indicated that the flare combustion zone temperature did not drop below 1,536 °F for the entirety of the reporting period.

During the reporting period, the A-2 Flare operated above the permitted limit of 1,400°F at all times, except during periods that can be excluded from the average temperature. The flare operating records also indicated that the flare combustion zone temperature did not drop below 1,513°F on a three-hour average basis while in operation from the start of the reporting period through March 16, 2023. And not below 1,501°F from March 17, 2023 through the end of the reporting period.

Flare temperature records are available for review at the site. Excerpts from the March 17, 2023 source test report, summarizing the test results for A-2 Flare is provided in **Appendix D** of this report. The September 2022 source test of A-1 Flare was provided in the previous semi-annual report.

3.2 COMPONENT LEAK QUARTERLY MONITORING

During the reporting period, quarterly testing of the GCCS components for any leaks with a methane concentration of greater than 1,000 parts per million by volume (ppm_v), as required by BAAQMD Rule 8-34-503, was conducted. Testing in the wellfield and at the flare station was performed using an organic vapor analyzer (OVA), which was calibrated on the same day as the testing. Monitoring results and calibration records are provided in **Appendix E** and are available for review at the site.

3.2.1 First Quarter 2023 Monitoring

SCSFS conducted component leak testing of the wellfield and flare station on March 13, 2023. One (1) component leak above 1,000 ppm^v was detected at the flare station during the First Quarter 2023 monitoring events. Re-monitoring was conducted on March 20, and 30, 2023. The location returned to below 1,000 ppm^v by the second re-monitoring event.

3.2.2 Second Quarter 2023 Monitoring

SCSFS conducted component leak testing of the wellfield and flare station on June 21, 2023. One (1) component leak above 1,000 ppmv was detected at the flare station during the Second Quarter 2023 monitoring events. Re-monitoring was conducted on June 30, and July 10, 2023. The location returned to below 1,000 ppmv within the first re-monitoring event.

3.3 CONTROL EFFICIENCY

LFG Flare A-1 was tested on August 10, 2022 to demonstrate compliance with the control efficiency standard of 98 percent NMOC destruction efficiency or outlet concentration of 30 ppm_v of NMOC as methane (for flares) as required by BAAQMD Rules 8-34-301.3, 8-34-412, 8-34-501.4, and Condition # 17309, Part 30. The NMOC destruction efficiency for the August 2022 source test (source test report dated September 29, 2022) was measured to be >99.64 percent by weight, and the NMOC as methane concentration in the flare outlet was <2.5 ppm_v. As such, Flare A-1 is in compliance with the aforementioned rules and permit condition by meeting the exhaust ppm_v limit.

LFG Flare A-2 was also tested on January 17, 2023 to demonstrate compliance with the control efficiency standard of 98 percent NMOC destruction efficiency or outlet concentration of 30 ppm_v of NMOC as methane (for flares) as required by BAAQMD Rules 8-34-301.3, 8-34-412, 8-34-501.4, and Condition # 17309, Part 30. The NMOC destruction efficiency for the January 2023 source test (source test report dated March 17, 2023) was measured to be >98.79 percent by weight, and the NMOC as methane concentration in the flare outlet was <2.2 ppm_v. As such, Flare A-2 is in compliance with the aforementioned rules and permit condition by meeting the exhaust ppm_v limit.

Excerpts from the March 17, 2023 source test report, summarizing the test results for Flare A-2 is provided in **Appendix D** of this report. September 2022 source test of Flare A-1 was provided in the previous semi-annual report.

3.4 LANDFILL SURFACE EMISSIONS MONITORING

Surface emissions monitoring (SEM) was conducted at Keller on a quarterly basis during the reporting period, in accordance with BAAQMD Rule 8-34-303 and 8-34-506, and NSPS/NESHAP requirements. The SEM events were conducted in accordance with the SEM plan in the landfill's GCCS Design Plan. Testing was performed using a Trimble SiteFID Landfill Gas Monitor Portable Flame Ionization Detector (FID), which was calibrated the same day as the testing. The results of this monitoring are summarized below. Reports for each quarterly monitoring event are provided in **Appendix E**. Records of SEM are available for review at the site.

3.4.1 First Quarter 2023 Monitoring

SCSFS technicians monitored the landfill surface for leaks with a methane concentration of greater than 500 ppm_v for instantaneous monitoring and 25 ppm_v for integrated monitoring on March 13, 20, 30, and April 12, 2023. Surface emissions in excess of 500 ppm_v were detected at seven (7) locations during the First Quarter 2023 monitoring event. Calculated integrated monitoring in excess of 25 ppm_v were detected at twenty-five (25) locations during the First Quarter 2023 monitoring event. The locations with the exceedances and associated methane concentrations are provided in the First Quarter 2023 SEM report (**Appendix E**).

SCSFS technicians performed appropriate corrective actions, including flow increases to the surrounding extraction wells, cover repairs, and installation of borehole emission control systems. SCSFS completed the first and second 10-day and one-month re-monitoring event for these locations on March 20, 30 and April 12, 2023, respectively. All the instantaneous locations were under the 500 ppm_v threshold and thus back in compliance. All but five (5) integrated locations, Grid No. 68, 76, 84, 91, and 93, were under the 25 ppm_v threshold. Expansion of the wellfield began in July of 2023 to remediate these exceedances.

3.4.1 Second Quarter 2023 Monitoring

SCSFS technicians monitored the landfill surface for leaks with a methane concentration of greater than 500 ppm_v for instantaneous monitoring and 25 ppm_v for integrated monitoring on June 8, 20, 21, 30, and July 10, and 20, 2023. Surface emissions in excess of 500 ppm_v were detected at twenty-one (21) locations during the Second Quarter 2023 monitoring event. Surface emissions in excess of 25 ppm_v were detected at nine (9) locations during the Second Quarter 2023 monitoring the Second Quarter 2023 monitoring event. The locations with the exceedances and associated methane concentrations are provided in the Second Quarter 2023 SEM report (**Appendix E**).

SCSFS technicians performed appropriate corrective actions, including flow increases to the surrounding extraction wells, cover repairs, and installation of borehole emission control systems. SCSFS completed the first and second 10-day and one-month re-monitoring events for these locations on June 30, and July 10, and 20, 2023 respectively. All the locations were under the respective 500 ppm_v, and 25 ppm_v thresholds and thus back in compliance.

3.5 WELLHEAD MONTHLY MONITORING

Monthly wellhead monitoring for pressure, temperature, and oxygen content was conducted by SCSFS from March 1, 2023 through August 31, 2023 to comply with BAAQMD Rule 8-34-305 and 9-34-414, as well as NSPS/NESHAP requirements. The results of this monitoring are summarized below. Wellhead exceedances are provided in **Table 3, 4, and 5.** After June 21, 2021, for wellhead pressure and temperature exceedances that are unresolved after 15 days, a root cause analysis must be conducted to correct the exceedances as soon as practicable. Well exceedance documentation is provided in **Appendix F**.

Please note that during the reporting period, all wells were monitored.

3.5.1 Pressure

The majority of the operational extraction wells were operating under negative pressure during the monitoring events conducted during the reporting period, in accordance with BAAQMD Rule 8-34-305 and 8-34-414. For any wells that exhibited positive pressure during this reporting period, the identification number and dates that each well was operating with positive pressure are provided in **Table 5**. The table also includes corrective action and re-monitoring results. In all instances, corrective action and re-monitoring were performed in accordance with the 5- and 15-day requirements specified in the NSPS and NESHAP regulations and in Rule 8-34.

As of the end of the previous reporting period, all but two (2) wells, KCLEW193 and KCLEW194, were operating under positive pressure. These wells will be brought back under positive pressure according to appropriate timelines, and will be documented in the next semi-annual reporting period.

3.5.2 Oxygen

Keller has elected to use oxygen as its compliance standard under Rule 8-34-305, rather than nitrogen. Per Keller's PTO Condition No. 17309, Part 19(b)i, KCLW27RR is permitted to operate at an oxygen Higher Operating Value (HOV) of 15% oxygen.

Horizontal Collectors KCLEWHC3 (HC-3), KCHC2001 (HC-2001), and Leachate Collectors KCLEWR1 (LCRS-1) and KCLEWLR2 (LCRS-2) are exempt from NSPS wellfield regulations because they are located outside of the waste footprint. Per Title V Condition Number 17309 Part 18(a)(ii), collectors located outside of waste are not subject to NSPS operating parameters.

The majority of the wells were operating within the regulatory limit of five (5) percent oxygen during the monitoring events conducted during the reporting period. The dates when wells were operating with excessive oxygen, and the well identification number, corrective actions, and re-monitoring results for these wells are provided in **Table 6**.

As of the end of the reporting period, all of the operating wells were operating with an oxygen concentration below the 5 or 15 percent limit except for seven (7) wells (KCLEW10A, KCEW2105,

KCLEWLR2, KCLFEW02, KCLFEW30, KCLFEW33, and KCLFEWB6). These wells will be returned to below the 5 or 15 percent limit as specified in BAAQMD Rule 8-34-414, and compliance will be documented in the next semi-annual report. Note under the EG rule and Subpart 000, which took effect June 21, 2021, and the updated NESHAP Rule that took effect September 27, 2021, oxygen above 5 percent is no longer an exceedance, but under BAAQMD Rule 8-34-414 it still is, and the Landfill will continue to follow these requirements.

As of the end of the previous reporting period three (3) wells (KCLFEWB3, KCLFEW96, and KCLW27RR) were operating with an oxygen concentration above the 5 percent limit. All of these wells were decommissioned or brought back into compliance during this reporting period.

3.5.3 Temperature

BAAQMD Rule 8-34-305 and NSPS Subparts WWW/OOO requires the landfill gas temperature in each wellhead to measure less than 55 degrees Celsius (°C) or 131°F. However, Condition No. 17309, Part 19b(i) in Keller's BAAQMD PTO allows Keller to operate wells KCLEW-12A, KCLEW-148, KCLEW-14A, KCLEW-154, KCLEW-26A, KCLFEW-27, KCLFEW-34, KCLFEW-53, KCLFEW-54, KCLFEW-57, KCLFEW-68, KCLFEW-73 at an alternative temperature of 150°F.

Horizontal Collectors KCLEWHC3 (HC-3), KCHC2001 (HC-2001), and Leachate Collectors KCLEWR1 (LCRS-1) and KCLEWLR2 (LCRS- 2) are exempt from 8-34, NSPS, and NESHAP wellfield regulations because they are located outside of the waste footprint. Per Title V Condition Number 17309 Part 18(a)(ii), collectors located outside of waste are not subject to wellhead operating parameters.

The majority of wells were operating within their respective limits of 131°F or 150°F during the monitoring events conducted during the reporting period. The dates when wells were operating above their respective temperature limits, and the well identification number, correction actions, and re-monitoring results for these wells are provided in **Table 7**.

As of the end of the reporting period, one (1) well (KCEW2125) were operating with a temperature above 131 °F. Compliance will be documented for these wells in the next semi-annual report.

As of the end of the previous reporting period, one (1) well (KCEW2203) was operating with a temperature higher than 131 °F. Additionally, there were no wells above 145°F that triggers additional monitoring requirements under NESHAP.

3.5.1 Root Cause Analysis

40 CFR 63.1981(j) and the 40 CFR 62.16724(k) require notifications for corrective action that will exceed 60 days to implement. Such corrective actions also require a "root cause analysis" to determine the reason for the exceedance if exceedances cannot be corrected in 15 days. For corrective actions that require more than 60 days to complete, an additional "corrective action analysis" is also required. There were multiple exceedances during the reporting period where this occurred, and the appropriate corrective actions and root cause analyses were completed. The root cause analysis and corrective action reports can be found in **Appendix F**.

3.6 COVER INTEGRITY MONITORING

Under BAAQMD Rule 8-34-510 and the NSPS/NESHAP, the landfill surface must be monitored at least monthly for evidence of cracks or other surface integrity issues, which could allow for surface emissions. During the reporting period, cover integrity monitoring was conducted by SCSFS in conjunction with the wellhead monitoring on:

- March 12, 2023;
- April 16, 2023;
- May 31, 2023;
- June 16, 2023;
- July 16, 2023; and
- August 16, 2023.

Procedures specified in the GCCS Design Plan were utilized. The observations during these monitoring events indicated the landfill surface was in good condition. In the event visual evidence suggested otherwise, the surface will be promptly repaired. Records of cover integrity monitoring are available for review upon request.

3.7 GAS GENERATION ESTIMATE AND MONTHLY LANDFILL GAS FLOW RATES

Keller is not subject to Rule 8-34-404 because the Landfill does not operate less than continuously. Therefore, monthly flow data are not required to be reported.

3.8 ANNUAL WASTE ACCEPTANCE RATE AND REFUSE IN PLACE

Keller is an active landfill that continues to accept refuse for disposal. From March 1, 2023 through August 31, 2023, the site accepted 583,956.51 tons of decomposable waste and cover material, resulting in a cumulative waste-in-place total of 26,286,684.38 tons as of August 31, 2023.

3.8.1 Non-Degradable Waste Areas

No areas of non-degradable waste deposition are known to exist. There are no landfill areas that are excluded from the collection system requirements.

3.9 24 HOUR HIGH TEMPERATURE

40 CFR 63.1981(k) and 40 CFR 62.16724(q) require the reporting of any landfill gas temperature measurements greater than or equal to 170°F. During the reporting period, there were no readings greater or equal to 170°F.

3.10 TREATMENT SYSTEM MONITORING PLAN

There are no vents within the treatment system, which allow venting of gas to the atmosphere, and the treatment system is not designed nor equipped to bypass a control device and vent directly to the atmosphere. A calibrated flow meter is installed to measure flow to the treatment system. Treated landfill gas, which cannot be routed for sale or beneficial use, is routed to a control system.

Ameresco maintains and operates all monitoring systems associated with the treatment system in accordance with the site-specific treatment system monitoring plan required by $\S62.16726(b)(5)(ii)$ and $\S63.1983(b)(5)(ii)$. During this reporting period, per Ameresco there were no parameter exceedances of the Treatment System Monitoring Plan.

SECTION II. SSM PLAN REPORT

As mentioned previously, Keller is subject to 40 CFR Part 63, Subpart AAAA, the NESHAPS for MSW Landfills. Keller maintains a SSM Plan which documents the procedures for operating and maintaining the affected elements of the GCCS during startup, shutdown, and malfunction (SSM). The SSM events that occurred during the reporting period of September 1, 2022 through February 28, 2023 are documented in this section. Note that he SSM requirements under the NESHAP Subpart AAAA rule ended on September 27, 2021. However, since these SSM requirements are contained within the site's Title V permit, Keller has continued to comply with them.

During the reporting period, there were one hundred and forty-five (145) SSM events involving shutdown of the entire GCCS. One hundred twenty-seven (127) of these events were planned startups/shutdowns and eighteen (18) of these startup/shutdown events were associated with malfunctions.

During the reporting period, there were thirty-four(34) SSM events involving the wellfield as seven (7) wells were permanently decommissioned due to poor gas quality, twelve (12) new wells were started up and seven (7) wells were taken offline and returned online before the end of the reporting period. There were no malfunctions of any of the wellfield components during the reporting period.

During the reporting period, there were no planned startups/shutdowns or malfunctions of LFG monitoring equipment (e.g. flow measuring/recording device, temperature measuring/recording device).

In each case described above, the SSM Plan was successfully implemented. Specific information regarding these SSMs are included in Tables 3a (GCCS Downtime), 3b (A-1 Flare Downtime), 3c (A-2 Flare Downtime), and 4 (Individual Well Startup, Shutdown, and Decommissions).

No revisions were made to the SSM Plan during this reporting period. A copy of the SSM Plan and all revisions/addenda are kept on file at the facility for at least five (5) years and are available to appropriate regulatory agency personnel for inspection.

Tables

GCCS Shutdown	Restarted	Downtime Hours	Reason for Downtime
3/2/23 11:05	3/2/23 13:14	2.15	Air compressor service
3/2/23 13:31	3/2/23 13:36	0.08	Air compressor service
3/2/23 13:59	3/2/23 14:05	0.10	Air compressor service
3/2/23 16:30	3/2/23 19:59	3.48	Air compressor service
3/2/23 20:02	3/2/23 20:07	0.08	Air compressor service
3/2/23 21:04	3/2/23 21:08	0.07	Air compressor service
3/2/23 21:11	3/2/23 21:16	0.08	Air compressor service
3/2/23 22:40	3/2/23 22:51	0.18	Air compressor service
3/2/23 22:53	3/2/23 23:06	0.22	Air compressor service
3/2/23 23:06	3/2/23 23:20	0.23	Air compressor service
3/3/23 7:27	3/3/23 7:38	0.18	Air compressor service
3/3/23 8:21	3/3/23 8:33	0.20	Air compressor service
3/3/23 10:02	3/3/23 10:52	0.83	Air compressor service
3/8/23 9:44	3/8/23 10:10	0.43	Shutdown to install generator plugs
3/8/23 10:18	3/8/23 11:32	1.23	Shutdown to install generator plugs
3/9/23 11:41	3/9/23 11:45	0.07	Flare maintenance and troubleshooting
3/9/23 11:47	3/9/23 11:51	0.07	Flare maintenance and troubleshooting
3/9/23 11:56	3/9/23 19:20	7.40	Flare maintenance and troubleshooting
3/9/23 19:23	3/9/23 19:33	0.17	Flare maintenance and troubleshooting
3/9/23 19:36	3/9/23 19:44	0.13	Flare maintenance and troubleshooting
3/9/23 19:47	3/9/23 20:05	0.30	Flare maintenance and troubleshooting
3/9/23 20:08	3/9/23 20:13	0.08	Flare maintenance and troubleshooting

GCCS Shutdown	Restarted	Downtime Hours	Reason for Downtime
3/9/23 20:16	3/9/23 20:21	0.08	Flare maintenance and troubleshooting
3/9/23 20:26	3/9/23 20:30	0.07	Flare maintenance and troubleshooting
3/9/23 21:27	3/9/23 21:36	0.15	Flare maintenance and troubleshooting
3/9/23 21:52	3/9/23 21:54	0.03	Flare maintenance and troubleshooting
3/9/23 22:39	3/9/23 22:42	0.05	Flare maintenance and troubleshooting
3/10/23 1:01	3/10/23 1:06	0.08	Flare maintenance and troubleshooting
3/10/23 2:55	3/10/23 3:00	0.08	Flare maintenance and troubleshooting
3/10/23 3:16	3/10/23 3:21	0.08	Flare maintenance and troubleshooting
3/14/23 6:04	3/14/23 6:08	0.07	Flare maintenance and troubleshooting
4/3/23 9:54	4/3/23 10:06	0.20	Manual shutdown for flare maintenance and troubleshooting
4/3/23 10:10	4/3/23 10:16	0.10	Manual shutdown for flare maintenance and troubleshooting
4/3/23 10:49	4/3/23 11:13	0.40	Manual shutdown for flare maintenance and troubleshooting
4/3/23 15:27	4/3/23 15:32	0.08	Manual shutdown for flare maintenance and troubleshooting
4/3/23 19:20	4/3/23 20:49	1.48	Air compressor service
4/8/23 19:00	4/8/23 22:03	3.05	Manual shutdown for flare maintenance and troubleshooting
4/8/23 22:06	4/8/23 22:12	0.10	Air compressor service
4/9/23 14:00	4/9/23 15:32	1.53	Air compressor service
4/9/23 16:12	4/10/23 10:58	18.77	Air compressor service
4/12/23 7:35	4/12/23 9:07	1.53	Air compressor service
4/13/23 9:29	4/13/23 10:29	1.00	Air compressor service
4/13/23 10:50	4/13/23 11:00	0.17	Air compressor service
4/16/23 1:51	4/16/23 10:04	8.22	Air compressor service

GCCS Shutdown	Restarted	Downtime Hours	Reason for Downtime
4/16/23 11:56	4/16/23 12:08	0.20	Shutdown to switch to generator power
4/16/23 18:38	4/17/23 8:28	13.83	Manual Manual Manual shutdown due to high flow when plant shutdown - restarted
4/18/23 21:55	4/19/23 0:35	2.67	Air compressor service
4/21/23 14:41	4/21/23 15:54	1.22	Air compressor service
4/22/23 16:07	4/22/23 18:39	2.53	Manual Manual shutdown due to high flow when plant shutdown - restarted
4/22/23 18:45	4/22/23 18:47	0.03	Manual shutdown for flare maintenance and troubleshooting
4/22/23 18:49	4/22/23 18:58	0.15	Manual shutdown for flare maintenance and troubleshooting
4/22/23 19:01	4/22/23 19:04	0.05	Manual shutdown for flare maintenance and troubleshooting
4/22/23 19:17	4/22/23 19:37	0.33	Manual shutdown for flare maintenance and troubleshooting
4/22/23 23:07	4/22/23 23:50	0.72	Manual shutdown for flare maintenance and troubleshooting
4/22/23 23:51	4/22/23 23:59	0.13	Manual shutdown for flare maintenance and troubleshooting
4/24/23 7:48	4/24/23 8:05	0.28	Manual Manual shutdown due to high flow when plant shutdown - restarted
4/25/23 7:36	4/25/23 7:40	0.07	Manual shutdown for flare maintenance and troubleshooting
4/25/23 7:44	4/25/23 8:47	1.05	Manual Manual shutdown due to high flow when plant shutdown - restarted
4/27/23 11:59	4/27/23 12:04	0.08	Manual shutdown for flare maintenance and troubleshooting on generator
4/27/23 12:08	4/27/23 12:30	0.37	Manual shutdown for flare maintenance and troubleshooting after generator turned off
4/29/23 18:38	4/29/23 20:18	1.67	Manual shutdown due to avoid compressor failure
4/30/23 9:02	4/30/23 13:19	4.28	Manual shutdown due to avoid compressor failure
5/1/23 7:17	5/1/23 8:22	1.08	Manual shutdown due to avoid compressor failure
5/2/23 10:43	5/2/23 11:05	0.37	Manual shutdown due to avoid compressor failure
5/3/23 7:51	5/3/23 7:56	0.08	Manual shutdown due to avoid compressor failure
5/3/23 8:01	5/3/23 8:03	0.03	Manual shutdown due to avoid compressor failure

GCCS Shutdown	Restarted	Downtime Hours	Reason for Downtime
5/3/23 8:09	5/3/23 8:13	0.07	Manual shutdown due to avoid compressor failure
5/4/23 7:45	5/4/23 7:57	0.20	Manual shutdown due to avoid compressor failure
5/13/23 15:29	5/13/23 18:19	2.83	Manual shutdown due to avoid compressor failure
5/13/23 21:19	5/13/23 22:58	1.65	Manual shutdown due to avoid compressor failure
5/16/23 9:46	5/16/23 17:27	7.68	Manual Shutdown for Scheduled Construction Header Tie-In
5/19/23 10:36	5/19/23 14:08	3.53	Manual Shutdown for Scheduled Construction Header Tie-In
5/19/23 14:21	5/19/23 14:30	0.15	Manual shutdown due to avoid compressor failure
5/28/23 2:08	5/28/23 9:58	7.83	Manual Shutdown for Scheduled Construction Header Tie-In
5/28/23 10:03	5/28/23 10:18	0.25	Manual shutdown due to avoid compressor failure
5/30/23 4:02	5/30/23 8:02	4.00	Manual Shutdown for Scheduled Construction Header Tie-In
6/4/23 1:51	6/4/23 11:45	9.90	Manual shutdown due to avoid compressor failure
6/5/23 8:23	6/5/23 9:05	0.70	Manual shutdown due to avoid compressor failure
6/8/23 10:07	6/8/23 10:09	0.03	Manual shutdown due to avoid compressor failure
6/8/23 10:17	6/8/23 11:43	1.43	Manual shutdown due to avoid compressor failure
6/11/23 1:50	6/11/23 9:14	7.40	Manual shutdown due to avoid compressor failure
6/11/23 9:17	6/11/23 9:22	0.08	Manual shutdown due to avoid compressor failure
6/14/23 9:42	6/15/23 16:18	30.60	Manual shutdown for maintenance for Liquids in Header flare station
6/22/23 7:53	6/22/23 8:43	0.83	Maintenance at Power Generation Facility (PGF)
6/23/23 6:45	6/23/23 6:54	0.15	Pacific, Gas, and Electric (PGE) testing
6/23/23 11:31	6/23/23 11:43	0.20	PGE testing
6/25/23 18:46	6/25/23 18:52	0.10	PGE power outage over
6/26/23 10:41	6/26/23 10:46	0.08	Maintenance at PGF

GCCS Shutdown	Restarted	Downtime Hours	Reason for Downtime
7/1/23 17:10	7/1/23 19:48	2.63	Maintenance at PGF
7/1/23 20:06	7/1/23 20:09	0.05	Maintenance at PGF
7/2/23 15:40	7/2/23 17:50	2.17	Maintenance at PGF
7/6/23 11:05	7/6/23 11:17	0.20	Maintenance at PGF
7/6/23 11:47	7/6/23 11:50	0.05	Maintenance at PGF
7/6/23 12:14	7/6/23 12:33	0.32	Maintenance at PGF
7/6/23 13:15	7/6/23 13:27	0.20	Maintenance at PGF
7/6/23 14:34	7/6/23 14:55	0.35	Maintenance at PGF
7/6/23 15:04	7/6/23 15:16	0.20	Maintenance at PGF
7/6/23 15:54	7/6/23 16:15	0.35	Maintenance at PGF
7/6/23 18:05	7/6/23 18:11	0.10	Maintenance at PGF
7/7/23 1:07	7/7/23 7:34	6.45	Flare maintenance and troubleshooting
7/13/23 22:08	7/14/23 0:20	2.20	Engine maintenance
7/14/23 0:23	7/14/23 0:30	0.12	Maintenance at PGF
7/15/23 17:02	7/15/23 20:39	3.62	Maintenance at PGF
7/15/23 20:40	7/15/23 20:45	0.08	Maintenance at PGF
7/17/23 0:00	7/17/23 10:23	10.38	John Zink conducting maintenance and inspection at flares
7/17/23 10:28	7/17/23 10:36	0.13	John Zink conducting maintenance and inspection at flares
7/17/23 10:41	7/17/23 11:06	0.42	John Zink conducting maintenance and inspection at flares
7/17/23 11:10	7/17/23 11:18	0.13	John Zink conducting maintenance and inspection at flares
7/17/23 11:42	7/17/23 15:26	3.73	John Zink conducting maintenance and inspection at flares
7/17/23 20:50	7/17/23 22:19	1.48	Engine maintenance

GCCS Shutdown	Restarted	Downtime Hours	Reason for Downtime
7/17/23 22:49	7/18/23 10:38	11.82	Engine maintenance
7/19/23 7:45	7/19/23 8:10	0.42	Engine maintenance
7/20/23 8:22	7/20/23 17:36	9.23	Engine maintenance
7/20/23 17:39	7/20/23 18:11	0.53	Engine maintenance
7/20/23 18:14	7/20/23 18:25	0.18	Engine maintenance/flare
7/21/23 13:10	7/21/23 13:59	0.82	Engine maintenance/flare
7/21/23 13:52	7/21/23 14:00	0.13	Engine maintenance/flare
7/21/23 14:03	7/21/23 14:09	0.10	Engine maintenance/flare
7/23/23 6:16	7/23/23 11:25	5.15	Engine maintenance/flare
7/28/23 22:30	7/29/23 2:30	4.00	Engine maintenance/flare
8/3/23 16:04	8/4/23 15:03	22.98	Engine maintenance/flare
8/4/23 17:18	8/4/23 21:11	3.88	Engine maintenance/flare
8/4/23 22:40	8/5/23 14:09	15.48	Engine maintenance/flare
8/5/23 17:42	8/5/23 20:19	2.62	Engine maintenance/flare
8/5/23 20:39	8/6/23 10:23	13.73	Engine maintenance/flare
8/6/23 10:24	8/6/23 10:32	0.13	Engine maintenance/flare
8/6/23 11:55	8/6/23 13:06	1.18	Engine maintenance/flare
8/6/23 13:28	8/6/23 13:53	0.42	Engine maintenance/flare
8/6/23 14:18	8/7/23 7:17	16.98	Engine maintenance/flare
8/7/23 7:23	8/7/23 7:28	0.08	Engine maintenance/flare
8/7/23 13:17	8/7/23 13:51	0.57	Engine maintenance/flare
8/7/23 14:01	8/8/23 8:00	17.98	Shutdown high temp FL- 100

GCCS Shutdown	Restarted	Downtime Hours	Reason for Downtime
8/8/23 12:35	8/8/23 12:58	0.38	Source test flare
8/8/23 16:22	8/8/23 16:28	0.10	Engine maintenance/flare
8/8/23 18:15	8/9/23 8:59	14.73	Engine maintenance/flare
8/9/23 9:08	8/9/23 15:59	6.85	Engine maintenance/flare
8/9/23 16:02	8/9/23 16:11	0.15	Engine maintenance/flare
8/9/23 21:26	8/11/23 8:12	34.77	Engine maintenance/flare
8/16/23 10:33	8/16/23 11:47	1.23	flare flow meter calibration
8/20/23 2:30	8/20/23 13:33	11.05	Engine maintenance/flares
8/21/23 13:11	8/21/23 14:32	1.35	Engine maintenance/flares
8/24/23 8:43	8/24/23 10:39	1.93	Engine maintenance/flares
8/24/23 10:45	8/24/23 10:52	0.12	Engine maintenance/flares
8/25/23 10:30	8/25/23 11:07	0.62	Engine maintenance/flares
8/25/23 11:11	8/25/23 11:15	0.07	Engine maintenance/flares
Total:		403.21	

Total (excluding events under 118 plan)

Notes:

Events in bold type denotes Malfunction Events

Events in italic type denotes Events under the 118 plan

Downtimes listed represent periods when both flares or one flare and at least one engine were offline concurrently per condition #20 in the permit.

74.78

All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113/NESHAP requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018, except as noted.

Shutdown	Startup	Downtime Hours	Reason for Downtime
3/2/23 11:05	3/2/23 13:14	2.15	Air compressor maintenance
3/2/23 13:31	3/2/23 13:36	0.08	Flare maintenance and troubleshooting
3/2/23 13:59	3/2/23 14:05	0.10	Flare maintenance and troubleshooting
3/2/23 16:30	3/2/23 19:59	3.48	Air compressor maintenance
3/2/23 20:02	3/2/23 20:07	0.08	FL100 in operation- 1 engine offline -performing restarts
3/2/23 21:04	3/2/23 21:08	0.07	FL100 in operation- 1 engine offline -performing restarts
3/2/23 21:11	3/2/23 21:16	0.08	FL100 in operation- 1 engine offline -performing restarts
3/2/23 22:36	3/3/23 10:54	12.30	FL100 in operation- 1 engine offline -performing restarts
3/5/23 10:57	3/6/23 11:54	24.95	FL100 in operation- 1 engine offline -performing restarts
3/8/23 9:44	3/8/23 10:11	0.45	Shutdown to install generator plugs
3/8/23 10:18	3/8/23 11:32	1.23	Shutdown to install generator plugs
3/9/23 11:41	3/9/23 11:45	0.07	FL100 in operation- 1 engine offline -performing restarts
3/9/23 11:47	3/9/23 11:51	0.07	FL100 in operation- 1 engine offline -performing restarts
3/9/23 11:56	3/9/23 19:20	7.40	FL100 in operation- 1 engine offline -performing restarts
3/9/23 19:23	3/9/23 19:33	0.17	FL100 in operation- 1 engine offline -performing restarts
3/9/23 19:36	3/9/23 19:44	0.13	FL100 in operation- 1 engine offline -performing restarts
3/9/23 19:47	3/9/23 20:05	0.30	FL100 in operation- 1 engine offline -performing restarts
3/9/23 20:08	3/9/23 20:13	0.08	FL100 in operation- 1 engine offline -performing restarts
3/9/23 20:16	3/9/23 20:21	0.08	FL100 in operation- 1 engine offline -performing restarts
3/9/23 20:26	3/9/23 20:30	0.07	FL100 in operation- 1 engine offline -performing restarts
3/9/23 21:27	3/9/23 21:36	0.15	FL100 in operation- 1 engine offline -performing restarts

Shutdown	Startup	Downtime Hours	Reason for Downtime
3/9/23 21:52	3/9/23 21:54	0.03	FL100 in operation- 1 engine offline -performing restarts
3/9/23 22:39	3/9/23 22:42	0.05	FL100 in operation- 1 engine offline -performing restarts
3/10/23 1:01	3/10/23 1:06	0.08	FL100 in operation
3/10/23 2:55	3/10/23 3:00	0.08	FL100 in operation
3/10/23 3:16	3/10/23 3:21	0.08	FL100 in operation
3/14/23 6:04	3/14/23 6:08	0.07	FL100 in operation
3/22/23 15:15	3/23/23 8:12	16.95	FL100 in operation
4/3/23 9:55	4/3/23 10:06	0.18	Shutdown during plant maintenance
4/3/23 10:10	4/3/23 10:16	0.10	Flare maintenance and troubleshooting
4/3/23 10:49	4/3/23 10:53	0.07	Flare maintenance and troubleshooting
4/3/23 11:00	4/3/23 11:13	0.22	Flare maintenance and troubleshooting
4/3/23 15:27	4/3/23 15:32	0.08	Flare maintenance and troubleshooting
4/3/23 19:20	4/3/23 20:49	1.48	shutdown during plant maintenance
4/8/23 19:00	4/8/23 22:04	3.07	Manual shutdown due to avoid compressor failure
4/8/23 22:06	4/8/23 22:12	0.10	Flare maintenance and troubleshooting
4/8/23 22:14	4/9/23 15:33	17.32	Manual shutdown due to avoid compressor failure
4/9/23 16:12	4/10/23 11:00	18.80	Manual shutdown due to avoid compressor failure
4/12/23 7:35	4/12/23 9:07	1.53	Manual shutdown due to avoid compressor failure
4/13/23 9:28	4/13/23 10:31	1.05	Manual shutdown due to avoid compressor failure
4/13/23 10:50	4/13/23 11:01	0.18	Manual shutdown due to avoid compressor failure
4/16/23 1:51	4/16/23 10:07	8.27	Manual shutdown due to avoid compressor failure

Shutdown	Startup	Downtime Hours	Reason for Downtime
4/16/23 11:55	4/16/23 12:10	0.25	shutdown to switch to generator power
4/16/23 18:38	4/17/23 8:28	13.83	Manual shutdown due to high flow when plant shutdown - restarted
4/18/23 21:55	4/19/23 0:36	2.68	Manual shutdown due to avoid compressor failure
4/21/23 14:41	4/21/23 16:15	1.57	Manual shutdown due to avoid compressor failure
4/22/23 16:07	4/22/23 18:39	2.53	Manual shutdown due to high flow when plant shutdown - restarted
4/22/23 18:45	4/22/23 18:47	0.03	Flare maintenance and troubleshooting
4/22/23 18:49	4/22/23 18:58	0.15	Flare maintenance and troubleshooting
4/22/23 19:01	4/22/23 19:04	0.05	Flare maintenance and troubleshooting
4/22/23 19:17	4/22/23 19:37	0.33	Flare maintenance and troubleshooting
4/22/23 22:05	4/24/23 8:21	34.27	shutdown due to temperature shutdown during plant restart
4/25/23 7:36	4/25/23 7:40	0.07	Flare maintenance and troubleshooting
4/25/23 7:44	4/25/23 8:47	1.05	Manual shutdown due to high flow when plant shutdown - restarted
4/27/23 11:59	4/27/23 12:04	0.08	Manual shutdown for flare maintenance and troubleshooting on generator
4/27/23 12:08	4/27/23 12:30	0.37	shutdown to return to line power
4/29/23 18:38	4/29/23 20:19	1.68	Manual shutdown due to avoid compressor failure
4/30/23 9:02	4/30/23 13:19	4.28	Manual shutdown due to avoid compressor failure
4/30/23 13:37	4/30/23 13:42	0.08	Flare maintenance and troubleshooting
5/1/23 7:17	5/1/23 8:23	1.10	Manual shutdown due to avoid compressor failure
5/2/23 10:43	5/2/23 11:05	0.37	Manual shutdown due to avoid compressor failure
5/3/23 7:51	5/3/23 7:56	0.08	Manual shutdown due to avoid compressor failure
5/3/23 8:01	5/3/23 8:03	0.03	Manual shutdown due to avoid compressor failure

Shutdown	Startup	Downtime Hours	Reason for Downtime
5/3/23 8:09	5/3/23 8:13	0.07	Manual shutdown due to avoid compressor failure
5/3/23 23:20	5/4/23 7:57	8.62	Manual shutdown due to avoid compressor failure
5/11/23 16:48	5/12/23 7:43	14.92	Manual shutdown due to avoid compressor failure
5/13/23 15:29	5/13/23 18:26	2.95	Manual shutdown due to avoid compressor failure
5/13/23 21:19	5/13/23 23:05	1.77	Manual shutdown due to avoid compressor failure
5/13/23 23:16	5/13/23 23:19	0.05	Manual shutdown due to avoid compressor failure
5/13/23 23:39	5/15/23 19:33	43.90	Manual shutdown due to avoid compressor failure
5/16/23 9:46	5/16/23 17:42	7.93	Manual shutdown due to avoid compressor failure
5/19/23 10:36	5/19/23 14:02	3.43	Construction work shutdown
5/19/23 14:05	5/19/23 14:07	0.03	Manual shutdown due to avoid compressor failure
5/19/23 14:21	5/19/23 14:44	0.38	Manual shutdown due to avoid compressor failure
5/19/23 16:34	5/19/23 19:24	2.83	Construction work shutdown
5/28/23 2:08	5/28/23 9:58	7.83	Construction work shutdown
5/28/23 10:03	5/28/23 10:21	0.30	Manual shutdown due to avoid compressor failure
5/28/23 10:45	5/28/23 10:49	0.07	Manual shutdown due to avoid compressor failure
5/30/23 4:02	5/30/23 8:02	4.00	Construction work shutdown
5/31/23 11:53	5/31/23 13:05	1.20	Manual shutdown due to avoid compressor failure
6/4/23 1:51	6/4/23 11:46	9.92	Manual shutdown due to avoid compressor failure
6/5/23 7:07	6/5/23 8:11	1.07	Manual shutdown due to avoid compressor failure
6/5/23 8:23	6/5/23 9:11	0.80	Manual shutdown due to avoid compressor failure
6/5/23 13:09	6/6/23 7:57	18.80	Manual shutdown due to avoid compressor failure

Shutdown	Startup	Downtime Hours	Reason for Downtime
6/8/23 10:07	6/8/23 10:09	0.03	Manual shutdown due to avoid compressor failure
6/8/23 10:17	6/8/23 11:50	1.55	Manual shutdown due to avoid compressor failure
6/11/23 1:50	6/11/23 9:22	7.53	Manual shutdown due to avoid compressor failure
6/11/23 10:45	6/11/23 12:18	1.55	Manual shutdown due to avoid compressor failure
6/11/23 12:35	6/11/23 13:06	0.52	Manual shutdown due to avoid compressor failure
6/14/23 9:47	6/15/23 16:18	30.52	Liquids in Header flare station
6/22/23 7:53	6/22/23 8:43	0.83	Maintenance at Power Generation Facility (PGF)
6/23/23 6:45	6/23/23 6:57	0.20	Pacific, Gas, and Electric (PGE) testing
6/23/23 11:31	6/23/23 11:51	0.33	PGE testing
6/26/23 10:51	6/26/23 11:14	0.38	Maintenance at PGF
7/1/23 17:10	7/1/23 19:43	2.55	Maintenance at PGF
7/1/23 19:46	7/1/23 19:48	0.03	Maintenance at PGF
7/1/23 20:06	7/1/23 20:09	0.05	Maintenance at PGF
7/2/23 11:45	7/2/23 17:50	6.08	Maintenance at PGF
7/2/23 19:12	7/3/23 10:10	14.97	Flame failure
7/3/23 10:30	7/3/23 10:57	0.45	Flame failure during startup
7/3/23 11:12	7/3/23 11:25	0.22	Flame failure during startup
7/3/23 12:26	7/3/23 12:34	0.13	Flame failure during startup
7/6/23 11:05	7/6/23 11:17	0.20	Maintenance at PGF
7/6/23 11:47	7/6/23 11:50	0.05	Maintenance at PGF
7/6/23 12:14	7/6/23 12:33	0.32	Maintenance at PGF

Shutdown	Startup	Downtime Hours	Reason for Downtime
7/6/23 13:15	7/6/23 13:27	0.20	Maintenance at PGF
7/6/23 14:34	7/6/23 14:55	0.35	Maintenance at PGF
7/6/23 15:04	7/6/23 15:13	0.15	Maintenance at PGF
7/6/23 15:54	7/6/23 16:31	0.62	Maintenance at PGF
7/6/23 17:26	7/6/23 17:28	0.03	Maintenance at PGF
7/6/23 17:39	7/17/23 10:23	256.73	Flare maintenance and troubleshooting
7/17/23 10:28	7/17/23 10:36	0.13	John Zink repairs
7/17/23 10:41	7/17/23 10:47	0.10	John Zink repairs
7/17/23 10:50	7/17/23 10:55	0.08	John Zink repairs
7/17/23 10:59	7/17/23 11:05	0.10	John Zink repairs
7/17/23 11:10	7/17/23 11:18	0.13	John Zink repairs
7/17/23 11:42	7/21/23 8:20	92.63	Replace fireye wiring /then turned off for valve repair
7/21/23 10:29	8/3/23 15:17	316.80	Repair at valve
8/3/23 17:40	8/7/23 7:17	85.62	Repair at valve
8/7/23 7:23	8/7/23 7:28	0.08	started to verify operations
8/7/23 12:13	8/8/23 7:54	19.68	Started for Source test Source test
8/8/23 7:56	8/8/23 8:00	0.07	Started for Source test Source test
8/8/23 12:35	8/15/23 6:44	162.15	Repair at valve
8/15/23 9:11	8/24/23 11:04	217.88	Flare maintenance and troubleshooting
8/24/23 11:07	8/24/23 11:15	0.13	Shutdown low Temp
8/24/23 19:23	8/25/23 11:15	15.87	Shutdown low Temp

Shutdown	Startup	Downtime Hours	Reason for Downtime
8/25/23 11:18	8/25/23 11:44	0.43	Shutdown low Temp
Total		1557.55	

Notes:

Events in bold type denotes Malfunction Events

Events in italic type denotes Events under the 118 plan

All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113 requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018.

A-1 Flare in the process of being replaced by A-3 flare.

Shutdown	Startup	Downtime Hours	Reason for Downtime
3/2/2023 11:05	3/2/2023 13:14	2.15	Air compressor maintenance
3/2/2023 13:31	3/2/2023 13:36	0.08	Flare maintenance and troubleshooting
3/2/2023 16:30	3/2/2023 19:52	3.37	Air compressor maintenance
3/3/2023 7:27	3/3/2023 7:38	0.18	Flare maintenance and troubleshooting
3/3/2023 8:21	3/3/2023 8:33	0.20	Flare maintenance and troubleshooting
3/3/2023 10:02	3/3/2023 10:52	0.83	Flare maintenance and troubleshooting
3/8/2023 9:44	3/8/2023 10:10	0.43	Shutdown to install generator plugs
3/8/2023 10:18	3/8/2023 11:33	1.25	Shutdown to install generator plugs
4/3/2023 9:54	4/3/2023 10:06	0.20	Flare maintenance and troubleshooting
4/3/2023 10:10	4/3/2023 10:16	0.10	Flare maintenance and troubleshooting
4/3/2023 10:49	4/3/2023 11:13	0.40	Flare maintenance and troubleshooting
4/3/2023 20:41	4/3/2023 20:47	0.10	Flare maintenance and troubleshooting
4/8/2023 18:55	4/8/2023 22:03	3.13	Automatic shutdown due to compressor
4/8/2023 22:06	4/8/2023 22:12	0.10	Flare maintenance and troubleshooting
4/9/2023 14:00	4/9/2023 15:32	1.53	Automatic shutdown due to compressor
4/9/2023 16:08	4/10/2023 10:58	18.83	Automatic shutdown due to compressor
4/12/2023 8:03	4/12/2023 9:06	1.05	Automatic shutdown due to compressor
4/13/2023 9:29	4/13/2023 10:29	1.00	Automatic shutdown due to compressor

Shutdown	Startup	Downtime Hours	Reason for Downtime
4/13/2023 10:50	4/13/2023 11:00	0.17	Automatic shutdown due to compressor
4/16/2023 1:51	4/16/2023 10:04	8.22	Automatic shutdown due to compressor
4/16/2023 11:56	4/16/2023 12:08	0.20	shutdown to switch to generator power
4/17/2023 7:48	4/17/2023 8:27	0.65	Manual shutdown due to avoid compressor failure
4/18/2023 21:47	4/19/2023 0:35	2.80	Manual shutdown due to avoid compressor failure
4/21/2023 14:33	4/21/2023 15:54	1.35	Manual shutdown due to avoid compressor failure
4/22/2023 16:00	4/22/2023 18:38	2.63	Manual shutdown due to high flow when plant shutdown - restarted
4/24/2023 7:48	4/24/2023 8:05	0.28	Manual shutdown due to high flow when plant shutdown - restarted
4/29/2023 18:38	4/29/2023 20:18	1.67	Manual shutdown due to avoid compressor failure
4/30/2023 9:02	4/30/2023 13:37	4.58	Manual shutdown due to avoid compressor failure
5/1/2023 7:11	5/1/2023 8:22	1.18	Manual shutdown due to avoid compressor failure
5/3/2023 7:50	5/3/2023 7:55	0.08	Manual shutdown due to avoid compressor failure
5/13/2023 15:20	5/13/2023 18:19	2.98	Construction work shutdown
5/13/2023 19:01	5/13/2023 19:25	0.40	Manual shutdown due to avoid compressor failure
5/13/2023 21:12	5/13/2023 22:58	1.77	Manual shutdown due to avoid compressor failure
5/19/2023 11:38	5/19/2023 13:55	2.28	Construction work shutdown
5/19/2023 14:02	5/19/2023 14:08	0.10	Manual shutdown due to avoid compressor failure
5/28/2023 1:48	5/28/2023 10:18	8.50	Construction work shutdown
Table 1c. Flare (A-2) Downtime Keller Canyon Landfill, Pittsburg, California (March 1, 2023 through August 31, 2023)

Shutdown	Startup	Downtime Hours	Reason for Downtime		
5/30/2023 3:42	5/30/2023 8:07	4.42	Construction work shutdown		
6/4/2023 1:42	6/4/2023 11:45	10.05	Manual shutdown due to avoid compressor failure		
6/5/2023 8:21	6/5/2023 9:05	0.73	Manual shutdown due to avoid compressor failure		
6/8/2023 10:07	6/8/2023 11:43	1.60	Manual shutdown due to avoid compressor failure		
6/11/2023 1:40	6/11/2023 9:14	7.57	Manual shutdown due to avoid compressor failure		
6/11/2023 9:17	6/11/2023 9:39	0.37	Manual shutdown due to avoid compressor failure		
6/14/2023 9:42	6/15/2023 16:07	30.42	Liquids in Header flare station		
6/23/2023 6:45	6/23/2023 6:54	0.15	Pacific, Gas, and Electric (PGE) testing		
6/23/2023 11:27	6/23/2023 11:43	0.27	PGE testing		
6/25/2023 18:46	6/25/2023 18:52	0.10	PGE power outage over		
6/26/2023 10:41	6/26/2023 10:46	0.08	Maintenance at Power Generation Facility (PGF)		
7/1/2023 19:36	7/1/2023 19:48	0.20	Maintenance at PGF		
7/6/2023 12:14	7/6/2023 12:20	0.10	Maintenance at PGF		
7/6/2023 13:15	7/6/2023 13:20	0.08	Maintenance at PGF		
7/6/2023 15:10	7/6/2023 15:16	0.10	Maintenance at PGF		
7/6/2023 18:05	7/6/2023 18:11	0.10	Maintenance at PGF		
7/7/2023 1:07	7/7/2023 7:34	6.45	Flame failure		
7/13/2023 22:13	7/14/2023 0:20	2.12	Maintenance at PGF		

Table 1c. Flare (A-2) Downtime Keller Canyon Landfill, Pittsburg, California (March 1, 2023 through August 31, 2023)

Shutdown	Startup	Downtime Hours	Reason for Downtime		
7/14/2023 0:23	7/14/2023 0:30	0.12	Maintenance at PGF		
7/15/2023 17:06	7/15/2023 20:37	3.52	Maintenance at PGF		
7/15/2023 20:40	7/15/2023 20:45	0.08	Maintenance at PGF		
7/17/2023 2:34	7/17/2023 8:18	5.73	John Zink conducting maintenance and inspection at flares		
7/17/2023 8:21	7/17/2023 9:08	0.78	Maintenance at PGF		
7/17/2023 9:11	7/17/2023 9:17	0.10	Maintenance at PGF		
7/17/2023 9:28	7/17/2023 9:34	0.10	Maintenance at PGF		
7/17/2023 9:45	7/17/2023 9:51	0.10	Maintenance at PGF		
7/17/2023 9:58	7/17/2023 10:23	0.42	Maintenance at PGF		
7/17/2023 10:28	7/17/2023 10:36	0.13	Maintenance at PGF		
7/17/2023 10:41	7/17/2023 11:06	0.42	Maintenance at PGF		
7/21/2023 13:17	7/21/2023 13:49	0.53	Maintenance at PGF		
7/21/2023 13:52	7/21/2023 14:00	0.13	Maintenance at PGF		
7/21/2023 14:03	7/21/2023 14:09	0.10	Maintenance at PGF		
7/23/2023 8:50	7/23/2023 11:25	2.58	Maintenance at PGF		
7/28/2023 22:40	7/29/2023 0:34	1.90	Engine maintenance/flares		
7/29/2023 0:36	7/29/2023 0:42	0.10	Engine maintenance/flares		
7/29/2023 0:46	7/29/2023 0:55	0.15	Engine maintenance/flares		

Table 1c. Flare (A-2) DowntimeKeller Canyon Landfill, Pittsburg, California(March 1, 2023 through August 31, 2023)

Shutdown	Startup	Downtime Hours	Reason for Downtime		
8/7/2023 13:21	8/7/2023 13:51	0.50	Engine maintenance/flares		
8/7/2023 14:05	8/8/2023 7:03	16.97	Shutdown high temp		
8/8/2023 7:06	8/8/2023 7:21	0.25	Source Test		
8/8/2023 7:25	8/8/2023 7:30	0.08	Source Test		
8/8/2023 7:54	8/8/2023 7:59	0.08	Source Test		
8/16/2023 10:33	8/16/2023 11:47	1.23	Flow meter calibration- both engines on line A! running		
8/20/2023 2:30	8/20/2023 13:33	11.05	Engine maintenance/flares		
8/21/2023 13:15	8/21/2023 14:32	1.28	Engine maintenance/flares		
8/24/2023 8:43	8/24/2023 10:39	1.93	Engine maintenance/flares		
8/24/2023 10:45	8/24/2023 10:52	0.12	Engine maintenance/flares		
8/25/2023 10:30	8/25/2023 11:07	0.62	Engine maintenance/flares		
8/25/2023 11:11	8/25/2023 11:16	0.08	Engine maintenance/flares		
То	tal	190.90			

Notes:

Events in bold type denotes Malfunction Events

Events in italic type denotes Events under the 118 plan

All events listed involved GCCS inspection and/or maintenance activities prior to start up (or as soon as feasible following programmed startups) in accordance with Rule 8-34-113 requirements and the BAAQMD Compliance Advisory for Municipal Solid Waste Landfills, dated November 5, 2018.

Table 4. Individual Well Startups, Shutdowns and DecommissionsKeller Canyon Landfill, Pittsburg, California(March 1, 2023 through August 31, 2023)

Well ID	Shutdown	Start-up	Days Offline	Reason for Shutdown	
KCLEW193	4/3/2023	4/3/2023	0.0	Well Raising	
KCLFEW97	4/3/2023	4/3/2023	0.0	Well Raising	
KCEW2315		4/5/2023	N/A	New well start-up	
KCLEW193	4/24/2023	4/24/2023	0.0	Well Raising	
KCEW2307		5/17/2023	N/A	New well start-up	
KCEW2308		5/17/2023	N/A	New well start-up	
KCEW2310		5/17/2023	N/A	New well start-up	
KCEW2313		5/17/2023	N/A	New well start-up	
KCEW2317		5/17/2023	N/A	New well start-up	
KCEW2319		5/17/2023	N/A	New well start-up	
KCEW2312		5/17/2023	N/A	New well start-up	
KCEW2314		5/17/2023	N/A	New well start-up	
KCLEW194	3/17/2023	5/30/2023	74.2	Active Filling	
KCLEW195	3/17/2023	5/30/2023	74.3	Active Filling	
KCLFEW19	1/23/2023	6/23/2023	150.9	Active Filling	
KCEWHC2A		7/3/2023	N/A	New well start-up	
KCEW2226		7/10/2023	N/A	New well start-up	
KCLEW195	7/19/2023	7/19/2023	0.0	Well Raising	
KCLEW192	7/19/2023	7/19/2023	0.0	Well Raising	
KCLEW193	7/19/2023	7/19/2023	0.0	Well Raising	
KCLEW196	3/22/2023	7/27/2023	127.2	Active Filling	
KCHZ2301		8/28/2023	N/A	New well start-up	
KCHZ2302		8/28/2023	N/A	New well start-up	
KCEW2107	8/31/2023	8/31/2023	0.0	Replace flexhose	
KCEW2108	8/31/2023	8/31/2023	0.0	Replace flexhose	
KCLFEWB3	5/10/2023		N/A	Abandoned	
KCEW2115	5/4/2023		N/A	Abandoned	
KCEW2124	5/4/2023		N/A	Abandoned	
KCEW2123	5/2/2023		N/A	Abandoned	
KCLEW141	5/1/2023		N/A	Abandoned	
KCLEWM12	4/28/2023		N/A	Abandoned	
KCLFEW18	3/22/2023		N/A	Abandoned	
KCLEW194	7/19/2023	Ongoing	N/A	Active Filling	
KCEW2113	5/3/2023	Ongoing	N/A	Active Filling	

Note: All well downtime events listed are consistent with applicable Rule 8-34 provisions and BAAQMD permit conditions. No more than five wells offline at a time.

Table 5. Wells with Positive Pressure Keller Canyon Landfill, Pittsburg, California (March 1, 2023 through August 31, 2023)

Well ID	Date	Initial Static Pressure ("H ₂ O)	Adjusted Static Pressure ("H ₂ O)	5-Day Corrective Action Date	Corrective Action	15-Day Follow- Up Pressure ["H2O]	15-Day Follow-Up Date	Comments	Additional Corrective Action
KCLEW09A	6/27/2023	0.27	0.28	6/27/2023	Adjusted Valve	0.55	7/3/2023	Compliant reading (-11.05 "H2O) on 7/28/23	RCA
KCLEW10A	4/26/2023	0.53	0.53	4/26/2023	Adjusted Valve	0.55	5/4/2023	Compliant reading (-16.55 "H2O) on 5/23/23	RCA
KCLF2308	5/17/2023	0.25	0.36	5/17/2023	Adjusted Valve	-0.01	5/31/2023		
KCLF2310	5/17/2023	0.45	0.44	5/17/2023	Adjusted Valve	-0.31	5/31/2023		
KCLF2312	5/17/2023	0.94	0.53	5/17/2023	Adjusted Valve	1.03	5/31/2023	Compliant reading (-1.98 "H2O) on 7/28/23	RCA/CAA/75-Day
KCLF2313	5/17/2023	0.82	0.43	5/17/2023	Adjusted Valve	-0.41	5/31/2023		
KCLF2314	5/17/2023	0.03	0.01	5/17/2023	Adjusted Valve	-0.1	5/23/2023		
KCLF2315	4/5/2023	0.56	0.54	4/5/2023	Adjusted Valve	0.45	4/20/2023	Compliant reading (-0.39 "H2O) on 5/17/23	RCA
KCLF2319	5/17/2023	0.08	0.04	5/17/2023	Adjusted Valve	-0.11	5/17/2023		
KCLEW176	5/30/2023	1.13	-1.8	5/30/2023	Adjusted Valve	-0.23	5/1/2023		
KCLEW190	4/26/2023	0.14	0.14	4/26/2023	Adjusted Valve	0.32	5/2/2023	Compliant reading (-0.19 "H2O) on 6/9/23	RCA
KCLEW193	4/26/2023	0.26	0.25	4/26/2023	Adjusted Valve	0.51	5/4/2023*	Offline in active fill	RCA/CAA/75-Day
KCLEW194	5/30/2023	2.3	2.32	5/30/2023	Adjusted Valve	1.86	6/9/2023*	Offline in active fill	RCA/CAA/75-Day
KCLEW196	7/27/2023	0.74	0.75	7/27/2023	Adjusted Valve	-0.12	8/3/2023		
KCEW2105	8/3/2023	0.07	0.09	8/3/2023	Adjusted Valve	0.8	8/3/2023	Compliant reading (-7.05 "H2O) on 8/28/23	RCA
KCEW2125	5/30/2023	1.27	1.19	5/30/2023	Adjusted Valve	0.77	6/9/2023	Compliant reading (-0.46 "H2O) on 7/28/23	RCA
KCLEW124	5/30/2023	6.26	6.28	5/30/2023	Adjusted Valve	5.76	6/9/2023	Compliant reading (-0.27 "H2O) on 7/12/23	RCA
KCLEW124	7/24/2023	0.48	0.54	7/24/2023	Adjusted Valve	-11.95	8/3/2023		
KCLEW62A	8/9/2023	0.13	0.14	8/9/2023	Adjusted Valve	-0.18	8/23/2023		

Note: All required corrective action and remonitoring was completed in accordance with Rule 8-34 and NSPS/NESHAP timelines.

*Exceedance was not corrected in 15 days. Compliance will be achieved by the 120-day compliance dates specified above.

RCA = Root Cause Analysis, CAA = Corrective Action Analysis, 75-day = 75-Day Notification or request for additional time.

Table 6. Wells with Oxygen ExceedancesKeller Canyon Landfill, Pittsburg, California(March 1, 2023 through August 31, 2023)

Well ID	Date	Initial O2 [%]	5-Day Corrective Action Date	Corrective Action	Adjusted O2 [%]	15-Day Follow-Up Date	Comments
KCLEW10A	7/25/2023	11.2	7/25/2023	Adjusted Valve	17.4	8/10/23*	
KCLF2317	5/17/2023	14.6	5/17/2023	Adjusted Valve	0	5/23/2023	
KCLEW195	8/29/2023	11.4	8/29/2023	Adjusted Valve	11.4	8/29/2023	
KCLEW196	8/29/2023	15.8	8/29/2023	Adjusted Valve	16.5	8/29/2023	
KCLEWK18	7/27/2023	18.6	7/27/2023	Adjusted Valve	20	8/3/2023	Compliant reading (3.0%) on 8/15/23
KCEW2105	4/4/2023	6.8	4/4/2023	Adjusted Valve	8.7	4/10/2023	Compliant reading (4.1%) on 4/27/23
KCEW2105	7/25/2023	10.2	7/25/2023	Adjusted Valve	0	8/3/2023	
KCEW2105	8/28/2023	11.7	8/28/2023	Adjusted Valve	12.1	8/28/2023*	
KCEW2106	7/13/2023	20.7	7/13/2023	Adjusted Valve	2.2	7/24/2023	
KCEW2106	8/9/2023	9.1	8/9/2023	Adjusted Valve	4.6	8/23/2023	
KCEW2109	5/9/2023	5.4	5/9/2023	Adjusted Valve	3.9	5/17/2023	
KCEW2117	7/5/2023	6.6	7/5/2023	Adjusted Valve	0.1	7/10/2023	
KCEW2123	4/26/2023	12.8	4/26/2023	Adjusted Valve	14.9	5/2/2023	Abandoned on 5/2/23
KCEW2124	4/20/2023	9.7	4/20/2023	Adjusted Valve	4.5	5/4/2023	Abandoned on 5/4/23
KCEW2211	8/3/2023	17.7	8/3/2023	Adjusted Valve	16.2	8/3/2023	Compliant reading (2.3%) on 8/23/23
KCEW2221	7/27/2023	18.2	7/27/2023	Adjusted Valve	0.1	8/3/2023	
KCLEWLR2	8/29/2023	15.4	8/29/2023	Adjusted Valve	18	8/29/2023*	
KCLFEW02	6/22/2023	6.3	6/22/2023	Adjusted Valve	2.6	6/22/2023	
KCLFEW02	7/24/2023	7.7	7/24/2023	Adjusted Valve	15.8	8/2/2023*	
KCLEW105	7/5/2023	6.9	7/5/2023	Adjusted Valve	0	7/7/2023	
KCLEW117	7/5/2023	8.3	7/5/2023	Adjusted Valve	0.2	7/10/2023	
KCLEW135	7/5/2023	7.7	7/5/2023	Adjusted Valve	0	7/7/2023	
KCLEW164	4/26/2023	20.3	4/26/2023	Adjusted Valve	0	5/2/2023	
KCLEW164	7/12/2023	17	7/12/2023	Adjusted Valve	1.9	7/24/2023	
KCLW27RR	3/22/2023	18.8	3/22/2023	Adjusted Valve	20	4/4/2023	Compliant reading (14.0%) on 4/10/23, HOV of 15% Oxygen
KCLW27RR	4/28/2023	18.7	4/28/2023	Adjusted Valve	19.2	5/3/2023	Compliant reading (8.4%) on 6/28/23, HOV of 15% Oxygen
KCLW27RR	7/27/2023	20.6	7/27/2023	Adjusted Valve	19.4	8/3/2023	Compliant reading (14.3%) on 8/29/23, HOV of 15% Oxygen
KCLFEW30	8/3/2023	19.1	8/3/2023	Adjusted Valve	17.4	8/3/23*	
KCLFEW33	3/17/2023	7.6	3/17/2023	Adjusted Valve	1.8	3/17/2023	
KCLFEW33	8/3/2023	10.9	8/3/2023	Adjusted Valve	10.8	8/23/2023*	
KCLEW93A	6/23/2023	13.3	6/23/2023	Adjusted Valve	4.6	6/27/2023	
KCLEW93A	7/13/2023	13.5	7/13/2023	Adjusted Valve	15.5	7/19/2023	Compliant reading (0.3%) on 8/23/23
KCLFEW96	1/26/2023	8.3	1/26/2023	Adjusted Valve	7.8	1/26/2023	Compliant reading (4.6%) on 4/4/23
KCLFEWB6	8/3/2023	11.9	8/3/2023	Adjusted Valve	12	8/17/23*	
KCLFEWB3	1/5/2023	19	1/5/2023	Adjusted Valve	17.7	1/16/2023	Compliant reading (3.7%) on 3/22/23

Note: All required corrective action and remonitoring was completed in accordance with Rule 8-34 and NSPS/WWW/NESHAP timelines.

*Exceedance remains at end of reporting period. Compliance will be achieved by the 120-day compliance dates specified above.

Table 7. Wells with Temperature ExceedancesKeller Canyon Landfill, Pittsburg, California(March 1, 2023 through August 31, 2023)

Well ID	Date	Initial Temperature [°F]	Adjusted Temperature [°F]	5-Day Corrective Action Date	Corrective Action	15-Day Follow-Up Temperature [°F]	15-Day Follow-Up Date	Comments	Additional Corrective Action
KCLEW184	7/10/2023	131.4	131.3	7/10/2023	Adjusted Valve	117.7	7/19/2023		
KCEW2110	3/17/2023	131.6	131.5	3/17/2023	Adjusted Valve	128.2	3/22/2023		
KCEW2110	8/17/2023	132.4	132.4	8/17/2023	Adjusted Valve	126.4	8/23/2023		
KCEW2203	1/25/2023	130.5	135.6	1/25/2023	Adjusted Valve	136.1	1/25/2022*	Compliant reading (130.5 F) on 3/22/23	RCA
KCEW2125	8/2/2023	131.6	131.7	8/2/2023	Adjusted Valve	132.5	8/17/2023*		RCA
KCEW2203	4/25/2023	137.5	139.5	4/25/2023	Adjusted Valve	133.4	5/2/2023	Compliant reading (115.9 F) on 7/3/23	RCA/CAA/75-Day
KCLEW150	4/25/2023	131.1	132.1	4/25/2023	Adjusted Valve	127.9	5/2/2023		
KCLEW163	6/23/2023	135	135.6	6/23/2023	Adjusted Valve	126	6/26/2023		

Note: All required corrective action and remonitoring was completed in accordance with Rule 8-34 and NSPS/NESHAP timelines. *Exceedance not corrected within 15 days. Compliance will be achieved by the 60 or 120-day compliance dates specified above. RCA = Root Cause Analysis, CAA = Corrective Action Analysis, 75-day = 75-Day Notification or request for additional time. Appendix A – Responsible Official Certification Form

Certification of Truth and Accuracy and Completeness:

I certify the following:

Based on the information and belief formed after reasonable inquiry, the information in this document are true, accurate and complete:

Signature of Responsible Official

9/26/2023

Date

Josh Mills

Name of Responsible Official

Appendix B – Existing GCCS Layout

Appendix C – LFGTE Facility Downtime Logs

LFGTE Facility Downtime Logs Ameresco, Keller (March 1, 2023 through August 31, 2023)

Equipment	Begin Time	End Time	Duration (HRS:MINS)	Engine Hours	Туре	Reason 1	Reason 2	Operator
Engine 1	3/2/23 13:04	3/2/23 15:00	1:56	44988	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	3/2/23 19:48	3/2/23 22:24	2:36	44988	Unplanned	Ameresco	Removal	Donnie Bodkin
Engine 2	3/2/23 21:48	3/2/23 22:15	0:27	44988	Unplanned	Ameresco	TSA / H2S / Siloxane Removal	Donnie Bodkin
Engine 1	3/2/23 22:40	3/2/23 22:51	0:11	44988	Unplanned	Ameresco	BOP Control System	Donnie Bodkin
Engine 1	3/2/23 22:53	3/2/23 23:06	0:13	44988	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	3/2/23 23:06	3/2/23 23:20	0:14	44988	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2	3/9/23 9:08	3/10/23 2:39	17:31	44994	Flanned	Ameresco	Engine	Donnie Bodkin
Engine 2	3/10/23 20:21	3/10/23 20:44	0:23	44996	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2	3/10/23 20:52	3/10/23 21:13	0:21	44996	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2	3/10/23 21:14	3/10/23 21:22	0:08	44996	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2	3/10/23 21:24	3/10/23 21:36	0:12	44996	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	3/14/23 5:15	3/14/23 7:41	2:26	44999	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	3/16/23 6:07	3/16/23 7:30	1:23	45001	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	3/17/23 22:34	3/18/23 2:17	3:43	45003	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	4/3/23 9:13	4/7/23 13:42	100:29	110025	Planned	Ameresco	TSA / H2S / Siloxane	Donnie Bodkin
Engine 2	4/3/23 9:47	4/3/23 12:01	2:14	110199	Unplanned	Landfill /	Landfill Vacuum / Gas	Donnie Bodkin
Engine 1	4/7/23 13:56	4/7/23 15:58	2.02	110025	Unplanned	Digester Ameresco	Limited	Donnie Bodkin
Engine 1	4/7/23 16:00	4/7/23 16:05	0:05	110025	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	4/7/23 16:12	4/7/23 16:23	0:11	110026	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	4/7/23 16:34	4/7/23 19:38	3:04	110026	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	4/7/23 20:07	4/7/23 21:48	1:41	110026	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	4/9/23 3:10	4/9/23 14:36	11:26	110056	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	4/10/23 4:43	4/10/23 7:33	2:50	110070	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	4/12/22 7:10	4/12/23 10:59	3:49	110100	Upplanned	Landfill /	Landfill Vacuum / Gas	Donnio Bodkin
	4/12/23 7.10	4/12/23 10.39	3.49	110109		Digester Landfill /	Limited Landfill Vacuum / Gas	
Engine 2	4/12/23 7:13	4/12/23 11:06	3:53	110411	Unplanned	Digester	Limited	Donnie Bodkin
Engine 2	4/14/23 12:46	4/14/23 13:17	0:31	110460	Unplanned	Ameresco	Engine Line / Substation	Donnie Bodkin
Engine 1	4/16/2023 18:20	4/17/2023 9:09	14:49	110,213	Unplanned	Electrical Utility	Maintenance	Donnie Bodkin
Engine 2	4/16/2023 18:23	4/17/2023 9:03	14:40	110,513	Unplanned	Electrical Utility	Maintenance	Donnie Bodkin
Engine 1	4/22/2023 18:36	4/22/2023 21:58	3:22	110,343	Unplanned	Ameresco	TSA / H2S / Siloxane Removal	Donnie Bodkin
Engine 2	4/22/2023 20:36	4/22/2023 21:51	1:15	110,645	Unplanned	Ameresco	TSA / H2S / Siloxane	Donnie Bodkin
Engine 1	4/22/2023 23:07	4/22/2023 23:50	0:43	110,344	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	4/22/2023 23:51	4/22/2023 23:59	0:08	110,344	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	4/24/2023 8:57	4/24/2023 13:46	4:49	110,377	Unplanned	Landfill /	Landfill Vacuum / Gas	Donnie Bodkin
Engine 2	4/24/2023 9:01	4/28/2023 14:52	5:51	110,680	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	4/25/2023 7:07	4/25/2023 9:40	2:33	110,394	Unplanned	Landfill /	Landfill Vacuum / Gas	Donnie Bodkin
Engine 1	4/27/2023 7:25	4/27/2023 9:53	2:28	110,440	Unplanned	Ameresco	Generator	Donnie Bodkin
Engine 1	4/27/2023 10:01	4/27/2023 13:35	3:34	110,441	Unplanned	Landfill /	Landfill Vacuum / Gas	Donnie Bodkin
Engine 1	4/27/2023 13:36	4/27/2023 13:47	0:11	110,441	Unplanned	Ameresco	Generator	Donnie Bodkin
Engine 2	4/28/2023 15:16	4/28/2023 15:35	0:19	110,681	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2	4/28/2023 15:41	4/28/2023 16:05	0:24	110,681	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2	5/2/23 1:51	5/2/23 11:31	9:40	110,763	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2	5/2/23 11:31	5/2/23 21:12	9:41	110,763	Unplanned	Ameresco	Other	Donnie Bodkin
Engine 2	5/3/23 0:39	5/3/23 9:07	8:28	110,766	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1	5/3/23 10:27	5/3/23 11:44	1:17	110,581	Unplanned	Landfill /	Landfill Vacuum / Gas	Donnie Bodkin
Engine 2	5/3/23 10.29	5/3/23 13:39	3.10	110 768	Unplanned	Landfill /	Limited Landfill Vacuum / Gas	Donnie Bodkin
Engine 2	5/3/23 13:43	5/3/23 14:55	1.12	110,768	Upplanned	Digester	Limited	Donnie Bodkin
Engine 1	5/4/23 7:45	5/4/23 13:44	5:59	110,593	Unplanned	Ameresco	BOP Control System	Donnie Bodkin
Engine 2	5/4/23 7:45	5/4/23 13:39	5:54	110,776	Unplanned	Ameresco	BOP Control System	Donnie Bodkin
Engine 1	5/11/23 16:24	5/11/23 16:43	0:19	110,764	Unplanned	Ameresco	BOP Control System	Donnie Bodkin
Engine 2	5/11/23 16:24	5/11/23 16:37	0:13	110,947	Unplanned	Ameresco	BOP Control System	Donnie Bodkin
Engine 1	5/16/23 8:05	5/16/23 15:38	7:33	110,875	Unplanned	Digester		Donnie Bodkin
Engine 2	5/16/23 8:11	5/16/23 17:27	9:16	111,059	Unplanned	Landfill / Digester	Landfill Vacuum / Gas Limited	Donnie Bodkin
Engine 1	5/17/23 12:39	5/18/23 16:26	27:47	110,896	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2	5/18/23 9:39	5/18/23 11:40	2:01	111,099	Unplanned	Landfill / Digester	Landfill Vacuum / Gas Limited	Donnie Bodkin
Engine 1	5/19/23 10:08	5/19/23 14:30	4:22	110,914	Unplanned	Landfill /	Landfill Vacuum / Gas	Donnie Bodkin
- Engine 2	5/19/23 10.10	5/19/23 14.25	4.15	111 177	Unnlanned	Landfill /	Limited Landfill Vacuum / Gas	Donnie Bodkin
Lingine Z	5/15/25 10.10	5/15/25 14.25	4.15	111,122	onplantieu	Digester	Limited	Donnie Doukiil

LFGTE Facility Downtime Logs Ameresco, Keller (March 1, 2023 through August 31, 2023)

Engine 1 6/14/23 7:39 6/15/23 6:55 33:19 111,522 Unplanned Landiil / Landiil / Vacum/ GB Downe Bodkin Engine 2 6/14/23 7:39 6/14/23 9:40 15/23 16:45 31:00 111/740 Unplanned Landiil / Vacum/ GB Downe Bodkin Engine 2 6/14/23 7:00 6/22/23 7:11 6/22/23 8:14 0.5/22 45,099 Unplanned Landiil / Vacum/ GB Downe Bodkin Engine 1 6/22/23 7:11 6/22/23 8:14 0.5/21 4:0.0 Unplanned Downe Bodkin Engine 2 6/22/23 8:13 6/26/23 8:15 4:0.0 Unplanned Entrice Utility Landiil / Vacum/ GB Downe Bodkin Engine 2 6/25/23 8:14 0:7/23 19:10 7:1/23 20:19 10:1/2.10 Unplanned Arrersse Engine Downe Bodkin Engine 2 7/17/23 19:10 7:1/23 20:19 10:2/1.57 10:2/1.57 Downe Bodkin Engine Downe Bodkin Engine 2 7/17/23 19:00 7/17/23 19:00 7/17/23 19:00 Downe Bodkin Engine Downe Bodkin Engine 2 7/17/23 19:00 7/17/23	Equipment	Begin Time	End Time	Duration (HRS:MINS)	Engine Hours	Туре	Reason 1	Reason 2	Operator
Engine 2 6/14/23 7:39 6/14/23 9:00 1:21 111/240 Upglanned Landfill Vacuum / Case Landfill Vacuum / Case	Engine 1	6/14/23 7:36	6/15/23 16:55	33:19	111,532	Unplanned	Landfill /	Landfill Vacuum / Gas	Donnie Bodkin
Engine 2 6/14/39 9:44 6/15/23 16:45 31:01 111,740 Unplanned Dissiper Dissiper Line LineRIII Vaccim / Gas Dissiper Line Domine Boddin Engine 1 6/22/3 7:11 6/22/3 8:13 1:31 45,099 Unplanned Dissiper Line Dissiper Li	Engine 2	6/14/23 7:39	6/14/23 9:00	1:21	111,740	Unplanned	Landfill / Digester	Landfill Vacuum / Gas	Donnie Bodkin
Engine 1 6/22/23 7:09 6/22/23 9:11 2:02 45,099 Unplanned Engine 7 Lindfill Wackinn / Gas Domnie Bodkin Engine 2 6/22/23 7:11 6/22/23 8:31 6/26/23 8:35 14:01 45,103 Unplanned Electrical Utility Unplanned Electrical Utility Unplanned Electrical Utility Domnie Bodkin Engine 2 6/25/23 18:31 6/26/23 8:24 13:47 45,103 Unplanned Ameresco Engine 0 Domnie Bodkin Engine 2 7/1/23 15:10 7/1/23 20:19 3:32 112,129 Unplanned Ameresco Engine 0 Domnie Bodkin Engine 1 7/03 23 8:0 7/03 15:10 7/1/23 22:06 7/15/23 20:93 2:37 112,013 Unplanned Ameresco Engine 0 Domnie Bodkin Engine 2 7/15/23 17:02 7/15/23 20:09 7/17/23 15:40 7/15/23 20:09 Domnie Bodkin Engine 2 7/17/23 17:40 7/15/23 17:50 7/17/23 20:09 7/17/23 20:09 Domnie Bodkin Engine 2 7/15/23 17:62 7/15/23 20:09 7/12/23 17:62	Engine 2	6/14/23 9:44	6/15/23 16:45	31:01	111,740	Unplanned	Landfill /	Landfill Vacuum / Gas	Donnie Bodkin
Engine 2 6/22/23 7:11 6/22/23 8:42 1:31 45,099 Umplanned Landfill Vacuum / Gas Donnie Bodkin Engine 1 6/22/23 8:37 6/26/23 8:35 14:01 45,103 Umplanned Electrical Ultity Um 2/2012 Donnie Bodkin Engine 2 7/1/23 16:10 7/1/23 20:13 45,009 Unplanned Ameresco Ecentratin Donnie Bodkin Engine 2 7/1/23 16:40 7/1/23 20:13 40:99 112,219 Unplanned Ameresco Ecentratin Donnie Bodkin Engine 2 7/1/23 16:40 7/1/23 22:44 0:36 112,187 Urglanned Ameresco Ecentratin Donnie Bodkin Engine 2 7/1/23 15:20 7/1/23 15:20 7/1/23 15:20 Donnie Bodkin Donnie Bodkin Donnie Bodkin Engine 2 7/1/23 15:20 7/1/23 15:20 112,487 Unglanned Ameresco Engine Donnie Bodkin Engine 2 7/1/23 15:20 7/33 112,487 Unglanned Ameresco Engine Donnie Bodkin Engine 2 7/1/23 15:20 112,471	Engine 1	6/22/23 7:09	6/22/23 9:11	2:02	45,099	Unplanned	Landfill /	Landfill Vacuum / Gas	Donnie Bodkin
Engine 1 6/25/23 18:34 6/26/23 8:35 14:01 45,103 Umplanned Electrical Utility Lun / Substance Donnie Bodkin Engine 2 6/28/23 18:37 6/26/23 8:24 13:47 45,103 Unplanned Electrical Utility Mainsance Donnie Bodkin Engine 2 7/223 15:00 7/123 30:10 3:32 112,020 Unplanned Ameresco Engine 0 Donnie Bodkin Engine 1 7/13/23 22:08 7/13/23 20:39 3:37 112,043 Unplanned Ameresco Engine 0 Donnie Bodkin Engine 2 7/15/23 10:02 7/15/23 20:39 3:37 112,467 Unplanned Ameresco Engine 0 Donnie Bodkin Engine 2 7/17/23 7:43 7/17/23 10:33 112,467 Unplanned Ameresco Engine 0 Donnie Bodkin Engine 2 7/17/23 2:49 7/17/23 10:33 112,447 Unplanned Ameresco Engine 0 Donnie Bodkin Engine 2 7/17/23 2:49 7/18/23 10:33 112,472 Unplanned Ameresco Engine 0 Donnie B	Engine 2	6/22/23 7:11	6/22/23 8:42	1:31	45,099	Unplanned	Landfill /	Landfill Vacuum / Gas	Donnie Bodkin
Engine 2 6/25/23 18:37 6/25/23 82:4 13:47 45,103 Unplanned Electrical Utility Unit / Substation Donnie Boduin Engine 2 7/1/23 16:10 7/1/23 00:19 4:09 112,109 Unplanned Ameresco Generator Donnie Boduin Engine 1 7/223 15:10 7/2/23 16:15 7.83 112,107 Unplanned Ameresco Engine Donnie Boduin Engine 2 7/15/23 12:02 7/13/23 22:08 7/13/23 7:43 7/13/23 7:43 Donnie Boduin Donnie Boduin Engine 2 7/11/23 7:43 7/11/23 7:43 7/12/23 7:43 112,467 Unplanned Ameresco Engine Donnie Boduin Engine 2 7/11/23 10:20 7/11/23 12:19 112,472 Unplanned Landfill Blower Fare Donnie Boduin Engine 2 7/11/23 12:21 112,473 Unplanned Ameresco Engine Donnie Boduin Engine 2 7/12/23 7:45 7/12/23 8:11 112,474 Unplanned Ameresco Engine Donnie Boduin Engine 2 7/12/23 11:11 0:12 112,518	Engine 1	6/25/23 18:34	6/26/23 8:35	14:01	45,103	Unplanned	Electrical Utility	Line / Substation	Donnie Bodkin
Engine 2 7/1/23 16:10 7/1/23 20:19 4:00 112.109 Unplanned Ameresco Generator Domie Bodin Engine 1 7/1/23 16:10 7/1/23 10:11 7/2 112.103 Planned Ameresco Engine 1 Domie Bodin Engine 1 7/1/32 32:08 7/1/32 32:14 0:36 112.187 Unplanned Ameresco TS/1/47 AVES / Silvace Domie Bodin Engine 2 7/1/723 10:30 7/1/723 7/3 7/43 112.467 Unplanned Ameresco Engine Domie Bodin Engine 2 7/1/723 30:00 7/1/723 7/3 7/43 112.472 Unplanned Ameresco Engine Domie Bodin Engine 2 7/1/723 21:9 1:29 1:12.472 Unplanned Ameresco Engine Domie Bodin Engine 2 7/1/723 30:10 7/1/23 30:11 0:25 1:2.444 Unplanned Ameresco Engine Domie Bodin Engine 2 7/1/23 31:39 0:12 1:12.518 Unplanned Ameresco Engine Domie Bodin Engine 2 7/2/2/3 1:39 1:12.518 U	Engine 2	6/25/23 18:37	6/26/23 8:24	13:47	45,103	Unplanned	Electrical Utility	Line / Substation Maintenance	Donnie Bodkin
Engine 1 77/23 15:40 77/23 19:12 23:21 112,13 Planned Ameresco Engine Dornie Bodkin Engine 1 77/23 15:40 77/23 12:44 0:36 112,187 Unplanned Ameresco Engine Dornie Bodkin Engine 2 7/15/23 17:02 7/15/23 20:39 3:37 112,439 0 0 0 Dornie Bodkin Engine 2 7/17/23 30:30 7/17/23 31:56 7/43 112,472 Unplanned Ameresco Engine Dornie Bodkin Engine 2 7/17/23 30:50 7/11/23 31:56 7/18/23 10:38 112,472 Unplanned Ameresco Engine Dornie Bodkin Engine 2 7/11/23 32:49 112,471 Unplanned Ameresco Engine Dornie Bodkin Engine 2 7/11/23 32:49 112,518 Unplanned Ameresco Engine Dornie Bodkin Engine 2 7/12/23 13:10 0:32 112,518 Unplanned Ameresco Engine Dornie Bodkin Engine 2 7/2/2/33 18:11 0:32 112,5	Engine 2	7/1/23 16:10	7/1/23 20:19	4:09	112,109	Unplanned	Ameresco	Generator	Donnie Bodkin
Engine 1 7828 380 7828 391 573 7139 112,013 Planned Ameresco Engine 2 Onnie Bodkin Engine 2 7/13/23 22:08 7/13/23 22:44 0:36 112,187 Unplanned Ameresco TSA/T4Z 5/30:00 Domie Bodkin Engine 2 7/17/23 1:00 7/17/23 7:43 7:43 112,467 Unplanned Ameresco Engine Domie Bodkin Engine 2 7/17/23 1:00 7/17/23 1:26 7:43 112,472 Unplanned Ameresco Engine Domie Bodkin Engine 2 7/17/23 2:19 1:29 112,472 Unplanned Ameresco Engine Domie Bodkin Engine 2 7/12/23 2:19 1:29 112,473 Unplanned Ameresco Engine Domie Bodkin Engine 2 7/12/23 3:10 7/20/23 1:13 0:22 112,518 Unplanned Ameresco Engine Domie Bodkin Engine 1 7/21/23 1:10 7/21/23 1:10 7/21/23 1:10 7/21/23 1:10 Draine Bodkin Engine 2 7/21/23 1:10 7/21/23 1:10 7/21/23 1:10 17/21/23 1:10 Drame	Engine 2	7/2/23 15:40	7/2/23 19:12	3:32	112,129	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1 7/13/23 22:08 7/13/23 22:04 0:36 112,187 Unplanned Ameresco TSA/TAST/SIlvane Donnie Bodkin Engine 2 7/15/23 17:02 7/15/23 20:30 3:37 112,467 0	Engine 1	7/6/23 8:36	7/6/23 16:15	7:39	112,013	Planned	Ameresco	Engine	Donnie Bodkin
Engine 2 7/11/23 17:02 7/11/23 7:43 7/12/43 7/14 112,457 0<	Engine 1	7/13/23 22:08	7/13/23 22:44	0:36	112,187	Unplanned	Ameresco	TSA / H2S / Siloxane	Donnie Bodkin
Engine 2 7/17/23 7:43 112,467 Unplanned Engine 2 Fingine 3 7/17/23 17:72 17:	Engine 2	7/15/23 17:02	7/15/23 20:39	3:37	112,439	0	0	0	Donnie Bodkin
Engine 2 7/17/23 7:43 7/17/23 7:45 7/17/23 7:45 7/17/23 7:45 7/17/23 7:45 7/17/23 7:45 112,467 Unplanned Location Controls Donnie Bodkin Engine 2 7/17/23 7:45 1/12,518 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/22/23 18:14 7/22/23 18:13 1/12,518 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/22/23 18:14 7/22/23 19:12 1/12,578 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/22/23 2:30 7/22/23 2:30 1/22,579 1/12,576 Unplanned Ameresco Engine DonnieB	Engine 2	7/17/23 0:00	7/17/23 7:43	7:43	112.467	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 7/17/23 20:50 7/17/23 22:19 11:29 112,472 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/17/23 22:49 7/18/23 17:36 11:49 112,472 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/12/23 3:22 7/20/23 17:36 9:14 112,518 Planned Ameresco Engine Donnie Bodkin Engine 2 7/20/23 17:37 7/20/23 17:36 9:14 112,518 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/20/23 17:310 7/20/23 17:35 0:11 112,518 Unplanned Ameresco Engine Donnie Bodkin Engine 1 7/22/23 13:10 7/22/23 13:10 7/22/23 13:10 0:42 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/22/23 3:10 0:43 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/22/23 0:30 7/22/23 0:30 12,451 Unplanned Ameresco Engine Don	Engine 2	7/17/23 7:43	7/17/23 15:26	7:43	112,467	Unplanned	Landfill /	Landfill Blower Flare	Donnie Bodkin
Engine 2 7/17/23 22:49 7/18/23 10:38 11:49 112,473 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/19/23 7:45 7/19/23 8:10 0:25 112,494 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/20/23 18:21 7/20/23 18:11 0:32 112,518 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/20/23 18:14 17/20/23 18:15 0:49 112,518 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/21/23 13:10 7/21/23 13:59 0:49 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/23/23 9:01 7/23/23 9:01 2:45 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/23/23 9:01 7/23/23 9:01 2:45 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8//23 17:18 8//4/23 15:03 2:15 112,674 Unplanned Ameresco Engine<	Engine 2	7/17/23 20:50	7/17/23 22:19	1:29	112,472	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 7/19/23 7:45 7/19/23 8:10 0:25 112,494 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/20/23 17:36 9:14 112,518 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/20/23 17:37 9:14 112,518 Unplanned Ameresco Engine Donnie Bodkin Engine 1 7/21/23 13:14 172/20/33 18:25 0:11 112,518 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/21/23 13:10 172/12/33 13:59 0:49 112,269 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/23/23 3:04 17/23/23 9:29 0:25 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/23/23 3:03 1:03 12:259 112,546 Unplanned Ameresco Valves Donnie Bodkin Engine 2 8/4/23 17:18 8/4/23 17:18 8/4/23 17:18 8/4/23 17:18 B/4/23 17:18 B/4/23 17:18 B/4/23 17:18 B/4/23 17:18	Engine 2	7/17/23 22:49	7/18/23 10:38	11:49	112,473	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 7/20/23 8:22 7/20/23 17:36 9:14 112,518 Planned Ameresco Engine Donnie Bodkin Engine 2 7/20/23 17:39 7/20/23 18:11 0:32 112,518 Unplanned Ameresco Engine Donnie Bodkin Engine 1 7/20/23 18:10 7/21/23 13:59 0:49 112,358 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/23/23 6:16 7/23/23 9:01 2:45 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 1 7/23/23 9:04 7/23/23 9:01 2:45 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/23/23 0:04 7/23/23 0:02 2:13 1:43 112,457 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/4/23 17:18 8/4/23 17:13 312,459 112,457 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/4/23 17:18 8/4/23 17:18 8/4/23 17:18 112,455 Unplanned Ameresco <t< td=""><td>Engine 2</td><td>7/19/23 7:45</td><td>7/19/23 8:10</td><td>0:25</td><td>112,494</td><td>Unplanned</td><td>Ameresco</td><td>Engine</td><td>Donnie Bodkin</td></t<>	Engine 2	7/19/23 7:45	7/19/23 8:10	0:25	112,494	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 7/20/23 17:39 7/20/23 18:11 0:32 112,518 Unplanned Ameresco Engine Donnie Bodkin Engine 1 7/20/23 18:14 7/20/23 18:14 7/20/23 18:15 0:11 112,518 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/21/23 13:10 7/21/23 3:159 0:49 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/23/23 9:04 7/23/23 9:09 7/23/23 9:01 2:45 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/23/23 9:04 7/23/23 9:29 0:25 112,578 Unplanned Ameresco Valves Donnie Bodkin Engine 2 7/28/2023 0:30 7/29/2023 2:30 4:00 112,551 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/3/23 16:04 8/4/23 15:03 22:59 112,851 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/5/23 12:03 112,852 Unplanned Ameresco <td< td=""><td>Engine 2</td><td>7/20/23 8:22</td><td>7/20/23 17:36</td><td>9:14</td><td>112.518</td><td>Planned</td><td>Ameresco</td><td>Engine</td><td>Donnie Bodkin</td></td<>	Engine 2	7/20/23 8:22	7/20/23 17:36	9:14	112.518	Planned	Ameresco	Engine	Donnie Bodkin
Engine 2 7/20/23 18:14 7/20/23 18:25 0:11 112,518 Unplanned Ameresco Engine Donnie Bodkin Engine 1 7/21/23 13:10 7/21/23 13:59 0:49 112,369 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/23/23 6:16 7/23/23 9:01 2:45 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 1 7/28/203 22:30 7/29/203 2:30 7/29/203 2:30 4:00 112,546 Unplanned Ameresco Valves Donnie Bodkin Engine 2 7/29/203 0:30 7/29/203 2:31 1:43 112,451 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/4/23 17:48 8/4/23 15:03 22:59 112,851 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/4/23 17:42 8/5/23 10:23 13:44 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 10:23 8/6/23 10:23 10:34 112,855 Unplanned	Engine 2	7/20/23 17:39	7/20/23 18:11	0:32	112,518	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1 7/21/23 13:0 7/21/23 13:59 0.49 112,363 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/23/23 6:16 7/23/23 9:01 2:45 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/23/23 9:01 7/23/23 9:02 0:25 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 1 7/23/23 9:01 7/29/2023 2:30 4:00 112,546 Unplanned Ameresco Valves Donnie Bodkin Engine 2 8/3/23 15:04 8/4/23 15:03 22:59 112,847 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/4/23 17:18 8/4/23 20:19 15:29 112,851 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/4/23 17:18 8/4/23 10:23 13:34 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 10:24 8/6/23 10:32 0:08 112,855 Unplanned Ameresco Engine	Engine 2	7/20/23 18:14	7/20/23 18:25	0:11	112,518	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 7/22/23 6:16 7/22/23 9:01 2:45 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 1 7/22/23 0:03 7/22/23 9:02 2:25 112,578 Unplanned Ameresco Engine Donnie Bodkin Engine 2 7/22/203 0:03 7/22/2023 2:30 4:00 112,546 Unplanned Ameresco Valves Donnie Bodkin Engine 2 7/22/203 0:03 7/22/2023 2:13 1:43 112,546 Unplanned Ameresco Valves Donnie Bodkin Engine 2 8/4/23 10:04 8/4/23 10:03 22:59 112,847 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/4/23 10:24 8/5/23 10:02 13:44 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 10:24 8/6/23 10:23 13:44 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 10:23 8/6/23 10:23 13:44 112,855 Unplanned Ameresco Engine<	Engine 1	7/21/23 13:10	7/21/23 13:59	0:49	112,310	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 77/29/29/10 77/29/2023 21/2 21/2 112,576 Unplaned Ameresco Engine Donnie Bodkin Engine 1 7/28/2023 22:30 7/29/2023 21:30 112,576 Unplaned Ameresco Valves Donnie Bodkin Engine 2 8/3/23 16:04 8/4/23 11:3 112,574 Unplaned Ameresco Valves Donnie Bodkin Engine 2 8/3/23 16:04 8/4/23 111 3:53 112,575 Unplaned Ameresco Engine Donnie Bodkin Engine 2 8/4/23 12:44 15:29 112,855 Unplaned Ameresco Engine Donnie Bodkin Engine 2 8/5/23 10:32 0:08 112,855 Unplaned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 10:24 8/6/23 10:23 0:25 112,857 Unplaned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 10:23 0:25 112,857 U	Engine 2	7/23/23 6:16	7/23/23 9:01	2:45	112,505	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1 7/28/2023 22:30 7/29/2023 2:30 4:00 112,546 Unplanned Ameresco Valves Donnie Bodkin Engine 1 7/28/2023 2:30 7/29/2023 2:31 1:43 112,713 Unplanned Ameresco Valves Donnie Bodkin Engine 2 8/3/23 16:04 8/4/23 11:11 3:53 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/4/23 17:18 8/4/23 2:40 8/5/23 10:29 12:257 112,851 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/5/23 17:42 8/5/23 10:23 13:44 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/5/23 10:24 8/6/23 10:32 0:08 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 11:25 8/6/23 13:32 0:08 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 11:26 8/6/23 13:32 0:08 112,857 Unplanned Am	Engine 2	7/23/23 9:04	7/23/23 9:01	0:25	112,578	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 7/29/2023 0:30 7/29/2023 2:13 1:43 112/713 Unplanned Ameresco Valves Donnie Bodkin Engine 2 8/7/23 16:04 8/4/23 17:18 8/4/23 17:18 8/4/23 17:11 3:53 112,850 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/4/23 22:40 8/5/23 14:09 15:29 112,851 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/5/23 20:39 8/6/23 10:23 13:44 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 10:23 0:08 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 10:23 0:08 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 13:26 0:09 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 13:17 8/7/23 13:26 0:09 112,858 Unplanned Ameresco Engine Donnie Bodkin <td>Engine 1</td> <td>7/28/2023 22:30</td> <td>7/29/2023 2:30</td> <td>4:00</td> <td>112,546</td> <td>Unplanned</td> <td>Ameresco</td> <td>Valves</td> <td>Donnie Bodkin</td>	Engine 1	7/28/2023 22:30	7/29/2023 2:30	4:00	112,546	Unplanned	Ameresco	Valves	Donnie Bodkin
Engine 2 8//23 16:04 8//23 15:03 22:59 112,847 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/4/23 17:18 8/4/23 13:53 112,850 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/5/23 17:42 8/5/23 10:23 13:44 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/5/23 10:23 13:44 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 10:24 8/6/23 10:32 0:08 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 13:58 0:25 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 13:18 8/7/23 13:26 0:09 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 13:17 8/7/23<	Engine 2	7/29/2023 0:30	7/29/2023 2:13	1:43	112,713	Unplanned	Ameresco	Valves	Donnie Bodkin
Engine 2 8/4/23 17:18 8/4/23 21:11 3:53 112,850 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/4/23 22:40 8/5/23 10:24 8/5/23 10:24 8/5/23 10:23 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/5/23 00:39 8/5/23 10:24 8/5/23 10:32 0:08 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 10:24 8/6/23 10:33 0:25 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 11:55 8/6/23 13:53 0:25 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 14:18 8/7/23 12:03 21:45 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 14:18 8/7/23 13:06 111 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 14:18 8/7/23 13:17 8/7/23 13:26 0:09 <	Engine 2	8/3/23 16:04	8/4/23 15:03	22:59	112,847	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/4/23 22:40 8/5/23 14:09 15:29 112,851 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/5/23 17:42 8/5/23 20:19 2:37 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/5/23 20:39 8/6/23 10:23 13:44 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 10:24 8/6/23 13:06 1:11 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 13:26 0:09 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 13:17 8/7/23 12:03 21:45 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 13:17 8/7/23 13:26 0:09 112,859 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 14:01 8/7/23 17:09 0:20 112,859 Unplanned Ameresco Engine Donnie Bodkin	Engine 2	8/4/23 17:18	8/4/23 21:11	3:53	112.850	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/5/23 17:42 8/5/23 20:19 2:37 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/5/23 20:39 8/6/23 10:23 13:44 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 10:24 8/6/23 10:32 0:08 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 11:55 8/6/23 13:26 1:11 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 13:28 8/6/23 13:20 21:45 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 14:18 8/7/23 12:03 21:45 112,859 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 14:01 8/7/23 17:09 0:20 112,859 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 16:22 8/8/23 16:23 0:06 112,862 Unplanned Ameresco Engine	Engine 2	8/4/23 22:40	8/5/23 14:09	15:29	112,851	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 28/s/23 20:398/s/23 10:2313:44112,855UnplannedAmerescoEngineDonnie BodkinEngine 28/s/23 10:248/s/23 10:320:08112,855UnplannedAmerescoEngineDonnie BodkinEngine 28/s/23 11:558/s/23 13:061:11112,857UnplannedAmerescoEngineDonnie BodkinEngine 28/s/23 13:288/s/23 13:530:25112,857UnplannedAmerescoEngineDonnie BodkinEngine 28/s/23 14:188/7/23 12:0321:45112,859UnplannedAmerescoEngineDonnie BodkinEngine 28/7/23 13:178/7/23 13:260:09112,859UnplannedAmerescoEngineDonnie BodkinEngine 28/7/23 14:018/7/23 17:990:20112,862UnplannedAmerescoEngineDonnie BodkinEngine 28/7/23 17:578/s/23 12:5819:01112,862UnplannedAmerescoEngineDonnie BodkinEngine 28/s/23 16:228/s/23 16:280:06112,866UnplannedAmerescoEngineDonnie BodkinEngine 28/s/23 18:158/s/23 8:5914:44112,868UnplannedAmerescoEngineDonnie BodkinEngine 28/s/23 16:228/s/23 15:596:51112,868UnplannedAmerescoEngineDonnie BodkinEngine 28/s/23 18:268/s/23 15:596:51112,868UnplannedAmerescoEngineDonnie Bodkin <td< td=""><td>Engine 2</td><td>8/5/23 17:42</td><td>8/5/23 20:19</td><td>2:37</td><td>112,855</td><td>Unplanned</td><td>Ameresco</td><td>Engine</td><td>Donnie Bodkin</td></td<>	Engine 2	8/5/23 17:42	8/5/23 20:19	2:37	112,855	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/6/23 10:24 8/6/23 10:32 0:08 112,855 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 11:55 8/6/23 13:06 1:11 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 13:28 8/6/23 13:53 0:25 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 14:18 8/7/23 12:03 21:45 112,859 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 14:01 8/7/23 13:26 0:09 112,859 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 16:49 8/7/23 17:09 0:20 112,862 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 16:27 8/8/23 16:28 0:06 112,862 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/8/23 16:28 0:06 112,862 Unplanned Ameresco Engine Donnie Bodkin	Engine 2	8/5/23 20:39	8/6/23 10:23	13:44	112,855	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/6/23 11:55 8/6/23 13:06 1:11 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 13:28 8/6/23 13:53 0:25 112,857 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/6/23 14:18 8/7/23 12:03 21:45 112,858 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 13:17 8/7/23 13:26 0:09 112,859 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 14:01 8/7/23 14:51 0:50 112,859 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 14:01 8/7/23 17:09 0:20 112,862 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 16:22 8/8/23 16:28 0:06 112,862 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 9:08 8/9/23 15:59 14:44 112,868 Unplanned Ameresco Engine	Engine 2	8/6/23 10:24	8/6/23 10:32	0:08	112,855	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 28/6/23 13:288/6/23 13:530:25112,857UnplannedAmerescoEngineDonnie BodkinEngine 28/6/23 14:188/7/23 12:0321:45112,858UnplannedAmerescoEngineDonnie BodkinEngine 28/7/23 13:178/7/23 13:260:09112,859UnplannedAmerescoEngineDonnie BodkinEngine 28/7/23 16:018/7/23 14:510:50112,859UnplannedAmerescoEngineDonnie BodkinEngine 28/7/23 16:498/7/23 17:578/8/23 12:5819:01112,862UnplannedAmerescoEngineDonnie BodkinEngine 28/7/23 16:228/8/23 16:280:06112,866UnplannedAmerescoEngineDonnie BodkinEngine 28/8/23 16:228/8/23 16:280:06112,866UnplannedAmerescoEngineDonnie BodkinEngine 28/8/23 18:158/9/23 15:596:51112,868UnplannedAmerescoEngineDonnie BodkinEngine 28/9/23 16:028/9/23 15:596:51112,868UnplannedAmerescoEngineDonnie BodkinEngine 28/9/23 11:028/9/23 16:110:09112,868UnplannedAmerescoEngineDonnie BodkinEngine 28/9/23 11:138/21/2023 13:250:14112,873UnplannedAmerescoEngineDonnie BodkinEngine 28/9/23 11:188/21/2023 13:250:14112,873UnplannedAmerescoEngineDonn	Engine 2	8/6/23 11:55	8/6/23 13:06	1:11	112,857	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/7/23 12:03 21:45 112,858 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 13:17 8/7/23 13:26 0:09 112,859 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 14:01 8/7/23 14:51 0:50 112,859 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 16:49 8/7/23 17:57 8/8/23 12:85 19:01 112,862 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 16:22 8/8/23 16:28 0:06 112,862 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/8/23 16:12 0:06 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 16:12 0:06 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 16:12 </td <td>Engine 2</td> <td>8/6/23 13:28</td> <td>8/6/23 13:53</td> <td>0:25</td> <td>112,857</td> <td>Unplanned</td> <td>Ameresco</td> <td>Engine</td> <td>Donnie Bodkin</td>	Engine 2	8/6/23 13:28	8/6/23 13:53	0:25	112,857	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/7/23 13:26 0:10 112,859 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 14:01 8/7/23 13:26 0:00 112,859 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 16:49 8/7/23 17:57 8/8/23 17:58 19:01 112,862 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 17:57 8/8/23 16:28 0:06 112,862 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/8/23 16:28 0:06 112,862 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/8/23 16:28 0:06 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 16:02 8/9/23 15:59 6:51 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 16:12 <td>Engine 2</td> <td>8/6/23 14:18</td> <td>8/7/23 12:03</td> <td>21:45</td> <td>112.858</td> <td>Unplanned</td> <td>Ameresco</td> <td>Engine</td> <td>Donnie Bodkin</td>	Engine 2	8/6/23 14:18	8/7/23 12:03	21:45	112.858	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 28/7/23 14:018/7/23 14:510:50112,859UnplannedAmerescoEngineDonnie BodkinEngine 28/7/23 16:498/7/23 17:090:20112,862UnplannedAmerescoEngineDonnie BodkinEngine 28/7/23 17:578/8/23 12:5819:01112,862UnplannedAmerescoEngineDonnie BodkinEngine 28/7/23 16:228/8/23 16:280:06112,866UnplannedAmerescoEngineDonnie BodkinEngine 28/8/23 18:158/9/23 8:5914:44112,868UnplannedAmerescoEngineDonnie BodkinEngine 28/9/23 9:088/9/23 15:596:51112,868UnplannedAmerescoEngineDonnie BodkinEngine 28/9/23 16:028/9/23 16:110:09112,868UnplannedAmerescoEngineDonnie BodkinEngine 28/9/23 11:2316:110:09112,868UnplannedAmerescoEngineDonnie BodkinEngine 28/9/23 12:268/11/23 8:1234:46112,873UnplannedAmerescoEngineDonnie BodkinEngine 28/21/2023 13:118/21/2023 13:250:14113,119UnplannedAmerescoEngineDonnie BodkinEngine 18/28/23 18:268/28/23 18:340:0845,167UnplannedAmerescoEngineDonnie BodkinEngine 18/28/23 18:478/28/23 19:521:0545,167UnplannedAmerescoEngineDonnie Bodkin	Engine 2	8/7/23 13:17	8/7/23 13:26	0:09	112,859	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/7/23 16:49 8/7/23 17:09 0:20 112,862 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/7/23 17:57 8/8/23 12:58 19:01 112,862 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/8/23 16:22 8/8/23 16:28 0:06 112,866 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/8/23 18:15 8/9/23 8:59 14:44 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 9:08 8/9/23 15:59 6:51 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 16:02 8/9/23 16:11 0:09 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 13:11 8/21/2023 13:12 34:46 112,873 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/21/2023 13:11 8/21/2023 13:25 0:14 113,119 Unplanned Ameresco Engine<	Engine 2	8/7/23 14:01	8/7/23 14:51	0:50	112,859	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/7/23 17:57 8/8/23 12:58 19:01 112,862 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/8/23 16:22 8/8/23 16:28 0:06 112,866 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/8/23 18:15 8/9/23 8:59 14:44 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 9:08 8/9/23 15:59 6:51 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 16:02 8/9/23 16:11 0:09 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 12:26 8/11/23 8:12 34:46 112,873 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 13:11 8/21/2023 13:25 0:14 113,119 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:23 1:12 45,167 Unplanned Ameresco Engine Donnie Bodkin	Engine 2	8/7/23 16:49	8/7/23 17:09	0:20	112,862	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/8/23 16:22 8/8/23 16:28 0:06 112,866 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/8/23 18:15 8/9/23 8:59 14:44 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 9:08 8/9/23 15:59 6:51 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 16:02 8/9/23 16:11 0:09 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 13:10 8/21/2023 13:12 34:46 112,873 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 17:11 8/21/2023 13:25 0:14 113,119 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:23 1:12 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:47 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin <td>Engine 2</td> <td>8/7/23 17:57</td> <td>8/8/23 12:58</td> <td>19:01</td> <td>112,862</td> <td>Unplanned</td> <td>Ameresco</td> <td>Engine</td> <td>Donnie Bodkin</td>	Engine 2	8/7/23 17:57	8/8/23 12:58	19:01	112,862	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/8/23 18:15 8/9/23 8:59 14:44 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 9:08 8/9/23 15:59 6:51 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 16:02 8/9/23 16:11 0:09 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 21:26 8/11/23 8:12 34:46 112,873 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/21/2023 13:11 8/21/2023 13:25 0:14 113,119 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 17:11 8/28/23 18:23 1:12 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:47 8/28/23 18:34 0:08 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 19:53 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine </td <td>Engine 2</td> <td>8/8/23 16:22</td> <td>8/8/23 16:28</td> <td>0:06</td> <td>112,866</td> <td>Unplanned</td> <td>Ameresco</td> <td>Engine</td> <td>Donnie Bodkin</td>	Engine 2	8/8/23 16:22	8/8/23 16:28	0:06	112,866	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/9/23 9:08 8/9/23 15:59 6:51 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 16:02 8/9/23 16:11 0:09 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 21:26 8/11/23 8:12 34:46 112,873 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/21/2023 13:11 8/21/2023 13:25 0:14 113,119 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 17:11 8/28/23 18:23 1:12 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:26 8/28/23 18:34 0:08 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:47 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 20:15 8/28/23 20:07 0:14 45,167 Unplanned Ameresco Engine<	Engine 2	8/8/23 18:15	8/9/23 8:59	14:44	112,868	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/9/23 16:02 8/9/23 16:11 0:09 112,868 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/9/23 21:26 8/11/23 8:12 34:46 112,873 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/21/2023 13:11 8/21/2023 13:25 0:14 113,119 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 17:11 8/28/23 18:23 1:12 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:26 8/28/23 18:34 0:08 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:47 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 19:53 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 20:15 8/28/23 20:07 0:14 45,167 Unplanned Ameresco Engin	Engine 2	8/9/23 9:08	8/9/23 15:59	6:51	112,868	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/9/23 21:26 8/11/23 8:12 34:46 112,873 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/21/2023 13:11 8/21/2023 13:25 0:14 113,119 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 17:11 8/28/23 18:23 1:12 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:26 8/28/23 18:34 0:08 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:47 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 19:53 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 19:53 8/28/23 20:07 0:14 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 20:15 8/28/23 20:29 0:14 45,167 Unplanned Ameresco Engi	Engine 2	8/9/23 16:02	8/9/23 16:11	0:09	112,868	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/21/2023 13:11 8/21/2023 13:25 0:14 113,119 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 17:11 8/28/23 18:23 1:12 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:26 8/28/23 18:34 0:08 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:47 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 19:53 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 19:53 8/28/23 20:07 0:14 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 20:15 8/28/23 20:29 0:14 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/31/23 0:58 8/31/23 7:44 6:46 45,169 Unplanned Ameresco Engine	Engine 2	8/9/23 21:26	8/11/23 8:12	34:46	112,873	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1 8/28/23 17:11 8/28/23 18:23 1:12 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:26 8/28/23 18:34 0:08 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:47 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 19:53 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 19:53 8/28/23 20:07 0:14 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 20:15 8/28/23 20:29 0:14 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/31/23 0:58 8/31/23 7:44 6:46 45,169 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/31/23 7:46 8/31/23 7:54 0:08 45,169 Unplanned Ameresco Engine	Engine 2	8/21/2023 13:11	8/21/2023 13:25	0:14	113,119	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1 8/28/23 18:26 8/28/23 18:34 0:08 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 18:47 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 19:53 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 20:15 8/28/23 20:07 0:14 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 20:15 8/28/23 20:29 0:14 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/31/23 0:58 8/31/23 7:44 6:46 45,169 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/31/23 7:46 8/31/23 7:54 0:08 45,169 Unplanned Ameresco Engine Donnie Bodkin	Engine 1	8/28/23 17:11	8/28/23 18:23	1:12	45,167	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1 8/28/23 18:47 8/28/23 19:52 1:05 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 19:53 8/28/23 20:07 0:14 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 20:15 8/28/23 20:29 0:14 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/31/23 0:58 8/31/23 7:44 6:46 45,169 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/31/23 7:46 8/31/23 7:54 0:08 45,169 Unplanned Ameresco Engine Donnie Bodkin	Engine 1	8/28/23 18:26	8/28/23 18:34	0:08	45,167	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1 8/28/23 19:53 8/28/23 20:07 0:14 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 1 8/28/23 20:15 8/28/23 20:29 0:14 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/31/23 0:58 8/31/23 7:44 6:46 45,169 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/31/23 7:46 8/31/23 7:54 0:08 45,169 Unplanned Ameresco Engine Donnie Bodkin	Engine 1	8/28/23 18:47	8/28/23 19:52	1:05	45,167	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 1 8/28/23 20:15 8/28/23 20:29 0:14 45,167 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/31/23 0:58 8/31/23 7:44 6:46 45,169 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/31/23 7:46 8/31/23 7:54 0:08 45,169 Unplanned Ameresco Engine Donnie Bodkin	Engine 1	8/28/23 19:53	8/28/23 20:07	0:14	45,167	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/31/23 0:58 8/31/23 7:44 6:46 45,169 Unplanned Ameresco Engine Donnie Bodkin Engine 2 8/31/23 7:46 8/31/23 7:54 0:08 45,169 Unplanned Ameresco Engine Donnie Bodkin	Engine 1	8/28/23 20:15	8/28/23 20:29	0:14	45,167	Unplanned	Ameresco	Engine	Donnie Bodkin
Engine 2 8/31/23 7:46 8/31/23 7:54 0:08 45,169 Unplanned Ameresco Engine Donnie Bodkin	Engine 2	8/31/23 0:58	8/31/23 7:44	6:46	45,169	Unplanned	Ameresco	Engine	Donnie Bodkin
	Engine 2	8/31/23 7:46	8/31/23 7:54	0:08	45,169	Unplanned	Ameresco	Engine	Donnie Bodkin

Notes:

Downtime information provided to site by LFGTE Facility operator.

Appendix D – Excerpts from the 2023 A-2 Source Test Results (report dated March 14, 2023)

Keller Canyon Landfill Company BAAQMD Title V Facility A4618

Annual Compliance Emissions Test Report #23015 Landfill Gas Flare A-2

Located at: **Keller Canyon Landfill Company** 901 Bailey Road Pittsburg, CA 94565

Prepared for: **Republic Services** 901 Bailey Road

Pittsburg, CA 94565

Attn: Antonia Gunner agunner@republicservices.com

For Submittal to: **Bay Area Air Quality Management District** 375 Beale Street, Suite 600 San Francisco, CA 94105

Attn: Gloria Espena and Marco Hernandez gespena@baaqmd.gov/mhernandez@baaqmd.gov sourcetest@baaqmd.gov

> Testing Performed on: January 17, 2023

Final Report Submitted on: March 17, 2023

Performed and Reported by: **Blue Sky Environmental, Inc.** 2273 Lobert Street Castro Valley, CA 94546 Office (510) 508-3469/Mobile (810) 923-3181 bluesky@blueskyenvironmental.com

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report are authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for compliance purposes, it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (810) 923-3181.

1-lil

Jeramie Richardson Project Manager Blue Sky Environmental, Inc.

TABLE OF CONTENTS

SECTI	ON 1.	INTRODUCTION	
1.1.	SUMM	ARY	
SECTI	ON 2.	SOURCE TEST PROGRAM	6
2.1.	OVERV	/IEW	
2.2.	Pollu	TANTS TESTED	
2.3.	TEST I	DATE	
2.4.	SAMPL	ING AND OBSERVING PERSONNEL	
2.5.	Sourc	E/PROCESS DESCRIPTION	
2.6.	Sourc	E OPERATING CONDITIONS	7
SECTI	ON 3.	SAMPLING AND ANALYSIS PROCEDURES	1
3.1.	Port I	Location	
3.2.	POINT	DESCRIPTION/LABELING – PORTS/STACK	
3.3.	SAMPL	E TRAIN DESCRIPTION	
3.4.	SAMPL	ING PROCEDURE DESCRIPTION	
3.5.	INSTRU	JMENTATION AND ANALYTICAL PROCEDURES	
3.6.	System	M PERFORMANCE CRITERIA	
3.7.	Comm	ENTS: LIMITATIONS AND DATA QUALIFICATIONS	
SECTI	ON 4.	APPENDICES	7
A.	Tabula	ted Results	
В.	Calcula	tions	
С.	Labora	tory Reports	
<i>D</i> .	Field D	Pata Sheets	
Ε.	Process	Information	
<i>F</i> .	Calibra	tion Gas Certificates	
<i>G</i> .	Instrum	ent Calibration Records	
Н.	Sample	Train Configuration and Stack Diagrams	
Ι.	Related	Correspondence (Source Test Plan and Email)	
J.	Permit i	to Operate	

SECTION 1. INTRODUCTION

1.1. Summary

Blue Sky Environmental, Inc. was contracted by Republic Services to perform emissions testing at the Keller Canyon Landfill Company in Pittsburg, California. This compliance source test was conducted to demonstrate that Landfill Gas Flare A-2 is operating in compliance with Condition 17309 of Bay Area Air Quality Management District (BAAQMD) Title V permit A4618.

Results of the test program are presented in this report. The source test information is summarized in Table 1-1. Test results derived from the source test are summarized in Table 1-2. Results for individual test runs are provided in Appendix A. The flare met all compliance emission criteria.

Test Location:Keller Canyon Landfill Company, 901 Bailey Road, Pittsburg CA 94565			
Source Contact:	Antonia Gunner, Republic Services (619) 201-3764		
Source Tested:	Flare A-2 – 76 MMBtu/hr John Zink enclosed landfill gas flare		
Source Test Date:	January 17, 2023		
Test Objective:	Determine compliance with condition 17309 of Bay Area Air Quality Management District (BAAQMD) Title V permit A4618; BAAQMD Regulation 8, Rule 34; and the State Landfill Methane Gas Rule under AB32 for Flare performance.		
Test Performed by:	Blue Sky Environmental, Inc 2273 Lobert Street, Castro Valley, CA 94546 Finnegan Schall (913) 530-4713 bluesky@blueskyenvironmental.com		
Test Parameters:	Landfill Gas O ₂ , CO ₂ , BTU, THC, CH ₄ , NMOC, HHV, F-Factor, sulfur species, toxic air contaminants and volumetric flow rate <u>Flare Emissions</u> THC, CH ₄ , NMOC, NO _x , CO, O ₂ , SO ₂ , moisture, volumetric flow rate and temperature		

Table 1-1 Source Test Information

Emission Parameter	Average Results (Flare A-2)	Permit Limit	Compliance Status
NOx, ppmvd @ 15% O ₂	7.70	15	In Compliance
CO, ppmvd @ 15% O ₂	31.3	81	In Compliance
Total Reduced Sulfurs in Fuel, ppmv	97.9	300	In Compliance
SO ₂ , ppmvd (Reg 9-1-302)	7.68	300	In Compliance
NMOC, ppmvd @ 3% O ₂ as CH ₄	<2.2	30*	In Compliance
NMOC Destruction Efficiency, %	>98.79	>98%*	In Compliance
CH ₄ Destruction Efficiency, % (AB32)	>99.97	>99%	In Compliance

Table 1-2 Compliance Summary

*>98% NMOC Destruction Efficiency or 30 ppmvd NMOC as CH4 @ 3% $\rm O_2$

SECTION 2. SOURCE TEST PROGRAM

2.1. Overview

This annual source test was performed to demonstrate that landfill gas Flare A-2 is operating in compliance with Condition 17309 of Bay Area Air Quality Management District (BAAQMD) Title V permit A4618, and BAAQMD Regulation 8, Rule 34. This testing also satisfies compliance requirements outlined in the State Landfill Methane Gas Rule under AB32 for flare performance.

2.2. Pollutants Tested

The following U.S. Environmental Protection Agency (EPA) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample and Traverse Point Determination
EPA Method 3A	O2 and CO2 Emissions, Stack Gas Molecular Weight
EPA Method 10	CO Emissions
EPA Method 7E	NO _x Emissions and NO ₂ Converter Check
EPA Method 4	Moisture Calculation
EPA Method 19	Flow Rate Calculation
EPA Method ALT-097	THC, CH4 and VOC Emissions
EPA Method 25C	NMOC in Fuel
ASTM D-1945/3588	BTU, F-Factor and Fixed Gases in Fuel
ASTM D-5504	Sulfur Species, Hydrogen Sulfide (H ₂ S)
EPA Method TO-15	Toxic organic Compounds

2.3. Test Date

Testing was conducted on January 17, 2023.

2.4. Sampling and Observing Personnel

Testing was conducted by Finnegan Schall and Lesley Wolf, representing Blue Sky Environmental, Inc.

BAAQMD was notified of the scheduled testing in a source test protocol submitted on January 3, 2023 (revised January 9, 2023). A Source Test Protocol acknowledgement (NST-8025) was received the same day. No agency observers from the district were present during the test program. A copy of the source test protocol and email correspondence are provided in Appendix I.

2.5. Source/Process Description

Keller Canyon Landfill Company is a multi-material landfill located in Pittsburg, California with a gas collection system that is abated by two industrial landfill gas flares. All landfill gas collected by the gas collection system that is not abated by the on-site enclosed flares is vented off-site to the Ameresco Keller Landfill, LLC facility for gas processing and control.

Flare A-2 has a 76 MMBtu/hr multiple nozzle burner. The flare shell is approximately 40 feet high and 12 feet in diameter. The inside diameter (ID) is approximately 130 inches. The flare has a temperature monitor with readout display and continuous recorder, and a flow meter to measure the gas flow into the flare.

2.6. Source Operating Conditions

The flare was operated on landfill gas under normal operating conditions during testing. The average exhaust temperature was 1,551 °F. The landfill gas (LFG) flowrate ranged from 1,461 to 1,472 SCFM. The operating exhaust temperature, and LFG flowrate records are provided in Appendix E.

Oxygen content in the LFG sample collected during Run 1 was significantly higher than the other runs, indicating an air leak in the sample. The results were corrected based on an oxygen content determined by averaging Runs 2 and 3. The following equation was used: ppm corrected = ppm (20.9 - corrected O_2 concentration)/(20.9 - original O_2 concentration). LFG samples collected at the head of the flare had an average corrected methane content of 52.2% and a corrected oxygen content of 0.7%.

SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

3.1. Port Location

Sampling was conducted at the 130-inch diameter ID stack of the flare through ports that were accessed with a 45-foot boom lift. The four 4-inch diameter flange ports were located approximately 35 feet above grade, five stack diameters downstream from the burners and one stack diameter upstream from the exhaust. Port locations met EPA Method 1 minimum criteria of two stack diameters downstream from the nearest disturbance and 0.5 stack diameters upstream from the nearest disturbance or exhaust.

3.2. Point Description/Labeling – Ports/Stack

Blue Sky Environmental, Inc. conducted two perpendicular 8-point traverses of the stack to check for the presence of stratification. The traverse points for the 130-inch diameter stack with 8-inch deep ports were 4.2, 13.7, 25.2, 42.0, 88.0, 104.8, 116.4 and 125.8 inches from the inside wall of the stack. Sampling was performed for two minutes per point for a total of 16 points for each 30-minute test run. O_2 stratification was greater than 10%; therefore, subsequent CEM sampling was conducted using all traverse points.

3.3. Sample Train Description

Sampling system diagrams are provided in Appendix H. Additional descriptive information is included in the following section.

3.4. Sampling Procedure Description

Three consecutive 30-minute gaseous emissions tests were performed for oxides of nitrogen (NO_x) , carbon monoxide (CO), carbon dioxide (CO_2) , oxygen (O_2) , methane (CH_4) and non-methane organic compounds (NMOC) at the flare exhaust stack.

The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. Any drift or bias was corrected using EPA Method 7E. A NOx analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky Environmental collected a total of three landfill gas samples (one per test run) in 6-liter SUMMA cannisters for analysis of fixed gases by ASTM D-1945. The molar composition was used to determine the HHV and F-factor by ASTM D-3588. The samples were also analyzed for non-methane organic compounds (NMOC) by EPA Method 25C and sulfur compounds by ASTM D-5504. Total reduced sulfur (TRS) results were used to calculate the SO₂ emission concentration of the stack gas. The samples were also analyzed for toxic organic compounds by EPA Method TO-15 (AP-42 2.4-1). All samples were analyzed by Atmospheric Analysis & Consulting, Inc (AAC) in Ventura, California.

The sampling and analysis procedures are summarized below:

EPA Method 1 – Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. A small portion of the sample is passed through a fuel cell type paramagnetic oxygen analyzer which measures the electrical current generated by the oxidation reaction at the gas/fuel cell interface. Carbon dioxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon dioxide absorbs infrared radiation.

EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Nitric oxide is determined by passing the sample through a chemiluminescent analyzer. The chemiluminescent process is based on the light given off when nitric oxide and ozone react. Nitrogen dioxide (NO₂) concentrations are determined by passing the sample through a catalyst which reduces the NO₂ to NO. The total oxides of nitrogen concentration (NO₂ + NO) is then determined by chemiluminescence.

Section 16.2.2 of the method is used to determine the NO_X analyzer NO_2 to NO conversion efficiency.

EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide in stationary source emissions using a continuous instrumental analyzer. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Carbon monoxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon monoxide absorbs infrared radiation.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless-steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 psi is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

EPA Method 4 – Determination of Moisture Content in Stack Gas

This method is used to determine the moisture content of stack gas. The sample is extracted and condensed in Greenburg-Smith impingers immersed in an ice bath and in a final impinger silica gel trap. The moisture is condensed in a solution of de-ionized water, or solutions of another type of sampling train if the moisture is being determined as part of another sampling method, such as EPA Method 5, SCAQMD Method 201.7 or BAAQMD ST-32. The moisture gain in the impinger solutions and silica gel is determined volumetrically and gravimetrically respectively.

<u>QA/QC</u> procedures require that a minimum of 21 cubic feet of sample is pulled using a leak tight pump. The sample volume is measured with a calibrated dry gas meter. The impingers are immersed in an ice bath to maintain a gas outlet temperature of less than 68°F. Pre-test leak checks are performed for each run using a minimum 15 inches of mercury vacuum. Post-test leak checks are performed at the highest sample vacuum or greater. The leak test is acceptable if the leak rate is less than 0.02 cubic feet per minute or 4% of the average sampling rate, whichever is less. If the final leak check exceeds the criteria, either the volume is corrected based on the leak rate or the run is voided and repeated.

EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D-1945/1946 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates.

EPA Method 25C – Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. Gases are collected in a pre-evacuated 6-Liter SUMMA canister with pre-set flow controller set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consists of capillary orifice tubing designed to sample for a pre-set duration of 0.5 hrs. The sample is injected into a GC column where the methane and CO_2 are flushed through and removed then the NMOC (ROC) fraction is oxidized to form CO_2 then reduced to methane and analyzed.

EPA Method ALT-097 Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This is an acceptable alternative to EPA Method 25A for the determination of total hydrocarbons, methane, and non-methane organic compounds in stationary source emissions. The test uses TECO 55C GC/FID methane/non-methane analyzer. Heated Teflon sample gas transfer lines are used to provide a continuous sample to the analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to incorporate any system bias that may exist. A system linearity check is performed prior to testing and during testing and calibration drift checks are performed after every run. All data is corrected according to EPA Method 25A.

ASTM D-1945 - Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed 7 days.

EPA Compendium Method TO-15 – Determination of Toxic Organic Compounds in Ambient Air

This method is used to measure volatile organic compounds that are included in the hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990 by GC/MS (gas chromatography/mass spectroscopy). Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75hrs.

3.5. Instrumentation and Analytical procedures

The following continuous emissions analyzers were used:

Instrumentation	Parameter	Principle
TECO Model 42C	NO _X /NO	Chemiluminescence
TECO Model 48C	СО	Gas Filter Correlation (GFC)/IR
TECO Model 55C	THC/NMOC/CH ₄	Flame Ionization (FID)
Servomex Model 1440	CO ₂	Infrared (IR)
Servomex Model 1440	O ₂	Paramagnetic

3.6. System Performance Criteria

The analyzer data recording system consists of a Honeywell DPR300 strip chart recorder supported by a data acquisition system (DAS). The instrument response is recorded on strip charts and DAS. The averages are corrected for drift using BAAQMD and EPA Method 7E equations.

Instrument Linearity	≤2% Full Scale
Instrument Bias	≤5% Full Scale
System Response Time	$\leq \pm 2$ minutes
NO _X Converter Efficiency (EPA Method 7E)	$\geq 90\%$
Instrument Zero Drift	≤ \pm 3% Full Scale
Instrument Span Drift	$\leq \pm 3\%$ Full Scale

3.7. Comments: Limitations and Data Qualifications

This source test was performed in accordance with the protocol submitted to BAAQMD. No deviations from the protocol or anomalies were observed during testing. No process interruptions were encountered, and no operational changes were required during the test program.

Oxygen content in the LFG sample collected during Run 1 was significantly higher than the other runs, indicating an air leak in the sample. The results were corrected based on an oxygen content determined by averaging Runs 2 and 3. The following equation was used: ppm corrected $= ppm (20.9 - corrected O_2 \text{ concentration})/(20.9 - \text{ original } O_2 \text{ concentration}).$

Blue Sky Environmental has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text Review of calculations Review of CEMS data Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our

client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations, subsequent to this, and do not warranty the accuracy of information supplied by others.

SECTION 4. APPENDICES

- A. Tabulated Results
- B. Calculations
- C. Laboratory Reports
- D. Field Data Sheets
- E. Process Information
- F. Calibration Gas Certificates
- G. Instrument Calibration Records
- H. Sample Train Configuration and Stack Diagrams
- I. Related Correspondence (Source Test Plan)
- J. Permit to Operate

A Tabulated Results

TABLE #1

Keller Canyon Landfill Company

Flare A-2

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	1/17/23	1/17/23	1/17/23		
Test Time	1001-1039	1055-1127	1142-1219		
Standard Temperature, °F	70	70	70		
Flare Temperature, °F	1,551	1,552	1,551	1,551	>1,400
Fuel:		•	•	• • • •	-
Fuel Flow Rate, DSCFM	1,461	1,469	1,472	1,467	
Fuel Heat Input, MMBtu/hr	46.6	46.1	46.5	46.4	
TRS, ppmvd in Fuel as H ₂ S	110	126	57.6	97.9	300
Stack Gas:	ŀ	4	4	• •	
Exhaust Flow Rate, DSCFM (EPA Method 19)	18,808	18,556	18,781	18,715	
Oxygen (O ₂), % volume dry	12.6	12.7	12.8	12.7	
Carbon Dioxide (CO ₂), % volume dry	7.9	7.8	7.7	7.8	
Water Vapor (H ₂ O), % volume (EPA Method 4)	9.0	9.9	10.5	9.8	
NO _x Emissions (reported as NO ₂):					
NOx, ppmvd	10.5	10.7	10.8	10.7	
NOx, ppmvd (a) 15% O ₂	7.53	7.71	7.86	7.70	15
NOx. lb/hr	1 41	1 42	1 45	1 43	
NOx. lb/MMBtu	0.0303	0.0307	0.0312	0.0307	
CO Emissions:					
CO. ppmvd	48.1	43.6	38.8	43.5	
CO. ppmvd @ 15% O ₂	34.4	31.4	28.2	31.3	81
CO. lb/hr	3.93	3 52	3.17	3 54	01
CO. lb/MMBtu	0.0843	0.0762	0.0681	0.0762	
SO ₂ Emissions:	010015	010702	010001	010702	
SO ₂ , ppmyd (calculated)	8 54	9.98	4 51	7.68	300
SO ₂ , lb/hr	1.60	1.84	0.843	1 43	500
THC Emissions (reported as CH ₄):	1.00	1.01	0.015	1.15	
THC, ppmy wet $(Sum NMOC + CH_{c})$	<12.5	<14.9	<12.1	<13.2	
THC ppmyd	<13.8	<16.4	<13.3	<14.5	
THC lb/hr	<0.643	<0.756	<0.619	<0.673	
Methane (CH ₄) Emissions:	-0.015	-0.750	-0.017	-0.075	
CH ₄ , ppmy wet	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd	<11.0	<11.0	<11.0	<11.0	
CH ₄ , lb/hr	<0.513	<0.506	<0.512	<0.510	
NMOC Emissions:	01010	101000	01012	0.010	
NMOC, ppmy wet	14	3.6	<1.0	<2.0	
NMOC, ppmvd	1.5	4.0	<1.1	<2.2	
NMOC. lb/hr	0.072	0.18	<0.051	<0.102	
NMOC, ppmyd @ 3% O ₂	3 3	87	<2.4	<4.8	30*
Inlet Hydrocarbons (reported as CH ₄):	0.0	017	2.1	110	50
NMOC ppmyd (EPA Method 25C)	2.083	2 4 5 9	2 1 9 1	2 244	
NMOC lb/hr	7 55	8.97	8.0	8.18	
NMOC Destruction Efficiency. %	>99.05%	>97.97%	>99.36%	>98,79%	>98%*
CH4, ppmvd	525 234	519.000	523.000	522.411	- 2070
CH4. lb/hr	1 905	1 893	1 911	1 903	
CH ₄ Destruction Efficiency. %	>99 97%	>99 97%	>99 97%	>99 97%	>99%
THC (TOC) ppmyd	527 317	521 459	525 191	524 656	- >>/0
THC (TOC). lb/hr	1 912	1 902	1 919	1 911	
THC (TOC) Destruction Efficiency. %	>99.97%	>99.96%	>99 97%	>99.96%	

* NMOC permit limits are 30 ppmvd @ 3% $\rm O_2$ or DE >98%

Oxygen content in the LFG sample collected during Run 1 was significantly higher than the other runs, indicating an air leak in the sample.

The results were corrected based on an oxygen content determined by averaging runs 2 and 3.

WHERE,

- ppmvd = parts per million concentration by volume expressed on a dry gas basis lb/hr = pound per hour emission rate Tstd. = standard temperature (°R = °F+460) MW = molecular weight DSCFM = dry standard cubic feet per minute
- NO_X = oxides of nitrogen, reported as NO_2 (MW = 46)

CO = carbon monoxide (MW = 28)

- $CH_4 = methane (MW = 16)$
- THC = total hydrocarbons, reported as CH₄ (MW = 16)
- $\rm NMOC$ = total non-methane organic compounds, reported as $\rm CH_4~(MW$ = 16) $\rm H_2S{=}$ hydrogen sulfide

CALCULATIONS,

 $\begin{array}{l} ppmv\; dry = ppmv\; wet \cdot 100 \;/\; (100 - H_2O\%) \\ ppmvd\; @\; 3\%\; O_2 = ppmvd \cdot 17.9 \;/\; (20.9 - \%O_2) \\ lb/hr = ppmv \cdot 8.223\; E-05 \cdot DSCFM \cdot MW \;/\; Tstd. ^R \\ lb/day = lb/hr \cdot 24 \\ lb/MMBtu = Fd \cdot MW \cdot ppmv \cdot 2.59E-9 \cdot 20.9/(20.9 - \%O_2) \\ Destruction Efficiency (DE) = (inlet, lb/hr- outlet, lb/hr) \;/\; inlet, lb/hr \\ SO_2, calculated = H_S \cdot inlet, DSCFM \;/\; exhaust, DSCFM \\ \end{array}$

<Value = 2% of analyzer range

TABLE #2

Landfill Gas Characterization

Keller Canyon Landfill Company

Flare A-2

1,551°F

Parameter	Units	R1-LFG-A2	R2-LFG-A2	R3-LFG-A2	Average Results	Permit Limits
Test Date		1/17/23	1/17/23	1/17/23	-	
Acrylonitrile	ppb	<39.6	<37.2	<34.7	<37.2	500
Benzene	ppb	1,290	1,690	1,650	1,543	20,000
Carbon Tetrachloride	ppb	<39.6	<37.2	<34.7	<37.2	100
Chloroform	ppb	<39.6	<37.2	<34.7	<37.2	100
Ethylene Dichloride (1,2 Dichloroethane)	ppb	425	584	550	520	750
Ethlyene Dibromide (1,2 Dibromoethane)	ppb	<39.6	52.8	51.3	47.9	100
Methylene Chloride	ppb	113	<74.3	<69.4	<85.6	7,600
Perchloroethylene (Tetrachloroethylene)	ppb	213	303	287	268	3,300
Trichloroethylene (Trichloroethene)	ppb	112	156	150	139	1,500
Vinyl Chloride	ppb	<39.6	52.8	51.3	47.9	1,700
Carbon Disulfide	ppm	< 0.079	0.079	0.084	< 0.081	-
Carbonyl Sulfide (COS/SO ₂)	ppm	< 0.079	< 0.074	1.30	<0.484	-
Dimethyl Sulfide	ppm	5.64	6.71	5.96	6.10	-
Ethyl Mercaptan	ppm	< 0.079	0.309	0.288	< 0.225	-
Methyl Mercaptan	ppm	5.26	<7.01	5.13	5.80	-
Hydrogen Sulfide	ppm	95.1	109	43.4	82.5	300

Appendix E – Surface Emission and GCCS Component Leak Monitoring Results

SCS FIELD SERVICES

June 20, 2023 File No. 07221005.01

Ms. Antonia Gunner Republic Services – Keller Canyon Landfill 901 Bailey Road Pittsburg, California 94565

Subject: Keller Canyon Landfill - Pittsburg, California

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring for First Quarter 2023.

Dear Ms. Gunner:

SCS Field Services (SCS-FS) is pleased to provide the Republic Services, with the enclosed report summarizing the surface emissions monitoring services provided at the Keller Canyon Landfill (Site) during the first quarter 2023. This report includes the results of surface scan, component emissions and blower/flare station emissions monitoring for the Site for this monitoring period.

SCS-FS appreciates the opportunity to be of assistance to Republic Services on this project. As you review the enclosed information, please contact Art Jones (209) 345-2062 or Whitney Stackhouse at (209) 338-7990 if you have any questions or comments.

Sincerely,

Max Polkabla

Max Polkabla Senior Technician/Data Analyst SCS Field Services

Whitney M Stackhouse Project Manager SCS Field Services

Encl.

Keller Canyon Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring

First Quarter 2023

Presented to:

Ms. Antonia Gunner Republic Services – Keller Canyon 901Bailey Road Pittsburg, California 94565

SCS FIELD SERVICES

File No. 07221005.01 | June 20, 2023

SCS FIELD SERVICES 4730 Enterprise Way Suite A Modesto, CA 95356

Keller Canyon Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring First Quarter 2023

INTRODUCTION

This letter provides results of the March 13, 15, 20, 30 and April 12, 2023, LMR and NSPS landfill surface emissions monitoring (SEM) performed by SCS Field Services (SCS) at the subject site. All work was performed in accordance with our approved Work Scope dated December 23, 2020, and the LMR/NSPS requirements.

SUMMARY AND CONCLUSIONS

As stipulated in LMR, if uncorrectable exceedances within the 10-day limitation are detected or emissions are discovered during an inspection by Regulatory Agencies, the landfill must perform monitoring on a 25-foot pathway on a quarterly basis for active disposal sites. Upon completion of four consecutive SEM events without an uncorrectable exceedance of the 25 ppmv or 500 ppmv standards, other than non-repeatable momentary readings, the landfill may perform the monitoring on a 100-foot spacing on an annual basis for closed landfills or quarterly for active disposal sites. Therefore, based on the previous monitoring events, in which exceedances were observed, the monitoring at the Keller Canyon Landfill was performed on 25-foot pathways in accordance with the LMR.

On March 13, 15, 20, 30 and April 12, 2023, SCS performed the first quarter 2023 surface emissions monitoring testing as required by the Bay Area Air Quality Management District (BAAQMD). Instantaneous surface emissions monitoring results indicated that seven (7) locations exceeded the 500 ppmv maximum concentration during our initial monitoring (Table 1 in Attachment 3). The required 10/20-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring indicated that all areas, except three which failed the 20-day monitoring, returned to below regulatory compliance limits following system adjustments and remediation by site personnel. Based on these monitoring results expansion is required at this time in accordance with both LMR and NSPS requirements. These results are discussed in a subsequent section of this report.

Also, during the instantaneous monitoring event, SCS performed concurrent integrated monitoring of the landfill surface. As required by the LMR, the landfill was divided into 50,000 square foot areas. The Keller Canyon Landfill surface area was therefore divided into 211 grids, as shown on Figure 1 in Attachment 1. During the monitoring event, there were twenty-five (25) areas observed to exceed the 25 ppmv LMR integrated average threshold (Table 2 in Attachment 4). The required first and second 10-day LMR follow-up monitoring indicated that twenty-one (21) areas had returned to compliance following system adjustments and remediation by SCS and site personnel. However, the remaining 4 areas remained above compliance. Based on these monitoring results, and in accordance with the LMR, the site is required to perform a system expansion within 120-days of the
third detected exceedance or July 28, 2023. These results are discussed in a subsequent section of this report.

During this monitoring event, several grids were not monitored, in accordance with the regulations, due to ongoing active landfilling activities, unsafe conditions, or there was no waste in place prior to the monitoring event.

In addition, quarterly monitoring of the pressurized piping or components of the Gas Collection and Control System (GCCS) that are under positive pressure must be performed quarterly. During the monitoring event, there was one (1) location observed to exceed the 500 ppmv threshold. Although the location was repaired on March 17, 2023, follow up monitoring performed on March 20, indicated the exceedance remained. Based on these results, additional repairs were performed on March 23, 2023 and the additional testing performed on March 30, 2023 indicated the location returned to compliance. These results are discussed in a subsequent section of this report.

Further, as required under the LMR, any location on the landfill that has an observed instantaneous methane concentration above 200 ppmv, must be stake-marked and Global Positioning System (GPS) located on a site figure. During this reporting period, fourteen (14) locations were observed to exceed the 200 ppmv, reporting threshold (see attached location map and table with GPS coordinates). When these readings are observed, the locations are reported to site personnel for tracking and/or general surface remediation and will be reported in the next submittal of the annual LMR report.

Finally, to help prevent potential future exceedances, SCS recommends that the landfill surface be routinely inspected and any observed surface erosion be routinely repaired.

BACKGROUND

The Keller Canyon Landfill is an active organic refuse disposal site. By way of background, organic materials buried in a landfill decompose anaerobically (in the absence of oxygen) producing a combustible gas which contains approximately 50 to 60 percent methane gas, 40 to 50 percent carbon dioxide, and trace amount of various other gases, some of which are odorous. The Keller Canyon property contains a system to control the combustible gases generated in the landfill.

SURFACE EMISSIONS MONITORING

On March 13, 15, 20, 30 and April 12, 2023, the instantaneous and integrated SEM was performed over the surface of the subject site. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring in the 50,000 square foot grids as required under the LMR. During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rules as required.

EMISSIONS TESTING INSTRUMENTATION/CALIBRATION

Instruments used to perform the landfill surface emission testing consisted of the following:

• Thermo Scientific TVA 2020 portable Flame Ionization Detector (FID). This instrument measures methane in air over a range of 1 to 50,000 ppmv. The TVA 2020 meets the State of California Air Resources Board (CARB) requirements for combined instantaneous and

integrated monitoring and was calibrated in accordance with United States Environmental Protection Agency (US EPA) Method 21.

• Weather Anemometer with continuous recorder for meteorological conditions in accordance with the LMR.

Instrument calibration logs and weather information are shown in Attachments 5 and 6.

SURFACE EMISSIONS MONITORING PROCEDURES

Surface emissions monitoring was conducted in accordance with the LMR and NSPS requirements. Monitoring was performed with the FID inlet held within 3-inches of the landfill surface while a technician walked a grid in parallel paths not more than 25 -feet apart over the surface of the landfill. Cracks, holes and other cover penetrations in the surface were also tested. Surface emissions readings were monitored continuously and recorded every 5 seconds. Any areas in exceedance of the 200 or 500 ppmv standards (reporting and compliance levels, respectively) would be GPS tagged and stake-marked for on-site personnel to perform remediation or repairs.

The integrated average is based on the readings stored on the instrument, which are recorded every 5 seconds. The readings are then downloaded and the averages are calculated for each grid using SCS eTools®. All readings are maintained in this secure SCS Database. The readings are not provided in the report due to the volume of readings, but can be furnished upon request.

Recorded wind speed results are shown in Attachment 6. Wind speed averages were observed to remain below the alternative threshold of 10 miles per hour, and no instantaneous speeds exceeded 20 miles per hour. No rainfall had occurred within 72 hours of the monitoring events. Therefore, site meteorological conditions were within the alternatives of the LMR requirements on the above mentioned dates.

TESTING RESULTS

During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rule as required under the LMR and NSPS. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR or NSPS threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring (LMR).

On March 13, 15, 20, 30 and April 12, 2023, SCS performed first quarter 2023 instantaneous emissions monitoring testing as required by the BAAQMD. During this monitoring, surface emissions results indicated that seven (7) locations exceeded the 500 ppmv maximum concentration. The required 10/20-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring indicated that all areas, except three which failed the 20-day monitoring, returned to below regulatory compliance limits following system adjustments and remediation by site personnel. Based on these monitoring results expansion is required at this time in accordance with both LMR and NSPS requirements. The expansion deadline due to these monitoring results is July 11. 2023.

During the monitoring event, there was twenty-five (25) areas observed to exceed the 25 ppmv LMR integrated average threshold (Table 2 in Attachment 4) that were not in the exempted areas. The required first and second 10-day LMR follow-up monitoring performed on March 20 and 30, 2023, indicated that twenty-one (21) areas had returned to compliance following system adjustments and remediation by site personnel. The remaining grid areas, Grid No. KC076, KC084, KC091 & KC093

did not return to compliance as shown on the testing performed on March 30, 2023. In accordance with requirements for expansion and remediation, the grid area needs to be remediated and returned to compliance in accordance with the rule (expansion of the collection system or an alternative compliance option if approved by the BAAQMD) within 120 days after the detected third integrated exceedance, which will be due by July 28, 2023. However, based on the NSPS exceedance the date for expansion is July 11, 2023.

Results of the monitoring are shown in Attachment 4 (Table 2). Calibration logs for the monitoring equipment are provided in Attachment 5.

During this monitoring event, several girds were not monitored, in accordance with the LMR, due to active landfilling activities, unsafe conditions or no waste in place. SCS will continue to monitor all accessible locations during the second quarter 2023.

PRESSURIZED PIPE AND COMPONENT LEAK MONITORING

On March 13, 2023, quarterly leak monitoring was performed in accordance with the LMR. SCS performed LFG pressurized pipe and component leak monitoring at the BFS. Monitoring was performed with the detector inlet held one-half of an inch from pressurized pipe and associated components. One (1) location exceeding the 500 ppmv threshold was observed during our monitoring event. The required 7-day recheck follow-up monitoring was performed on March 20 2023, the location did not returned to compliance following repairs made by SCS. Although the location was repaired on March 17, 2023, follow up monitoring performed on March 20, indicated the exceedance remained. Based on these results, additional repairs were performed on March 23, 2023 and the additional testing performed on March 30, 2023 indicated the location returned to compliance is due to be replaced during the upcoming flare replacement.

PROJECT SCHEDULE

According to the LMR and NSPS, surface emissions monitoring at active landfills is required to be performed on a quarterly basis. Therefore, in accordance with our approved Work Scope, the second quarter 2023 (April through June) surface emissions testing event is scheduled to be performed by the end of June 2023 in accordance with the Republic SOP unless an alternative timeline is requested by site personnel.

STANDARD PROVISIONS

This report addresses conditions of the subject site during the testing dates only. Accordingly, we assume no responsibility for any changes that may occur subsequent to our testing which could affect the surface emissions at the subject site or adjacent properties.

Attachment 1

Landfill Grid

	1	2	3	<u>Ą</u>	5	6 7	8	9	10	11
A	500									
				na na man ang na 24 ang na						046 096 096 0065 0065
		GP	38						No of the second	
B			4 141	1A 0 6	BOUS MAT BU	Section and the section of the secti				
						19R 2 K018R	13-			
			1.0014	15	16	27 17	33 at 18	95		960- 980- 980-
C		/19		144	6+159 28	58 23 53				
				P146 34	35 35	36	0211037	38	121 39 mm and 31	
		1321	40 4 2 12	1111441	2107 42 2108	43		41 345	46	M012
D		A7		49 51 127 131	50 1		32A 52	-53 ····	54	
U		55	56			67 Daw 2		61 14A ***	384 62	
		- 703	73 C	05 HIGER		188 2128	68 2125 77	× 78 13	79 ⁸¹	
		80, 7	1 81 14	164 82	86A 7 8 83 7 78	2100 - 21	2124	35A 86	2119 8 2119 8 2119 8 87	
71ts/		E ¹ 89, 1	90	91	92	93	94		96	GP-35
By: 5:		97	98	99	100	101 28A 101 28A	102	103 2117	104	
- 2:4pm		106	107	108	109		46141	476 74 12 180		
F 202		114	112		125	126 18	127	120		
Apr 15,			/ 130		120	133	134	2426 2 29 3	129	
-15.dwg			/ 137 /	138	139	140 7	141	142 178	2120143	
9 22-04-			144	145	146	1147	1/48	149	150	899 040 060
Srids_20			151/	/152 /	153/	+ 154	/ 155 / /	156/	157	070 090 090
n sem e			158/				/162 /	163	1/71	GP/36
ır Canyo			165	1172	173	1 174		176	111	
				1 178	179	1 180/	181, 1/	1.82	/ 183	
Base N				184	185	186	187	" <u>188</u>	189	
332 Grid				190	191	192		194		
Keller\At			GF	2-25R 200	201	197				
ASTERS\			9866 · · · · · · · · · · · · · · · · · ·		/ []	202	206	208	GP-37	
17 - MA		040 0800 000 000					209			
ר <u>א</u> ראיר מאראיר		799			900 900 		210			
∂ Data\CAL	064 014 069 040				969 940 960 900 000		211		#/////////////////////////////////////	
<i>−+s01</i>	099 			000 000 000 000 000	060 000 000					
1/p/6			{ { }		760-			1354///	\$10 ×	

5. SEM PATH MAY VARY BASED ON FILL OPERATIONS, WEATHER, AND OTHER FIELD CONDITIONS.

1

Attachment 2

Surface Pathway, Instantaneous Monitoring Exceedance Locations And 200-499 Tracking Locations

First Quarter 2023 Initial LMR Surface Emissions Monitoring Pathway Keller Canyon Landfill, Pittsburg, California

Keller Canyon Landfill Q1 2023 LMR SEM Instantaneous Locations				Leger In	nd itial Instantaneous Location in bet	ween 200-499 ppmv
		2 3		A State		H-MC
14-5-	6	7	8	Section of the sectio	Stan III	UN CONTRACTOR
9	10		12	13		the states
14	15	16	47	18		100
19 7720	21	(22	23	24	25	and the second
1/26	27	28	29	30 ==	31	
-1-22-1/38	34	35	36 - 7	37	38	39
140,2	41		49	44	45	46
47 148, 12	49	THEIR GIVILLOU INT	51	52 HBR	GRID52 RY53	54
1 / 55 / / 56 / /	57		59	60	64	62
64/	HIGH SURE GT4 AG	66	67 -	68	69	70
1 12 1 73 K 1	HIGH SURF REA	D 675 AG 0	HICH SURF I	READ GTT AG		79
1 80 1 81	1 82 1	183 A	CHICH SURF GI	6 AG 85	86	87
HIGH SURF READ GS1 AG	HR COO JSS / /	217-92	93	94	ga	96
	SEZ CEFR GEO JS1	100, 1	CEFR C101 JS	SFR G102 JS	103	104
100/ 107 / 107	108	1 109	110	111	112	113
114 115	216	1/11776	A MB	119	120	10 mil
123	124	1 125 71	126	1/127	128	AT Ind
Cooperth 130	131	1 1321 1	133, 1X	1347	135	133
inage Landsai / Copernicus	7 128 1 / /	139 +	1140	141	8001	100

Emissions Monitoring Results Between 200-499 ppmv Keller Canyon Landfill, Pittsburg, California

Emissions Monitoring Results Greater Than 500 ppmv Keller Canyon Landfill, Pittsburg, California Attachment 3

Instantaneous and Component Emissions Monitoring Results and Exceedance GPS Locations

Table 1. Instantaneous Surface and ComponentEmissions Monitoring ResultsKeller Canyon Landfill, Pittsburg, California

Instantaneous Data Report for March 13, 15, 20, 30 and April 12, 2023

Location (Surface)	Initial Monitoring Results (ppmv) 3/13/2023	10-Day Follow Up Monitoring Results (ppmv) 3/20/2023	2 nd 10-Day Follow Up Monitoring Results (ppmv) 3/30/2023	30-Day Follow Up Monitoring Results (ppmv) 4/12/2023	Latitude	Longitude
EW2103	2,100	3,400	438	15	37.99764066	-121.936753
W143	2,000	600	467	29	37.99891773	-121.9363388
W146	1,300	3,300	5,400	11	37.99854431	-121.9341202
EW142	6,600	6,200	1,248	16	37.99810301	-121.936517
EW2106	800	1,200	2,247	69	37.99567183	-121.9364663
HIGH SURF READ G74 AG	690	21		37	37.99857097	-121.936111
HIGH SURF READ G78 AG	500	132		78	37.99327201	-121.935867

Table 1. Instantaneous Surface and ComponentEmissions Monitoring ResultsKeller Canyon Landfill, Pittsburg, California

Instantaneous Data Report for March 13, 15, 20, 30 and April 12, 2023

Location (Surface)	Initial Monitoring Results (ppmv) 3/13/2023	Latitude	Longitude
HIGH SURF G74 AG	395	37.998203	-121.935843
HIGH SURF G76 AG	305	37.99575004	-121.936135
HIGH SURF READ G75 AG	267	37.996923	-121.935962
HIGH SURF READ G77 AG	230	37.99478704	-121.935945
HIGH SURF READ G91 AG	444	37.99905603	-121.936766
HSR GRID50 RY	211	37.99745601	-121.934763
HSR GRID52 RY	227	37.99389697	-121.93476
HSR GRID57 RY	200	37.99770797	-121.935421
SFR G101 JS	487	37.99563797	-121.936956
SFR G102 JS	277	37.99432998	-121.936723
SFR G99 JS1	427	37.99864699	-121.937053

Readings between 200-499 ppmv

Table 1. Instantaneous Surface and ComponentEmissions Monitoring ResultsKeller Canyon Landfill, Pittsburg, California

Location (Surface)	Initial Monitoring Results (ppmv) 3/13/2023	Latitude	Longitude
SFR G99 JS2	376	37.99871698	-121.936963
SFR G99 JS3	302	37.99862696	-121.936872
SFR G99 JS4	246	37.99889904	-121.936869

Pressurized Pipe and Component Results

Route	Initial Monitoring Results (ppmv)	Recheck Monitoring Results (ppmv)	Recheck Monitoring Results (ppmv)
	3/13/2023	3/20/2023	3/30/2023
Flare Station (Flame Arrestor)	2,200	10,000	100

No other exceedances of the 500 ppmv threshold were observed during the first quarter 2023 monitoring.

Attachment 4

Integrated Monitoring Results

Point Name	Record Date	FID Concentration (ppm)	Comments
KC001	3/13/2023 13:33	3.16	
KC002	3/13/2023 13:42	5.04	
KC003	3/13/2023 13:41	4.75	
KC004	3/13/2023 13:57	2.13	
KC005	3/13/2023 13:11	3.74	
KC006	3/13/2023 13:29	4.42	
KC007	3/13/2023 13:35	4.75	
KC008	3/13/2023 13:20	5.34	
KC009	3/13/2023 10:37	2.79	
KC010	3/13/2023 10:39	6.36	
KC011	3/13/2023 10:40	6.98	
KC012	3/13/2023 10:36	6.59	
KC013	3/13/2023 10:38	3.08	
KC014	3/13/2023 09:18	3.13	
KC015	3/13/2023 09:44	3.14	
KC016	3/13/2023 09:49	5.53	
KC017	3/13/2023 09:43	10.11	
KC018	3/13/2023 09:35	3.60	
KC019			Native Grid
KC020	3/13/2023 08:46	0.67	
KC021	3/13/2023 08:40	7.38	
KC022	3/13/2023 08:33	11.50	
KC023	3/13/2023 08:36	15.04	
KC024	3/13/2023 08:29	6.55	
KC025	3/13/2023 08:22	3.24	
KC026	3/13/2023 15:49	8.57	
KC027	3/13/2023 09:03	29.33	Initial Monitoring
KC027	3/20/2023 09:41	9.16	10-Day Recheck
KC028	3/13/2023 09:05	26.47	Initial Monitoring
KC028	3/20/2023 09:41	15.97	10-Day Recheck
KC029	3/13/2023 10:15	14.63	
KC030	3/13/2023 10:06	7.42	
KC031	3/13/2023 10:00	4.62	
KC032			Native Grid
KC033	3/13/2023 15:41	8.53	
KC034	3/13/2023 11:52	11.66	
KC035	3/13/2023 11:51	21.51	
KC036	3/13/2023 11:43	28.31	Initial Monitoring
KC036	3/20/2023 09:19	17.23	10-Day Recheck
KC037	3/13/2023 11:20	20.08	
KC038	3/13/2023 11:01	6.03	
KC039	3/13/2023 13:20	8.94	
KC040	3/13/2023 15:32	8.00	

SCS DataServices - Secure Environmental Data

Point Name	Record Date	FID Concentration (ppm)	Comments
KC041	3/13/2023 13:52	18.97	
KC042	3/13/2023 13:58	27.94	Initial Monitoring
KC042	3/20/2023 08:57	10.10	10-Day Recheck
KC043	3/13/2023 13:58	30.81	Initial Monitoring
KC043	3/20/2023 08:59	15.51	10-Day Recheck
KC044	3/13/2023 13:51	21.83	
KC045	3/13/2023 14:10	18.75	
KC046	3/13/2023 14:15	6.17	
KC047			Native Grid
KC048	3/13/2023 10:31	7.86	
КСО49	3/13/2023 10:37	18.64	
КС050	3/13/2023 10:48	40.76	Initial Monitoring
КС050	3/20/2023 08:37	13.49	10-Day Recheck
KC051	3/13/2023 10:46	20.06	
KC052	3/13/2023 10:05	36.86	Initial Monitoring
KC052	3/20/2023 08:20	16.82	10-Day Recheck
KC053	3/13/2023 09:30	21.22	
KC054	3/13/2023 09:26	9.17	
KC055			Native Grid
KC056	3/13/2023 11:08	9.37	
KC057	3/13/2023 12:13	14.63	
KC058	3/13/2023 13:36	26.31	Initial Monitoring
KC058	3/20/2023 08:45	18.52	10-Day Recheck
КС059	3/13/2023 13:35	33.84	Initial Monitoring
КС059	3/20/2023 08:44	28.12	First 10-Day Recheck
КС059	3/30/2023 07:31	23.46	Second 10-Day Recheck
КСО60	3/13/2023 12:00	42.12	Initial Monitoring
KC060	3/20/2023 07:49	22.95	10-Day Recheck
KC061	3/13/2023 11:11	16.31	
KC062	3/13/2023 10:24	23.14	
KC063			Native Grid
KC064	3/13/2023 15:25	20.12	
KC065	3/13/2023 14:54	20.95	
KC066	3/13/2023 15:01	26.06	Initial Monitoring
KC066	3/20/2023 09:33	8.87	10-Day Recheck
KC067	3/13/2023 15:08	24.78	
KC068	3/30/2023 07:43	45.32	Initial Monitoring
КС068	3/13/2023 15:12	26.03	First 10-Day Recheck
KC069	3/13/2023 15:13	9.67	Second 10-Day Recheck
КС070	3/13/2023 15:11	9.93	
KC071			Active Area
KC072			Native Grid
КС073	3/13/2023 09:40	3.96	

SCS DataServices - Secure Environmental Data

Point Name	Record Date	FID Concentration (ppm)	Comments
KC074	3/13/2023 10:04	36.03	Initial Monitoring
KC074	3/20/2023 08:26	10.07	10-Day Recheck
KC075	3/13/2023 09:46	27.82	Initial Monitoring
KC075	3/20/2023 08:23	14.31	10-Day Recheck
KC076	3/13/2023 09:51	51.11	Initial Monitoring
КС076	3/30/2023 08:08	43.50	First 10-Day Recheck
КС076	3/20/2023 08:28	32.07	Second 10-Day Recheck (120-day expansion required)
КС077	3/13/2023 09:51	30.11	Initial Monitoring
KC077	3/30/2023 07:55	22.72	10-Day Recheck
KC078	3/13/2023 09:36	12.90	
KC079	3/13/2023 09:43	3.11	
KC080			Native Grid
KC081	3/13/2023 12:20	19.82	
KC082	3/13/2023 12:34	36.63	
KC082	3/20/2023 09:36	30.50	
KC082	3/30/2023 10:18	14.29	
KC083	3/13/2023 12:14	27.28	
KC083	3/20/2023 09:34	16.00	
KC084	3/13/2023 12:07	52.95	Initial Monitoring
KC084	3/30/2023 10:42	39.54	First 10-Day Recheck
KC084	3/20/2023 09:48	34.04	Second 10-Day Recheck (120-day expansion required)
KC085	3/13/2023 12:20	21.91	
KC086	3/13/2023 12:27	3.17	
KC087	3/13/2023 12:22	4.48	
KC088			Active Area
KC089			Native Grid
KC090	3/13/2023 14:18	17.44	
KC091	3/13/2023 14:22	48.24	Initial Monitoring
KC091	3/30/2023 09:23	41.43	First 10-Day Recheck
КС091	3/20/2023 08:48	38.70	Second 10-Day Recheck (120-day expansion required)
KC092	3/13/2023 14:26	35.22	Initial Monitoring
KC092	3/20/2023 08:46	25.68	First 10-Day Recheck
КС092	3/30/2023 09:22	25.31	Second 10-Day Recheck (120-day expansion required)
KC093	3/30/2023 09:20	65.58	Initial Monitoring
КС093	3/20/2023 08:50	46.35	First 10-Day Recheck
КС093	3/13/2023 14:27	44.29	Second 10-Day Recheck (120-day expansion required)
КС094	3/13/2023 14:27	26.89	Initial Monitoring
KC094	3/20/2023 08:53	23.96	10-Day Recheck
KC095	3/13/2023 14:31	3.09	
KC096	3/13/2023 14:22	4.18	

Point Name	Record Date	FID Concentration (ppm)	Comments
KC097			Native Grid
KC098	3/13/2023 11:07	16.69	
KC099	3/13/2023 11:17	48.86	Initial Monitoring
KC099	3/20/2023 10:42	16.80	10-Day Recheck
KC100	3/13/2023 11:20	17.77	
KC101	3/13/2023 11:18	36.12	Initial Monitoring
KC101	3/20/2023 10:14	23.75	10-Day Recheck
KC102	3/13/2023 11:20	24.73	
KC103	3/13/2023 11:21	1.40	
KC104			Active Area
KC105			Active Area
KC106			Native Grid
KC107			Native Grid
KC108			Native Grid
KC109			Native Grid
KC110			Native Grid
KC111			Native Grid
KC112			Native Grid
KC113			Active Area
KC114			Native Grid
KC115			Native Grid
KC116			Exempt Grid due to Health and Safety Concerns
KC117			Exempt Grid due to Health and Safety Concerns
KC118			Exempt Grid due to Health and Safety Concerns
KC119			Exempt Grid due to Health and Safety Concerns
KC120			Exempt Grid due to Health and Safety Concerns
KC121			Active Area
KC122			Active Area
KC123			Native Grid
KC124			Exempt Grid due to Health and Safety Concerns
KC125			Exempt Grid due to Health and Safety Concerns
KC126			Exempt Grid due to Health and Safety Concerns
KC127			Exempt Grid due to Health and Safety Concerns
KC128			Exempt Grid due to Health and Safety Concerns
KC129			Exempt Grid due to Health and Safety Concerns
KC130			Native Grid
KC131			Exempt Grid due to Health and Safety Concerns
KC132			Exempt Grid due to Health and Safety Concerns
KC133			Exempt Grid due to Health and Safety Concerns
KC134			Exempt Grid due to Health and Safety Concerns
KC135			Exempt Grid due to Health and Safety Concerns
KC136			Exempt Grid due to Health and Safety Concerns
KC137			Native Grid

SCS DataServices - Secure Environmental Data

Point Name	Record Date	FID Concentration (ppm)	Comments
KC138			Native Grid
KC139			Native Grid
KC140			Exempt Grid due to Health and Safety Concerns
KC141			Exempt Grid due to Health and Safety Concerns
KC142			Exempt Grid due to Health and Safety Concerns
KC143			Exempt Grid due to Health and Safety Concerns
KC144			Native Grid
KC145			Native Grid
KC146			Native Grid
KC147			Native Grid
KC148			Exempt Grid due to Health and Safety Concerns
KC149			Exempt Grid due to Health and Safety Concerns
KC150			Exempt Grid due to Health and Safety Concerns
KC151			Native Grid
KC152			Native Grid
KC153			Native Grid
KC154			Native Grid
KC155			Native Grid
KC156			Exempt Grid due to Health and Safety Concerns
KC157			Exempt Grid due to Health and Safety Concerns
KC158			Native Grid
KC159			Native Grid
KC160			Native Grid
KC161			Native Grid
KC162			Native Grid
KC163			Native Grid
KC164			Native Grid
KC165			Native Grid
KC166			Native Grid
KC167			Native Grid
KC168			Native Grid
KC169			Native Grid
KC170			Native Grid
KC171			Native Grid
KC172			Native Grid
KC173			Native Grid
KC174			Native Grid
KC175			Native Grid
KC176			Native Grid
KC177			Native Grid
KC178			Native Grid
KC179			Native Grid
KC180			Native Grid

SCS DataServices - Secure Environmental Data

Point Name	Record Date	FID Concentration (ppm)	Comments
KC181			Native Grid
KC182			Native Grid
KC183			Native Grid
KC184			Native Grid
KC185			Native Grid
KC186			Native Grid
KC187			Native Grid
KC188			Native Grid
KC189			Native Grid
KC190			Native Grid
KC191			Native Grid
KC192			Native Grid
KC193			Native Grid
KC194			Native Grid
KC195			Native Grid
KC196			Native Grid
KC197			Native Grid
KC198			Native Grid
KC199			Native Grid
KC200			Native Grid
KC201			Native Grid
KC202			Native Grid
KC203			Native Grid
KC204			Native Grid
KC205			Native Grid
KC206			Native Grid
KC207			Native Grid
KC208			Native Grid
KC209			Native Grid
KC210			Native Grid
KC211			Native Grid

Attachment 5

Calibration Logs

		CALIBRATION AN	D PERTINE		
Date:	03/13/23		Site Name	Kolbr	
Inspector(s)	Andrew Stone		Instrument:	TVA 2020	
WEATHER OI	BSERVATIONS				
		147 - 1			
Wind Spee	d: Ч МРН	Direction:		Barometric Pressure: 30.08	3 "нд
A Temperature	ir e: SI °F	General Weathe Condition	Cloudy	- 1 1 1 1 1 1 1 1	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				3
precision must l	al Number:	ice between the instrument of the calibration gas value.	reading and the o	calibration gas as a percent Cal Gas Concentration:	age. The calibration 500ppm
Frial 1	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (secon
2	-0.1	501			3
3	0	Sen		0	4
		= 100%-	· 3	/500 x 100%	
		=9999	%		
ial 1:	- 11		Trial 3:		
Cou	ints Observed for the Span=	132100	Count	ts Observed for the Span=	130164
Coun	ters Observed for the Zero=	3943	Counte	rs Observed for the Zero=	4604
Cou	nts Observed for the Span=	125024			81
Count	ers Observed for the Zero=	3664			
t Monitoring Ca	alibration Check				
o Air		Cal Gas			
ding:	ppm	Reading:	562 p	pm	
	WENTRATIONS CHECKS	0			
KGROUND CO	MELITIKA HORS CHECKS			3	
KGROUND CC	escription:	lare	R	eading: <u>1, 7</u> pp	m
KGROUND CC	escription:	lara Triol 4	Ri	eading: <u>(, 7</u> pp eading: <u>Z, 3</u> pp	nn Im

C

1

			SURFACE EMIS	ND PERTINER	I ORING NT DATA	
Date		3-13-23	8	Site Name:	Keller	
Inspec	tor(s):	Don Gibs	on	Instrument	TVA 2020	
WEAT	HER OBSI	ERVATIONS			1	
Wir	nd Speed:	5МРН	Wind Direction:		Barometric Pressure: 30.0	У "Hg
Tem	Air perature:	52 "F	General Weatl Conditio	ns: < 1040	A	
CALIBR	RATION IN	FORMATION			-5	
Pre-moi	nitoring Ca	alibration Precision Check				
Procedu and calo precision	ure: Calibro culate the n must be	ate the instrument. Make average algebraic differen less than or equal to 10%	a total of three measurem nce between the instrumer of the calibration gas valu	eents by alternating at reading and the o e	g zero air and the calibratio calibration gas as a percen	on gas. Record the readin tage. The calibration
Instrume	ent Serial I	Number: 2367	-		Cal Gas Concentration:	500ppm
Trial 1		Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (secor
2		Ŏ Ŏ	500	Ō,	5	3
3						2
Calibratio	on Precisio	n= Average Difference/Ca	Average Difference: al Gas Conc. X 100%	*Perform recalibration	if average difference is greater than]
) Calibratio	on Precisio	n= Average Difference/Ca	Average Difference: al Gas Conc. X 100% = 100% = 99.56	⁶⁻ <u>(</u> %	if average difference is greater than /500 x 100%]
Calibratic	on Precisio	n= Average Difference/Ca	Average Difference: al Gas Conc. X 100% = 100% = 99. %	*Perform recalibration	if average difference is greater than /500 x 100%] 10
Calibratio Span Sens Trial 1:	on Precisio sitivity: Count	in= Average Difference/Ca	Average Difference: al Gas Conc. X 100% = 100% = 99. % = 15 9596	6- (% Trial 3: Count	if average difference is greater than /500 x 100% ts Observed for the Span=)618)2
Calibratio	on Precisio sitivity: <u>C</u> ount	in= Average Difference/Ca ts Observed for the Span= rs Observed for the Zero=	Average Difference: al Gas Conc. X 100% = 100% = 99.% = 159596 = 5196	6- <u>(</u> % <u>Trial 3:</u> Counte	if average difference is greater than /500 x 100% ts Observed for the Span= rs Observed for the Zero=)618)2 5203
Calibratic Span Sens Trial 1: Trial 2:	on Precisio sitivity: Count Counte	ts Observed for the Span= s Observed for the Span=	Average Difference: al Gas Conc. X 100% = 100% = 99.% = 159596 = 5196 = 162836	6- (% <u>Trial 3:</u> Counte	if average difference is greater than /500 x 100% ts Observed for the Span= rs Observed for the Zero=) 618)2 5203
Calibratio	on Precisio sitivity: Count Counte Counter	in= Average Difference/Ca ts Observed for the Span= rs Observed for the Zero= s Observed for the Span=	Average Difference: al Gas Conc. X 100% = 100% = 99.6 = 159596 = 162836 = 186	6- <u>(</u> % <u>Trial 3:</u> Counte	if average difference is greater than /500 x 100% ts Observed for the Span= rs Observed for the Zero=) 618)2 5203
Calibratio Span Sens Trial 1: Trial 2: Post Monit	on Precisio sitivity: <u>Counte</u> Counte Counter toring Cali	in= Average Difference/Ca ts Observed for the Span= rs Observed for the Zero= s Observed for the Span= rs Observed for the Zero= bration Check	Average Difference: al Gas Conc. X 100% = 100% = 99.% = 159596 = 5186 = 5186	6- (% Trial 3: Counte	if average difference is greater than /500 x 100% ts Observed for the Span= rs Observed for the Zero=)618)2 5203
Calibratio Span Sens Trial 1: Trial 2: Post Monit Zero Air	on Precisio sitivity: Count Counte Counter toring Cali	ts Observed for the Span= rs Observed for the Zero= s Observed for the Zero= s Observed for the Zero= bration Check	Average Difference: al Gas Conc. X 100% = 100% = 99.% = 159596 = 5186 = 5186 Cal Gas	6- (% Trial 3: Counte	if average difference is greater than /500 x 100% ts Observed for the Span= rs Observed for the Zero=)618)2 5203
) Calibratic Span Sens Trial 1: Trial 2: Post Monit Zero Air Reading:	on Precisio sitivity: Count Counte Counter toring Cali	ts Observed for the Span= rs Observed for the Zero= s Observed for the Zero= s Observed for the Zero= bration Check	Average Difference: a) Gas Conc. X 100% = 100% = 99.% = 18.6 Cal Gas Reading:	Perform recalibration 6- (% Trial 3: Counte Counte	if average difference is greater than /500 x 100% ts Observed for the Span= rs Observed for the Zero=)618)2 5203
Calibration Span Sens Trial 1: Trial 2: Post Monit Zero Air Reading: BACKGROU	on Precisio sitivity: Counte Counte Counter toring Cali	ICENTRATIONS CHECKS	Average Difference: al Gas Conc. X 100% = 100% = 99.% = 18% = 162.836 = 18% Cal Gas Reading:	Perform recalibration 6- (% Trial 3: Counte Counte 2.1 p	if average difference is greater than /500 x 100% ts Observed for the Span= rs Observed for the Zero=)618)2 5203
Calibratic Span Sens Trial 1: Trial 2: Post Monit Zero Air Reading: BACKGROU	on Precisio sitivity: Counte Counter Counter toring Cali UND CON	in= Average Difference/Ca ts Observed for the Span= rs Observed for the Zero= s Observed for the Span= is Observed for the Zero= bration Check 	Average Difference: Average Difference: al Gas Conc. X 100% = 100% = 99.% = 18.6 Cal Gas Reading: Flare	*Perform recalibration	if average difference is greater than /500 x 100% ts Observed for the Span= rs Observed for the Zero=) 618)2 5203
Calibratic Span Sens Trial 1: Trial 2: Post Monit Zero Air Reading: BACKGROU Upwind Loc Downwind L	on Precisio sitivity: Counte Counte Counter toring Cali UND CON cation Des Location D	in= Average Difference/Ca ts Observed for the Span= rs Observed for the Zero= s Observed for the Zero= bration Check Cription: Description:	Average Difference: Average Difference: al Gas Conc. X 100% = 100% = 99.% = 186 = 162836 = 186 Cal Gas Reading: = F/are Grid 4	⁶⁻ <u>(</u> % <u>Trial 3:</u> Count <u>Counte</u> <u>2,1</u> p R	if average difference is greater than /500 x 100% ts Observed for the Span= rs Observed for the Zero= ppm leading: p eading: p) <u>618)2</u> 5203

			SURFACE EMIS	SIONS MONI	TORING	
	Date:	3-13-23		Site Name:	Keller	
	Inspector(s):	Jonathan Selv	lyeda	Instrument:	TVA 2020	
	WEATHER OB	SERVATIONS			(e) (e)	
	Wind Speed	: 2 мрн	Wind Direction:	_	Barometric Pressure: 30.09	"Hg
	Air Temperature:	<u>52</u> °F	General Weath Conditior	er is: <u>Cloud</u>		(141)
	CALIBRATION	NFORMATION				
	Pre-monitoring (Calibration Precision Check				
	Procedure: Calib. and calculate the precision must be	rate the instrument. Make is average algebraic differen e less than or equal to 10% o	a total of three measurem ce between the instrumen of the calibration gas value	ents by alternating t reading and the o 2.	g zero air and the calibrati calibration gas as a percer	on gas. Record the reading ntage, The calibration
ľ	Instrument Serial	Number:			Cal Gas Concentration:	500ppm
P	Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (second
F	2	4	497		3	Ū.
2.1	5				2	2
	alibration Precisi	on≃ Average Difference/Cal	Average Difference:	*Perform recalibration	.3 If average difference is greater than) 10
	alibration Precisi	on≃ Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100% =99.55	Perform recalibration	3 if average difference is greater than /500 x 100%] n 10
c Sp	alibration Precisi pan Sensitivity:	on≃ Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100% =99.5	*Perform recalibration	.3 If average difference is greater than /500 x 100%	10
C Sp Tr	alibration Precisi Dan Sensitivity: ial 1: Cour	on≃ Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100% =99.5~ 128 900	*Perform recalibration 	.3 If average difference is greater than /500 x 100% ts Observed for the Span=	141284
	alibration Precisi Dan Sensitivity: ial 1: Count	on = Average Difference/Cal nts Observed for the Span= ers Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100% $= 99.5^{\circ}$ 128 900 5922	*Perform recalibration 	3 if average difference is greater than /500 x 100% ts Observed for the Span= ers Observed for the Zero=	141284 4136
	alibration Precisi Dan Sensitivity: ial 1: Count ial 2: Court	on = Average Difference/Cal nts Observed for the Span= ers Observed for the Zero= nts Observed for the Span=	Average Difference: Gas Conc. X 100% = 100% $= 99.5^{\circ}$ 128 900 5922 1392 40	*Perform recalibration ? . 3 % Trial 3: Counte	.3 If average difference is greater than /500 x 100% ts Observed for the Span= ers Observed for the Zero=	141284 4136
C Sp Tr	alibration Precisi Dan Sensitivity: ial 1: Count ial 2: Count	on= Average Difference/Cal nts Observed for the Span= ers Observed for the Zero= nts Observed for the Span= ers Observed for the Span=	Average Difference: Gas Conc. X 100% = 100% = 99.5% 128 900 5922 1392 40 4269	*Perform recalibration ?	.3 if average difference is greater than /500 x 100% ts Observed for the Span= ers Observed for the Zero=	141284 4136
C Sp Tri	alibration Precisi ban Sensitivity: ial 1: Count ial 2: Counte st Monitoring Ca	on= Average Difference/Cal nts Observed for the Span= ers Observed for the Zero= nts Observed for the Span= ers Observed for the Span= ers Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100% = 99.5% 128 900 5922 1392 40 4269	*Perform recalibration 	.3 if average difference is greater than /500 x 100% ts Observed for the Span= trs Observed for the Zero=	141284 4136
C Sp Tri Pos	alibration Precisi ban Sensitivity: ial 1: Count ial 2: Counte st Monitoring Ca	on= Average Difference/Cal nts Observed for the Span= ers Observed for the Zero= nts Observed for the Span= ers Observed for the Zero= libration Check	Average Difference: Gas Conc. X 100% = 100% = 99.5% 128 900 5922 1392 40 4269 Cal Car	*Perform recalibration 7.3 % Trial 3: Counte	.3 if average difference is greater than /500 x 100% ts Observed for the Span= ers Observed for the Zero=	141284 4136
C Sp Tr Tr Pos Zerr Rea	alibration Precisi ban Sensitivity: ial 1: Count ial 2: Counte st Monitoring Ca o Air ading:	on= Average Difference/Cal nts Observed for the Span= ers Observed for the Zero= nts Observed for the Span= ers Observed for the Zero= libration Check	Average Difference: Gas Conc. X 100% = 100% = 99.5% 128 900 5922 1392 40 426 9 Cal Gas Reading:	Perform recalibration 7.3 % Trial 3: Counte Counte	.3 if average difference is greater than /500 x 100% ts Observed for the Span= ers Observed for the Zero=	141284 4136
C Sp Tr Tr Pos Zerr Rea BAC	alibration Precisi ban Sensitivity: ial 1: Count ial 2: Counte st Monitoring Ca o Air ading:	on= Average Difference/Cal nts Observed for the Span= ers Observed for the Zero= nts Observed for the Span= ers Observed for the Zero= libration Check ppm NCENTRATIONS CHECKS	Average Difference: Gas Conc. X 100% = 100% $= 99.5^{\circ}$ 128 900 5922 1392 40 4269 Cal Gas Reading:	Perform recalibration 7.3 % Trial 3: Counte Counte	.3 if average difference is greater than /500 x 100% ts Observed for the Span= ers Observed for the Zero=	141284 4136
C S <u>F</u> Tr Pos Zern Rea BAC	alibration Precisi Dan Sensitivity: ial 1: Counter ial 2: Counter St Monitoring Ca o Air ading: CKGROUND CO wind Location De	on= Average Difference/Cal nts Observed for the Span= ers Observed for the Zero= nts Observed for the Zero= libration Check ppm NCENTRATIONS CHECKS scription:	Average Difference: Gas Conc. X 100% = 100% = 99.5% 128 900 5922 1392 40 4269 Cal Gas Reading: Lact	Perform recalibration 7.3 % Trial 3: Counte Counte Counte Counte	.3 if average difference is greater than /500 x 100% ts Observed for the Span= ers Observed for the Zero= ppm teading:	141284 4136
C SF Tr Tr Pos Zern Rea BAC Upw Dow	alibration Precisi Dan Sensitivity: ial 1: Counter ial 2: Counter St Monitoring Car o Air ading: CKGROUND CO vind Location De vnwind Location	on= Average Difference/Cal nts Observed for the Span= ers Observed for the Zero= nts Observed for the Zero= libration Check - 1.9 ppm NCENTRATIONS CHECKS scription: Description:	Average Difference: Gas Conc. X 100% = 100% $= 99.5^{\circ}$ 128 900 5922 1392 40 4269 Cal Gas Reading: Lact Cal Gas	Perform recalibration 7.3 % Trial 3: Counte Counte R R R	if average difference is greater than $/500 \times 100\%$ ts Observed for the Span= ars Observed for the Zero= by ppm deading: $1,7$ deading: $2,3$	<u>141284</u> <u>4136</u> ррт

1		CALIODATIAN A		TORING	
	0 12 11 2	CALIDRATION A	AD PERTINEL	NI DATA	
Date	3-13-25		Site Name:	Keller	
Inspector(s):	Alfreda (TOMEZ	Instrument:	TVA 2020	
WEATHER O	BSERVATIONS)ā	
Wind Spee	d: МРН	Wind Direction:		Barometric 30.0 G	"Hg
A Temperatur	sir e: <u>57</u> °ғ	General Weath Condition	er Is: Cloady	-2	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate ti precision must Instrument Seri	he average algebraic differen be less than or equal to 10% al Number: <u>438</u>	nce between the instrument of the calibration gas value	t reading and the o	calibration gas as a percent Cal Gas Concentration:	age. The calibration
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	onc -Cal Gas Reading	Response Time (second
1	· 0.2	503	3		3
2	0.1	496	4		5
	0.0	200	0		- 4
alibration Preci	sion= Average Difference/Ca	Gas Conc. X 100%	*Perform recalibration	if average difference is greater than 1	0
alibration Preci	sion= Average Difference/Ca	Gas Conc. X 100% = 100%-	*Perform recalibration	if average difference is greater than 1 /500 x 100%	0
alibration Preci	sion= Average Difference/Ca	Gas Conc. X 100% = 100%- = ۹۹۹۵۰	*Perform recalibration	if average difference is greater than 1	0
alibration Preci pan Sensitivity: ial 1:	sion= Average Difference/Ca	Gas Conc. X 100% = 100%- = へくんい	*Perform recalibration	if average difference is greater than 1 /500 x 100%	0
alibration Preci <u>pan Sensitivity:</u> ial 1: Con	sion= Average Difference/Ca unts Observed for the Span=	Gas Conc. X 100% = 100% = 2% $= 2%$ $= 2%$	*Perform recalibration	if average difference is greater than 1 /500 x 100% ts Observed for the Span=_	0 12448
alibration Preci pan Sensitivity: ial 1: Cou Coun	sion= Average Difference/Ca unts Observed for the Span= ters Observed for the Zero=	I Gas Conc. X 100% = 100%- = 995 139828 3783	*Perform recalibration 2.3 % Trial 3: Counte	if average difference is greater than 1 /500 x 100% ts Observed for the Span= rs Observed for the Zero=	0 12448 3884
alibration Preci pan Sensitivity: ial 1: Coun ial 2: Cou	sion= Average Difference/Ca unts Observed for the Span= iters Observed for the Zero= ints Observed for the Span=	Gas Conc. X 100% $= 100%$ $= 99.5%$ 139.128 3783 128920	*Perform recalibration 2.3 % <u>Trial 3:</u> Counte	if average difference is greater than 1 /500 x 100% ts Observed for the Span= rs Observed for the Zero=	0 12448 3884
alibration Preci pan Sensitivity: ial 1: Coun ial 2: Coun	sion= Average Difference/Ca unts Observed for the Span= iters Observed for the Zero= ints Observed for the Span= ters Observed for the Zero=	Gas Conc. X 100% = 100%- = 995 139328 3783 128420 3783 128420 35689	*Perform recalibration 2.3 (% Trial 3: Counte	if average difference is greater than 1 /500 x 100% ts Observed for the Span= rs Observed for the Zero=	0 12498 3884
alibration Preci pan Sensitivity: ial 1: Coun ial 2: Coun st Monitoring C	sion= Average Difference/Ca unts Observed for the Span= iters Observed for the Zero= ints Observed for the Span= ters Observed for the Zero= alibration Check	Gas Conc. X 100% = 100%- = 995 139328 3783 128420 3783 128420 35689	*Perform recalibration 2.3 % Trial 3: Counte	/500 x 100% ts Observed for the Span= <u>rs Observed for the Zero=</u>	0 12448 3884
alibration Preci ban Sensitivity: ial 1: Coun ial 2: Coun st Monitoring C o Air	sion= Average Difference/Ca unts Observed for the Span= iters Observed for the Zero= ints Observed for the Span= ters Observed for the Span= alibration Check	Gas Conc. X 100% $= 100%$ $= 99.5%$ $I39328$ 3783 $I28920$ 35689 Cal Gas	*Perform recalibration 2.3 % <u>Trial 3:</u> Counte Counte	if average difference is greater than 1 /500 x 100% ts Observed for the Span= rs Observed for the Zero=	0 12448 3884
alibration Preci pan Sensitivity: ial 1: Coun ial 2: Coun st Monitoring C o Air ading:	sion= Average Difference/Ca unts Observed for the Span= iters Observed for the Zero= ints Observed for the Span= ters Observed for the Zero= alibration Check	Gas Conc. X 100% = 100% = 99.5% 139.28 3783 128920 3689 Cal Gas Reading:	*Perform recalibration 2.3 % Trial 3: Counte Counte	if average difference is greater than 1 /500 x 100% ts Observed for the Span= rs Observed for the Zero=	0 12448 3884
alibration Preci ban Sensitivity: ial 1: Cour ial 2: Cour ial 2: Cour st Monitoring C o Air ading: CKGROUND CO	sion= Average Difference/Ca unts Observed for the Span= iters Observed for the Zero= ints Observed for the Span= ters Observed for the Zero= alibration Check 2 ppm DNCENTRATIONS CHECKS	Gas Conc. X 100% $= 100%$ $= 99.5%$ 139.128 3783 128920 35689 Cal Gas Reading:	*Perform recalibration <u>2.3</u> % <u>Trial 3:</u> Counte <u>Counte</u>	if average difference is greater than 1 /500 x 100% ts Observed for the Span= rs Observed for the Zero=	0 12448 3884
alibration Preci pan Sensitivity: ial 1: Coun ial 2: Coun ial 2: Coun st Monitoring C o Air oding: CKGROUND CO vind Location D	sion= Average Difference/Ca unts Observed for the Span= iters Observed for the Zero= ints Observed for the Zero= alibration Check 2 ppm DNCENTRATIONS CHECKS escription:	Gas Conc. X 100% $= 100%$ $= 99.5%$ $I39128$ 3783 $I28920$ 3783 $I28920$ $Gal Gas$ Reading:	*Perform recalibration <u>2.3</u> (% <u>Trial 3:</u> Counte <u>Counte</u> <u>YQ.3</u> P	pm eading:	о <u>/249</u> З889 эп
alibration Preci pan Sensitivity: ial 1: Coun ial 2: Coun ial 2: Coun coun	sion= Average Difference/Ca unts Observed for the Span= iters Observed for the Zero= ints Observed for the Span= ters Observed for the Zero= alibration Check 2 ppm DNCENTRATIONS CHECKS escription: n Description:	Gas Conc. X 100% = 100%- = 995 139328 3783 128420 3783 128420 3783 Cal Gas Reading:	*Perform recalibration <u>2.3</u> (% <u>Trial 3:</u> <u>Counte</u> <u>YQ3</u> R R	pm eading: <u>1.7</u> pr pading: <u>7.3</u> pr	о <u>IZ44₩</u> З&8¥ Эт

SCR D. MARANTERSON STRATES CONTRACT Direct Phile III

			SURFACE EMISSI	ONS MONIT	ORING	
			CALIBRATION AN	D PERTINEN	T DATA	
\bigcirc	Date	03/13/23	5	Site Name:	Keller	
	Inspector(s):	Ricardo yepez		Instrument	TVA 2020	
	WEATHER OB	SERVATIONS			Э	
			Wind		Barometric	
	Wind Speed	:МРН	Direction:	5	Pressure: 50.08	"Hg
	Air Temperature	51 °F	General Weather Conditions	Claudy		
	CALIBRATION	INFORMATION				
	Pre-monitoring	Calibration Precision Check				
	Procedure: Calib and calculate the precision must b Instrument Seria	rate the instrument. Make a t e average algebraic difference e less than or equal to 10% of I Number:	total of three measuremen e between the instrument r the calibration gas value.	ts by alternating eading and the co	zero air and the calibration alibration gas as a percent Cal Gas Concentration;	n gas. Record the readings age. The calibration 500ppm
	Trial	Zero Air Beading	Cal Gas Reading		na Cal Cas Bas dis al	
	1		Sou			Kesponse lime (seconds)
ſ	2	0	504		4	3
-	3	0	501		1	4
			$= 100\% - \frac{994}{19}$	/	500 x 100%	
c	nan Sensitivity:		6 4-6			
	rial 1:			Trial 3:		
	Cou	nts Observed for the Span=	65120	Counts	Observed for the Span=	166704
	Count	ers Observed for the Zero= \mathbf{Q}	756	Counter	s Observed for the Zero=	1677
"	Cour	nts Observed for the Span= $oldsymbol{1}$	66368			
L	Counte	ers Observed for the Zero= $ullet$	1626			
Ро	est Monitoring Ca	libration Check				
Zei	ro Air		Cal Gas			
Re	ading:	[.9ppm	Reading:	509 pr	m	
ВА	CKGROUND CO	NCENTRATIONS CHECKS				
Up	wind Location De	scription:		Re	ading:p	pm
Dov	wnwind Location	Description:		Re	ading:p	pm
Not	t es: Win exc me	nd speed averages were obse eeded 20 miles per hour. No teorological conditions were	rved to remain below the rainfall had occurred with within the requested alter	alternative reque: in the previous 24 natives of the LM	sted 10 miles per hour and 4 hours of the monitoring R requirements on the abo	d no instantaneous speeds event. Therefore, site ove mentioned date.

				SIONS MONI	TORING	
		12/12	CALIBRATION		VI DATA	
Date:		05/15/07	·	Site Name:	heller	
Inspec	ctor(s)	Arturo Oliva	res	Instrument:	TVA 2020	
WEAT	THER OBS	SERVATIONS			S1	
Wi	nd Speed:	Ц МРН	Wind Direction: <u>N</u>		Barometric Pressure: 30.08	-"Hg
Tem	Air perature:	<u><u></u>Sl _{°F}</u>	General Weat Conditio	ther ons: <u>Cloudy</u>		
CALIBI	RATION I	NFORMATION				
Pre-mo	onitoring (Calibration Precision Check				
and cal precisio	lculate the	e average algebraic difference in a strain of the second sec	of the calibration gas value	nents by alternating nt reading and the o ue.	g zero air and the calibratic calibration gas as a percen Cal Gas Concentration:	n gas. Record the readi tage. The calibration 500ppm
Trial		Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (seco
	1	-0.1	497	_	3	<u>ч</u>
1						
	3	-0-1	503		3	3
Calibratio	3 and a second	on= Average Difference/Ca	Average Difference: al Gas Conc. X 100%	*Perform recalibration	3 n if average difference is greater than /500 x 100%]
Calibratio	3 a and a second	on= Average Difference/Ca	Average Difference: al Gas Conc. X 100% = 1009 = 997.5	*Perform recalibration %%	3 n if average difference is greater than /500 x 100%]
Calibratio	3 on Precisi	on= Average Difference/Ca	Average Difference: al Gas Conc. X 100% = 1009 = 999.5	*Perform recalibration % -%	3 n if average difference is greater than /500 x 100%	10
Calibratio Span Sen: <u>Trial 1:</u>	3 on Precisi sitivity: Cour	on= Average Difference/Ca	Average Difference: al Gas Conc. X 100% = 1009 = 997.5 = <u>1630700</u>	*Perform recalibration *Perform recalibration %- <u>2.3</u> -% <u>Trial 3:</u> Coun	3 if average difference is greater than /500 x 100% its Observed for the Span=	10 10
Calibration Span Sent Trial 1:	3 on Precisi isitivity: Courte Counte	on= Average Difference/Ca nts Observed for the Span= ers Observed for the Zero=	Average Difference: al Gas Conc. X 100% = 1009 = 999.5 = 163020 = 3485	*Perform recalibration *Perform recalibration %- <u>2.3</u> -% <u>Trial 3:</u> Counte	3 if average difference is greater than /500 x 100% its Observed for the Span= ers Observed for the Zero=	150940 3285
Calibration Span Sent Trial 1: Trial 2:	3 on Precisi sitivity: Court Count	on= Average Difference/Ca nts Observed for the Span= ers Observed for the Zero=	Average Difference: al Gas Conc. X 100% = 1009 = 999.5 = 163020 = 3485 = 157120	*Perform recalibration *Perform recalibration %- <u>2.3</u> -% <u>Trial 3:</u> Counte	3 if average difference is greater than /500 x 100% its Observed for the Span= ers Observed for the Zero=	150940 3285
Calibration Span Sent Trial 1: Trial 2:	3 on Precisi sitivity: Count Count Count	on= Average Difference/Ca nts Observed for the Span= ers Observed for the Zero= its Observed for the Span= ers Observed for the Span=	Average Difference: al Gas Conc. X 100% = 1009 = 999.5 = 163020 = 3485 = 157120 = 3403	*Perform recalibration *Perform recalibration %- <u>2.3</u> -% <u>Trial 3:</u> Counte	3 if average difference is greater than /500 x 100% its Observed for the Span= ers Observed for the Zero=	150940 3285
Calibration Span Sen: Trial 1: Trial 2:	3 on Precisi sitivity: Count Count Count	on= Average Difference/Ca nts Observed for the Span= ers Observed for the Zero= its Observed for the Span= ers Observed for the Zero=	Average Difference: al Gas Conc. X 100% = 1009 = 997.5 = 163020 = 3485 = 157120 = 3403	*Perform recalibration *Perform recalibration %- <u>2.3</u> -% <u>Trial 3:</u> Counte	3 a if average difference is greater than /500 x 100% ats Observed for the Span= ars Observed for the Zero=	150940 3285
Calibration Span Sen: Trial 1: Trial 2: Post Monit	3 on Precisi sitivity: Count Count Count toring Cal	on= Average Difference/Ca nts Observed for the Span= ers Observed for the Zero= its Observed for the Span= ers Observed for the Zero= libration Check	Average Difference: al Gas Conc. X 100% = 1009 = 997,5 = 163020 = 3485 = 157120 = 3403	*Perform recalibration *Perform recalibration %- <u>2.3</u> -% <u>Trial 3:</u> Counte	s if average difference is greater than /500 x 100%	150940 3285
Calibration Span Sen: Trial 1: Trial 2: Post Moni Zero Air Reading:	3 on Precisi sitivity: Count Count Count itoring Cal	on= Average Difference/Ca nts Observed for the Span= ers Observed for the Zero= its Observed for the Zero= libration Check	Average Difference: al Gas Conc. X 100% = 1009 = 999,5 = 163020 = 3485 = 157120 3403 Cal Gas Reading:	*Perform recalibration %- <u>2.3</u> -% <u>Trial 3:</u> Counte	3 a if average difference is greater than /500 x 100% ats Observed for the Span= ars Observed for the Zero=	150940 3285
Calibration Span Sen: Trial 1: Trial 2: Post Moni Zero Air Reading: BACKGRO	3 on Precisi sitivity: Count Count itoring Cal	on= Average Difference/Ca nts Observed for the Span= ers Observed for the Zero= its Observed for the Zero= libration Check	Average Difference: al Gas Conc. X 100% = 1009 = 999,5 = 163020 = 3485 = 157120 3403 Cal Gas Reading:	Perform recalibration %- 2.3 -% Trial 3: Counte Counte	s if average difference is greater than /500 x 100% ts Observed for the Span= ers Observed for the Zero=	150940 3285
Calibration Span Sen: Trial 1: Trial 2: Post Moni Zero Air Reading: BACKGRO	3 on Precisi sitivity: Count Count Count itoring Cal	on= Average Difference/Ca nts Observed for the Span= ers Observed for the Zero= its Observed for the Zero= libration Check CONTRATIONS CHECKS scription:	Average Difference: al Gas Conc. X 100% = 1009 = 99,5 = 163020 = 3485 = 157120 3403 Cal Gas Reading: - Marc	*Perform recalibration %- <u>2.3</u> % <u>Trial 3:</u> Counte <u>Counte</u> <u>507</u>	a) if average difference is greater than /500 x 100% its Observed for the Span= ers Observed for the Zero= ppm Reading: $\frac{1}{\sqrt{2}}$ p	150940 3285
Calibration Span Sen: Trial 1: Trial 2: Post Moni Zero Air Reading: BACKGRO Jpwind Loo Downwind	a on Precisi sitivity: Count Count Count itoring Cal	on= Average Difference/Ca nts Observed for the Span= ers Observed for the Zero= its Observed for the Zero= libration Check CENTRATIONS CHECKS scription: Description:	Average Difference: al Gas Conc. X 100% = 1009 = 99,5 = 163020 = 3485 = 157120 3403 Cal Gas Reading: - Marc Girid 4	*Perform recalibration *Perform recalibration %- <u>2.3</u> -% <u>Trial 3:</u> Counte <u>507</u> p R R	a) if average difference is greater than /500 x 100% its Observed for the Span= ers Observed for the Zero= ppm Reading: 4^{2} p Reading: 2^{3} p	150940 3285

		CALIBRATION AN	ID PERTINE	NT DATA	
Date:	3/15/23		Site Name:	Keller	
Inspector(s)	Art. O		Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			17 (F	
Wind Speed	МРН	Wind Direction: $5W$	_	Barometric Pressure: 29.9	7 "нg
Air Temperature:	<u>42</u> *F	General Weathe Conditions	s: <u>(lear</u>		
CALIBRATION I	NFORMATION				
Pre-monitoring (Calibration Precision Che	ck			
and calculate the orecision must be nstrument Serial	e average algebraic diffe e less than or equal to 10 l Number:	rence between the instrument 1% of the calibration gas value	reading and the	calibration gas as a percent	ntage. The calibration500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (second
1	-0.1	496		4	2
2	0	503		3	
		= 100%- = 99.8	<u> </u>	/500 x 100%	
an Sensitivity:					
ial 1: Cour	nts Observed for the Spa	n= 140212	<u>Trial 3:</u> Coun	ts Observed for the Span-	141572
Count	ers Observed for the Zer	0= 4198	Counte	rs Observed for the Zero=	3952
ar <u>2:</u> Cour	nts Observed for the Spa	n= 137488			
Counte	ers Observed for the Zero	o= U179			
st Monitoring Ca	libration Check				
o Air Iding:). <u>4</u> ppm	Cal Gas Reading:	502	opm	
CKGROUND CO	NCENTRATIONS CHEC	KS			
vind Location De	escription	Flare	R	Reading: 2. 1	ppm
		1 2 17		2 1	
nwind Location	Description:	6.10	R	eading: 4.1	ppm

RECONSTRUCTIONS WERE WITHIN THE POPULATION OF TH

		SURFACE EMISS	IONS MONIT	FORING	and the second secon
	1 1	CALIBRATION AN	ND PERTINEN	IT DATA	
Date:	3/15/23		Site Name:	Keller	
Inspector(s):	alfredo	9.6	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			7	
Wind Speed	1:МРН	Wind Direction:	_	Barometric Pressure: 29.97	"Hg
Ai Temperature	г ::уг*Е	General Weath Condition	er s: <u>Clear</u>	-	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
Procedure: Calit and calculate th precision must b Instrument Seria	brate the instrument. Make the average algebraic differe the less than or equal to 10% al Number:	a total of three measuremends a total of three measurement nce between the instrument of the calibration gas value	nts by alternating reading and the c	zero air and the calibratio alibration gas as a percen Cal Gas Concentration;	n gas. Record the readings tage. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas Co	nc -Cal Gas Reading	Response Time (seconds
1	-0.1	500	C		2
2	-0.(5 00	D		1
3	Ð	500	D		2
Calibration Precis	ion= Average Difference/Ca	al Gas Conc. X 100% = 100%-	*Perform recalibration i	f average difference is greater than /500 x 100%	10
		= /00	%		
Span Sensitivity:					
<u>Frial 1:</u> Cou	ints Observed for the Span=	183532	Trial 3: Count	s Observed for the Span=	183540
Count	ters Observed for the Zero=	5032	Counter	s Observed for the Zero=	5002
rial 2: Cou	nts Observed for the Span=	183544			
Count	ers Observed for the Zero=	5017			
ost Monitoring Ca	libration Check				
ero Air 🔹 🕻 Pading: ——),5 ppm	Cal Gas Reading:	500 pr	om	
ACKGROUND CO	DNCENTRATIONS CHECKS	5			
owind Location De	escription:	Flare	Re	eading: 2. °	pm
wowind Location	Description.	C-30	Re	eading: <u>2, 1</u> p	pm
o tes: Wi exc me	nd speed averages were ob seeded 20 miles per hour. steorological conditions we	oserved to remain below the No rainfall had occurred wit re within the requested alte	e alternative reque hin the previous 2 rnatives of the LM	sted 10 miles per hour an 4 hours of the monitoring 8 requirements on the ab	d no instantaneous speeds event. Therefore, site

STES BRANCHARTER STATISTICS FAMILIERS DATA

		CALIBRATION AN	ND PERTINEN	IT DATA	
Date:	3/15/23		Site Name:	Keller	
Inspector(s).	Philamen		Instrument:	TVA 2020	
WEATHER OF	SERVATIONS			÷	
Wind Speed	d:MPH	Wind Direction: SW	_	Barometric Pressure: 29.97	2 "Hg
Ai Temperature	ir e: <u>42</u> °F	General Weathe Condition	s: clear	_	_
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
Procedure: Calil and calculate th precision must b nstrument Seria	brate the instrument. Make be average algebraic differen be less than or equal to 10% of al Number:	a total of three measureme ce between the instrument of the calibration gas value.	nts by alternating reading and the c	zero air and the calibratic alibration gas as a percen Cal Gas Concentration	n gas. Record the reading. tage. The calibration S00ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	ncCal Gas Reading	Response Time (second
1	0.0	499			3
2	-0.1	4949		2	2
		= 100%- = 99.74	' %	′500 × 100%	
an Sensitivity:					
al 1:			Trial 3:		
Cou	ints Observed for the Span=	146464	Count	s Observed for the Span=	10190 92
Count	ters Observed for the Zero=	3034	Counter	s Observed for the Zero=	3117
Cou	nts Observed for the Span=	152008			
Count	ers Observed for the Zero=	3073			
t Monitoring Ca	alibration Check				
) Air ding:). <u>~</u> ppm	Cal Gas Reading:	502 pt	ım	
KGROUND CC	DNCENTRATIONS CHECKS				
ind Location De	escription:	Flare	Re	ading: _ 2.5 _p	pm
nwind Location	Description:	6-30	Re	ading:	pm
s: Wi exc	nd speed averages were obs ceeded 20 miles per hour. N	served to remain below the lo rainfall had occurred with	alternative reque hin the previous 2	sted 10 miles per hour an 4 hours of the monitoring	d no instantaneous speeds event. Therefore, site

			SUPEACE EMIS	SIONIS AROAUT	ADINIC	Contraction of the second second
			CALIBRATION A	ND PERTINEN	T DATA	
Da	ite:	3-20-7	23	Site Name:	KEUER CA	Won
Ins	spector(s)	EPuz		Instrument:	TVA 2020	
W	EATHER OBS	ERVATIONS			E.	
	Wind Speed:	7_мрн	Wind Direction: E		Barometric 29.93 "H	Чg
Т	Air emperature:	<u>46</u> °F	General Weath Condition	ns: <u>Mostly</u>	CLOUDY	
CAL	IBRATION IN	FORMATION				
Pre-	monitoring Ca	alibration Precision Checi	k			
and preci	calculate the ision must be ument Serial I	average algebraic difference of the last o	e a colur of three measurem ence between the instrumen % of the calibration gas value	ents oy alternating z t reading and the ca e	ero air and the calibration gas. R libration gas as a percentage. Th Cal Gas Concentration:	ecord the reading e calibration 500ppm
Trial		Zero Air Reading	Cal Gas Reading	Cal Gas Con	cCal Gas Reading Respo	nse Time (secon
	2	-8.1	502	1 2	5	
	3	-0.1	503			
1						
Calibra	ation Precisio	n= Average Difference/C	Cal Gas Conc. X 100%	*Perform recalibration if a	verage difference is greater than 10	
Calibra	ation Precisio.	n= Average Difference/C	Cal Gas Conc. X 100% = 100% = 499.6	*Perform recalibration if a	verage difference is greater than 10 00 x 100%	
Calibra Span Si	ation Precisio. ensitivit y :	n= Average Difference/C	Cal Gas Conc. X 100% = 100% = 499.6	*Perform recalibration if a	verage difference is greater than 10	
Calibr Span Si <u>Trial 1:</u>	ation Precisio <u>ensitivity:</u> Count:	n= Average Difference/C s Observed for the Span	Cal Gas Conc, X 100% = 100% = 49.6 = <u>124544</u>	*Perform recalibration if a	verage difference is greater than 10 00 x 100% Dbserved for the Span≈/	0120
Calibr Span So <u>Trial 1:</u>	ation Precisio ensitivity: Counter Counter	n= Average Difference/C s Observed for the Span s Observed for the Zero	Cal Gas Conc. X 100% = 100% = 99.6 = <u>1245-94</u> = <u>3840</u>	*Perform recalibration if a	verage difference is greater than 10 00 x 100% Observed for the Span= 13	0120 43
Calibr. Span Si Trial 1: Trial 2:	ation Precision ensitivity: Counter Counter	n= Average Difference/C s Observed for the Spans s Observed for the Zeros s Observed for the Spans	Cal Gas Conc. X 100% = 100% = 99.6 = <u>1245-94</u> = <u>3840</u> = 129068	*Perform recalibration if a /5 % Trial 3: Counts (Counters (verage difference is greater than 10 00 x 100% Observed for the Span= $\frac{132}{38}$	0120 43
Calibr Span S Trial 1: Trial 2:	ation Precisio ensitivity: Counter Counter Counter	n= Average Difference/C s Observed for the Span s Observed for the Zero s Observed for the Span s Observed for the Span s Observed for the Zero=	Cal Gas Conc. X 100% = 100% = 99.6 = $1245-94$ = 3840 = 129068 = 3799	*Perform recalibration if a	verage difference is greater than 10 00 x 100% Observed for the Span= 13 Observed for the Zero= 38	0120 43
Calibr Span S Trial 1: Trial 2: Post Mo	ensitivity: Counter Counter Counters counters	n= Average Difference/C s Observed for the Spans s Observed for the Zeros s Observed for the Spans s Observed for the Spans s Observed for the Zeros	Cal Gas Conc. X 100% = 100% = 99.6 = $1245-94$ = 3840 = 129068 = 3799	*Perform recalibration if a /5 % Trial 3: Counts (Counters)	verage difference is greater than 10 00 x 100% Observed for the Span= <u>/</u> Observed for the Zero= <u>3</u>	0120 43
Calibr Span S Trial 1: Trial 2: Post Mo Zero Air Reading:	ensitivity: Counter Counter Counters Counters Counters Counters	n= Average Difference/C s Observed for the Spans s Observed for the Zeros s Observed for the Spans s Observed for the Zeros oration Check	Cal Gas Conc. X 100% = 100% = 99.6 = $1245-94$ = 3840 = 129068 = 3799 Cal Gas Reading:	*Perform recalibration if a % Trial 3: Counts (Counters (verage difference is greater than 10 00 x 100% Observed for the Span= 13 Observed for the Zero= 38	0120 43
Calibr Span S Trial 1: Trial 2: Post Mo Zero Air Reading: BACKGR	ensitivity: Counter Counters	n= Average Difference/C s Observed for the Spans s Observed for the Zeros s Observed for the Spans s Observed for the Zeros oration Check	Cal Gas Conc. X 100% = 100% = 99.6 = $1245-94$ = 129068 = 129068 = 3799 Cal Gas Reading: S	*Perform recalibration if a % Trial 3: Counts (Counters)	verage difference is greater than 10 00 x 100% Observed for the Span= 132 Observed for the Zero= 383	0120 43
Calibr. Span Si Trial 1: Trial 2: Post Mo Zero Air Reading: BACKGR	ensitivity: Counter Counters Coun	n= Average Difference/C s Observed for the Spans s Observed for the Zeros s Observed for the Spans s Observed for the Zeros oration Check CENTRATIONS CHECKS stription:	Cal Gas Conc. X 100% = 100% = 99.6 = $1245-94$ = 3890 = 129068 = 3799 Cal Gas Reading: S <u>CrrpiD</u>	*Perform recalibration if a % <u>Trial 3:</u> Counts (<u>Counters 1</u> S. 7 ppm Read	verage difference is greater than 10 00 x 100% Observed for the Span= 132 Observed for the Zero= 38 ding: 13.2 ppm	2120 43
Calibr Span S Trial 1: Trial 2: Post Mo Zero Air Reading: BACKGR Upwind L Downwin	ensitivity: Counter Counters C	n= Average Difference/C s Observed for the Spans s Observed for the Zeros s Observed for the Spans s Observed for the Spans s Observed for the Zeros oration Check CENTRATIONS CHECK: tription: escription:	Cal Gas Conc. X 100% = 100% = 99.6 = $1245-94$ = 3840 = 129068 = 3799 Cal Gas Reading: S <u>CrriD</u> Entrance	*Perform recalibration if a % <u>Trial 3:</u> Counts 0 <u>Counters 1</u> Reac Reac	verage difference is greater than 10 00 x 100% Dbserved for the Span= 13 Dbserved for the Zero= 38 ding: 13.2 ppm ding: 4.9 ppm	0120 43
Calibr. Span S Trial 1: Trial 2: Post Mo Zero Air Reading: BACKGR Upwind L Downwin Notes:	ensitivity: Counter Counter Counters Co	n= Average Difference/C s Observed for the Span s Observed for the Zeros s Observed for the Zeros s Observed for the Zeros oration Check	Cal Gas Conc. X 100% = 100% = 99.6 = 124594 = 3840 = 129068 = 3799 Cal Gas Reading: S <u>Con Ri D</u> Entrance bserved to remain below the No rainfall had occurred with ere within the requested alter	*Perform recalibration if a 2 _ /5 % Trial 3: Counts (Counters (Counters (Read Read Read Read thin the previous 24 for the LMR	verage difference is greater than 10 00 x 100% Observed for the Span= <u>/</u> Observed for the Zero= <u>38</u> ding: <u>13.2</u> ppm ding: <u>4.9</u> ppm ed 10 miles per hour and no instanours of the monitoring event. Trequirements on the above ment	2) i 2 4/3 untaneous speeds herefore, site ioned date.

		CALIBRATION AN	ND PERTINEN		
Date	3-20-23		Site Name:	Kpller	
Inspector(s):	Bryan Och	00	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			·	
Wind Speed	н: Q мрн	Wind Direction: NE		Barometric 29.94 Pressure:	"Hg
Ai Temperature	r : U_ °F	General Weath Condition	er s: Cloud Y	-	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
precision must b	I Number:	of the calibration gas value.		Cal Gas Concentration:	S00ppm
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (second
2	0	501			5
3	8	497	2		2
		= 100%-	1.3	/500 x 100%	
		= 99.24	%		
an Sensitivity:					
ial 1: Cou	nts Observed for the Span=	121848	Trial 3: Count	s Observed for the Span=	136688
Count	ers Observed for the Zero=	5933	Counter	s Observed for the Zero=	4.057
<u>aiz:</u> Coui	nts Observed for the Span=	128620			
Count	ers Observed for the Zero=	5454	10		
it Monitoring Ca	libration Check				
o Air		Cal Gas			
ding: 2	• <u>3</u> ppm	Reading:	493 p	pm	
CKGROUND CC	NCENTRATIONS CHECKS				
vind Location De	escription:	Gr:0165	Re	eading: 1.3.2 pr	וחכ
nwind Location	Description:	Entrance	Re	eading: <u>4.9</u> pp	om
es: Wi	nd speed averages were ob	oserved to remain below the	e alternative reque	sted 10 miles per hour and	no instantaneous speeds

		1	
WE'S	Distriction Section and Sector State Constant and Sectors	- Month	TX :

		CALIBRATION AN	UNAS MONI	I UKING NT DATA	
Date:	3-20-23		Site Name	Kelled	
Inspector(s)	ALFREDO	Comer	Instrument:		
WEATHER OF	BSERVATIONS	Of the C	mat ament.	108 2020	
		Mind			
Wind Speed	d:МРН	Direction: NE		Pressure: 29.92	"Hg
A Temperature	ir e: <u>q</u> •F	General Weathe Condition	cloudy	-)	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check	k			
precision must b	be less than or equal to 109	% of the calibration gas value.	reading and the d	Cal Gas Concentration:	age. The calibration
Triał 1	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (second
2	0	562	2		5
3	-0.1	496	4		2
		= 100%-	2.5	/500 × 100%	
		= 99 .48	%		
oan Sensitivity:					4
Cou	ints Observed for the Span	= 157012	Count	s Observed for the Span=	174524
Coun	ters Observed for the Zero	6347	Counter	rs Observed for the Zero=	5113
Cou	nts Observed for the Span	- 182284			
Count	ers Observed for the Zero	= 5681			
st Monitoring Ca	alibration Check				
		Cal Gas	429		
o Air	7.4			nm	
o Air ading	2.9 ppm	Reading:	p	μπ	
o Air ading:	DNCENTRATIONS CHECK	Reading:	<u>10</u> p	17 0	
o Air ading: CKGROUND CC	DNCENTRATIONS CHECK escription:	Reading: S Grid 105	ρ Ri	eading: <u>13.2</u> p	m
o Air ading: CKGROUND CC vind Location Do vnwind Location	DNCENTRATIONS CHECK escription:	Reading: s Grid 105 Entrancc	ρ Ri	eading: <u>13.2</u> pp eading: <u>4,9</u> pp	om Om

		CALIBRATION AN	ID PERTINENT DA	NTA	
Date:	3-20-23	_	Site Name: 6	ller	
Inspector(s):	ARTURO OU	LIVERAS	Instrument: TVA	2020	
WEATHER C	DBSERVATIONS			a.	
Wind Spe	ed:МРН	Wind Direction: NE	Barc Pro	essure: 29.93	"Hg
Temperatu	Air re: <u>47</u> *F	General Weathe Conditions	Mostly Cloud	4	
CALIBRATIO	N INFORMATION				
Pre-monitorin	g Calibration Precision Check				
and calculate precision must Instrument Ser	the average algebraic differe t be less than or equal to 10% rial Number:	nce between the instrument of the calibration gas value.	reading and the calibrati Cal G	ion gas as a percent	tage. The calibration
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal	Gas Reading	Response Time (seconds
2	0	496	u		2
3	-6.1	501	1		5
		= 100%-	2.3 /500 x 2	100%	
		= 99 , 54	%		
oan Sensitivity:					
rial 1: Co	punts Observed for the Span	102 596	Trial 3: Counts Obser	rved for the Span=	145128
Cou	nters Observed for the Zero=	4548	Counters Obse	rved for the Zero=	4161
<u>ial 2:</u> Co	ounts Observed for the Span=	142164			
Cour	nters Observed for the Zero=	4362			
st Monitoring (Calibration Check				
o Air	30	Cal Gas	515		
aoing:	ppm	Reading	ppm		
CKGROUND C	CONCENTRATIONS CHECKS				
wind Location I	Description:	61:d 103	Reading:	13.2 p	pm
vnwind Locatio	on Description:	Entrance	Reading:	4,9 p	pm
es: V e	Vind speed averages were of xceeded 20 miles per hour. reteorological conditions we	oserved to remain below the No rainfall had occurred with re within the requested alter	alternative requested 10 hin the previous 24 hours) miles per hour and s of the monitoring	d no instantaneous speeds event. Therefore, site

NGS BRANK - State Branchan Branchan and Brank - - -----

		CALIBRATION A	VD PERTINIER	I UKING NT DATA	
Date:	2-70-2	23	Site Name	Kaller	
Inspector(s):	heard	VEPET	Instrumente	TVA 2020	
WEATHER OF	BSERVATIONS	force	instrument.	TVA 2020	
Wind Speed	д:МРН	Wind Direction: <u>VE</u>		Barometric Pressure: <u>29-9</u> 3	"Hg
A		General Weath	er	1	
CALIDOATION		Condition	s: Most Moloo	dy	
CALIDRATION	INFORMATION				
Pre-monitoring	Calibration Precision Ch	neck			
ond calculate th precision must b Instrument Seria	ne average algebraic dif pe less than or equal to al Number:	ference between the instrument 10% of the calibration gas value.	reading and the c	cal Gas Concentration;	tage. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	I Cal Gas Co	onc -Cal Gas Reading l	Response Time (second
1	-0.1	502	2		S
2	0	500		0	3
3	-0.1	448		2	5
		= 100%-	1.3	/500 x 100%	
		= 99.74	%		
an Sensitivity:					
<u>ial 1:</u> Cou	nts Observed for the Sp	Dan= 160352	<u>Trial 3:</u> Count	s Observed for the Span=	164662
Count	ers Observed for the Ze	ero= 4525	Counter	s Observed for the Zero=	4550
<u>al 2:</u> Cour	nts Observed for the Sp	an= 161658			1-0-0
Count	ers Observed for the Ze	ro= 4423			
it Monitoring Ca	libration Check				2
o Air	10	Cal Gas	498		
aing:	ррт	Reading:	pr	n	
KGROUND CO	INCENTRATIONS CHE	CKS			
vind Location De	escription:	Giric 105	Re	ading: <u>13.2</u> p	pm
nwind Location	Description:	Fintrance	Re	ading: 4.9 p	pm

SEES Desir Senard and a Second Fitter Fatter and and and a fatter of the second second and a second se

			CALIBRATION	AND PERTINE	NT DATA	
Date:	3-20	-23	8	Site Name:	Keller	
Inspecto	or(s):			Instrument:	TVA 2020	
WEATH	ER OBSERVATIONS				Ĭ.	
Wind	Speed: 7	МРН	Wind Direction:		Barometric Pressure: 29.93	"Нд
Tempe	Air trature: 47	°F	General Wea Condit	ather ions: Mostry cla	ol y	. <i>1</i>
CALIBRA	TION INFORMATION					
Pre-monit	toring Calibration Precis	ion Check				1
Procedure and calcul precision i	e Calibrate the instrume late the average algebra must be less than or equ t Serial Number	ent, Make a to aic difference l ial to 10% of to 4388	tal of three measure between the instrum he calibration gas va	ments by alternating ent reading and the lue	g zero air and the calibra calibration gas as a perce	tion gas. Record the readings entage. The calibration
fiel					Cal Gas Concentration	n: <u>500ppm</u>
1	Zero Air Re	ading	LIGS Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
2	-0.1		501		1	4
			0		A 5	
alibration	Precision= Average Diff	erence/Cal Ga	s Conc. X 100% = 100	*Perform recalibration	if average difference is greater th	an 10
alibration	Precision= Average Diff	erence/Cal Ga	s Conc. X 100% = 100 = 억역.ዊ	*Perform recalibration	if average difference is greater th	an 10
alibration an Sensiti	Precision= Average Diffe	erence/Cal Ga	s Conc. X 100% = 100 = 억식.Q	*Perform recalibration	if average difference is greater th	an 10
alibration an Sensiti ial 1:	Precision= Average Diffe vity: Counts Observed for t	erence/Cal Ga	s Conc. X 100% = 100 = 억역.ዊ	*Perform recalibration	if average difference is greater th /500 x 100%	= 135476
alibration an Sensiti ial 1:	Precision= Average Diffe vity: Counts Observed for t	erence/Cal Ga	s Conc. X 100% = 100 = 억५.ዊ 36とつん	*Perform recalibration	if average difference is greater th /500 x 100% ts Observed for the Span	$\frac{1}{255476}$
alibration an Sensiti al 1: al 2:	Precision= Average Diff vity: Counts Observed for t Counters Observed for t	erence/Cal Ga the Span= 1 ⁻² the Zero= 1 ⁻²	s Conc. X 100% = 100 = 94.9 36276 36276 35657	*Perform recalibration	if average difference is greater th /500 x 100% ts Observed for the Span	= 13 5476 = -5862
alibration an Sensiti ial 1: al 2:	Precision= Average Diff vity: Counts Observed for t Counters Observed for t Counts Observed for t	erence/Cal Ga the Span= 1 ⁻² the Zero= 1 ⁻² the Span= 1 ⁻²	s Conc. X 100% = 100 = 94.9 36276 36276 35632 535632	*Perform recalibration	if average difference is greater th /500 x 100% ts Observed for the Span rs Observed for the Zero	= 13 5476 = -5862
alibration an Sensiti ial 1: al 2: (t Monitor o Air ding:	Precision= Average Diffe vity: Counts Observed for t Counters Observed for t Counters Observed for t Counters Observed for t ing Calibration Check 2 8 ppm	erence/Cal Ga the Span= 1 the Zero= 1 the Zero= 1	s Conc. X 100% = 100 = 44.4 36276 36276 35657 535657 535657 535657 Cal Gas Reading:	*Perform recalibration	if average difference is greater th /500 x 100% ts Observed for the Span rs Observed for the Zero	= <u>135476</u> = <u>5862</u>
alibration an Sensiti ial 1: al 2: t Monitor o Air ding: CKGROUN rind Locati	Precision= Average Diffe vity: Counts Observed for t Counters Observed for t Counts Observed for t Counters Observed for t ing Calibration Check 2	erence/Cal Ga the Span= 1^{-2} the Zero= 1^{-2} the Zero= 1^{-2} the Zero= 1^{-2} CHECKS	s Conc. X 100% = 100 = 44.4 36276 56276 55657 55657 55657 Cal Gas Reading:	*Perform recalibration	if average difference is greater th /500 x 100% ts Observed for the Span rs Observed for the Zero pm eading: 13 2	an 10 = <u>135476</u> = <u>-5862</u>
alibration an Sensiti ial 1: al 2: (t Monitor o Air ding: 'KGROUN 'ind Locati nwind Loc	Precision= Average Diffi vity: Counts Observed for t Counters Observed for t Counters Observed for t Counters Observed for t ing Calibration Check 2 % ppr ID CONCENTRATIONS on Description: ation Description:	erence/Cal Ga the Span= 1^{-2} the Zero= 1^{-2} the Zero= 1^{-2} the Zero= 1^{-2} CHECKS CHECKS	s Conc. X 100% = 100 = 94.9 36276 36276 36276 35652 5382 Cal Gas Reading: Vid Avance	*Perform recalibration	if average difference is greater th /500 x 100% ts Observed for the Span rs Observed for the Zero pm eading: <u>13 2</u> eading: <u>4.9</u>	 an 10 = <u>1.5.5.H.76</u> = <u>-5.8.6.2</u> ρρm

er.q
		SURFACE EMIS	SIONS MONITOR	ING ATA	
Date:	3.20-	323	Site Name:	ELLER	CANVON
Inspector	(s): Don Gib	son	Instrument: TV	'A 2020	
WEATHE	R OBSERVATIONS	10 N		30.)	
Wind S	Speed: MPH	Wind Direction:	Ва Р	rometric 2.9.9	23 _{"Hg}
Temper	Air U6 "F	General Weath Conditior	er ns: <u>Mostly</u>	CLOUDY	
CALIBRAT	TION INFORMATION			8	
Pre-monito	oring Calibration Precision Chec	k			
Procedure: and calcula precision m Instrument	Calibrate the instrument. Mak ate the average algebraic difference nust be less than or equal to 109 Serial Number: 2.3	e a total of three measureme ence between the instrument 6 of the calibration gas value 6 7	ents by alternating zero o t reading and the calibra ?. Cal	air and the calibration tion gas as a percent Gas Concentration:	n gas. Record the readings age The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcC	al Gas Reading	Response Time (seconds)
2		500	0		5
3	0	507	0		6
		= 100% = 94.74	/500 x	100%	×
Span Sensitiv	rity:				
<u>Trial 1:</u>	Counts Observed for the Span	= 166064	Trial 3: Counts Obse	erved for the Span=	170136
0	Counters Observed for the Zero	= 4937	Counters Obs	erved for the Zero=	4892
Trial 2:	Counts Observed for the Span	171524			
C	ounters Observed for the Zero-	- 4906			
Post Monitorir	ng Calibration Check				
Zero Air Reading:	2.8 ppm	Cal Gas Reading:	5.6 ppm		
BACKGROUN	D CONCENTRATIONS CHECK	S			
Jpwind Locatic	on Description:	GRID	Reading	13.2 pr	ma
ownwind Loca	ation Description	ENTRANCE	Reading	: <u>4.9</u> pr	ma
lotes:	Wind speed averages were o exceeded 20 miles per hour. meteorological conditions we	bserved to remain below the No rainfall had occurred wit ere within the requested alte	e alternative requested 1 hin the previous 24 hour rnatives of the LMR requ	0 miles per hour and rs of the monitoring e uirements on the abo	l no instantaneous speeds event. Therefore, site ove mentioned date.

10

			SURFACE EMISS	SIONS MONIT	ORING	
			CALIBRATION A	ND PERTINEN	ΙΤ ΟΑΤΑ	0
)	Date:	2-06-23)	Site Name:	Keller	-
	Inspector(s):	Don Gu	bson	Instrument:	TVA 2020	
	WEATHER O	BSERVATIONS			17	
	Wind Spee	d: <u>2</u> мрн	Wind Direction:-		Barometric Pressure: <u>29</u>	"Нд
	/ Temperatur	Air e: <u>46</u> *F	General Weath Conditior	ns: <u>Cland</u>	4	
	CALIBRATION	INFORMATION				
	Pre-monitoring	g Calibration Precision Check				
	Procedure: Cal and calculate t precision must	ibrate the instrument. Make a he average algebraic differenc be less than or equal to 10% o	total of three measurem te between the instrumen f the calibration gas value	ents by alternating t reading and the c 2.	zero air and the calibratio alibration gas as a percent	n gas. Record the readings tage. The calibration
	Instrument Ser	ial Number:	<u>)</u>		Cal Gas Concentration:	500ppm
	Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (seconds)
	2	0	50/	1 1		5
ς.	3	-6.1	499	<u>t</u>		2
	Calibration Prec	ision= Average Difference/Cal	Gas Conc. X 100% = 100%	0.3	/500 x 100%	
			=	%	, 200 X 100/0	
	Span Sensitivity:					
	Trial 1:			Trial 3:		
	Co	ounts Observed for the Span=_	160396	Count	s Observed for the Span=	168516
	Coul	nters Observed for the Zero=	4817	Counter	rs Observed for the Zero=	4830
	Co	unts Observed for the Span= $_$	165996			
-	Cour	nters Observed for the Zero=	4305			
ľ	ost Monitoring (Calibration Check				
Z F	Cero Air Reading:	-0, 1 ppm	Cal Gas Reading:	500 p	pm	
E	ACKGROUND	CONCENTRATIONS CHECKS				
l	pwind Location I	Description:	Flare	R	eading: <u>3,6</u> p	pm
D	ownwind Locatic	on Description:	79	R	eading: <u>22,5</u> p	ngm
N	otes: V e m	Vind speed averages were obs xceeded 20 miles per hour. N neteorological conditions were	erved to remain below th o rainfall had occurred wi e within the requested alt	e alternative reque thin the previous 2 ernatives of the LN	ested 10 miles per hour an 24 hours of the monitoring 1R requirements on the ab	d no instantaneous speeds event. Therefore, site ove mentioned date.

1

meteorological conditions were within the requested alternatives of the LMR requirements on the above mer

		CALIBRATION A		ΙΤ ΠΑΤΑ	
	2 3- 2 -	≪ 2010' Claim W 629' C 667' 6 8 8 4 429' S U 2"C	INGE LENGINGEL	Kalle	95
Date:	2-20-23	-	Site Name:	REIIer	
Inspector(s):	Jonethan Seli	ulveda	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			÷.	
Wind Speed	а:мрн	Wind Direction: SE		Barometric Pressure: 29	″Hg
Ai Temperature	<u>46</u>	General Weath Condition	ns: <u>Cloudy</u>	-	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
nstrument Seria	al Number: <u>438</u>	of the calibration gas value	creaung and the C	Cal Gas Concentration:	age. The calibration
rial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (seco
2	~6.1	501	4		3
		201	+		5
alibration Precis	~O.]	Average Difference: Gas Conc. X 100%	Perform recalibration) If average difference is greater than	9] 10
alibration Precis	~O.	Average Difference: Gas Conc. X 100% = 100%	Perform recalibration	if average difference is greater than /500 x 100%	4 10
alibration Precis	~O.	Average Difference: Gas Conc. X 100% = 100% =	Perform recalibration	if average difference is greater than	9 10
alibration Precis	~O.	Average Difference: Gas Conc. X 100% = 100% =	*Perform recalibration	if average difference is greater than	4 10
alibration Precis	•••	Average Difference: Gas Conc. X 100% = 100% =	Perform recalibration Perform recalibration 0.6 %	if average difference is greater than /500 x 100%	12 1 4 4
alibration Precis an Sensitivity: ial 1: Cou	ion= Average Difference/Cal	Average Difference: Gas Conc. X 100% = 100% = 1/30648	Perform recalibration Perform recalibration 0.6 % Trial 3: Count	if average difference is greater than /500 x 100% :s Observed for the Span=	131660
alibration Precis an Sensitivity: ial 1: Cou Coun	ion= Average Difference/Cal nts Observed for the Span= ters Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100% = 1/30648 3776	Perform recalibration Perform recalibration 0.6 % Trial 3: Counte	if average difference is greater than /500 x 100% is Observed for the Span= rs Observed for the Zero=	131060 3746
alibration Precis an Sensitivity: ial 1: Cou Coun al 2: Cou	Torial Spans of the Spans of th	Average Difference: Gas Conc. X 100% = 100% = 1/30648 3776 130896	Perform recalibration Perform recalibration 0.6 % Trial 3: Counte	f average difference is greater than /500 x 100% s Observed for the Span= rs Observed for the Zero=	131660 3746
alibration Precis an Sensitivity: ial 1: Cou Coun al 2: Count	Torial state of the span state	Average Difference: Gas Conc. X 100% = 100% = 1/30648 3776 130896 3745	Perform recalibration Perform recalibration 0.6 % Trial 3: Counte	if average difference is greater than /500 x 100% :s Observed for the Span= rs Observed for the Zero=	131660 3746
alibration Precis an Sensitivity: ial 1: Cou Count al 2: Cou Count it Monitoring Ca	Torial states of the span and states of the s	500 Average Difference: Gas Conc. X 100% = 100% = 1/30648 3776 130896 3745	Perform recalibration *Perform recalibration 0.6 %	if average difference is greater than /500 x 100% :s Observed for the Span= rs Observed for the Zero=	131660 3746
alibration Precis an Sensitivity: ial 1: Cou Count al 2: Cou Count st Monitoring Ca	Torion - Average Difference/Cal ints Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Span= alibration Check	500 Average Difference: Gas Conc. X 100% = 100% = 1/30648 3776 130896 3745	Perform recalibration *Perform recalibration 0.6 % Trial 3: Counte	if average difference is greater than /500 x 100% s Observed for the Span= rs Observed for the Zero=	131660 3746
alibration Precis	Torion = Average Difference/Cal ants Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check Oppm	Average Difference: Gas Conc. X 100% = 100% = 1/30648 3776 130896 3745 Cal Gas Reading:	D . 6 *Perform recalibration 0 . 6 % Trial 3: Counte 5 03	if average difference is greater than /500 x 100% is Observed for the Span= rs Observed for the Zero=	131060 3746
alibration Precis an Sensitivity: ial 1: Cou Count al 2: Cou Count it Monitoring Ca o Air iding: CKGROUND CO	Torrection of the span of the	500 Average Difference: Gas Conc. X 100% = 100% = 1/30648 3776 130896 3745 Cal Gas Reading:	Perform recalibration *Perform recalibration % Trial 3: Counte 5 03 ρ	if average difference is greater than /500 x 100% is Observed for the Span= rs Observed for the Zero=	131660 3746
alibration Precis an Sensitivity: ial 1: Cou Count al 2: Cou Count at Monitoring Ca o Air Iding: CKGROUND CO vind Location D	ion= Average Difference/Cal ints Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Zero= alibration Check 0 ppm DNCENTRATIONS CHECKS escription:	Average Difference: Gas Conc. X 100% = 100% = 1/30648 3776 130896 3745 Cal Gas Reading: Flave	Perform recalibration *Perform recalibration % Trial 3: Counte	f average difference is greater than /500 x 100% s Observed for the Span= rs Observed for the Zero= pm eading: b p	131660 3746
alibration Precis	ion= Average Difference/Cal ints Observed for the Span= ters Observed for the Zero= nts Observed for the Span= ters Observed for the Span= alibration Check O,ppm DNCENTRATIONS CHECKS escription: Description:	Average Difference: Gas Conc. X 100% = 100% = 1/30648 3776 130896 3745 Cal Gas Reading: Flare S4	Perform recalibration *Perform recalibration % Trial 3: Counte 5 03 p R R	pm eading: <u>22.5</u> p	1 <u>3 66 р</u> <u>37 4 6</u> рт
alibration Precis	ints Observed for the Span= ters Observed for the Zero= nts Observed for the Zero= nts Observed for the Zero= alibration Check O, / ppm DNCENTRATIONS CHECKS escription: n Description:	Average Difference: Gas Conc. X 100% = 100% = 1/30648 3776 130896 3745 Cal Gas Reading: Flare Su	Perform recalibration *Perform recalibration 0.6 % Trial 3: Counte 5 03 p R R R e alternative reque	pm eading: <u>22.5</u> p ested 10 miles per hour an	131660 3746

meteorological conditions were within the requested alternatives of the Livin requirements of the door

Attachment 6

Weather Data

March 13, 2023 Emissions Monitoring Weather Data Keller Canyon Landfill, Pittsburg, California

March 15, 2023 Emissions Monitoring Weather Data Keller Canyon Landfill, Pittsburg, California

March 20, 2023 Emissions Monitoring Weather Data Keller Canyon Landfill, Pittsburg, California

March 30, 2023 Emissions Monitoring Weather Data Keller Canyon Landfill, Pittsburg, California

April 12, 2023 Emissions Monitoring Weather Data Keller Canyon Landfill, Pittsburg, California

Attachment 7

Exceedance Repair Logs

First Quarter 2023 repair Log Keller Canyon Landfill

	Initial	repairs	First 10-day	repairs	Second 10-day
Location	13-Mar	well increases 3/14 to 3/18	20-Mar		30-Mar
KC027	29.33	well increases 3/14 to 3/18	9.16		
KC028	26.47	well increases 3/14 to 3/18	15.97		
KC036	28.31	well increases 3/14 to 3/18	17.23		
KC042	27.94	well increases 3/14 to 3/18	10.10		
KC043	30.81	well increases 3/14 to 3/18	15.51		
KC050	40.76	well increases 3/14 to 3/18	13.49		
KC052	36.86	well increases 3/14 to 3/18	16.82		
KC058	26.31	well increases 3/14 to 3/18	18.52		
KC059	33.84	well increases 3/14 to 3/18	28.12	Well increases 3/22 to 3/27 Areas too wet to track walk	23.46
KC060	42.12	well increases 3/14 to 3/18	22.95		
KC066	26.06	well increases 3/14 to 3/18	8.87		
KC068	26.03	well increases 3/14 to 3/18	Active		4 5.32 /Active
KC074	36.03	well increases 3/14 to 3/18	10.07		
KC075	27.82	well increases 3/14 to 3/18	14.31		

First Quarter 2023 repair Log Keller Canyon Landfill

КС076	51.11	well increases 3/14 to 3/18	32.07	Well increases 3/22 to 3/27 Areas too wet to track walk	43.5
KC077	30.11	well increases 3/14 to 3/18	Active		22.72 /Active
KC082	36.63	well increases 3/14 to 3/18	30.50	Well increases 3/22 to 3/27 Areas too wet to track walk	14.29
KC083	27.28	well increases 3/14 to 3/18	16.00		
KC084	52.95	well increases 3/14 to 3/18	34.04	Well increases 3/22 to 3/27 Areas too wet to track walk	39.54
KC091	48.24	well increases 3/14 to 3/18	38.70	Well increases 3/22 to 3/27 Areas too wet to track walk	41.43
KC092	35.22	well increases 3/14 to 3/18	25.68	Well increases 3/22 to 3/27 Areas too wet to track walk	25.31
КС093	44.29	well increases 3/14 to 3/18	46.35	Well increases 3/22 to 3/27 Areas too wet to track walk	65.58
КС094	26.89	well increases 3/14 to 3/18	23.96		
КС099	48.86	well increases 3/14 to 3/18	16.80		
KC101	36.12	well increases 3/14 to 3/18	23.75		

First Quarter 2023 repair Log Keller Canyon Landfill

	Le settie a	Initial	Repairs	7-Day	First 10-day	repairs	Second 10-day		30-Day	1	1	Desitien
	Location	13-Mar	15-Mar	20-Mar	20-Mar	21-Mar	30-Mar		12-Apr	Lat	Long	Position
	flame arrestor	2,200	re-sealed	10,000		removed flame arrestor and resealed 2 person job	100		2	38.00406396	-121.934	N38° 00.244' W121° 56.062'
	EW2103	2,100	flow increases 3/14 to 3/18	-	3,400	re-compacted soil around well 3-22 to 3-24	438		15	37.99764066	-121.937	N37° 59.858' W121° 56.205'
	W143	2,000	flow increases 3/14 to 3/18	-	600	re-compacted soil around well 3-22 to 3-24	467		29	37.99891773	-121.936	N37° 59.935' W121° 56.180'
	W146	1,300	flow increases 3/14 to 3/18	-	3,300	re-compacted soil around well 3-22 to 3-24	5,400	dig out and added bentonite 3-31	11	37.99854431	-121.934	N37° 59.913' W121° 56.047'
sn	EW142	6,600	flow increases 3/14 to 3/18	-	6,200	re-compacted soil around well 3-22 to 3-24	1,248	dig out and added bentonite 3-31	16	37.99810301	-121.937	N37° 59.886' W121° 56.191'
tantaneo	EW2106	800	flow increases 3/14 to 3/18		1,200	re-compacted soil around well 3-22 to 3-24	2,247	dig out and added bentonite 3-31	69	37.99567183	-121.936	N37° 59.740' W121° 56.188'
ŝ	HIGH SURF READ G74 AG	690	flow increases 3/14 to 3/18		21				37	37.99857097	-121.936	N37° 59.914' W121° 56.167'
	HIGH SURF READ G78 AG	500	flow increases 3/14 to 3/18		132				78	37.99327201	-121.936	N37° 59.596' W121° 56.152'
	HIGH SURF G74 AG	395								37.998203	-121.936	N37° 59.892' W121° 56.151'
	HIGH SURF G76 AG	305		-						37.99575004	-121.936	N37° 59.745' W121° 56.168'
	HIGH SURF READ G75 AG	267								37.996923	-121.936	N37° 59.815' W121° 56.158'
	HIGH SURF READ G77 AG	230								37.99478704	-121.936	N37° 59.687' W121° 56.157'
	HIGH SURF READ G91 AG	444								37.99905603	-121.937	N37° 59.943' W121° 56.206'
	HSR GRID50 RY	211								37.99745601	-121.935	N37° 59.847' W121° 56.086'
	HSR GRID52 RY	227								37.99389697	-121.935	N37° 59.634' W121° 56.086'
	HSR GRID57 RY	200								37.99770797	-121.935	N37° 59.862' W121° 56.125'
	SFR G101 JS	487								37.99563797	-121.937	N37° 59.738' W121° 56.217'
	SFR G102 JS	277								37.99432998	-121.937	N37° 59.660' W121° 56.203'
	SFR G99 JS1	427								37.99864699	-121.937	N37° 59.919' W121° 56.223'
	SFR G99 JS2	376								37.99871698	-121.937	N37° 59.923' W121° 56.218'
	SFR G99 JS3	302								37.99862696	-121.937	N37° 59.918' W121° 56.212'
	SFR G99 JS4	246								37.99889904	-121.937	N37° 59.934' W121° 56.212'

SCS FIELD SERVICES

September 12, 2023 File No. 07221005.01

Ms. Antonia Gunner Republic Services – Keller Canyon Landfill 901 Bailey Road Pittsburg, California 94565

Subject: Keller Canyon Landfill - Pittsburg, California

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring for Second Quarter 2023.

Dear Ms. Gunner:

SCS Field Services (SCS-FS) is pleased to provide Republic Services, with the enclosed report summarizing the surface emissions monitoring services provided at the Keller Canyon Landfill (Site) during the second quarter of 2023. This report includes the results of the surface scan, component emissions, and blower/flare station emissions monitoring for the Site for this monitoring period.

SCS-FS appreciates the opportunity to be of assistance to Republic Services on this project. As you review the enclosed information, please contact Sean Bass at (209) 345-2458 or Whitney Stackhouse at (209) 338-7990 if you have any questions or comments.

Sincerely,

Max Polkabla

Max Polkabla Senior Technician/Data Analyst SCS Field Services

Senn Bass

Sean T. Bass Senior Project Manager SCS Field Services

Encl.

Keller Canyon Landfill, LMR/NSPS SEM, Second Quarter 2023

Keller Canyon Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring

Second Quarter 2023

Presented to:

Ms. Antonia Gunner Republic Services – Keller Canyon 901Bailey Road Pittsburg, California 94565

SCS FIELD SERVICES

File No. 07221005.01 | September 12, 2023

SCS FIELD SERVICES 4730 Enterprise Way Suite A Modesto, CA 95356

Keller Canyon Landfill

Landfill Methane Rule (LMR) and New Source Performance Standards (NSPS) Surface Emissions Monitoring Second Quarter 2023

INTRODUCTION

This letter provides results of the June 8, 20, 21, 30, and July 10, and 20, 2023, LMR and NSPS landfill surface emissions monitoring (SEM) performed by SCS Field Services (SCS) at the subject site. All work was performed in accordance with our approved Work Scope dated December 23, 2020, and the LMR/NSPS requirements.

SUMMARY AND CONCLUSIONS

As stipulated in LMR, if uncorrectable exceedances within the 10-day limitation are detected or emissions are discovered during an inspection by Regulatory Agencies, the landfill must perform monitoring on a 25-foot pathway on a quarterly basis for active disposal sites. Upon completion of four consecutive SEM events without an uncorrectable exceedance of the 25 ppmv or 500 ppmv standards, other than non-repeatable momentary readings, the landfill may perform the monitoring on a 100-foot spacing on an annual basis for closed landfills or quarterly for active disposal sites. Therefore, based on the previous monitoring events, in which exceedances were observed, the monitoring at the Keller Canyon Landfill was performed on 25-foot pathways in accordance with the LMR.

On June 8, 20, 21, 30, and July 10, and 20, 2023, SCS performed the second quarter of 2023 surface emissions monitoring testing as required by the Bay Area Air Quality Management District (BAAQMD). Instantaneous surface emissions monitoring results indicated that twenty-one (21) locations exceeded the 500 ppmv maximum concentration during our initial monitoring (Table 1 in Attachment 3). The required 10/20-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring indicated that all areas return to below regulatory compliance limits following system adjustments and remediation by site personnel. Based on these monitoring results no additional follow-up testing was required at this time. These results are discussed in a subsequent section of this report.

Also, during the instantaneous monitoring event, SCS performed concurrent integrated monitoring of the landfill surface. As required by the LMR, the landfill was divided into 50,000 square foot areas. The Keller Canyon Landfill surface area was therefore divided into 211 grids, as shown in Figure 1 in Attachment 1. During the monitoring event, there were nine (9) areas observed to exceed the 25 ppmv LMR integrated average threshold (Table 2 in Attachment 4). The required first and second 10-day LMR follow-up monitoring indicated all nine (9) areas had returned to compliance following system adjustments and remediation by SCS and site personnel. Based on these monitoring results no additional follow-up testing was required at this time. These results are discussed in a subsequent section of this report.

During this monitoring event, several grids were not monitored, in accordance with the regulations, due to ongoing active landfilling activities, unsafe conditions, or there was no waste in place prior to the monitoring event.

In addition, quarterly monitoring of the pressurized piping or components of the Gas Collection and Control System (GCCS) that are under positive pressure must be performed quarterly. During the monitoring event, there was one (1) location observed to exceed the 500 ppmv threshold. The location returned to compliance within 7 days as required by the LMR, following repairs made by SCS. These results are discussed in a subsequent section of this report.

Further, as required under the LMR, any location on the landfill that has an observed instantaneous methane concentration above 200 ppmv, must be stake-marked and Global Positioning System (GPS) located on a site figure. During this reporting period, eleven (11) locations were observed to exceed the 200 ppmv, reporting threshold (see attached location map and table with GPS coordinates). When these readings are observed, the locations are reported to site personnel for tracking and/or general surface remediation and will be reported in the next submittal of the annual LMR report.

Finally, to help prevent potential future exceedances, SCS recommends that the landfill surface be routinely inspected and any observed surface erosion be routinely repaired.

BACKGROUND

The Keller Canyon Landfill is an active organic refuse disposal site. By way of background, organic materials buried in a landfill decompose anaerobically (in the absence of oxygen) producing a combustible gas which contains approximately 50 to 60 percent methane gas, 40 to 50 percent carbon dioxide, and trace amount of various other gases, some of which are odorous. The Keller Canyon property contains a system to control the combustible gases generated in the landfill.

SURFACE EMISSIONS MONITORING

On June 8, 20, 21, 30, and July 10, and 20, 2023, the instantaneous and integrated SEM was performed over the surface of the subject site. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring in the 50,000 square foot grids as required under the LMR. During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rules as required.

EMISSIONS TESTING INSTRUMENTATION/CALIBRATION

The instruments used to perform the landfill surface emission testing consisted of the following:

- Thermo Scientific TVA 2020 portable Flame Ionization Detector (FID). This instrument measures methane in the air over a range of 1 to 50,000 ppmv. The TVA 2020 meets the State of California Air Resources Board (CARB) requirements for combined instantaneous and integrated monitoring and was calibrated in accordance with the United States Environmental Protection Agency (US EPA) Method 21.
- Weather Anemometer with continuous recorder for meteorological conditions in accordance with the LMR.

Instrument calibration logs and weather information are shown in Attachments 5 and 6.

SURFACE EMISSIONS MONITORING PROCEDURES

Surface emissions monitoring was conducted in accordance with the LMR and NSPS requirements. Monitoring was performed with the FID inlet held within 3 inches of the landfill surface while a technician walked a grid in parallel paths not more than 25 -feet apart over the surface of the landfill. Cracks, holes, and other cover penetrations in the surface were also tested. Surface emissions readings were monitored continuously and recorded every 5 seconds. Any areas in exceedance of the 200 or 500 ppmv standards (reporting and compliance levels, respectively) would be GPS tagged and stake-marked for on-site personnel to perform remediation or repairs.

The integrated average is based on the readings stored on the instrument, which are recorded every 5 seconds. The readings are then downloaded and the averages are calculated for each grid using SCS eTools®. All readings are maintained in this secure SCS Database. The readings are not provided in the report due to the volume of readings but can be furnished upon request.

Recorded wind speed results are shown in Attachment 6. Wind speed averages were observed to remain below the alternative threshold of 10 miles per hour, and no instantaneous speeds exceeded 20 miles per hour. No rainfall occurred within 72 hours of the monitoring events. Therefore, site meteorological conditions were within the alternatives of the LMR requirements on the above-mentioned dates.

TESTING RESULTS

During this event, SCS performed the monitoring on a 25-foot pathway in accordance with the rule as required under the LMR and NSPS. The intent of the monitoring was to identify any specific locations or areas of the landfill surface with organic compound concentrations exceeding the LMR or NSPS threshold limit values of 500 ppmv measured as methane for instantaneous monitoring, or an average methane concentration of 25 ppmv for the integrated monitoring (LMR).

On June 8, 20, 21, 30, and July 10, and 20, 2023, SCS performed second quarter 2023 instantaneous emissions monitoring testing as required by the BAAQMD. During this monitoring, surface emissions results indicated that twenty-one (21) locations exceeded the 500 ppmv maximum concentration. The required first and second 10-day (LMR/NSPS) and 30-day (NSPS) follow-up monitoring performed on June 30, and July 10, and 20, 2023, respectively, indicated that all locations returned to compliance, following system adjustments and remediation performed by SCS and site personnel. Based on these monitoring results no additional follow-up testing was required at this time. These results are discussed in a subsequent section of this report.

During the monitoring event, there were nine (9) areas observed to exceed the 25 ppmv LMR integrated average threshold (Table 2 in Attachment 4) that were not in the exempted areas. The required first and second 10-day LMR follow-up monitoring performed on June 30 and July 10, 2023 indicated that all areas had returned to compliance following system adjustments and remediation by site personnel. The results of the monitoring are shown in Attachment 4 (Table 2). Calibration logs for the monitoring equipment are provided in Attachment 5.

Additionally, several girds were not monitored, in accordance with the LMR, due to active landfilling activities, unsafe conditions, or no waste in place. SCS will continue to monitor all accessible locations during the third quarter of 2023.

PRESSURIZED PIPE AND COMPONENT LEAK MONITORING

On June 21, 2023, quarterly leak monitoring was performed in accordance with the LMR. SCS performed LFG pressurized pipe and component leak monitoring at the BFS. Monitoring was performed with the detector inlet held one-half of an inch from the pressurized pipe and associated components. One (1) location exceeding the 500 ppmv threshold was observed during our monitoring event. The required 7-day recheck follow-up monitoring was performed on June 30, 2023, the location did return to compliance following repairs made by SCS. Therefore, all pressurized pipes and components located at the LFG BFS were in compliance at the time of our testing. Results of the monitoring are shown in Table 1 for component results.

PROJECT SCHEDULE

According to the LMR and NSPS, surface emissions monitoring at active landfills is required to be performed on a quarterly basis. Therefore, in accordance with our approved Work Scope, the third quarter 2023 (July through September) surface emissions testing event is scheduled to be performed by the end of September 2023 in accordance with the Republic SOP unless an alternative timeline is requested by site personnel.

STANDARD PROVISIONS

This report addresses conditions of the subject site during the testing dates only. Accordingly, we assume no responsibility for any changes that may occur subsequent to our testing which could affect the surface emissions at the subject site or adjacent properties.

Attachment 1

Landfill Grid

	1	2	3	<u>Ą</u>	5	6 7	8	9	10	11
A	500									
				na na man ang na 24 ang na						046 096 096 0065 0065
		GP	38						No of the second	
B			4 141	1A 0 6	BOUS MAT BU	Section and the section of the secti				
						19R 2 K018R	13-			
			1.0014	15	16	27 17	33 at 18	95		960- 980- 980-
C		/19		144	6+159 28	58 23 53				
				P146 34	35 35	36	0211037	38	121 39 mm and 31	
		1321	40 4 2 12	1111441	2107 42 2108	43		41 345	46	M012
D		A7		49 51 127 131	50 1		32A 52	-53 ····	54	
U		55	56			67 Daw 2		61 14A ***	384 62	
		- 703	73	05 HIGER		188 2128		× 78 13	79 ⁸¹	
		80, 7	× 81	164 82	86A 7 8 83 7 78	2100 - 21	2124	35A 86	2119 8 2119 8 2119 8 87	
71ts/		E ¹ 89, 1	90	91	92	93	94		96	GP-35
By: 5:		97	98	99	100	101 28A 101 28A	102	103 2117	104	
- 2:4pm		106	107	108	109		46141	476 74 12 180		
F 202		114	112		125	126 18	127	120		
Apr 15,			/ 130		120	133	134	2426 2 29 3	129	
-15.dwg			/ 137 /	138	139	140 7	141	142 178	2120143	
9 22-04-			144	145	146	1147	1/48	149	150	899 040 060
Srids_20			151/	/152 /	153/	+ 154	/ 155 / /	156/	157	070 090 090
n sem e			158/				/162 /	163	1/71	GP/36
ır Canyo			165	1172	173	1 174		176	111	
				1 178	179	1 180/	181, 1 /	1.82	/ 183	
Base N				184	185	186	187	" <u>188</u>	189	
332 Grid				190	191	192		194		
Keller\At			GF	2-25R 200	201	197		199		
ASTERS\			9866 · · · · · · · · · · · · · · · · · ·		/ []	202	206	208	GP-37	
17 - MA		040 0800 000 000					209			
ר <u>א</u> ראיר מאראיר		799			900 900 		210			
∂ Data\CAL	064 014 069 040				969 940 960 900 000		211		#/////////////////////////////////////	
<i>−+s01</i>	099 			000 000 000 000 000	060 000 000					
1/p/6			{ { } / / / / / / / / / / / / / / / / / /		760-			1354///	\$10 ×	

5. SEM PATH MAY VARY BASED ON FILL OPERATIONS, WEATHER, AND OTHER FIELD CONDITIONS.

1

Attachment 2

Surface Pathway, Instantaneous Monitoring Exceedance Locations And 200-499 Tracking Locations

Keller Canyon Landfill					1105-100				Legend
Q2 2023 LMR SEM Event	11/12		SA L	2 100		10 States	Examil	141197/14	🥏 Exempt Area
Real and the state of the second second	01.67	Marine 2	- Maria	S	RO		Constant of the		🕹 💧 Initial Monitoring Pathwa
	19 SH		An other and a first statement of the	Cased Description Resemblished in the			and the second		Contraction of the second
	MAGIA	A B BE	And the second s	and the second s			-	in the	· Manuel - and
	/19	777	200	A DESCRIPTION OF THE OWNER OF	20	SIA &	25	The second second	A state of the second state of the second
The William	AF	TO MAN					31		the second of the second
h. Em /	1122	the state and		and the state of t			fact and	39	Maria 11
	194		and a second second second second		Pieros I			46	
0	47	// ======			And			54	
VIATA	/ 55 /	1 28, 14				-60			K
MAR BORE TO	/63	A				and other		TO TO	71 -
	12	11 73						1 1/2 19	
	80 1	TV P			and the second s	in the second	86	HE H	88
	89, /	C no	1. 31 - 1	in the work	Constant of	DA -	NB-	08	
	97	, 198	1 dis v. F	to the last	Contract of the	102		104	105
	106/	107	108//		at rides		12.12	1 11	To The second
	VI.	115	1 118 /	1117 12	and the second s	114	Particular and the second	10 - 1-A21	\$ The 1
	1/4	123 / 1	124	1 120 7	120	Call TRET	28	1120	
Manufacture and a second	-X	1/130, 1	131	1 132/1	133 /	1 det	135	they prove 1	
	132	137 /	138	/ 139/	7 140 1	and and and	1 and	1 143	
	1 AVE	1144	145	1 146	1/147 / 1	148	17 1497	10 150 /	
	MARE	151/	152	1 153/	1/154, //	7-455	156	157	1/200
		1,58	159	160	1/161/1	/ /162	163/	164	Chanter Var 20
	State	ALEE .	/ 166	167	7 168 /	/ 169, / 7	170	11272 / 19	11.00-2-10-2-3
		WADY TIDO	1/172/	173	174	/ 175	176	177	
72) 深圳和日本田田村、万田田		CARLE X	1/178/11	179	1, 1,80/	/ 181 /	182	183	1781 / Jr. 82 895
1922/4/22/11/11/14/4/14/191			/ 184/ /	1 185 11	186	1 / 187 /	/188	180	19/14/2 A BERNE
		111/1/2	190/	/ 191,	192	/ 193/ /	, 194	100/2010	1/18/1/198-201
		AMAR - CONT	195	//196//	197	198	1199 /	100000	ART I TA MAN
		110000000	200	1 201 1	202 /	/ 203	1/204	ALC AN	18/11/11/11/4/11
•			The state	- ALLER	205/	206	208	16- 10 A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	11119 31 4119
			Million .	- Store I		209	9	9. 1. 1. 1. J.	XIIIIII MARCANIA
COCK AN AND AND AND AND AND AND AND AND AND			- AUDININIA			, 210	100000	1. 1. 7. 7. 1. 1.	2
Google Farth		anne	11111Hille			211	RANGO	11/11/19	1 AN LUNG THE MIL
					E MILLE C		PAR ///	3 / / Landon	1000 ft

Initial LMR Surface Emissions Monitoring Pathway Keller Canyon Landfill, Pittsburg, California

Keller Canvon Landfill	last -	the second se				S MAR		Legend
Q2 2023 LMR SEM Event	1 Person		2 23		1 the state of the	- Committee	C. C. C. C. M	🕺 🕹 Recheck Monitoring Pathway
The second state of the se	The AREAR	- And		R			Maria Contra	
	KING	The se		12	13	and the second		
	14	and the second	10	A.	18		and the second	No 12 The second
19	77 17-20	1 - 2 M - D	the at	23	24	25		in the second second second
A MARA	12 125	27	MAL25	29	30	31		the state of the second
132	7. 132	34	35	36	27	30	-35-	MON SIN THINK
AND A THE	1/40/2	2 Gi	42	43	44	12000	46	TOTAL JAMAN
47	1/44 ×	49	DQ .	11 61	52	12	54	XI C.
4 / 55	56/	57	LAS	59	60	61		
1 .763 A	64	65			68	69	70	71
Fin (192)	73 -	NY TAN	E-05		11		79	
80-1	31/	PT 185-07	1 Deverage			86	87	88
89, 4	90	1. 97 1	21212		and the second second	95	- 96-	105
11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 /90	1 99 L	A ACI -	A COLORED	IU -	1000	104	
1067	107,10	108	1 × 109	110			113	28/2 × × × ×
mulli///////////////////////////////////	1115	116	1111	1188	119	120	1 121	AT THE MAN
	123 / /	1 124	1 125 7==	120	127	20	1 129	
	130	131	1 134 70	133 / X	Contra -	135	1/136	4 - Constanting
	1 Isi	7700	1 1391	1 140		1011	1 143	1
	X 4EA	123	140	1 AEA	148	140/	1 150	
	101	1152	1/ 100/1	1401	1100	7 100	184	
	Y 100	1 100	1 1 100 LI	101/1	1 102	170/	1.471	
	165/	1/100/1	172	117011	175	176	1 177	A MARTER MARTIN
		178	170	11 180/1	1/181	182	183	MALLAS CARE
CARTER MARTINE AND MARTINE	X	/ 184/ /	185	186/7	187	188	1111	MALLAN SUCCES
Mana Mana Mana Mana Mana Mana Mana Mana	11/1/2	190/1	1191	192	125 193/1	194	189	CATAL CAR SERVICE
111111112211112311111111111111111111111	11/10/2000	195	1/198	1 707	//198//	1100 1	X	The Contraction of the State
MUNINASS 2402 May Com	1112	200	1, 201, 1	202	/ 203 /	1/1/204	all 1/2	
		and of	A ANT	205/	7 2061	-Voha	12-6/20	CALLA STALLA
		JULIO -	and all	(Lebo,	209 /	82	611/2/3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		SMANINA			210 /		11-1-5-11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Google Earth	unant	CUMMARE -			211		Stall 1	and a second for the second second
Coogie Lai un							1111	1000 ft

Recheck LMR Surface Emissions Monitoring Pathway Keller Canyon Landfill, Pittsburg, California Attachment 3

Instantaneous and Component Emissions Monitoring Results and Exceedance GPS Locations

Table 1. Instantaneous Surface and ComponentEmissions Monitoring ResultsKeller Canyon Landfill, Pittsburg, California

Instantaneous Data Report for June 8, 20, 21, 30, and July 10, and 20, 2023

Grid ID	Initial Monitoring	First 10- Day Recheck	t 10- Second 10- ay Day heck Recheck Confirmatic		Latitude	Longitude
	6/20/2023 & 6/21/2023	30-Jun	10-Jul	20-Jul		
HSR GRID87 RY	654	Inaccessible	Inaccessible	60.1	37.991033	-121.936244
High Reading AS7	1000	98.4		22.5	37.995124	-121.935860
High reading AS	1000	1082	27.7	108	37.995275	-121.936498
High reading AS1	4000	150		61.8	37.995162	-121.936642
High reading AS11	7000	280		22.4	37.996145	-121.934818
High reading AS3	2000	1700	35.5	138	37.994999	-121.936914
High reading AS4	1400	250		106	37.994820	-121.936702
High reading AS5	1000	548	32.6	280	37.994787	-121.936558
High reading AS6	1000	80.4		22.3	37.995152	-121.935963
High reading AS8	796	193		125	37.995094	-121.935799
High Reading AS9	1300	68.7		26.5	37.995163	-121.935700
High readingAS10	2200	133		24.7	37.995237	-121.935604
High readingAS2	5000	3000	43.7	65.1	37.995093	-121.936808
High surf read	4000	4000	108	49.6	37.995335	-121.936354
W124	900	1400	17.3	84.7	37.998115	-121.936508
W146	700	374		30.4	37.998544	-121.934120
W147	1210	1580	12.5	128	37.998171	-121.934144
W14A	5400	825	6.3	42.5	37.992698	-121.935103
W164	908	1580	6.3	346	37.998347	-121.936404
W190	2200	35		201	37.991315	-121.936855
W691	1000	6000	25.8	Removed	37.995344	-121.936385

Table 1. Instantaneous Surface and ComponentEmissions Monitoring ResultsKeller Canyon Landfill, Pittsburg, California

Instantaneous Data Report for June 8, 20, 21, 30, and July 10, and 20, 2023

Location (Surface)	Initial Monitoring Results (ppmv) 6/20/2023 & 6/21/2023	Latitude	Longitude
HIGH SURF READ G134 AS	328	37.994143	-121.938463
HIGH SURF READ G140	205	37.994821	-121.938613
HIGH SURF READ G82 AG	249	37.998109	-121.936539
HIGH SURF READ G84 AG	240	37.995279	-121.936356
HSR GRID193 RY	197	37.995670	-121.936783
HSR GRID91 RY	417	37.998815	-121.936879
HSR GRID94 RY	240	37.994456	-121.936768
SFR G119 JS	248	37.994175	-121.937610
SFR G127 JS	360	37.994445	-121.937952
ELEVATED READING AS1	384	37.994916	-121.937054
W106CAPPED	250	37.999155	-121.936055

Readings between 200-499 ppmv

CARB Inspection Results

Location	Initial CARB	First 10-day	Second 10-Day	Latitude	Longitude	
	21-Jun	30-Jun	10-Jul			
W69	3,239	230	_	37.9952817	-121.9363291	
2205	1,791	25.8	-	37.9969579	-121.9355880	
Sample Port	1,000	1.7	_	38.0041600	-121.9345800	

Table 1. Instantaneous Surface and ComponentEmissions Monitoring ResultsKeller Canyon Landfill, Pittsburg, California

Location	Initial CARB	First 10-day	Second 10-Day	Latitude	Longitude
	21-Jun	30-Jun	10-Jul		
Surface hit 3	1,000	180	-	37.9948590	-121.9368750
W150	850	230	-	37.9977200	-121.9341400
Surface hit	5,000	291	-	37.9949990	-121.9369140
Surface hit 2	2,200	385	-	37.9949180	-121.9370780
Surface hit 4	3,000	280	—	37.9948200	-121.9367020
Surface hit 5	1,400	285	-	37.9947870	-121.9365580
2209	6,018	10,000	70.8	37.9962722	-121.9357309
2211	17,000	2200	23.3	37.9960091	-121.9343306
2217	3,186	3,200	42.2	37.9947876	-121.9351746
Blower 4	4,300	5,000	3	38.0041600	-121.9345800
Flame Arrestor	10,000	1,300	4.2	38.0041600	-121.9345800
KCEW2110	2,399	2,200	70.8	37.9943947	-121.9340840
W145	3,128	2,200	22.2	37.9985600	-121.9329000
W147	2,067	1,200	12.5	37.9981400	-121.9342100

Pressurized Pipe and Component Results

Route	Initial Monitoring Results (ppmv) 6/21/2023	Recheck Monitoring Results (ppmv) 6/30/2023	Recheck Monitoring Results (ppmv) 7/10/2023
Flare Station	11 000	11.0	100
(Flame Arrestor)	11,900	11.9	100

No other exceedances of the 500 ppmv threshold were observed during the second quarter of 2023 monitoring.

Keller Canvon Landfill	7	8		Legend	
Q2 2023 LMR SEM Event		12	13	Initial Inst	tantaneous Locations above 500ppmv
4 15	16	17	18	• Initial Inst	tantaneous Locations between 200-499ppmv
20 21	(22	23	24	23	
26 27	28	29	30 ===	31	
39 34 94147	35	36	37	38	200
10 41	42	43	44	45	46
18 49	50	High reading AS11	52	53	24
EG. / 1 57	58	59	60	6 9W14A	62
64	66	High reading AS1	68	= 69	70 71
73 / 200000 / 74	75	High Reading	AS7 77		79
01 1 1 82 1	783	HIGH SURF READ GE	AG 85	86	87 HSR GRID37 RY
HIGH SURF READ GE	2AG 42	High reading AS High re	eding AS5 94	95	96 105
90 HSR GRID91 RY	400	High reading ASS	preedingAs22	103	10,190
90 1 1 100/1	1 100	11 High Read	ng AS12 111	112	113 14/
107 1 100	1/117	148	199FR @119 Je	120	121 17
115 / / / /	1/1/105 7	126	SFR C127 JS	128	1129,11
123 / / ///	1 1 932 +	133		135	1136
130 131	11120 T	140	HIGH SURF READ G130 AS	121	1/1 143, 1
131 / 77100	A LAGE	17117	748	149/1	1/150/1
144 / 145 /	1 152/1	1 1/154	455	156	1157 /1
101 7102	1 100/1	1/161/	/162	7 163	1164 12
Google Earth / 159	100	4 100	Ht Ach	170/	1 171 800 ft

Emissions Monitoring Results Greater Than 200 ppmv Keller Canyon Landfill, Pittsburg, California Attachment 4

Integrated Monitoring Results

Point Name	Record Date	FID Concentration (ppm)	Comments
KC001	6/8/2023	4.36	
KC002	6/21/2023	1.20	
КС003	6/8/2023	2.71	
KC004	6/8/2023	1.17	
KC005	6/8/2023	1.36	
KC006	6/8/2023	3.43	
KC007	6/8/2023	3.85	
KC008	6/8/2023	2.46	
КС009	6/8/2023	2.50	
KC010	6/8/2023	6.23	
KC011	6/8/2023	5.54	
KC012	6/8/2023	4.53	
KC013	6/8/2023	3.87	
KC014	6/8/2023	3.97	
KC015	6/8/2023	7.41	
KC016	6/8/2023	7.67	
KC017	6/8/2023	4.60	
KC018	6/8/2023	4.32	
KC019			Native Grid
KC020	6/20/2023	2.15	
KC021	6/20/2023	9.08	
KC022	6/20/2023	7.01	
KC023	6/20/2023	5.89	
KC024	6/20/2023	1.86	
KC025			Active Area
KC026	6/20/2023	1.05	
KC027	6/20/2023	8.79	
KC028	6/20/2023	5.72	
КС029	6/20/2023	6.08	
КС030	6/20/2023	2.43	
KC031	6/20/2023	2.17	
KC032			Native Grid
KC033	6/20/2023	0.92	
KC034	6/20/2023	4.64	
KC035	6/20/2023	2.75	
KC036	6/20/2023	5.70	
KC037	6/20/2023	7.42	
KC038	6/20/2023	3.39	
KC039			Active Area
KC040	6/20/2023	1.91	
KC041	6/20/2023	5.45	
KC042	6/20/2023	3.95	
KC043	6/20/2023	6.28	

Point Name	Record Date	FID Concentration (ppm)	Comments
КС044	6/20/2023	11.35	
KC045	6/20/2023	5.86	
KC046	6/20/2023	2.89	
KC047			Native Grid
KC048	6/20/2023	2.47	
КС049	6/20/2023	4.11	
КС050	6/20/2023	9.02	
KC051	6/20/2023	6.45	
KC052	6/20/2023	12.36	
КС053	6/20/2023	5.49	
КС054			Active Area
KC055			Native Grid
КС056	6/20/2023	4.91	
КС057	6/20/2023	4.05	
КС058	6/20/2023	7.84	
КС059	6/20/2023	12.41	
КС060	6/20/2023	23.95	
KC061	6/20/2023	13.77	
KC062	6/20/2023	6.82	
КС063			Native Grid
KC064	6/20/2023	2.65	
KC065	6/20/2023	6.49	
КС066	6/20/2023	9.75	
KC067	6/20/2023	20.43	
KC068	6/20/2023	12.48	
KC069	6/20/2023	11.45	
КС070	6/20/2023	5.01	
KC071			Active Area
KC072			Native Grid
KC073	6/20/2023	2.65	
KC074	6/20/2023	8.16	
KC075	6/20/2023	6.56	
КС076	6/20/2023	29.99	Initiial
КС076	6/30/2023	45.91	First 10-Day
КС076	7/10/2023	23.18	Second 10-Day
KC077	6/20/2023	12.67	
KC078	6/20/2023	6.47	
КС079	6/20/2023	6.30	
КС080			Native Grid
KC081	6/20/2023	1.54	
КС082	6/20/2023	19.25	
КС083	6/20/2023	6.45	
KC084	6/20/2023	34.76	Initiial

Point Name	Record Date	FID Concentration (ppm)	Comments
KC084	6/30/2023	49.66	First 10-Day
KC084	7/10/2023	24.50	Second 10-Day
KC085	6/20/2023	15.97	
KC086	6/20/2023	4.57	
KC087	6/20/2023	12.90	
KC088			Active Area
KC089			Native Grid
KC090	6/20/2023	4.93	
KC091	6/20/2023	20.81	
KC092	6/20/2023	11.32	
KC093	6/20/2023	42.49	Initiial
КС093	6/30/2023	27.69	First 10-Day
KC093	7/10/2023	18.91	Second 10-Day
KC094	6/20/2023	26.07	Initiial
KC094	6/30/2023	12.05	First 10-Day
KC095	6/20/2023	8.97	
KC096	6/20/2023	8.00	
KC097			Native Grid
KC098	6/20/2023	2.41	
KC099	6/20/2023	23.20	
KC100	6/20/2023	11.40	
KC101	6/20/2023	30.62	Initiial
KC101	6/30/2023	19.87	First 10-Day
KC102	6/20/2023	26.88	Initiial
KC102	6/30/2023	16.38	First 10-Day
KC103	6/20/2023	6.14	
KC104	6/20/2023	5.96	
KC105			Active Area
KC106			Native Grid
KC107	6/20/2023	0.81	
KC108	6/20/2023	8.97	
KC109	6/20/2023	11.07	
KC110	6/20/2023	10.87	
KC111	6/20/2023	19.47	
KC112	6/20/2023	4.52	
KC113	6/20/2023	4.14	
KC114			Native Grid
KC115			Native Grid
KC116	6/20/2023	6.23	
KC117	6/20/2023	9.92	
KC118	6/20/2023	9.83	
KC119	6/20/2023	23.19	
KC120	6/20/2023	4.82	

Point Name	Record Date	FID Concentration (ppm)	Comments
KC121	6/20/2023	3.68	
KC122	6/20/2023	29.03	Initiial
KC122	6/30/2023		Became Active
KC123			Native Grid
KC124	6/20/2023	16.69	
KC125	6/20/2023	4.89	
KC126	6/20/2023	8.55	
KC127	6/20/2023	19.16	
KC128	6/20/2023	5.35	
KC129	6/20/2023	7.72	
KC130			Native Grid
KC131			Native Grid
KC132			Native Grid
KC133			Native Grid
KC134	6/20/2023	37.88	Initiial
KC134	6/30/2023	27.50	First 10-Day
KC134	7/10/2023	21.29	Second 10-Day
KC135	6/20/2023	6.83	
KC136	6/20/2023	5.40	
KC137			Native Grid
KC138			Native Grid
KC139			Native Grid
KC140	6/20/2023	24.52	
KC141	6/20/2023	37.49	Initiial
KC141	6/30/2023	61.64	First 10-Day
KC141	7/10/2023	22.20	Second 10-Day
KC142	6/20/2023	6.43	
KC143	6/20/2023	1.89	
KC144			Native Grid
KC145			Native Grid
KC146			Native Grid
KC147			Native Grid
KC148	6/20/2023	0.05	
KC149	6/20/2023	6.12	
KC150	6/20/2023	4.11	
KC151			Native Grid
KC152			Native Grid
KC153			Native Grid
KC154			Native Grid
KC155			Native Grid
KC156			Active Area
KC157			Active Area
KC158			Native Grid

Point Name	Record Date	FID Concentration	Comments
		(ppm)	
KC159			Native Grid
KC160			Native Grid
KC161			Native Grid
KC162			Native Grid
KC163			Native Grid
KC164			Native Grid
KC165			Native Grid
KC166			Native Grid
KC167			Native Grid
KC168			Native Grid
KC169			Native Grid
KC170			Native Grid
KC171			Native Grid
KC172			Native Grid
KC173			Native Grid
KC174			Native Grid
KC175			Native Grid
KC176			Native Grid
KC177			Native Grid
KC178			Native Grid
KC179			Native Grid
KC180			Native Grid
KC181			Native Grid
KC182			Native Grid
KC183			Native Grid
KC184			Native Grid
KC185			Native Grid
KC186			Native Grid
KC187			Native Grid
KC188			Native Grid
KC189			Native Grid
KC190			Native Grid
KC191			Native Grid
KC192			Native Grid
KC193			Native Grid
KC194			Native Grid
KC195			Native Grid
KC196			Native Grid
KC197			Native Grid
KC198			Native Grid
KC199			Native Grid
KC200			Native Grid
KC201			Native Grid

Point Name	Record Date	FID Concentration (ppm)	Comments
KC202			Native Grid
KC203			Native Grid
KC204			Native Grid
KC205			Native Grid
KC206			Native Grid
KC207			Native Grid
KC208			Native Grid
KC209			Native Grid
KC210			Native Grid
KC211			Native Grid
Attachment 5

Calibration Logs

		CALIBRATION AN	IONS MONIT	roring IT data	
Date:	6/16/22		Site Name:	Keller	
inspector(s):	AFredo	Gomez	Instrument	TVA 2020	
WEATHER O	BSERVATIONS				
Wind Spee	ed: MPH	Wind Direction: 510		Barometric Pressure: 2981	"Hg
4 Temperatur	Air re:°F	General Weathe Condition	s Sunny		
CALIBRATION	INFORMATION				
Pre-monitoring	g Calibration Precision Check				
and calculate t precision must Instrument Seri	the average algebraic different be less than or equal to 10% in the less than or equal to 10% in the less than the less that the less the less that the less that the less	ce between the instrument of the calibration gas value.	reading and the c	alibration gas as a percen	tage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (second
1	0,0	500		0	
3	0.0	501		0	14
Calibration Prec	ision= Average Difference/Ca	Average Difference: Gas Conc. X 100% = 100%-	*Perform recalibration	3 if average difference is greater than /500 x 100%	10
Calibration Prec	ision= Average Difference/Ca	Average Difference: Gas Conc. X 100% = 100%- = 999.9	Perform recalibration 0,3 %	3 If average difference is greater than /500 × 100%] 10
Calibration Prec	ision= Average Difference/Ca	Average Difference: Gas Conc. X 100% = 100%- = 999.9	*Perform recalibration 0,3	if average difference is greater than	10
Calibration Prec Span Sensitivity: <u>Trial 1:</u> Co	ision= Average Difference/Ca unts Observed for the Span=	Average Difference: Gas Conc. X 100% = 100%- = 999.9 [69432	*Perform recalibration 0,3 % Trial 3: Count	3 If average difference is greater than /500 x 100% cs Observed for the Span=] 10 10
Calibration Prec Span Sensitivity: Trial 1: Co	ision= Average Difference/Ca unts Observed for the Span= nters Observed for the Zero=	Average Difference: Gas Conc. X 100% = 100% = 999.9 <u>169432</u> <u>4480</u>	*Perform recalibration 0,3 % Trial 3: Counte	2 /500 × 100% :s Observed for the Span= rs Observed for the Zero=] 10 <i>IWSGYO</i> YY N 9
Calibration Prec Span Sensitivity: Trial 1: Co Cour Trial 2: Co	ision= Average Difference/Ca runts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	Average Difference: Gas Conc. X 100% = 100%- = 999.9 <u>169432</u> <u>4480</u> <u>169620</u>	*Perform recalibration 0,3 % <u>Trial 3:</u> Counte	3 if average difference is greater than /500 x 100% :s Observed for the Span= rs Observed for the Zero=] 10 <i>IWSGYD</i> YY N
Calibration Prec Span Sensitivity: Trial 1: Cour Trial 2: Cour	ision= Average Difference/Ca unts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Span=	Average Difference: Gas Conc. X 100% = 100%- = 999.9 169432 4480 169620 4489	*Perform recalibration 0,3 % Trial 3: Counte	/500 x 100% so Observed for the Span= rs Observed for the Zero=] 10 <i>ווידעים</i> עיז איז
Calibration Prec Span Sensitivity: Trial 1: Co Cour Trial 2: Cour Post Monitoring C	ision= Average Difference/Ca nunts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	Average Difference: Gas Conc. X 100% = 100%- = 999.9 169432 4480 169620 4489	*Perform recalibration 0,3 % <u>Trial 3:</u> Counte	2 /500 x 100% :s Observed for the Span= rs Observed for the Zero=] 10 <i>IWSGYD</i> YY I I
Calibration Prec Span Sensitivity: Trial 1: Cour Trial 2: Cour Post Monitoring C Zero Air Reading:	ision= Average Difference/Ca nunts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	Average Difference: Gas Conc. X 100% = 100%- = 9999 169432 4450 169620 169620 4489 Cal Gas Reading:	Perform recalibration 0,3 % Trial 3: Counte 525	/500 x 100% Is Observed for the Span= rs Observed for the Zero=] 10 <u>ושעקייס</u> עיו איז
Calibration Prec Span Sensitivity: Trial 1: Cour Trial 2: Cour Post Monitoring C Zero Air Reading: BACKGROUND C	ision= Average Difference/Ca nunts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	Average Difference: Gas Conc. X 100% = 100%- = 999.9 169432 4480 169620 169620 4489 Cal Gas Reading:	Perform recalibration 0,3 % Trial 3: Counte 525 p	/500 x 100% /500 x 100% :s Observed for the Span= rs Observed for the Zero=] 10 <u>ושציקייס</u> יוא שא
Calibration Prec Span Sensitivity: Trial 1: Co Cour Trial 2: Cour Post Monitoring C Zero Air Reading: BACKGROUND C Upwind Location D	ision= Average Difference/Ca ounts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check Calibration Check	Average Difference: Gas Conc. X 100% = 100%- = 9999 169432 4450 169620 169620 4489 Cal Gas Reading: Entrance	*Perform recalibration 0,3 % Trial 3: Counte 525 p	if average difference is greater than /500 x 100% :s Observed for the Span= rs Observed for the Zero= pm eading:2_1_]
Calibration Prec Span Sensitivity: Trial 1: Cour Trial 2: Cour Post Monitoring C Zero Air Reading: BACKGROUND C Upwind Location D Downwind Locatio	ision= Average Difference/Ca nunts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check Calibration Check Concentrations Checks Description:	Average Difference: Gas Conc. X 100% = 100%- = 9999 [69432 4480 169620 169620 4489 Cal Gas Reading: Entrance offices	Perform recalibration 0,3 % Trial 3: Counte 525 P R R R	if average difference is greater than /500 x 100% is Observed for the Span= rs Observed for the Zero= pm eading: 2.1 eading: 1.9]

	SURFACE EMISSIONS	5 MONITORING	
\sim	CALIBRATION AND PE	ERTINENT DATA	
Date: 08/16/2	۲ Site	Name: Keller	
Inspector(s): Ricord	o Yegez Instr	rument: TVA 2020	
WEATHER OBSERVATIONS			
Wind Speed: 6 MF	Wind PH Direction: <u>Sw</u>	Barometric Pressure: 29.81 "Hg	
Air Temperature: <u>64</u> °F	General Weather Conditions:	nny / clear	
CALIBRATION INFORMATION			
Pre-monitoring Calibration Precision	Check		
Procedure: Calibrate the instrument, and calculate the average algebraic precision must be less than or equal t	Make a total of three measurements by o difference between the instrument reading to 10% of the calibration gas value.	alternating zero air and the calibration gas. Record the rec g and the calibration gas as a percentage. The calibration	adings
Instrument Serial Number: 17	-15	Cal Gas Concentration: 500ppm	
Trial Zero Air Readi	ng Cal Gas Reading	Cal Gas ConcCal Gas Reading Response Time (se	conds)
2 -0.1	46.8	7	
3 -0.)	SCO	0 1	
	= 100%- = 99.8 %	/500 × 100%	
Span Sensitivity:			
Trial 1: Counts Observed for the	Span= 137772	: Counts Observed for the Span= 139476	
Counters Observed for the	Zero= 2766	Counters Observed for the Zero= 77739	
Trial 2: Counts Observed for the	Span= 141604		
Counters Observed for the	Zero= 2752		
Post Monitoring Calibration Check			
Zero Air Reading:	Cal Gas Reading: 53	Øppm	
BACKGROUND CONCENTRATIONS C	HECKS		
Upwind Location Description:	Flare	Reading:	
Downwind Location Description:	6-110	Reading: 2.1 ppm	
Notes: Wind speed averages w exceeded 20 miles per l meteorological condition	rere observed to remain below the alternation of the second to remain below the alternation of the second s	ative requested 10 miles per hour and no instantaneous sp previous 24 hours of the monitoring event. Therefore, sit s of the LMR requirements on the above mentioned date.	oeeds te
WER BUILD THE REPORT OF THE STATE	WE HEAT IS GURLENSKET INVEST	- to	

		SURFACE EMISSI	ONS MONITORIN		
5	a/11/	CALIBRATION AN	D PERTINENT DA	TA	01
Date:	0162		Site Name:	eller	
Inspector(s):	Bryan O	choa	Instrument:TVA	2020	
WEATHER O	BSERVATIONS			<i></i>	
Wind Spee	:d:МРН	Wind Direction: <u>500</u>	Baro Pre	metric essure: <u>29.8</u> 7	"нд
م Temperatur	lir e: <u>(</u> 9 °F	General Weathe Conditions	sunny		
CALIBRATION	INFORMATION				
Pre-monitoring	g Calibration Precision Check	<			
and calculate t precision must	he average algebraic difference be less than or equal to 10%	e a total of three measuremen ence between the instrument i 6 of the calibration gas value.	nts by alternating zero ail reading and the calibrati Cal G	r and the calibratic on gas as a percen as Concentration:	on gas. Record the reading tage. The calibration 500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal	Gas Reading	Response Time (second
1	40,1	500	0		
2	-0.1	500	••••••		
Calibration Preci	sion= Average Difference/C	Average Difference:	*Perform recalibration if average	difference is greater than]
Calibration Preci	sion= Average Difference/C	Average Difference: al Gas Conc. X 100% = 100%- = 99, 9	*Perform recalibration if average	difference is greater than] 10
Calibration Preci	ision= Average Difference/C	Average Difference: al Gas Conc. X 100% = 100%- = 99, 9	*Perform recalibration if average 0.3 /500 x 1	difference is greater than] 10
Calibration Preci Span Sensitivity: Trial 1: Co	ision= Average Difference/C unts Observed for the Span	Average Difference: al Gas Conc. X 100% = 100%- = 99,9	*Perform recalibration if average 0,3 /500 x 1 % Frial 3: Counts Obser	difference is greater than 1.00% wed for the Span=	134016
Calibration Preci Span Sensitivity: Trial 1: Co Cour	unts Observed for the Spans	Average Difference: al Gas Conc. X 100% = 100%- = 99,9 = 136694 = 3333	*Perform recalibration if average 0.3 /500 x 1 % <u>Frial 3:</u> Counts Obser <u>Counters Obser</u>	difference is greater than 1.00% wed for the Span=	134016 2284
Calibration Preci Span Sensitivity: Trial 1: Co Cour Trial 2: Co	unts Observed for the Span- iters Observed for the Zero- unts Observed for the Zero-	Average Difference: al Gas Conc. X 100% = 100%- = 99,9 = 136694 = 3333 = 135672	*Perform recalibration if average 0.3 /500 x 1 % Frial 3: Counts Obser Counters Obser	difference is greater than 1.00% ved for the Span= rved for the Zero=	134016 2284
Calibration Preci Span Sensitivity: Trial 1: Cour Trial 2: Cour Cour	unts Observed for the Spans iters Observed for the Spans iters Observed for the Zeros	Average Difference: al Gas Conc. X 100% = 100%- = 99, 9 = 136694 = 3333 = 135672 = 3320	*Perform recalibration if average 0.3 /500 x 1 % Frial 3: Counts Obser Counters Obser	difference is greater than 1.00% ved for the Span=	134016 2284
Calibration Preci Span Sensitivity: Trial 1: Cour Trial 2: Cour Post Monitoring C	unts Observed for the Span- iters Observed for the Span- iters Observed for the Zero- ints Observed for the Zero- ialibration Check	Average Difference: al Gas Conc. X 100% = 100%- = 99, 9 = 136694 = 3333 = 135672 = 3320	*Perform recalibration if average 0.3 /500 x 1 % <u>Frial 3:</u> Counts Obser <u>Counters Obser</u>	difference is greater than 100% wed for the Span=	134016 2284
Calibration Preci Span Sensitivity: Trial 1: Cour Trial 2: Cour Post Monitoring C	unts Observed for the Spans iters Observed for the Spans ters Observed for the Zeros ants Observed for the Zeros inters Observed for the Spans ters Observed for the Spans	Average Difference: al Gas Conc. X 100% = 100% = 99, 9 = 136694 = 3333 = 135672 = 3320	*Perform recalibration if average 0.3 /500 x 1 % <u>Frial 3:</u> Counts Obser <u>Counters Obser</u>	difference is greater than 1.00% ved for the Span=	134016 2284
Calibration Preci Span Sensitivity: Trial 1: Cour Trial 2: Cour Post Monitoring C Zero Air Reading:	unts Observed for the Spans ters Observed for the Spans ters Observed for the Zeros ants Observed for the Zeros alibration Check	Average Difference: al Gas Conc. X 100% = 100%- = 99, 9 = 136694 = 3333 = 135672 = 3320 Cal Gas Reading:	*Perform recalibration if average 0.3 /500 x 1 % Frial 3: Counts Obser Counters Obser	difference is greater than 1.00%	134016 3284
Calibration Preci Span Sensitivity: Trial 1: Cour Trial 2: Cour Post Monitoring C Zero Air Reading: BACKGROUND C	ision= Average Difference/C unts Observed for the Span <u>iters Observed for the Zeros</u> unts Observed for the Span <u>ters Observed for the Zeros</u> Calibration Check	Average Difference: al Gas Conc. X 100% = 100% - = $99, 9$ = 136694 = 3333 = 135672 = 3320 Cal Gas Reading: S	*Perform recalibration if average 0.3 /500 x 1 % Frial 3: Counts Obser Counters Obser	difference is greater than 1.00% ved for the Span= rved for the Zero=	134016 3284
Calibration Preci Span Sensitivity: Trial 1: Cour Trial 2: Cour Post Monitoring C Zero Air Reading: BACKGROUND C Upwind Location D	ision= Average Difference/C unts Observed for the Span iters Observed for the Zero= unts Observed for the Zero= calibration Check C.C. ppm ONCENTRATIONS CHECK	Average Difference: al Gas Conc. X 100% = 100%- = 99,9 = 136694 = 3333 = 135672 = 3320 Cal Gas Reading: S Flare	*Perform recalibration if average 0.3 /500 x 1 % Frial 3: Counts Obser Counters Obser 5 0 ppm Reading:	difference is greater than 1.00% Eved for the Span= Eved for the Zero=] 10 134016 228Ц
Calibration Preci Span Sensitivity: Trial 1: Cour Trial 2: Cour Trial 2: Cour Cour Post Monitoring C Zero Air Reading: BACKGROUND C Upwind Location D Downwind Locatio	ision= Average Difference/C unts Observed for the Span iters Observed for the Zero= unts Observed for the Span ters Observed for the Zero= Calibration Check C.C.C.ppm ONCENTRATIONS CHECK	Average Difference: al Gas Conc. X 100% = 100% - = $99, 9$ = 136694 = 3333 = 135672 = 3320 Cal Gas Reading: S FLarc G-80	*Perform recalibration if average 0.3 /500 x 1 % Frial 3: Counts Obser Counters Obser 5 0 ppm Reading: Reading:	difference is greater than 1.00% rved for the Span= rved for the Zero= 2:2 p 2:0 p	<u>134016</u> <u>2284</u> ррт

	o and the sequences of the limit councilients	2011
NES BINING AND AND	- Salana State Longeneral Dans	5

		SURFACE EMIS	SIONS MONIT	ORING	
		CALIBRATION A	ND PERTINEN	IT DATA	w
Date:	08/16/22		Site Name	KOLIPY	
Inspector(s):	Ruben	1:05		hend	
		PIUZ	Instrument:	TVA 2020	
WEATHER OF	SERVATIONS				
Wind Speed	н: мрн	Wind Direction: <u>S</u> w		Barometric Pressure: 29.8	"Hg
Ai Temperature	er64°F	General Weat Conditio	ns: Sunny/C	lear	
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Che	~k			
Procedure: Cali <u>t</u> and calculate th precision must b Instrument Seria	prate the instrument. Maine average algebraic difference less than or equal to 10 INumber: 2.	ke a total of three measurem rence between the instrumen % of the calibration gas value "228	ents by alternating t reading and the c e.	zero air and the calibratio alibration gas as a percen	n gas. Record the readings tage. The calibration
Trial	7			Cal Gas Concentration:	500ppm
1	2ero Air Reading	Cal Gas Reading	Cal Gas Co	ncCal Gas Reading	Response Time (seconds)
2	C.	503		3	2
)3	0	503		3	2
Calibration Precis	ion= Average Difference/	Cal Gas Conc. X 100% = 100% = 99.5	~ 2.3 /	500 x 100%	
Span Sensitivity:		,			
<u>Trial 1:</u> Cou	nts Observed for the Spar	143064	Trial 3: Counts	Observed for the Span=	144012
Count	ers Observed for the Zerc	<u>∍ 3938</u>	Counters	Observed for the Zero=	3823
Cour	nts Observed for the Span	= 142784			
Counte	ers Observed for the Zero	- 3855			
Post Monitoring Ca	libration Check			2	
Zero Air Reading:	. b ppm	Cal Gas Reading:	521	m	
BACKGROUND CO	NCENTRATIONS CHECK	3			
Upwind Location De	scription:	Entrance	Rea	ading: 2.6 p	om
Downwind Location	Description:	C. 11	Rea	ading: 21 pp	om .
Notes: Wir exc met	nd speed averages were c eeded 20 miles per hour. eorological conditions w	observed to remain below the No rainfall had occurred wit ere within the requested alte	e alternative reques thin the previous 24 ernatives of the LMF	ted 10 miles per hour and hours of the monitoring requirements on the abo	no instantaneous speeds event. Therefore, site ove mentioned date.
10 SIGNALISTA	NESS GREATHORITE	ATTATION INTERASHE	Davinge in	-log-ti - Hard	

llo^{ra}

SYE S

1		CALIBRATION A	ND PERTINENT	DATA	N
Date	6-30-22		Site Name:	1/ altrait	
Build	Alali		Site Name:	wenter	
Inspector(s):	Actura Oli	vores	Instrument:	TVA 2020	
WEATHER OF	BSERVATIONS			2.6	
		Wind		Barometric	
Wind Spee	d: MPH	Direction:		Pressure: 29-8	7 "Hg
А	ir	General Weat	ther		
Temperature	e:°F	Conditio	ons: SUMNY		
CALIBRATION	INFORMATION		/		
Pre-monitoring	Calibration Precision Ch	heck			
Procedures C-1	brata the instance of	Andre - total (1)			
and calculate ti	he average algebraic dif	Make a total of three measurer fference between the instrume	nents by alternating z nt reading and the ca	ero air and the calibratio ibration gas as a percent	n gas. Record the readings tage. The calibration
precision must i	be less than or equal to	10% of the calibration gas val	le.		
nstrument Seri	al Number:	23		Cal Gas Concentration:	500 ppm
rial	Zero Air Reading	Cal Gas Reading	I Cal Gas Con	c-Cal Gas Reading!	Response Time Income L
1		500		ccar das Keading	4
2	0	409	1		4
-		the state of the s			
3 alibration Preci	O sion= Average Difference	Average Difference:	•Perform recalibration if a	verage difference is greater than	10
3 alibration Preci	O sion= Average Differenc	Average Difference: ce/Cal Gas Conc. X 100%	• • • • • • • • • • • • • • • • • • •	verage difference is greater than 00 x 100%] 10
3 alibration Preci	0 sion= Average Differenc	Average Difference: ce/Cal Gas Conc. X 100%	*Perform recalibration if a	verage difference is greater than 00 x 100%	10
3 alibration Preci	o sion= Average Differenc	Average Difference: ce/Cal Gas Conc. X 100% = 100 = 9994	0 *Perform recalibration if a %/5	verage difference is greater than 00 x 100%	10
3 alibration Preci van Sensitivity:	0 sion= Average Differenc	Average Difference: :e/Cal Gas Conc. X 100% = 1004 = 9994	0 *Perform recalibration if a %- <u>, 3</u> /5 %	verage difference is greater than 00 x 100%	10
3 alibration Preci an Sensitivity: ial 1: Cou	o sion= Average Differenc	Average Difference: :e/Cal Gas Conc. X 100% = 100 ⁴ = 99,94 pan= <u>1357809</u>	0 *Perform recalibration if a %	verage difference is greater than 00 x 100% Observed for the Span=	34072
3 alibration Preci ian Sensitivity: ial 1: Coun	o sion= Average Differenc unts Observed for the Sp iters Observed for the Z	Average Difference: :e/Cal Gas Conc. X 100% = 100 ⁴ = 9994 pan= <u>1355808</u> ero= UR 3 -	Image: Counters	verage difference is greater than 00 x 100% Observed for the Span=	<u>3 い リ リ コ コ ロ コ コ ロ コ コ ロ コ ロ コ コ ロ コ コ ロ コ コ ロ コ</u>
3 alibration Preci ian Sensitivity: ial 1: Coun al 2:	sion= Average Differenc unts Observed for the S iters Observed for the Z	Average Difference: e/Cal Gas Conc. X 100% = 100% = 9994 pan = 135808 ero = 4932 a = 100%	Image: Counts Image: Counters	verage difference is greater than 00 x 100% Observed for the Span= Observed for the Zero=	4] 10 34072 4772
3 alibration Preci ial 1: Coun al 2: Cou	o sion= Average Differenc unts Observed for the Sp iters Observed for the Sp ints Observed for the Sp	Average Difference: e/Cal Gas Conc. X 100% = 100% = 9994 pan = 135808 ero = 4930 pan = 134906	Image: Constraint of the second se	verage difference is greater than 00 x 100% Observed for the Span= Observed for the Zero=	4] 10 13 リロン ロン レロン レロン
3 alibration Preci ian Sensitivity: ial 1: Coun al 2: Coun	o sion= Average Difference unts Observed for the Sp iters Observed for the Sp ints Observed for the Sp ters Observed for the Sp	Average Difference: e/Cal Gas Conc. X 100% $= 100^{4}$ = 99.94 pan = 135.808 ero = 49.39 pan = 1.34.90.6 ero = 4.60.2	Image: constraint of a state of a stat	verage difference is greater than 00 x 100% Observed for the Span= Observed for the Zero=	4] 10 13 リローン イコーン
3 alibration Preci an Sensitivity: Coun al 2: Coun t Monitoring C	o sion= Average Difference unts Observed for the Sp iters Observed for the Zp ints Observed for the Sp ters Observed for the Zp ialibration Check	Average Difference: :e/Cal Gas Conc. X 100% = 100 = 9994 pan= <u>135808</u> :ero= <u>4938</u> :ero= <u>4902</u>	Image: Constraint of a state of the stat	verage difference is greater than 00 x 100% Observed for the Span= Observed for the Zero=	4] 10 3 リロフユ 4 ココユ
3 alibration Preci ian Sensitivity: ial 1: Coun al 2: Coun al 2: Coun	sion= Average Difference unts Observed for the Sp aters Observed for the Sp ants Observed for the Sp ters Observed for the Zo ters Observed for the Zo alibration Check	Average Difference: e/Cal Gas Conc. X 100% = 100% = 000% = 000%	Image: Constraint of a state of a stat	verage difference is greater than 00 x 100% Observed for the Span= Observed for the Zero=	4] 10 34072 4772
3 alibration Preci ian Sensitivity: ial 1: Coun al 2: Coun al 2: Coun it Monitoring C o Air ding:	sion= Average Difference unts Observed for the Sp iters Observed for the Sp iters Observed for the Sp ters Observed for the Sp ters Observed for the Zo alibration Check	Average Difference: e/Cal Gas Conc. X 100% $= 100^{\circ}$ = 9994 pan = 135808 ero = 4938 pan = 134906 ero = 4602 Cal Gas Baading:	Image: Constraint of the second se	verage difference is greater than 00 x 100% Observed for the Span= Observed for the Zero=	4] 10 <u>34の72</u> 4772
3 alibration Preci an Sensitivity: ial 1: Cour al 2: Cour al 2: Cour t Monitoring C o Air ding:	sion= Average Difference unts Observed for the Sp atters Observed for the Sp ants Observed for the Sp ters Observed for the Sp ters Observed for the Zp alibration Check	Average Difference: e/Cal Gas Conc. X 100% = 100% = 00,0% = 00,0%	Image: Constraint of the second se	verage difference is greater than 00 x 100% Observed for the Span= Observed for the Zero=	4] 10 10 10 10 10 10 10 10 10 10
3 alibration Preci an Sensitivity: al 1: Cour al 2: Cour al 2: Cour ding:	sion= Average Difference unts Observed for the Sp iters Observed for the Sp iters Observed for the Sp ters Observed for the Sp ters Observed for the Sp alibration Check 2.0 ppm ONCENTRATIONS CHE	Average Difference: e/Cal Gas Conc. X 100% = 100% = 0094% ero = 13580% ero = 493% pan = 13490% ero = 430% Cal Gas Reading: ECKS	Image: Constraint of the second se	verage difference is greater than 00 x 100% Observed for the Span= Observed for the Zero=	4] 10 34072 4772
3 alibration Preci an Sensitivity: ial 1: Cour al 2: Cour al 2: Cour ding: Cour t Monitoring C o Air ding: XGROUND Cour 'ind Location D	sion= Average Difference unts Observed for the Sp aters Observed for the Sp ters Observed for the Sp ters Observed for the Zo alibration Check 2.0 ppm ONCENTRATIONS CHE Description:	Average Difference: e/Cal Gas Conc. X 100% $= 100^{\circ}$ $= 000^{\circ}$ $= 000^{\circ$	Image: constraint of the second s	verage difference is greater than 00 x 100% Observed for the Span= Observed for the Zero=	10 10 34072 4772
3 alibration Preci ial 1: Cour al 2: Cour al 2: Cour ding: Cour Cour Cour Cour Cour Cour Cour Cour	sion= Average Difference unts Observed for the Sp iters Observed for the Sp iters Observed for the Sp iters Observed for the Zo alibration Check 2.0 ppm ONCENTRATIONS CHE Description: n Description:	Average Difference: e/Cal Gas Conc. X 100% = 100% = 9994 pan = 135808 ero = 4938 pan = 134906 ero = 4802 Cal Gas Reading: ECKS <u>6rid4</u>	Image: Constraint of the second se	verage difference is greater than 00 x 100% Observed for the Span= Observed for the Zero= n ding: 2.0 p	ypm

			DNS MONITORING	
	(. 20-22			8
Date:	(-30 2)		Site Name:	1 ··· · · · · · · · · · · · · · · · · ·
Inspector(s):	10n Gipson	1	Instrument: TVA 2020	
WEATHER OF	SERVATIONS		2	
Wind Speed	d:МРН	Wind Direction:	Barometric Pressure: 20	1,87нв
Ai Temperature	ir e:°F	General Weather Conditions:	Sung	
CALIBRATION	INFORMATION			
Pre-monitoring	Calibration Precision Check		#1 74	
Procedure: Calil and calculate th precision must b Instrument Seria	brate the instrument. Make ne average algebraic differen be less than or equal to 10% of al Number:	a total of three measuremen ce between the instrument re of the calibration gas value.	ts by alternating zero air and the calin eading and the calibration gas as a p Cal Gas Concentra	bration gas. Record the reading ercentage. The calibration tion:500ppm
Trial	Zero Air Reading	Cal Gas Reading	ICal Gas ConcCal Gas Reading	Response Time (second
1	6	500	6	4
2	0	500	0	4
Calibration Precis	sion= Average Difference/Cal	Average Difference; [Gas Conc. X 100%	.3 Parform recalibration if average difference is great	er than 10
Calibration Precis	sion= Average Difference/Cal	Average Difference; Gas Conc. X 100% = 100% -	.3 Perform receiveration if sverage of ference is greate 3/500 x 100%	er than 10
Calibration Precis	sion= Average Difference/Cal	Average Difference; Gas Conc. X 100% = 100%- = 999.94	.3 Perform receiveration if sverage of ference is greate 3/500 x 100%	er than 10
Calibration Precis Span Sensitivity: Trial 1: Cou	sion= Average Difference/Cal	Average Difference; Gas Conc. X 100% = $100\% - \frac{1}{2}$ = 99.94 %	3 Perform receiveration if sverage of ference is greated 3 /500 x 100% 6 rial 3: Counts Observed for the Sp	er than 10 pan= 125407
Calibration Precis Span Sensitivity: <u>Trial 1:</u> Cou Coun	sion= Average Difference/Cal unts Observed for the Span= ters Observed for the Zero=	Average Difference; Gas Conc. X 100% = 100%- = 99.99 127056 	3 Perform receiveration if average difference is greated 3 /500 x 100% 6 rial 3: Counts Observed for the Space of feather 3	er than 10 pan= 125402
Calibration Precis Span Sensitivity: Trial 1: Cou Frial 2:	sion= Average Difference/Cal unts Observed for the Span= ters Observed for the Zero=	Average Difference; Gas Conc. X 100% $= 100\% - \frac{1}{9}$ = 99.99 127056 3816 12707	3 Perform receiveration if sverage of ference is greated 3 /500 x 100% 6 rial 3: Counts Observed for the Sp Counters Observed for the Z	er than 10 pan= <u>125402</u> ero= <u>3702</u>
Calibration Precis Span Sensitivity: Trial 1: Cou <u>Coun</u> Trial 2: Cou	sion= Average Difference/Cal unts Observed for the Span= ters Observed for the Zero= ints Observed for the Span=	Average Difference; Gas Conc. X 100% $= 100\% - \frac{100\%}{9}$ = 99.94 % 127056 T 3816 126702 3796	3 Perform receiveration if average difference is greated 3 /500 x 100% 6 rial 3: Counts Observed for the Sp Counters Observed for the Z	er chan 10 pan= <u>125402</u> ero= <u>3702</u>
Calibration Precis Span Sensitivity: Trial 1: Cou Trial 2: Cou Count	sion= Average Difference/Cal unts Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Span= alibration Check	Average Difference; Gas Conc. X 100% = $100\% - \frac{1}{9}$ = 99.99 127056 X816 126702 3796	3 Perform receiveration if sverage of ference is greated 3 /500 x 100% 6 rial 3: Counts Observed for the Sp Counters Observed for the Z	er than 10 pan= <u>125402</u> ero= <u>3702</u>
Calibration Precis Span Sensitivity: Trial 1: Cou Trial 2: Cou Count 'ost Monitoring Ca	sion= Average Difference/Cal unts Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Zero= alibration Check	Average Difference; Gas Conc. X 100% = $100\% - \frac{1}{2}$ = 99.99 127056 7816 126702 3796	3 Perform receiveration if sverage difference is greated (500 x 100%) (6) Fial 3: Counts Observed for the Sy Counters Observed for the Z	er than 10 pan= <u>125402</u> ero= <u>3702</u>
Calibration Precis Span Sensitivity: Trial 1: Cou Count Trial 2: Cou Count 'ost Monitoring Ca ero Air eading:	sion= Average Difference/Cal unts Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Span= alibration Check	Average Difference: Gas Conc. X 100% = 100% = 99.94 % 127056 3816 126702 3796 Cal Gas Reading: 5	A form receiveration if average of ference is greated /500 x 100% Counts Observed for the Sp Counters Observed for the Z	er than 13 pan= <u>125402</u> ero= <u>3702</u>
Calibration Precis Span Sensitivity: Trial 1: Cou Count Trial 2: Cou Count 'ost Monitoring Ca ero Air eading: ACKGROUND CO	sion= Average Difference/Cal unts Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Zero= alibration Check C ppm DNCENTRATIONS CHECKS	Average Difference: Gas Conc. X 100% = 100% = 99.94 % 12705% 3816 126702 3796 Cal Gas Reading: 5	3 7500 x 100% 6 7ial 3: Counts Observed for the Spectrum Counters Observed for the Z 00 ppm	er man 10 pan= <u>125402</u> ero= <u>3702</u>
Calibration Precis Span Sensitivity: Trial 1: Cou Court Trial 2: Cou Count Post Monitoring Ca ero Air eading: ACKGROUND CC pwind Location Do	sion= Average Difference/Cal unts Observed for the Span= ters Observed for the Zero= ints Observed for the Zero= alibration Check Dppm DNCENTRATIONS CHECKS escription:	Average Difference: Gas Conc. X 100% = 100% = 99.94 % 127056 3816 126702 3796 Cal Gas Reading: 5	3 /500 x 100% 6 rial 3: Counts Observed for the Sp Counters Observed for the Z	er than 10 pan= <u>125402</u> ero= <u>3702</u>
Calibration Precis Span Sensitivity: Trial 1: Cou Count Trial 2: Cou Count Post Monitoring Ca ero Air eading: ACKGROUND CC pwind Location Do pwind Location Do	sion= Average Difference/Cal unts Observed for the Span= ters Observed for the Zero= ints Observed for the Span= ters Observed for the Span= alibration Check DNCENTRATIONS CHECKS escription:	Average Difference: Gas Conc. X 100% = 100%- = 99.94 % 127056 3816 126702 3796 Cal Gas Reading: 5 Grid 4 Jare	 3 /500 x 100% Counts Observed for the Spectrum Counters Observed for the Z Counters Observed for the Z Reading: 2:3 Reading: 2:0 	er than 10 pan= <u>125402</u> ero= <u>3702</u>

			SURFACE EMISS	IONS MONIT	ORING	
			CALIBRATION AI	ND PERTINEN	ΙΤ ΟΑΤΑ	×
1	Date:	6-90-23		Site Name:	Keller	
	Inspector(s):	Andra 5.	tone	Instrument:	TVA 2020	
	WEATHER OB	SERVATIONS			4	
	Wind Speed	н:мрн	Wind Direction:		Barometric Pressure: 29.87 -	"Hg
	Ai Temperature	r ::_ 6/ °F	General Weath Condition	er s: <u>SVNNN</u>		
	CALIBRATION	INFORMATION		6		
F	Pre-monitoring	Calibration Precision Chee	sk			
A c p Ir	Procedure: Calik and calculate th precision must b nstrument Seria	orate the instrument. Mai le average algebraic diffe le less than or equal to 10 al Number:	ke a total of three measureme rence between the instrument % of the calibration gas value Ø	ents by alternating reading and the c	zero air and the calibratio alibration gas as a percen Cal Gas Concentration	n gas. Record the readings tage. The calibration 5000000
-	ria	Zoro Air Boading				500000
Ë	1	-0.1	Soo	Cal Gas Co	oncCal Gas Reading	Response Time (seconds)
H	2	0	498	1		5
) [-0.1	499	1 <u> </u>)
Ca	libration Precis	ion= Average Difference/	Cal Gas Conc. X 100% = 100%- = 90 . Cu	%	/500 x 100%	
Spa	an Sensitivity:					
Tri	al 1: Cou	ints Observed for the Spa	n= 197700	<u>Trial 3:</u> Count	s Observed for the Span=	190906
Tria	Coun	ters Observed for the Zero		Counter	s Observed for the Zero=	5202
	Cou	nts Observed for the Spar	1= 19[690			
\vdash	Count	ers Observed for the Zerc	= 5242			
Post	t Monitoring Ca	alibration Check				
Zero	Air	N 1	Cal Gas	Car		
heat		ppm	Reading:	<u>503</u> pr	m	
BAC	KGROUND CO	DINCENTRATIONS CHECK	KS			~
Upw	ind Location De	escription:	Gridy	Re	eading: <u>Q.S</u> p	pm
Dowi	nwind Locatior	Description	Flare	Re	eading: <u>20</u> p	pm
Note	s: Wi exc me	nd speed averages were ceeded 20 miles per hour teorological conditions w	observed to remain below the . No rainfall had occurred wi vere within the requested alte	e alternative reque hin the previous 2 rnatives of the LM	sted 10 miles per hour an 4 hours of the monitoring R requirements on the ab	d no instantaneous speeds event. Therefore, site ove mentioned date.

SCS Distributions - Secture Rivers musical Darker - ------

		SURFACE EMISS	IONS MONI	TORING NT DATA	Ĩ
Date:	6-20-23		Site Name:	Keller	
Inspector(s):	Actoro Olivare	5	Instrument:	TVA 2020	
WEATHER OB	SERVATIONS			20	
Wind Speed	:МРН	Wind Direction: NE	_	Barometric Pressure:	"Hg
Ai Temperature	56 .	General Weathe Condition	Sunny		
CALIBRATION	INFORMATION				
Pre-monitoring	Calibration Precision Check				
and calculate th precision must b Instrument Seria	e average algebraic difference le less than or equal to 10% o I Number:	e between the instrument f the calibration gas value.	reading and the	calibration gas as a percent Cal Gas Concentration:	tage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds
2	0	499			5
3	0	500	0		1
		= 100%-	मुब्रुयु. 3	/500 x 100%	
		=99.9y	%		
pan Sensitivity:			Tel. 1.2.		
Cou	ints Observed for the Span=	174928	Coun	ts Observed for the Span=	172704
Coun	ters Observed for the Zero=	3664	Counte	rs Observed for the Zero=	5546
rial 2: Cou	nts Observed for the Span=_	171360			
Count	ers Observed for the Zero=	5587			
ost Monitoring Ca	alibration Check				ti.
ro Air		Cal Gas			
eading:	.2ppm	Reading:	500	opm	
ACKGROUND CO	ONCENTRATIONS CHECKS				
wind Location D	escription:	171 bin	F	leading: <u>3.5</u>	ppm
wnwind Location	n Description:	Flare	R	reading: 2-6	mqq
n tes: W ex me	ind speed averages were obs ceeded 20 miles per hour. N eteorological conditions were	erved to remain below the o rainfall had occurred wit e within the requested alte	e alternative requ thin the previous ernatives of the Lf	ested 10 miles per hour an 24 hours of the monitoring VR requirements on the ab	d no instantaneous speeds sevent. Therefore, site pove mentioned date.

	[SURFACE EMISSI	ONS MONIT	ORING	ter and the state of the state of the state of
			CALIBRATION AN	D PERTINEN	IT DATA	
\bigcirc	Date:	6-20-23		Site Name:	Keller	
	Inspector(s):	Jonatha. 5		Instrument:	TVA 2020	
	WEATHER OB	SERVATIONS			5	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	Wind Speed	г <b>7</b> МРН	Wind Direction: USU		Barometric Pressure: 30.1	"Нд
	Air Temperature:	55 °F	General Weathe Conditions	Sunny	- :	
		INFORMATION				
	Pre-monitoring	Calibration Precision Check				
	and calculate the precision must b Instrument Seria	e average algebraic differen e less than or equal to 10% o l Number: <u>236</u>	ce between the instrument in of the calibration gas value.	reading and the c	alibration gas as a percent	age. The calibration
	Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (seconds)
	1	0.1	499	1		1
	3	-0.1	501			2
1			Average Difference:			
			= 100%- = 99.¢	/	/500 x 100%	
	Span Sensitivity:					
	<u>Trial 1:</u> Cou	nts Observed for the Span=	168208	Trial 3: Count	s Observed for the Span-	163904
	Count	ers Observed for the Zero=	3986	Counte	rs Observed for the Zero=	4008
	Trial 2: Cou	nts Observed for the Span=	164892			
	Count	ers Observed for the Zero=	John 3983			
	Post Monitoring Ca	libration Check				
	Zero Air Reading:	1.3ppm	Cal Gas Reading:	502 p	pm	
E	BACKGROUND CC	NCENTRATIONS CHECKS				
$\bigcirc$	Jpwind Location De	escription:	Grid 171	R	eading: <u>3.5</u> p	ppm
C	ownwind Location	Description:	lare	R	eading: <u>2.6</u> p	pm
	lotes: Wi exc me	nd speed averages were ob ceeded 20 miles per hour. I teorological conditions wer	served to remain below the No rainfall had occurred with re within the requested alter	alternative reque hin the previous 2 rnatives of the LN	ested 10 miles per hour an 24 hours of the monitoring 1R requirements on the ab	d no instantaneous speeds event. Therefore, site ove mentioned date.

		SURFACE EMISS	IONS MONI	TORING	
	(-20.22	CALIDRATION AI		VIDAIA	5
Date	6-20-25		Site Name:	Neller	
Inspector(s):	Pon Gibson		Instrument:	TVA 2020	
WEATHER OF	BSERVATIONS			<i></i>	
Wind Speed	d: MPH	Wind Direction: NE		Barometric Pressure: $30 \cdot 11$	
A Temperature	e: <u>56</u> °F	General Weath Condition	s: Sunny	_	
CALIBRATION	INFORMATION		1		
Pre-monitoring	Calibration Precision Check				
precision must i	be less than or equal to 10% of al Number:	of the calibration gas value		Cal Gas Concentration:	500ppm
Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (seconds)
2	-0.1	500	0		<u>ь</u>
3	0	500	6		u u
Calibration Preci	sion= Average Difference/Cal	Gas Conc. X 100%			
		= 100%-	<b>•</b>	/500 x 100%	
		=/00	%		
pan Sensitivity:					
rial 1: Col	unts Observed for the Span=	161036	<u>Trial 3:</u> Coun	ts Observed for the Span=	159568
Cour	nters Observed for the Zero=	3882	Counte	ers Observed for the Zero=	3785
Cou	unts Observed for the Span=	159356			
Coun	ters Observed for the Zero=	3817			
ost Monitoring C	Calibration Check				
ro Air		Cal Gas			
ading: 🖊	ppm_	Reading:	501	opm	
CKGROUND C	ONCENTRATIONS CHECKS				
wind Location D	Description	6nid 171	F	Reading: 3.5 p	pm
wnwind Locatio	n Description: 1	lar	F	Reading: 7	pm
tes: W ex m	/ind speed averages were ob: ceeded 20 miles per hour. N	served to remain below the lo rainfall had occurred wit	e alternative requition the previous	ested 10 miles per hour an 24 hours of the monitoring	d no instantaneous speeds event, Therefore, site

(

	1	
	1	200
- A CARTER CONTRACTOR AND A CARTER AND A CARTER AND A CARTER AND A CARTER A CARTER A CARTER A CARTER A CARTER A	1-000	A
	IT DE	State - State -

			SURFACE EMISS	IONS MONI	TORING	
			CALIBRATION AN	ID PERTINEN	NT DATA	i.
	Date:	6-20-23		Site Name:	Keller	
	Inspector(s):	Andrew Ston	e	Instrument:	TVA 2020	
	WEATHER OB	SERVATIONS			45	
	Wind Speed	:МРН	Wind Direction: NE	_	Barometric Pressure:	- "Нg
	Air Temperature:	_ <b>5</b> 6°F	General Weathe Conditions	s: Sunny	<b>_</b> :	
	CALIBRATION	INFORMATION		J		
	Pre-monitoring (	Calibration Precision Check				
1 7 11	Procedure: Calib and calculate the precision must b nstrument Seria	rate the instrument. Make e average algebraic differen e less than or equal to 10% of I Number: 5421	a total of three measureme ce between the instrument of the calibration gas value.	nts by alternating reading and the c	zero air and the calibration calibration gas as a percent Cal Gas Concentration:	n gas. Record the readings age. The calibration 500ppm
Ē	rial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (seconds)
⊢	2	0	499	1		4
T	3	0	5012	2		2
	andration Precis	ion= Average Difference/Ca	Gas Conc. X 100% = 100%- = <b>G</b> any	<u>/.3</u>	/500 x 100%	
Sn	an Sensitivity:					
Tri	al 1:			Trial 3:		PRO210-807
	Cou	nts Observed for the Span=	141560	Count	s Observed for the Span=	142748
Tri	Count	ers Observed for the Zero=	4521	Counter	rs Observed for the Zero=	4310
	Cour	nts Observed for the Span=	144032			
-	Counte	ers Observed for the Zero=	4355			
Pos	t Monitoring Ca	libration Check				
Rea	ding:	<b>2</b> ppm	Cal Gas Reading:	600	pm	
BAC	KGROUND CO	INCENTRATIONS CHECKS				
Upw	vind Location De	escription: 6	ור) לא	R	eading: <u>3-5                                    </u>	om
Dow	nwind Location	Description:	lare	Re	eading: 26 p	om
Note	es: Win exc me	nd speed averages were ob. eeded 20 miles per hour. N teorological conditions wer	served to remain below the lo rainfall had occurred wit e within the requested alte	alternative reque hin the previous 2 rnatives of the LN	ested 10 miles per hour and 24 hours of the monitoring 1R requirements on the abo	no instantaneous speeds eventa Therefore, site ove mentioned date.

SCS Deservations = Second Roydsonneused Deser

		SURFACE EMISSI	ONS MONI	FORING	
		CALIBRATION AN	D PERTINER		<u>e</u> .
Date:	6-60-23		Site Name:	Keller	
Inspector(s);	Ricardo . Y		Instrument:	TVA 2020	
WEATHER OBS	ERVATIONS			6	
	-	Wind		Barometric	
Wind Speed:	MPH	Direction: WSW	÷	Pressure: 30, 11	"Hg
Air Temperature:	\$5°F	General Weather Conditions:	Sunny	<b>_</b> 10	
CALIBRATION I	NFORMATION		5		
^p re-monitoring (	Calibration Precision Check				
nd calculate the precision must be nstrument Serial	e average algebraic differe. e less than or equal to 10%	or total of three measurement nce between the instrument ro of the calibration gas value.	eading and the o	zero air and the calibration calibration gas as a percer Cal Gas Concentration;	on gas. Record the readings stage. The calibration <b>500pp</b> m
rial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
1	0	501	1		1
2	Ö	502	2		3
		= 100%	3	/500 x 100%	
		= 99.4	6		
		= 99.4 9	6		
an Sensitivity: al 1:		= 99.4 %	6 rial <u>3:</u>		
an Sensitivity: <mark>al 1:</mark> Cour	nts Observed for the Span-	= 99.4 s	6 <u>rial 3:</u> Coun	ts Observed for the Span=	125572
an Sensitivity: al 1: Court Counti al 2:	nts Observed for the Span- ers Observed for the Zero-	= 99.4 s = 154220 = 3450	6 <u>rial 3:</u> Coun Counte	ts Observed for the Span= rs Observed for the Zero=	125572
an Sensitivity: al 1: Cour Counti al 2: Cour	nts Observed for the Spansers Observed for the Zeros ers Observed for the Zeros nts Observed for the Spansers	= 99.4 9 = 154220 = 3450 = 125108	6 i <mark>rial 3:</mark> Counte	ts Observed for the Span= rs Observed for the Zero=	12557-2 3:439
an Sensitivity: al 1: Court <u>Count</u> Court Courte	nts Observed for the Spansers Observed for the Zeros ers Observed for the Zeros nts Observed for the Spansers Observed for the Zeros	= 99.4 9 = 154220 = 3450 = 125108 = 3436	<mark>rial 3:</mark> Coun Counte	ts Observed for the Span= rs Observed for the Zero=	12557-2 3439
an Sensitivity: al 1: Court Counte al 2: Court Counte t Monitoring Ca	nts Observed for the Spansers Observed for the Zerosets Observed for the Zerosets Observed for the Spansers Observed for the Zerosetibration Check	= 99.4 9 = 154220 = 3450 125108 3436	6 <u>rial 3:</u> Counte	ts Observed for the Span= rs Observed for the Zero=	125572 3439
an Sensitivity: al 1: Court Count al 2: Count Counte t Monitoring Ca D Air ding:	nts Observed for the Spansers Observed for the Zeros ers Observed for the Zeros nts Observed for the Spansers Observed for the Zeros libration Check	= 99, 9 = 154220 = 3450 = 125108 = 3436 Cal Gas Reading:	6 rial 3: Counte	ts Observed for the Span= rs Observed for the Zero=	125572
an Sensitivity: al 1: Count Count al 2: Count Counte t Monitoring Ca Air ding:	nts Observed for the Spansers Observed for the Zerosense of the Zerosense of the Spansers Observed for the Zerosens Observed for the Zerosens Observed for the Zerosense of the	= 99.9 9 = 154220 = 3450 = 125108 = 125108 = 3436 Cal Gas Reading:	6 rial 3: Counte	ts Observed for the Span= rs Observed for the Zero=	125572
an Sensitivity: al 1: Court Counte al 2: Counte t Monitoring Ca D Air ding: KGROUND CO rind Location De	nts Observed for the Spansers Observed for the Zerosets Observed for the Spansers Observed for the Spansers Observed for the Zerosetibration Check	= 99.4 9 = 154220 = 3450 = 125108 = 3436 Cal Gas Reading: = = = = = - - - - - - - - - - - - -	6 rial 3: Counte	ts Observed for the Span= rs Observed for the Zero= npm eading: <b>3.5</b>	<u>12557-2</u> <u>3439</u>
an Sensitivity: al 1: Court Counte al 2: Counte Counte t Monitoring Ca Air ding: KGROUND CO rind Location De rnwind Location	nts Observed for the Spansers Observed for the Zerosets Observed for the Zerosets Observed for the Spansers Observed for the Zerosetibration Check	= 99.9 9 = 154220 = 3450 = 125108 = 3436 Cal Gas Reading: = = wid ly Hare	6 rial 3: Counte	ts Observed for the Span= rs Observed for the Zero= opm eading: <u>3.5</u> eading: <u>7.5</u>	<u>/2557-2</u> <u>3439</u> ppm

SCS Durin Services - Service British and Durin - ------

-

			SURFACE EMISS	IONS MONITO	RING	
			CALIBRATION AN	ID PERTINENT	ΠΑΤΑ	
5	1. Onto	1-22 33		999 I FIAIATA	Kali	<u>A</u>
	Date	AICA C		Site Name:	Beller	
	Inspector(s):	Altro o G		Instrument:	TVA 2020	
	WEATHER OF	SERVATIONS			24	
		2	Wind		Barometric	
	Wind Speed	МРН	Direction:	-	Pressure: 30.11	"Hg
	Ai Temperature	r 55_F	General Weathe Conditions	s: Sunny		
	CALIBRATION	INFORMATION				
	Pre-monitoring	Calibration Precision Check				
	Procedure: Calil	brate the instrument. Make a	total of three measureme	nts by alternating ze	ro air and the calibratio	n gas. Record the readings
	and calculate th precision must b	ie average algebraic different pe less than or eaual to 10% c	te between the instrument	reading and the cali	bration gas as a percent	age. The calibration
	Instrument Serie	Alumber 502				
		an Number:4	2	(	Cal Gas Concentration:	500ppm
	Trial 1	Zero Air Reading	Cal Gas Reading	Cal Gas Conc	-Cal Gas Reading	Response Time (seconds)
	2		500	0		
	3	-01	500	0		2
23		-0.1	701	· · · · ·		
	Calibration Precis	sion= Average Difference/Cal	Gas Conc. X 100%	*Perform recalibration if av	erage difference is greater than :	10
			= 100%-	/ /50	00 x 100%	
	1		= 99.8	%		
	Span Sensitivity:					
	Trial 1:			Trial 3:		
	Cou	ints Observed for the Span=	145268	Counts C	bserved for the Span=	133512
	Coun	ters Observed for the Zero=	3780	Counters C	Observed for the Zero=	3585
	Cou	nts Observed for the Span=	169 420			·
	Count	ters Observed for the Zero=	3760			
	Post Monitoring C	alibration Check				
	Zero Air					
	Reading:	1.5ppm	Cal Gas Reading:	503_ppm		
	BACKGROUND CO	DNCENTRATIONS CHECKS				
$\cup$	Upwind Location D	escription:	vid 171	Read	ling: <u>3.5</u> p	pm
C	Downwind Location	Description:	are	Read	ling: <u>2.6</u> p	pm
	Notes: W ex me	ind speed averages were obs ceeded 20 miles per hour. N eteorological conditions were	erved to remain below the o rainfall had occurred wit e within the requested alte	alternative requeste hin the previous 24 h rnatives of the LMR	ed 10 miles per hour and hours of the monitoring requirements on the abo	d no instantaneous speeds event. Therefore, site ove mentioned date.

		- Charles and the second second second	SURFACE EMISS		TORING	
			CALIBRATION AN		IT DATA	
C	Date:	6-21-23		Site Name:	Keller cany	lon
	(nspector(s)	Don Gubson		Instrument:	TVA 2020	<b>-</b>
	WEATHER OF	SERVATIONS			×17.	
	Wind Speed	н мрн	Wind Direction: NE		Barometric Pressure: <u>30-04</u>	"Hg
	A Temperature	ir e: <u>55</u> °F	General Weath Condition	Sunny	_0	
	CALIBRATION	INFORMATION				
	Pre-monitoring	Calibration Precision Check				
	Procedure: Cali and calculate th precision must t	brate the instrument. Make a ne average algebraic difference be less than or equal to 10% of	total of three measureme e between the instrument f the calibration gas value	ents by alternating reading and the c	zero air and the calibratio alibration gas as a percent	n gas. Record the readings tage. The calibration
	Instrument Seria	al Number: 2364			Cal Gas Concentration:	500ppm
	Trial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	oncCal Gas Reading	Response Time (seconds)
	2	-0.1	502		2	3
	3	-0.1	50			2
	Calibration Preci	sion= Average Difference/Cal (	Gas Conc. X 100% = 100%-	*Perform recalibration	if average difference is greater than	10
			= 99.74	%		
	Span Sensitivity:					
	<u>Trial 1:</u> Col	unts Observed for the Span=	158632	Trial 3: Count	s Observed for the Span=	HP 159482
	Cour	ters Observed for the Zero=	5926-4063	Counte	rs Observed for the Zero=	RADA
	Trial 2: Cou	unts Observed for the Span=	158864			- 3 140
	Coun	ters Observed for the Zero=	4045			
	Post Monitoring C	alibration Check				
	Zero Air Reading:	ppm	Cal Gas Reading:	<b>499</b> p	pm	
	BACKGROUND C	ONCENTRATIONS CHECKS				
U	Upwind Location D	Description:	Gwid 171	R	eading: <u>10.2</u> p	ppm
	Downwind Locatio	n Description:	lare	R	eading: <mark>8.6</mark> p	pm
	Notes: W e> m	'ind speed averages were obse ceeded 20 miles per hour. No eteorological conditions were	erved to remain below the p rainfall had occurred wi within the requested alte	e alternative reque thin the previous 2 ernatives of the LN	ested 10 miles per hour an 24 hours of the monitoring 4R requirements on the ab	d no instantaneous speeds event. Therefore, site ove mentioned date.

NCS Destronations - Sectors Routenand Destro

[		SURFACE EMIS	SIONS MONIT	ORING	
		CALIBRATION A	ND PERTINEN	IT DATA	
Date:	6-21-23		Site Name:	Keller canjo	n
Inspector(s	Arturo diva	res	Instrument:	TVA 2020	·····
WEATHER	OBSERVATIONS			581	
	<i></i>	Wind		Barometric	
Wind Sp	peed: MPH	Direction: NE		Pressure: 30.04	"Hg
Tempera	Air ture: <b>55</b> °F	General Weat Conditic	her ^{ons:} Sonny	-1	
CALIBRATI	ON INFORMATION		1		
Pre-monito	ing Calibration Precision Chec	:k			
and calcular precision mu	ise the average algebraic differ ist be less than or equal to 10 Serial Number:	ence between the instrume % of the calibration gas valu	nt reading and the o le.	cal Gas Concentration	age. The calibration
Trial	Zero Air Reading	Cal Gas Reading		and Cal Gas Poading	Pospopsa Time (assessed
1		500			4
2	-0.1	201			4
		= 1009	^{%-} 6	/500 x 100%	
÷.		= 19.80	<b>0</b> %		
Span Sensitiv Trial 1:	ty:		Trial 3:		
	Counts Observed for the Spa	n= 133348	Coun	ts Observed for the Span=	142996
C	ounters Observed for the Zer	= 3641	Counte	rs Observed for the Zero=	36841
<u>Trial 2:</u>	Counts Observed for the Spa	140888			
с	ounters Observed for the Zero	= 3632			
Post Monitori	ng Calibration Check				
Zero Air Reading:	1.8 ppm	Cal Gas Reading:	501	opm	
BACKGROUN	D CONCENTRATIONS CHEC	KS			
Upwind Locatio	on Description:	Girielizi	-	Reading: <u>10.2</u> p	pm
Downwind Loc	ation Description:	Flare	F	Reading: 8.6 p	ndu
Notes:	Wind speed averages were exceeded 20 miles per hou meteorological conditions	observed to remain below r. No rainfall had occurred v were within the requested a	the alternative requ within the previous Iternatives of the Li	ested 10 miles per hour an 24 hours of the monitoring VR requirements on the ab	d no instantaneous speed: event. Therefore, site ove mentioned date.

 $\mathcal{L}$ 

			SURFACE EMIS	SIONS MONI	TORING	
-	_	6 01	CALIBRATION A	ND PERTINEI	NT DATA	
C,	Date:	6-21-23		Site Name:	Keller can	yon
	Inspector(s):	Andrew Ston	e	Instrument:	TVA 2020	
	WEATHER OF	BSERVATIONS			2	
		6	Wind		Barometric	
	wind Speed	a: MPH	Direction: NE		Pressure: 30.04	"Hg
	A Temperature	ir ≊: _ <b>55</b> °⊧	General Weath Condition	ner ns: <u>Sunny</u>	-	
	CALIBRATION	INFORMATION				
	Pre-monitoring	Calibration Precision Check				
	Procedure: Cali. and calculate th precision must i	brate the instrument. Make he average algebraic differer. be less than or equal to 10% al Number:	a total of three measurem ace between the instrumen of the calibration gas value	ents by alternating t reading and the 2.	g zero air and the calibratio calibration gas as a percen	n gas. Record the readings tage. The calibration
	Triol			1	Cal Gas Concentration;	SUOPpm
	1	Ligg -0.1	Lal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (seconds)
	2	-0.1	<b>605</b> 4190		0 1.	<u> </u>
	Calibration Preci	sion= Average Difference/Ca	Average Difference;	*Perform recalibration	3 I if average difference is greater than	10
			= 100%	-	/500 x 100%	
			= 94.8	%		
	Span Sensitivity:					
	Trial 1:		1274	Trial 3:		17001
	Col	unts Observed for the Span=	172166	Cour	its Observed for the Span=	172040
	Cour Trial 2:	iters Observed for the Zero=	2086	Counte	ers Observed for the Zero=	521
	Cou	unts Observed for the Span=	72584	-		
	Coun	ters Observed for the Zero=	5079	J		
	Post Monitoring C	alibration Check				
	Zero Air Reading:	-1.4 ppm	Cal Gas Reading:	496	opm	
	BACKGROUND C	ONCENTRATIONS CHECKS	i			
J	Upwind Location D	Description:	Gund 171	F	Reading: <u>10-2</u> p	pm
	Downwind Locatio	n Description:	Franc	F	Reading: <u>8.6</u> p	pm
	Notes: W ex m	/ind speed averages were ob cceeded 20 miles per hour. eteorological conditions we	served to remain below th No rainfall had occurred w re within the requested alt	ne alternative requ ithin the previous rernatives of the LI	ested 10 miles per hour an 24 hours of the monitoring MR requirements on the ab	d no instantaneous speeds event ₁ Therefore, site ove mentioned date.
al'arà	the survey with	COLUMN TO A CARD OF A CARD OF A				1

SCS BI-MSSERVICES - SERVICE REVOLUTIONED DESK. - - - - - -

			CALIBRATION	AND PERTINE	NT DATA	
Date:		7-20-2	3	Site Name:	Keller	
Inspec	ctor(s)	Arturo Oli	bures	Instrument:	TVA 2020	
WEAT	THER OBS	ERVATIONS			2	
Wi	ind Speed:	Мрн	Wind Direction: NE		Barometric Pressure:29.99	"Нд
, Tem	Air iperature:	<u>69</u> "	General Wea Condit	ather tions: Wind y		
CALIB	RATION II	NFORMATION				
Pre-mo	onitoring C	alibration Precision CF	neck			
Instrum	n must be	Number:	10% of the calibration gas va	ent reading and the lue.	calibration gas as a perce	ntage. The calibration
Trial	1	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (see
2	2	-0.1	500	0		4
3	3	- 0.1		0		5
Calibratic	on Precisio	on= Average Differenc	Average Difference: e/Cal Gas Conc. X 100%	*Perform recalibration	n if average difference is greater tha	in 10
Calibratic	on Precisio	on≃ Average Differenc	Average Difference: e/Cal Gas Conc. X 100% = 100	Perform recalibration	n if average difference is greater tha /500 x 100%	in 10
Calibratic	on Precisio	on= Average Differenci	Average Difference: e/Cal Gas Conc. X 100% = 100 = 100	*Perform recalibration	n if average difference is greater the	nn 10
Calibratic	on Precisio sitivity:	on≈ Average Differenc	Average Difference: e/Cal Gas Conc. X 100% = 100 = <b>100</b>	*Perform recalibration *Perform recalibration	n if average difference is greater tha /500 x 100%	n 10
Calibratio	on Precisic sitivity: Coun	on= Average Difference ts Observed for the Sp	Average Difference: e/Cal Gas Conc. X 100% = 100 = 100 man= <u>131362</u>	Perform recalibration Perform recalibration % <u>Trial 3:</u> Coun	n if average difference is greater that /500 x 100% ts Observed for the Spans	= <u>130600</u>
Calibratic Span Sens Trial 1: Trial 2:	on Precisio sitivity: Coun Counte	on= Average Difference ts Observed for the Sp ers Observed for the Ze	Average Difference: e/Cal Gas Conc. X 100% = 100 = 100 pan= <u>131352</u> ero= <b>3903</b>	Perform recalibration Perform recalibration % <u>Trial 3:</u> Counte	n if average difference is greater that /500 x 100% ts Observed for the Spans ers Observed for the Zeros	= <u>130000</u> = <u>3937</u>
Calibratic Span Sens Trial 1: Trial 2:	on Precisio sitivity: Count Counte Count	on= Average Difference ts Observed for the Sp ers Observed for the Ze ts Observed for the Sp	Average Difference: e/Cal Gas Conc. X 100% = 100 = 100 pan= <u>131352</u> ero= <u>3903</u> an= <u>132624</u>	<ul> <li>Perform recalibration</li> <li>*Perform recalibration</li> <li>%</li> <li><u>Trial 3:</u> Counte</li> </ul>	if average difference is greater tha /500 x 100% ts Observed for the Span ers Observed for the Zero	= <u>130600</u> = <u>3437</u>
Calibratic Span Sens Trial 1: Trial 2:	on Precisio sitivity: Count Counte Counte	on= Average Difference ts Observed for the Sp ars Observed for the Ze ts Observed for the Sp rs Observed for the Ze	Average Difference: e/Cal Gas Conc. X 100% = 100 = $100$ = $100$	<ul> <li>Perform recalibration</li> <li>*Perform recalibration</li> <li>0%-</li> <li>0</li> <li>%</li> <li>1</li> <li>Counte</li> </ul>	n if average difference is greater tha /500 x 100% ts Observed for the Spans ers Observed for the Zeros	= <u>130600</u> = <u>3937</u>
Calibration Span Sens Trial 1: Trial 2: Post Monit	on Precisio sitivity: Count Counte Counter toring Cali	on= Average Difference ts Observed for the Sp ers Observed for the Ze ts Observed for the Sp rs Observed for the Ze bration Check	Average Difference: e/Cal Gas Conc. X 100% = $100$ = $100$ an= <u>131362</u> ero= <u>3903</u> an= <u>1326248</u> ero= <u>3920</u>	*Perform recalibration *Perform recalibration % Trial 3: Counte Counte	n if average difference is greater that /500 x 100% ts Observed for the Spans ers Observed for the Zeros	= <u>130600</u> = <u>39137</u>
Calibratic Span Sens Trial 1: Trial 2: Post Monit Zero Air Reading:	on Precisio sitivity: Count Counter toring Cali	on= Average Difference ts Observed for the Sp ers Observed for the Ze ts Observed for the Ze bration Check	Average Difference: e/Cal Gas Conc. X 100% = 100 = $100$ = $1$	Perform recalibration Perform recalibration % Trial 3: Counte Counte	n if average difference is greater tha /500 x 100% ts Observed for the Span ers Observed for the Zeros	= <u>130600</u> = <u>39137</u>
Calibratic Span Sens Trial 1: Trial 2: Post Monit Zero Air Reading: BACKGROI	on Precisio sitivity: Counte Counte toring Cali	on= Average Difference ts Observed for the Sp ts Observed for the Ze ts Observed for the Ze ts Observed for the Ze bration Check	Average Difference: e/Cal Gas Conc. X 100% = 100 = $100$ = $100$ an= <u>131362</u> ero= <u>3903</u> an= <u>1326248</u> ero= <u>3920</u> Cal Gas Reading: CKS	Perform recalibration *Perform recalibration % Trial 3: Counte Counte	n if average difference is greater tha /500 x 100% ts Observed for the Spans ers Observed for the Zeros	= <u>130600</u> = <u>3937</u>
Calibratic Span Sens Trial 1: Trial 2: Post Monit Zero Air Reading: BACKGROU	on Precisio sitivity: Counte Counte Counte toring Cali O. UND COM	on= Average Difference ts Observed for the Sp ars Observed for the Ze ts Observed for the Ze bration Check CENTRATIONS CHE acciption:	Average Difference: e/Cal Gas Conc. X 100% = 100 = $100$ = $100$ = $100$ = $100$ = $100$ = $100$ = $100$ Cal Gas Reading: CKS Entrance	Perform recalibration *Perform recalibration % Trial 3: Coun Counte U9%	r if average difference is greater that /500 x 100% ts Observed for the Spans trs Observed for the Zeros	ם = <u>  אטטט</u> = <u>או</u> יייייייייייייייייייייייייייייייייייי
Calibratic Span Sens Trial 1: Trial 2: Post Monit Zero Air Reading: BACKGROI Upwind Loc Downwind L	on Precisio sitivity: Counte Counte Counter toring Cali O. UND COM cation Des Location I	on= Average Difference ts Observed for the Sp ars Observed for the Ze ts Observed for the Ze bration Check CENTRATIONS CHE acciption: Description:	Average Difference: e/Cal Gas Conc. X 100% = 100 = 100 pan= <u>131362</u> ero= <u>3903</u> an= <u>13262%</u> rro= <u>3920</u> Cal Gas Reading: CKS Entrance Flarc	Perform recalibration  Perform recalibration  P	if average difference is greater that /500 x 100% ts Observed for the Spans ers Observed for the Zeros opm leading: <u>(.6</u> eading: <u>2.1</u>	ррт ppm

		STREAMS / STELEN ALL C			
		CALIBRATION A	SIONS MONI ND PERTINE	FORING NT DATA	
Date:	7-20-23		Site Name:	Keller	
Inspector(s)	Don bibson		Instrument:	TVA 2020	
WEATHER O	BSERVATIONS			8	
Wind Spee	ed: 📄 MPH	Wind Direction: NC		Barometric Pressure: <b>19.04</b>	"Hø
,	Air	General Weath	her		
Temperatur	re: <u>54</u> *F	Condition	ns: Windy	=	
CALIBRATION	INFORMATION				
Pre-monitorin	g Calibration Precision Check				
and calculate t precision must Instrument Ser	the average algebraic differe be less than or equal to 10% ial Number:	nce between the instrumen of the calibration gas valu	t reading and the o e.	calibration gas as a percen Cal Gas Concentration:	tage. The calibration
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas C	oncCal Gas Reading	Response Time (seconds)
<u>↓</u>		500	- 0		5
3	-0.1	501	1		5
alibration Prec	ision= Average Difference/Ca	al Gas Conc. X 100%			10
alibration Prec	ision= Average Difference/Ca	al Gas Conc. X 100% = 100% = <b>Cl Cl Ch (</b>	~ <u>.3</u>	/500 x 100%	
alibration Prec	ision= Average Difference/Ca	al Gas Conc. X 100% = 100% = 익익ርኒ	%	/500 x 100%	
alibration Prec pan Sensitivity: ial 1:	ision= Average Difference/Ca	al Gas Conc. X 100% = 100% = 99994	% <u>Trial 3:</u>	/500 x 100%	
alibration Prec <u>Pan Sensitivity:</u> Ial 1: Co	ision= Average Difference/Ca unts Observed for the Span=	al Gas Conc. X 100% = 100% = 99.94 = 136416	<b>7.3</b> % <u>Trial 3:</u> Count	/500 x 100% so Observed for the Span=	139300
alibration Prec an Sensitivity: ial 1: Co Cour al 2:	ision= Average Difference/Ca unts Observed for the Span= nters Observed for the Zero=	al Gas Conc. X 100% = 100% = 99.94 = 136416 = 3372	% <u>Trial 3:</u> Counte	/500 x 100% s Observed for the Span= rs Observed for the Zero=	13A300 3402
alibration Prec an Sensitivity: ial 1: Co Cour al 2: Co	ision= Average Difference/Ca runts Observed for the Span= nters Observed for the Zero= unts Observed for the Span=	al Gas Conc. X 100% = 100% = 99.94 = 136416 = 3372 136908	% <u>Trial 3:</u> Counte	/500 x 100% s Observed for the Span= rs Observed for the Zero=	139300 3402
alibration Prec <u>an Sensitivity:</u> <u>ial 1:</u> Cour <u>al 2:</u> Cour Cour	ision= Average Difference/Ca nunts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero=	al Gas Conc. X 100% = 100% = 9994 : 136416 : 3372 136908 3419	% <u>Trial 3:</u> Counte	/500 x 100% s Observed for the Span= rs Observed for the Zero=	13 13月300 うれって
alibration Prec <u>an Sensitivity:</u> <u>ial 1:</u> Cour <u>al 2:</u> Cour .t Monitoring C	ision= Average Difference/Ca nunts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	al Gas Conc. X 100% = 100% = 99.94 = 136416 = 3372 136908 	% Trial 3: Counte	/500 x 100% s Observed for the Span= rs Observed for the Zero=	13A300 3402
alibration Prec an Sensitivity: ial 1: Co Cour al 2: Cour it Monitoring C p Air ding:	ision= Average Difference/Ca nunts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	al Gas Conc. X 100% = 100% = 99.94 136416 3372 136908 3419 Cal Gas Reading:	<u>3</u> % <u>Trial 3:</u> Counte Counte	/500 x 100% s Observed for the Span= <u>rs Observed for the Zero=</u> pm	139300 3402
alibration Prec an Sensitivity: ial 1: Cour al 2: Cour it Monitoring C o Air ding:	ision= Average Difference/Ca nunts Observed for the Span= nters Observed for the Zero= unts Observed for the Span= nters Observed for the Zero= Calibration Check	al Gas Conc. X 100% = 100% = 99.94 = 13.6416 3372 13.690% 3419 Cal Gas Reading:	<mark>Тrial 3:</mark> Соилі Соиліе	/500 x 100% s Observed for the Span= rs Observed for the Zero=	13 139300 3402
alibration Prec an Sensitivity: ial 1: Co Cour al 2: Cour it Monitoring C o Air ding: Cour it Monitoring C o Air ding: Cour it Monitoring C o Air ding: Cour ind Location C	ision= Average Difference/Ca nunts Observed for the Span= nters Observed for the Zero= unts Observed for the Zero= nters Observed for the Zero= Calibration Check Calibration Check Concentrations Checks Description:	al Gas Conc. X 100% = 100% = 99994 = 136416 3372 136908 3419 Cal Gas Reading: =	<mark></mark>	/500 x 100% Is Observed for the Span= rs Observed for the Zero= pm	J3A300 ういって
alibration Prec an Sensitivity: ial 1: Co Cour al 2: Co Cour it Monitoring C o Air ding: Co Cour it Monitoring C o Air ding: Co Cour it Monitoring C o Air ding: Co Cour it Monitoring C o Air ding: Co Cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour cour c	ision= Average Difference/Ca nunts Observed for the Span= <u>nters Observed for the Zero=</u> unts Observed for the Span= <u>nters Observed for the Zero=</u> Calibration Check Concentrations Check Description: In Description	al Gas Conc. X 100% = 100% = 99.94 = 136416 = 3372 136908 3419 Cal Gas Reading: = Entrance Flow C	<mark>3</mark> % <u>Тrial 3:</u> Counte <u>Counte</u> <u>Ч</u> <b>9</b> R R	/500 x 100% IS Observed for the Span= rs Observed for the Zero= pm eading: <u>1.6</u> p	Dopm opm

NGS BRARSCHWARDS - SAMME REVELOS MARKED BASKS

Attachment 6

Weather Data



June 8, 2023 Emissions Monitoring Weather Data Keller Canyon Landfill, Pittsburg, California



June 20, 2023 Emissions Monitoring Weather Data Keller Canyon Landfill, Pittsburg, California



June 21, 2023 Emissions Monitoring Weather Data Keller Canyon Landfill, Pittsburg, California



29.92



12PM

3PM

6PM

9PM

12AM

June 30, 2023 Emissions Monitoring Weather Data Keller Canyon Landfill, Pittsburg, California



July 10, 2023 Emissions Monitoring Weather Data Keller Canyon Landfill, Pittsburg, California





July 20, 2023 Emissions Monitoring Weather Data Keller Canyon Landfill, Pittsburg, California Appendix F – Well Exceedance Documentation

### SCS ENGINEERS

July 18, 2023

Stanley Tom Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: 75-Day Notification of Temperature Exceedance Keller Canyon Landfill, Pittsburg, California Facility Number A4618

Dear Mr. Tom;

On behalf of Keller Canyon Landfill Company (KCLC), SCS Engineers (SCS) hereby provides the Bay Area Air Quality Management District (BAAQMD) with a 75-day notification pursuant to the compliance provisions identified in Title 40 of the Code of Federal Regulations (CFR) 62.16724(k)(1) for temperature exceedance. On June 21, 2021, Keller Canyon Landfill (Keller) became subject to the California Emissions Guidelines (EG) Rule, which includes compliance with Title 17 California Code of Regulations (CCR) Sections 95460 to 95476, known as AB 32 Landfill Methane Rule (LMR), and specific portions of 40 CFR Part 62 Subpart 000. The updated federal National Emission Standards for Hazardous Air Pollutants (NESHAP) 40 CFR Part 63, Subpart AAAA rule came into effect on September 27, 2021, and KCLC has chosen to comply with Subpart AAAA in lieu of equivalent compliance provisions of the California EG Rule, as allowed by the regulations. However, because Keller is still subject to BAAQMD Regulation 8, Rule 34 as well as the site's permit to operate (PTO) which incorporate the outdated New Source Performance Standards (NSPS) wellhead requirements, the site must still operate wells below 131 degrees Fahrenheit (°F), instead of the 145°F limit in the NESHAP rule, and we are providing this notification out of an abundance of caution until the outdated requirements can be removed from the PTO.

Well KCEW2203 at Keller had initial temperature exceedance reading of  $137.5^{\circ}$ F on April 25, 2023. Corrective actions were initiated within 5 days; however, the well could not be corrected within 15 days. As required under 40 CFR 62.16724(k)(1), a root cause analysis was completed within 60 days from the original exceedance date. All the steps for compliance were conducted, and the well was returned to compliance on July 3, 2023, 69 days after the initial exceedance.

This notification is being submitted due to the 131°F limit in the BAAQMD rules and PTO. As the wellhead temperature is under 145°F, Keller is in compliance with the federal NESHAP Subpart AAAA rule, which allows for wellhead temperatures of up to 145°F. As required under 40 CFR 62.16724(k)(1) and 63.1960(a)(4), this submittal contains the root cause analysis and corrective action analysis.

Stanley Tom July 18, 2023 Page 2

If you have any questions, please contact Maria Bowen of SCS at (619) 455-9518.

Sincerely,

Associate Staff Professional SCS Engineers Hannah Morse

Λ

Maria Bowen Project Manager SCS Engineers

cc: Antonia Gunner, KCLC Josh Mills, KCLC Sean Bass, SCSFS Administrator, U.S. EPA Region 9



# TEMPERATURE EXCEEDANCE

Root Cause Analysis

Date of Initial Exceedance:	4/25/2023
Collection Device ID:	EW 2203
Temperature Reading:	137.5

Root Cause Analysis		
Has the owner/operator received approval from the state		
agency to operate at a temperature higher than 55°C (131°F)	$\Box$ Yes	🖾 No
for this well?		
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).	
• If NO, continue the form.		
Describe what was inspected.		
Well and surrounding area. No issues observed. Well was teste	d three times	for CO for an
average 77 ppm.		
Describe what was determined to be the root cause of the exce	edance.	
Normal decomposition		
Determine the required next steps.		
Was the temperature exceedance remediated within 60 days		N No
since the initial exceedance?		⊠ NO
• If YES, keep records of Root Cause Analysis. No reporting re	equired.	
• If NO, continue with Corrective Action Analysis and Implem	entation Plan	and submit
Notification to state agency within 75 days of initial exceed	ance.	



### **TEMPERATURE EXCEEDANCE**

Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	4/25/2023
Collection Device ID:	EW 2203
Temperature Reading:	137.5

### **Corrective Action Analysis**

Describe the corrective actions taken to remediate exceedance.

Well to be included in future HOV request. Under NESHAP well is in compliance with the new standard. CO testing indicates normal decomposition

Implementation Schedule					
Expected Start Date:	4/25/2023				
Expected Completion Date:	7/3/2023				
Provide a description of proposed repairs and/or remedial action required a					
supporting information for implementation timeframe.					
Monitored CO. Checked area.	Nell was brought back into compliance 69 days after initial				
exceedance on 7/3/2023.					

Final Steps		
Determine the required next steps.		
Is the remediation expected to take <b>less than 120 days</b> since initial exceedance per implementation schedule?	🛛 Yes	🗆 No
<ul> <li>If YES, send notification to state agency within 75 days of initial exceedance. Include Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule in the next Annual Report.</li> <li>If NO, send Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule to state agency within 75 days for approval and include in next Annual Report.</li> </ul>		

## SCS ENGINEERS

July 18, 2023

Stanley Tom Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: 75-Day Notification of Pressure Exceedances Keller Canyon Landfill, Pittsburg, California Facility Number A4618

Dear Mr. Tom;

On behalf of Keller Canyon Landfill (Keller), SCS Engineers (SCS) hereby provides the Bay Area Air Quality Management District (BAAQMD) with a 75-day notification pursuant to the compliance provisions identified in 40 Code of Federal Regulations (CFR) 62.16724(k)(1) and 63.1960(a)(4) for pressure exceedance.

Wells KCLEW193 and KCLF2312 at Keller had initial pressure readings of 0.26 and 0.94 inches of water ("H₂O) on April 26, and May 17, 2023, respectively. Corrective actions were initiated within 5 days; however, the wells could not be brought back into compliance within 15 days. As required under 40 CFR 62.16724(k)(1) and 63.1960(a)(4), a root cause analysis was completed within 60 days from the original exceedance date. In addition, a corrective action analysis was conducted as required for wells that could not be remediated in 60 days. All the steps for compliance were conducted and the wells, KCLEW193 and KCLF2312, will be able to come back into compliance within the 120-day timeframe from the original exceedance (August 24 and September 14, 2023, respectively). This submittal contains the root cause analysis, and corrective action (see attached).

If you have any questions or require additional information, please contact Maria Bowen at (619) 455-9518.

Sincerely,

Hannah Morse Associate Staff Professional SCS Engineers

cc: Tamiko Endow, BAAQMD Antonia Gunner, Keller Canyon Josh Mills, Keller Canyon Sean Bass, SCSFS Administrator, U.S. EPA Region 9

Maria Bowen

Maria Bowen Project Manager SCS Engineers



Root Cause Analysis

Date of Initial Exceedance:	4/26/2023
Collection Device ID:	KCLEW193
Pressure Reading:	0.26 in H ₂ O

Root Cause Analysis		
Was the reason for the positive pressure due to one of the follo	wing:	
A fire or increased well temperature.		🖾 No
Use of a geomembrane or synthetic cover.	□ Yes	🖾 No
A decommissioned well.	🗆 Yes	🖾 No
• If YES to <b>ANY</b> of the above, exempt as per 40 CFR 62.16720	(a)(3)(iii)/ 40 CF	R §63.1958(b).
• If NO to <u>ALL</u> of the above, continue the form.		
Describe what was inspected.		
Lateral was inspected. Vacuum adjusted		
Describe what was determined to be the root cause of the exceedance.		
Well in active area		
Determine the required next steps.		
Was the positive pressure remediated within 60 days since		No.
the initial exceedance?		
<ul> <li>If YES, keep records of Root Cause Analysis. No reporting required.</li> </ul>		
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit		
Notification to state agency within 75 days of initial exceedance.		

### Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	4/26/2023
Collection Device ID:	KCLEW193
Pressure Reading:	0.26 in H ₂ O

#### **Corrective Action Analysis**

Describe the corrective actions taken to remediate exceedance. Vacuum adjusted. New lateral to be installed when filling is complete.

Implementation Schedule		
Expected Start Date:	4/26/2023	
Expected Completion Date:	8/24/2023	
Provide a description of proposed repairs and/or remedial action required and		
supporting information for implementation timeframe.		
In the process of installing a new lateral and awaiting material and filling to be complete.		

#### **Final Steps**

Determine the required next steps.

Is the remediation expected to take  $\underline{less than 120 days}$  since initial exceedance per implementation schedule?  $\Box$  No

• If YES, send notification to state agency within 75 days of initial exceedance. Include Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule in the next NSPS Report.

• If NO, send Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule to state agency within 75 days for approval and include in next NSPS Report.



Root Cause Analysis

Date of Initial Exceedance:	5/17/2023
Collection Device ID:	KCLF2312
Pressure Reading:	0.94 in H ₂ O

Root Cause Analysis		
Was the reason for the positive pressure due to one of the follo	wing:	
A fire or increased well temperature. $\Box$ Yes $\boxtimes$ No		🖾 No
Use of a geomembrane or synthetic cover.	🗆 Yes	🖾 No
A decommissioned well.	🗆 Yes	🖾 No
• If YES to <b>ANY</b> of the above, exempt as per 40 CFR 62.16720	(a)(3)(iii)/ 40 CF	R §63.1958(b).
• If NO to <u>ALL</u> of the above, continue the form.		
Describe what was inspected.		
Lateral was inspected. Vacuum adjusted		
Describe what was determined to be the root cause of the exceedance.		
Well in active area		
Determine the required next steps.		
Was the positive pressure remediated within 60 days since		M No
the initial exceedance?		
<ul> <li>If YES, keep records of Root Cause Analysis. No reporting required.</li> </ul>		
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit		
Notification to state agency within 75 days of initial exceedance.		

### Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	5/17/2023
Collection Device ID:	KCLF2312
Pressure Reading:	0.94 in H ₂ O

#### **Corrective Action Analysis**

Describe the corrective actions taken to remediate exceedance. Vacuum adjusted. New lateral to be installed when filling is complete.

Implementation Schedule		
Expected Start Date:	5/17/2023	
Expected Completion Date:	9/14/2023	
Provide a description of proposed repairs and/or remedial action required and		
supporting information for implementation timeframe.		
In the process of installing a new lateral and awaiting material and filling to be complete.		

#### **Final Steps**

Determine the required next steps.

Is the remediation expected to take  $\underline{less than 120 days}$  since initial exceedance per implementation schedule?  $\Box$  No

• If YES, send notification to state agency within 75 days of initial exceedance. Include Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule in the next NSPS Report.

• If NO, send Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule to state agency within 75 days for approval and include in next NSPS Report.
## SCS ENGINEERS

August 11, 2023

Stanley Tom Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: 75-Day Notification of Pressure Exceedance Keller Canyon Landfill, Pittsburg, California Facility Number A4618

Dear Mr. Tom;

On behalf of Keller Canyon Landfill (Keller), SCS Engineers (SCS) hereby provides the Bay Area Air Quality Management District (BAAQMD) with a 75-day notification pursuant to the compliance provisions identified in 40 Code of Federal Regulations (CFR) 62.16724(k)(1) and 63.1960(a)(4) for pressure exceedance.

Well KCLEW194 at Keller had initial pressure reading of 2.32 inches of water ("H₂O) on May 30, 2023. Corrective actions were initiated within 5 days; however, the well could not be brought back into compliance within 15 days. As required under 40 CFR 62.16724(k)(1) and 63.1960(a)(4), a root cause analysis was completed within 60 days from the original exceedance date. In addition, a corrective action analysis was conducted as required for wells that could not be remediated in 60 days. All the steps for compliance were conducted and the well will be able to come back into compliance within the 120-day timeframe from the original exceedance (September 27, 2023). This submittal contains the root cause analysis, and corrective action (see attached).

If you have any questions or require additional information, please contact Maria Bowen at (619) 455-9518.

Sincerely,

Hannah Morse Associate Staff Professional SCS Engineers

cc:

Antonia Gunner, Keller Canyon Josh Mills, Keller Canyon Sean Bass, SCSFS Administrator, U.S. EPA Region 9

Maria Bowen

Maria Bowen Project Manager SCS Engineers



Date of Initial Exceedance:	5/30/2023
Collection Device ID:	KCLEW194
Pressure Reading:	2.32 inH ₂ O

Root Cause Analysis				
Was the reason for the positive pressure due to one of the following:				
A fire or increased well temperature.	$\Box$ Yes	🖾 No		
Use of a geomembrane or synthetic cover.	□ Yes	🖾 No		
A decommissioned well.	□ Yes	🖾 No		
• If YES to <b>ANY</b> of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).				
• If NO to <u>ALL</u> of the above, continue the form.	• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.				
Lateral was inspected. Vacuum adjusted				
Describe what was determined to be the root cause of the exceedance.				
Well in active area				
Determine the required next steps.				
Was the positive pressure remediated within 60 days since		No		
the initial exceedance?				
If YES, keep records of Root Cause Analysis. No reporting required.				
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit				
Notification to state agency within 75 days of initial exceedance.				

### Corrective Action Analysis and Implementation Schedule

Date of Initial Exceedance:	5/30/2023
Collection Device ID:	KCLEW194
Pressure Reading:	2.32 inH ₂ O

### **Corrective Action Analysis**

Describe the corrective actions taken to remediate exceedance. Vacuum adjusted. New lateral to be installed when filling is complete.

Implementation Schedule		
Expected Start Date:	5/30/2023	
Expected Completion Date:	9/27/2023	
Provide a description of pr	roposed repairs and/or remedial action required and	
supporting information for implementation timeframe.		
In the process of installing a new lateral and awaiting material and filling to be complete.		

### **Final Steps**

Determine the required next steps.

Is the remediation expected to take  $\underline{less than 120 days}$  since initial exceedance per implementation schedule?  $\Box$  No

• If YES, send notification to state agency within 75 days of initial exceedance. Include Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule in the next NSPS Report.

• If NO, send Root Cause Analysis, Corrective Action Analysis, and Implementation Schedule to state agency within 75 days for approval and include in next NSPS Report.



Date of Initial Exceedance:	4/5/2023
Collection Device ID:	KCLF2315
Pressure Reading:	0.56

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature. $\Box$ Yes $\boxtimes$ No			
Use of a geomembrane or synthetic cover.	□ Yes	⊠ No	
A decommissioned well.	□ Yes	⊠ No	
• If YES to <b>ANY</b> of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <b>ALL</b> of the above, continue the form.			
Describe what was inspected.			
Well head, well casing, and vacuum lateral source.			
Describe what was determined to be the root cause of the exceedance.			
New well start-up. Followed Republic Services SOP.			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since	⊠ Voc		
the initial exceedance?			
If YES, keep records of Root Cause Analysis. No reporting required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to state agency within 75 days of initial exceedance.			



Date of Initial Exceedance:	4/26/2023
Collection Device ID:	KCLEW10A
Pressure Reading:	0.53

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature.	$\Box$ Yes	🖾 No	
Use of a geomembrane or synthetic cover.	□ Yes	🖾 No	
A decommissioned well.	□ Yes	🖾 No	
• If YES to <b>ANY</b> of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Wellhead, well casing, and vacuum lateral source.			
Describe what was determined to be the root cause of the exceedance.			
The vacuum line to the well was disrupted due to landfill active operations in the area.			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since	Voc		
the initial exceedance?			
• If YES, keep records of Root Cause Analysis. No reporting is required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to the state agency within 75 days of initial exceedance.			



Date of Initial Exceedance:	4/26/2023
Collection Device ID:	KCLEW190
Pressure Reading:	0.14

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature.	$\Box$ Yes	🖾 No	
Use of a geomembrane or synthetic cover.	□ Yes	🖾 No	
A decommissioned well.	□ Yes	🖾 No	
• If YES to <b>ANY</b> of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Wellhead, well casing, and vacuum lateral source.			
Describe what was determined to be the root cause of the exceedance.			
The vacuum line to the well was disrupted due to landfill active operations in the area.			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since	Voc		
the initial exceedance?			
• If YES, keep records of Root Cause Analysis. No reporting is required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to the state agency within 75 days of initial exceedance.			



Date of Initial Exceedance:	5/30/2023
Collection Device ID:	KCEW2125
Pressure Reading:	1.19

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature. $\Box$ Yes $\boxtimes$ No		🖾 No	
Use of a geomembrane or synthetic cover.	□ Yes	⊠ No	
A decommissioned well.	□ Yes	🖾 No	
• If YES to <b>ANY</b> of the above, exempt as per 40 CFR 62.16720(a)(3)(iii)/ 40 CFR §63.1958(b).			
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Wellhead, well casing, and vacuum lateral source.			
Describe what was determined to be the root cause of the exceedance.			
The vacuum line to the well was disrupted due to landfill active operations in the area.			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since	Voc		
the initial exceedance?			
• If YES, keep records of Root Cause Analysis. No reporting is required.			
If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to the state agency within 75 days of initial exceedance.			



Date of Initial Exceedance:	5/30/2023
Collection Device ID:	KCLEW124
Pressure Reading:	6.28

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature.	$\Box$ Yes	🖾 No	
Use of a geomembrane or synthetic cover.	□ Yes	⊠ No	
A decommissioned well.	□ Yes	🖾 No	
• If YES to <b>ANY</b> of the above, exempt as per 40 CFR 62.16720	(a)(3)(iii)/ 40 C	FR §63.1958(b).	
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Wellhead, well casing, and vacuum lateral source.			
Describe what was determined to be the root cause of the exceedance.			
The vacuum line to the well was disrupted due to landfill active operations in the area.			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since $\square$ No.			
the initial exceedance?			
• If YES, keep records of Root Cause Analysis. No reporting is required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to the state agency within 75 days of initial exceedance.			



Date of Initial Exceedance:	6/27/2023
Collection Device ID:	KCLEW09A
Pressure Reading:	0.28

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature.	$\Box$ Yes	🖾 No	
Use of a geomembrane or synthetic cover.	$\Box$ Yes	🖾 No	
A decommissioned well.	□ Yes	🖾 No	
• If YES to <b>ANY</b> of the above, exempt as per 40 CFR 62.16720	(a)(3)(iii)/ 40 C	FR §63.1958(b).	
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Wellhead, well casing, and vacuum lateral source.			
Describe what was determined to be the root cause of the exceedance.			
The vacuum line to the well was disrupted due to landfill active operations in the area.			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since $\square$ No.			
the initial exceedance?			
• If YES, keep records of Root Cause Analysis. No reporting is required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to the state agency within 75 days of initial exceedance.			



## TEMPERATURE EXCEEDANCE

Date of Initial Exceedance:	8/2/2023
Collection Device ID:	KCEW2125
Temperature Reading:	131.7

Root Cause Analysis			
Has the owner/operator received approval from the state			
agency to operate at a temperature higher than 55°C (131°F)	$\Box$ Yes	🖾 No	
for this well?			
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 6	3.1958(c).		
• If NO, continue the form.			
Describe what was inspected.			
Gas Sample and de-watering system.			
Describe what was determined to be the root cause of the exceedance.			
Elevated microbial activity			
Determine the required next steps.			
HOV submitted to the air board. Waiting for approval.			
Was the temperature exceedance remediated within 60 days			
since the initial exceedance?			
• If YES, keep records of Root Cause Analysis. No reporting is required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to the state agency within 75 days of initial exceedance.			



Date of Initial Exceedance:	8/3/2023
Collection Device ID:	KCEW2125
Pressure Reading:	0.09

Root Cause Analysis			
Was the reason for the positive pressure due to one of the following:			
A fire or increased well temperature.	$\Box$ Yes	🖾 No	
Use of a geomembrane or synthetic cover.	🗆 Yes	🖾 No	
A decommissioned well.	🗆 Yes	🖾 No	
• If YES to <b>ANY</b> of the above, exempt as per 40 CFR 62.16720	(a)(3)(iii)/ 40 C	FR §63.1958(b).	
• If NO to <u>ALL</u> of the above, continue the form.			
Describe what was inspected.			
Wellhead, well casing, and vacuum lateral source.			
Describe what was determined to be the root cause of the exceedance.			
The vacuum line to the well was disrupted due to landfill active operations in the area.			
Determine the required next steps.			
Was the positive pressure remediated within 60 days since $\Box$ Vac			
the initial exceedance?			
• If YES, keep records of Root Cause Analysis. No reporting is required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to the state agency within 75 days of initial exceedance.			



## TEMPERATURE EXCEEDANCE

Date of Initial Exceedance:	1/25/2023
Collection Device ID:	EW 2203
Temperature Reading:	135.6

Root Cause Analysis			
Has the owner/operator received approval from the state			
agency to operate at a temperature higher than 55°C (131°F)	🗆 Yes	🖾 No	
for this well?			
• If YES, exempt as per 40 CFR 62.16720(a)(4)(iii)/ 40 CFR 63.	.1958(c).		
• If NO, continue the form.			
Describe what was inspected.			
Well and surrounding area. No issues observed.			
Describe what was determined to be the root cause of the exceedance.			
Normal decomposition			
Determine the required next steps.			
Was the temperature exceedance remediated within 60 days			
since the initial exceedance?			
• If YES, keep records of Root Cause Analysis. No reporting required.			
• If NO, continue with Corrective Action Analysis and Implementation Plan and submit			
Notification to state agency within 75 days of initial exceedance.			

## **KELLER CANYON LANDFILL**

## **TITLE V ANNUAL CERTIFICATION**

SITE:			FACILITY ID#:	
KELLER CANY	ON LANDFILL			A4618
<b>REPORTING PERIOD:</b>	from	through	1	
	09/01/2022	-	08/31/2023	

### **CERTIFICATION:**

I declare, under penalty of perjury under the laws of the state of California, that, based on information and belief formed after reasonable inquiry, all information provided in this reporting package is true, accurate, and addresses all deviations during the reporting period:

Signature of Responsible Official

9/26/2023

Date

Josh Mills Name of Responsible Official (please print)

General Manager Title of Responsible Official (please print)

Mail to:

Director of Compliance and Enforcement BAAQMD 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V reports

Site #: A4618 Address: 901 Bailey Rd Source #: Facility Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: Facility

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Notes
BAAQMD Regulation 1	General Provisions and Definitions (5/4/11)	Ν	С	
SIP Regulation 1	General Provisions and Definitions (6/28/99)	Y	С	
BAAQMD Regulation 2, Rule 1	Permits – General Requirements (12/6/17)	Ν	С	
SIP Regulation 2, Rule 1	Permits - General Requirements (5/21/18)	Y	С	
BAAQMD 2-1-429	Permits – General Requirements: Federal Emissions Statement (12/21/04)	N	С	
SIP Regulation 2-1-429	Permits – General Requirements: Federal Emissions Statement (4/3/95)	Y	С	
BAAQMD Regulation 2, Rule 5	Permits – New Source Review of Toxic Air Contaminants (12/6/16)	Ν	C	
BAAQMD Regulation 4	Air Pollution Episode Plan (3/20/91)	Ν	С	
SIP Regulation 4	Air Pollution Episode Plan (8/6/90)	Y	С	
SIP Regulation 4, Table 1	Air Pollution Episode Plan, Episode Stage Criteria (8/6/90)	Y	С	
BAAQMD Regulation 5	Open Burning (11/20/2019)	С	С	
SIP Regulation 5	Open Burning (9/4/98)	Y	С	
BAAQMD Regulation 6, Rule 1	Particulate Matter – General Requirements (7/31/18)	Ν	С	
SIP Regulation 6	Particulate Matter and Visible Emissions (9/4/98)	Y	С	
BAAQMD Regulation 6, Rule 6	Particulate Matter – Prohibition of Trackout (7/31/18)	Ν	С	
BAAQMD Regulation 7	Odorous Substances (3/17/82)	Ν	С	
BAAQMD Regulation 8, Rule 1	Organic Compounds - General Provisions (6/15/94)	Y	С	
BAAQMD Regulation 8, Rule 2	Organic Compounds – Miscellaneous Operations (7/20/05)	Ν	С	
SIP Regulation 8, Rule 2	Organic Compounds – Miscellaneous Operations (3/22/95)	Y	С	
BAAQMD Regulation 8, Rule 3	Organic Compounds - Architectural Coatings (7/1/09)	Ν	С	
SIP Regulation 8, Rule 3	Organic Compounds - Architectural Coatings (1/2/04)	Y	С	
BAAQMD Regulation 8, Rule 4	Organic Compounds - General Solvent and Surface Coating Operations (10/16/02)	Y	С	
BAAQMD Regulation 8, Rule 15	Organic Compounds – Emulsified and Liquid Asphalts (6/1/94)	Y	С	
BAAQMD Regulation 8, Rule 16	Organic Compounds - Solvent Cleaning Operations (10/16/02)	Y	С	
BAAQMD Regulation 8, Rule 40	Organic Compounds – Aeration of Contaminated Soil and Removal of Underground Storage Tanks (6/15/05)	N	С	

Site Name: Keller Canyon Landfill

Site #: A4618 Address: 901 Bailey Rd Source #: Facility

City: Pittsburg, CA

Source Name: Facility

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Notes
BAAQMD Regulation 8-40-116	Exemption, Small Volume	Y	С	
BAAQMD Regulation 8-40-117	Exemption, Accidental Spills	Y	С	
BAAQMD Regulation 8, Rule 40	Organic Compounds - Aeration of Contaminated Soil and Removal of Underground Storage Tanks (4/19/01)	Y	С	
BAAQMD Regulation 8, Rule 47	Organic Compounds - Air Stripping and Soil Vapor Extraction Operations (6/15/05)	Ν	С	
SIP Regulation 8, Rule 47	Organic Compounds - Air Stripping and Soil Vapor Extraction Operations (4/26/95)	Y	С	
BAAQMD Regulation 8, Rule 49	Organic Compounds - Aerosol Paint Products (12/20/95)	Ν	С	
SIP Regulation 8, Rule 49	Organic Compounds - Aerosol Paint Products (3/22/95)	Y	С	
BAAQMD Regulation 8, Rule 51	Organic Compounds - Adhesive and Sealant Products (7/17/02)	N	С	
SIP Regulation 8, Rule 51	Organic Compounds - Adhesive and Sealant Products (2/26/02)	Y	С	
BAAQMD Regulation 9, Rule 1	Inorganic Gaseous Pollutants - Sulfur Dioxide (3/15/95)	N	С	
SIP Regulation 9, Rule 1	Inorganic Gaseous Pollutants - Sulfur Dioxide (6/8/99)	Y	С	
BAAQMD Regulation 9, Rule 2	Inorganic Gaseous Pollutants – Hydrogen Sulfide (10/6/99)	N	С	
BAAQMD Regulation 11, Rule 1	Hazardous Pollutants - Lead (3/17/82)	N	С	
SIP Regulation 11, Rule 1	Hazardous Pollutants - Lead (9/2/81)	Y	С	
BAAQMD Regulation 11, Rule 2	Hazardous Pollutants - Asbestos Demolition, Renovation and Manufacturing (10/7/98)	N	С	
BAAQMD Regulation 11, Rule 14	Hazardous Pollutants - Asbestos Containing Serpentine (7/17/91)	Ν	С	
BAAQMD Regulation 11, Rule 18	Reduction of Risk from Air Toxics Emissions at Existing Facilities (11/14/17)	Ν	С	
BAAQMD Regulation 12, Rule 4	Miscellaneous Standards of Performance - Sandblasting (7/11/90)	N	С	
SIP Regulation 12, Rule 4	Miscellaneous Standards of Performance - Sandblasting (9/2/81)	Y	С	
BAAQMD Regulation 14, Rule 1	Mobile Source Emission Reduction Methods – Bay Area Commuter Benefits Program (3/19/14)	N	С	
California Health and Safety Code Section 41750 et seq.	Portable Equipment	N	С	
California Health and Safety Code Section 44300 et seq.	Air Toxics "Hot Spots" Information and Assessment Act of 1987	N	С	

Site #: A4618 Address: 901 Bailey Rd Source #: Facility Site Name: Keller Canyon Landfill City: Pittsburg, CA

Source Name: Facility

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Notes
California Code of Regulations Title 17, Section 93105	Asbestos Airborne Toxic Control Measure for Construction, Grading, Quarrying, and Surface Mining Operations (7/26/01)	N	С	
California Code of Regulations Title 17, Section 93106	Asbestos Airborne Toxic Control measure for Asbestos Containing Serpentine (7/20/00)	Ν	С	
California Code of Regulations Title 17, Section 93116	Airborne Toxic Control Measure for Diesel Particulate Matter from Portable Engines Rated at 50 Horsepower and Greater (2/19/11)	N	С	
California Code of Regulations, Article 4, Subarticle 6, Title 17, Section 95460-95476	Methane Emissions from Municipal Solid Waste Landfills (6/17/2010)	Y	I (See Comment)	On August 9, 2023, the Site received NOV A62508 for an alleged violation of California Code of Regulations Title 17 Rule 95465 during site inspections that occurred on June 21, 2023. For additional information, including corrective actions taken, please refer to the combined 10/30-Day NOV response Letter that was submitted to the BAAQMD and EPA on August 18, 2023.
40 CFR 61, Subpart A	National Emission Standards for Hazardous Air Pollutants - General Provisions (2/16/12)	Y	С	
40 CFR 61, Subpart M	National Emission Standards for Hazardous Air Pollutants - National Emission Standard for Asbestos (1/16/91)	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5 Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
BAAQMD				
<b>Regulation 1</b>	General Provisions and Definitions (5/4/11)			
1-523	Parametric Monitoring and Recordkeeping Procedures	N	С	
1-523.1	Parametric monitor periods of inoperation	Y	С	
1-523.2	Limit on duration of inoperation	Y	С	
1-523.3	Reporting requirement for violations of any applicable limits	Ν	С	
1-523.4	Records of inoperation, tests, calibrations, adjustments, & maintenance	Y	С	
1-523.5	Maintenance and calibration	N	С	
SIP				
<b>Regulation 1</b>	General Provisions and Definitions (6/28/99)			
1-523	Parametric Monitoring and Recordkeeping Procedures	Y	С	
1-523.3	Reports of Violations	Y	С	
BAAQMD				
Regulation 6,				
Rule 1	Particulate Matter – General Requirements (8/1/18)			
6-1-301	Ringelmann No. 1 Limitation	Ν	С	
6-1-305	Visible Particles	N	С	
6-1-310	Total Suspended Particulate (TSP) Concentration Limits (applies to flares only)	Ν	C	
6-1-401	Appearance of Emissions	N	С	
SIP				
<b>Regulation 6</b>	Particulate Matter and Visible Emissions (9/4/98)			
6-301	Ringelmann No. 1 Limitation	Y	С	
6-305	Visible Particles	Y	С	
6-310.1	Total Suspended Particulate (TSP) Concentration Limits (applies to flares only)	Y	C	
6-401	Appearance of Emissions	Y	C	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
BAAQMD	Particulate Matter – Prohibition of Trackout (7/31/18)			
Regulation 6,				
Rule 6				
6-6-301	Prohibition of Trackout onto Paved Roadways	Ν	С	
6-6-302	Prohibition of Visible Emissions During Cleanup of Trackout	N	С	
6-6-501	Monitoring and Recordkeeping	Ν	С	
BAAQMD	Organic Compounds – Miscellaneous Operations (7/20/05)			
Regulation 8,				
Rule 2				
8-2-301	Miscellaneous Operations (applies to VOC-laden soil handling and disposal activities only)	Y	С	
BAAQMD				
Regulation 8,	Organic Compounds – Solid Waste Disposal Sites (6/15/05)			
Rule 34				
8-34-113	Limited Exemption, Inspection and Maintenance	Y	С	
8-34-113.1	Emission Minimization Requirement	Y	С	
8-34-113.2	Shutdown Time Limitation	Y	С	
8-34-113.3	Recordkeeping Requirement	Y	С	
8-34-116	Limited Exemption, Well Raising	Y	С	
8-34-116.1	New Fill	Y	С	
8-34-116.2	Limits on Number of Wells Shutdown	Y	С	
8-34-116.3	Shutdown Duration Limit	Y	С	
8-34-116.4	Capping Well Extensions	Y	С	
8-34-116.5	Well Disconnection Records	Y	С	
8-34-117	Limited Exemption, Gas Collection System Components	Y	С	
8-34-117.1	Necessity of Existing Component Repairs/Adjustments	Y	С	
8-34-117.2	New Components are Described in Collection and Control System Design Plan	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Zip Cout

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
8-34-117.3	Meets Section 8-34-118 Requirements	Y	С	
8-34-117.4	Limits on Number of Wells Shutdown	Y	С	
8-34-117.5	Shutdown Duration Limit	Y	С	
8-34-117.6	Well Disconnection Records	Y	С	
8-34-118	Limited Exemption, Construction Activities	Y	С	
8-34-118.1	Construction Plan	Y	С	
8-34-118.2	Activity is Required to Maintain Compliance with this Rule	Y	С	
8-34-118.3	Required or Approved by Other Enforcement Agencies	Y	С	
8-34-118.4	Emission Minimization Requirement	Y	С	
8-34-118.5	Excavated Refuse Requirements	Y	С	
8-34-118.6	Covering Requirements for Exposed Refuse	Y	С	
8-34-118.7	Installation Time Limit	Y	С	
8-34-118.8	Capping Required for New Components	Y	С	
8-34-118.9	Construction Activity Records	Y	С	
8-34-301	Landfill Gas Collection and Emission Control System Requirements	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5 Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable	Regulation Title or	Federally	lly able ) Continuous or Intermittent	
Requirement	Description of Requirement	Enforceable		Comments
Requirement	Description of Acquirement	(Y/N)		
8-34-301.1	Continuous Operation	Y	I (See Comment)	On September 18, 25, 26, 28, 30, October 7, 9,
				13, and November 2, and 3, 2022 and July 7,
				2023 gas collection system downtime occurred
				due to Pacific Gas and Electric (PG&E) utility
				power outage, equipment failure, and liquids
				surging. For additional information, including
				corrective actions taken, please refer to the
				combined 10/30- Day Deviation Letters that
				were submitted to the BAAQMD and EPA.
				Breakdown relief was granted for the events on
				September 18, 30, and October 7, 2022 and
				July 7, 2023. NOV Breakdown IDs for events
				that were not granted relief are as follows:
				08M20, 08M26, 08M29, 08M47, 08M55,
				08M98, and 08N02.

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

Federally

Applicable Requirement	Regulation Title or Description of Requirement	Enforceable (Y/N)	Continuous or Intermittent	Comments
8-34-301.2	Collection and Control Systems Leak Limitations	Y	I(See Comment)	During first and second quarter 2023 surface and component leak monitoring, a leak greater than 1,000 ppmv was detected at the flame arrestor. For more information on this component leak including when it was remediated please refer to the first and second quarter Surface Emissions Monitoring (SEM) report. On September 11, 2023, Site received a notice of violation (NOV) for an alleged violation of BAAQMD 8-34-301.2 during an United States EPA and BAAQMD inspection that occurred on August 21, 2023. For additional information, including corrective actions taken, please refer to the combined 10/30-Day NOV response Letter that was submitted to the BAAQMD on September 21, 2023.
8-34-301.3	Limits for Enclosed Flares	Y	С	
8-34-303	Landfill Surface Requirements	Y	I (See Comment)	On August 9, and September 11, 2023, Site received NOVs A62205 and A62509 for an alleged violation of BAAQMD 8-34-303 during site inspections that occurred on May 16, and August 21, 2023, respectively. For additional information, including corrective actions taken, please refer to the combined 10/30-Day NOV response Letters that were submitted to the BAAQMD on August 18, and September 21, 2023.
8-34-304	Gas Collection System Installation Requirements	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
8-34-304.1	Based on Waste Age For Inactive or Closed Areas	Y	С	
8-34-304.2	Based on Waste Age For Active Areas	Y	С	
8-34-304.3	Based on Amount of Decomposable Waste Accepted	Y	С	
8-34-304.4	Based on NMOC Emission Rate	Y	С	
8-34-305	Wellhead Requirements	Y	С	
8-34-305.1	Wellhead Vacuum Requirements	Y	С	
8-34-305.2	Wellhead Temperature Limit	Y	С	
8-34-305.3	Nitrogen Concentration Limit for Wellhead Gas or	Y	С	
8-34-305.4	Oxygen Concentration Limit for Wellhead Gas (except for wells identified in Condition #17309, Part 20c(i))	Y	С	
8-34-404	Less than Continuous Operation Petition	Y	С	
8-34-405	Design Capacity Reports	Y	С	
8-34-408	Collection and Control System Design Plans	Y	С	
8-34-408.2	Sites With Existing Collection and Control Systems	Y	С	
8-34-411	Annual Report	Y	С	
8-34-412	Compliance Demonstration Tests	Y	С	
8-34-413	Performance Test Report	Y	С	
8-34-414	Repair Schedule for Wellhead Excesses	Y	С	
8-34-414.1	Records of Excesses	Y	С	
8-34-414.2	Corrective Action	Y	С	
8-34-414.3	Collection System Expansion	Y	С	
8-34-414.4	Operational Due Date for Expansion	Y	С	
8-34-415	Repair Schedule for Surface Leak Excesses	Y	С	
8-34-415.1	Records of Excesses	Y	С	
8-34-415.2	Corrective Action	Y	С	
8-34-415.3	Re-monitor Excess Location Within 10 Days	Y	С	
8-34-415.4	Re-monitor Excess Location Within 1 Month	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
8-34-415.5	If No More Excesses, No Further Re-Monitoring	Y	С	
8-34-415.6	Additional Corrective Action	Y	С	
8-34-415.7	Re-monitor Second Excess Within 10 days	Y	С	
8-34-415.8	Re-monitor Second Excess Within 1 Month	Y	С	
8-34-415.9	If No More Excesses, No Further Re-monitoring	Y	С	
8-34-415.10	Collection System Expansion for Third Excess in a Quarter	Y	С	
8-34-415.11	Operational Due Date for Expansion	Y	С	
8-34-416	Cover Repairs	Y	С	
8-34-501	Operating Records	Y	С	
8-34-501.1	Collection System Downtime	Y	С	
8-34-501.2	Emission Control System Downtime (applies to flares only)	Y	С	
8-34-501.3	Continuous Temperature Records for Enclosed Combustors (applies	Y	С	
	to flares only)	V	C	
8-34-501.4	Testing	1 V	<u>с</u>	
8-34-501.6	Leak Discovery and Repair Records	I V	C	
8-34-501.7	Waste Acceptance Records	Y	C	
8-34-501.8	Non-decomposable Waste Records	Y	C	
8-34-501.9	Wellhead Excesses and Repair Records	Y	C	
8-34-501.10	Gas Flow Rate Records for All Emission Control Systems	Y	<u> </u>	
8-34-501.12	Records Retention for 5 Years	Y	<u> </u>	
8-34-503	Landfill Gas Collection and Emission Control System Leak Testing	Y	<u> </u>	
8-34-504	Portable Hydrocarbon Detector	Y	С	
8-34-505	Well Head Monitoring	Y	С	
8-34-506	Landfill Surface Monitoring	Y	С	
8-34-507	Continuous Temperature Monitor and Recorder (applies to flares only)	Y	С	
8-34-508	Gas Flow Meter	Y	С	
8-34-510	Cover Integrity Monitoring	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
BAAQMD	Organic Compounds – Aeration of Contaminated Soil and Removal			
Regulation 8,	of Underground Storage Tanks (6/15/05)			
Rule 40				
8-40-110	Exemption, Storage Pile	Y	C	
8-40-112	Exemption, Sampling	Y	С	
8-40-113	Exemption, Non-Volatile Hydrocarbons	Y	С	
8-40-116	Exemption, Small Volume	Y	С	
8-40-116.1	Volume does not exceed 1 cubic yard	Y	С	
8-40-116.2	Volume does not exceed 8 cubic yards, organic content does not exceed 500 ppmv, may be used only once per quarter	Y	С	
8-40-117	Exemption, Accidental Spills	Y	С	
8-40-118	Exemption, Aeration Projects of Limited Impact	Y	С	
8-40-301	Uncontrolled Contaminated Soil Aeration	Y	С	
8-40-304	Active Storage Piles	Y	С	
8-40-305	Inactive Storage Piles	Y	С	
BAAQMD	Inorganic Gaseous Pollutants – Sulfur Dioxide (3/15/95)			
Regulation 9,				
Rule 1				
9-1-301	Limitations on Ground Level Concentrations (applies flare only)	Y	С	
9-1-302	General Emission Limitations (applies to flare only)	Y	С	
BAAQMD	Inorganic Gaseous Pollutants – Hydrogen Sulfide (10/6/99)			
<b>Regulation 9</b> ,				
Rule 2				
9-2-301	Limitations on Hydrogen Sulfide	Ν	С	
40 CFR	Standards of Performance for New Stationary Sources – General			
Part 60,	Provisions (9/13/10)			
Subpart A				
60.4	Address	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
60.4(b)	Requires Submission of Requests, Reports, Applications, and Other	Y	С	
60.7	Notification and Pacord Keening	Y	С	
60.8	Performance Tests	Y	C	
60.11	Compliance with Standards and Maintenance Requirements	Y	С	
60.11(a)	Compliance determined by performance tests	Y	С	
60.11(d)	Control devices operated using good air pollution control practice	Y	С	
60.12	Circumvention	Y	С	
60.13	Monitoring Requirements	Y	С	
60.13(a)	Applies to all continuous monitoring systems	Y	С	
60.13(b)	Monitors shall be installed and operational before performing performance tests	Y	С	
60.13(e)	Continuous monitors shall operate continuously	Y	С	
60.13(f)	Monitors shall be installed in proper locations	Y	С	
60.13(g)	Requires multiple monitors for multiple stacks	Y	С	
60.14	Modification	Y	С	
60.15	Reconstruction	Y	С	
60.19	General Notification and Reporting Requirements	Y	С	
40 CFR Part 60, Subpart WWW	Standards of Performance for New Stationary Sources – Standards of Performance for Municipal Solid Waste Landfills That Commenced Construction, Reconstruction, or Modification on or After May 30, 1991, but Before July 18, 2014. (9/21/06)			On June 21, 2021, the facility complies with the new Emission Guidelines (EG) requirements in California. The approved state plan for the EG includes compliance with Title 17 California Code of Regulations (CCR) Sections 95460 to 95476, known as AB 32 Landfill Methane Rule (LMR) and specific portions of 40 CFR Part 62 Subpart OOO. Note, both EG and Subpart WWW rules were followed during the reporting period.

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

#### Site Name: Keller Canyon Landfill City: Pittsburg, CA

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

**Source Name:** S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4

waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

Applicable	Regulation Title or	Federally Enforceable	Continuous or	Comments
Requirement	Description of Requirement	(Y/N)	Intermittent	comments
60.752	Standards for Air Emissions from Municipal Solid Waste Landfills	Y	С	
60.752(b)	Requirements for MSW Landfills with Design Capacity equal to or greater than 2.5 million Mg and 2.5 million m ³ (Large Designated Facilities)	Y	С	
60.752(b)(2)	Comply with all requirements in sections (b)(2)(i through iv)	Y	С	
60.752 (b)(2)(i)	Submit a Collection and Control System Design Plan	Y	С	
60.752 (b)(2)(i)(A)	The collection and control system in the Design Plan shall comply with 60.752(b)(2)(ii)	Y	С	
60.752 (b)(2)(i)(B)	Design Plan shall include all proposed alternatives to 60.753 through 60.758	Y	С	
60.752	Design Plan shall conform to 60.759 (active collection	Y	С	
(b)(2)(i)(C)	system) or demonstrate sufficiency of proposed alternatives		~	
60.752 (b)(2)(ii)	Install a collection and control system	Y	С	
60.752 (b)(2)(iii)	Route collected gases to a control system.	Y	I (See Comment)	On September 18, 25, 26, 28, 30, October 7, 9, 13, and November 2, and 3, 2022 and July 7, 2023 gas collection system downtime occurred due to Pacific Gas and Electric (PG&E) utility power outage, equipment failure, and liquids surging. For additional information, including corrective actions taken, please refer to the combined 10/30- Day Deviation Letters that were submitted to the BAAQMD and EPA. Breakdown relief was granted for the events on September 18, 30, and October 7, 2022 and July 7, 2023. NOV Breakdown IDs for events that were not granted relief are as follows: 08M20, 08M26, 08M29, 08M47, 08M55, 08M98, and 08N02.

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
60.752 (b)(2)(iii)(B)	Reduce NMOC emissions by 98% by weight or reduce NMOC outlet concentration to less than 20 ppmv as hexane at 3% O ₂ , dry basis, as demonstrated by initial performance test within 180 days of start-up (applies to flares only).	Y	C	
60.752 (b)(2)(iii)(C)	Process the collected gas for subsequent sale or use in a treatment system, where any atmospheric vents from this treatment system comply with paragraph (b)(2)(iii)(B) above.	Y	С	
60.752 (b)(2)(iv)	Operate in accordance with 60.753, 60.755, and 60.756	Y	С	
60.752(c)	Title V Operating Permit Requirements	Y	С	
60.752(c)(1)	Subject date is June 10, 1996 for Landfills new or modified between May 30, 1991 and March 12, 1996	Y	С	
60.753	Operational Standards for Collection and Control Systems	Y	С	
60.753(a)	Operate a Collection System in each area or cell in which:	Y	С	
60.753(a)(1)	Active Cell – solid waste in place for 5 years or more	Y	С	
60.753(a)(2)	Closed/Final Grade – solid waste in place for 2 years or more	Y	С	
60.753(b)	Operate each wellhead under negative pressure unless:	Y	С	
60.753(b)(1)	Fire or increased well temperature or to prevent fire	Y	С	
60.753(b)(2)	Use of geomembrane or synthetic cover (subject to alternative pressure limits)	Y	С	
60.753(b)(3)	Decommissioned well after approval received for shut-down	Y	С	
60.753(c)	Operate each wellhead at $< 55$ °C, and either $< 20\%$ N ₂ or $<$ than 5% O2 (or other approved alternative levels for wells identified in Condition #17309, Part 20c(i))	Y	С	
60.753(c)(1)	N2 determined by Method 3C	Y	С	
60.753(c)(2)	O2 determined by 3A and as described in (2)(i-v)	Y	С	
60.753(d)	Surface Leak Limit is less than 500 ppm methane above background at landfill surface. This section also describes some surface monitoring procedures.	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

### Site Name: Keller Canyon Landfill City: Pittsburg, CA

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

.

**Source Name:** S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4

waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable	Continuous or Intermittent	Comments
60.753(e)	Vent all collected gases to a control system complying with 60.752(b)(2)(iii). If collection or control system inoperable, shut down gas mover and close all vents within 1 hour.	Y Y	С	
60.753(f)	Operate the control system at all times when collected gas is routed to the control system (applies to flares only).	Y	С	
60.753(g)	If monitoring demonstrates that 60.753(b), (c), or (d) are not being met, corrective action must be taken.	Y	С	
60.754	Test Methods and Procedures	Y	С	
60.754(a)	NMOC Calculation Procedures for NMOC Emission Rate Reports and Comparison to 50 Mg/Year Standard.	Y	С	
60.754(a)(1)	Calculate NMOC Emission Rate using either or both of the equations in $60.754(a)(1)(i-ii)$ with the listed default values.	Y	С	
60.754 (a)(1)(i)	Equation for known year-to-year waste acceptance rate	Y	С	
60.754 (a)(1)(ii)	Equation for unknown year-to-year waste acceptance rate	Y	С	
60.754(a)(2)	Tier 1 - compare calculated NMOC emission rate to 50 Mg/year	Y	С	
60.754 (a)(2)(ii)	If NMOC Emission Rate $\geq$ 50 Mg/year, comply with 60.752(b)(2) or determine a site-specific NMOC concentration and follow 60.754(a)(3).	Y	С	
60.754(c)	For PSD, NMOC emissions shall be calculated using AP-42	Y	С	
60.754(d)	Test Methods for Performance Test (Method 18 or 25C)	Y	С	
60.755	Compliance Provisions	Y	С	
60.755(a)	For Gas Collection Systems	Y	С	
60.755(a)(1)	Calculation procedures for maximum expected gas generation flow rate	Y	С	
60.755 (a)(1)(i)	Equation for unknown year-to-year waste acceptance rate	Y	С	
60.755 (a)(1)(ii)	Equation for known year-to-year waste acceptance rate	Y	С	
60.755(a)(2)	Vertical wells and horizontal collectors shall be of sufficient density to meet all performance specifications.	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Zip Code:

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
60.755(a)(3)	Measure wellhead pressure monthly. If pressure is positive, take corrective action (final corrective action = expand system within 120 days of initial positive pressure reading).	Y	С	
60.755(a)(4)	Expansion not required during first 180 days after startup.	Y	С	
60.755(a)(5)	Monitor wellheads monthly for temperature and either nitrogen or oxygen. If readings exceed limits, take corrective action up to expanding system within 120 days of first excess.	Y	С	
60.755(b)	Wells shall be placed in cells as described in Design Plan and no later than 60 days after:	Y	С	
60.755(b)(1)	Five years after initial waste placement in cell, for active cells	Y	С	
60.755(b)(2)	Two years after initial waste placement in cell, for closed/final grade cells.	Y	С	
60.755(c)	Procedures for complying with surface methane standard	Y	С	
60.755(c)(1)	Quarterly monitoring of surface and perimeter	Y	С	
60.755(c)(2)	Procedure for determining background concentration	Y	С	
60.755(c)(3)	Method 21 except probe inlet placed 5-10 cm above ground	Y	С	
60.755(c)(4)	Excess is any reading of 500 ppmv or more. Take corrective action indicated below (i-v).	Y	С	
60.755 (c)(4)(i)	Mark and record location of excess	Y	С	
60.755 (c)(4)(ii)	Repair cover or adjust vacuum. Re-monitor within 10calendar days.	Y	С	
60.755 (c)(4)(iii)	If still exceeding 500 ppmv, take additional corrective action. Re-monitor within 10 calendar days of 2 nd excess.	Y	С	
60.755 (c)(4)(iv)	Re-monitor within 1 month of initial excess.	Y	С	
60.755 (c)(4)(v)	For any location with 3 monitored excesses in a quarter, additional collectors (or other approved collection system repairs) shall be operational within 120 days of 1 st excess.	Y	С	
60.755(c)(5)	Monitor cover integrity monthly and repair as needed.	Y	С	
60.755(d)	Instrumentation and procedures for complying with 60.755(c).	Y	С	
60.755(d)(1)	Portable analyzer meeting Section 3 of Method 21	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

#### Site Name: Keller Canyon Landfill City: Pittsburg, CA

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

**Source Name:** S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4

waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

Applicable	Regulation Title or	Federally Enforceable	Continuous or	Comments
Requirement	Description of Requirement	(Y/N)	Intermittent	
60.755(d)(2)	Calibrated with methane diluted to 500 ppmv in air	Y	С	
60.755(d)(3)	Use Method 21, Section 4.4 instrument evaluation procedures	Y	С	
60.755(d)(4)	Calibrate per Method 21, Section 4.2 immediately before monitoring.	Y	С	
60.755(e)	Provisions apply at all times except during startup, shutdown, or malfunction, provided the duration of these shall not exceed 5 days for collection systems or 1 hour for control systems.	Y	С	
60.756	Monitoring of Operations	Y	С	
60.756(a)	For active collection systems, install wellhead sampling port	Y	С	
60.756(a)(1)	Measure gauge pressure in wellhead on a monthly basis	Y	С	
60.756(a)(2)	Measure nitrogen or oxygen concentration in wellhead gas on a monthly basis.	Y	С	
60.756(a)(3)	Measure temperature of wellhead gas on a monthly basis.	Y	С	
60.756(b)	Enclosed combustors shall comply with (b)(1) and (b)(2)	Y	С	
60.756(b)(1)	Temperature monitor and continuous recorder (not required for boilers and process heaters with capacity > 44 MW)	Y	С	
60.756(b)(2)	Device that records flow to or bypass of the control device (i or ii below)	Y	С	
60.756 (b)(2)(i)	Install, calibrate, and maintain a device that records flow to the control device at least every 15 minutes.	Y	С	
60.756 (b)(2)(ii)	Secure the bypass line valve in closed position, visual inspection of the lock at least once every month	Y	С	
60.756(e)	Procedures for requesting alternative monitoring parameters	Y	С	
60.756(f)	Monitor surface on a quarterly basis.	Y	С	
60.757	Reporting Requirements	Y	С	
60.757(a)	Submit an Initial Design Capacity Report	Y	С	
60.757(a)(3)	Amended Design Capacity Report required within 90 days of receiving a permitted increase in design capacity or within 90 days of an annual density calculation that results in a design capacity over the thresholds.	Y	С	
60.757(b)	Submit Initial and Annual NMOC Emission Rate Report	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

#### Site Name: Keller Canyon Landfill

City: Pittsburg, CA

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

.

**Source Name:** S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4

waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

Applicable	Regulation Title or	Federally	Continuous or	
Requirement	Description of Requirement	Enforceable (V/N)	Intermittent	Comments
60.757(b)(3)	Sites with collection and control systems operating in compliance with this subpart are exempt from $(b)(1)$ and $(b)(2)$ above.	Y	С	
60.757(c)	Submit a Collection and Control System Design Plan within 1 year of first NMOC emission rate report showing NMOC > 50 MG/year.	Y	С	
60.757(f)	Submit Annual Reports containing information required by (f)(1) through (f)(6)	Y	С	
60.757(f)(1)	Value and length of time for exceedance of parameters monitored per 60.756(a), (b) or (d)	Y	С	
60.757(f)(2)	Description and duration of all periods when gas is diverted from the control device by a by-pass line	Y	С	
60.757(f)(3)	Description and duration of all periods when control device was not operating for more than 1 hour	Y	С	
60.757(f)(4)	All periods when collection system was not operating for more than 5 days.	Y	С	
60.757(f)(5)	Location of each surface emission excess and all re- monitoring dates and concentrations.	Y	С	
60.757(f)(6)	Location and installation dates for any wells or collectors added as a result of corrective action for a monitored excess.	Y	С	
60.757(g)	Initial Performance Test Report Requirements (g)(1-6)	Y	С	
60.757(g)(1)	Diagram of collection system showing positions of all existing collectors, proposed positions for future collectors, and areas to be excluded from control.	Y	С	
60.757(g)(2)	Basis for collector positioning to meet sufficient density req.	Y	С	
60.757(g)(4)	For areas excluded from collection due to non-productivity, calculations and gas generation rates for each non-productive area and the sum for all nonproductive areas.	Y	С	
60.757(g)(5)	Provisions for increasing gas mover equipment if current system is inadequate to handle maximum projected gas flow rate.	Y	С	
60.757(g)(6)	Provisions for control of off-site migration	Y	С	
60.758	Recordkeeping Requirements	Y	С	
60.758(a)	Design Capacity and Waste Acceptance Records (retain 5 years)	Y	С	
60.758(b)	Collection and Control Equipment Records (retain for life of control equipment except 5 years for monitoring data)	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5 Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
60.758(b)(1)	Collection System Records	Y	С	
60.758 (b)(1)(i)	Maximum expected gas generation flow rate.	Y	С	
60.758 (b)(1)(ii)	Density of wells and collectors	Y	С	
60.758(b)(2)	Control System Records - enclosed combustors other than boilers or process heaters with heat input > 44 MW (applies to flares only)	Y	С	
60.758 (b)(2)(i)	Combustion temperature measured every 15 minutes and averaged over the same time period as the performance test (applies to flares only)	Y	С	
60.758 (b)(2)(ii)	Percent NMOC reduction achieved by the control device (applies to flares only)	Y	С	
60.758(c)	Records of parameters monitored pursuant to 60.756 and periods of operation when boundaries are exceeded (retain for 5 years)	Y	С	
60.758(c)(1)	Exceedances subject to record keeping are	Y	С	
60.758 (c)(1)(i)	All 3-hour periods when average combustion temperature was more than 28 °C below the average combustion temperature during the most recent complying performance test (applies to flares only)	Y	С	
60.758(c)(2)	Records of continuous flow to control device or monthly inspection records if seal and lock for bypass valves	Y	С	
60.758(d)	Plot map showing location of all existing and planned collectors with a unique label for each collector (retain for life of collection system).	Y	С	
60.758(d)(1)	Installation date and location of all newly installed collectors	Y	С	
60.758(d)(2)	Records of nature, deposition date, amount, and location of asbestos or non-degradable waste excluded from control	Y	С	
60.758(e)	Records of any exceedance of 60.753, location of exceedance and re- monitoring dates and data (for wellheads and surface). Retain for 5 years.	Y	С	
60.759	Specifications for Active Collection Systems	Y	С	
60.759(a)	Active wells and collectors shall be at sufficient density	Y	С	
60.759(a)(1)	Collection System in refuse shall be certified by PE to achieve comprehensive control of surface gas emissions.	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5 Site Name: Keller Canyon Landfill City: Pittsburg, CA **Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

.

**Source Name:** S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4

waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
60.759(a)(2)	Collection Systems (active or passive) outside of refuse shall address migration control.	Y	С	
60.759(a)(3)	All gas producing areas shall be controlled except as described below (i-iii).	Y	С	
60.759 (a)(3)(i)	Any segregated area of asbestos or non-degradable material only may be excluded, if documented adequately per 60.758(d).	Y	С	
60.759 (a)(3)(ii)	Any non-productive areas may be excluded from control, provided total NMOC emissions from all excluded areas is < 1% of total NMOC emissions from landfill. Document amount, location, and age of waste and all calculations for each excluded area.	Y	С	
60.759 (a)(3)(iii)	For calculating NMOC emissions, values for k and concentration of NMOC that have been previously approved shall be used or defaults if no values were approved. All non- degradable wastes that are being subtracted from total wastes for NMOC calculations must be documented adequately.	Y	С	
60.759(b)	Gas Collection System Components	Y	С	
60.759(b)(1)	Must be constructed of PVC, HDPE, fiberglass, stainless steel, or other approved material and of suitable dimensions to convey projected gas amounts and withstand settling, traffic, etc.	Y	С	
60.759(b)(2)	Collectors shall not endanger liner, shall manage condensate and leachate, and shall prevent air intrusion and surface leaks.	Y	С	
60.759(b)(3)	Header connection assemblies shall include positive closing throttle valve, seals and couplings to prevent leaks, at least one sampling port, and shall be constructed of PVC, HDPE, fiberglass, stainless steel, or other approved materials.	Y	С	
60.759(c)	Gas Mover Equipment shall be sized to handle maximum expected gas generation rate over the intended period of use.	Y	С	
60.759(c)(1)	For existing systems, flow data shall be used to project maximum flow rate.	Y	С	
60.759(c)(2)	For new systems, gas generation rate shall be calculated per 60.755(a)(1).	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
40 CFR Part	National Emission Standards for Hazardous Air Pollutants:			
63, Subpart	General Provisions (2/16/12)			
Α				
63.4	Prohibited activities and circumvention	Y	С	
63.5	Preconstruction review and notification requirements	Y	С	
63.5(b)	Requirements for existing, newly constructed, and	Y	С	
	reconstructed sources			
63.6	Compliance with standards and maintenance requirements	Y	С	
63.6(e)	Operation and maintenance requirements and SSM Plan	Y	С	
63.6(f)	Compliance with non-opacity emission standards	Y	С	
63.10	Recordkeeping and reporting requirements	Y	С	
63.10(b)	General record keeping requirements	Y	С	
63.10(b)(2)	For affected sources, maintain relevant records of:			
63.10(b)(2)	Records for startup, shutdown, malfunction, and maintenance	Y	С	
(i-v)				
63.10(d)(5)	Startup, Shutdown, and Malfunction (SSM) Reports	Y	С	
40 CFR Part	National Emission Standards for Hazardous Air Pollutants:			
63, Subpart	Municipal Solid Waste Landfills (4/20/06)			
AAAA				
63.1945	When do I have to comply with this subpart?	Y	С	
63.1945(b)	Compliance date for existing affected landfills	Y	С	
63.1955	What requirements must I meet?	Y	С	
63.1955(a)	Comply with either $63.1955(a)(1)$ or $(a)(2)$	Y	С	
63.1955(a)(1)	Comply with 40 CFR Part 60, Subpart WWW	Y	С	
63.1955(b)	Comply with 63.1960-63.1985, if a collection and control	Y	С	
	system is required by 40 CFR Part 60, Subpart WWW or a			
	State Plan implementing 40 CFR Part 60, Subpart Cc			

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5 Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
63.1955(c)	Comply with all approved alternatives to standards for	Y	С	
	6 month compliance reporting requirements			
63.1960	How is compliance determined?	Y	С	
63.1965	What is a deviation?	Y	С	
63.1975	How do I calculate the 3-hour block average used to demonstrate compliance?	Y	С	
63.1980	What records and reports must I keep and submit?	Y	С	
63.1980(a)	Comply with all record keeping and reporting requirements in 40 CFR Part 60, Subpart WWW or the State Plan implementing 40 CFR Part 60, Subpart Cc, except that the annual report required by 40 CFR 60.757(f) must be submitted every 6 months	Y	С	
63.1980(b)	Comply with all record keeping and reporting requirements in 40 CFR Part 60, Subpart A and 40 CFR Part 63, Subpart A, including SSM Plans and Reports	Y	С	
CARB, CCR, Title 17, Sections 95460-95476	Methane Emissions from Municipal Solid Waste Landfills	Y	С	
95460	Purpose of Regulation	Y	С	
95461	Applicability	Y	С	
95463	Determination for Installing a Landfill Gas Collection and Control System	Y	С	
95463(b)	MSW landfills greater than or equal to 450,000 tons of waste-in- place	Y	С	
	Must Submit a Landfill Gas Heat Input Capacity Report to Executive Officer	Y	С	
95463(b)(2)	Comply with Sections 95464 through 95476 if the heat input capacity is more than 3 MM BTU/hr	Y	С	
95464(b)	Gas Collection and Control System Requirements	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

1 Landfill gas flare, and A-2 Landfill gas flare; S-4

waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

Applicable	Regulation Title or	Federally Enforceable	Continuous or	Comments
Requirement	Description of Requirement	(Y/N)	Intermittent	Comments
95464(b)(1)	General Requirements	Y	С	
95464(b)(1)	Route the collected gas to a gas control device and	Y	С	
(A)	operate the gas collection and control system continuously			
95464(b)(1) (B)	No LFG leak exceeding 500 ppmv, as methane, at any component under positive pressure	Y	С	
95464(b)(1) (C)	System must be designed and operated to draw all LFG to gas control device	Y	С	
95464(b)(2)	Requirements for Flares	Y	С	
95464(b)(2)( A)(1)	LFG must be routed to an enclosed flare with a minimum methane destruction efficiency of 99% by wt.	Y	С	
95464(b)(2)( A)(2)	Enclosed flare must be equipped with automatic dampers, automatic shutdown device, flame arrestors, and continuous recording temperature sensors	Y	С	
95464(b)(2)( A)(3)	Sufficient flow of propane or commercial natural gas during startup to prevent emission of unburned methane	Y	С	
95464(b)(2)( A)(4)	Control device must be operated within the parameter ranges established during the source test	Y	С	
95464(b)(3)	Requirements for Gas Control Devices other than Flares	Y	С	
95464(b)(3) (A)	Route the LFG to an energy recovery device which has minimum methane destruction efficiency of 99% by wt. Lean burn IC engines must reduce the outlet methane concentration to less than 3000 ppmv corrected to 15% O ₂	Y	С	
95464(b)(3)( B)	Route the collected gas to a treatment system that processes the gas for subsequent sale or use	Y	С	
95464(b)(4)	Source Test Requirements: Initial source test must be conducted within 180 days of the start up of the gas control device. Annual source must be completed no later than 45 days after the anniversary date of the initial source test	Y	С	
95464(b)(4)( A)	If in compliance after 3 consecutive source tests, frequency can be reduced to once every 3 years. If subsequent source testing shows out of compliance, frequency shall return to annual.	Y	С	
95464(c)	Each wellhead shall be operated under negative pressure except for a decommissioned well	Y	С	
95464(d)	Exemption for well raising	Y	С	
Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

#### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
95464(e)	Repairs and Temporary Shutdown of Gas Collection system	Y	С	
95465	Surface Methane Emission Standards	Y	С	
95465(a)(1)	No location of the MSW landfill surface can exceed 500 ppmv of methane as determined by instantaneous surface emissions monitoring	Y	I (See Comment)	On August 9, 2023, Site received a NOV, A62508, for an alleged violation of California Code of Regulations Title 17 Rule 95465 (a)(1) during site inspections that occurred on June 21, 2023. For additional information, including corrective actions taken, please refer to the combined 10/30-Day NOV response Letters that were submitted to the BAAQMD on August 18.California Code of Regulations Title 17 Rule 95465 (a)(1)
95465(a)(2)	No location of the MSW landfill surface can exceed an average of 25 ppmv as determined by integrated surface emissions monitoring	Y	I (See Comment)	On August 9, 2023, Site received a NOV, A62508, for an alleged violation of California Code of Regulations Title 17 Rule 95465 (a)(2) during site inspections that occurred on June 21, 2023. For additional information, including corrective actions taken, please refer to the combined 10/30-Day NOV response Letter that was submitted to the BAAQMD on August 18, 2023.
95466	Exemption for Construction Activities	Y	С	
95467	Permanent Shutdown and Removal of LFG Collection and Control System	Y	С	
95467(a)(1-3)	LFG collection and control system can be capped at a closed landfill if it was operational for at least 15 years, surface emissions meet the standards in 95465 and an Equipment Removal Report is submitted to the Executive Officer	Y	С	
95468	Alternative Compliance Options	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

#### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
95469	Monitoring Requirements	Y	С	
95469(a)	Surface Emission Monitoring Requirements: Must conduct instantaneous and integrated surface emission monitoring quarterly	Y	С	
95469(a)(1)	Instantaneous Surface Emission Monitoring:	Y	С	
95469(a)(1)( A)	Exceedances (> 500 ppmv as methane) must be marked, recorded and corrective action initiated.	Y	С	
95469(a)(1)( B)	Re-monitoring shall be conducted within 10 days of a measured exceedance.	Y	С	
95469(a)(1)( B)(1)	If re-monitoring shows a second exceedance, more corrective action shall be taken and re-monitoring shall be conducted within 10 days of the second exceedance.	Y	С	
95469(a)(1)( B)(2)	If the re-monitoring shows a third exceedance, well shall be replaced and compliance must be determined within 120 days of the third exceedance.	Y	С	
95469(a)(1)( C)	Can monitor annually if four consecutive monitoring events show no exceedances. Any exceedances which can not be corrected within 10 calendar days will return the frequency to quarterly monitoring	Y	С	
95469(a)(1)( D)	Any exceedance discovered during a compliance inspection will return the monitoring to quarterly frequency.	Y	С	
95469(a)(2)	Integrated Surface Emissions Monitoring:	Y	С	
95469(a)(2)( A)	Exceedances (> 25 ppmv as methane) must be marked, recorded and corrective action initiated.	Y	С	
95469(a)(2)( B)	Re-monitoring shall be conducted within 10 days of a measured exceedance.	Y	С	
95469(a)(2)( B)(1)	If re-monitoring shows a second exceedance, more corrective action shall be taken and re-monitoring shall be conducted within 10 days of the second exceedance.	Y	С	
95469(a)(2)( B)(2)	If the re-monitoring shows a third exceedance, well shall be replaced and compliance must be determined within 120 days of the third exceedance.	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

#### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
95469(a)(2)( C)	Can monitor annually if four consecutive monitoring events show no exceedances. Any exceedances which cannot be corrected within 10 calendar days will return the frequency to quarterly monitoring	Y	С	
95469(a)(2)( D)	Any exceedance discovered during a compliance inspection will return the monitoring to quarterly frequency.	Y	С	
95469(b)	Gas Control System Equipment Monitoring: The equipment must be installed, calibrated, maintained and operated as per the manufacturer specifications	Y	С	
95469(b)(1)( A)	Enclosed flares must be equipped with a temperature (accuracy of +/- 1% of the temperature being measured)	Y	С	
95469(b)(1)( B)	Enclosed flares must be equipped with at least one flow rate measuring device (capability of measuring flow rate every 15 minutes)	Y	С	
95469(b)(2)	For equipment other than enclosed flares, describe operation of the device, operating parameters, and monitoring requirements.	Y	С	
95469(b)(3)	Components containing LFG and under positive pressure must be monitored quarterly for leaks, leaks must be repaired within 10 days	Y	С	
95469(b)(3)( A)	Leak Testing at MSW landfills with LFGTE facilities may be conducted prior to scheduled maintenance of planned outage	Y	С	
95469(c)	Wellhead Monitoring: Monitoring shall be done monthly.	Y	С	
95469(c)(1)	Initiate corrective action within 5 days of a positive pressure	Y	С	
95469(c)(2)	If it cannot be resolved within 15 days from the positive measurement date, additional corrective actions shall be taken such as expansion of gas collection system	Y	С	
95469(c)(3)	Corrective actions, including operation of any new wells, shall be completed within 120 days from the first positive measurement.	Y	С	
95470(a)	Recordkeeping Requirements	Y	С	
95470(a)(1)	Following records must be maintained:	Y	С	
95470(a)(1)( A)	Gas collection system downtime exceeding 5 calendar days, list of components shut down and the reason for downtime	Y	С	
95470(a)(1)( B)	Gas collection system downtime exceeding one hour, the reason and duration of downtime	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

#### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
95470(a)(1)( C)	Expected gas generation flow rate	Y	С	
95470(a)(1)( D)	All instantaneous surface readings of 200 ppmv or greater; all exceedances of the limits in 95464(b)(1)(B). Records shall include location of the leak, concentration in ppmv, date and time of measurement, the corrective action taken, date of action, re-monitoring and the re-monitored concentration in ppmv, and wind speed during surface sampling; the installation date and location of each well installed as part of well field expansion	Y	С	
95470(a)(1)( E)	Any positive wellhead gauge pressure measurements, the date of measurements, the well identification number, and the corrective action taken	Y	С	
95470(a)(1)(F	Annual solid waste acceptance rate and the current amount of waste-in-place	Y	С	
95470(a)(1)( G)	Nature, location, amount, and date of deposition of non- degradable waste for any landfill areas excluded from the collection system	Y	С	
95470(a)(1)( H)	Results of any source tests conducted pursuant to section 95464(b)(4)	Y	С	
95470(a)(1)(I )	Mitigation measures taken to prevent the release of methane or other emissions.	Y	С	
95470(a)(1)(I )(1)	When solid waste was brought to the surface during the installation of wells, piping, or other equipment;	Y	С	
95470(a)(1)(I )(2)	During repairs or temporary shutdown of gas collection system components	Y	С	
95470(a)(1)(I )(3)	When solid waste was excavated and moved	Y	С	
95470(a)(1)(J	Any construction activities pursuant to section 95466	Y	С	
95470(a)(1)(J )(1)	A description of the actions being taken, affected areas, reason the actions are required, and any affected components	Y	С	
95470(a)(1)(J )(2)	Construction start and finish dates, projected equipment installation dates, and projected shut down times for individual components	Y	С	

**Address:** 901 Bailey Rd **Source #:** S-1, S-4, S-5

Site #: A4618

# Site Name: Keller Canyon LandfillRoCity: Pittsburg, CAZiSource Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4

waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Zip Code

Applicable Boguiromont	Regulation Title or	Federally Enforceable	Continuous or	Comments
Kequitement	Description of Requirement	(Y/N)	Intel mittent	
95470(a)(1)(J )(3)	Description of the mitigation measures taken to minimize methane emissions and other potential air quality impacts	Y	С	
95470(a)(1)( K)	Equipment operating parameters specified under sections 95469(b)(1) and 95469(b)(2) as well as exceedance records	Y	С	
95470(a)(1)( K)(1)	For enclosed flares, all 3-hour periods of operation during which the average temperature difference was more than 28 degrees Celsius (or 50 degrees Fahrenheit) below the average combustion temperature during the most recent source test at which compliance with sections 95464(b)(2) and 95464(b)(3)(A) was determined	Y	С	
95470(a)(2)	Following records must be maintained for the life of each gas control device	Y	С	
95470(a)(2)( A)	Vendor specifications	Y	С	
95470(a)(2)( B)	Expected gas generation flow rate	Y	С	
95470(a)(2)( C)	Percent reduction of methane achieved by the control device	Y	С	
95470(a)(3)	Maintain copies of all records in the State of CA and provide them to Executive Officer within 5 business days upon request	Y	С	
95470(b)	Reporting Requirements	Y	С	
95470(b)(1)	Submit a Closure Notification to the Executive Officer within 30 days of waste acceptance cessation	Y	С	
95470(b)(1)( A)	Closure Notification must include the last day solid waste was accepted, the anticipated closure date of the MSW landfill, and the estimated waste-in-place	Y	С	
95470(b)(1)( B)	Executive Officer may request additional information to verify that permanent closure took place in accordance with the local, state or federal requirements	Y	С	
95470(b)(2)	Submit an Equipment Removal Report to the Executive Officer 30 days prior to well capping, removal or cessation which contains:	Y	С	
95470(b)(2)( A)	A copy of the Closure Notification submitted pursuant to section 95470(b)(1)	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

#### Site Name: Keller Canyon Landfill

City: Pittsburg, CA

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

- A

**Source Name:** S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4

waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable	Continuous or Intermittent	Comments
95470(b)(2)( B)	A copy of the initial source test report or other documentation demonstrating that the gas collection and control system has been installed and operated for a minimum of 15 years unless demonstrated otherwise	(Y/N) Y	С	
95470(b)(2)( C)	Surface emissions monitoring results verifying that surface methane concentration measurements do not exceed the limits specified in section 95465.	Y	С	
95470(b)(3)	Prepare an annual report for the period of January 1 through December 31 of each year and submit to the Executive Officer by March 15 of the following year. The annual report must contain:	Y	С	
95470(b)(3)( A)	MSW landfill name, owner and operator, address, and solid waste information system (SWIS) identification number	Y	С	
95470(b)(3)( B)	Total volume of landfill gas collected in standard cubic feet	Y	С	
95470(b)(3)( C)	Average composition of the landfill gas collected over the reporting period (reported in percent methane and percent carbon dioxide by volume	Y	С	
95470(b)(3)( D)	Gas control device type, year of installation, rating, fuel type, and total amount of landfill gas combusted in each device	Y	С	
95470(b)(3)( E)	Date that the gas collection and control system was installed and in full operation	Y	С	
95470(b)(3)( F)	Percent methane destruction efficiency of each gas control device	Y	С	
95470(b)(3)( G)	Type and amount of supplemental fuels burned with the landfill gas in each device	Y	С	
95470(b)(3)( H)	Total volume of landfill gas shipped off-site, the composition of the landfill gas collected, and the recipient of the gas	Y	С	
95470(b)(3)(I	Most recent topographic map of the site	Y	С	
95470(b)(3)(J	Information required by pertinent sections of 95470(a)(1)	Y	С	
95470(b)(5)	Submit a Landfill Gas Heat Input Capacity Report: Calculate the heat input capacity and report the results to the Executive Officer within 90 days of the effective date of this subarticle or upon reaching 450,000 tons of waste-in-place.	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5 Site Name: Keller Canyon Landfill City: Pittsburg, CA **Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

**Source Name:** S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4

waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

Applicable	Regulation Title or	Federally Enforceable	Continuous or	Comments
Requirement	Description of Requirement	(Y/N)	Intermittent	
95470(b)(6)	Submit certification by a responsible official of truth, accuracy, and completeness	Y	С	
95471	Test Methods and Procedures	Y	С	
95471(a)	Hydrocarbon Detector Specifications: Any instrument used for the measurement of methane must be a gas detector approved by the Executive Officer that meets the EPA Reference Method 21, Determination of Volatile Organic Compound Leaks, 40 CFR Part 60, Appendix A	Y	С	
95471(b)(1)	Landfill gas heat input capacity for MSW landfills without carbon adsorption or passive venting system shall be calculated using the procedure specified in Appendix I	Y	С	
95471(c)	Surface Emission Monitoring Procedures: Landfill surface concentration of methane must be measured using a hydrocarbon detector using the following procedures:	Y	С	
95471(c)(1)	Entire landfill surface must be divided into individually identified 50,000 square foot grids	Y	С	
95471(c)(1)( A)	Testing must be performed by holding the hydrocarbon detector's probe within 3 inches of the landfill surface while traversing the grid	Y	С	
95471(c)(1)( B)	The walking pattern must be no more than a 25-foot spacing interval and must traverse each monitoring grid	Y	С	
95471(c)(1)( B)(1)	Spacing may be increased to 100-foot intervals if no exceedances of the limits in section 95465 are observed after any four consecutive quarterly monitoring events. It must return to a 25-foot spacing interval upon observation of any exceedances	Y	С	
95471(c)(1)( C)	Surface testing must be terminated when the average wind speed exceeds 5 mph or the instantaneous wind speed exceeds 10 mph. Alternatives can be approved for sites with consistently higher wind speeds by the Executive Officer. Average wind speed must be determined on a 15-minute average using an on-site anemometer with a continuous recorder	Y	С	
95471(c)(1)( D)	Surface emissions testing must be conducted only when there has been no measurable precipitation in the preceding 72 hours	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5 Site Name: Keller Canyon Landfill

City: Pittsburg, CA

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

, Zip Cou

**Source Name:** S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4

waste and cover material dumping; and S-5 excavating,

bulldozing, and compacting activities

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
95471(c)(2)	Instantaneous Surface Emissions Monitoring Procedures	Ŷ	С	
95471(c)(2)( A)	Record any instantaneous surface readings of methane 200 ppmv or greater	Y	С	
95471(c)(2)( B)	Exceedances of methane concentration limit of 500 ppmv must be marked and remediated pursuant to section 95469(a)(1)	Y	С	
95471(c)(2)( C)	The wind speed must be recorded during the sampling period	Y	С	
95471(c)(2)( D)	Areas with cover penetrations/distressed vegetation/cracks/seeps must be inspected visually and with a hydrocarbon detector	Y	С	
95471(c)(3)	Integrated Surface Emissions Monitoring Procedures	Y	С	
95471(c)(3)( A)	Record and average integrated surface readings for each grid	Y	С	
95471(c)(3)( B)	Exceedances of methane concentration limit of 25 ppmv must be marked and remediated pursuant to section 95469(a)(2)	Y	С	
95471(c)(2)( C)	The wind speed must be recorded during the sampling period	Y	С	
95471(d)	Measure leaks using a hydrocarbon detector	Y	С	
95471(e)	Determine the expected gas generation flow rate as per the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 3, using a recovery rate of 75 percent	Y	С	
95471(f)(1)	Determine the destruction efficiency of the control device using EPA Methods 18, 25, 25A, and 25C	Y	С	
95471(g)	Determine gauge pressure using a hand-held manometer, magnahelic gauge, or other pressure measuring device approved by the Executive Officer.	Y	С	
95471(h)	Alternative test methods may be used if approved in writing by the Executive Officer	Y	С	
95472	Penalties	Y	С	
95473	Implementation, Enforcement, and Related Fees	Y	С	
95474	Applicability of Other Rules and Regulations	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5 Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
BAAQMD Condition #17309				
Part 1	Operating Time Restrictions (Cumulative Increase)	Y	С	
Part 2	Waste Acceptance Rate Limits (Cumulative Increase and Regulation 2-1-301)	Y	С	
Part 3	Daily Cover Requirements and Limitations (Regulation 1-301 and Cumulative Increase)	Y	С	
Part 4	Road Surfacing Requirements for Parking and Maintenance Areas (Cumulative Increase)	Y	С	
Part 5	Road Surfacing Requirements for On-Site Road Ways (Cumulative Increase)	Y	С	
Part 6	Speed Limits for Unpaved Roads (Cumulative Increase)	Y	С	
Part 7	Road Surfacing Requirements for Unpaved Roads (Cumulative Increase)	Y	С	
Part 8	Minimum Water and Dust Suppressant Application Rates for Unpaved Roads (Cumulative Increase)	Y	С	
Part 9	Water Truck Requirements (Cumulative Increase)	Y	С	
Part 10	Watering Requirements for Paved and Aggregate Based Road Ways (Cumulative Increase)	Y	С	
Part 11	Traffic Volume Limitations (Cumulative Increase)	Y	С	
Part 12	Trip Length Limitations for Heavy Duty Vehicles (Cumulative Increase)	Y	С	
Part 13	Watering Requirements for Active Face, Cover Soil Areas, and Off- Road Soil Areas (Cumulative Increase)	Y	С	
Part 14	Vegetation Requirements for Inactive Cover Soil Stockpiles (CEQA, Dust Mitigation Measures)	N	С	
Part 15	Vegetation Requirements for Completed Landfill Phases (CEQA, Dust Mitigation Measures)	N	С	
Part 16	Record Keeping Requirements (Cumulative Increase and Regulation 2- 6-501)	Y	С	
Part 17	Reporting Periods and Report Submittal Due Dates for the Regulation 8, Rule 34 and NESHAP Reports (Regulation 8-34-411 and 40 CFR 63.1980(a))	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

#### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
Part 18	Landfill Gas Collection System Design and Alteration Requirements (Regulations 2-1-301, 8-34-301.1, 8-34-303, 8-34-304, and 40 CFR 60.755(a) and 60.759)	Y	С	
Part 19	Operating Requirements for Landfill Gas Collection System and Collection System Components (Regulations 8-34-301, 8-34-305, and 8- 34-404, and 40 CFR 60.753(b and c) and 60.755(e))	Y	С	
Part 20	Control Requirements for Collected Landfill Gas (Regulations 8-34-301 and 8-34-303 and 40 CFR 60.752(b)(2)(ii-iii), 60.753(d-f) and 60.755(e))	Y	С	
Part 21	Continuous Operation Requirement for Flares (Regulation 8-34-301 and 40 CFR 60.752(b)(2)(iii), 60.753(e), and 60.755(e))	Y	С	
Part 22	Temperature Monitoring and Recording Requirements for Flares (Regulations 2-6-501 and 8-34-501 and 40 CFR 60.756(b))	Y	С	
Part 23	Minimum Temperature Requirement for Flares (RACT, Regulations 2- 5- 301 and 8-34-301, and 40 CFR 60.758(c)(1)(i))	Y	С	
Part 24	Nitrogen Oxide Emission Limit for Flares (RACT)	Y	С	
Part 25	Carbon Monoxide Emission Limit for Flares (RACT)	Y	С	
Part 26	[deleted]			
Part 27	Gas Flow Meter Requirement (Regulation 8-34-508 and 40 CFR 60.756(b))	Y	С	
Part 28	Alarm and Automated Control Requirements for Flares (Regulation 8-34-301)	Y	С	
Part 29	[deleted]			
Part 30	Annual Source Testing Requirement (RACT, Regulation 8-34-301.3, and 40 CFR 60.752(b)(2)(iii))	Y	С	
Part 31	Annual Landfill Gas Characterization Test (Air Toxics Hot Spots Act, Regulations 2-5-501, 8-34-301 and 9-1-302, and 40 CFR 60.754(d))	Y	С	
Part 32	Limits on Toxic Air Contaminants in Landfill Gas (Air Toxics Hot Spots Act and Regulation 2-5-302)	N	С	
Part 33	Precursor Organic Compound Emission Limit and Calculation Procedures (Offsets)	Y	С	
Part 34	Landfill Gas Sulfur Content Limit and Testing Procedures (Cumulative Increase and Regulations 9-1-302 and 2-6-503)	Y	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-1, S-4, S-5

#### Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-1 Keller Canyon Landfill abated by A-1 Landfill gas flare, and A-2 Landfill gas flare; S-4 waste and cover material dumping; and S-5 excavating, bulldozing, and compacting activities

**Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

Applicable Requirement	Regulation Title or Description of Requirement	Federally Enforceable (Y/N)	Continuous or Intermittent	Comments
Part 35	Heat Input Limits for Flares (Offsets, Cumulative Increases, and Regulation 2-1-301)	Y	С	
Part 36	Contaminated Soil Throughput Limit and Records (Regulation 8-2-301)	Y	С	
Part 37	Handling Procedures for Soil Containing Volatile Organic Compounds (Regulations 2-1-403, 8-40-301, 8-40-304, and 8-40-305)	Y	С	
Part 38	Prohibition of trackout and cleanup of trackout (Regulation 6-6-301, 302)	N	С	

Site #: A4618 Address: 901 Bailey Rd Source #: S-3 Site Name: Keller Canyon Landfill City: Pittsburg, CA Source Name: S-3 Yard and Green Waste Stockpiles **Reporting Period:** 09/1/2022 to 08/31/2023 **Zip Code:** 94565

			<b>Continuous or</b>	
Applicable	Regulation Title or	Compliance	Intermittent	
Requirement	Description of Requirement	(Y/N)		Days out of compliance / Comments
BAAQMD				<i>v</i> <b>x</b>
Regulation 6,	Particulate Matter – General Requirements (7/31/18)			
Rule 1				
6-1-301	Ringelmann No. 1 Limitation	N	С	
6-1-305	Visible Particles	Ν	С	
6-1-311.1	Total Suspended Particulate (TSP) Weight Limits	N	С	
6-1-401	Appearance of Emissions	N	С	
SIP Regulation 6	Particulate Matter and Visible Emissions (9/4/98)			
6-301	Ringelmann No. 1 Limitation	Y	С	
6-305	Visible Particles	Y	С	
6-311	Process Weight Limitations	Y	С	
6-401	Appearance of Emissions	Y	С	
BAAQMD				
<b>Regulation 6</b> ,	Particulate Matter – Prohibition of Trackout (7/31/18)			
Rule 6				
6-6-301	Prohibition of Trackout onto Paved Roadways	N	С	
6-6-302	Prohibition of Visible Emissions During Cleanup of Trackout	N	С	
6-6-501	Monitoring and Recordkeeping	N	С	
BAAQMD				
Condition				
#16462			~	
Part I	Limit on Yard and Green Waste Received (Cumulative Increase)	Ŷ	<u> </u>	
Part 2	Watering Requirements (Regulations 6-1-301, 6-1-305, and 2-6-503)	Y	C	
Part 3	Maximum Storage Time for Incoming Waste Prior to Processing (Regulation 1-301)	N	С	
Part 4	Maximum Storage Time for "Odorous" Stockpile (Regulation 1-301)	N	C	
Part 5	Public Nuisance Control Measures (Regulation 1-301)	N	С	
Part 6	Record Keeping Requirements (Cumulative Increase and Regulations 1-301, 2-6-501, 6-1-301 and 6-1-305)	Y	С	

# TITLE V SEMI-ANNUAL MONITORING REPORT

SITE:			FACILITY ID#:	
KELLER CANY		A4618		
<b>REPORTING PERIOD:</b>	from	through	1	
	03/01/2023	-	08/31/2023	

#### CERTIFICATION:

I declare, under penalty of perjury under the laws of the state of California, that, based on information and belief formed after reasonable inquiry, all information provided in this reporting package is true, accurate, and addresses all deviations during the reporting period:

Signature of Responsible Official

9/26/2023

Date

Josh Mills_____ Name of Responsible Official (please print)

<u>General Manager</u> Title of Responsible Official (please print)

Mail to:

Director of Compliance and Enforcement BAAQMD 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V reports

#### **TITLE V SEMI-ANNUAL MONITORING REPORT**

SITE:			FACILITY ID#:	
KELLER CANY		A4618		
<b>REPORTING PERIOD:</b>	from	through	1	
	03/01/2023	-	08/31/2023	

#### List of Permitted Sources and Abatement Device

Permit Unit Number	Equipment Description
S-#	Description
S 1	Keller Canyon Landfill – Waste Decomposition Process; Abated by A-
5-1	1 Landfill Gas Flare, and A-2 Landfill Gas Flare
S-4	Keller Canyon Landfill – Waste and Cover Material Dumping
S F	Keller Canyon Landfill – Excavating, Bulldozing and Compacting
5-5	Activities
S-3	Yard and Green Waste Stockpiles

Notes:

Site:	Keller Canyon Landfill	Facility ID#:	A4618	8
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	from	03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Collection Svstem	BAAQMD 8-34-501.7 and	Records	Periodic / On event basis	BAAQMD 8-34- 304.1	For Inactive/Closed Areas: collection system	Continuous	N/A
Installation	501.8 and BAAQMD				components must be		
Dates	Condition # 17309,				installed and operating		
	Part 16d-h				by 2 years + 60 days		
					after initial waste		
					placement		
Collection	BAAQMD	Records	Periodic / On	BAAQMD 8-34-	For Active Areas:	Continuous	N/A
System	8-34-501.7 and		event basis	304.2 and BAAQMD	Collection system		
Installation	501.8 and BAAQMD			Condition # 17309,	components must be		
Dates	Condition # 17309,			Part 18b	installed and operating		
	Part 16d-h				by 5 years + 60 days		
					after initial waste		
					placement		
Collection	BAAQMD	Records	Periodic / On	BAAQMD 8-34-	For Any Uncontrolled	Continuous	N/A
System	8-34-501.7 and		event basis	304.3 and BAAQMD	Areas or Cells: collection		
Installation	501.8 and BAAQMD			Condition # 17309,	system components		
Dates	Condition # 17309,			Part 18b	must be installed and		
	Part 16d-h				operating within 60 days		
					after the uncontrolled		
					area or cell accumulates		
					1,000,000 tons of		
					decomposable waste		

Site:	Keller Canyon Landfill	Facility ID#:	A4618
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	: from 03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Collection System Installation Dates	40 CFR 60.758(a), (d)(1) and (d)(2), and 60.759(a)(3)	Records	Periodic / On event basis	40 CFR 60.753 (a)(2) and 60.755 (b)(2)	For Inactive/Closed Areas: collection system components must be installed and operating by 2 years + 60 days after initial waste placement	Continuous	N/A
Collection System Installation Dates	40 CFR 60.758(a), (d)(1) and (d)(2)	Records	Periodic / On event basis	40 CFR 60.753 (a)(1) and 60.755 (b)(1)	For Active Areas: Collection system components must be installed and operating by 5 years + 60 days after initial waste placement	Continuous	N/A
Gas Flow	BAAQMD 8-34-501.10 and 508 and BAAQMD Condition # 17309, Parts 27 and 28	Gas Flow Meter and Recorder (every 15 minutes)	Continuous	BAAQMD 8-34-301 and 301.1 and BAAQMD Condition # 17309, Parts 19, 20, 21	Landfill gas collection system shall operate continuously, all collected gases shall be vented to a properly operating control system, and control system shall operate continuously	Intermittent	On July 7, 2023 gas collection system downtime occurred due to air compressor failure. For additional information, including corrective actions taken, please refer to the combined 10/30- Day Deviation Letter that was submitted to

Site: Keller Canyon Landfill	Facility ID#: A4618
<b>Permitted Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 LANDFILL GAS FLARE; S-4 WASTE AND COVER MATERIAL DUMPING; S-5 EXCAVATING BUILL DOZING AND COMPACTING ACTIVITIES	Reporting Period: from 03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
							the BAAQMD.
Gas Flow	40 CFR 60.756(b)(2) (i or ii) and 60.758(c)(2)	Gas Flow Meter and Recorder (every 15 minutes) or Monthly Inspection of Bypass Valve and Lock and Records	Continuous, Periodic / Monthly	40 CFR 60.752 (b)(2)(iii) and 40 CFR 60.753(a) and (e)	Operate a collection system in each area or cell, vent all collected gases to a properly operating control system, and operate control system at all times when gas is vented to it	Intermittent	On July 7, 2023 gas collection system downtime occurred due to air compressor failure. For additional information, including corrective actions taken, please refer to the combined 10/30- Day Deviation Letter that was submitted to the BAAQMD.
Gas Flow	CARB LMR 95469(b)(1)(B)	Gas Flow Meter and Recorder (every 15 minutes)	Continuous	CARB LMR 95464(b)(1)	Route all collected gases to a properly operating control system, and operate control system at all times so that no gas leak exceed 500 ppmv as methane	Continuous	N/A

Site:	Keller Canyon Landfill	Facility ID#:	A4618	8
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	from	03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Collection and	BAAQMD	Operating	Periodic / Daily	BAAQMD 8-34-	For Collection and	Continuous	N/A
Control	8-34-501.1 and	Records (all		113.2	Control Systems:		
Systems	501.2	occurrences			≤ 240 hours per year		
Shutdown		and duration of			and		
Time		each)			≤ 5 consecutive days		
Collection and	40 CFR 60.7(b),	Operating	Periodic / Daily	40 CFR 60.755(e)	For Collection System:	Continuous	N/A
Control	60.757(f)(2-4)	Records (all			< 5 days per event		
Systems		occurrences			and		
Startup		and duration of			For Control System:		
Shutdown or		each)			< 1 hour per event		
Malfunction							
Collection and	CARB LMR	Operating	Periodic/ On	CARB LMR	For Collection System:	Continuous	N/A
Control	95470(a)(1)(A-B)	Records (all	event basis	95464(a)(1)(D) and	< 5 days per event		
Systems		occurrences		95464(e)	and		
Shutdown		and duration of			For Control System:		
Time		each)			< 1 hour per event		
Startup	40 CFR 63.1980(a-	Records (all	Periodic / Daily	40 CFR 63.6(e)	Minimize Emissions by	Continuous	N/A
Shutdown or	b)	occurrences,			Implementing		
Mal-function		duration of			SSM Plan		
Procedures		each,					
		corrective					
		actions)					

Site: Keller Canyon Landfill	Facility ID#: A4618
<b>Permitted Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 LANDFILL GAS FLARE; S-4 WASTE AND COVER MATERIAL DUMPING; S-5 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Startup	CARB LMR	Records of	Periodic / On	CARB LMR	Include any new	Continuous	N/A
Shutdown or	95470(a)(1)(I)	mitigation	event basis	95464(e)(1-2)	components in Design		
Mal-function		measures			Plan and minimize		
Procedures		taken			methane emissions		
Periods of	BAAQMD	Operating	Periodic / Daily	BAAQMD 1-523.2	< 15 consecutive days	Continuous	N/A
Inoperation for	1-523.4	Records for All			per incident and		
Para-metric		Parametric			< 30 calendar days		
Monitors		Monitors			per 12 month period		
Continuous	40 CFR 60.7(b)	Operating	Periodic / Daily	40 CFR 60.13(e)	Requires Continuous	Continuous	N/A
Monitors		Records for All			Operation except for		
		Continuous			breakdowns, repairs,		
		Monitors			calibrations, and		
					required span		
					adjustments		
Wellhead	BAAQMD	Monthly	Periodic /	BAAQMD 8-34-	< 0 psig (Applies to all	Continuous	N/A
Pressure	8-34-414, 501.9 and	Inspection and	Monthly	305.1	wells		
	505.1	Records			that are connected		
					to the vacuum system)		
Wellhead	40 CFR	Monthly	Periodic /	40 CFR 60.753(b)	< 0 psig	Continuous	N/A
Pressure	60.755(a)(3),	Inspection and	Monthly		(Applies to all wells		
	60.756(a)(1), and	Necolus			that are connected		
	60.758(c) and (e)				to the vacuum system)		

Site:	Keller Canyon Landfill	Facility ID#:	A461	8
Permitted LANDFILL GAS	Unit: S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5	Reporting Period:	from	03/01/2023 through 08/31/2023
EXCAVATING,	BULLDOZING, AND COMPACTING ACTIVITIES			

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Wellhead	CARB LMR	Monthly	Periodic /	CARB LMR	< 0 psig	Continuous	N/A
Pressure	95469(c)	Inspection and	Monthly	95464(c)	(Applies to all wells		
		Records			that are connected		
					to the vacuum system)		
Temperature of	BAAQMD	Monthly	Periodic /	BAAQMD 8-34-	< 55 °C (Applies to all	Continuous	N/A
Gas at	8-34-414, 501.9 and	Inspection and	Monthly	305.2	wells that are connected		
Wellhead	505.2	Records			to the vacuum system)		
Temperature of	40 CFR	Monthly	Periodic /	40 CFR 60.753(c)	< 55 °C (Applies to all	Continuous	N/A
Gas at	60.755(a)(5),	Inspection and	Monthly		wells that are connected		
Wellhead	60.756(a)(3), and	Records			to the vacuum system)		
	60.758(c) and (e)						
Temperature of	BAAQMD 8-34-414,	Monthly or	Periodic /	BAAQMD 8-34-505	<150 degrees F	Continuous	N/A
Gas at	501.9, 505.2, and	more frequent	Monthly,	and BAAQMD	(Alternative wellhead		
Wellhead	BAAQMD Condition	Inspection and	bimonthly, or	Condition 17309,	temperature limit that		
	#17309, Part 19	Records	weekly	Part 19	applies only to wells		
					specified in BAAQMD		
					Condition #17309, Part		
					19(b)(i)		

Site:	Keller Canyon Landfill	Facility ID#:	A4618	8
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	from	03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Gas	BAAQMD	Monthly	Periodic /	BAAQMD	N ₂ < 20%	Continuous	N/A
Concentrations	8-34-414, 501.9 and	Inspection and	Monthly	8-34-305.3 or 305.4	(by volume, dry basis)		
in LFG at	505.3 or 505.4	Records			OR		
Wellhead					O ₂ < 5%		
					(Applies to all wells that		
					are connected to the		
					vacuum system, except		
					for wells identified in		
					Condition # 17309, Part		
					19b(i))		
Gas	40 CFR	Monthly	Periodic /	40 CFR 60.753(c)	N2 < 20%	Continuous	N/A
Concentration	60.755(a)(5),	Inspection and	Monthly		OR		
at Wellhead	60.756(a)(2), and	Records			O2 < 5%		
	60.758(c) and (e)				(Applies to all wells that		
					are connected to the		
					vacuum system, except		
					for wells identified in		
					Condition # 17309, Part		
					19b(i))		
Gas	BAAQMD Condition	Monthly	Periodic /	BAAQMD Condition	O2 < 15%	Continuous	N/A
Concentrations	# 17309, Part 19b(ii	Inspection and	Monthly	# 17309, Part 19b(i)	(Applies to wells		
at Wellhead	and iii)	Records			identified in Condition #		
					17309, Part 19b(i) that		
					are connected to the		
					vacuum system)		

Site:	Keller Canyon Landfill	Facility ID#:	A4618	8
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	from	03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Well Shutdown Limits	BAAQMD 8-34-116.5 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 116.2	No more than 5 wells at a time or 10% of total collection system, whichever is less	Continuous	N/A
Well Shutdown Limits	BAAQMD 8-34-116.5 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 116.3	< 24 hours per well	Continuous	N/A
Well Shutdown Limits	BAAQMD 8-34-117.6 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 117.4	No more than 5 wells at a time or 10% of total collection system, whichever is less	Continuous	N/A
Well Shutdown Limits	BAAQMD 8-34-117.6 and 501.1	Records	Periodic / Daily	BAAQMD 8-34- 117.5	< 24 hours per well or < 5 days per well for component replacements	Continuous	N/A

Site:	Keller Canyon Landfill	Facility ID#:	A4618
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	from 03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Well Shutdown	BAAQMD Condition	Records	Periodic / Daily	BAAQMD Condition	For individual	Continuous	N/A
Limits	# 17309, Part 19c(v)			# 17309, Parts 19c	components that are		
				(i and ii)	temporarily		
					disconnected from the		
					vacuum system:		
					< 5 components		
					disconnected		
					at any one time		
					and		
					< 120 days of vacuum		
					disconnection time		
					during any		
					12-month period		
					for each individual		
					component		
TOC (Total	BAAQMD	Quarterly	Periodic /	BAAQMD 8-34-	Component Leak Limit:	Intermittent	During first and second
Organic Com-	8-34-501.6 and 503	Inspection of	Quarterly	301.2	< 1000 ppmv as		quarter 2023 surface
pounds Plus	and BAAQMD	collection and		and BAAQMD	methane		and component leak
Methane)	Condition # 17309,	control system		Condition # 17309,			monitoring, a leak
	Part 19c(iv and v)	components		Part 19c(iv)			greater than 1,000 ppmv
		with OVA,					was detected at the
		Additional					flame arrestor. For more
		Inspection of					information on this
		Temporarily					component leak
		Disconnected					including when it was

Site: Keller	Canyon Landfill	Facility ID#:	A46′	18
Permitted Unit: LANDFILL GAS FLARE; S EXCAVATING, BULLDOZ	S-1 Keller Canyon Landfill, A-1 and A-2 -4 Waste and Cover Material Dumping; S-5 ing, and Compacting Activities	Reporting Period:	from	03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
		Components					remediated please refer
		and Records					to the first and second
							quarter Surface
							Emissions Monitoring
							(SEM) reports. On
							September 11, 2023,
							Site received a notice of
							violation (NOV) for an
							alleged violation of
							BAAQMD 8-34-301.2
							during an United States
							EPA and BAAQMD
							inspection that occurred
							on August 21, 2023.
							For additional
							information, including
							corrective actions
							taken, please refer to
							the combined 10/30-
							Day NOV response
							Letter that was
							submitted to the
							BAAQMD on
							September 21, 2023.

Site: Keller Canyon Landfill	Facility ID#: A4618
<b>Permitted Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 LANDFILL GAS FLARE; S-4 WASTE AND COVER MATERIAL DUMPING; S-5 EXCAVATING BUILL DOZING AND COMPACTING ACTIVITIES	Reporting Period: from 03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
тос	BAAQMD	Monthly Visual	Periodic /	BAAQMD 8-34-303	Surface Leak Limit:	Intermittent	On August 9, and
	8-34-415, 416,	Inspection of	Monthly,		< 500 ppmv as methane		September 11, 2023,
	501.6, 506 and 510	Cover,	Quarterly, and		at 2 inches above		Site received NOVs
		Quarterly	on an Event		surface		A62205 and A62509,
		Inspection with	Basis				respectively, for an
		OVA of					alleged violation of
		Surface,					BAAQMD 8-34-303
		Various					during site
		Reinspection					inspections that
		Times for					occurred on May 16,
		Leaking Areas,					and August 21, 2023,
		and Records					respectively. For
							additional information,
							including corrective
							actions taken, please
							refer to the combined
							10/30-Day NOV
							response Letters that
							were submitted to the
							BAAQMD on August
							18, and September
							21, 2023.

Site: Keller Canyon Landfill	Facility ID#: A4618
<b>Permitted Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 LANDFILL GAS FLARE; S-4 WASTE AND COVER MATERIAL DUMPING; S-5 EXCAVATING, BUIL DOZING, AND COMPACTING ACTIVITIES	Reporting Period: from 03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
тос	Condition # 17309,	Monthly	Periodic /	BAAQMD 8-34-303	Surface Leak Limit:	Intermittent	On August 9, and
	Part 19b(iv-vi)	Inspection with	Monthly	and BAAQMD	< 500 ppmv		September 11, 2023,
		OVA of Surface		Condition # 17309,	as methane		Site received NOVs,
		(3 points within		Part 19b(iv)	at 2 inches		A62205 and A62509,
		15 m of well),			above surface		respectively for an
		Various			(Applies to surface		alleged violation of
		Reinspection			vicinity near wells		BAAQMD 8-34-303
		Times for			identified in Condition #		during site
		Leaking Areas,			17309, Part 19b(i) that		inspections that
		and Records			are complying with an		occurred on May 16,
					alternative wellhead		and August 21, 2023,
					oxygen standard instead		respectively. For
					of the 8-34-305.4 limit)		additional information,
							including corrective
							actions taken, please
							refer to the combined
							10/30-Day NOV
							response Letters that
							were submitted to the
							BAAQMD on August
							18, and September
							21, 2023.

Site: Keller Canyon Landfill	Facility ID#: A4618
<b>Permitted Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 LANDFILL GAS FLARE; S-4 WASTE AND COVER MATERIAL DUMPING; S-5 EXCAVATING BUILL DOZING AND COMPACTING ACTIVITIES	Reporting Period: from 03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
тос	40 CFR	Monthly Visual	Periodic /	40 CFR 60.753(d)	Surface Leak Limit:	Continuous	N/A
	60.755(c)(1), (4) and	Inspection of	Monthly,		< 500 ppmv		
	(5), 60.756(f), and	Cover,	Quarterly, and		as methane		
	60.758(c) and (e)	Quarterly	on an Event		at 5-10 cm		
		Inspection with	Basis		from surface		
		OVA of					
		Surface,					
		Various					
		Reinspection					
		Times for					
		Leaking Areas,					
		and Records					

Site: Keller Canyon Landfill	Facility ID#: A4618
<b>Permitted Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 LANDFILL GAS FLARE; S-4 WASTE AND COVER MATERIAL DUMPING; S-5 EXCAVATING BUILL DOZING AND COMPACTING ACTIVITIES	Reporting Period: from 03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Methane	CARB LMR	Quarterly	Periodic /	CARB LMR	Surface Leak Limit: <	Intermittent	On August 9, 2023
	95469(a-b)	Monitoring,	Quarterly / On	95465(a)	500 ppmv as methane at		Site received NOV
		Various	event basis		5-10 cm from surface		A62508 for an alleged
		Reinspection					violation of California
		Times for					Code of Regulations
		Leaking Areas,					Title 17 Rule 95465
		and Records					during site
							inspections that
							occurred on June 21,
							2023. For additional
							information, including
							corrective actions
							taken, please refer to
							the combined 10/30-
							Day NOV response
							Letter that was
							submitted to the
							BAAQMD on August
							18, 2023.

Site:	Keller Canyon Landfill	Facility ID#:	A4618	8
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	from	03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Non-Methane	BAAQMD	Initial and	Periodic /	BAAQMD 8-34-	For Flares:	Continuous	N/A
Organic Com-	8-34-412 and 8-34-	Annual Source	Annual	301.3	> 98%		
pounds	501.4	Tests			removal by weight		
(NMOC)	And BAAQMD				OR		
	Condition # 17309,				< 30 ppmvd		
	Parts 30 and 31				@ 3% O2,		
					expressed as methane		
NMOC	40 CFR 60.8 and	Initial and	Periodic / On	40 CFR 60.752(b)	For Flares:	Continuous	N/A
	60.752(b)	Annual Source	event basis	(2)(iii)(B)	> 98%		
	(2)(iii)(B) and 60.758	Tests			removal by weight		
	(b)(2)(ii)				OR		
					< 20 ppmvd		
					@ 3% O2,		
					expressed as hexane		
Methane	CARB LMR	Temperature	Continuous	CARB LMR	For Flares:	Continuous	N/A
	95469(b)(1)	Sensor and		95464(b)(2)(A)	> 99% Methane removal		
		Recorder			by weight		
		(continuous)					
		and gas flow					
		rate measuring					
		device					

Site:	Keller Canyon Landfill	Facility ID#:	A461	8
Permitted LANDFILL GAS	Unit: S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5	Reporting Period:	from	03/01/2023 through 08/31/2023
EXCAVATING,	BULLDOZING, AND COMPACTING ACTIVITIES			

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Temperature of	BAAQMD	Temperature	Continuous	BAAQMD Condition	For A-1 Flare:	Continuous	N/A
Combustion	8-34-501.3 and 507,	Sensor and		# 17309, Part 23	CT > 1504 °F		
Zone (CT)	and BAAQMD	Recorder			(3-hour average)		
	Condition # 17309,	(continuous)			For A-2 Flare:		
	Part 22				CT > 1400 °F		
					(3-hour average)		
Temperature of	40 CFR 60.756(b)(1)	Temperature	Continuous	40 CFR 60.758	For A-1 Flare:	Continuous	N/A
Combustion	and 60.758	Sensor and		(c)(1)(i)	CT > 1504 °F		
Zone (CT)	(b)(2)(i)	Recorder			(3-hour average)		
		(measured			from		
		every 15			(CT > CTPF – 28 □C),		
		minutes and			where CTPF is the		
		averaged over			average combustion		
		performance			temperature during the		
		test time period			most recent complying		
		and 3-hours)			performance test,		
					CTPF was 1554 °F		
					during 10/13/04 test		
					For A-2 Flare:		
					CT will be determined		
					during initial		
					performance test		

Site: Keller Canyon Landfill	Facility ID#: A4618
<b>Permitted Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 LANDFILL GAS FLARE; S-4 WASTE AND COVER MATERIAL DUMPING; S-5 Excavating, Bulldozing, and Compacting Activities	Reporting Period: from 03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
POC (Precursor	BAAQMD Condition # 17309, Part 33	Calculation Procedure	Periodic / On event basis	BAAQMD Condition # 17309, Part 33	< 112.828 tons per year (fugitive POC from all	Continuous	N/A
Organic Compounds)		(once every 5 years)			landfill operations)		
Total Carbon	BAAQMD Condition # 17309, Part 36a-c	Records	Periodic / On event basis	BAAQMD 8-2-301	< 15 pounds/day or < 300 ppm, dry basis only for aeration of or use as cover soil of soil containing < 50 ppmw of volatile organic compounds	Continuous	N/A
Amount of Contaminated Soil Aerated or Used as Cover	BAAQMD Condition # 17309, Parts 36a-c and 37m	Records	Periodic / On event basis	BAAQMD 8-40- 116.1	< 1 cubic yard per project	Continuous	N/A
Amount of Contaminated Soil Aerated or Used as Cover	BAAQMD 8-40-116.2 and BAAQMD Condition # 17309, Parts 36a-c and 37m	Records	Periodic / On event basis	BAAQMD 8-40- 116.2	< 8 cubic yards per project, provided organic content < 500 ppmw and limited to 1 exempt project per 3 month period	Continuous	N/A

Site:	Keller Canyon Landfill	Facility ID#:	A4618	8
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	from	03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Amount of	None	N/A	None	BAAQMD 8-40-117	Soil Contaminated by	Continuous	N/A
Accidental					Accidental Spillage of		
Spillage					< 5 gallons of Liquid		
					Organic Compounds		
Total Aeration	BAAQMD Condition	Records	Periodic / On	BAAQMD 8-40-118	< 150 pounds	Continuous	N/A
Project	# 17309, Part 37m		event basis		per project and		
Emissions					toxic air contaminant		
					emissions per year		
					< BAAQMD		
					Table 2-5-1 limits		
Amount of	BAAQMD Condition	Calculations	Periodic / On	BAAQMD 8-40-301	Prohibited for Soil with	Continuous	N/A
Contaminated	# 17309, Parts 36a-c	and Records	event basis	and BAAQMD	Organic Content > 50		
Soil Aerated or	and 37m			Condition # 17309,	ppmw unless exempt		
Used as Cover				Part 37k	per BAAQMD 8-40-116,		
					117, or 118		
Contaminated	BAAQMD Condition	Records	Periodic / On	BAAQMD Condition	Limited to 2 on-site	Continuous	N/A
Soil Handling	# 17309, Part 37m		event basis	# 17309, Part 37e	transfers per lot of		
					contaminated soil		
Contaminated	BAAQMD Condition	Records	Periodic / On	BAAQMD Condition	If organic content is:	Continuous	N/A
Soil On-Site	# 17309, Part 37m		event basis	# 17309, Part 37f-g	< 500 ppmw, storage		
Storage Time					time < 90 days;		
					If organic content is:		
					> 500 ppmw, storage		
					time < 45 days		

Site:	Keller Canyon Landfill	Facility ID#:	A4618
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	: from 03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
SO ₂	None	N/A	None	BAAQMD 9-1-301	Property Line	Continuous	N/A
					Ground Level Limits:		
					< 0.5 ppm		
					for 3 minutes,		
					< 0.25 ppm		
					for 60 minutes, and		
					<0.05 ppm		
					for 24 hours		
SO ₂	BAAQMD Condition	Sulfur Analysis	Periodic /	BAAQMD 9-1-302	In Exhaust Gases From	Continuous	N/A
	# 17309, Parts 31	of Landfill Gas	Quarterly		Flares:		
	and 34				< 300 ppm (dry)		
H ₂ S	None	N/A	None	BAAQMD 9-2-301	Property Line Ground	Continuous	N/A
					Level Limits:		
					< 0.06 ppm,		
					averaged over 3 minutes		
					and < 0.03 ppm,		
					averaged over 60		
					minutes		
Total Reduced	BAAQMD Condition	Sulfur Analysis	Periodic /	BAAQMD Condition	In Collected Landfill	Continuous	N/A
Sulfur (TRS)	# 17309, Parts 31	of Landfill Gas	Quarterly	# 17309, Part 34	Gas:		
Com-pounds	and 34				< 300 ppmv (dry)		
Opacity	BAAQMD Condition	Records of	Periodic /	BAAQMD 6-1-301	For Landfill Operations:	Continuous	N/A
	# 17309, Part 16j-l	Water and Dust	Quarterly	and	< Ringelmann No. 1		
		Suppressant		SIP 6-301	for 3 minutes		
		Application			in any hour		

Site: Keller Canyon Landfill	Facility ID#: A4618
<b>Permitted Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 LANDFILL GAS FLARE; S-4 WASTE AND COVER MATERIAL DUMPING; S-5 EXCAVATING BUIL DOZING AND COMPACTING ACTIVITIES	Reporting Period: from 03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Opacity	BAAQMD 8-34-501.3 and 507, and BAAQMD Condition # 17309, Part 22	Temperature Sensor and Recorder (continuous)	Continuous	BAAQMD 6-1-301 and SIP 6-301	For Flares: < Ringelmann No. 1 for 3 minutes in any hour	Continuous	N/A
FP	None	N/A	None	BAAQMD 6-1-310 and SIP 6-310	For Flares: < 0.15 grains/dscf	Continuous	N/A
Operating Time	BAAQMD Condition # 17309, Parts 16a and 16i	Records of Waste Received and Truck Traffic	Periodic / Daily	BAAQMD Condition # 17309, Part 1	Monday through Friday	Continuous	N/A
Waste Received	BAAQMD Condition # 17309, Part 16a	Records of Waste Received	Periodic / Daily	BAAQMD Condition # 17309, Part 2a	< 3500 tons per day	Continuous	N/A
Cumulative Waste In- Place	BAAQMD Condition # 17309, Part 16a	Records of Waste Placed in Landfills	Periodic / Daily	BAAQMD Condition # 17309, Part 2b	< 38.4 million tons (<34.8 million Mg)	Continuous	N/A
Design Capacity	BAAQMD Condition # 17309, Parts 16a, 36a, and 37m	Records of Material Placed in Landfill	Periodic / Daily	BAAQMD Condition # 17309, Part 2c	< 75 million yd3 (< 57.3 million m3) of all wastes and cover materials (excluding final cover)	Continuous	N/A

Site:	Keller Canyon Landfill	Facility ID#:	A4618	8
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	from	03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Unpaved Road Length	BAAQMD Condition # 17309, Part 12	Site Maps	Periodic / On event basis	BAAQMD Condition # 17309, Part 5a	< 3000 feet from cover stockpile to	Continuous	N/A
Unpaved Road Length	BAAQMD Condition # 17309, Part 12	Site Maps	Periodic / On event basis	BAAQMD Condition # 17309, Part 5b	<ul> <li>&lt; 400 feet</li> <li>from end of main access</li> <li>road to working face</li> <li>midpoint</li> </ul>	Continuous	N/A
Unpaved Road Length	BAAQMD Condition # 17309, Part 12	Site Maps	Periodic / On event basis	BAAQMD Condition # 17309, Part 5c	< 750 feet from end of paved road to end of main access road (this section must have 12 inches of gravel or crushed asphalt)	Continuous	N/A
Unpaved Road Length	BAAQMD Condition # 17309, Part 12	Site Maps	Periodic / On event basis	BAAQMD Condition # 17309, Part 5d	< 1400 feet of fire access roads	Continuous	N/A
Vehicle Speed	BAAQMD Condition # 17309, Part 6	Posted Signs and Enforcement if Necessary	Periodic / On event basis	BAAQMD Condition # 17309, Part 6	< 10 mph on unpaved roads and < 25 mph on fire access roads	Continuous	N/A
Site:	Keller Canyon Landfill	Facility ID#:	A4618				
-------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------	-------------------	------------------------------------				
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	from 03/01/2023 through 08/31/2023				

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Dust Suppress-	BAAQMD Condition	Records	Periodic / Daily	BAAQMD Condition	> 0.5 gallons	Continuous	N/A
ant Application	# 17309, Part 16k			# 17309, Part 8a-c	per square yard		
Rate for					of 10%		
Unpaved					magnesium chloride		
Roads					applied once		
					every 30 days		
					between May 1 and		
					November 1 and		
					once every 30		
					consecutive dry days		
					between November 1		
		_			and May 1		
Water	BAAQMD Condition	Records	Periodic / Daily	BAAQMD Condition	Once every fifth heavy	Continuous	N/A
Application	# 17309, Part 16i-j			# 17309, Parts 8 and	duty vehicle and more		
Rate for Roads		_		10	often as necessary		
Water	BAAQMD Condition	Records	Periodic / Daily	BAAQMD Condition	> 0.5 gallons	Continuous	N/A
Application	# 17309, Part 16 I			# 17309, Part 13	per square yard		
Rate for Active					twice per day		
face and Soil					on all dry days		
Areas		_					
Truck Traffic	BAAQMD Condition	Records	Periodic / Daily	BAAQMD Condition	< 175 transfer truck trips	Continuous	N/A
Volume	# 17309, Part 16i			# 17309, Part 11a	per annual average day		
Truck Traffic	BAAQMD Condition	Records	Periodic / Daily	BAAQMD Condition	< 4 leachate truck trips	Continuous	N/A
Volume	# 17309, Part 16i			# 17309, Part 11b	per annual average day		

Site:	Keller Canyon Landfill	Facility ID#:	A461	8
	Unit: S-1 Keller Canyon Landfill, A-1 and A-2 ELARE: S-4 WASTE AND COVER MATERIAL DUMPING: S-5	Reporting Period:	from	03/01/2023 through 08/31/2023
EXCAVATING,	BULLDOZING, AND COMPACTING ACTIVITIES			

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Truck Traffic	BAAQMD Condition	Records	Periodic / Daily	BAAQMD Condition	< 45 scraper trips	Continuous	N/A
Volume	# 17309, Part 16i			# 17309, Part 11c	per annual average day		
Truck Traffic	BAAQMD Condition	Site Maps and	Periodic / On	BAAQMD Condition	< 7800 feet	Continuous	N/A
Trip Length	# 17309, Part 12	Records	event basis	# 17309, Part 12a	for transfer trucks		
Truck Traffic	BAAQMD Condition	Site Maps and	Periodic / On	BAAQMD Condition	< 3600 feet	Continuous	N/A
Trip Length	# 17309, Part 12	Records	event basis	# 17309, Part 12b	for leachate trucks		
Truck Traffic	BAAQMD Condition	Site Maps and	Periodic / On	BAAQMD Condition	< 3000 feet	Continuous	N/A
Trip Length	# 17309, Part 12	Records	event basis	# 17309, Part 12c	for scrapers		
NOx	BAAQMD Condition	Annual Source	Periodic /	BAAQMD Condition	For both A-1 Flare and	Continuous	N/A
	# 17309, Part 30	lest	Annual	# 17309, Part 24	A-2 Flare:		
					< 15 ppmv of NOx,		
					expressed as NO2		
			<b>D</b>		at 15% O2, dry		
со	BAAQMD Condition	Annual Source	Periodic / Annual	BAAQMD Condition	For A-1 Flare:	Continuous	N/A
	# 17309, Part 30	1001	, unidal	# 17309, Part 25	< 114 ppmv of CO		
					at 15% O2, dry		
					For A-2 Flare:		
					< 81 ppmv of CO		
			Doriodio /		at 15% O2, dry		
Acrylonitrile	BAAQMD Condition	Annual	Annual	BAAQMD Condition		Continuous	N/A
	# 17309, Part 31	Laboratory		# 17309, Part 32	Gas:		
		Analysis					
					or Fugitive Emissions:		
					< 60 pounds/year		

Site:	Keller Canyon Landfill	Facility ID#:	A4618	8
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	from	03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Benzene	BAAQMD Condition # 17309, Part 31	Annual Laboratory Analysis	Periodic / Annual	BAAQMD Condition # 17309, Part 32	Concentration in Landfill Gas: < 20,000 ppbv or Fugitive Emissions: < 3557 pounds/year	Continuous	N/A
Carbon Tetrachloride	BAAQMD Condition # 17309, Part 31	Annual Laboratory Analysis	Periodic / Annual	BAAQMD Condition # 17309, Part 32	Concentration in Landfill Gas: < 100 ppbv or Fugitive Emissions: < 35 pounds/year	Continuous	N/A
Chloroform	BAAQMD Condition # 17309, Part 31	Annual Laboratory Analysis	Periodic / Annual	BAAQMD Condition # 17309, Part 32	Concentration in Landfill Gas: < 100 ppbv or Fugitive Emissions: < 27 pounds/year	Continuous	N/A
Ethylene Dibromide	BAAQMD Condition # 17309, Part 31	Annual Laboratory Analysis	Periodic / Annual	BAAQMD Condition # 17309, Part 32	Concentration in Landfill Gas: < 100 ppbv or Fugitive Emissions: < 40 pounds/year	Continuous	N/A
Ethylene Dichloride	BAAQMD Condition # 17309, Part 31	Annual Laboratory Analysis	Periodic / Annual	BAAQMD Condition # 17309, Part 32	Concentration in Landfill Gas: < 750 ppbv or Fugitive Emissions: < 169 pounds/year	Continuous	N/A

Site:	Keller Canyon Landfill	Facility ID#:	A4618
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	: from 03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Methylene	BAAQMD Condition	Annual	Periodic /	BAAQMD Condition	Concentration in Landfill	Continuous	N/A
Chloride	# 17309, Part 31	Laboratory	Annual	# 17309, Part 32	Gas:		
		Analysis			< 7,600 ppbv		
					or Fugitive Emissions:		
					< 1470 pounds/year		
Perchloroethyl	BAAQMD Condition	Annual	Periodic /	BAAQMD Condition	Concentration in Landfill	Continuous	N/A
ene	# 17309, Part 31	Laboratory	Annual	# 17309, Part 32	Gas:		
		Analysis			< 3,300 ppbv		
					or Fugitive Emissions:		
					< 1246 pounds/year		
Trichloroethyle	BAAQMD Condition	Annual	Periodic /	BAAQMD Condition	Concentration in Landfill	Continuous	N/A
ne	# 17309, Part 31	Laboratory	Annual	# 17309, Part 32	Gas:		
		Analysis			< 1,500 ppbv		
					or Fugitive Emissions:		
					< 449 pounds/year		
Vinyl Chloride	BAAQMD Condition	Annual	Periodic /	BAAQMD Condition	Concentration in Landfill	Continuous	N/A
	# 17309, Part 31	Laboratory	Annual	# 17309, Part 32	Gas:		
		Analysis			< 1,700 ppbv		
					or Fugitive Emissions:		
					< 242 pounds/year		

Site:	Keller Canyon Landfill	Facility ID#:	A4618	8
<b>Permitted</b> LANDFILL GAS EXCAVATING,	<b>Unit:</b> S-1 Keller Canyon Landfill, A-1 and A-2 Flare; S-4 Waste and Cover Material Dumping; S-5 Bulldozing, and Compacting Activities	Reporting Period:	from	03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Heat Input	BAAQMD Condition # 17309, Part 35	Records	Periodic / Monthly	BAAQMD Condition # 17309, Part 35	For A-1 Flare: < 1744.8 MM BTU per day and < 636,852 MM BTU per year For A-2 Flare: < 1824 MM BTU per day and < 665,760 MM BTU per year	Continuous	N/A
Trackout onto Paved Roadways	BAAQMD 6-6-501, BAAQMD Permit Condition #17309, Part 38	Records	Periodic / Daily	BAAQMD 6-6-301	Trackout causing visible emissions: < 25 linear feet for no more than 4 hours; and Trackout remaining on adjacent paved public roadway or paved shoulder: < 1 quart at end of each workday	Continuous	N/A
Visible Emissions from Cleaning Trackout	BAAQMD 6-6-501, BAAQMD Permit Condition #17309, Part 38	Records	Periodic / Daily	BAAQMD 6-6-302	<ul> <li>&lt; Ringelmann No. 1</li> <li>Limitation for no more</li> <li>than 3 minutes in any</li> <li>60-minuite period</li> </ul>	Continuous	N/A

Site:	Keller C	anyon Landfill		Facility	ID#:	A461	8
Permitted	Unit:	S-3 YARD AND GREEN	WASTE STOCKPILES	Reporti	ng Period:	from	03/01/2023 through 08/31/2023

Type of Limit or Criteria	Monitoring Requirement Citation	Monitoring Type	Monitoring Frequency	Citation of Limit	Limit	Compliance	Corrective Actions Taken
Opacity	BAAQMD Condition	Visual Observation of	Continuous	BAAQMD 6-1-301	< Ringelmann No. 1	Continuous	N/A
	# 16462, Part 2	Source in Operation		and	for 3 minutes		
				SIP 6-301	in any hour		
Waste	BAAQMD Condition	Records of Amount of	Periodic / On	BAAQMD Condition #	< 225 tons per day	Continuous	N/A
Received	# 16462, Part 6a	Waste Received	event basis	16462, Part 1	and		
	and b				< 70,200 tons per		
					12-month period		
Waste	BAAQMD Condition	Records of Date and Time	Periodic / On	BAAQMD Condition #	< 4 days from receipt	Continuous	N/A
Storage	# 16462, Part 6a	for Waste Receipt and	event basis	16462, Part 3	of waste		
Time	and c	Processing					
Odorous	BAAQMD Condition	Records of Date and Time	Periodic / On	BAAQMD Condition #	< 24 hours from the	Continuous	N/A
Stockpile	# 16462, Part 6a	for Waste Receipt and	event basis	16462, Part 4	time the stockpile is		
Storage	and c	Processing			deemed "odorous"		
Time							