

TV Tracking #: 322

1. D RECEIVED IN 10/28/2021 ENFORCEMENT: GUADALUPE RUBBISH DISPOSAL CO., INC.

P.O. Box 20957 San Jose, CA 95160 (408) 268-1670 (408) 268-7451 Fax

October 27, 2021

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V Reports Director of the Air Division USEPA, Region IX 75 Hawthorne Street San Francisco, CA 94105 Attn: Air-3

SUBJECT: Combined Title V Semi-Annual and Partial 8-34 Annual Report 40 CFR 63 Subpart AAAA Semi-Annual Report Guadalupe Recycling & Disposal Facility 15999 Guadalupe Mines Road, San Jose, CA 95120 Facility Number A3294

Dear Sir or Madam:

The Guadalupe Rubbish Disposal Co., Inc. (GRDC) is pleased to submit the attached Combined Title V Semi-Annual and Partial 8-34 Annual Report for the period of April 1, 2021 through September 30, 2021 to the Bay Area Air Quality Management District (BAAQMD) and the United States Environmental Protection Agency (USEPA), Region IX. As required by 40 Code of Federal Regulations (CFR) Part 63 Subpart AAAA, the Semi-Annual Startup, Shutdown and Malfunction (SSM) Report is also enclosed. The Combined Title V Semi-Annual and Partial 8-34 Annual Report satisfies the requirements of the Title V Permit listed in Title V Permit Condition Number 6188 Part 22 and Standard Condition I.F.

Based on information and belief formed after reasonable inquiry, I certify under penalty of law that the statements included in this report are true, accurate, and complete.

Sincerely, Guadalupe Rubbish Disposal Co., Inc.

Paul Enrique Perez

Enrique Perez District Manager

Attachments: Combined Title V Semi-Annual and Partial 8-34 Annual Report

Combined Title V Semi-Annual and Partial 8-34 Annual Report For the Guadalupe Rubbish Disposal Co., Inc. 15999 Guadalupe Mines Road San Jose, California 95120 Facility Number A3294

April 1, 2021 through September 30, 2021

Submitted on: October 28, 2021

Prepared for Guadalupe Recycling & Disposal Facility 15999 Guadalupe Mines Road San Jose, California 95120

For Submittal to: The Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

And

The United States Environmental Protection Agency, Region IX 75 Hawthorne Street San Francisco, CA 94105

Prepared by

CONTENTS

1 INTF	RODUC ⁻	TION	. 1
	1.1 1.2	Purpose Record Keeping and Reporting	
2 COI	MBINED	MONITORING REPORT	. 3
	2.1	Collection System Operation (BAAQMD 8-34-501.1 & §60.757(f)(4)) 2.1.1 Collection System Downtime 2.1.2 Well Start-Up & Disconnection Log	. 4
	2.2	 Emission Control Device Downtime (BAAQMD 8-34-501.2 & §60.757(f)(3)) 2.2.1 LFG Bypass Operations (§60.757(f)(2)) 2.2.2 Key Emission Control Operating Parameters (BAAQMD 8-34-501.11 & 34-509) 	. 5 . 5 8-
	2.3	Temperature Monitoring Results (BAAQMD 8-34-501.3, 8-34-507, & §60.757(f)(1)) Monthly Cover Integrity Monitoring (BAAQMD 8-34-501.4)	. 5
	2.4		
	2.5	Less Than Continuous Operation (BAAQMD 8-34-501.5)	
	2.6	Surface Emissions Monitoring (BAAQMD 8-34-501.6, 8-34-506, & §60.757(f)(5)	. 6
	2.7	Component Leak Testing (BAAQMD 8-34-501.6 & 8-34-503)	. 7
	2.8	Waste Acceptance Records (BAAQMD 8-34-501.7)	. 7
	2.9	Non-degradable waste acceptance records (BAAQMD 8-34-501.8)	. 7
	2.10	Wellhead Monitoring Data (BAAQMD 8-34-501.4 & 8-34-505)	
		2.10.1 Wellhead Deviations (BAAQMD 8-34-501.9 & §60.757(f)(1))	. 8
		2.10.2 Higher Operating Value (HOV) Wells	
	2.11 2.12	Gas Flow Monitoring Results (BAAQMD 8-34-501.10, 8-34-508, & §60.757(f)(1 Compliance with §60.757(f)(6)	
	2.13	Compliance with Title V Permit Condition Number 6188, Part 19 and 20	
	2.14	Compliance with Title V Permit Condition Number 25537 for S-24	
	2.15	Compliance with Title V Permit Condition Number 7649 for S-5	
	2.16	Compliance with Title V Permit Condition Number 7650 for S-6	
	2.17	Compliance with Title V Permit Condition Number 18258 for S-18	
3 PER	FORMA	ANCE TEST REPORT SUMMARY	11
	3.1	Flare (A-9) Compliance Demonstration Test Results (BAAQMD 8-34-412)	
	3.2	Compliance with §60.757(g)(1)	13
	3.3	Compliance with §60.757(g)(2).	
		3.3.1 Demonstrating Compliance with §60.757(g)(2)	13
	3.4	Compliance With §60.757(g)(3)	
	3.5	Compliance With §60.757(g)(4)	
	3.6	Compliance With §60.757(g)(5)	14
	3.7	Compliance with §60.757(g)(6)	14
		3.7.1 Demonstrating Compliance with §60.757(g)(6)	
4 STA	RTUP, S	SHUTDOWN, MALFUNCTION (SSM) PLAN	16
	4.1	SSM Log for the GCCS at the GRDF	16

List of Tables

- Table 2-1 Combined Report Requirements
- Table 2-2 Waste Acceptance
- Table 2-3 Total LFG Flow
- Table 2-4 Well Actions
- Table 3-1 Performance Test Requirements
- Table 3-2 Flare Compliance Demonstration Test Results

List of Appendices

- Appendix A Site Map
- Appendix B GCCS Downtime Report
- Appendix C BAAQMD Correspondence
- Appendix D Well SSM Log
- Appendix E Flare SSM Log
- Appendix F Temperature Deviation/ Inoperative Monitor/ Missing Data Report
- Appendix G Cover Integrity Monitoring Reports
- Appendix H Surface Emissions Monitoring Reports
- Appendix I Monthly Solid Waste Placement Totals
- Appendix J Wellfield Monitoring Logs
- Appendix K Wellfield Deviation Log
- Appendix L Monthly Landfill Gas Flow Rates
- Appendix M Gas Migration Monitoring Reports
- Appendix N Performance Test Results Summary

1.1 Purpose

This document is a Combined Semi-Annual Title V and Partial 8-34 Annual Report for the Guadalupe Recycling & Disposal Facility (GRDF) pursuant to Title V Permit Standard Condition 1.F and Condition Number 6188 Part 22. This report satisfies the requirements of Bay Area Air Quality Management District's (BAAQMD) Regulation 8, Rule 34, Section 411 and Title 40 Code of Federal Regulations (CFR) Part 60 Subpart WWW, New Source Performance Standards (NSPS) for municipal solid waste (MSW) landfills. This Combined Report meets the requirements of Title V Standard Condition 1.F, BAAQMD Rule 8-34-411 and 40 CFR §60.757(f) and covers compliance activities conducted from April 1, 2021 through September 30, 2021. During the timeframe included in this report from April 1, 2021 through September 30, 2021, the site began compliance activities with specific condition of Subpart OOO related to wellhead temperature standards. During the timeframe included in this report from April 1, 2021 through September 30, 2021, the site began compliance activities with specific conditions of 40 CFR part 62, Subpart F and specific sections of Subpart OOO (effective June 21, 2021) for wellhead temperature standards. During the timeframe included in this report from April 1, 2021 through September 30, 2021, the site also began compliance activities with specific conditions of 40 CFR part 63, Subpart AAAA (effective September 27, 2021) for wellhead temperature and pressure standards. This Combined Report also includes the Semi-Annual Report of Start-up, Shutdown, and Malfunction (SSM) Plan activities pursuant to National Emission Standards for Hazardous Air Pollutants (NESHAP), 40 CFR Part 63, Subpart AAAA for Landfills.

Section 2 of this Combined Report contains the elements required to satisfy both BAAQMD 8-34-411 and 40 CFR §60.757(f). A Performance Test Report for the A-9 Flare that meets the requirements of both BAAQMD Rule 8-34-413 and 40 CFR §60.758(g) was submitted to the BAAQMD on June 24, 2020, and results of the test are included in Appendix N of this Combined Report. Section 3 of this Combined Report includes a discussion of the data from the most recent Performance Test on A-9 Flare, which was conducted on April 29, 2020, in compliance with BAAQMD Rule 8-34-412 and Title V Permit Condition Number 6188, Part 14. Initial Performance Test Report for the Flare A-17 (previously designated as A-14) that meets the requirements of both BAAQMD Rule 8-34-413 and 40 CFR §60.758(g) was submitted to the BAAQMD on April 9, 2021, and summary of test results are included in Appendix N of this Combined Report. Section 3 of this Combined Report includes a discussion of the data from the most recent Performance Test on A-17 Flare, which was conducted on February 18, 2021, in compliance with BAAQMD Rule 8-34-412 and Title V Permit Condition Number 6188, Part 14. Section 4 of this Combined Report includes the Semi-Annual Report of the SSM Plan activities pursuant to the NESHAP, 40 CFR Part 63, Subpart AAAA for Landfills.

1.2 Record Keeping and Reporting

Records are maintained and available for inspection in accordance with BAAQMD Rule 8-34-501.12 and 40 CFR §60.758. The primary location for records storage is at the GRDF. Records are maintained at this location for a minimum of five years.

2 COMBINED MONITORING REPORT

In accordance with Title V Permit Standard Condition 1.F, BAAQMD Rule 8-34-411 and §60.757(f) in the NSPS, this report is a Combined Semi-Annual Title V Report and Partial 8-34 Annual Report that is required to be submitted by the GRDF. The report contains monitoring data for the operation of the landfill gas collection and control system (GCCS). The operational records have been reviewed and summarized. The timeframe included in this report is April 1, 2021 through September 30, 2021. The following table lists the rules and regulations that are required to be included in this Combined Report.

RULE	REQUIREMENT	LOCATION IN REPORT
	All collection system downtime, including individual well shutdown times and the reason for the shutdown.	Section 2.1, Appendices B, D, & E
8-34-501.2 §60.757(f)(3)	All emission control system downtime and the reason for the shutdown.	Section 2.2, Appendices B & E
8-34-501.3, 8-34-507, §60.757(f)(1)	Continuous temperature for all operating flares and any enclosed combustor subject to Section 8-34-507.	Section 2.3, Appendix F
8-34-501.4, 8-34-505, 8-34-510	Testing performed to satisfy any of the requirements of this rule.	Section 2.4 & 2.10 Appendices G & J
8-34-501.5	Monthly landfill gas flow (LFG) rates and well concentration readings for facilities subject to 8-34-404.	Section 2.5, 2.11 Appendix L
8-34-503, 8-34-506,	 34-303 that are discovered by the operator, including the location of the 6, leak, leak concentration in parts per million by volume (ppmv), date of 	
8-34-501.7	Annual waste acceptance rate and current amount of waste in-place.	Section 2.8 Appendix I
8-34-501.8	Records of the nature, location, amount, and date of deposition of non- degradable wastes, for any landfill areas excluded from the collection system requirement as documented in the GCCS Design Plan.	Section 2.9

Table 2-1 Combined Report Requirements

RULE	REQUIREMENT	LOCATION IN REPORT
8-34-501.9, 8-34-505, §60.757(f)(1)	For operations subject to Section 8-34-505, records of all monitoring dates and any excesses of the limits stated in Section 8-34-305 that are discovered by the operator, including well identification number, the measured excess, the action taken to repair the excess, and the date of repair.	Section 2.10, 2.10.1, Appendices J & K
8-34-501.10, 8-34-508, §60.757(f)(1)	Continuous gas flow rate records for any site subject to Section 8-34- 508.	Section 2.11, Appendices F and L
	For operations subject to Section 8-34-509, records or key emission control system operating parameters.	Section 2.2.2
	The records required above shall be made available and retained for a period of five years.	Section 1.2
§60.757(f)(2)	Description and duration of all periods when the gas stream is diverted from the control device through a bypass line or the indication of bypass flow as specified under §60.756.	Section 2.2.1
	The date of installation and the location of each well or collection system expansion added pursuant to paragraphs (a)(3), (b), (c)(4) of 60.755 .	Section 2.12
§60.10 (d)(5)(i)	Startup, Shutdown, Malfunction Events	Section 4.0, Appendices D & E
§63	Subpart AAAA	Section 2.10

2.1 Collection System Operation (BAAQMD 8-34-501.1 & §60.757(f)(4))

Appendix A contains a current map of the GRDF's existing GCCS. Section 2.1.1 includes the GCCS downtime for the reporting period. The information contained in Section 2.1.2 includes the wellfield SSM information.

2.1.1 Collection System Downtime

During the period covered in this report, the GCCS was not shut down for more than five days on any one occasion. Downtime for 2021 partial calendar year from January 1, 2021 through September 30, 2021, was 13.9 hours, out of an allowable 240 hours per year. The total downtime for the reporting period of April 1, 2021 through September 30, 2021 was 4.8 hours.

Appendix B contains the GCCS Downtime Report which lists dates, times, and lengths of shutdowns for the reporting period and year-to-date.

2.1.2 Well Start-Up & Disconnection Log

There were twenty-eight (28) wellfield SSM events during the reporting period. See Appendix D, Wellfield SSM Log for details of well disconnection and reconnection events.

2.2 Emission Control Device Downtime (BAAQMD 8-34-501.2 & §60.757(f)(3))

During this reporting period, the GRDF flare (A-9), which began operation in August 2003 was operated in conjunction with flare (A-14), which began operation in November 2016. The stack on flare A-14 was replaced with a new stack in October 2020. Based on the correspondence with the BAAQMD, flare A-14 is now designated as flare A-17. The control system was not bypassed at any time during the reporting period by operating combination of flare A-9 or flare A-17. Raw LFG was not emitted during the reporting period. The SSM logs for the flare A-9 and flare A-17 are located in Appendix E. As indicated in Section 2.1.1, the total downtime for 2021 partial calendar year from January 1, 2021 through September 30, 2021, was 13.9 hours, out of an allowable 240 hours per year. The total downtime for the reporting period of April 1, 2021 through September 30, 2021 was 4.8 hours. The GCCS Downtime Log for the reporting period is included in Appendix B.

During the reporting period, BAAQMD issued GRDF Notice of Violation ("NOV") Number A-59779 dated September 1, 2021. The NOV alleges a violation of BAAQMD Reg. 2, Rule 1, Section 301 and Reg. 2, Rule 1, Section 302 and states "Flare modified without Authority to Construct (ATC) and Permit to Operate (PTO)". GRDF submitted the 10-day NOV response and Title V 10 and 30-day letters via email on September 10, 2021. Copies of submitted letters are included in Appendix C.

2.2.1 LFG Bypass Operations (§60.757(f)(2))

Title 40 CFR §60.757(f)(2) is not applicable at the GRDF because a by-pass line has not been installed. LFG cannot be diverted from the control equipment.

2.2.2 Key Emission Control Operating Parameters (BAAQMD 8-34-501.11 & 8-34-509)

BAAQMD Regulation 8-34-501.11 and 8-34-509 are not applicable to the A-9 and A-17 Flares because the A-9 and A-17 Flares are subject to continuous temperature monitoring as required in BAAQMD Regulation 8-34-507 and §60.757(f)(1).

2.3 Temperature Monitoring Results (BAAQMD 8-34-501.3, 8-34-507, & §60.757(f)(1))

The combustion zone temperature of the flare is monitored with Thermo-Electric Thermocouples. The temperature is displayed and recorded every two minutes with a Yokogawa FX1000 digital recorder on flare A-9 and Yokogawa DX1000 digital recorder

on flare A-17. There were no temperature deviations during the reporting period that were below the permit limit of 1,593 and 1,449 Degree F for flare A-9 and flare A-17. Appendix F contains the Flare Temperature Deviation/ Inoperative Monitor/Missing Data Report for April 1, 2021 through September 30, 2021.

2.4 Monthly Cover Integrity Monitoring (BAAQMD 8-34-501.4)

The cover integrity monitoring was performed on the following dates:

- April 26, 2021
- May 26, 2021
- June 25, 2021
- July 30, 2021
- August 24, 2021
- September 28, 2021

No areas of concern were found during the monitoring event. The Monthly Cover Integrity Monitoring reports are included in Appendix G.

2.5 Less Than Continuous Operation (BAAQMD 8-34-501.5)

The GRDF does not operate under BAAQMD Regulation 8-34-404 (Less Than Continuous Operation) and, therefore, is not required to submit monthly LFG flow rates.

2.6 Surface Emissions Monitoring (BAAQMD 8-34-501.6, 8-34-506, & §60.757(f)(5))

Quarterly Surface Emissions Monitoring (SEM), pursuant to BAAQMD Regulation 8-34-506 occurred during the reporting period on the following dates:

- Second Quarter 2021 May 18, 2021
- Third Quarter 2021 July 26, 2021

A Photovac Micro Flame Ionization Detector (FID) was used to monitor the path along the landfill surface according to the Landfill Surface Emissions Monitoring Plan map. Any areas suspected of having emissions problems based on visible observations were also monitored. Prior to both monitoring events, the FID instrument was zeroed and calibrated using zero air and 500 parts per million by volume (ppmv) methane calibration gas.

The Initial monitoring event for the Second Quarter 2021 SEM was conducted by Roberts Environmental Services (RES) on May 18, 2021, identifying 10 exceedance locations. GRDF personnel performed the ten-day re-monitoring on May 28, 2021. GRDF personnel performed the thirty-day follow-up monitoring event on June 17, 2021. No exceedances were observed during the 30-day re-monitoring events. Detailed

monitoring results are available in the Second Quarter 2021 SEM Report, included in Appendix H.

The Initial monitoring event for the Third Quarter 2021 SEM was conducted by Roberts Environmental Services (RES) on July 26, 2021, identifying 5 exceedance locations. GRDF personnel performed the first ten-day re-monitoring on August 4, 2021 with no exceedance identified. GRDF personnel performed the thirty-day follow-up monitoring event on August 24, 2021. No exceedances were observed during the 30-day remonitoring events. Detailed monitoring results are available in the Third Quarter 2021 SEM Report, included in Appendix H.

2.7 Component Leak Testing (BAAQMD 8-34-501.6 & 8-34-503)

Quarterly component leak testing, pursuant to BAAQMD Regulation 8-34-503, occurred during the reporting period on the following dates:

- Second Quarter 2021 May 18, 2021
- Third Quarter 2021 July 26, 2021

A TVA was used to perform the leak testing. No exceedances were identified during the reporting period. Appendix H contains the Quarterly LFG Component Leak Monitoring Reports.

2.8 Waste Acceptance Records (BAAQMD 8-34-501.7)

The Annual Waste Acceptance Rate was compiled for the timeframe of April 1, 2021 through September 30, 2021. The Current Waste-In-Place figure includes waste placed through the end of this reporting period. Below is a summary of the waste acceptance records for the reporting period. A table of monthly totals for the reporting period is provided in Appendix I.

Description	Total Waste Landfilled (Decomposable)
Total Waste Acceptance April 1, 2021 through September 30, 2021	56,881
Current Waste In Place as September 30, 2021	Approximately 9.875 Million tons

Table 2-2 Waste Acceptance

2.9 Non-degradable waste acceptance records (BAAQMD 8-34-501.8)

The GCCS Design Plan for the GRDF does not indicate non-degradable waste areas that are excluded from the collection system. Therefore, BAAQMD Regulation 8-34-501.8 is not applicable.

2.10 Wellhead Monitoring Data (BAAQMD 8-34-501.4 & 8-34-505)

Wellhead monitoring was performed on a monthly basis pursuant to 8-34-505. Effective June 21, 2021, the site began compliance activities with specific conditions of 40 CFR part 62, Subpart F and specific sections of Subpart OOO for wellhead temperature standards. Effective September 27, 2021, the site began compliance activities with specific conditions of 40 CFR part 63, Subpart AAAA for wellhead temperature and pressure standards. No wellhead monitoring was conducted during September 27 through September 30, 2021. The well readings for April 1, 2021 through September 30, 2021 are included in Appendix J. Each well was monitored in accordance with the following requirements:

- 8-34-305.1 Each wellhead shall operate under a vacuum;
- 8-34-305.2 The LFG temperature in each wellhead shall be less than 55 degrees Celsius (°C) (131 degrees Fahrenheit [°F]); and
- 8-34-305.4 The oxygen concentration in each wellhead shall be less than 5 percent by volume.

The wellhead monitoring was performed on the following dates:

- April 1, 5, 6, 7, 8, and 9, 2021
- May 7, 8, 12, 13, 14, 17 and 18, 2021
- June 3, 9, 10, 11, 15, 16, 18, and 25, 2021
- July 3, 6, 16, 19,24, 28, and 30, 2021
- August 9, 11, 12, and 13, 2021
- September 3, 10, 11, and 14, 2021

2.10.1 Wellhead Deviations (BAAQMD 8-34-501.9 & §60.757(f)(1))

There were nine (9) well deviations with readings that exceeded limits per BAAQMD Regulation 8-34-305 during the reporting period. During this reporting period, there was one temperature exceedance associated with specific conditions of 40 CFR part 62, Subpart F and specific sections of Subpart OOO for wellhead temperature standards. The exceedance was corrected within 15 days, notification was submitted to the BAAQMD and well was added to the list of Higher Operating Value (HOV) wells. During this reporting period, there were no additional exceedances associated with specific conditions of 40 CFR part 63, Subpart AAAA for wellhead temperature and pressure standards. All exceedances were corrected within 120-days. See Appendix K, Wellfield Deviation Log, for more detail.

2.10.2 Higher Operating Value (HOV) Wells

As of September 30, 2021, the following list of wells are approved to operate at a temperature HOV of 145°F: Wells 114, 122, 134, 135, 146, 151, 152, 154, 161, 162, 180, 181, 185, 186, 188, 189, 199, 204, 205, 207, 209, 213, 215, and 216. Horizontal

Leachate Collectors H11L, H12L are approved for less than continuous operation (LTCO), and may operate at up to 15.0 percent oxygen.

2.11 Gas Flow Monitoring Results (BAAQMD 8-34-501.10, 8-34-508, & §60.757(f)(1)

The flare LFG flow rate was measured with a dedicated Kurz MFT-B flow meter at both the flares. The General Electric data panel displays the LFG flow and the digital Yokogawa data recorder records LFG flow every two minutes and is downloaded and saved to a compact flash card. The flare flow meters meet the requirements of BAAQMD Regulation 8-34-508 by recording data at least every 15 minutes. The flow meter is maintained and calibrated pursuant to manufacturer's recommendations. The flow data for the flare is available for review at the GRDF. Appendix L contains a summary of the monthly LFG flow rates for the flare. Appendix F contains the Flare Temperature Deviation/ Inoperative Monitor/Missing Data Report for April 1, 2021 through September 30, 2021.

Table 2-3 below is a summary of the total LFG flow for the reporting period of April 1, 2021 through September 30, 2021.

Emission Control Device	Average Flow (scfm)	Average CH₄ (%)*	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heat Input (MMBTU)
A-9 Flare	0.0	49.9	0.0	0.0	0.0
A-17 Flare	1,977	40.6	520,881,276	211,393,591	214,142

Table 2-3 Total LFG Flow for April 1, 2021 through September 30, 2021

scfm = standard cubic feet per minute

 CH_4 = methane

scf = standard cubic feet

*Methane content determined from April 29, 2020 Source Test on Flare A-9.

*Methane content determined from February 18, 2021 Source Test on Flare A-17.

MMBTU = million British thermal units

2.12 Compliance with §60.757(f)(6)

"The date of installation and the location of each well or collection system expansion added pursuant to (a)(3), (b), (c)(4) of §60.755."

The GCCS was modified pursuant to Title V Permit Condition Number 6188 Part 2 as modified by the Permit to Operate (PTO) Condition Number 28011, during the reporting period. One well was decommissioned during the reporting period.

As of September 30, 2021, the GRDF has a total 87 collectors, (85 vertical wells and 2 horizontal Leachate collectors). See Appendix C, for copies of the Notification Letters.

2.13 Compliance with Title V Permit Condition Number 6188, Part 19 and 20

Contaminated soil containing volatile organic compounds (VOCs) greater than 50 ppmv was not received during the reporting period. A total of 3,652.3 tons of Low-VOC soil (containing less than 50 ppm of VOCs) was received during the reporting period. Condition Number 6188, Part 19 of the Title V Permit requires that GRDF limit the quantity of low VOC-laden soil handled per day so that no more than 15 pounds of total carbon could be emitted to the atmosphere per day. GRDF was in compliance with this requirement during the reporting period. All records required by the permit are available onsite.

2.14 Compliance with Title V Permit Condition Number 25537 for S-24

For Source S-24, Construction & Demolition Debris Stockpile, the total construction and demolition debris accepted at S-24 in any consecutive 12-month period is limited to 200,000 tons and the combined amount processed is 2,500 tons per day. During the reporting period, the site did not exceed the permitted annual and daily limits. Required records are available for review at the GRDF.

2.15 Compliance with Title V Permit Condition Number 7649 for S-5

For Source S-5, Wood Debris Stockpile, during the reporting period, the operation did not operate for over 12 hours within any consecutive 24-hours. Required records are available for review at the GRDF.

2.16 Compliance with Title V Permit Condition Number 7650 for S-6

For Source S-6, Shredded Storage Stockpiles and Loadout, during the reporting period, the operation did not operate for over 12 hours within any consecutive 24-hours. Required records are available for review at the GRDF.

2.17 Compliance with Title V Permit Condition Number 18258 for S-18

For Source S-18, Materials Recovery Operation, the total throughput did not exceed 900 tons per day average, based on a calendar month. Required records are available for review at the GRDF.

3 PERFORMANCE TEST REPORT SUMMARY

In accordance with BAAQMD Rule 8-34-413 and 40 CFR §60.757(g) in the NSPS, a Performance Test Report is required to be submitted from subject facilities containing performance and monitoring data for the operation of the GCCS. The operational records listed in Table 3-1 have been reviewed, summarized, and are included in the Performance Test Report section of this report.

Rule	Requirement	Location in Report
8-34-412, §60.8, §60.752(b)(2)(iii)(B), §60.754(d)	Compliance Demonstration Test	Section 3.1
§60.757(g)(1)	A diagram of the collection system showing collection system positioning including all wells, horizontal collectors, surface collectors, or other gas extraction devices, including the locations of any areas excluded from collection and the proposed sites for future collection system expansion.	Section 3.2, Appendix A
§60.757(g)(2)	The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based.	Section 3.3
§60.757(g)(3)	The documentation of the presence of asbestos or non- degradable material for each area from which collection wells have been excluded based on the presence of asbestos or non-degradable material.	Section 3.4
§60.757(g)(4)	The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on non-productivity and the calculations of gas generation flow rate for each excluded area.	Section 3.5
§60.757(g)(5)	The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is inadequate to move the maximum flow rate expected over the life of the landfill.	Section 3.6
§60.757(g)(6)	The provisions for the control of off-site migration.	Section 3.7 Appendix M

Table 3-1 Performance Test Requirements

3.1 Flare (A-9) Compliance Demonstration Test Results (BAAQMD 8-34-412)

The Compliance Demonstration Test (Performance Test) was performed on the A-9 Flare by Blue Sky Environmental, Inc. on April 29, 2020, pursuant to BAAQMD Regulation 8-34-412. Two sets of three runs were conducted, one set without condensate injection running and one set with condensate injection running. The final test report was submitted on June 24, 2020.

As required by BAAQMD Regulation 8-34-301.3, the A-9 Flare meets the non-methane organic compound (NMOC) emission concentration of less than 30 ppm_V. Pursuant to Title V Permit Condition Number 6188 Part 9, the A-9 Flare meets the nitrogen oxide (NO_x) emission concentration of less than 16 ppm_V. Also, the A-9 Flare meets the carbon monoxide (CO) emission concentration of less than 134 ppm_V pursuant to the Title V Permit Condition Number 6188, Part 10. The old Flare A9 was shutdown starting November 2020 since Flare A17 is equipped to handle the maximum flow rate expected over the life of the landfill.

The stack on flare A-14 was replaced with a new stack in October 2020. Based on the correspondence with the BAAQMD, flare A-14 is now designated as flare A-17. The Initial Compliance Demonstration Test was performed on the A-17 Flare by Blue Sky Environmental, Inc. on February 18, 2021, pursuant to BAAQMD Regulation 8-34-412. Results indicate that the flare A-17 was in compliance with BAAQMD Regulation 8-34-301.3 and all conditions in the authority to construct. As required by BAAQMD Regulation 8-34-301.3, the A-17 Flare meets the non-methane organic compound (NMOC) emission concentration of less than 30 ppm_v. The A-17 Flare meets the nitrogen oxide (NO_x) emission concentration of less than 15 ppm_v. Also, the A-14 Flare meets the carbon monoxide (CO) emission concentration of less than 81 ppm_v.

Table 3-2 shows the results of the A-9 Flare Performance Test, averaged from each set of three test runs. Table 3-3 shows the results of the A-17 Flare Performance Test, averaged from each set of three test runs. A summary of this Performance Test Results can be found in Appendix N.

Condition	. ,	Flare (A-9) (Condensate On) Average Results	8-34-301.3 limit	Compliance Status
NMOC (either 98% DRE or 30 ppm @ 3% O ₂)	<0.5 ppm	<1.6 ppm	30 ppm	In Compliance
NOx (ppm @ 15% O ₂)	8.4	9.5	16	In Compliance
CO (ppm @ 15% O ₂)	<3.3	<3.4	134	In Compliance

 Table 3-2 Flare Compliance Demonstration Test Results- Test Data April 29, 2020

Table 3-3 Flare Initial Compliance Demonstration Test Results- Test DataFebruary 18, 2021

Condition	Flare (A-17)Flare (A-17)(Condensate Off)(Condensate On)Average ResultsAverage Results		8-34-301.3 limit	Compliance Status
NMOC (either 98% DRE or 30 ppm @ 3% O ₂)	<2.6 ppm	<5.79 ppm	30 ppm	In Compliance
NOx (ppm @ 15% O ₂)	10.3	13.3	15	In Compliance
CO (ppm @ 15% O ₂)	2.5	1.24	81	In Compliance

*Flare A-14 Stack was replaced in October 2020. The new flare designation will be flare A-17.

3.2 Compliance with §60.757(g)(1)

"A diagram of the collection system showing collection system positioning including wells, horizontal collectors..."

A map of the LFG collection system showing the location of all vertical wells, horizontal collectors, and other LFG extraction devices is included in Appendix A.

3.3 Compliance with §60.757(g)(2).

"The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based."

The GRDF GCCS has historically provided LFG wells and collectors spaced in accordance with standard industry practice. The GCCS systems are adequate to move the current LFG flow rate. GRDF will continue to add additional LFG control capacity as necessary with the approval of BAAQMD. The installed collector density appears adequate for controlling surface emissions, based on continuous compliance and operational experience.

The total capacity of the LFG mover equipment was designed and will be designed to meet the current United States Environmental Protection Agency (USEPA) Model AP-42 projections of LFG generation and the historic LFG extraction rates determined to be continuously available from the facility.

3.3.1 Demonstrating Compliance with §60.757(g)(2)

"The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based."

Compliance with 40 CFR §60.757(g)(2) is maintained by performing quarterly SEM. Refer to Section 2.6, Surface Emissions Monitoring for information pertaining to the SEM results. These results show that the GCCS has sufficient coverage over the waste footprint. The current GCCS has the capacity to handle the actual recovery. Well monitoring data shows that adequate vacuum is available at all points in the wellfield, demonstrating that the piping network is sufficient to handle extracted LFG.

3.4 Compliance With §60.757(g)(3)

"The documentation of the presence of asbestos or non-degradable material for each area from which collection wells have been excluded based on the presence of asbestos or non-degradable material."

Segregated areas or accumulations of asbestos material were not documented for the site in the GCCS Design Plan. Therefore, 60.757(g)(3) is not applicable.

3.5 Compliance With §60.757(g)(4)

"The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on non-productivity and the calculations of gas generation flow rate for each excluded area."

The site does not contain non-productive areas that have been excluded from the coverage of the GCCS. Therefore, (0.757)(g)(4) is not applicable.

3.6 Compliance With §60.757(g)(5)

"The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is inadequate to move the maximum flow rate expected over the life of the landfill."

The current GCCS has the capacity to handle LFG flow rates for future.

3.7 Compliance with §60.757(g)(6)

"The provisions for the control of off-site migration."

Quarterly LFG migration monitoring, including all on-site buildings, occurred on the following dates:

- Second Quarter 2021 April 22, 2021
- Third Quarter 2021- September 13, 2021

The LFG migration monitoring results for the quarterly events are included in Appendix M.

3.7.1 Demonstrating Compliance with §60.757(g)(6)

"The provisions for the control of off-site migration."

The Landfill operator will continue surface and perimeter monitoring in accordance with the approved monitoring plans. If the GCCS at the Landfill does not meet the measures of performance set forth in the NSPS, the GCCS will be adjusted or modified in accordance with the NSPS requirements.

4 STARTUP, SHUTDOWN, MALFUNCTION (SSM) PLAN

4.1 SSM Log for the GCCS at the GRDF

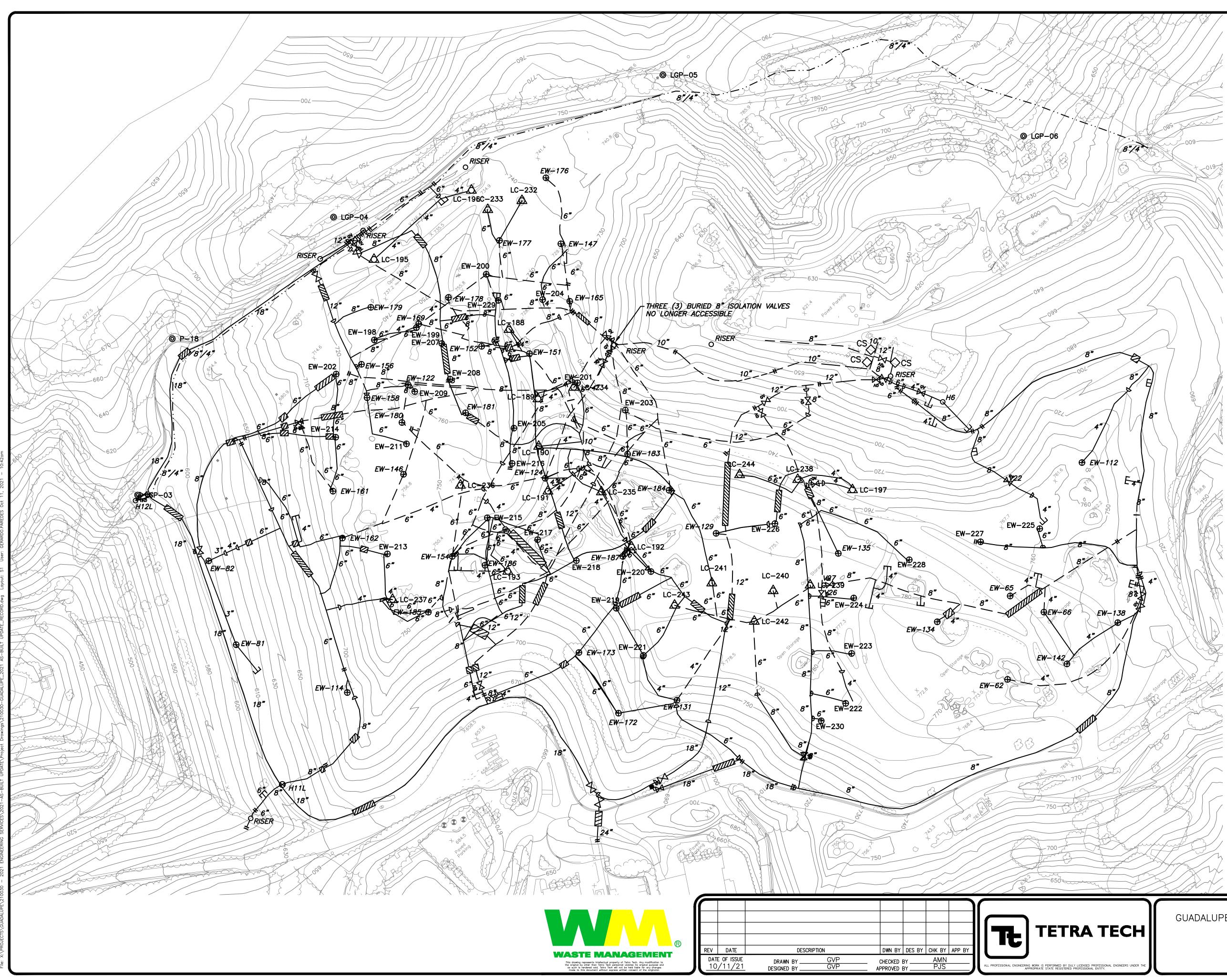
The NESHAP contained in 40 CFR Part 63, AAAA for MSW landfills to control hazardous air pollutants include the regulatory requirements for submittal of a semiannual report (under 40 CFR §63.10(d)(5) of the general provisions) if an SSM event occurred during the reporting period. The reports required by §63.1980(a) of the NESHAP and §60.757(f) of the NSPS summarize the GCCS exceedances. These two semi-annual reports contain similar information and have been combined as allowed by §63.10(d)(5)(i) of the General Provisions.

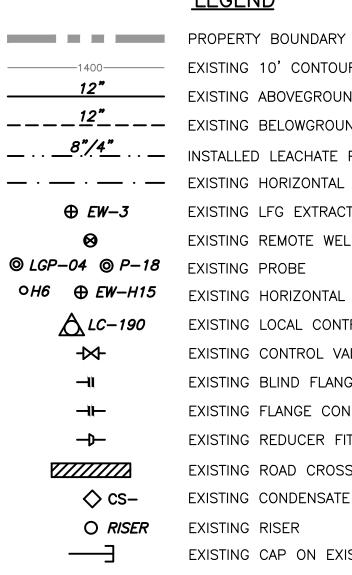
NESHAP 40 CFR part 63, AAAA became effective on January 16, 2004. Those SSM events that occurred during the NSPS semi-annual reporting period are reported in this section (April 1, 2021 through September 30, 2021). The following information is included as required:

- During the reporting period, twenty-eight (28) Wellfield SSM events occurred. Details are included in Appendix D, Well SSM Log.
- During the reporting period, zero (0) A-9 Flare SSM events occurred. The A-9 Flare did not operate during the reporting period due to the reasons noted in Appendix E, Flare SSM Log.
- During the reporting period, seven (7) A-17 Flare (formerly designated as Flare A-14) Flare SSM events occurred. The A-17 Flare was shut down and restarted during the reporting period due to the reasons noted in Appendix E, Flare SSM Log.
- During the reporting period, zero (0) monitoring/recorder equipment SSM events occurred. Details are included in Appendix F, Temperature Deviation/Inoperative Monitor/Missing Data Report.
- There were thirty-five (35) events in total. In all events, automatic systems and operator actions were consistent with the standard operating procedures contained in the SSM Plan. There were no deviations from the SSM plan.
- Exceedances were not identified during the reporting period in any applicable emission limitation in the landfills NESHAP (§63.10(d)(5)(i)).
- Revisions of the SSM Plan to correct deficiencies in the landfill operations or procedures were neither required, nor prepared (§63.6(e)(3)(viii)).

I certify the following:

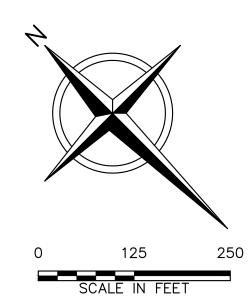
Based on information and belief formed after reasonable inquiry, information on the startup, shutdown, malfunction forms, all accompanying reports, and other required certifications are true, accurate, and complete.


Paul Enrique Perez

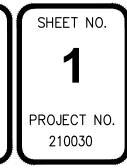

Signature of Responsible Official

10/14/21 Date

Enrique Perez Name of Responsible Official **APPENDIX A**


SITE MAP

<u>LEGEND</u>


EXISTING 10' CONTOUR - EXISTING ABOVEGROUND PIPING ---------- EXISTING BELOWGROUND PIPING _____ INSTALLED LEACHATE PIPING - EXISTING HORIZONTAL COLLECTOR EXISTING LFG EXTRACTION WELL EXISTING REMOTE WELLHEAD EXISTING HORIZONTAL COLLECTOR WELLHEAI EXISTING LOCAL CONTROL WELL EXISTING CONTROL VALVE EXISTING BLIND FLANGE EXISTING FLANGE CONNECTION EXISTING REDUCER FITTING EXISTING ROAD CROSSING EXISTING CONDENSATE SUMP EXISTING RISER EXISTING CAP ON EXISTING PIPE

- NOTES: 1. TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY MILLER CREEK AERIAL MAPPING OF BURIEN, WA. DATE OF PHOTOGRAPHY: MARCH 26, 2021. DATUM: HORIZONTAL NAD 83, VERTICAL - NAD 88.
- SUPPLEMENTAL 2015 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD MARK-UP DRAWING PROVIDED BY WM ON MAY 29, 2015. WELL LOCATIONS PER ISSUED FOR CONSTRUCTION WELL SCHEDULE DATED APRIL 10, 2015.
- 3. 2018 GCCS IMPROVEMENTS AS-BUILT PIPING PER SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: DECEMBER 11, 2018.
- 2019 GCCS IMPROVEMENTS AS-BUILT PIPING PER SURVEY PROVIDED BY WM DATED: NOVEMBER 11, 2019.
- SUPPLEMENTAL 2019 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD MARK-UP DRAWING PROVIDED BY WM ON JANUARY 6, 2020.
- 6. SUPPLEMENTAL 2019 GCCS AS-BUILT MARKUPS/COMMENTS PROVIDED BY WM ON JANUARY 27, 2020 AND JANUARY 29, 2020.
- 2020 GCCS IMPROVEMENTS AS-BUILT SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: JULY 22, 2020. 2021 GCCS IMPROVEMENTS AS-BUILT SURVEY PROVIDED BY F3
- AND ASSOCIATES, INC. DATED: AUGUST 4, 2021 AND AUGUST 21, 2021.

RECORD DRAWINGS

GUADALUPE RECYCLING AND DISPOSAL FACILITY SAN JOSE, CALIFORNIA 2021 GCCS IMPROVEMENTS

AS-BUILT SITE PLAN

APPENDIX B

GCCS DOWNTIME REPORT

LFG Collection System: April 1, 2021 through September 30, 2021

2021 (Partial) GCCS DOWNTIME LOG

GUADALUPE RECYCLING & DISPOSAL FACILITY, San Jose, CA

SHUTDOWN DATE/ TIME	START-UP DATE/ TIME	TOTAL DOWNTIME (HOURS)	COMMENTS OR REASONS
04/27/21 10:44	04/27/21 12:18	1.6	Flare A17 shutdown during blower inspection and maintenance activities. Flare was inspected and restarted.
05/15/21 14:58	05/15/21 17:12	0.2	Flare A17 shutdown due to flame out alarm. Flare was restarted. Flare was inspected on May 17, 2021.
06/21/21 11:34	06/21/21 11:48	0.2	Flare A17 shutdown due to low temperature alarm. Flare was restarted. Flare was inspected after restart.
06/21/21 13:30	06/21/21 13:34	0.1	Flare A17 was shutdown during construction activities. Flare was inspected and restarted.
06/21/21 14:08	06/21/21 14:10	0.0	Flare A17 was shutdown during construction activities. Flare was inspected and restarted.
06/21/21 14:18	06/21/21 15:04	0.8	Flare A17 shutdown during pipe construction. Flare was inspected and restarted.
09/28/21 17:22	09/28/21 19:18	1.9	Flare A17 was shutdown for required lateral repairs. Flare was inspected and restarted.
TOTAL DOWNTIN	IE January 1 through September 30, 2021 (HOURS)	13.9	
TOTAL DOWNTIME	April 1, 2021 through September 30, 2021 (HOURS)	4.8	
ΤΟΤΑ	PERMITTED DOWNTIME FOR 1 YEAR (HOURS):	240.0	

APPENDIX C BAAQMD Correspondence

March 17, 2021

Mr. Raymond Salalila Air Quality Specialist Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

 Re: Guadalupe Recycling and Disposal Facility
 Facility Number A3294
 Request for Limited Exemption (for construction activities) from Regulation 8, Rule 34 (Solid Waste Disposal Sites), Section 303 (Landfill Surface Requirements)

Dear Mr. Salalila:

This letter requests a limited exemption from the requirements of Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) during construction, repairs and installation of piping and laterals to be connected to the existing gas collection and control system (GCCS) from April 12, 2021 through July 31, 2021, at the Guadalupe Rubbish Disposal Company, Inc. (GRDC). This notification is submitted pursuant to the BAAQMD Regulation 8, Rule 34, Section 118, "Limited Exemptions for Construction Activities." The work consists of repairs and installation of piping and laterals that will connect to the existing gas collection and control system (GCCS) to maintain compliance with the BAAQMD Regulation 8, Rule 34, and is to be performed during the period of April 12, 2021 through July 31, 2021.

GRDC will conduct repairs and installation of piping and laterals that will connect to the existing GCCS. This letter also transmits the BAAQMD-required construction plan (work plan) for the proposed work. The work plan contains information required pursuant to Regulation 8, Rule 34, Section 118.1 and AB-32 §95470(a)(1)(I) and (J) and includes:

- Description of actions being taken;
- Description of landfill areas affected;
- Description of LFG components affected;
- Map showing the above areas and components;
- Reason requiring the action;
- Construction schedule;
- Description of air quality mitigation measures planned; and
- Recordkeeping requirements.

No significant interruption of the current site LFG extraction and control operations is anticipated due to the work. The construction will begin on or around April 12, 2021. We anticipate construction activities to conclude by July 31, 2021.

Unless notified otherwise, GRDC will proceed in accordance with the attached work plan. We deem submittal of this plan as approval by the BAAQMD to take necessary action to ensure compliance with regulations, which may include taking additional LFG extraction wells offline for an extended period of time pursuant to Regulation 8, Rule 34, Section 118.

In case of any questions, please do not hesitate to contact me at (408) 960-0770.

Sincerely,

Guadalupe Rubbish Disposal Company, Inc.

Michael L. White

Michael L. Winter District Engineer

Cc: Enrique Perez, GRDC Bill Louis, WM

BAAQMD REGULATION 8, RULE 34 CONSTRUCTION PLAN

GUADALUPE RUBBISH DISPOSAL COMPANY, INC.

CONSTRUCTION FOR INSTALLATION AND REPAIR OF LFG PIPING

April 12, 2021 through July 31, 2021

INTRODUCTION

This Construction Work Plan is submitted pursuant to Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 118: Limited Exemptions for Construction Activities. To obtain an exemption from BAAQMD Regulation 8, Rule 34, Section 303: Landfill Surface Requirements, the operator shall submit a construction plan in writing to the Air Pollution Control Officer (APCO) prior to beginning any construction activities. In addition, this plan also includes information required by the AB-32 Sections §95470(a)(1)(I) and (J).

BAAQMD Section 303 requires maintaining the concentration of organic compounds and methane below 500 parts per million by volume (ppm_v) at all points on the landfill surface. Section 118 provides an exemption from the surface emission standard for "....areas of the landfill surface where the landfill cover material has been removed and refuse has been exposed for the express purpose of installing, expanding, replacing, or repairing components of the landfill gas, leachate, or gas condensate collection and removal systems."

Pursuant to Regulation 8, Rule 34, Section 118 and AB-32 Sections §95470(a)(1)(I) and (J), this work plan includes:

- Description of actions being taken;
- Description of landfill areas affected;
- Description of landfill gas (LFG) components affected;
- Map showing the affected areas and components;
- Reason requiring the action;
- Construction schedule;
- Description of air quality mitigation measures planned; and
- Recordkeeping requirements.

ACTIONS BEING TAKEN

The work consists of excavation, repair of existing pipes and installation of new piping and laterals that will connect to existing LFG extraction wells and to the GCCS.

AFFECTED LANDFILL AREAS

The construction activities will occur in the area shown on the attached figure.

AFFECTED LFG COMPONENTS

GRDC will conduct landfill GCCS construction activities in compliance with to maintain compliance with the Rule 8-34-116 and 8-34-117.

Please see below for list of proposed GCCS repairs and installations:

- Installation, repair and tie-ins of piping at wells 147, 204, 151, 153, 124, 235, 154, 186, 193, 237, and 250;
- Installation, repair and tie-ins of piping from well 215 to 217;
- Installation, repair and tie-ins of piping near wells 176 and 233;
- Installation, repair and tie-ins of piping from well 189 to 218;
- Any additional piping that may be required at existing pipes and wells; and
- Cut and cap below grade few surface penetrations that are not active

Pursuant to Rule 8-34-117, GRDC will take the GCCS wells with ID Numbers 147, 204, 151, 153, 124, 235, 154, 186, 193, 237, 250, 215, 217, 176, 233, 189, 205, 191, and 218 and any other well offline, as necessary. GRDC will ensure that no more than 5 gas wells are shut down at any time, and that no gas collection well may be down for more than 24 hours.

It is anticipated that the construction will have no significant impact on the routine operation of the existing GCCS. Installation of new LFG extraction laterals is independent of the ongoing operations of the GCCS. When connecting LFG extraction wells, isolation valves installed within the existing GCCS piping network will be used to minimize the number of existing LFG extraction wells offline at any given time while the newly installed LFG laterals are connected to the GCCS.

REASONS FOR ACTIONS

The proposed construction work is intended to:

- Increase LFG collection efficiency by repairing and installation of LFG laterals and piping on existing wells;
- Increase LFG collection efficiency to further reduce the potential surface emissions;

CONSTRUCTION SCHEDULE

The anticipated construction period will be between April 12, 2021 through July 31, 2021. The anticipated schedule for the construction activities is summarized in the table below:

Table 1 - Preliminary Construction Schedule

Task	Project Week and Duration
Mobilize crew, equipment, and materials to site	1 week
Repair and installation of piping and laterals	Up to 12 weeks
Clean-up and demobilize crew and materials	1 week

AIR QUALITY MITIGATION MEASURES

Emission of raw LFG will be minimized during construction. We anticipate minimal interruption of the overall site LFG extraction and control operations during the work. Installation and repair of piping is independent of ongoing operations of the existing GCCS. Air quality mitigation will be provided during the installation of wells and connection of wells to existing GCCS piping network. These mitigation measures are presented below and are designed to meet both the requirements of 8-34 Section 118 and §95470(a)(1)(I).

Due to the minimal amount of excavation planned for this work, air quality impacts are also anticipated to be minimal. Air quality mitigation will be provided during the following work tasks:

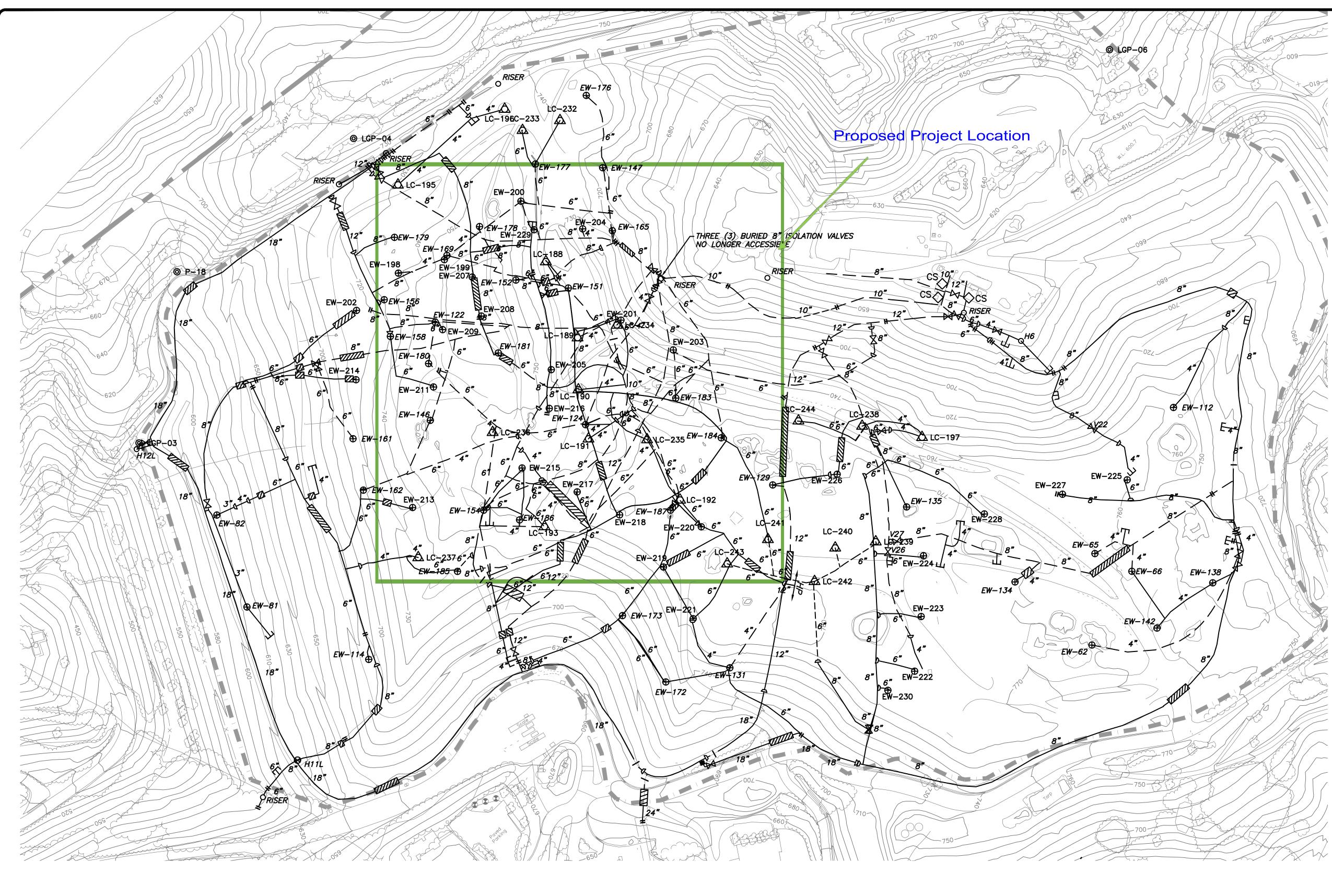
- Excavation for installation piping;
- Excavation and backfill of pipe trenches; and
- Connection of new piping and laterals to existing piping and GCCS

During construction and excavation through waste and soil cover, air emission will be controlled by implementing the following measures:

- Minimizing the installation time for each component;
- Minimizing the quantity of trench excavations at any one time;
- Relocating excavated refuse to the designated waste disposal area immediately and covering the relocated waste daily by no later than the end of each day; and
- Well borings will not be left open overnight or for periods greater than 8 hours

During connection of wells to the existing LFG piping, and installation of laterals and piping, air emissions will be controlled by implementing the following measures:

- Capping or blind flanging of all pipes and collector openings, which will remain sealed until time of connection to a vacuum source;
- Using isolation valves;
- Minimizing installation time for making each connection; and
- Minimizing the amount of open pipe during each installation, by using flange joints and flexible couplings.

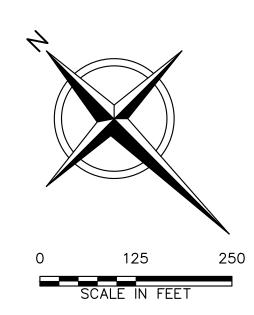

RECORDKEEPING

The following records will be retained during the project:

• Construction start and end dates, projected and actual installation dates, and projected shut down times for individual gas collection system components.

- GCCS downtime and individual well shutdown times will be documented in accordance with the GRDC's Startup, Shutdown, and Malfunction (SSM) Plan.
- Mitigation measures taken to minimize methane emissions and other potential air quality impacts will be documented.

Attachments: Figure 1 - GCCS Map



ſ									
								T -	TETRA 1
REV	V DATE	DESCRIPTION	DWN BY	DES BY	СНК ВҮ	APP BY			
D 11	DATE OF ISSUE 1/12/2020	DRAWN BY GVP DESIGNED BY DHK	CHECKED APPROVED		AMN PJS		ALL F	PROFESSIONAL ENGINEERIN	* IG WORK IS PERFORMED BY DULY LICENSED PROFESSI PPROPRIATE STATE REGISTERED PROFESSIONAL ENTITY

	LEG
	PROPE
1400	EXISTIN
12"	EXISTIN
<u>12"</u>	EXISTIN
_ · · ·	EXISTIN
⊕ <i>EW−3</i>	EXISTIN
8	EXISTIN
© LGP−04 ⊚ P−18	EXISTIN
<i>○H6</i> ⊕ <i>EW</i> -H15	EXISTIN
<u> </u>	EXISTIN
-X-	EXISTIN
-11	EXISTIN
- I F-	EXISTIN
- >	EXISTIN
	EXISTIN
♦ cs–	EXISTIN
O RISER	EXISTIN
	EXISTIN

<u>LEGEND</u>

PROPERTY	' BOUNDARY
EXISTING	10' CONTOUR
EXISTING	ABOVEGROUND PIPING
EXISTING	BELOWGROUND PIPING
EXISTING	HORIZONTAL COLLECTOR
EXISTING	LFG EXTRACTION WELL
EXISTING	REMOTE WELLHEAD
EXISTING	PROBE
EXISTING	HORIZONTAL COLLECTOR WELLHEAI
EXISTING	LOCAL CONTROL WELL
EXISTING	CONTROL VALVE
EXISTING	BLIND FLANGE
EXISTING	FLANGE CONNECTION
EXISTING	REDUCER FITTING
EXISTING	ROAD CROSSING
EXISTING	CONDENSATE SUMP
EXISTING	RISER
EXISTING	CAP ON EXISTING PIPE

- NOTES: 1. TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY MILLER CREEK AERIAL MAPPING OF BURIEN, WA. DATE OF PHOTOGRAPHY: APRIL 1, 2020. DATUM: HORIZONTAL -NAD 83, VERTICAL - NAD 88.
- SUPPLEMENTAL 2015 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD MARK-UP DRAWING PROVIDED BY WM ON MAY 29, 2015. WELL LOCATIONS PER ISSUED FOR CONSTRUCTION WELL SCHEDULE DATED APRIL 10, 2015.
- 2018 GCCS IMPROVEMENTS AS-BUILT PIPING PER SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: DECEMBER 11, 2018.
- 4. 2019 GCCS IMPROVEMENTS AS-BUILT PIPING PER SURVEY PROVIDED BY WM DATED: NOVEMBER 11, 2019.
- SUPPLEMENTAL 2019 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD MARK-UP DRAWING PROVIDED BY WM ON JANUARY 6, 5. 2020.
- 6. SUPPLEMENTAL 2019 GCCS AS-BUILT MARKUPS/COMMENTS PROVIDED BY WM ON JANUARY 27, 2020 AND JANUARY 29, 2020.
- 7. 2020 GCCS IMPROVEMENTS AS-BUILT SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: JULY 22, 2020.

May 11, 2021

Ms. Tamiko Endow Bay Area Air Quality Management District Permit Services Division 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: Decommissioning Notification Letter of Two Vertical Wells Title V Permit Condition Number 6188 Part 2, Facility A3294 Guadalupe Rubbish Disposal Co., Inc., San Jose, California

Dear Ms. Endow,

This letter is to notify the Bay Area Air Quality Management District (BAAQMD) of the decommissioning of two landfill gas (LFG) vertical wells at the Guadalupe Rubbish Disposal Co., Inc., (GRDC), pursuant to Title V Permit Condition 6188, Part 2, as modified by Application Number (AN) 28011. The affected collectors and respective startup/shutdown dates are listed in the following table:

Well ID	Well Action Type	Applicable Date	
Well 156	Decommission	5/7/2021; 10:30 AM	
Well 158	Decommission	5/7/2021; 11:30 AM	

As stated in the most recent March 1, 2021, Well Actions Letter, GRDC had 89 total collectors (87 vertical wells and 2 horizontal collectors) connected to the GCCS.

With the completion of these well actions, the GRDC's current GCCS component count and permitted remaining actions per AN 28011 are listed in the following table:

Description	Vertical Decommissioning Actions	Vertical Installation Actions	Horizontal Decommissioning Actions	Horizontal Installation Actions		
Actions Permitted Under AN 28011	40	70	10	20		
Actions Performed Under AN 28011	14	41	1	0		
Actions Remaining Under AN 28011	26	29	9	20		
Active Well Count After Actions in this Letter	87 total collecte	87 total collectors (85 vertical LFG wells and 2 horizontal collectors)				

This notification is pursuant to Title V Permit Requirements; which state that the permit engineer must be notified of changes to the wellfield.

If you have any questions or concerns, please feel free to contact me at (408) 960-0769.

Sincerely,

Guadalupe Rubbish Disposal Co., Inc.

wedd

Becky Azevedo Technical Manager

CC: Enrique Perez, GRDC Bill Louis, GRDC Mike Winter, GRDC

Guadalupe Rubbish Disposal Co., Inc. 15999 Guadalupe Mines Road P.O. Box 20957 San Jose, CA 95160

May 7, 2021

Ms. Tamiko Endow Permit Service Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: Facility No. A3294– Guadalupe Recycling and Disposal Facility Notification of the Addition of Landfill Gas Collection Well 199 to Higher Operating Value List

Dear Ms. Endow:

The Guadalupe Recycling and Disposal Facility (GRDF), owned by Guadalupe Rubbish Disposal Co., Inc., (GRDC) is subject to the Federal New Source Performance Standards/Emission Guidelines (NSPS/EG) for municipal solid waste (MSW) landfills (40 Code of Federal Regulations [CFR], Part 60, Subparts WWW and Cc) and the Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34. In accordance with Title V Permit Condition Number 6188, Part 3b(vi), the GRDF is submitting this letter as notification to the BAAQMD for the addition of landfill gas (LFG) Well 199 to the higher operating value (HOV) list of wells at the GRDF.

The GRDF has installed and operates a landfill gas collection and control system (GCCS) at the facility in accordance with the NSPS/EG and BAAQMD Regulation 8, Rule 34. These regulations require that the LFG wells that make up the GCCS be operated with wellhead temperatures below 131 degrees Fahrenheit (°F) (BAAQMD 8-34-305).

In March 2021, the GRDF investigated the LFG temperatures at Well 199. The intent of the investigation was to determine if the elevated temperature readings were due to excess air infiltration, damage to the well, or if the well simply operates at a higher normal temperature.

The review of monitoring data for Well 199 indicates that the well had elevated operating temperatures, and oxygen data shows negligible oxygen has been detected at the well. Upon first discovering the elevated temperatures, GRDF personnel monitored the well for carbon monoxide (CO), which is an early indicator of subsurface fire. Typically, CO concentrations of greater than 1,000 parts per million by volume (ppmv) will indicate a subsurface fire, with CO concentrations greater than 500 ppmv being of concern. The initial two readings at Well 199 indicated CO readings of 0 ppmv. Subsequent monitoring at Well 199 indicated that CO concentrations remained at 0 ppmv. The wellhead temperature for each CO monitoring event was less than 140°F. Methane concentrations at Well 199 do not appear to be affected by operation at the higher

temperatures. See attached table for historical monitoring data and CO monitoring results. Well 199 did not have well exceedances within the last 120 days.

GRDF considers Well 199 added to the HOV list for a temperature of 145°F as of May 7, 2021. Should the temperature measured at Well 199 during routine monitoring exceed 145°F, GRDF will consider it an exceedance and will track the deviation in accordance with the NSPS/EG and BAAQMD requirements.

If you have any questions or need any additional information, please do not hesitate to contact me at rphadnis@wm.com.

Sincerely,

Guadalupe Recycling and Disposal Facility

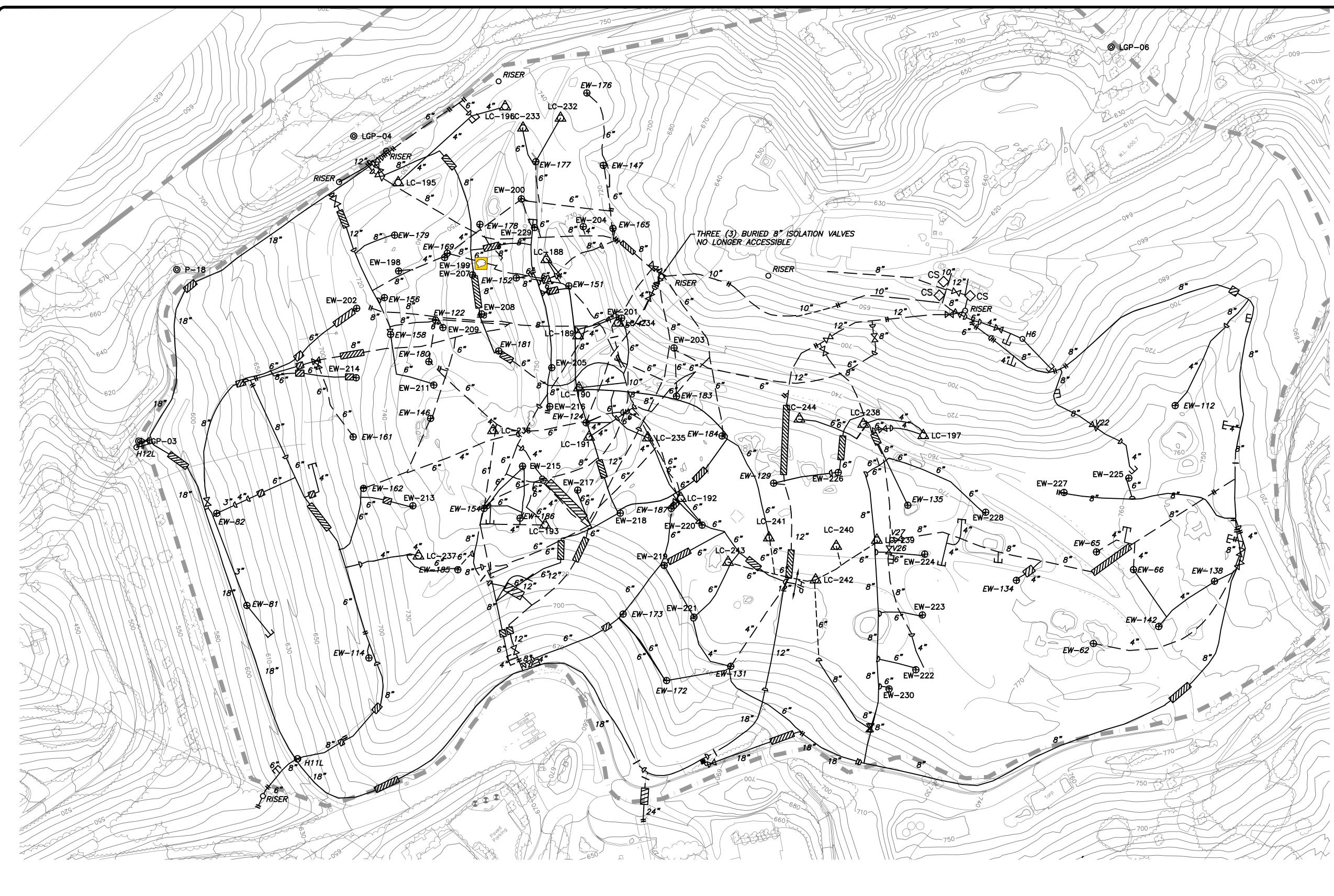
FM

Rajan Phadnis EP Specialist

Enclosures: Attachment A- Wellfield Monitoring Data for Well 199 Figure 1. – Gas Collection and Control System Map

cc: Enrique Perez, GRDF Bill Louis, GRDF Mike Winter, GRDF

Attachment A

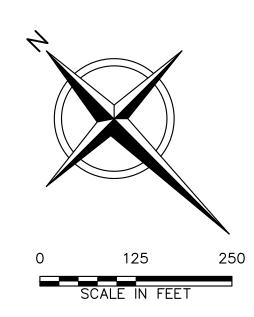

Wellfield Monitoring and CO Data for Well 199

Device Name	Date Time	CH4 (Methane)(%)	CO2 (Carbon Dioxide)(%)	O2 (Oxygen)(%)	Balance Gas(%)	Initial Temperature(oF)	Adjusted Temperature(oF)	Initial Static Pressure(''H2O)	Adjusted Static Pressure(''H2O)			
GUAD0199	10/10/2020 12:59	56.5	39.9	0.0	3.6	128.0	128.0	-6.4	-7			
GUAD0199	11/27/2020 15:17	58.2	41.8	0.0	0	129.2	129.2	-3.1	-3.72			
GUAD0199	12/16/2020 11:42	57.1	40.6	0.0	2.3	129.1	129.2	-25.1	-25.73			
GUAD0199	1/14/2021 15:50	42.6	36.9	0.0	20.5	129.7	129.8	-28.3	-24.07			
GUAD0199	2/16/2021 11:04	51	38.3	0.0	10.7	129.7	129.7	-19.6	-19.56			
GUAD0199	3/22/2021 15:14	53.5	40	0.0	6.5	131.0	131.0	-19.0	-20.7			
GUAD0199	3/23/2021 15:15					CO was 0 ppm						
GUAD0199	3/23/2021 15:23	53.1	40	0.0	6.9	131.0	131.0	-22.5	-23			
GUAD0199	4/5/2021 13:25					CO was 0 ppm						
GUAD0199	4/5/2021 13:32	49.3	38.9	0.0	11.8	131.0	131.0	-23.2	-23			
GUAD0199	5/4/2021 15:19	56.8	42.9	0.2	0.1	128.0	128.0	-14.4	-14.4			
GUAD0199	5/4/2021 17:23			-	-	CO was 0 ppm	-	-	-			

Table 1. Well 199 Wellfield Monitoring and CO Data

Figure 1

Gas Collection and Control System Map



7								
								`
							║╵┓┱	
REV	DATE	DESCRIPTION	DWN BY	DES BY	СНК ВҮ	APP BY		
	TE OF ISSUE /12/2020	drawn by <u>GVP</u> DESIGNED BY DHK	_ CHECKED _ APPROVED		AMN PJS		ALL PROFESSIONAL ENGINE	ERING WORK IS PERFORMED BY DULY LICENSED PROFESS APPROPRIATE STATE REGISTERED PROFESSIONAL ENTIT

	<u>LEGI</u>
	PROPE
1400	EXISTIN
12"	EXISTIN
<u>12"</u>	EXISTIN
_ · · ·	EXISTIN
⊕ <i>EW−3</i>	EXISTIN
8	EXISTIN
© LGP−04 ⊚ P−18	EXISTIN
<i>○H6 ⊕ EW-H15</i>	EXISTIN
<u>A</u> LC-190	EXISTIN
-X-	EXISTIN
— 11	EXISTIN
- I F	EXISTIN
→	EXISTIN
	EXISTIN
♦ cs–	EXISTIN
O RISER	EXISTIN
	EXISTIN

<u>LEGEND</u>

PROPERT	Y BOUNDARY
EXISTING	10' CONTOUR
EXISTING	ABOVEGROUND PIPING
EXISTING	BELOWGROUND PIPING
EXISTING	HORIZONTAL COLLECTOR
EXISTING	LFG EXTRACTION WELL
EXISTING	REMOTE WELLHEAD
EXISTING	PROBE
EXISTING	HORIZONTAL COLLECTOR WELLHEAD
EXISTING	LOCAL CONTROL WELL
EXISTING	CONTROL VALVE
EXISTING	BLIND FLANGE
EXISTING	FLANGE CONNECTION
EXISTING	REDUCER FITTING
EXISTING	ROAD CROSSING
EXISTING	CONDENSATE SUMP
EXISTING	RISER
EXISTING	CAP ON EXISTING PIPE

- NOTES: 1. TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY MILLER CREEK AERIAL MAPPING OF BURIEN, WA. DATE OF PHOTOGRAPHY: APRIL 1, 2020. DATUM: HORIZONTAL -NAD 83, VERTICAL - NAD 88.
- SUPPLEMENTAL 2015 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD MARK-UP DRAWING PROVIDED BY WM ON MAY 29, 2015. WELL LOCATIONS PER ISSUED FOR CONSTRUCTION WELL SCHEDULE DATED APRIL 10, 2015.
- 2018 GCCS IMPROVEMENTS AS-BUILT PIPING PER SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: DECEMBER 11, 2018.
- 4. 2019 GCCS IMPROVEMENTS AS-BUILT PIPING PER SURVEY
- PROVIDED BY WM DATED: NOVEMBER 11, 2019. SUPPLEMENTAL 2019 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD MARK-UP DRAWING PROVIDED BY WM ON JANUARY 6, 5. 2020.
- 6. SUPPLEMENTAL 2019 GCCS AS-BUILT MARKUPS/COMMENTS PROVIDED BY WM ON JANUARY 27, 2020 AND JANUARY 29, 2020.
- 7. 2020 GCCS IMPROVEMENTS AS-BUILT SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: JULY 22, 2020.

September 10, 2021 (via email: compliance@baaqmd.gov)

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 **Attn: Title V Reports**

Re: Guadalupe Recycling and Disposal Facility, San Jose, California Facility A3294, 10-Day NOV Response Letter to BAAQMD Notice of Violation A 59779, Dated September 1, 2021

Dear Sir or Madam:

Guadalupe Rubbish Disposal Company, Inc. (GRDC) is submitting this 10-day Notice of Violation response letter to the Bay Area Air Quality Management District (BAAQMD) as required for the Guadalupe Recycling and Disposal Facility (GRDF) in San Jose, CA (Plant No. A3294). On September 1, 2021, Erin Phillips, BAAQMD Air Quality Inspector, issued a Notice of Violation No. A-59779 ("NOV"; copy attached). As required by Title V Permit Condition Section I.F, 10 and 30-day letters were submitted to BAAQMD on September 10, 2021.

The NOV alleges a violation of BAAQMD Reg. 2, Rule 1, Section 301 and Reg. 2, Rule 1, Section 302 and states "*Flare modified without Authority to Construct (ATC) and Permit to Operate (PTO)*".

This NOV does not acknowledge the substantial permitting history related to the flare. It is GRDC's position that the BAAQMD permit division's lack of prosecution and responsiveness led to the extreme delay in issuing the PTO within a reasonable timeframe and, therefore, GRDC requests BAAQMD to rescind the NOV A 59779. GRDC has submitted all required permit documentation and immediately responded to all information requests in a timely manner. The details provided below demonstrate how GRDC continually reached out the BAAQMD with updates on the project and followed the guidance given by BAAQMD's permit division.

GRDC was originally issued an ATC (A/N 21927) for the new flare project (with capacity of 120 MMBTU/HR; Flare A-14). Also, within this timeline, GRDC was simultaneously working with BAAQMD to obtain an additional permit for a landfill gas to energy (LFGTE) engine project. During the course of these permitting projects, GRDC decided to install a novel enhanced turndown narrow stack flare (with capacity of 90 MMBTU/HR) with the understanding that it would provide a symbiotic operational scenario between the flare and the engine plant. GRDC notified the BAAQMD of this change and submitted a change of equipment notification to the BAAQMD in November 2014 and subsequently submitted the application for Change of Permit

Condition to change flare capacity to 90 MMBTU/HR (rather than the one originally proposed in A/N 21927). BAAQMD assigned permit application number A/N 28806.

The novel flare was installed and commissioned but was defective and that compelled the site to replace the narrow flare stack with a standard flare stack (as was detailed in the original ATC) to prevent the high-risk potential for future gas control deficiencies, compliance failures, and safety concerns. GRDC communicated these issues with BAAQMD during the commissioning stage and continued to provide updates about flare operation to maintain compliance with landfill gas requirements.

Since the permit for the narrow stack flare was still being drafted, the GRDC engine plant permit status was unknown, and given that the underlying permitting requirements for the standard flare stack had not changed (120 MMBTU/HR as per ATC A/N 21927) and no additional emissions, GRDC submitted a notification of the change of flare stack to the BAAQMD permit division. This notification was acknowledged by BAAQMD and the application was reactivated as permit application A/N 28806 with the original ATC capacity of 120 MMBTU/HR. GRDC continued to keep the BAAQMD up to date with these changes and it was decided that the permit engineer would make these changes during the PTO issuance period. GRDC has paid all required fees and anticipated that BAAQMD would issue an additional invoice before issuance of the final PTO.

It is GRDC's understanding that it is BAAQMD's policy that if you are issued an NOV for ATC, submittal of a permit application closes out the NOV. As the current flare permit application is and has been already under review, GRDC respectfully requests NOV A 59779 to be rescinded. Furthermore, GRDC has been responsive during the permitting process and submitted requested information in a timely manner to additional data requests during early 2021 as part of the flare permit process. Through its numerous actions stated above, it is clear that GRDC is committed to protect human health and environment by operating its landfill in a safe manner in compliance with applicable regulations and, therefore, GRDC again respectfully requests BAAQMD to rescind NOV A 59779.

Please contact me at (408) 779-2206, if you have any questions or need any additional information.

Sincerely, Guadalupe Recycling and Disposal Facility

Paul Enrique Perez

Enrique Perez District Manager

cc: Erin Phillips, BAAQMD Inspector Nimrat Sandhu, BAAQMD Permit Division

Attachments: 1- Copy of BAAQMD Notice of Violation A 59779

ATTACHMENT 1 NOV #A59779

ADDRESS: 15747 (music house CITY: Sum Jose PHONE: (408) 268 -1670 N# Mailing Address on F61 DCCURRENCE NAME: ADDRESS:	<u>SSL Biposel</u> □P□G□N# <u>A3294</u> <u>Mines Pd</u>
PHONE: (408) 268 -1670 N# Mailing Address on F61 DCCURRENCE NAME:	
N# Mailing Address on F61	
NAME:	
NAME	
CITY	ZIP Same As Above
SOURCE S#NAME	ZIP
EMISSION PT: P# NAME:	
DATE October 2020	TIME HRS
REG 2 RULE 1 SEC 301	-
No Authority to Construct	No Permit to Operate
REG 1 SEC 301	REG 2 RULE_SEC 307
H & S CODE - 41700 Public Nuisance	Failure to Meet Permit Condition
REG 5 SEC 301	
Prohibited Open Burning	EXCESSIVE VISIBLE Emissions
REG RULE SEC	TION
REG RULE SEC	
Flore and the 1	
etails: Flore mudified who A	
CIPIENT NAME Enrique Perez	,
TITLE District Mana	art.t
ADMISSION OF GUILT	h
A	ROM
DESCRIPTION OF THE IMMEDI	COPY OF THIS NOTICE WITH A WRITTEN ATE CORRECTIVE ACTION YOU HAVE
TAKEN TO PREVENT CONTINUE	ATE CORRECTIVE ACTION YOU HAVE
DOES NOT PRECLUDE FURTHER	STANTIAL PENALTY, YOUR RESPONSE
	LEGALACTION
UED BY FRIN Phillips	0
DATE: 1/1/21	_ TIME: 14/3 INSP # 063

INSTRUCTIONS

PERMIT VIOLATIONS - (REG 2, RULE 1, SECTION 301 AND/OR 302)

Within 30 days, a permit application must be submitted to the District's Permit Division. The permit application must reference the Violation Notice Number Shown on the front of this notice. If either the Violation Notice Number is not referenced or no permit application is received, then this matter will be referred to the District's Legal Department for legal action. Your response does not preclude further legal action.

If there are any questions regarding the submission of a Permit Application, call the Permit Services Division at (415) 749-4990.

ALL OTHER VIOLATIONS

Within 10 days, return a copy of this notice with a written description of the corrective action you have taken to prevent continued or recurrent violation. Immediate corrective action must be taken to stop the violation. This violation is subject to substantial penalty. Your response does not preclude further legal action.

A variance should be sought if it is necessary to continue to operate in violation of District Regulations. For information on eligiblity for, or filing of, a variance, call (415) 749-5073.

Guadalupe Rubbish Disposal Co., Inc. 15999 Guadalupe Mines Road P.O. Box 20957 San Jose, CA 95160

August 25, 2021

Ms. Tamiko Endow Permit Service Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: Facility No. A3294– Guadalupe Recycling and Disposal Facility Notification of the Addition of Landfill Gas Collection Well 209 to Higher Operating Value List

Dear Ms. Endow:

The Guadalupe Recycling and Disposal Facility (GRDF), owned by Guadalupe Rubbish Disposal Co., Inc., (GRDC) is subject to the Federal New Source Performance Standards/Emission Guidelines (NSPS/EG) for municipal solid waste (MSW) landfills (40 Code of Federal Regulations [CFR], Part 60) and the Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34. In accordance with Title V Permit Condition Number 6188, Part 3b(vi), the GRDF is submitting this letter as notification to the BAAQMD for the addition of landfill gas (LFG) Well 209 to the higher operating value (HOV) list of wells at the GRDF.

The GRDF has installed and operates a landfill gas collection and control system (GCCS) at the facility in accordance with the NSPS/EG and BAAQMD Regulation 8, Rule 34. These regulations require that the LFG wells that make up the GCCS be operated with wellhead temperatures below 131 degrees Fahrenheit (°F) (BAAQMD 8-34-305).

In July 2021, the GRDF investigated the LFG temperatures at Well 209. The intent of the investigation was to determine if the elevated temperature readings were due to excess air infiltration, damage to the well, or if the well simply operates at a higher normal temperature.

The review of monitoring data for Well 209 indicates that the well had elevated operating temperatures, and oxygen data shows negligible oxygen has been detected at the well. Upon first discovering the elevated temperatures, GRDF personnel monitored the well for carbon monoxide (CO), which is an early indicator of subsurface fire. Typically, CO concentrations of greater than 1,000 parts per million by volume (ppmv) will indicate a subsurface fire, with CO concentrations greater than 500 ppmv being of concern. The initial two readings at Well 209 indicated CO readings of 0 ppmv. Subsequent monitoring at Well 209 indicated that CO concentrations remained at 0 ppmv. The wellhead temperature for each CO monitoring event was less than 140°F. Methane concentrations at Well 209 do not appear to be affected by operation at the higher

temperatures. See attached table for historical monitoring data and CO monitoring results. Well 209 did not have well exceedances within the last 120 days.

GRDF considers Well 209 added to the HOV list for a temperature of 145°F as of August 25, 2021. Should the temperature measured at Well 209 during routine monitoring exceed 145°F, GRDF will consider it an exceedance and will track the deviation in accordance with the NSPS/EG and BAAQMD requirements.

If you have any questions or need any additional information, please do not hesitate to contact me at rphadnis@wm.com.

Sincerely,

Guadalupe Recycling and Disposal Facility

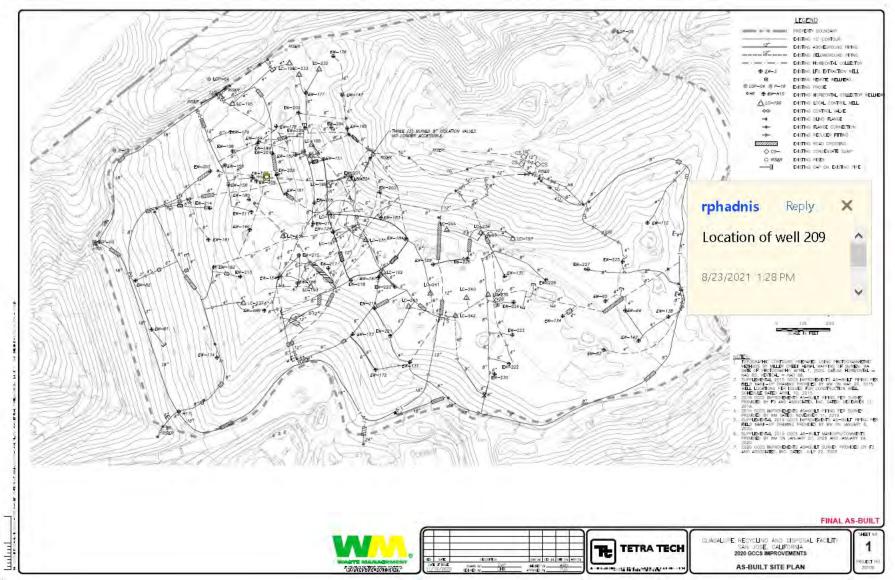
FM

Rajan Phadnis EP Specialist

Enclosures: Attachment A- Wellfield Monitoring Data for Well 209 Figure 1. – Gas Collection and Control System Map

cc: Enrique Perez, GRDF Bill Louis, GRDF Mike Winter, GRDF

Attachment A


Wellfield Monitoring and CO Data for Well 209

Device Name	Date Time	CH4 (Methane)(%)	CO2 (Carbon Dioxide)(%)	O2 (Oxygen)(%)	Balance Gas(%)	Initial Temperature(oF)	Adjusted Temperature(oF)	Initial Static Pressure("H2O)	Adjusted Static Pressure("H2O)			
GUAD0209	3/3/2021 14:15	51.6	48.1	0.1	0.2	78.0	103.0	-0.1	-0.1			
GUAD0209	3/3/2021 14:18	49.9	46.3	0.0	3.8	122.0	123.0	-0.1	-0.1			
GUAD0209	4/6/2021 11:32	52.6	47.1	0.1	0.2	85.0	86.0	-0.1	-0.1			
GUAD0209	5/17/2021 13:42	52.7	47.2	0.0	0.1	92.0	96.0	-0.1	-0.1			
GUAD0209	6/16/2021 15:29	40.7	45.7	0.0	13.6	128.0	128.0	-0.2	-0.1			
GUAD0209	7/3/2021 10:39	31.5	41.2	0.0	27.3	132.7	131.1	-0.7	-0.1			
GUAD0209	7/3/2021 10:40				CO w	/as 0 ppm						
GUAD0209	7/3/2021 10:47	32.8	42.0	0.0	25.2	130.9	131.0	-0.1	0.0			
GUAD0209	7/14/2021 13:37				CO w	/as 0 ppm						
GUAD0209	7/14/2021 16:05	53.4	39.5	0.1	7.0	128.0	128.0	-30.2	-30.4			
GUAD0209	7/14/2021 16:05	53.4	39.5	0.1	7.0	128.0	128.0	-30.2	-30.3			
GUAD0209	7/14/2021 16:13	43.7	43.9	0.1	12.3	119.0	97.0	-0.1	-0.1			
GUAD0209	8/12/2021 13:15	50.4	47.9	0.0	1.7	129.0	129.0	-0.1	-0.1			
GUAD0209	8/12/2021 16:12	CO was 0 ppm										

Table 1. GRDF Well 209 Historical Data

Figure 1

Gas Collection and Control System Map

September 10, 2021 (via email: compliance@baaqmd.gov)

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 **Attn: Title V Reports**

Re: Guadalupe Recycling and Disposal Facility, San Jose, California Facility A3294, Title V Section I.F – 10-Day and 30-Day Letter to BAAQMD Notice of Violation A 59779, Dated September 1, 2021

Dear Sir or Madam:

Guadalupe Rubbish Disposal Company, Inc. (GRDC) is submitting this 10-day Notice of Violation response letter to the Bay Area Air Quality Management District (BAAQMD) as required for the Guadalupe Recycling and Disposal Facility (GRDF) in San Jose, CA (Plant No. A3294). On September 1, 2021, Erin Phillips, BAAQMD Air Quality Inspector, issued a Notice of Violation No. A-59779 ("NOV"; copy attached).

The NOV alleges a violation of BAAQMD Reg. 2, Rule 1, Section 301 and Reg. 2, Rule 1, Section 302 and states "*Flare modified without Authority to Construct (ATC) and Permit to Operate (PTO)*".

This NOV does not acknowledge the substantial permitting history related to the flare. It is GRDC's position that the BAAQMD permit division's lack of prosecution and responsiveness led to the extreme delay in issuing the PTO within a reasonable timeframe and, therefore, GRDC requests BAAQMD to rescind the NOV A 59779. GRDC has submitted all required permit documentation and immediately responded to all information requests in a timely manner. The details provided below demonstrate how GRDC continually reached out the BAAQMD with updates on the project and followed the guidance given by BAAQMD's permit division.

GRDC was originally issued an ATC (A/N 21927) for the new flare project (with capacity of 120 MMBTU/HR; Flare A-14). Also, within this timeline, GRDC was simultaneously working with BAAQMD to obtain an additional permit for a landfill gas to energy (LFGTE) engine project. During the course of these permitting projects, GRDC decided to install a novel enhanced turndown narrow stack flare (with capacity of 90 MMBTU/HR) with the understanding that it would provide a symbiotic operational scenario between the flare and the engine plant. GRDC notified the BAAQMD of this change and submitted a change of equipment notification to the BAAQMD in November 2014 and subsequently submitted the application for Change of Permit Condition to change flare capacity to 90 MMBTU/HR (rather than the one originally proposed in A/N 21927). BAAQMD assigned permit application number A/N 28806.

The novel flare was installed and commissioned but was defective and that compelled the site to replace the narrow flare stack with a standard flare stack (as was detailed in the original ATC) to prevent the high-risk potential for future gas control deficiencies, compliance failures, and safety concerns. GRDC communicated these issues with BAAQMD during the commissioning stage and continued to provide updates about flare operation to maintain compliance with landfill gas requirements.

Since the permit for the narrow stack flare was still being drafted, the GRDC engine plant permit status was unknown, and given that the underlying permitting requirements for the standard flare stack had not changed (120 MMBTU/HR as per ATC A/N 21927) and no additional emissions, GRDC submitted a notification of the change of flare stack to the BAAQMD permit division. This notification was acknowledged by BAAQMD and the application was reactivated as permit application A/N 28806 with the original ATC capacity of 120 MMBTU/HR. GRDC continued to keep the BAAQMD up to date with these changes and it was decided that the permit engineer would make these changes during the PTO issuance period. GRDC has paid all required fees and anticipated that BAAQMD would issue an additional invoice before issuance of the final PTO.

It is GRDC's understanding that it is BAAQMD's policy that if you are issued an NOV for ATC, submittal of a permit application closes out the NOV. As the current flare permit application is and has been already under review, GRDC respectfully requests NOV A 59779 to be rescinded. Furthermore, GRDC has been responsive during the permitting process and submitted requested information in a timely manner to additional data requests during early 2021 as part of the flare permit process. Through its numerous actions stated above, it is clear that GRDC is committed to protect human health and environment by operating its landfill in a safe manner in compliance with applicable regulations and, therefore, GRDC again respectfully requests BAAQMD to rescind NOV A 59779.

Please contact me at (408) 779-2206, if you have any questions or need any additional information.

Sincerely, Guadalupe Recycling and Disposal Facility

Paul Inrique Perez

Enrique Perez District Manager

cc: Erin Phillips, BAAQMD Inspector

Attachments: 1- Copy of BAAQMD Notice of Violation A 59779

ATTACHMENT 1 NOV #A59779

ADDRESS: 15747 (music house CITY: Sum Jose PHONE: (408) 268 -1670 N# Mailing Address on F61 DCCURRENCE NAME: ADDRESS:	<u>SSL Biposel</u> □P□G□N# <u>A3294</u> <u>Mines Pd</u>
PHONE: (408) 268 -1670 N# Mailing Address on F61 DCCURRENCE NAME:	
N# Mailing Address on F61	
NAME:	
NAME	
CITY	ZIP Same As Above
SOURCE S#NAME	ZIP
EMISSION PT: P# NAME:	
DATE October 2020	TIME HRS
REG 2 RULE 1 SEC 301	-
No Authority to Construct	No Permit to Operate
REG 1 SEC 301	REG 2 RULE_SEC 307
H & S CODE - 41700 Public Nuisance	Failure to Meet Permit Condition
REG 5 SEC 301	
Prohibited Open Burning	EXCESSIVE VISIBLE Emissions
REG RULE SEC	TION
REG RULE SEC	
Flore and the 1	
etails: Flore mudified who A	
CIPIENT NAME Enrique Perez	,
TITLE District Mana	art.t
ADMISSION OF GUILT	h
A	ROM
DESCRIPTION OF THE IMMEDI	COPY OF THIS NOTICE WITH A WRITTEN ATE CORRECTIVE ACTION YOU HAVE
TAKEN TO PREVENT CONTINUE	ATE CORRECTIVE ACTION YOU HAVE
DOES NOT PRECLUDE FURTHER	STANTIAL PENALTY, YOUR RESPONSE
	LEGALACTION
UED BY FRIN Phillips	0
DATE: 1/1/21	_ TIME: 14/3 INSP # 063

INSTRUCTIONS

PERMIT VIOLATIONS - (REG 2, RULE 1, SECTION 301 AND/OR 302)

Within 30 days, a permit application must be submitted to the District's Permit Division. The permit application must reference the Violation Notice Number Shown on the front of this notice. If either the Violation Notice Number is not referenced or no permit application is received, then this matter will be referred to the District's Legal Department for legal action. Your response does not preclude further legal action.

If there are any questions regarding the submission of a Permit Application, call the Permit Services Division at (415) 749-4990.

ALL OTHER VIOLATIONS

Within 10 days, return a copy of this notice with a written description of the corrective action you have taken to prevent continued or recurrent violation. Immediate corrective action must be taken to stop the violation. This violation is subject to substantial penalty. Your response does not preclude further legal action.

A variance should be sought if it is necessary to continue to operate in violation of District Regulations. For information on eligiblity for, or filing of, a variance, call (415) 749-5073.

APPENDIX D

WELL SSM LOG

AFFECTED EQUIPMENT: Wellfield

Guadalupe Recycli	ng & Disposal Fac	ility. San Jose. C	A												
SSMP REPORT - A	pril 1, 2021 Throug	h September 30,	, 2021										-		
Identify Well & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason		(6) Applicable 8-34 Exemption	(7) Date Form Completed	(8) Type of Event (Startup and Shutdown Events Only)	(9) Procedures Used	(10)	Did Steps Taken Vary From Section 9?	(E	11) Did Event Cause Any mission Limit Exceedance	(12) Describe Emission Standard(s) Exceeded
Well ID Number:214 Startup Event X Shutdown Event	3/19/21 11:05	3/19/21 11:07	0.03			1	 I13: Inspection and Maintenance I16: Well Raising I17: Gas Collection 	3/19/2021 X	Manual (Go to Section 9) Automatic (Go to Section 11)	Procedure No. 1 to 3	x	Yes (Go to Section 11) No (Stop)		Yes (Go to Section 12) No (Stop)	
Malfunction Event Well ID Number:214				485 hours (20 days)	Well Located in Active Filling Area. Well Raised.	1	118: Construction Activities 113: Inspection and Maintenance		. ,		~	,		,	
X Startup Event Shutdown Event	4/8/21 16:28	4/8/21 16:30	0.03	(20 dd)0)	Traintaida.	X 1	116: Well Raising 117: Gas Collection	4/8/2021 X	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Malfunction Event							118: Construction Activities		Automatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	
Well ID Number:161 Startup Event	0/40/04 40 05	0/10/01 10 07				1 X 1	113: Inspection and Maintenance 116: Well Raising	X	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	3/19/21 12:05	3/19/21 12:07	0.03	484 hours	Well Located in Active Filling Area.	1	117: Gas Collection 118: Construction Activities	3/19/2021	Automatic (Go to Section 11)	1 to 3	х	No (Stop)		No (Stop)	
Well ID Number:161 X Startup Event	_			(20 days)	Well Raised.	1	113: Inspection and Maintenance	x	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event	4/8/21 16:12	4/8/21 16:14	0.03			1	117: Gas Collection	4/8/2021	Automatic (Go to Section 11)	1 to 4	x	No (Stop)		No (Stop)	
Malfunction Event Well ID Number:209							18: Construction Activities 13: Inspection and Maintenance	×	Manual (Go to Section 9)			Yes (Go to Section 11)		Yes (Go to Section 12)	
Startup Event X Shutdown Event	4/6/21 11:45	4/6/21 11:47	0.03				116: Well Raising 117: Gas Collection	4/6/2021		Procedure No. 1 to 3	~				
Malfunction Event Well ID Number:209				220 hours (9 days)	Well Located in Active Filling Area. Well Raised.	1	118: Construction Activities 113: Inspection and Maintenance		Automatic (Go to Section 11)		×	No (Stop)		No (Stop)	
X Startup Event Shutdown Event	4/15/21 16:09	4/15/21 16:11	0.03	(3 days)	Troir tailod.	X 1	116: Well Raising 117: Gas Collection	4/15/2021 X	Manual (Go to Section 9)	Procedure No. 1 to 4		Yes (Go to Section 11)		Yes (Go to Section 12)	
Malfunction Event						1	118: Construction Activities		Automatic (Go to Section 11)	1 10 4	Х	No (Stop)		No (Stop)	
Well ID Number: 122 Startup Event	4/6/21 12:30	4/6/21 12:32	0.03				113: Inspection and Maintenance 116: Well Raising	4/6/2021 X	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	4/0/21112.30	4/0/21 12.02	0.00	219 hours	Well Located in Active Filling Area.	1	I17: Gas CollectionI18: Construction Activities		Automatic (Go to Section 11)	1 to 3	х	No (Stop)		No (Stop)	
X Startup Event			0.00	(9 days)	Well Raised.	1 X 1	13: Inspection and Maintenance 116: Well Raising	X	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event Malfunction Event	4/15/21 15:34	4/15/21 15:36	0.03			1	117: Gas Collection 118: Construction Activities	4/15/2021	Automatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	
Well ID Number: 199 Startup Event	_					1	113: Inspection and Maintenance 116: Well Raising	x	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	4/16/21 15:49	4/16/21 15:51	0.03	101	Well Located in Active Filling Area. Well Raised.	1	117: Gas Collection	4/16/2021	Automatic (Go to Section 11)	1 to 3	х	No (Stop)		No (Stop)	
Well ID Number: 199				431 hours (18 days)		1	118: Construction Activities 113: Inspection and Maintenance	x	Manual (Go to Section 9)			Yes (Go to Section 11)		Yes (Go to Section 12)	
X Startup Event Shutdown Event	5/4/21 15:15	5/4/21 15:17	0.03			1	116: Well Raising 117: Gas Collection	5/4/2021	Automatic (Go to Section 11)	Procedure No. 1 to 4	x	No (Stop)		No (Stop)	
Malfunction Event Well ID Number: 156						1	118: Construction Activities 113: Inspection and Maintenance	×	Manual (Go to Section 9)			Yes (Go to Section 11)		Yes (Go to Section 12)	
X Shutdown Event	5/7/21 10:30	5/7/21 10:32	0.03			1	116: Well Raising 117: Gas Collection	5/7/2021	Automatic (Go to Section 11)	Procedure No. 1 to 3	x	No (Stop)		No (Stop)	
Malfunction Event Well ID Number: 156				NA	Well was decommissioned pursuant to PTO Condition #6188.		118: Construction Activities 113: Inspection and Maintenance	x	. ,		^	(1)		,	
Startup Event Shutdown Event						1	116: Well Raising 117: Gas Collection	×	Manual (Go to Section 9)	Procedure No. 1 to 4		Yes (Go to Section 11)		Yes (Go to Section 12)	
Malfunction Event Well ID Number:158						1	118: Construction Activities		Automatic (Go to Section 11)	1 10 4	х	No (Stop)		No (Stop)	
Startup Event	5/7/21 11:30	5/7/21 11:32	0.03			1	 I13: Inspection and Maintenance I16: Well Raising 	5/7/2021 X	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
X Shutdown Event Malfunction Event				NA	Well was decommissioned	1	I17: Gas CollectionI18: Construction Activities		Automatic (Go to Section 11)	1 to 3	х	No (Stop)		No (Stop)	
Well ID Number: 158 Startup Event	_				pursuant to PTO Condition #6188.		113: Inspection and Maintenance 116: Well Raising	x	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event Malfunction Event	1						117: Gas Collection 118: Construction Activities		Automatic (Go to Section 11)	1 to 4	х	No (Stop)	$ \top$	No (Stop)	
Well ID Number:186 Startup Event	0/45/04 40 55	0/15/04 40 55	0.00			1	113: Inspection and Maintenance 116: Well Raising	X	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	6/15/21 10:00	6/15/21 10:02	0.03	5 hours	Well offline during contruction and	X 1	17: Gas Collection	6/15/2021	Automatic (Go to Section 11)	1 to 3	х	No (Stop)		No (Stop)	
Well ID Number:186 X Startup Event	-			o noura	repairs.	1	113: Inspection and Maintenance 116: Well Raising	x	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event	6/15/21 15:00	6/15/21 15:02	0.03			X 1	17: Gas Collection	6/15/2021	Automatic (Go to Section 11)	1 to 4	x	No (Stop)		No (Stop)	
Malfunction Event Well ID Number:193	1					1	118: Construction Activities 113: Inspection and Maintenance	x	Manual (Go to Section 9)		+	Yes (Go to Section 11)		Yes (Go to Section 12)	
Startup Event X Shutdown Event	6/15/21 10:00	6/15/21 10:02	0.03			X 1	116: Well Raising 117: Gas Collection	6/15/2021	Automatic (Go to Section 11)	Procedure No. 1 to 3	x	No (Stop)		No (Stop)	
Malfunction Event Well ID Number:193				5 hours	Well offline during contruction and repairs.	1	13: Inspection and Maintenance	x	Manual (Go to Section 9)		+^	Yes (Go to Section 11)		Yes (Go to Section 12)	
X Startup Event Shutdown Event	6/15/21 15:00	6/15/21 15:02	0.03				116: Well Raising 117: Gas Collection	6/15/2021	. ,	Procedure No. 1 to 4			$\left \right $		
Malfunction Event Well ID Number:213							118: Construction Activities 113: Inspection and Maintenance	_	Automatic (Go to Section 11)		х	No (Stop)		No (Stop)	
Startup Event X Shutdown Event	6/17/21 9:00	6/17/21 9:02	0.03				113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	6/17/2021 X	Manual (Go to Section 9)	Procedure No.	<u> </u>	Yes (Go to Section 11)		Yes (Go to Section 12)	
Malfunction Event				2 hours	Well offline during contruction and X	X 1	118: Construction Activities		Automatic (Go to Section 11)		x	No (Stop)		No (Stop)	
Well ID Number:213 X Startup Event	6/17/21 11:00	6/17/21 11:02	0.03		repairs.	1	113: Inspection and Maintenance 116: Well Raising	6/17/2021 X	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event Malfunction Event							117: Gas Collection118: Construction Activities		Automatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	

AFFECTED EQUIPMENT: Wellfield

Guadalupe Recyclin SSMP REPORT - Ap																
Identify Well & Check Applicable Event	(1) Start of Event	(2) End of Event	(3) Duration	(4) Duration	(5) Cause or Reason		(6) Applicable 8-34 Exemption	(7) Date Form		(8) Type of Event (Startup and Shutdown Events Only)	(9) Procedures Used	(10)	Did Steps Taken Vary From Section 9?		11) Did Event Cause Any mission Limit Exceedance	(12) Describe Emission Standard(s) Exceeded
Well ID Number:185	Date and Time	Date and Time	of Event (Hours)	Shutdown (Hours)		1	13: Inspection and Maintenance	Completed	×	Manual (Go to Section 9)			Yes (Go to Section 11)	E	Yes (Go to Section 12)	
Startup Event X Shutdown Event	6/17/21 13:30	6/17/21 13:32	0.03				16: Well Raising 17: Gas Collection	6/17/2021	^	Automatic (Go to Section 1)	Procedure No. 1 to 3	х	No (Stop)		No (Stop)	
Malfunction Event Well ID Number:185				1 hours	Well offline during contruction and repairs.		18: Construction Activities 13: Inspection and Maintenance		×	. ,	-	^	,		,	
X Startup Event Shutdown Event	6/17/21 14:30	6/17/21 14:32	0.03				16: Well Raising 17: Gas Collection	6/17/2021	^	Manual (Go to Section 9)	Procedure No. 1 to 4	v	Yes (Go to Section 11)		Yes (Go to Section 12)	
Malfunction Event Well ID Number:235							18: Construction Activities 13: Inspection and Maintenance			Automatic (Go to Section 11)		x	No (Stop)		No (Stop)	1
Startup Event X Shutdown Event	6/18/21 8:30	6/18/21 8:32	0.03				16: Well Raising 17: Gas Collection	6/18/2021	х	Manual (Go to Section 9)	Procedure No. 1 to 3	Y	Yes (Go to Section 11)		Yes (Go to Section 12)	4
Malfunction Event Well ID Number:235				3 hours	Well offline during contruction and repairs.	X 1	18: Construction Activities 13: Inspection and Maintenance			Automatic (Go to Section 11)		x	No (Stop)		No (Stop)	l
X Startup Event Shutdown Event	6/18/21 11:00	6/18/21 11:02	0.03			1	16: Well Raising 17: Gas Collection	6/18/2021	х	Manual (Go to Section 9)	Procedure No. 1 to 4		Yes (Go to Section 11)		Yes (Go to Section 12)	4
Malfunction Event Well ID Number:192						X 1	18: Construction Activities 13: Inspection and Maintenance			Automatic (Go to Section 11)	1 10 1	х	No (Stop)		No (Stop)	
Startup Event X Shutdown Event	6/18/21 8:30	6/18/21 8:32	0.03			1	16: Well Raising 17: Gas Collection	6/18/2021	х	Manual (Go to Section 9)	Procedure No. 1 to 3		Yes (Go to Section 11)		Yes (Go to Section 12)	4
Malfunction Event Well ID Number:192				3 hours	Well offline during contruction and repairs.	X 1	18: Construction Activities 13: Inspection and Maintenance			Automatic (Go to Section 11)	1 10 5	х	No (Stop)		No (Stop)	
X Startup Event Shutdown Event	6/18/21 11:00	6/18/21 11:02	0.03		терыіз.	1	16: Well Raising 17: Gas Collection	6/18/2021	х	Manual (Go to Section 9)	Procedure No. 1 to 4		Yes (Go to Section 11)		Yes (Go to Section 12)	4
Malfunction Event Well ID Number:187							18: Construction Activities 13: Inspection and Maintenance			Automatic (Go to Section 11)	1 10 4	х	No (Stop)		No (Stop)	<u> </u>
Startup Event X Shutdown Event	6/18/21 8:30	6/18/21 8:32	0.03				15: Inspection and Maintenance 16: Well Raising 17: Gas Collection	6/18/2021	х	Manual (Go to Section 9)	Procedure No. 1 to 3		Yes (Go to Section 11)		Yes (Go to Section 12)	
Malfunction Event Well ID Number:187				3 hours	Well offline during contruction and repairs.					Automatic (Go to Section 11)	1 10 3	х	No (Stop)		No (Stop)	<u> </u>
X Startup Event Shutdown Event	6/18/21 11:00	6/18/21 11:02	0.03		repairs.		15: Inspection and Maintenance 16: Well Raising 17: Gas Collection	6/18/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	4
Malfunction Event Well ID Number:161						X 1	18: Construction Activities 13: Inspection and Maintenance			Automatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	
X Shutdown Event	6/21/21 8:00	6/21/21 8:02	0.03		Well offline during contruction and repairs.	1	13: Inspection and Maintenance 16: Well Raising 17: Gas Collection	6/21/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
X Snutdown Event Malfunction Event Well ID Number:161				7 hours			18: Construction Activities			Automatic (Go to Section 11)	1 to 3	х	No (Stop)		No (Stop)	
X Startup Event	6/21/21 15:00	6/21/21 15:02	0.03			11	13: Inspection and Maintenance 16: Well Raising 17: Gas Collection	6/21/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	4
Shutdown Event Malfunction Event						X 1	18: Construction Activities			Automatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	
Well ID Number:214 Startup Event	6/21/21 8:00	6/21/21 8:02	0.03				13: Inspection and Maintenance 16: Well Raising	6/21/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	1
X Shutdown Event Malfunction Event				7 hours	Well offline during contruction and	X 1				Automatic (Go to Section 11)	1 to 3	х	No (Stop)		No (Stop)	
Well ID Number:214 X Startup Event	6/21/21 15:00	6/21/21 15:02	0.03		repairs.	1	13: Inspection and Maintenance 16: Well Raising	6/21/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	1
Shutdown Event Malfunction Event						X 1 X 1	17: Gas Collection 18: Construction Activities			Automatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	
Well ID Number: 183 Startup Event	6/21/21 9:00	6/21/21 9:02	0.03				13: Inspection and Maintenance 16: Well Raising	6/21/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	1
X Shutdown Event Malfunction Event				1 hours	Well offline during contruction and	X 1				Automatic (Go to Section 11)	1 to 3	х	No (Stop)		No (Stop)	
Well ID Number:183 X Startup Event	6/21/21 10:00	6/21/21 10:02	0.03		repairs.	1	13: Inspection and Maintenance 16: Well Raising	6/21/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	1
Shutdown Event Malfunction Event						X 1	17: Gas Collection 18: Construction Activities			Automatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	
Well ID Number:180 Startup Event	5/18/21 11:00	5/18/21 11:02	0.03				13: Inspection and Maintenance 16: Well Raising	5/18/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	01012111100	0102111.02	0.00	694 hours	Well Located in Active Filling Area.		17: Gas Collection 18: Construction Activities	0/10/2021		Automatic (Go to Section 11)	1 to 3	х	No (Stop)		No (Stop)	
Well ID Number:180 X Startup Event	6/16/21 9:00	6/16/21 9:02	0.03	(29 days)	Well Raised.	X 1	13: Inspection and Maintenance 16: Well Raising	6/16/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)]
Shutdown Event Malfunction Event	0/10/21 0.00	3/10/21 3.02	0.00			1	17: Gas Collection 18: Construction Activities	0,10,2021		Automatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	
Well ID Number:237 Startup Event	8/26/20 11:30	8/26/20 11:32	0.03				13: Inspection and Maintenance 16: Well Raising	8/26/2020	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	0/20/20 11.30	0/20/20 11.32	0.00	7,272 hours	Well Located in Active Filling Area.		17: Gas Collection 18: Construction Activities	7: Gas Collection	Automatic (Go to Section 11)	1 to 3	х	No (Stop)		No (Stop)		
Well ID Number:237 X Startup Event	6/25/21 11:00	6/25/21 11:02	0.03	(303 days)	Well Raised.		13: Inspection and Maintenance 16: Well Raising	6/25/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event Malfunction Event	0/20/21 11:00	0/20/21 11:02	0.03			1	17: Gas Collection 18: Construction Activities	0/20/20/21		Automatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	

AFFECTED EQUIPMENT: Wellfield

Guadalupe Recyclin SSMP REPORT - Ap														
Identify Well & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form Completed		(8) Type of Event (Startup and Shutdown Events Only)	(9) Procedures Used	(10)	Did Steps Taken Vary From Section 9?) Did Event Cause Any ssion Limit Exceedance	(12) Describe Emission Standard(s) Exceeded
Well ID Number:188 Startup Event	6/9/21 10:20	6/9/21 10:22	0.03			113: Inspection and Maintenance X 116: Well Raising	6/9/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	0/3/21 10.20	0/3/21 10.22	0.00	676 hours	Well Located in Active Filling Area.	117: Gas Collection 118: Construction Activities	0/3/2021		Automatic (Go to Section 11)	1 to 3	х	No (Stop)	No (Stop)	
X Startup Event Shutdown Event	7/7/21 14:12	7/7/21 14:14	0.03	(28 days)	Well Raised.	113: Inspection and Maintenance X 116: Well Raising 117: Gas Collection	7/7/2021	х	Manual (Go to Section 9)	Procedure No. 1 to 4		Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number:152						117: Gas Collection 118: Construction Activities 113: Inspection and Maintenance			Automatic (Go to Section 11)	1 10 4	х	No (Stop)	No (Stop)	
Startup Event X Shutdown Event	6/9/21 10:45	6/9/21 10:47	0.03			X 116: Well Raising 117: Gas Collection	6/9/2021	х	Manual (Go to Section 9)	Procedure No. 1 to 3	x	Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number: 152				676 hours (28 days)	Well Located in Active Filling Area. Well Raised.	118: Construction Activities 113: Inspection and Maintenance		v	Automatic (Go to Section 11) Manual (Go to Section 9)		~	No (Stop) Yes (Go to Section 11)	No (Stop) Yes (Go to Section 12)	
X Startup Event Shutdown Event	7/7/21 14:33	7/7/21 14:35	0.03			X 116: Well Raising 117: Gas Collection	7/7/2021	^	Automatic (Go to Section 1)	Procedure No. 1 to 4	x	No (Stop)	No (Stop)	
Malfunction Event Well ID Number:151						118: Construction Activities 113: Inspection and Maintenance		x	Manual (Go to Section 9)			Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	7/30/21 17:05	7/30/21 17:07	0.03	.2 hours		116: Well Raising X 117: Gas Collection 118: Construction Activities	7/30/2021		Automatic (Go to Section 11)	Procedure No. 1 to 3	х	No (Stop)	No (Stop)	
Well ID Number:151 X Startup Event				.2 hours	Well offline for repairs.	113: Inspection and Maintenance 116: Well Raising		x	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	7/30/21 17:20	7/30/21 17:22	0.03			116: Well Raising 7/30/2021 X 117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)	1 to 4	х	No (Stop)	No (Stop)	
Well ID Number:205 Startup Event	7/7/21 11:40	7/7/21 11:42	0.03			113: Inspection and Maintenance X 116: Well Raising	7/7/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event			0.00	557 hours	Well Located in Active Filling Area.	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)	1 to 3	х	No (Stop)	No (Stop)	
Well ID Number:205 X Startup Event Shutdown Event	7/30/21 17:02	7/30/21 17:04	0.03	(23 days)	Well Raised.	113: Inspection and Maintenance X 116: Well Raising 117: Gas Collection	7/30/2021	х	Manual (Go to Section 9)	Procedure No. 1 to 4		Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number:200						118: Construction Activities 113: Inspection and Maintenance			Automatic (Go to Section 11)	1 10 4	х	No (Stop)	No (Stop)	
Startup Event X Shutdown Event	7/29/21 18:15	7/29/21 18:17	0.03			X 116: Well Raising 117: Gas Collection	7/29/2021	x	Manual (Go to Section 9) Automatic (Go to Section 11)	Procedure No. 1 to 3	x	Yes (Go to Section 11) No (Stop)	Yes (Go to Section 12) No (Stop)	
Malfunction Event Well ID Number:200				164 hours (7 days)	Well Located in Active Filling Area. Well Raised.	118: Construction Activities 113: Inspection and Maintenance		x	Manual (Go to Section 9)		^	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Startup Event Shutdown Event	8/5/21 14:30	8/5/21 14:32	0.03			X 116: Well Raising 117: Gas Collection 8/5/202			Automatic (Go to Section 11)	Procedure No. 1 to 4	x	No (Stop)	No (Stop)	
Malfunction Event Well ID Number:188 Startup Event						118: Construction Activities 113: Inspection and Maintenance X 116: Well Raising		х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	7/28/21 11:00	7/28/21 11:02	0.03	196 hours	Well Located in Active Filling Area.	117: Gas Collection 118: Construction Activities	7/28/2021		Automatic (Go to Section 11)	1 to 3	х	No (Stop)	No (Stop)	
Well ID Number:188 X Startup Event	8/5/21 15:15	8/5/21 15:17	0.03	(8 days)	Well Raised.	113: Inspection and Maintenance X 116: Well Raising	8/5/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	0/0/21 10.10	0/3/21 13.17	0.03			117: Gas Collection 118: Construction Activities	0/0/2021		Automatic (Go to Section 11)	1 to 4	х	No (Stop)	No (Stop)	
Well ID Number:177 Startup Event	7/30/21 10:45	7/30/21 10:47	0.03			113: Inspection and Maintenance X 116: Well Raising	7/30/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event Well ID Number:177				147 hours (6 days)	Well Located in Active Filling Area. Well Raised.	117: Gas Collection 118: Construction Activities 113: Inspection and Maintenance			Automatic (Go to Section 11)	1 to 3	х	No (Stop)	No (Stop)	
X Startup Event Shutdown Event	8/5/21 13:25	8/5/21 13:27	0.03	(0 days)	Traintaided.	X 116: Well Raising 117: Gas Collection	8/5/2021	x	Manual (Go to Section 9) Automatic (Go to Section 11)	Procedure No. 1 to 4	x	Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number:179						118: Construction Activities 113: Inspection and Maintenance		×	Manual (Go to Section 11)		x	No (Stop) Yes (Go to Section 11)	No (Stop) Yes (Go to Section 12)	
Startup Event X Shutdown Event	8/11/21 11:40	8/11/21 11:42	0.03			X 116: Well Raising 117: Gas Collection	8/11/2021	Ê	Automatic (Go to Section 1)	Procedure No. 1 to 3	х	No (Stop)	No (Stop)	
Malfunction Event Well ID Number:179 X Startup Event				793 hours (33 days)	Well Located in Active Filling Area. Well Raised.	118: Construction Activities 113: Inspection and Maintenance X 116: Well Raising		x	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	9/13/21 12:43	9/13/21 12:45	0.03			117: Gas Collection 118: Construction Activities	9/13/2021		Automatic (Go to Section 11)	1 to 4	х	No (Stop)	No (Stop)	
Well ID Number: 198 Startup Event	8/23/21 10:45	8/23/21 10:47	0.03			113: Inspection and Maintenance X 116: Well Raising	8/23/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	0/23/21 10:45	0/20/21 10:4/	0.00	506 hours	Well Located in Active Filling Area.	117: Gas Collection 118: Construction Activities	0/23/2021		Automatic (Go to Section 11)	1 to 3	х	No (Stop)	No (Stop)	
Well ID Number:198 X Startup Event	9/13/21 12:24	9/13/21 12:26	0.03	(21 days)	Well Raised.	113: Inspection and Maintenance X 116: Well Raising	9/13/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)	1 to 4	х	No (Stop)	No (Stop)	

N/A = Not Applicable

(a) STANDARD OPERATING PROCEDURES

Shutdown	
Procedure No.	Procedure
1.	Ensure that there is no unsafe conditions present, contact manager immediately
2.	Initiate shutdown sequence below by one or more of the following (Note date and time in Section 1 of form above)
	a. Press Emergency Stop if necessary
	b. Close On/Off switch(es) or Push On/Off button(s)
	c. Close adjacent valves if necessary
3.	Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note date and time in Section 2 of form above)
Startup	
Procedure No.	Procedure
1.	Ensure that there is no unsafe conditions present
2.	Ensure that the system is ready to start by one of the following:
	a. Valves are in correct position
	 Levels, pressures, and temperatures are within normal starting range
	c. Alarms are cleared
	d. Power is on and available to control panel and ready to energized equipment.

- e. Emergency stop is de-energized Initiate start sequence (Note time and date in section 1 of form above) Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note time and date in Section 2 of form above)

3. 4. Malfunction

EQUIPMENT	PURPOSE	MALFUNCTION EVENT	COMMON CAUSES	PROCEDURE NO TYPICAL RESPONSE ACTIONS
LFG Collection and Control S	System	leven		
Blower or Other Gas Mover Equipment	Applies vacuum to welifield to extract LFG and transport to control device	Loss of LFG Flow/Blower Malfunction	1. Repair breakages in extraction piping 2. Clean flame arrestor 3. Repair blockages in extraction piping 4. Verify automatic valve operation, compressed air/nitrogen supply 5. Notify power utility, if appropriate 6. Provide/utilize auxiliary power source, if necessary 7. Repair Settlement in Collection Piping 8. Repair Blower 9. Activate back-up blower, if available 10. Clean knock-up pot/demister 11. Drain knock-out pot	
Extraction Wells and Collection Piping	Conduits for extractions and movement of LFG flow	Collection well and pipe failures	-Break/crack in header or lateral piping -Leaks at wellheads, valves, flanges, Test ports, seals, couplings, etc. -Collection piping blockages -Problems due to settlement (e.g. pipe separation, deformation, development of low points)	12. Repair leaks or breaks in lines or wellheads 13. Follow procedures for loss of LFG flow/blower malfunction 14. Repair blockages in collection piping 15. Repair settlement in collection piping 16. Re-install, repair, or replace piping
Blower or Other Gas Mover Equipment And Control Device	Collection and control of LFG	Loss of electrical power	- Force majeure/Act of God (e.g., lightning, flood, earthquake, etc.) -Area-wide or local blackout or brown-out -Interruption in service (e.g. blown service fuse) -Electrical line failure -Transformer failure -Motor starter failure/trip -Overdraw of power -Problems in electrical panel -Damage to electrical equipment from on-site operations	17. Check/repair electrical panel components 19. Check/repair transformer 20. Check/repair transformer 21. Check/repair electrical line 22. Test amperage to various equipment 23. Contact electricity supplier 24. Contact electrician 25.Provide auxiliary power (if necessary)
LFG Control Device	Combusts LFG	Low temperature conditions at control device	Problems with temperature -monitoring equipment Problems/failure of -thermocouple and/or thermocouple wiring -Change of LFG flow -Change of LFG quality -Problems with air louvers -Problems with air/louvers -Change in atmospheric conditions	 26. Check/repair temperature monitoring equipment 27. Check/repair thermocouple and/or wiring 28. Follow procedures for loss of flow/blower malfunction 29. Check/adjust louvers 30. Check/adjust air/fuel controls
LFG Control Device Flow Monitoring/	Combusts LFG Measures and records cas flow from collection	Loss of Flame Malfunctions of Flow Monitoring/Recording	Problems/failure of thermocouple Loss/change of LFG flow Loss/change of LFG quality Problems with air/fuel controls Problems/failure of flame sensor Problems with temperature monitoring Problems with orffice plate, pitot tube, or other in line flow measuring device	31. Check/repair temperature monitoring equipment 32. Check/repair thermocouple 33. Follow procedures for loss of flow/blower malfunction 34. Check/adjust repair flame sensor 35. Check/adjust/repair flame sensor 36. Check/adjust/repair flame sensor 37. Check/adjust/repair flame sensor 37. Check/adjust/repair flame sensor
Recording Device	system to control	Device	-Problems with device controls and/or wiring -Problems with chart recorder	38. Check/repair chart recorder 39. Replace paper in chart recorder
Temperature Monitoring/ Recording Device	Monitors and records combustion temperature of enclosed combustion device	Malfunctions of Temperature Monitoring/Recording Device	-Problems with thermocouple -Problems with device controls and/or wiring -Problems with chart recorder	40. Check/adjust/repair thermocouple 41. Check/adjust/repair controller and/or wiring 42. Check/adjust/repair electrical panel components 43. Check/repair chart recorder 44. Replace paper in chart recorder
Control Device	Combusts LFG	Other Control Device Malfunctions	-Control device smoking (i.e. visible emissions) -Problems with fild full full system -Problems with air louvers -Problems with air louvers -Problems with air louvers -Problems with thermocouple -Problems with thermocouple -Problems with fume arrester -Alarmed malfunction conditions not covered above -Unalarmed conditions discovered during inspection not covered above	 45. Site-specific diagnosis procedures 46. Site-specific responses actions based on diagnosis 47. Open manual louvers 48. Clean pitot orflice 49. Clean/drain flame arrestor 50. Refill propane supply 51. Check/repair pilot sparking system

(b) For each permit limit exceedance complete an "SSM Plan Departure Form".

APPENDIX E

FLARE SSM LOG

CONTROL DEVICE AND GAS COLLECTION SYSTEM DOWNTIME LOG

AFFECTED EQUIPMENT: A-9 Flare

Completed By: Marcus Bernard/Rajan Phadnis

Guadalupe Recycling & Disposal Facility, San Jose, CA SSMP REPORT - From April 1, 2021 Through September 30, 2021

SSMP REPORT - Fr	om April 1, 2021	Through September	r 30, 2021										
Identify Flare & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason		(6) Applicable 8-34 Exemption	(7) Date Form Completed	(8) Type of Event (Startup and Shutdown Events Only)	(9) Procedures Used	(10) Did Steps Taken Vary From Section 9?	1) Did Event Cause Any hission Limit Exceedance	(12) Describe Emission Standard(s) Exceeded
Component: A-9 Flare Startup Event	-					-	113: Inspection and Maintenance 116: Well Raising	1/0/1900	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event				4,392.0	Flare remains shutdown. Flare A9 not required to operate in conjunction with		117: Gas Collection 118: Construction Activities	1/0/1300	Automatic (Go to Section 10)	1 to 3	No (Stop)	No (Stop)	
Component: A-9 Flare Startup Event	-			4,532.0	flare A17.	_	113: Inspection and Maintenance 116: Well Raising	1/0/1900	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event						\vdash	117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	No (Stop)	No (Stop)	

 TOTAL DOWNTIME April 1, 2021 Through September 30, 2021
 4392.0

 TOTAL RUNTIME April 1, 2021 Through September 30, 2021
 0.0

 TOTAL HOURS April 1, 2021 Through September 30, 2021 (HOURS):
 4392.0

CONTROL DEVICE AND GAS COLLECTION SYSTEM DOWNTIME LOG

AFFECTED EQUIPMENT: A-17 Flare (Based on the correspondence with the BAAQMD, flare A-14 is now designated as flare A-17)

Completed By: Marcus Bernard/Rajan Phadnis

Guadalupe Recycling & Disposal Facility, San Jose, CA

SSMP REPORT - From	April 1, 2021 Throu	igh September 30, 2	021												
Identify Flare & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form Completed		(8) Type of Event (Startup and Shutdown Events Only)	(9) Procedures Used	(1	0) Did Steps Taken Vary From Section 9?	(11) Did Event Cause Any Emission Limit Exceedance	
Component: A-17 Flare	Date and Time	Date and Time	or Event (Hours)	Silutdowii (Hours)		х	113: Inspection and Maintenance	Completed	x	Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11	
Startup Event X Shutdown Event	4/27/21 10:44	4/27/21 10:48	0.07		First shuddows darles blows		116: Well Raising 117: Gas Collection	4/27/2021		Automatic (Go to Section 10)	Procedure 1 to 3	х		No (Stop)	-
Malfunction Event Component: A-14 Flare				1.57	Flare shutdown during blower inspection and maintenance activities.	v	118: Construction Activities 113: Inspection and Maintenance					^	,		
X Startup Event	4/27/21 12:18	4/27/21 12:22	0.07		Flare was inspected and restarted.	^	116: Well Raising	4/27/2021	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11	1
Shutdown Event Malfunction Event							117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	
Component: A-17 Flare Startup Event	-					Х	113: Inspection and Maintenance 116: Well Raising		х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)
X Shutdown Event Malfunction Event	5/15/21 14:58	5/15/21 15:02	0.07		Flare A17 shutdown due to flame out		117: Gas Collection 118: Construction Activities	5/15/2021		Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	-
Component: A-14 Flare				0.23	alarm. Flare was restarted. Flare was inspected on May 17, 2021.	х	113: Inspection and Maintenance		x	Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11)
X Startup Event Shutdown Event	5/15/21 15:12	5/15/21 15:16	0.07		insposed of may 17, 2021.		116: Well Raising 117: Gas Collection	5/15/2021		Automatic (Go to Section 10)	Procedure 1 to 4	x		No (Stop)	-
Malfunction Event Component: A-17 Flare						x	118: Construction Activities 113: Inspection and Maintenance					^	· · · /	,	
Startup Event	6/21/21 11:34	6/21/21 11:38	0.07			~	116: Well Raising	6/21/2021		Manual (Go to Section 9)			Yes (Go to Section 11)	Yes (Go to Section 12	1
X Shutdown Event Malfunction Event				0.23	Flare shutdown due to low temperature alarm. Flare was restarted. Flare was		117: Gas Collection 118: Construction Activities		х	Automatic (Go to Section 11)			No (Stop)	X No (Stop)	
Component: A-14 Flare X Startup Event	6/21/21 11:48	6/21/21 11:52	0.07	0.23	inspected after restart.	х	113: Inspection and Maintenance 116: Well Raising	6/21/2021	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12	1
Shutdown Event Malfunction Event	6/21/21 11:48	6/21/21 11:52	0.07				117: Gas Collection 118: Construction Activities	6/21/2021		Automatic (Go to Section 11)	1 to 4	х	No (Stop)	No (Stop)	-
Component: A-17 Flare Startup Event						Х	113: Inspection and Maintenance 116: Well Raising		х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)
X Shutdown Event	6/23/21 13:30	6/23/21 13:34	0.07		Flare was shutdown during		117: Gas Collection	6/23/2021		Automatic (Go to Section 10)	1 to 3	x	No (Stop)	No (Stop)	-
Malfunction Event Component: A-14 Flare				0.07	construction. Flare was inspected and restarted	х	118: Construction Activities 113: Inspection and Maintenance		×	Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11	
X Startup Event Shutdown Event	6/23/21 13:34	6/23/21 13:38	0.07		Tostaltou.		116: Well Raising 117: Gas Collection	6/23/2021	~	Automatic (Go to Section 0)	Procedure 1 to 4	х		No (Stop)	-
Malfunction Event Component: A-17 Flare						v	118: Construction Activities 113: Inspection and Maintenance		-			^	(<i>17</i>	,	
Startup Event	6/23/21 14:08	6/23/21 14:12	0.07			~	116: Well Raising	6/23/2021	x	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11	1
X Shutdown Event Malfunction Event				0.03	Flare was shutdown during construction. Flare was inspected and		117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	
Component: A-14 Flare X Startup Event	6/23/21 14:10	6/23/21 14:14	0.07	0.03	restarted.	х	113: Inspection and Maintenance 116: Well Raising	6/23/2021	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)
Shutdown Event Malfunction Event	0/23/21 14:10	0/23/21 14.14	0.07				117: Gas Collection 118: Construction Activities	0/23/2021		Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	
Component: A-17 Flare Startup Event						х	113: Inspection and Maintenance		х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)
X Shutdown Event	6/23/21 14:18	6/23/21 14:22	0.07		Flare was shutdown during		116: Well Raising 117: Gas Collection	6/23/2021	-	Automatic (Go to Section 10)	1 to 3	x	No (Stop)	No (Stop)	-
Malfunction Event Component: A-14 Flare				0.77	construction. Flare was inspected and restarted.	х	118: Construction Activities 113: Inspection and Maintenance		~	Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11	
X Startup Event Shutdown Event	6/23/21 15:04	6/23/21 15:08	0.07		restarteu.		116: Well Raising 117: Gas Collection	6/23/2021	^		Procedure 1 to 4				-
Malfunction Event Component: A-17 Flare						v	118: Construction Activities 113: Inspection and Maintenance	ļ	-	Automatic (Go to Section 10)		Х	(<i>17</i>	No (Stop)	
Startup Event	9/28/21 17:22	9/28/21 17:26	0.07			~	116: Well Raising	9/28/2021		Manual (Go to Section 9)			Yes (Go to Section 11)	Yes (Go to Section 12	1
X Shutdown Event Malfunction Event				1.93	Flare A17 was shutdown for required lateral repairs. Flare was inspected and		117: Gas Collection 118: Construction Activities		х	Automatic (Go to Section 11)			No (Stop)	X No (Stop)	
Component: A-14 Flare X Startup Event				1.85	restarted.	Х	113: Inspection and Maintenance 116: Well Raising		х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)
Shutdown Event	9/28/21 19:18	9/28/21 19:22	0.07				117: Gas Collection	9/28/2021		Automatic (Go to Section 11)	1 to 4	х	No (Stop)	No (Stop)	1
Malfunction Event				1	1	1	118: Construction Activities	1	1			1		,	

 TOTAL DOWNTIME April 1, 2021 Through September 30, 2021 (HOURS):
 4,83

 TOTAL RUNTIME April 1, 2021 Through September 30, 2021 (HOURS):
 4,367.2

 TOTAL HOURS April 1, 2021 Through September 30, 2021 (HOURS):
 4,382.0

(a) STANDARD OPERATING PROCEDURES

Shutdown	
Procedure No.	Procedure
1.	Ensure that there is no unsafe conditions present, contact manager immediately
2.	Initiate shutdown sequence below by one or more of the following (Note date and time in Section 1 of form above)
	a. Press Emergency Stop if necessary
	b. Close On/Off switch(es) or Push On/Off button(s)
	c. Close adjacent valves if necessary
3.	Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note date and time in Section 2 of form above)
Startup	
Procedure No.	Procedure
1	Ensure that there is no unsafe conditions present
1.	
2.	Ensure that the system is ready to start by one of the following:
	a. Valves are in correct position
	b. Levels, pressures, and temperatures are within normal starting range
	c. Alarms are cleared
	d. Power is on and available to control panel and ready to energized equipment.
	e. Emergency stop is de-energized

- e. Emergency stop is de-energized Initiate start sequence (Note time and date in section 1 of form above) Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note time and date in Section 2 of form above)

3. 4. Malfunction

EQUIPMENT	PURPOSE	MALFUNCTION	COMMON CAUSES	PROCEDURE NO TYPICAL RESPONSE ACTIONS
		EVENT		
LFG Collection and Control S				
Blower or Other Gas Mover Equipment	Applies vacuum to wellfield to extract LFG and transport to control device	Loss of LFG Flow/Blower Malfunction	Flame arrestor fouling/deterioration Automatic valve problems Blower failure (e.g., belt, motor, impeller, coupling, seizing, etc.) Loss of power Extraction piping failure Condensate knock-out problems Extraction piping blockages	1. Repair breakages in extraction piping 2. Clean flame arrestor 3. Repair blockages in extraction piping 4. Verify automatic valve operation, compressed air/nitrogen supply 5. Notify power utility, if appropriate 6. Provide/utilize auxiliary power source, if necessary 7. Repair Settlement in Collection Piping 8. Repair Blower 9. Activate back-up blower, if available 10. Clean knock-up pot/demister 11. Drain knock-out pot
Extraction Wells and Collection Piping	Conduits for extractions and movement of LFG flow	Collection well and pipe failures	-Break/crack in header or lateral piping -Leaks at wellheads, valves, flanges, Test ports, seals, couplings, etc. -Collection piping blockages -Problems due to settlement (e.g. pipe separation, deformation, development of low points)	 Repair leaks or breaks in lines or wellheads Follow procedures for loss of LFG flow/blower malfunction Repair blockages in collection piping Repair settlement in collection piping
	Collection and control of			16. Re-install, repair, or replace piping
Blower or Other Gas Mover Equipment And Control Device	LFG	Loss of electrical power	Force majeure/Act of God (e.g., lightning, flood, earthquake, etc.) -Area-wide or local blackout or brown-out Interruption in service (e.g. blown service fuse) Electrical line failure Breaker trip -Transformer failure -Motor starter failure -Motor starter failure/trip -Overdraw of power -Problems in electrical panel -Damage to electrical equipment from on-site operations	 Check/repair electrical panel components Check/repair transformer Check/repair motor starter Check/repair notor starter Check/repair electrical line Test amperage to various equipment Contact electricity supplier Contact/contract electrician Provide auxiliary power (if necessary)
LFG Control Device	Combusts LFG	Low temperature conditions at control device	Problems with temperature -monitoring equipment Problems/failure of -thermocouple and/or thermocouple wiring -Change of LFG flow -Change of LFG quality -Problems with air louvers -Problems with air/Luel controls Change in atmospheric conditione	 26. Check/repair temperature monitoring equipment 27. Check/repair thermocouple and/or wiring 28. Follow procedures for loss of flow/blower malfunction 29. Check/adjust louvers 30. Check/adjust air/fuel controls
LFG Control Device	Combusts LFG	Loss of Flame	Change in atmospheric conditions Problems/failure of thermocouple Loss/change of LFG flow -Loss/change of LFG quality -Problems with air/fuel controls -Problems with temperature monitoring Problems with temperature monitoring	31. Check/repair temperature monitoring equipment 32. Check/repair thermocouple 33. Follow procedures for loss of flow/blower malfunction 34. Check/adjust air/fuel controls 35. Check/adjustre/anif flame sensor 36. Check/adjust LFG collectors
Flow Monitoring/ Recording Device	Measures and records gas flow from collection system to control	Malfunctions of Flow Monitoring/Recording Device	-Problems with orifice plate, pitot tube, or other in- line flow measuring device -Problems with device controls and/or wiring -Problems with chart recorder	 Check/adjust/repair flow measuring device and/or wiring Check/repair chart recorder Replace paper in chart recorder
Temperature Monitoring/ Recording Device	Monitors and records combustion temperature of enclosed combustion device	Malfunctions of Temperature Monitoring/Recording Device	-Problems with thermocouple -Problems with device controls and/or wiring -Problems with chart recorder	 Check/adjust/repair thermocouple Check/adjust/repair controller and/or wiring Check/adjust/repair electrical panel components Check/repair chart recorder Replace paper in chart recorder
Control Device	Combusts LFG	Other Control Device Malfunctions	-Control device smoking (i.e. visible emissions) -Problems with flare insulation -Problems with pilot light system -Problems with air louvers -Problems with air/fuel controllers -Problems with thermocouple -Problems with thurners -Problems with thurners -Alarmed malfunction conditions not covered above -Unalarmed conditions discovered during inspection not covered above	 45. Site-specific diagnosis procedures 46. Site-specific responses actions based on 47. Open manual louvers 48. Clean pitot orifice 49. Clean/drain flame arrestor 50. Refill propane supply 51. Check/repair pilot sparking system

(b) For each permit limit exceedance complete an "SSM Plan Departure Form".

APPENDIX F

TEMPERATURE DEVIATION / INOPERATIVE MONITOR / MISSING DATA REPORT

lare A-9		MISSING DATA REPORT - April 1, 2				
REPORT PREPARED BY:		Rajan Phadnis			DATE:	October 1, 2021
EMPERATURE SENSING	DEVICE:	Thermocouple			MODEL:	Thermo-Electric
START DATE & TIME	END DATE & TIME	DURATION (HOURS)	TEMP (°F)/ FLOW (scfm)	CAUSE	EXPLANATION	ACTION TAKEN
			No deviations, inoperative monitors, or missing dat			
			No deviations, inoperative monitors, or missing dat	a occurred in May 2021		
			No deviations, inoperative monitors, or missing data	a occurred in June 2021		
			No deviations, inoperative monitors, or missing dat	a occurred in July 2021		
			No deviations, inoperative monitors, or missing data	occurred in August 2021		
			No deviations, inoperative monitors, or missing data o	ccurred in September 2021		

scfm= standard cubic feet per minute

COMMENTS: The A-9 Flare combustion zone 3-hour average temperature did not drop below the 1,450 degrees Fahrenheit (°F) limit, as required by Title V Permit Condition Number 6188 Part 8, during the reporting period while the flare was in operation.

The A-9 Flare combustion zone 3-hour average temperature did not drop below the 1,593°F limit established in the April 29, 2020 Annual Source Test and , pursuant to Title V Permit A3294 Condition 6188 Part 8, during the reporting period while the flare was in operation.

Guadalupe Recycling & I	Disposal Facility, San Jose, C	A				
TEMPERATURE DEVIATI	ON/ INOPERATIVE MONITOR	MISSING DATA REPORT - April	1, 2021 Through September 30, 2021			
Flare A-17 (previously de	signated as A-14)					
REPORT PREPARED BY	:	Rajan Phadnis			DATE:	October 1, 2021
TEMPERATURE SENSING	G DEVICE:	Thermocouple			MODEL:	Thermo-Electric
START DATE & TIME	END DATE & TIME	DURATION (HOURS)	TEMP (°F)/ FLOW (scfm)	CAUSE	EXPLANATION	ACTION TAKEN
	-	•	No deviations, inoperative monitors, or missing dat	a occurred in April 2021	•	-
			No deviations, inoperative monitors, or missing dat	ta occurred in May 2021		
			No deviations, inoperative monitors, or missing data	a occurred in June 2021		
			No deviations, inoperative monitors, or missing dat	a occurred in July 2021		
			No deviations, inoperative monitors, or missing data	occurred in August 2021		
			No deviations, inoperative monitors, or missing data o	ccurred in September 2021		
NOTES:	°F= degrees Fahrenheit					

COMMENTS:

scfm= standard cubic feet per minute

The A-14 Flare combustion zone 3-hour average temperature did not drop below the 1,450°F limit established in the February 18, 2021 Annual Source Test, pursuant to as required by Authority to Construct. The A-17 Flare combustion zone 3-hour average temperature did not drop below the 1,449°F limit established in the February 18, 2021 Annual Source Test

APPENDIX G

COVER INTEGRITY MONITORING REPORTS

Monthly Cover Monitoring

LOCATION: Guadalupe Rubbish Disposal Company, Inc. INSPECTION DATE: April 26, 2021 TECHNICIAN: Markus Bernard

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		X	
Dead vegetation		X	
Erosion on cap system		X	
Erosion on side slopes		X	
Ponding of water on cap		X	
Surface cracking		X	
Acceptable vegetation	X		
Exposed waste		X	
REPAIR AREAS:			
Location Description (cell and near-by wells)	Date of Repair	Descrip	otion of Repair (add soil, water)

Monthly Cover Monitoring

LOCATION:Guadalupe Rubbish Disposal Company, Inc.INSPECTION DATE:May 26, 2021TECHNICIAN:Markus Bernard

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		X	
Erosion on side slopes		X	
Ponding of water on cap		X	
Surface cracking		X	
Acceptable vegetation	X		
Exposed waste		X	
REPAIR AREAS:			
Location Description (cell and near-by wells)	Date of Repair	Descrip	tion of Repair (add soil, water)

LOCATION: Guadalupe Rubbish Disposal Company, Inc. **INSPECTION DATE:** June 25, 2021

TECHNICIAN: Markus Bernard

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		X	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap		Х	
Surface cracking		Х	
Acceptable vegetation	X		
Exposed waste		X	
REPAIR AREAS:			
Lessting Description			
Location Description	Data of Donain	Decerin	tion of Donair (add call water)
Location Description (cell and near-by wells)	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)
	Date of Repair	Descrip	tion of Repair (add soil, water)

Note: Monthly cover integrity monitoring is performed pursuant to BAAQMD Regulation 8-34-501.4

LOCATION: Guadalupe Rubbish Disposal Company, Inc. INSPECTION DATE: July 30, 2021

TECHNICIAN: Markus Bernard

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		X	
Erosion on side slopes		X	
Ponding of water on cap		X	
Surface cracking		X	
Acceptable vegetation	X		
Exposed waste		X	
Location Description (cell and near-by wells)	Date of Repair	Descript	tion of Repair (add soil, water)
	Date of Repair	Descript	tion of Repair (add soil, water)
	Date of Repair	Descript	tion of Repair (add soil, water)
	Date of Repair	Descript	tion of Repair (add soil, water)
	Date of Repair	Descript	tion of Repair (add soil, water)
	Date of Repair	Descript	tion of Repair (add soil, water)
	Date of Repair	Descript	tion of Repair (add soil, water)
	Date of Repair	Descript	tion of Repair (add soil, water)
	Date of Repair	Descript	tion of Repair (add soil, water)
	Date of Repair	Descript	tion of Repair (add soil, water)
	Date of Repair	Descript	tion of Repair (add soil, water)
	Date of Repair	Descript	tion of Repair (add soil, water)
	Date of Repair	Descript	tion of Repair (add soil, water)

Note: Monthly cover integrity monitoring is performed pursuant to BAAQMD Regulation 8-34-501.4

LOCATION: Guadalupe Rubbish Disposal Company, Inc. INSPECTION DATE: August 24, 2021

TECHNICIAN: Markus Bernard

n of Repair (add soil, water)
n of Repair (add soil, water)

Note: Monthly cover integrity monitoring is performed pursuant to BAAQMD Regulation 8-34-501.4

LOCATION: Guadalupe Rubbish Disposal Company, Inc. INSPECTION DATE: September 28, 2021 TECHNICIAN: Markus Bernard

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap		Х	
Surface cracking		Х	
Acceptable vegetation	X		
Exposed waste		Х	
REPAIR AREAS:			
Location Description (cell and near-by wells)	Date of Repair	Des	cription of Repair (add soil, water)

APPENDIX H

SURFACE EMISSIONS AND COMPONENT LEAK MONITORING REPORTS

September 16, 2021

Ms. Becky Azevedo Guadalupe Rubbish Disposal Co., Inc 15999 Guadalupe Mines Road San Jose, CA 95120

Re: Third Quarter 2021 Surface Emissions and Component Leak Monitoring Report for Guadalupe Recycling & Disposal Facility

Dear Ms. Azevedo:

This monitoring report for "Guadalupe Rubbish Disposal Co., Inc. (GRDC)" contains the results of the Third Quarter 2021 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by Roberts Environmental Services, LLC. (RES). Re-monitoring of surface emissions and component leak monitoring was conducted by RES and/or Waste Management (WM) personnel.

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection Procedures).

Component Leak

- BAAQMD Regulation 8, Rule 34, Section 301 (Landfill Gas Collection and Emission Control System Requirements) and Section 602 (Collection and Control System Leak Inspection procedures).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95464, known as the AB32 LMR.

GRDC Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 16, 2011. After receipt of comments, this ACO was amended, restated, and submitted to BAAQMD on July 1, 2016. SEM and Component Leak monitoring was conducted per the methods outlined in the July 1, 2016 ACO.

PROCEDURES

General

The surface of the GRDC disposal area has been divided into one-hundred-and-five (105), approximately 50,000 square foot monitoring grids. Of these grids, eleven (11) currently have no waste in place. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the walking pattern as depicted the 2011 GRDC AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

The monitoring probe was positioned 2 inches above the ground surface. While walking, the wand tip of the FID was held within 2 inches of the landfill surface while traversing the grid. Per the approved alternative request, the wand tip of the FID was held at 2 inches of vegetation in areas where the landfill surface is covered with low-lying vegetation such as grasses while traversing the grid.

Instantaneous Surface Emissions Monitoring

The Instantaneous and Integrated SEM was conducted using flame ionization detectors (FID), calibrated to 500 parts per million by volume (ppm_v) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a) and NSPS. The FIDs were calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d) and CCR Title 17 §95471(c)(2).

RES personnel walked the surface of the landfill on a grid by grid basis with the wand tip held at 2 inches from the landfill surface. While sampling the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppm_v (areas of

concern) or 500 ppm_v (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Appendices of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
 - If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
 - If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.
- If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Integrated Surface Emissions Monitoring

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppm_v for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held within 2 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(2).

Grids with results greater than 25 ppm_v were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppm_v are subject to the following re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.
- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.

- If the second 10-day re-monitoring event shows the second exceedance is corrected, all remonitoring requirements have been completed.
- The second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the third exceedance.

Component Leak Monitoring Procedures

WM personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppm_v. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppm_v per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) and 1,000 ppm_v per requirements outlined in BAAQMD 8-34-303 were recorded. Applicable corrective action and remonitoring timelines are listed below:

- Leaks between 500 and 999 ppm_v must be corrected and re-monitored within 10 days of the initial exceedance.
- Leaks at or above 1000 ppm_v must be corrected and re-monitored within 7 days of the initial exceedance.

THIRD QUARTER 2021 SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and component leak monitoring results completed for the Third Quarter 2021.

Instantaneous Surface Emissions Monitoring Results

The Instantaneous surface monitoring was performed on July 26, 2021 in accordance with the NSPS, BAAQMD 8-34, and CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

Initial Monitoring Event Exceedances of 500 ppm_v

There were 5 exceedances of 500 ppm_v as methane detected on July 26, 2021. Corrective actions to initiate repairs of the exceedances were completed within five days for all locations (July 27, 2021).

Ten-Day Re-Monitoring Results

The 10-day re-monitoring event was completed on August 4, 2021. All locations were observed at less than 500 ppm_v .

One-Month Re-Monitoring Results

The 1-month re-monitoring event was completed on August 24, 2021. All locations were observed at less than 500 ppm_{v} .

Readings between 200 ppmy and 499 ppmy (Initial and Re-monitored)

There were no readings between 200 ppm_v and 499 ppm_v as methane detected during the initial monitoring event. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppm_v but below 500 ppm_v are required to be recorded.

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on July 27, 2021, accordance with the ACO and requirements outlined in CCR Title 17 §95469.

Initial Monitoring Event Exceedances of 25 ppm_v

There were no grids with exceedances of 25 ppm_v as methane detected during monitoring on July 27, 2021.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B, Integrated SEM 25 ppm_v Exceedances and Monitoring Log, and SEM Map included in Attachment B, for details.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on July 26, 2021. No leaks greater than 500 ppm_v were identified during this monitoring period. Please see Attachment C, for details.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The strip chart data is scanned and included in Attachment D.

Precipitation Requirements

Per the GRDC's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within 24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25 ppm_v in air for integrated sample analyses and 500 ppm_v in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at rphadnis@wm.com.

Thank you, Waste Management

FM

Rajan Phadnis Environmental Protection Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment D – Weather Station Data

• Strip Chart Data

Attachment E – Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

Table A.1Instantaneous Landfill Surface Emissions MonitoringInitial Monitoring Event Areas of Concern

2021 QUARTER: 3

PERFORMED BY: RES

LANDFILL NAME: Guadalupe Recycling & Disposal Facility

Flag Number	Grid Number	Date of Monitoring	Concentration of Emission (ppmv)	Comments						
O76	42	7/26/2021	512 ppm	Well 185						
077	67	7/26/2021	2000 ppm	Sump 1						
O78	67	7/26/2021	1000 ppm	Sump 2						
O79	67	7/26/2021	600 ppm	Pipe						
O80	67	7/26/2021	750 ppm	Buterfly Valve						
Notes: Please refer	Notes: Please refer to field data sheets for details									

Table A.2Instantaneous Landfill Surface Emissions MonitoringExceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

 2021 QUARTER:
 3

 INITIAL MONITORING PERFORMED BY:
 RES

 FOLLOW-UP MONITORING PERFORMED BY:
 WM-Markus Bernard

 LANDFILL NAME:
 Guadalupe Recycling & Disposal Facility

Initi	al Monitoring	Event	Corre	ctive action within 5 days	1st 1	0-day Follow	/-Up	1st 3	0-day Follow	/-Up	
Flag	Monitoring	Field	Repair	Repair Action taken to repair N		No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	Exceedance	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
O76	7/26/2021	512 ppm	7/27/2021	Soil Added	8/4/2021	5 ppm		8/24/2021	5 ppm		Well 185
077	7/26/2021	2000 ppm	7/27/2021	Soil Added	8/4/2021	23 ppm		8/24/2021	40 ppm		Sump 1
O78	7/26/2021	1000 ppm	7/27/2021	Soil Added	8/4/2021	11 ppm		8/24/2021	15 ppm		Sump 2
O79	7/26/2021	600 ppm	7/27/2021	Soil Added	8/4/2021	45 ppm		8/24/2021	35 ppm		Pipe
O80	7/26/2021	750 ppm	7/27/2021	Soil Added	8/4/2021	38 ppm		8/24/2021	42 ppm		Buterfly Valve

Table A.3Instantaneous Landfill Surface Emissions MonitoringExceedance and Monitoring Logs (AB-32)

 2021 QUARTER:
 3

 INITIAL MONITORING PERFORMED BY:
 RES

 FOLLOW-UP MONITORING PERFORMED BY:
 WM-Markus Bernard

 LANDFILL NAME:
 Guadalupe Recycling & Disposal Facility

Initial Monitoring Event			1st Re-mon Event - 10 Days			2nd Re-mon Event - 10 Days			
Exceedance	Monitoring	Field	Monitoring	No Exced.	Exced.	Monitoring	nitoring No Exced.		
Grid ID No.	Date	Reading	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
O76	7/26/2021	512 ppm	8/4/2021	5 ppm					Well 185
077	7/26/2021	2000 ppm	8/4/2021	23 ppm					Sump 1
O78	7/26/2021	1000 ppm	8/4/2021	11 ppm					Sump 2
O79	7/26/2021	600 ppm	8/4/2021	45 ppm					Pipe
O80	7/26/2021	750 ppm	8/4/2021	38 ppm					Buterfly Valve

Table A.4Instantaneous Landfill Surface Emissions MonitoringAreas of Concern Greater than 200 ppmv

2021 QUARTER:3INITIAL MONITORING PERFORMED BY:RESFOLLOW-UP MONITORING PERFORMED BY:NALANDFILL NAME:Guadalupe Recycling & Disposal Facility

Initial	Monitoring	Event	Re-moi	n Event	_		
Exceedance	Monitoring	Field	Monitoring Reading		Monitoring Reading		Comments
Grid ID No.	No. Date Reading		Date	ppm			
None	None						

Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2021 QUARTER: 3RD Qtr INITIAL MONITORING PERFORMED BY: RES Environmental FOLLOW-UP MONITORING PERFORMED BY: Markus Bernard LANDFILL NAME: GUADALUPE LANDFILL

LANDFILL NAME: GUADALUPE LANDFILL					Wind Direction: N Wind Speed: 8 MPH			Wind Direction: NW Wind Speed: 5 MPH			
Initia	Monitorin	g Event	Correc	tive action within 5 days	1st 1	0-day Follow	/-Up	1st 30	-day Follo	ow-Up	Comments
Flag	Monitoring	Field	Repair	Action taken to repair	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	Exceedance	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	
O76	7/26/2021	512 ppm	7/27/2021	Soil Added	8/4/2021	5 ppm		8/24/2021	5 ppm		Well 185
077	7/26/2021	2000 ppm	7/27/2021	Soil Added	8/4/2021	23 ppm		8/24/2021	40 ppm		Sump 1
078	7/26/2021	1000 ppm	7/27/2021	Soil Added	8/4/2021	11 ppm		8/24/2021	15 ppm		Sump 2
O79	7/26/2021	600 ppm	7/27/2021	Soil Added	8/4/2021	45 ppm		8/24/2021	35 ppm		Pipe
O80	7/26/2021	750 ppm	7/27/2021	Soil Added	8/4/2021	38 ppm		8/24/2021	42 ppm		Buterfly Valve

Personnel: LEISTWADE	Richens / Grass	
DWISH + ANDERSON	<u></u>	Cal. Gas Exp. Date: <u>9-21-2</u>
Date: <u>>-26-2/</u> Instrument Us	ed: <u>tvaluoo</u> Grid	Spacing:
Temperature: <u>7/</u> Precip: <u>7</u>	D Upwind BG: 2.9	Downwind BG: 2.8

GRID ID	STAFF	START	STOP	тос	WI	ND INFORM	REMARKS	
0100 10	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLMARKS
i	LW	1130	1145	21	1	2	7	
2	op	1170	1145	18	11	12	7	
3	DB	1130	1141	36		2	17	
4	PL	1130	1145	17	1	2	M	
5	LW	1145	1200	34	3	5	6	
6	00	1145	1200	19	1	5	6	
>	br.	1145	1200	31	C	5	6	
8	RL	1145	1200	54	1	5	6	here and the second sec
10	4	1200	1215	31	1	4	7	
11	op	1200	1215	11	Ĩ	4	17	
12	DA	1200	1211	89	C	4	1	
15	RL	1200	1215	17	3	4	14	
18	LU	1215	1270	31	1	1ª	M	
19	op	nir	1230	11	Ĵ	5	7	
20	-DA	1215	1230	65)	5	1	
24	RL	1215	1270	19	3	5	7	
25	W	1270	1245	36	1	4	Ý	
29	op	1220	1245	20	Ĩ	4	4	
30	pn	1270	1245	19)	9	4	
31	RL	1230	1245	59	3	9	4	
25	LW	1245	1300	24]]	4	14	
36	op	1245	1700	18	1	4	9	
25	PA	1245	1300	26)	4	Ý	
41	RL	1245	1300	39	5	4	9	
42	LW	1300	1315	512	3	4	4	WEILIES
43	0p	1300	130	51	3	9	9	
47	PA	1700	1315	25)	4	Ý	
48	RL	1700	1315	22	3	4	4	
49	LW	1315	1330	フフ	5	Y	Ý	
50	0,0	1315	1370	60	1	Ý	4	

Page _____ of _____

Pe	rsonnel: _	LEISH	SADE		Richan	DLOM	05		
		Dwis	It ANDEN	3015				Cal. Gas I	Exp. Date: <u>9-21-21</u>
	Date:	-26-21	Instrun	nent Used	:	A1000	Gri	d Spacing:	251
	Temperat	ure: <u>89</u>	Prec	cip:	Upv	wind BG:	2.9	Downwi	ind BG: <u>2. 8</u>
	GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	MATION	REMARKS
		INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	

	1 0	JUNKI	1 5101	1 100				
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
54	DA	1315	1330	37	3	4	4	
55	RL	1315	1330	61	3	9	9	
59	LW	1330	1345	42	3	5	17	
60	op	1330	1341	34	1	8	17	
61	OB	1330	1345	29	Ĵ	5	1	
64	RL	1330	1345	45	1	5	7	
65	11	1793	1900	25	3	4	6	
66	0.0	1345	1400	84	1	4	6	
67	pA	1345	1400	2,000	7	4	6	SAMPI
69	RL	1345	1800	34	2	9	6	
70	12	1400	1415	28	1	L	15	
71	90	1400	1415	41		2	K	
72	DA	1400	1411	39		2	15	
73	RL	1400	1415	21	1	2	15	
74	-20	1415	1430	18	1	2	16	
75	00	1415	1200	64		2	16	2
>6	op OA	1415	1430	25		2	16	
77	RL	1415	1430	38	1	2	16	
>8	22	1400	1445	51	1	2	16	
29	op	1430	1445	27	1	2	16	
80	DA	1430	1445	35		2	16	
81	RL	1470	1445	35	1	2	16	
8.2	w	11445	1500	26	1	2	16	
87	OP	1445	100	39	1 C	2	16	
84	DA	1445	1500	1>	i i	2	110	
85	RL	1445	1500	24	1	2	16	
8-6	w	1500	1515	19	1	x	8	
87	op	1500	1515	21	Ť	2	3.	
88	PR	1500	1515	50	1	L	8	
88	AC	1500	1515	81	1	d	8	

Page _____ of ____

Personnel: LEISLUIDE	Richard Lon: 5
Dwight ALDUNOU	Cal. Gas Exp. Date: <u>デーンノー</u>
Date: 7-26-2/ Instrument	Used: Grid Spacing: 2 5'
Temperature: $\underline{} \mathcal{C} \mathcal{C}$ Precip: _	D Upwind BG: 2. 9 Downwind BG: 2. F
	WIND INFORMATION

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	ATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
90	11	,1515	1530	34	1	2	8	
91	00	1515	1570	17	1	2	8	
92	ÓA	1515	1530	21		2	8	
93	RL	1515	1530	14		L	8	
94	62	1530	11545	20	3	5	7	
95	00	1570	1545	11	1	5	4	
56	på	1570	1545	16	C	5	7	
97	RE	1570	1545	14	S	5	1	
91	w	1545	1600	36	9	6	19	
99	op	1545	1600	24	Ý		17	
100	DR	1545	1600	21	4	6	4	
101	RL	1545	1600	16	9	6	M	
102	La	1600	1615	18	4	,6	7	
103	OP	1600	1615	25	4	6	7	
104	- DA	1600	1615	14	4	6	1	
105	RL	1600	1615	17	4	6	7	
							1	
				· · · · · · · · · · · · · · · · · · ·				
		1		1				
	1					1.1		
			· · · · · · · · · · · · · · · · · · ·		i kan di			
	· · · · · · · · · · · · · · · · · · ·		L		L.	1.		
			1					
						1		

Page ______ of _____

	1-26-21	Instrur						Exp. Date:
emperat								vind BG:
GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
9					1			Activethess
13		· · · · · · ·			1.		1)
16	1				1. 2.			
21								
26								V
14						1		Steep slopt.
17					12 74			1
22								
27								
32	1		I			1	11	
38						1	·	
44 51						1	1	
					1	T	1	-
56				-			1	V
23						T	1	NowAsteinplac
28								1
33				1 +			1	
34						1		
39								1
40					· · · · · · · · · · · · · · · · · · ·			
45					· · · · · · · · · · · · · · · · · · ·	1		
46								
52			4					
53								
57								
58								
62							1	
63 68								

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of ____

330

Orange Flag Landfill Surface Emissions Monitoring Exceedances and Monitoring Log

Site Guerdalupe

Ouarter / Year:	'ear:	3202025	12										Page of Pages
Technician		CE154 2100	100										
Instrument:		tuation											
Calibration	Calibration Standard:	2005						Mankadaa Fua	40 Davie	an-Day	30-Day Follow-up Monitoring	itorina	Comments
Flag	Grid	Srid Field Reading	Date	Pirst Ke-M Date	Pirst Ke-Monitoring Event - Date No Excd	- TU Uays Excd.	Date	Date No Excd. Excd.	Excd.	Date	No Excd	Excd.	
Number	Number	(mqq)	Monitored	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	
0-76	25	215	12-72-2										WE11/85
0- 77	67	2000	1										Scinp 1
0.78	62	1000											59-202
0- 79	62	600											Pipe
0. 80	62	250	>										Button Fuy Value
0													
Ċ													
ċ													
ó													
Ċ													
Ċ													
-0													
C													
С													
0													
ċ													
-0													
Ō													
ó													
ć													
0													
-O													
Ċ													
-0													

383

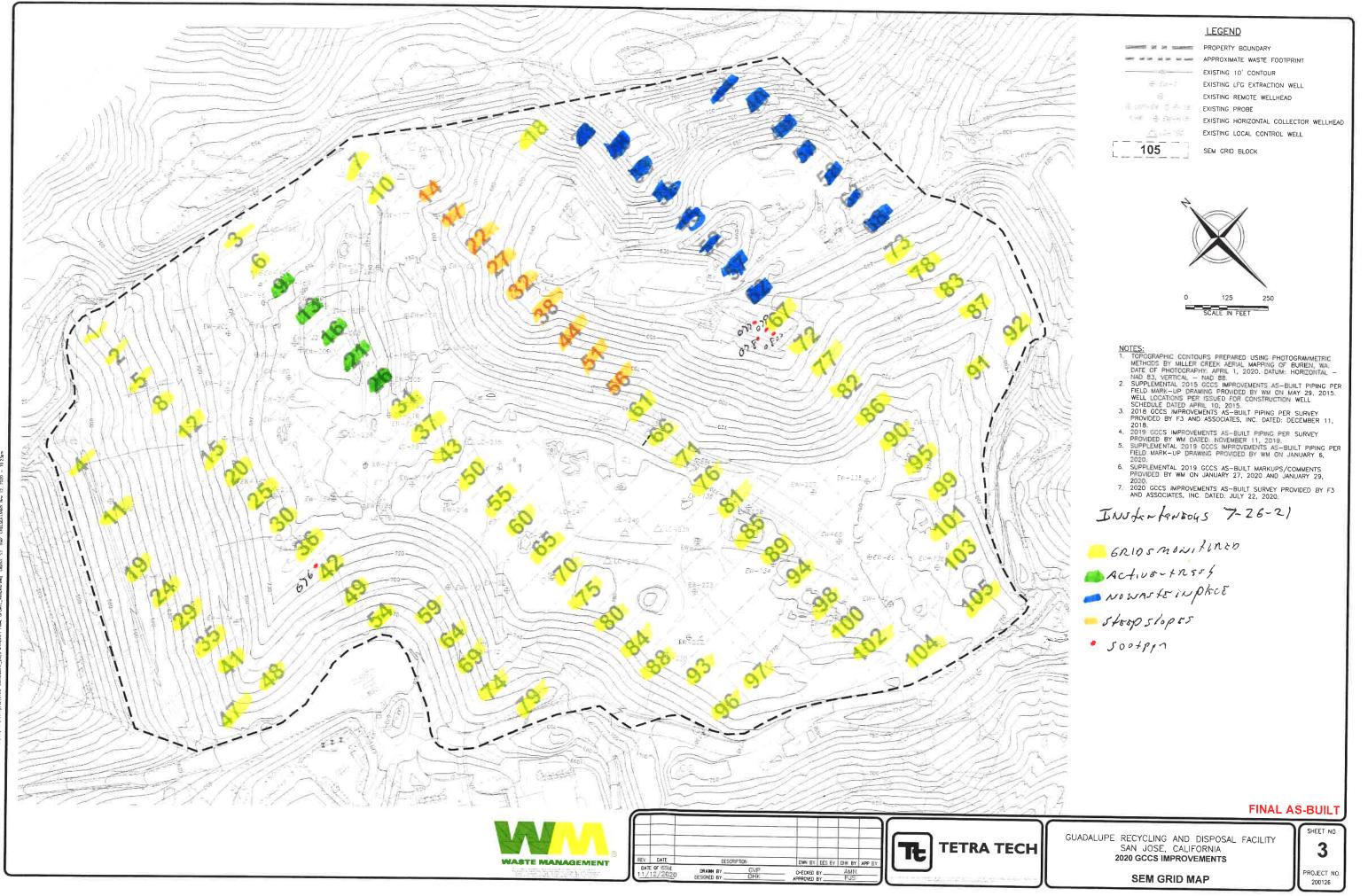
SITE: <u>Guadalape</u>

PENETRATION ID	GRID NUMBER	INITIAL (PPM)	• • • • • • • • • • •
SVEZ	1	21	
RONE	2		
5081	3	36	
12188	4	.17	
NONE	5		
AUNE	6		
10196	> .	71	
WE11202	8	54	
Wa1179	9	Active	
WE11198 WE11159	9 9	J.	
WE1176 WE11232	10	31 17 24	
LE11232	10	24	151
NOUE	1/		

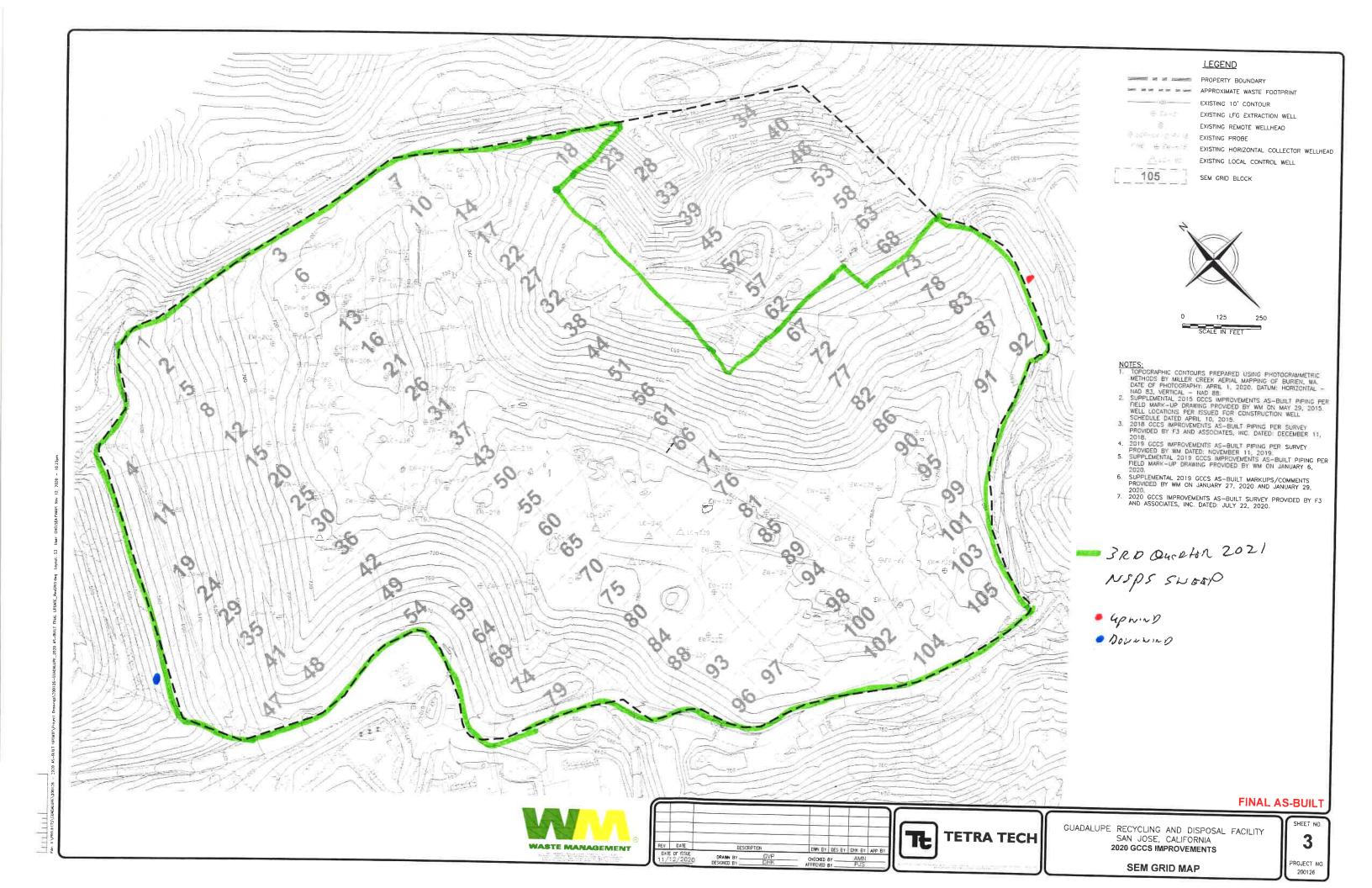
SITE: <u>Guadalupe</u>

PENETRATION ID	GRID NUMBER	INITIAL (PPM)	* * * * * * * * * *
4511214	12	24	
VEU158	12	89	
WE11178	13	Active	
Black pipr	15	- 1	
WEILISS	13		
annonleed UETI	13		
VE11200	13	. V	
÷			
WE4 208	16	Active	
WE11180	16]	
צק קנןשהם א	16		
Blackpip	16		
WE11152	16	V	
VE1181	2/	ALLIVE	
W811236	2.6	Actur	
WE11216	31	27	
WEI1 190		59	
VE11215	32	Sterpslopin	
WE11205	32	V	
WE11 185	42	512	

SITE: 6450 5/405


PENETRATION ID	GRID NUMBER	INITIAL (PPM)	* * * * 3 * *
Vall 217	43	51	
WE!! 735	43 43	46	
Kouz	47		
NOUE	48		
ROME	49	~	
WEIIZIT	50	29	
WE11183	50	,60	
ADAE	54		
WE1184	55	27	
WE11187	55	34	
WE1/192	SF	61	
6011173	59	.42	
WE11129	60	34	
WE11 219	60	16	
WE11220	60	25	
NOUIZ	61		*
Sunp Z	620267		
NOUE	64		

SITE: Geoliup+		- 2	DATE:	1 T
PENETRATION ID	GRID NUMBER	INITIAL (PPM)	• •	
WM1243	65	25		
6211241	65	17		
LJE/1226	66	31		
WE11278	66	31 84		
BIELLEPAN	67	2,000		
BIGLICPIPE	67	1,000		
Blaillpipm	67	600		
DEULPIPE	67	067	· · · · · · · · · · · · · · · · · · ·	
Us!1172	69	39		
NONE	70			
NOAE	7/			
140-8	72	39		
11.5				
LONE	73			
NOAE	74			
2811242	75	31		
WEIL240	75	64		-24-174
) (411 17 5	76	25		
WE11239	76	13		
W CII 231				
-				


SITE: <u>Guerrep</u> r				
PENETRATION ID	GRID NUMBER	INITIAL (PPM)	4 4 2	
NONE	77			
NORIE	78			
NOAÉ	79			
AVAE	80			
WE11224	81	35		
6				
Nouiz	82			
LOAE	83			
WE11220	84	17		
WE71228	85	24		
MONE	86			
NORE	87			
WE111222	88	50		
WE11270	88	/ 6		
W811227	89 89	25 81		
WE11124	۲ (0 '		

SITE: Gladelyn

PENETRATION ID	GRID NUMBER	INITIAL (PPM)	* *; - *
WELLZZS	90	24	
WEU 112		21	
AOUE	21		
Arowiz	92		
NOUE	93		
WELL GS	99	20	
Noue	95		
AONE	96		
MOUE	97		
EW 66	98	3.6	
NONE	95		
1F662	100	<u>ب</u> ا	
ROAE	101		
W01142	102	18	
WE11138	103	ح ح	

. X / PRU (175), QUAXUPEX, 2009. 45-8001 | UPAIRY Preed, Devening / 2010/24.0001 45-2009 45-2009 45-2009 45-2009

Attachment B

Integrated Surface Emission Monitoring Event Records

Table B.1 Integrated Landfill Surface Monitoring Exceedances and Monitoring Log

2021 QUARTER:3INITIAL MONITORING PERFORMED BY:RESFOLLOW-UP MONITORING PERFORMED BY:NALANDFILL NAME:Guadalupe Recycling & Disposal Facility

Initial	Monitoring	Event	1st Re-m	on Event -	10 Days	
Exceedance	Monitoring	Field	Monitoring	No Exced.	No Exced.	
Grid ID No.	Date	Reading	Date	<25 ppm	>25 ppm	Comments
None						

Personnel: LEIShUNOF	Richman 10mos	
Overpenelth Duisht Anbensed		
ne ne perse b	·	Cal. Gas Exp. Date: <u>9-21-2</u> /

Date: 7-27-21 Instrument Used: 41000 Grid Spacing: Z 5'

Temperature: <u>60</u> Precip: <u>0</u> Upwind BG: <u>2.9</u> Downwind BG: <u>2.8</u>

	STAFF	START	STOP TIME	TOC PPM	WIN	REMARKS		
	INITIALS	TIME			AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMAKKS
1	LW	0530	0555	3.71	2	3	4	
2	00	0570	0555	4.11	7	7	4	
3	DA	0530	0555	3.98	2	Ĵ	4	
4	RL	0530	8555	4.26	2	1	4	
5	LW	0555	0620	3.71	2	3	19	
6	Op	0555	0620	5.54	7	3	Y	
>	DA	0555	0620	5.82	2	3	4	
8	PL	0555	0520	6.13	2	3	4	
10	LL	0620	0645	5.91	d	3	9	
11	op	0620	0645	4.15	L	1	9	
12	ba	0620	06401	5.54	L	Ĵ	Ý.	
15	RI	0620	Stles	6.61	2	3	4	
18	4	0645	0710	5.98	2	3	4	
19	op	0645	0710	4.74	2	7	4	
20	DA	0645	6760	5.38	2	j	4	
24	RL	oius	0700	4.67	2	3	4	
25	w	0110	0735	5-55	2	3	1	
29	op	0710	2770	4.84	d	3	3	
30	ba	0710	1550	6-11	2	3	J	
31	RL	0110	2550	6.02	2	3	3	
ÐS	w	0735	0800	5-54	- u	J	16	
36	op	0725	0880	6-28	Z	3	lle	
37	DA	0)25	0800	5.45		1	16	
41	RL	0)71	0800	6.08	2	3	16	
42	w	0800	0825	5.32	V.]	16	
43	op	0800	0825	6.45]	16	
47	DA	0800	0825	4.92		5	16	
48	RL	0800	OFZ	4.56	2	3	16	
49	12	0825	0850	6-13	d	J	16	
50	op	0825	0850	5.74	2	1	16	

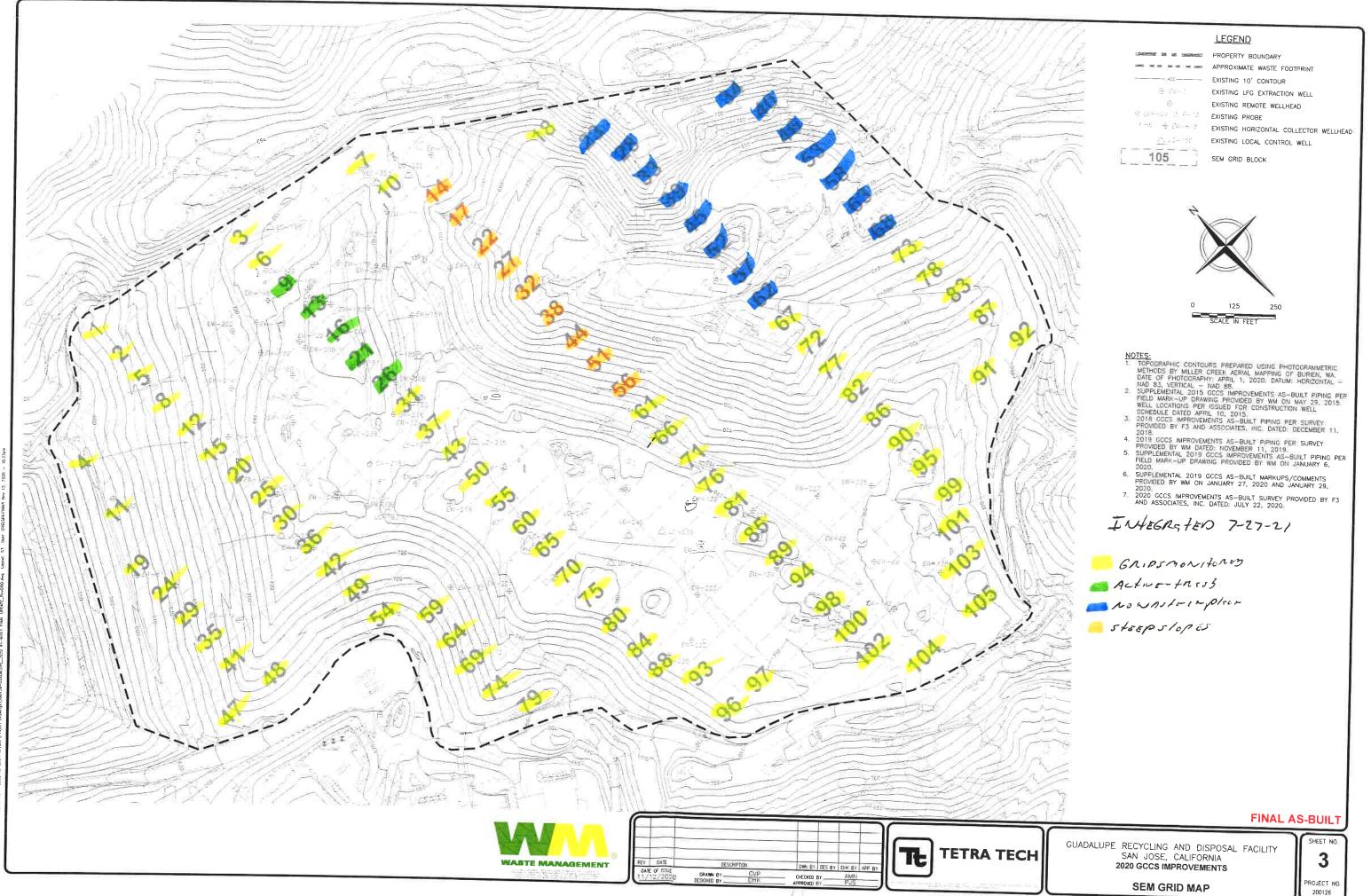
Page _____ of _____

	Duisha	ANDINIO					Cal. Gas Exp	Date: 2-2/-2
ate: <u>7</u>	-27-21	Instrum	ent Used:	tua 102	00	_ Grid S	Spacing:	2 3 1
emperat	ure: <u>6</u> 3	Preci	p:	Upwind	BG:	2.4	_ Downwind	BG: 2.8
GRID	STAFF	START	STOP	тос	WIN	D INFO	RMATION	DEMADIZO
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
54	DA	0821	0850	6.27	2	3	16	(
55	AL	0825	0850	5-41	2	3	16	
59	LW	0850	0915	4.28	2	3	16	
60	op	0850	6915	5-11	2	7	16	
61	ÓR	6810	0515	4.77	2	Ĩ	16	
64	er	0850	0915	5-63	2	3	16	
65	a	0915	0940	5.99	2	3	16	
6-6	op	0915	0940	4.38	2	3	16	
67	0A	0515	0940	5.24	2	2	16	
69	RL	0915	2940	5-66	2	С	16	
70	w	0940	1005	6.27	2	1	16	
71	00	A40	1005	6.45	2]	16	
72	DA	0940	1005	7.14	5	1	16	
73	RU	0940	1005	6.89	2	3	16	
74	LN	1005	1030	5.44	2	J	16	
75	op	1.005	1030	5.86	2	3	16	
76	DA	1005	1030	4121	2	3	llo	
77	RL	1605	1030	4.75	2	3	16	
28	w	1030	1055	5.07	2	3	16	
79	OD DR	1870	1005.	4.80		3	16	
80		1070	1555	5.54	2	1	16	
81	RL	1675	1055	5-02	2	1	16	
28	w	1055	1120	4.65	272	3	16	
83	Op	1055	1120	4.21	2	1	16	
84	DR.	1055	1120	5-13	2	j	16	
85	RI	1855	1120	4.65	2	3	16	
86	Cu	1150	1215	4.40	d	3	16	
87	op	11.50	1215	5-19	1	3	16	
88	DA	1150	125	4.71	t	C	1/2	
85	RL	1658	1215	4.66	2	1	16	

Page Z of 3

	Duight							Date: <u>9-21-2</u>
ate: <u>7</u> -	-27-21	Instrum	ent Used: _	tua 100	σ	_ Grid S	Spacing:	251
mperat	ure: _ 7)	Preci	p:	Upwind	BG:	2-4	_ Downwind	BG: <u>2,</u> 8
GRID	STAFF	START	STOP	TOC PPM	WIND INFC			REMARKS
ID	INITIALS	TIME	TIME		AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KENAKO
90	w	1215	1240	4.28	d	3	16	
21	00	1215	1240	5-30	2	1	16	
92	DA	1215	1240	4-71	L	5	16	
93	RL	1215	1240	5.28	2	3	16	
94	u	1240	1305	5-16	2	2	16	
95	00	1240	1305	4.38	J	1	16	
96	DA	1240	1305	5.12	ム	E	76	
テン	RL	1240	1305	4.15	2	3	16	
98	LN	1305	1370	4-68	2	3	4	
99	Op DD RL	1305	1370	5.84	2	3	9	
100	DD	1705	1330		ム	1	9	
101	RL	1705	1370	5.92	2	3	9	
102	in	1330	1355	5-47	Z	3	'Y	
63	op	1330	1355	4.30	2	3	4'	
04	DA	1370	1350	4.55	2	3	4	
105	RL	1370	1355	5.13	2	3	4	
	-				1.6.1			
					1			
				1	1			
					1			
		11						
				1		1		
	1							
					1			

Page <u>3</u> of <u>3</u>


323

GUADALUPE LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

L ^a								p. Date:
ate: <u>7</u>	-27-21	Instrume	nt Used:			Grid S	pacing:	
emperat	ure:	Precip	:	_ Upwind	BG:		Downwin	d BG:
GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
9						123.11		Activetnos
13					1.25			
16								
21								
26	1				1			V
14								Steepslapts
17		-				1)
22				1				1
27								
32					1			
36								. /
44								
51								
56				1				V
23								No wasto in pla
2F								
33								
34				1				
39								
40			- G	1				
45								
46								
rz 53								
22								
52								
18								
57 53								
53	1							

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of ____

Attachment C

Component Leak Monitoring Event Records

Table C.1AB-32 Component Leak MonitoringSummary of Component Leaks Greater than 500 ppmv

2021 QUARTER: 3

INITIAL MONITORING PERFORMED BY: RES

FOLLOW-UP MONITORING PERFORMED BY: NA

LANDFILL NAME: Guadalupe Recycling & Disposal Facility

Location	l	nitial Monitorin	g	C	Corrective Action	10-Day Remonitoring			
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech	
Flare Station A-9	7/26/2021	ND	RES	NA	NA	NA	NA	NA	
Flare Station A-14	7/26/2021	ND	RES	NA	NA	NA	NA	NA	

ND= Non Exceedances

Table C.2BAAQMD Component Leak MonitoringSummary of Component Leaks Greater than 1,000 ppmv

2021 QUARTER:

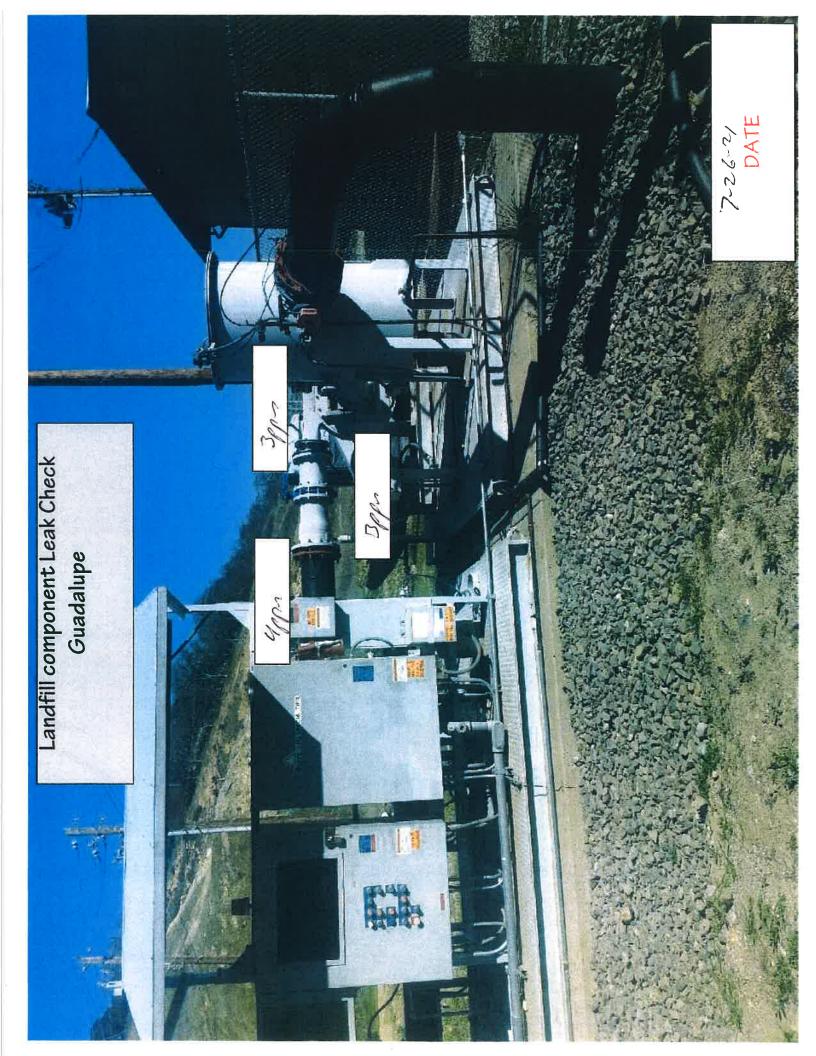
INITIAL MONITORING PERFORMED BY: RES

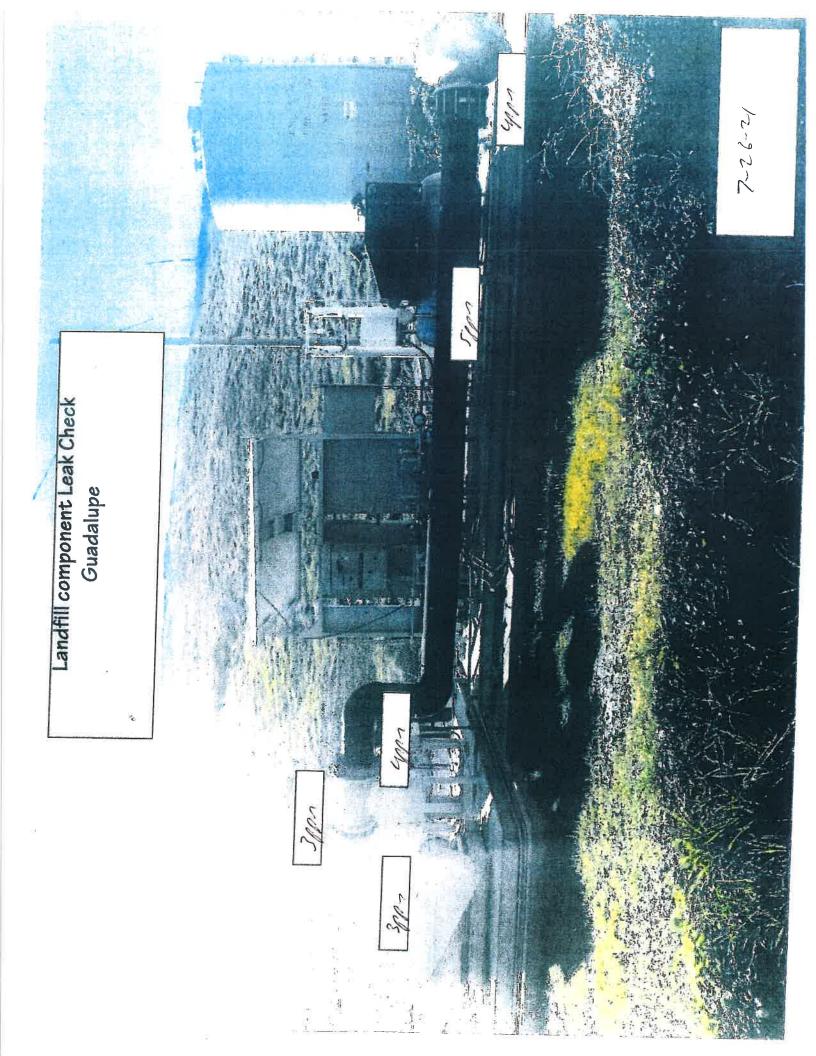
3

FOLLOW-UP MONITORING PERFORMED BY: NA

LANDFILL NAME: Guadalupe Recycling & Disposal Facility

Location	L.	nitial Monitorin	g	С	Corrective Action	7-Day Remonitoring			
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech	
Flare Station A-9	7/26/2021	ND	RES	NA	NA	NA	NA	NA	
Flare Station A-14	7/26/2021	ND	RES	NA	NA	NA	NA	NA	

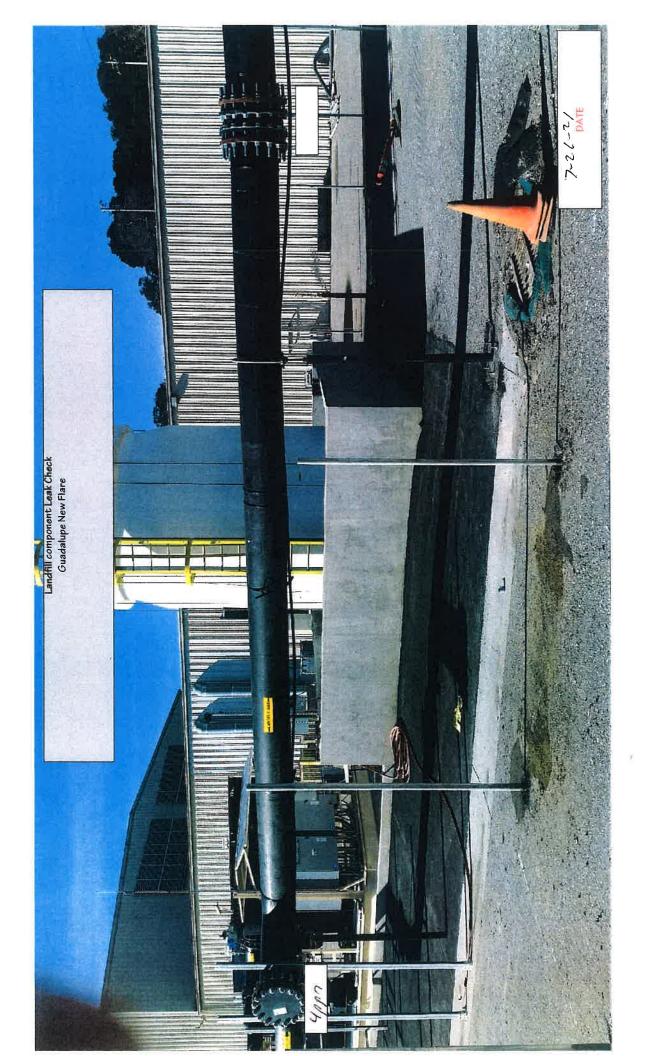

ND= Non Exceedances

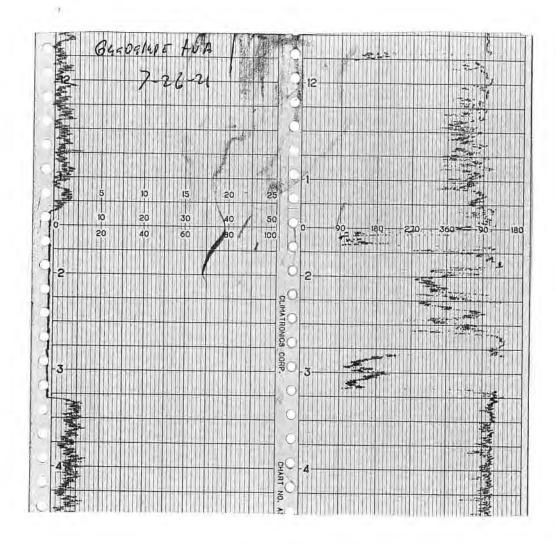

LANDFILL NAME: *しょっのいいの とうしょ*

INSTRUMENT FID MAKE: Thermo Environr MODEL: TVA 1000 S/N: ノップビブゼビンク

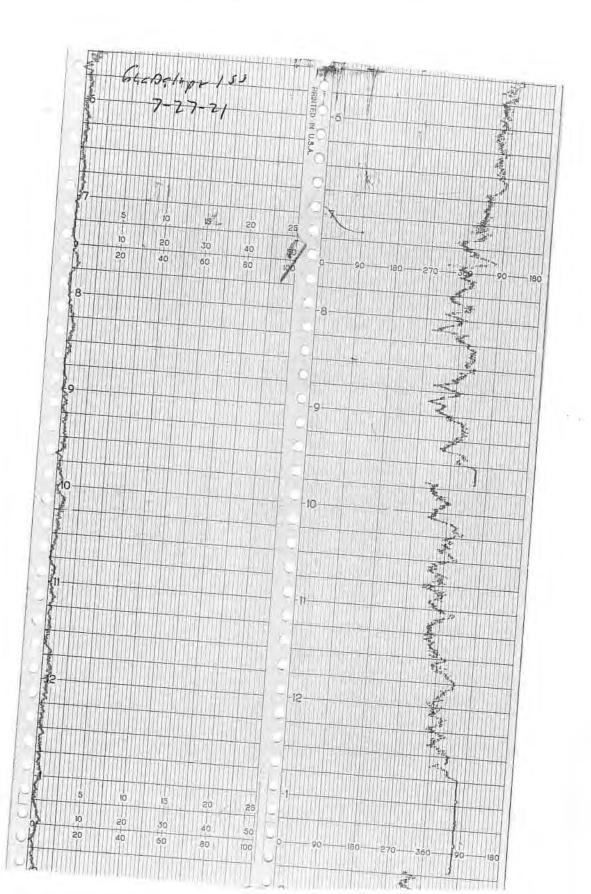
DATE OF SAMPLING: アープレーン I TECHNICIAN: レギじょ ロロの ビ

	-	-	_	-	-	-	-	-	-	-	-	_	_	-		-	
RE-MONITORED CONCENTRATION (ppmv)																ns Subchapter 10, Article	
DATE OF ANY REQUIRED RE- MONITORING															the initial exceedance.	fornia Code of Regulation	n 8-34-301.2.
DATE OF REPAIR															n within 7 days of t	RB Title 17 of Cali	AAQMD Regulatio
ACTION TAKEN TO REPAIR LEAK															r the exceedance locatior	idfill gas, pursuant to CAF	andfill gas, pursuant to B/
TECHNICIAN															tion and re-monitor	nent containing lan	onent containing Is
DATE OF DISCOVERY															se intiate corrective ac	dances at any compo	sedances at any comp
LEAK CONCENTRATION (ppmv)															n the event that an exceedance is detected, please intiate corrective action and re-monitor the exceedance location within 7 days of the initial exceedance.	NOTE: Leaks over 500 ppmv methane are exceedances at any component containing landfill gas, pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).	NOTE: Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas, pursuant to BAAQMD Regulation 8-34-301.2.
LOCATION OF LEAK	NJEXCREDENC 62														In the event that an exce	NOTE: Leaks over 500 ppmv methane 4, Subarticle 6, Section 95464(b)(1)(B)	NOTE: Leaks over 1,000





Attachment D Weather Station Data


WIND SPEED & DIRECTION CHART ROLL

h

1

WIND SPEED & DIRECTION CHART ROLL

	16-POINT V	VIND DIRECTION	INDEX	
NO	DIRECTION		DEGREES	
		FROM	CENTER	<u>T0</u>
16	NORTH (N)	348.8	369.0	U.1.3
1	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033.8	045.0	056.3
3	EAST-NORTHEAST (ENE)	056.3	067.5	078.8
4	EAST (E)	078.8	<u>090.0</u>	101.3
5	EAST-SOUTHEAST (ESE)	101.3	112.5	123.8
6	SOUTHEAST (SE)	123.8	135.0	146.3
7	SOUTH-SOUTHEAST (SSE)	146.3	157.5	168.8
8	SOUTH (S)	168.8	180.0	191.3
9	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213.8
6	SOUTHWEST (SW)	213.8	225.0	236.3
11	WEST-SOUTHWEST (WSW)	236,3	247.5	258.8
12	WEST (W)	258.8	<u>270.0</u>	281.3
13	WEST-NORTHWEST (WNW)	281.3	292.5	303.8
4	NORTHWEST (NW)	30.1.8	315.0	326.3
5	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8

865 Via Lata = Colton, California 92324 = (909) 422-1001 Fax (909) 422-0707

Attachment E

Calibration Records

LANDFILL NAME: 6800,	ALAPE	INSTRUMENT MAKE: + Hon 20							
MODEL: fur 1000	EQUIPMENT #: _	13		SERIAL #: 1/62746775					
MONITORING DATE	26-21	5 m c.	TIME:	1120					

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\int b B$ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Reading:	Background Value: (Upwind + Downwind) 2
Z-4 pp	n Z.F ppr	n Z6 ppm

Background Value = 2.6 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stab Reading	teading		0% of ing after Zero Air to	
#1	506	ppm	456	ppm	5	
#2	500	ppm	450	ppm	5	
#3	560	ppm	450	ppm	5	
	Calculate Response T	ime (14 3	+2+3)		ر Must be less thar	#DIV/0!

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurément #	Meter Reading for Ze	Meter Reading for Zero Air (A)			Calculate Precision [STD - (B)]		
#1	0.32	ppm	506	ppm	6		
#2	0-16	ppm	500	ppm	0		
#3	0.10	ppm	500	ppm	0		
Calculate Precision	[STD-B1] + [S	TD-B2] + [5 3	500 X 1 X	100 1	0.40	#DIV/0	
	the second s		100 million 100		Must be less that	in 10%	

Performed Br Omenpenelta

Date/Time 7-26-21 -1/20

LANDFILL NAME: 64000 14 12	INSTRUMENT MAKE + Hom						
MODEL: 400 1000 EQUIPMENT #:	10	SERIAL #: 103634677	3				
MONITORING DATE: 7-26-21	TIME:	1120					

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{500}{2000}$ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
Z-Y ppm	2.8. ppm	2.6 ppm

Background Value = 2.6 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabil Reading	ized	Time to Reach Stabilized Rea switching from Calibration Ga	ding after A Zero Air to
#1	505	ppm	455	ppm	7	
#2	500	ppm	450	ppm	7	
#3	500	ppm	450	ppm	7	
	Calculate Response T	ime (<u>1</u>	-2+3)		> Must be less th	#DIV/0!

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Zero	o Air (A)	Meter Reading Calibration Ga		Calculate Precision [STD - (B)]
#1	0.31	ppm	505	ppm	r	-
#2	0-18	ppm	500	ppm	0	
#3	0-10	ppm	500	ppm	۵	
Calculate Precisio	n [STD-B1] + [STI	0-B2] + [9	500 STD-B3	<u>100</u>	0+33	#DIV/0
		_			Must be less than	10%

Performed By Layhunpr

Date/Time ______ - 26-21 - 1120

LANDFILL NAME: GLODG/4/7			INSTRUMENT MAKE: HUGA 0		
MODEL: LUAIOUS	EQUIPMENT #:	11		SERIAL #: 1636346772	
MONITORING DATE:	7-26-21		TIME:	1120	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{\int \partial D}{\int D}$ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:	
Reading:	Reading:	(Upwind + Downwind)	
(Highest in 30 seconds)	(Highest in 30 seconds)	2	
Z-Y ppr	2.8 ppm	Z-6 ppm	

Background Value = 2.6 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading I Calibration Gas	Jsing	90% of the Stabilized Reading			ized Reading after hing from Zero Air to	
#1	489	ppm	989	ppm	5		
#2	502	ppm	452	ppm	5		
#3	500	ppm	450	ppm	5		
	Calculate Response Tin	ne <u>(14</u> 3	-2+3)		Must be less than	#DIV/0!	

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Zer			for s (B)	Calculate Precision [STD – (B)]	
#1	0-21	ppm	489	ppm	11	-
#2	0-14	ppm	502	ppm	2	
#3	0-08	ppm	500	ppm	ð	
Calculate Precision	[STD-B1] + [ST	D-B2] + [5 3	500 X 1 X	<u>100</u> 1	0-86	#DIV/0
					Must be less that	n 10%

Performed By Dwist 2 ANDERIN Date/Time 7-26-21 - 1120

LANDFILL NAME: 64	eoslup8	INSTRUMENT MAKE: Alenn		
MODEL: +VA1000	EQUIPMENT #:	12	SERIAL #: 167624674	
MONITORING DATE:	7-26-21	TIME:	1120	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 500 ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background		Downwind Background		Background Value:	
Reading:		Reading:		(Upwind + Downwind)	
(Highest in 30 seconds)		(Highest in 30 seconds)		2	
2.4 1	ppm	2.8	ppm	2.6	ppm

Background Value = 2.6 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas
#1	490	ppm	440	ppm	5
#2	500	ppm	450	ppm	5
#3	500	ppm	450	ppm	5
	#DIV/0! Must be less than 30 seconds				

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Gas		Calculate Precision [STD - (B)]
#1	0.27	ppm	450	ppm	10	_
#2	6-19	ppm	500	ppm	0	
#3	0.19	ppm	500	ppm	Ø	
Calculate Precisio	on [STD-B1] + [ST	D-B2] + [5	500	<u>100</u> 1	0-66	#DIV/0
				-	Must be less than	10%

Performed By Richard Lonos Date/Time 7-26-21-1120

LANDFILL NAME: GLADRINDY	INSTRUMENT	MAKE: HHENID
MODEL: JVA 1000 EQUIPMENT #:	10	SERIAL #:
MONITORING DATE: 7-27-21	TIME:	0525

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
2.4 ppm	2.8 ppn	2,6 ppm

Background Value = 2.6 - ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabilized Reading	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas
#1	24 ppm	21.6 ppm	
#2	25 ppm	22.5 ppm	
#3	25 ppm		
	Calculate Response Time (1	+2+3)	5 #DIV/0! Must be less than 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze			for s (B)	Calculate Precision [STD – (B)]	
#1	0.27	ppm	24	ppm	,	
#2	0-21	ppm	21	ppm	D	
#3	0.12	ppm	25	ppm	U	
Calculate Precisio	n [STD-B1] + [S	TD-B2] + [9 3	<u>STD-B3]</u> X <u>1</u> X 25	<u>100</u> 1	, / -) #DIV/0 Must be less than 10%	

Performed By _____COTSLWADD

Date/Time: 7-7-21-05.25

LANDFILL NAME: 6200 Flop		MAKE _ 7401 13
MODEL:EQUIPMENT #:		SERIAL #: 1036346774
MONITORING DATE: 7-27-21	TIME:	0525

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 2 Jppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background		Downwind Backs		Background Value:	
Reading:		Reading:		(Upwind + Downwind)	
(Highest in 30 seconds)		(Highest in 30 seco		2	
2.4	ppm	2.8	ppm	2.6	ppm

Background Value = 2.6 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabilized Reading	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas
#1	ZY ppm	21.6 ppm	6
#2	r24 ppm	21.6 ppm	6
#3	ZS ppm	2215 ppm	6
	Calculate Response Time (<u>1+2+3)</u> 3	ل #DIV/0! Must be less than 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = $\underline{25}$ ppm

Measurement #	Meter Reading for Zero			for s (B)	Calculate Precision [STD – (B)]	
#1	0.35	ррт	24	ppm		
#2	0.16	ppm	24	ppm	/	
#3	0-11	ppm	20	ppm	0	
Calculate Precisio	on [STD-B1] + [STD-	82] + [: 3	<u>STD-B3]</u> X <u>1</u> X 25	<u>100</u> 1	ی کو ج #DIV/0! Must be less than 10%	

Performed By Owisht Arbonson

Date/Time: 7-27-21 05.25

LANDFILL NAME: 6400 - 140 -	INSTRUMENT MAKE: _ / Ifun
MODEL:EQUIPMENT #:	12 SERIAL #: 1036246741
MONITORING DATE: 7-27-21	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{2.5}{ppm}$
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
2.4 ppm	Z.E ppm	Zi 6 ppm

Background Value = _ Z, L ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stab Reading	ilized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas
#1	2.7 pr	m 20-7	ppm	7
#2	25 PF	m 225	ppm	7
#3	25 Pf	m 22.5	ppm	7
	Calculate Response Time	(<u>1+2+3</u>) 3		#DIV/0! Must be less than 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze			for Is (B)	Calculate Precision [STD – (B)]	
#1	0-7.5	ppm	23	ppm	7	
#2	0-21	ppm	25	ppm	0	
#3	0.14	ppm	20	ppm	0	
Calculate Precision	[STD-B1] + [S	3 3	STD-B3] X 1 X 25	(<u>100</u> 1	. 2-6 #DIV/0! Must be less than 10%	

Performed By

Richarn 10mos

Date/Time: 7-27-21 0525

LANDFILL NAME:64.	Nelipm		MENTMAKE: + HUMAS
MODEL: JUALIOU	EQUIPMENT #:		SERIAL #: 1/02746775
MONITORING DATE:	7-27-21	TIME	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{25}{2}$ ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
Za 🐓 ppm	2-8 ppm	2.6 ppm

Background Value = 2.6 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	- 1	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas
#1	24 PP	m	21.8	ppm	6
#2	25 pp	m	225	ppm	(s
#3		m	225	ppm	8
	Calculate Response Time	(<u>1+2</u> 3	<u>2+3</u>)		6 #DIV/0! Must be less than 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero Air (/	Meter Reading for Calibration Gas (B)	Calculate Precision [STD – (B)]	
#1	0.21 pp	TI 2.4 ppm	,	
#2	0-11 pp		0	
#3	0-08 pp	m zr ppm	0	
Calculate Precision	<u>[STD-B1] + [STD-B2]</u> 3	<u>[STD-B3]</u> X <u>1</u> X <u>100</u> 25 1	. 1-3 #DIV/0! Must be less than 10%	

Performed By: OMEN PERCUM

Date/Time: 7.27.21 - 0525

2100 MERIDIAN PARK BLVD

Concord, CA 94520 TO REORDER CALL 1 (888) 234-5678

METHANE 500ppm AIR BALANCE

Analytical Accuracy +/- 2%

103L @ 70F & 1000 PSIG Lot# K024306 P/N MET-500-103L

EXP: 6/19/2022

CALIBRATION PRECISION TEST RECORD

Date: <u>6/4/2021</u>	_			
Expiration Date (3 mo	onths): <u>9/4/2021</u>			
Time: <u>8:45</u> AM	PM			
Instrument Make:	Thermo Scientific Model: TV	'A 1000	S/N:	0928538411
Measurement #1:				
	Meter Reading for Zero Air:	<u>0</u> ppm	(a)	
Meter	Reading for Calibration Gas:	496	_ppm (b)	
Measurement #2:				
	Meter Reading for Zero Air:	0	ppm (c)	
Meter	Reading for Calibration Gas:	498	_ppm (d)	
Measurement #3:				
	Meter Reading for Zero Air:	0	_ ppm (e)	
Meter	Reading for Calibration Gas:	<u>496</u> pp	m (f)	
Calculate Precision:				
$\frac{ (496) - (500) + (500) }{ (500) }$	$\frac{(00) - (498) + (500) - (496) }{2} \times \frac{1}{500}$	x 100		
	3 500)		

<u>1.0</u> % (must be < than 10%)

Performed by: <u>M. Bernard</u>

RESPONSE TIME TEST RECORD

Date: <u>6/4/21</u>						
Expiration Date (3 months): <u>9/4/21</u>						
Time: <u>8:50</u> AM PM						
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S/N: <u>0928538411</u>						
Measurement #1:						
Stabilized Reading Using Calibration Gas:496ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:10seconds (a)						
Measurement #2:						
Stabilized Reading Using Calibration Gas:498ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:5seconds (b)						
Measurement #3:						
Stabilized Reading Using Calibration Gas: <u>496</u> ppm 90% of the Stabilized Reading: 450 ppm						
90% of the Stabilized Reading: <u>450</u> ppm Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: <u>5</u> seconds (c)						
Calculate Response Time:						

Calculate Response Time: $\frac{(a) + (b) + (c)}{3} = \frac{8}{3}$ seconds (must be less than 30 seconds)

Performed by: <u>M. Bernard</u>

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name:
 Guadalupe Rubbish Disposal
 Date: <u>8/4/21</u>

 Time:
 9:45
 AM
 PM

 Instrument Make:
 Thermo Scientific
 Model:
 TVA 1000
 S/N: 0928538411

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>500 ppm</u>

3. Adjust meter to read 500 ppm.

Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): <u>1 ppm (a)</u>
- 2. Downwind Reading (highest in 30 seconds): 0 ppm (b)

Calculate Background Value:

 $\underline{(a) + (b)}_{2} \qquad Background = \underline{0.5}_{ppm}$

Performed by: Markus Bernard

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name:
 Guadalupe Rubbish Disposal
 Date:
 8/24/21

 Time:
 11:45
 AM
 PM

 Instrument Make:
 Thermo Scientific
 Model:
 TVA 1000
 S/N:
 0928538411

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>500 ppm</u>

3. Adjust meter to read 500 ppm.

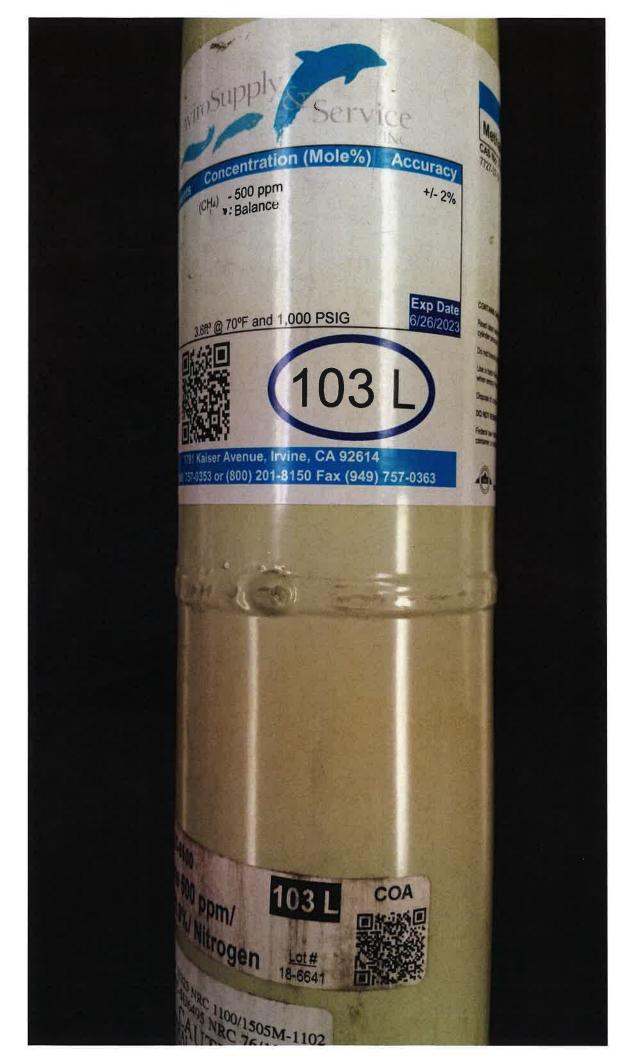
Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): <u>1 ppm (a)</u>
- 2. Downwind Reading (highest in 30 seconds): 0 ppm (b)

Calculate Background Value:

 $\frac{(a) + (b)}{2} \qquad Background = \underline{0.5} ppm$

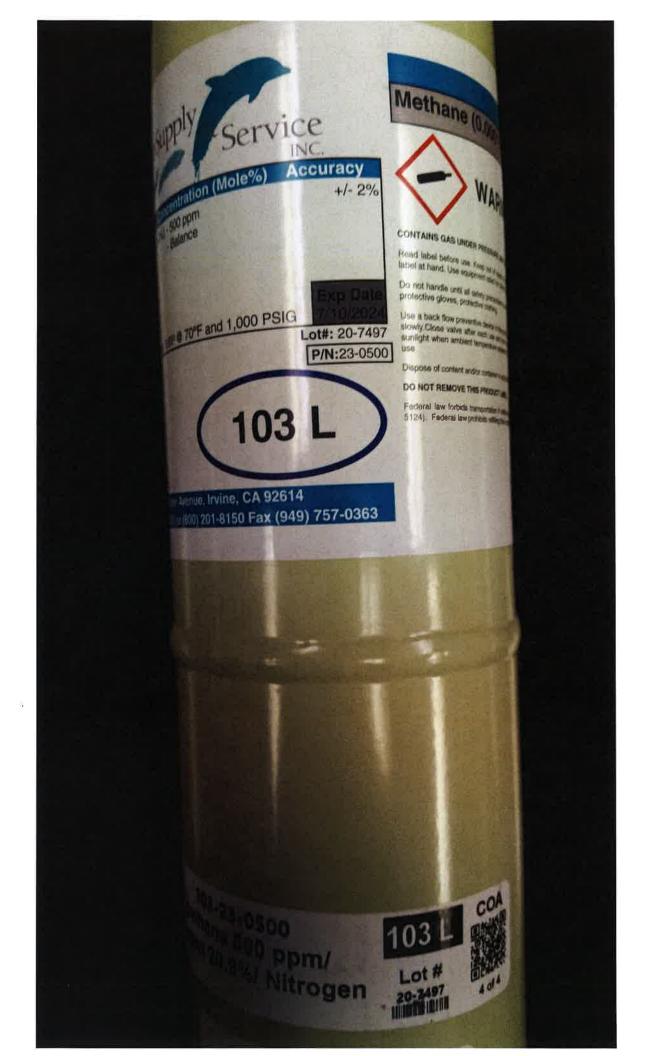
Performed by: Markus Bernard


Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 <u>www.isgases.com</u>

CERTIFICATE OF ANALYSIS

Composition		Certification	Analytical Accuracy (+/-)
Methane		500 ppm	2%
Oxygen		20.9 %	2%
Nitrogen		Balance UHI	
Lot #	18-6641		
Mfg. Date:	12/18/2018		
Expiration Date:			
Transfill Date:	see cylinder		
Parent Cylinder ID Number:	001763		
Method of Prepar	ation:		
Gravimetric/Pressu	re Transfilled		
Method of Analys			
and the second		cally and is traceabl	le to the NIST by certified weights (ID
#CA10814) used to	o calibrate the scale.		
建立。 我们的问题。			
		Analysis By: Title: Certificate Date:	Tony Janquart Quality Assurance Manager 12/18/2018


Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 <u>www.isgases.com</u>

CERTIFICATE OF ANALYSIS

Composition		Certification	Analytical Accuracy (+/-)
Methane		500 ppm	2%
Oxygen Nitrogen		20.9 % Balance UHI	2%
T at H	20 2402		
Lot # Mfg. Date:	20-7497 7/10/2020		
Expiration Date:	//10/2020		
Transfill Date:	see cylinder		
Parent Cylinder ID Number:	TWC001763		
Method of Prepar	ation:		
Gravimetric/Pressu	re Transfilled		
Method of Analys The parent mix wa	A REAL PROPERTY AND A REAL	cally and is traceabl	e to the NIST by certified weights (ID
#CA10814) used to	o calibrate the scale.		
NO NE ATO: NOXYTRETTRA TA		NINCE OF ISSUES	route to the state of the state
		Analysis By: Title: Certificate Date:	Tony Janquart Quality Assurance Manager 7/10/2020

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

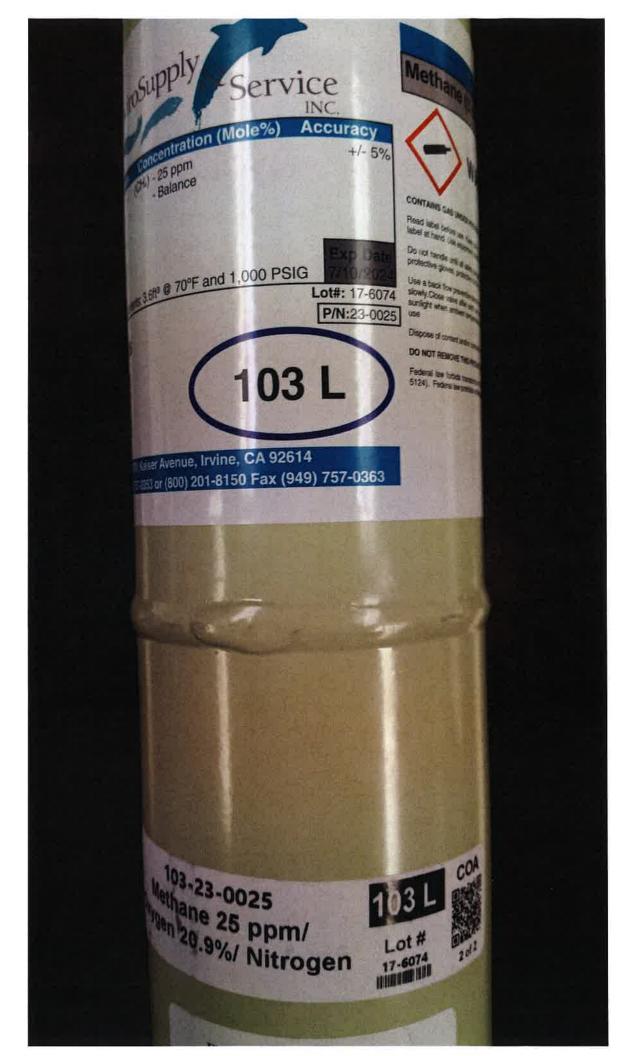
CERTIFICATE OF ANALYSIS

Composition Methane Air

<u>Certification</u> 25 ppm Balance Analytical Accuracy ± 5%

Lot # 17-6074

Mfg. Date: 10/16/2017 Parent Cylinder ID Number: 17161


Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 10/16/2017

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition Air - Zero THC Oxygen Nitrogen

Certification

Analytical Accuracy

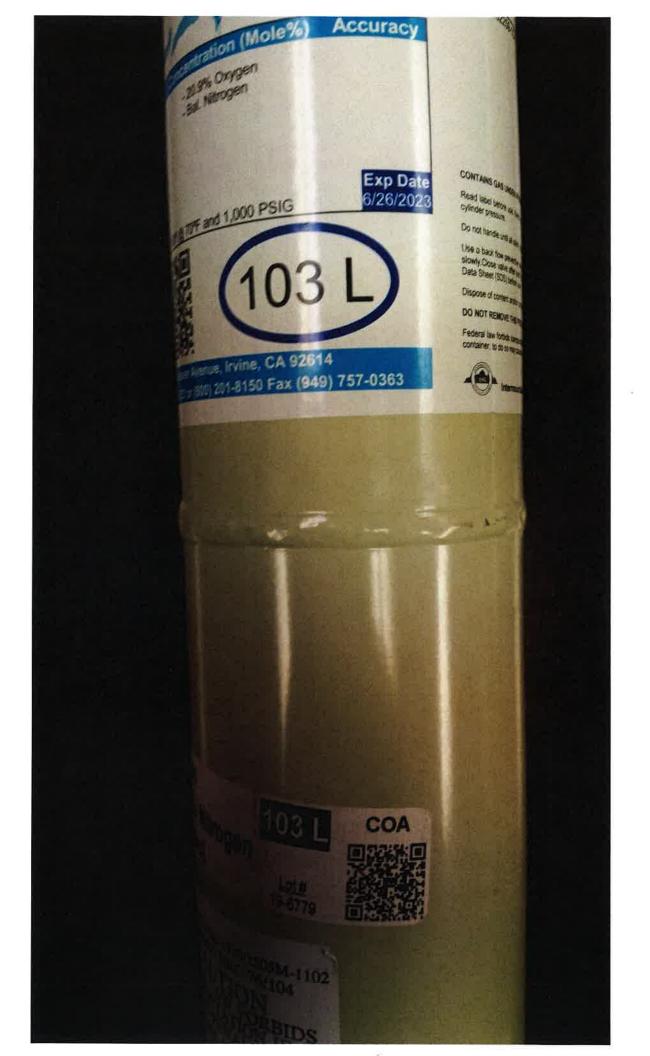
< 2 PPM 20.9% Balance

 $\pm 2\%$

Lot

19-6779

Mfg. Date: 4/3/2019 Parent Cylinder ID Number: 001739, 02268


Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

This mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 4/3/2019

Site:				
Purpose:	*			
Operator:	1 M			
Date: 8-7-2.		Time:	0830	
Model # <u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
INSTRUMENT INTEGRITY	CHECKLIST	INSTR	UMENT CALIBRA	TION
	00		LIBRATION CHEC	CK
Battery test	Mass / Fail	Calibration	Actual	%
Reading following ignition	2,3 ppm	Gas (ppm)	(ppm)	Accuracy
	$\overline{\mathbb{A}}$	300	500	100V,
Leak test	Rass / Fail / NA			'
Clean system check	Pass / Fail / NA		RESPONSE TIME	
(check valve chatter)		Calibration Gas, p	ppm	500
	R	90% of Calibration	n Gas, ppm	450
H ₂ supply pressure gauge	Pasis / Fail / NA		attain 90% of Cal G	ias ppm
(acceptable range 9.5 - 12)	-	1	2	
Date of last factory calibration	1-10.21	2	5.	
Factory calibration record	Pass / Fail	Average	0	
w/instrument within 3 months		Equal to or less the		(Ý) N
		Instrument calibra	ated to <u>CHu</u>	_gas.

Comments:

Site:		
Purpose:		
Operator:M		
Date:	Time:	0847
Model # TVA 1000 B		
Serial # <u>#11 1036346774</u>		

INSTRUMENT INTEGRITY	INSTRUMENT CALIBRATION				
Battery test	Pass / Fail	CA Calibration Gas (ppm)	LIBRATION CHE Actual (ppm)	%	
Reading following ignition	2 .1 ppm		(ppin) 	Accuracy $\overline{(00)}$	
Leak test Clean system check	Pass/Fail/NA Pass/Fail/NA		RESPONSE TIME		
(check valve chatter) H2 supply pressure gauge (acceptable range 9.5 - 12)	Fass / Fail / NA	Calibration Gas, p 90% of Calibration Time required to a 1.	-	450	
Date of last factory calibration	7-10-21	2. <u>(</u> 3. <u> </u>			
Factory calibration record w/instrument within 3 months	ass)/ Fail	Average <u>S</u> Equal to or less the Instrument calibra		_gas. N	

Comments: ____

Г

7			
1/M		-	
	Time:	0900	
Y CHECKLIST	INST	RUMENT CALIBR	ATION
Pass / Fail	Calibration	Actual	CK % Accuracy
ppm Fass / Fail / NA	500	500	(00),
Pass / Fail / NA		opm	= <u>500</u> 450
Fail / NA	Time required to a 1.		
7-10-21	3.	1	
Pass / Fail	Equal to or less th	han 30 seconds?	Ger N gas.
	<u>21</u> ppm Fass / Fail / NA Pass / Fail / NA Fass / Fail / NA	$\underline{3}$ INSTI $\underline{246744}$ INSTI Y CHECKLIST INSTI $\underline{0}$ ($\underline{0}$ ppm Calibration $\underline{210}$ ppm $\underline{300}$ $\underline{100}$ ppm $\underline{300}$ $\underline{700}$ Calibration $\underline{700}$ $\underline{300}$ $\underline{700}$ Calibration Gas, p $\underline{90\%}$ of Calibration Time required to $\underline{1.}$ 2. $\underline{3.}$ $\underline{3.}$ $\underline{700}$ $\underline{3.}$ $\underline{700}$ $\underline{3.}$ $\underline{4}$ $\underline{6}$ $\underline{1.}$ $\underline{2}$ $\underline{3.}$ $\underline{4}$ $\underline{1.}$ $\underline{2}$ $\underline{2.}$ $\underline{3.}$ $\underline{4}$ $\underline{6}$ $\underline{1.}$ $\underline{2}$ $\underline{2.}$ $\underline{3.}$ $\underline{4}$ $\underline{6}$ $\underline{2}$ $\underline{3}$ $\underline{4}$ $\underline{6}$ $\underline{1.}$ $\underline{2}$ $\underline{2.}$ $\underline{3.}$ $\underline{2.}$ $\underline{3.}$ $\underline{2.}$ $\underline{3.}$ $\underline{4}$ $\underline{5}$ $\underline{5}$	S INSTRUMENT CALIBR Y CHECKLIST INSTRUMENT CALIBR $Pass / Fail$ CALIBRATION CHE Qil_ppm Calibration Actual Qil_ppm SOC SOU $Fass / Fail / NA$ Calibration Gas, ppm SOC $Fass / Fail / NA$ Calibration Gas, ppm SOU $fass / Fail / NA$ Calibration Gas, ppm SOU $fass / Fail / NA$ Calibration Gas, ppm SOU $fass / Fail / NA$ Calibration Gas, ppm SOU $fass / Fail / NA$ Calibration Gas, ppm SOU $fass / Fail / NA$ Calibration Gas, ppm Sou $fass / Fail / NA$ Calibration Gas, ppm Sou $fass / Fail / NA$ Calibration Gas, ppm Sou $fass / Fail / NA$ Calibration Gas, ppm Sou Calibration Gas, ppm $fass / Fail / NA$ Calibration Gas, ppm Calibration Gas, ppm Calibration Gas, ppm Calibration Gas, ppm $fass / Fail / NA$ Calibration Gas, ppm Calibration G

3.

5

Site:				
Purpose: Operator:	M			
Date:		Time:	0915	
Model # <u>† 1000 13</u> Serial # <u>#13</u> 110279	(677.5-			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	UMENT CALIBR	ATION
	<i>(</i>)	CA	LIBRATION CHE	СК
Battery test	Pass / Fail	Calibration	Actual	%
Reading following ignition	<u>1.0</u> ppm	Gas (ppm)	(ppm) 	Accuracy
Leak test	Fass / Fail / NA	300	200	$[\mathcal{O}]_{i}$
	C.		RESPONSE TIME	Ē
Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas, p	pm	500
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Fass / Fail / NA	90% of Calibration Time required to a 1(c	n Gas, ppm attain 90% of Cal (,	<u>Υςο</u> Gas ppm
Date of last factory calibration	7-10-21	2	1	
Factory calibration record w/instrument within 3 months	Pass / Fail	Average 6 Equal to or less th	nan 30 seconds?	(y) N

gas.

Instrument calibrated to CBF9

465

w/instrument within 3 months

Comments:

RES UNA CUSTOMER: 1036346793 SERIAL NUMBER: Marsts DATE: 1-10-21 TECHNICIAN:

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	F	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,026	+/- 2500
< 1	ZERO GAS	0,57	< 3
	Pil	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

RES UND # CUSTOMER: SERIAL NUMBER: TECHNICIAN: _ 1-10-21 DATE:

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	SOU	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0.64	< 3
	Pli	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

*

CUSTOMER: LES UNT #12 SERIAL NUMBER: 10362 LOBESTIS TECHNICIAN: ___ DATE: _______

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID							
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)				
100	100	100	+/- 25				
500	500	500	+/- 125				
10000	10000	10,001	+/- 2500				
< 1	ZERO GAS	0169	< 3				
	PI	D					
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)				
50	50		+/- 12.5				
100	100		+/- 25				
500	500		+/- 125				
<1	ZERO GAS		< 3				

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

NES UNT CUSTOMER: SERIAL NUMBER: 0 TECHNICIAN: 7-10-21 DATE:

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	F	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	99	+/- 25
500	500	Seo	+/- 125
10000	10000	(0,101	+/- 2500
< 1	ZERO GAS	0.57	< 3
	PI	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

July 26, 2021

Ms. Becky Azevedo Guadalupe Rubbish Disposal Co., Inc 15999 Guadalupe Mines Road San Jose, CA 95120

Re: Second Quarter 2021 Surface Emissions and Component Leak Monitoring Report for Guadalupe Recycling & Disposal Facility

Dear Ms. Azevedo:

This monitoring report for "Guadalupe Rubbish Disposal Co., Inc. (GRDC)" contains the results of the Second Quarter 2021 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by Roberts Environmental Services, LLC. (RES). Re-monitoring of surface emissions and component leak monitoring was conducted by RES and/or Waste Management (WM) personnel.

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection Procedures).

Component Leak

- BAAQMD Regulation 8, Rule 34, Section 301 (Landfill Gas Collection and Emission Control System Requirements) and Section 602 (Collection and Control System Leak Inspection procedures).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95464, known as the AB32 LMR.

GRDC Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 16, 2011. After receipt of comments, this ACO was amended, restated, and submitted to BAAQMD on July 1, 2016. SEM and Component Leak monitoring was conducted per the methods outlined in the July 1, 2016 ACO.

PROCEDURES

General

The surface of the GRDC disposal area has been divided into one-hundred-and-five (105), approximately 50,000 square foot monitoring grids. Of these grids, eleven (11) currently have no waste in place. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the walking pattern as depicted the 2011 GRDC AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

The monitoring probe was positioned 2 inches above the ground surface. While walking, the wand tip of the FID was held within 2 inches of the landfill surface while traversing the grid. Per the approved alternative request, the wand tip of the FID was held at 2 inches of vegetation in areas where the landfill surface is covered with low-lying vegetation such as grasses while traversing the grid.

Instantaneous Surface Emissions Monitoring

The Instantaneous and Integrated SEM was conducted using flame ionization detectors (FID), calibrated to 500 parts per million by volume (ppm_v) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a) and NSPS. The FIDs were calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d) and CCR Title 17 §95471(c)(2).

RES personnel walked the surface of the landfill on a grid by grid basis with the wand tip held at 2 inches from the landfill surface. While sampling the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppm_v (areas of

concern) or 500 ppm_v (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Appendices of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
 - If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
 - If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.
- If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Integrated Surface Emissions Monitoring

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppm_v for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held within 2 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(2).

Grids with results greater than 25 ppm_v were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppm_v are subject to the following re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.
- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.

- If the second 10-day re-monitoring event shows the second exceedance is corrected, all remonitoring requirements have been completed.
- The second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the third exceedance.

Component Leak Monitoring Procedures

WM personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppm_v. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppm_v per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) and 1,000 ppm_v per requirements outlined in BAAQMD 8-34-303 were recorded. Applicable corrective action and remonitoring timelines are listed below:

- Leaks between 500 and 999 ppm_v must be corrected and re-monitored within 10 days of the initial exceedance.
- Leaks at or above 1000 ppm_v must be corrected and re-monitored within 7 days of the initial exceedance.

SECOND QUARTER 2021 SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and component leak monitoring results completed for the Second Quarter 2021.

Instantaneous Surface Emissions Monitoring Results

The Instantaneous surface monitoring was performed on May 18, 2021 in accordance with the NSPS, BAAQMD 8-34, and CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

Initial Monitoring Event Exceedances of 500 ppm_v

There were 10 exceedances of 500 ppm_v as methane detected on May 18, 2021. Corrective actions to initiate repairs of the exceedances were completed within five days for all locations (May 21, 2021).

Ten-Day Re-Monitoring Results

The 10-day re-monitoring event was completed on May 28, 2021. All locations were observed at less than 500 ppm_v .

One-Month Re-Monitoring Results

The 1-month re-monitoring event was completed on June 17, 2021. All locations were observed at less than 500 ppm_v .

Readings between 200 ppmy and 499 ppmy (Initial and Re-monitored)

There were no readings between 200 ppm_v and 499 ppm_v as methane detected during the initial monitoring event. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppm_v but below 500 ppm_v are required to be recorded.

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on June 6 and 7, 2021, accordance with the ACO and requirements outlined in CCR Title 17 §95469.

Initial Monitoring Event Exceedances of 25 ppm_v

There were no grids with exceedances of 25 ppm_v as methane detected during monitoring on June 6 and 7, 2021.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B, Integrated SEM 25 ppm_v Exceedances and Monitoring Log, and SEM Map included in Attachment B, for details.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on May 18, 2021. No leaks greater than 500 ppm_v were identified during this monitoring period. Please see Attachment C, for details.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The strip chart data is scanned and included in Attachment D.

Precipitation Requirements

Per the GRDC's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within 24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25 ppm_v in air for integrated sample analyses and 500 ppm_v in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at rphadnis@wm.com.

Thank you, Waste Management

FM

Rajan Phadnis Environmental Protection Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment D – Weather Station Data

• Strip Chart Data

Attachment E – Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

Table A.1Instantaneous Landfill Surface Emissions MonitoringInitial Monitoring Event Areas of Concern

2021 QUARTER: 2

PERFORMED BY: RES

LANDFILL NAME: Guadalupe Recycling & Disposal Facility

Flag Number	Grid Number	Date of Monitoring	Concentration of Emission (ppmv)	Comments				
61	67	5/18/2021	800	Black Pipe				
62	67	5/18/2021	800	Black Pipe				
21	75	5/18/2021	5000	Well 242				
22	70	5/18/2021	543	Well 240				
23	88	5/18/2021	1161	Well 230				
1	3	5/18/2021	3000	Surface				
2	6	5/18/2021	1000	White Cap Pipe				
3	43	5/18/2021	700	Well 235				
4	50	5/18/2021	600	Well 218				
5	89	5/18/2021	5,000	Well 217				
Notes: Please refer	otes: Please refer to field data sheets for details							

Table A.2Instantaneous Landfill Surface Emissions MonitoringExceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2021 QUARTER: 2

INITIAL MONITORING PERFORMED BY: RES

FOLLOW-UP MONITORING PERFORMED BY: WM-Markus Bernard

LANDFILL NAME: Guadalupe Recycling & Disposal Facility

Initi	al Monitoring	Event	Correc	ctive action within 5 days	1st 10-day Follow-Up		1st 30-day Follow-Up				
Flag	Monitoring	Field	Repair	Action taken to repair	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	Exceedance	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
61	5/18/2021	800	5/21/2021	Add Water Soil	5/28/2021	40 ppm		6/17/2021	0 ppm		Black Pipe
62	5/18/2021	800	5/21/2021	Add Water Soil	5/28/2021	42 ppm		6/17/2021	0 ppm		Black Pipe
21	5/18/2021	5000	5/21/2021	Adjust Valve	5/28/2021	20 ppm		6/17/2021	30 ppm		Well 242
22	5/18/2021	543	5/21/2021	Adjust Valve	5/28/2021	11 ppm		6/17/2021	21 ppm		Well 240
23	5/18/2021	1161	5/21/2021	Add Water Soil	5/28/2021	7 ppm		6/17/2021	12 ppm		Well 230
1	5/18/2021	3000	5/21/2021	Add Water Soil	5/28/2021	60 ppm		6/17/2021	0 ppm		Surface
2	5/18/2021	1000	5/21/2021	Adjust Valve	5/28/2021	50 ppm		6/17/2021	0 ppm		White Cap Pipe
3	5/18/2021	700	5/21/2021	Adjust Valve	5/28/2021	34 ppm		6/17/2021	5 ppm		Well 235
4	5/18/2021	600	5/21/2021	Adjust Valve	5/28/2021	23 ppm		6/17/2021	8 ppm		Well 218
5	5/18/2021	5,000	5/21/2021	Adjust Valve	5/28/2021	12 ppm		6/17/2021	0 ppm		Well 217

Table A.3Instantaneous Landfill Surface Emissions MonitoringExceedance and Monitoring Logs (AB-32)

 2021 QUARTER:
 2

 INITIAL MONITORING PERFORMED BY:
 RES

 FOLLOW-UP MONITORING PERFORMED BY:
 WM-Markus Bernard

 LANDFILL NAME:
 Guadalupe Recycling & Disposal Facility

Init	Initial Monitoring Event			on Event - 10	Days	2nd Re-mon Event - 10 Days		10 Days	
Exceedance	Monitoring	Field	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Grid ID No.	Date	Reading	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
61	5/21/2021	800	5/28/2021	40 ppm					Black Pipe
62	5/21/2021	800	5/28/2021	42 ppm					Black Pipe
21	5/21/2021	5000	5/28/2021	20 ppm					Well 242
22	5/21/2021	543	5/28/2021	11 ppm					Well 240
23	5/21/2021	1161	5/28/2021	7 ppm					Well 230
1	5/21/2021	3000	5/28/2021	60 ppm					Surface
2	5/21/2021	1000	5/28/2021	50 ppm					White Cap Pipe
3	5/21/2021	700	5/28/2021	34 ppm					Well 235
4	5/21/2021	600	5/28/2021	23 ppm					Well 218
5	5/21/2021	5,000	5/28/2021	12 ppm					Well 217

Table A.4Instantaneous Landfill Surface Emissions MonitoringAreas of Concern Greater than 200 ppmv

2021 QUARTER:2INITIAL MONITORING PERFORMED BY:RESFOLLOW-UP MONITORING PERFORMED BY:NALANDFILL NAME:Guadalupe Recycling & Disposal Facility

Initial	Monitoring	Event	Re-moi	n Event	
Exceedance	Monitoring	Field	Monitoring	Reading	Comments
Grid ID No.	Date	Reading	Date	ppm	
None					

Site: Garoalype

Orange Flag Landfill Surface Emissions Monitoring Exceedances and Monitoring Log

Flag Grid F allbration Standard: Initial Monit F Initial Monit F Grid F Imber Number Number S S Imber Number S S S Imber Number S S S Imber Number S S S Imber S S S S Imber S S S S Imber S S S S	Technician:	- car.	CENTRA C	21										Page of Pages
Tingli Monitonine Event Test Rek Monitoning Event - 10 Days Stear Results Date No. Date No. Date No. Exci. Date No. No. (c) 67 80.7 70.7	Instrume ⁻ Calibratio	nt: n Standard:	5000000				-							
File Old File Date Netodicity Date Netodicity Date Netodicity Detect Extrational $(j_1$ (j_2) χ_0 (j_1) (j_2) χ_0 (j_1) (j_2)		Initial M	onitoring Event		First Re-N	Aonitoring Event	10 Davs	Second Re-	Monitoring Eve	nt - 10 Dave	100 06	Cettern on Mar		
Mundler (pm) Monitored Aconitored Stop pm Stop pm	Flag	Grid	Field Reading	Date	Date	No Excd.	Excd.	Date	No Excd.	Excd.	Date	No Excd.	Excd.	Comments
$ \begin{bmatrix} 61 & 67 & 800 & 6/84 \\ 62 & 67 & 800 & 6/84 \\ 22 & 73 & 60 & 59 & 6/84 \\ 161 & 1 & 3 & 3_{100} & 0 & 0 \\ 1 & 3 & 2_{100} & 0 & 0 & 0 & 0 \\ 1 & 5 & 6 & 5 & 5 & 6 & 0 \\ 2 & 5 & 6 & 5 & 0 & 0 & 0 & 0 \\ 1 & 5 & 6 & 5 & 0 & 0 & 0 & 0 & 0 \\ 1 & 5 & 6 & 5 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 5 & 6 & 5 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 5 & 6 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 5 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5$	Number	Number	(mqq)	Monitored	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	107-0	67	600	12-18-51										Red D.OF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29-02	67	800											Right onr
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12-0	75	5,000											100000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-22	06	543											WAL 240
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		201	1161											WE11 230
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		JI T	3,000											Jankor E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ø	1,000											White CAD DIDE
	1	43	aal.											Writ 235
Δ Δ		20	600											1 1 1 1 S
		89	5,000	>										1141/227
	ò													Act C
	0													
	ò													
	0													
	Ċ													
	Ċ													
	ò													
	ò													
	ò													
	q													
	ó													
	0													
	-													
.	ò				11									
	ò													

sonnel:	CEISTWI Omenp Fesse	herrin					Cal. Gas E	кр. Date: <u>9-2/-</u> 4
			ment Used				d Spacing: _	
GRID ID	STAFF	START	STOP	тос		ND INFORI		REMARKS
	INITIALS	ТІМЕ	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
1	lu	0715	0730	28	4	5	17	
2	Op	0715	070	30	Ý	t	1	
		-	1					

-			1		SPEED	SPEED	16 POINT	
1	lu	0715	0730	28	Y	5	17	
2	Op	0715	070	30	Ý	t	7	<u> </u>
3	Jm.	0715	0770	3,000	9	5	17	SERFALE
4	LW	0770	0745	44	9	55	7	
5	op	0770	0745	61	4	5	7	
6	マヘ	0770	0745	1,000	Ÿ	5	7	whitecoppipi
	LW	0745	0800	17	4	5	1	· p
8	00	0745	0800	45	Ϋ́	5	1	
9	71	0)45	0899	61	l y	5	7	
10	w	0805	0815	57	1 9	6	4	
11	op	0800	0815	19	4	6	7	
12	72	0800	2815	51	'Y	6	4	
13	LU	0815	0830	106	V	6	17	
16	00	0815	0830	57	4	6	17	
21	-27	0815	0830	45	9	6	7	
26	lu	0870	0845	51	Y Y	6	7	
37	0p	0830	0865	62	4	b	1	
32	ファ	0830	0845	50	9	6	17	
41	lu	0845	0580	26	9	6	7	
42	op	082	0900	39	9	6	7	
43	In	0845	0500	700	4	6	17	W811235
17	LV	0500	0215	38	y y	6	7	
18	op	0900	2190	22	4	þ	7	
49	5n	0500	0815	68	Y	6	7	
50	lu	0515	0570	600	.9	6	7	WE11218
-4	00	0815	0530	24	4	6	7	
5	m	050	0873	37	y	6	4	
59	lu	0970	0945	94	Y	6	1	
60	op	0920	05.45	55	4	6	7	
61	53	0975	0845	62	4	6	7	(·

Page _/___ of _____

Personnel: Ley WADE	
gesse Menning	Cal. Gas Exp. Date: <u>7-2/-7</u>
Date: Instrument Used:	Grid Spacing: フィノ
Temperature: $\frac{72}{2}$ Precip: <u>0</u> Upwind BG: $\frac{2}{2}$	Bownwind BG: Z.8

GRID ID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
64	w	0945	1000	29	Y	le.	17	
65	00	0945	1.000	19	9	6	7	-
66	ラつ	0541	1003	58	9	6	19	
67	w	1600	1015	800	y .	6	4	Bleukpipz
69	ap	2000	1015	34	9	6	6	11
70	Ju	1000	1015	543	4	6	6.	WE11240
71	11	1015	1030	41	9	6	6	
72	qo	1.015	1030	80	Y	6	6	
73	57	1815	1830	39	.4	6	6	
74	W	1070	1045	67	9	le	6	2
75	op	1830	1045	5,000	9	þ	6	W=11242
76	アク	1030	1845	30	'4	6	6	
>>	W	1041	1100	24	y.	6	17	
78	op	1045	1100	58	1 4	6	17	
79	-51	1045	1100	40	4	6	14	
86	W	1120	1145	37	Y Y	le	M	
81	Op	1120	1145	40	9	þ	7	
82	77	1130	1.185	38	4	6	17	
83	Lu	11.40	1200	6)	9	6	7	
84	op	1145	1202	35	4	6	7	
85	71	1145	1200	20	Ч	10.	7	
86	w	1200	1215	3]	9	6	4	
87	op	1200	1215	59	4	6	7	
88	57	1200	1215	1161	4	6	7	NE11230
85	au	1215	1230	5,000	4	6	M	UE11227
90	op	1215	1230	17	4	6	1'	
91	72	1215	1230	14	4	6	M	
92	2	1230	1245	21	4	Te	7	
93	op	1230	1245	47	4	6	1	
94	Ja	1230	1245	35	Y Y	6	1	

Page _____ of ____

330

	JESSE 1.							xp. Date: <u>9-21-2</u>
ate: 5	-18-21	Instru	ment Use	d: <u>fv</u>	A1000	Gri	d Spacing: _	251
emperat	ture: <u>> 9</u>	Pre	cip:	Up	wind BG:	216	Downwir	nd BG: 2.8
GRID ID	STAFF	START	STOP	тос		D INFORM		REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
95	w	1245	1000	32	4	6	7	
96	ep	1241	17007	2.6	Ý	6	7	
97	うっ		17.0	19	9	6	14	
98	LU	1300	1315	24	Y	le	1	
99	qu	1300	1315	12	4	6	7	
100	Jn	1300	1315	32	4	6	7	
101	LW	1211	1370	14	9	6	6	
102	op	131	1330	27	Y	6	6	
103	Jn	1310	1330	18	Y	6	6	
164	in		1345	21	4	le	6	
105	Op	1330	134	16	4	6	6	
					1.			
	·						·	
	*	1. C						
	1							
						1		
		1						
	a	1				1		
	2		1					
		12			1			
				*	L			
	-		1					

Page _____ of ____

330

) ate: <u></u>	-18-21	Instrur					d Spacing:		te:
							Downw		
GRID ID	STAFF	START	STOP	тос	WIN	D INFORM	IATION	R	EMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT		
15								Actu	8-7neug
19				1			1	70+10	6 I, J
20									
24				0				- 1	1
25		1			1				
29					1	1			
30									
35									
36				1					
14				1				C-J.SAV	chart
17					1			Jreop	slopes
18									
22					1				
27									
32	+				1				
28				1					
44					1				
51					1000	1		1. T.	
56								V	1
23								NOWAS	toinplace
23 28									1
33 34									
34						1			
39									
40									
45					1	1		- 04	
46									
46 52	1.00								
53 57			10		1	1			
53								L	7

Page _____ of _____

330

3								Exp. Date:
ate: <u>5</u>	-18-21	Instrur	nent Used	l:		Gri	d Spacing:	
emperat	ure:	Prec	cip:	Up	wind BG:		Downwi	nd BG:
GRID ID	STAFF	START	STOP	тос	WIN	D INFORM	ATION	REMARKS
	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
58					<u>[]</u>			1
62	-			-				
63 68				-				
28			-					V
-								
		1					*	
		t				t		
	1	I						
					P == /			
					-			
	e							
	V and a second							
	1							
1						1		
		_						
			1					
		_						
			_		-			
				1				

Page ______ of _____

330

DATE: 2ND 2021 SITE: <u>GuaDalupe</u>

PENETRATION ID	GRID NUMBER	INITIAL (PPM)	* * * * -
SVEZ	1	1.34	
NONE	2		
5081	3	3,0	
12188	4	.47	
NONE	5		
AUNE	6		
10196	>	2.20	
WE11202	8	* 43	
601179	9	61	
WE11198 WE11159	9 9	24 55	
WE11176	10	57.24	
WE11277 WE11272	10 10	57.24 2.50 3.20	
NOUE	1/	5	

SITE: _ GUADGLAPE

PENETRATION ID	GRID NUMBER	INITIAL (PPM)	* *
2511214	12	31	
Vell 158	12	2.6	
		28	
WE11178	13	37	-
Blackpipz	15	47	
WHILLSS	13	48	
in called usil	13	106	
VE11200	13	3.80	
			-
W34 208	16	4.59	
WE11180	16	12.86	
र प्रमुख्य कि	16	4.0	
Blellppp	16	17.45	
WEILISZ	16	51.37	
UB1181	2/	64	
NE11 151	21	2.15	
w811236	26	17-51	
WE11216	31	26	
W11190		51	
U+11215	32	41	
Walzu5	32	15	
			A

SITE: 6450514Ar

PENETRATION ID	GRID NUMBER	INITIAL (PPM)	* * *
VBILZIT	43	39	
WE11735	43 43	39 700.	
KOAR	47		
NOUF	48		
ADHE	49		
WEILZIX	50	600.	
WE11183	50	724	
ADAE	54		
JE1184	55	2.06	
WE11187	55	1:85	
NE1/ 192	SF	2.10	
wa11/73	59	4.47	
WE1112.9	60	3.67	
LE1/219	60	4,10	
NE11220	60	2.47	
Noujz	61		
sunp Z	62	75	
NOUE	64		

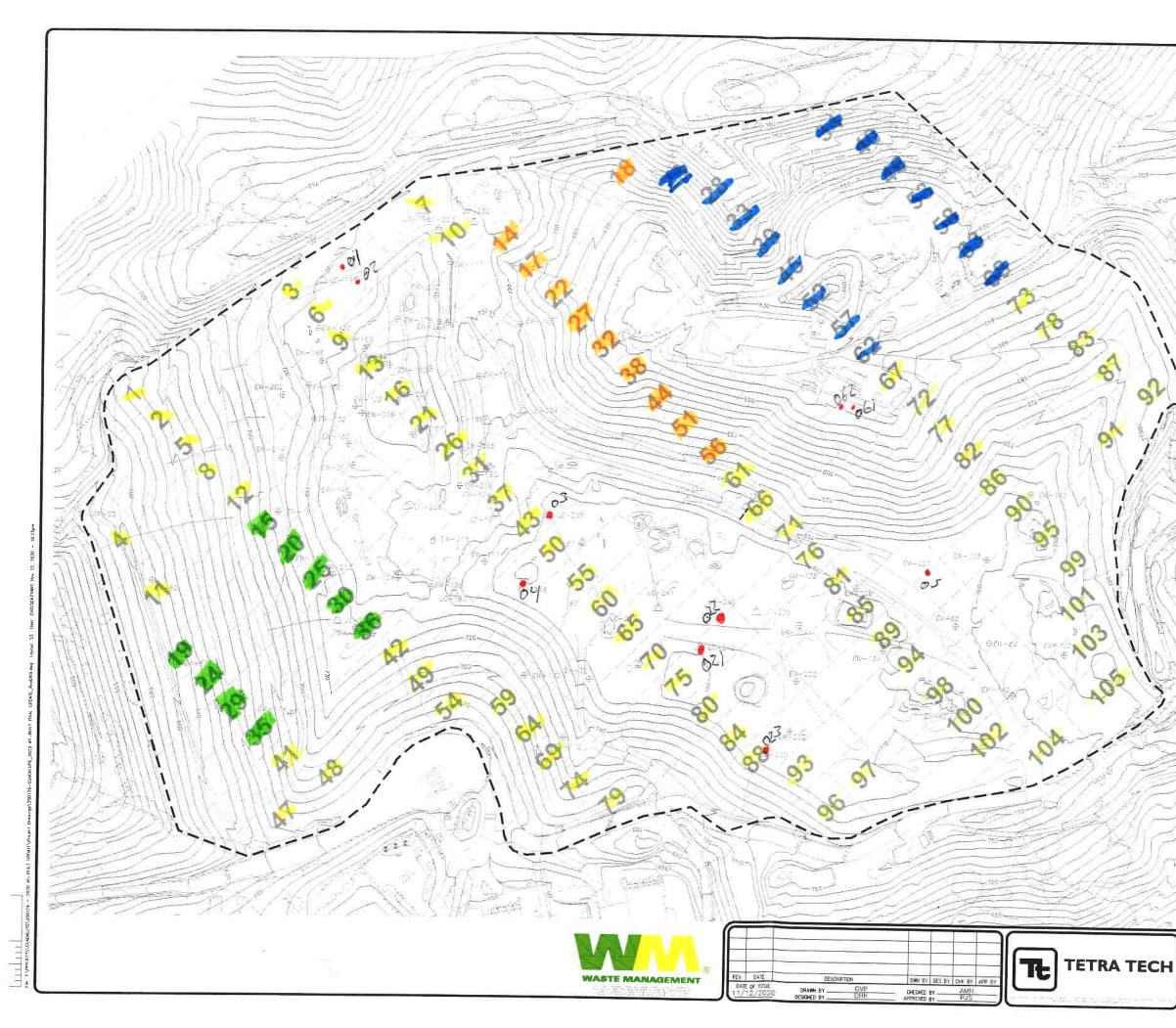
SITE: ______ Gulling +

4

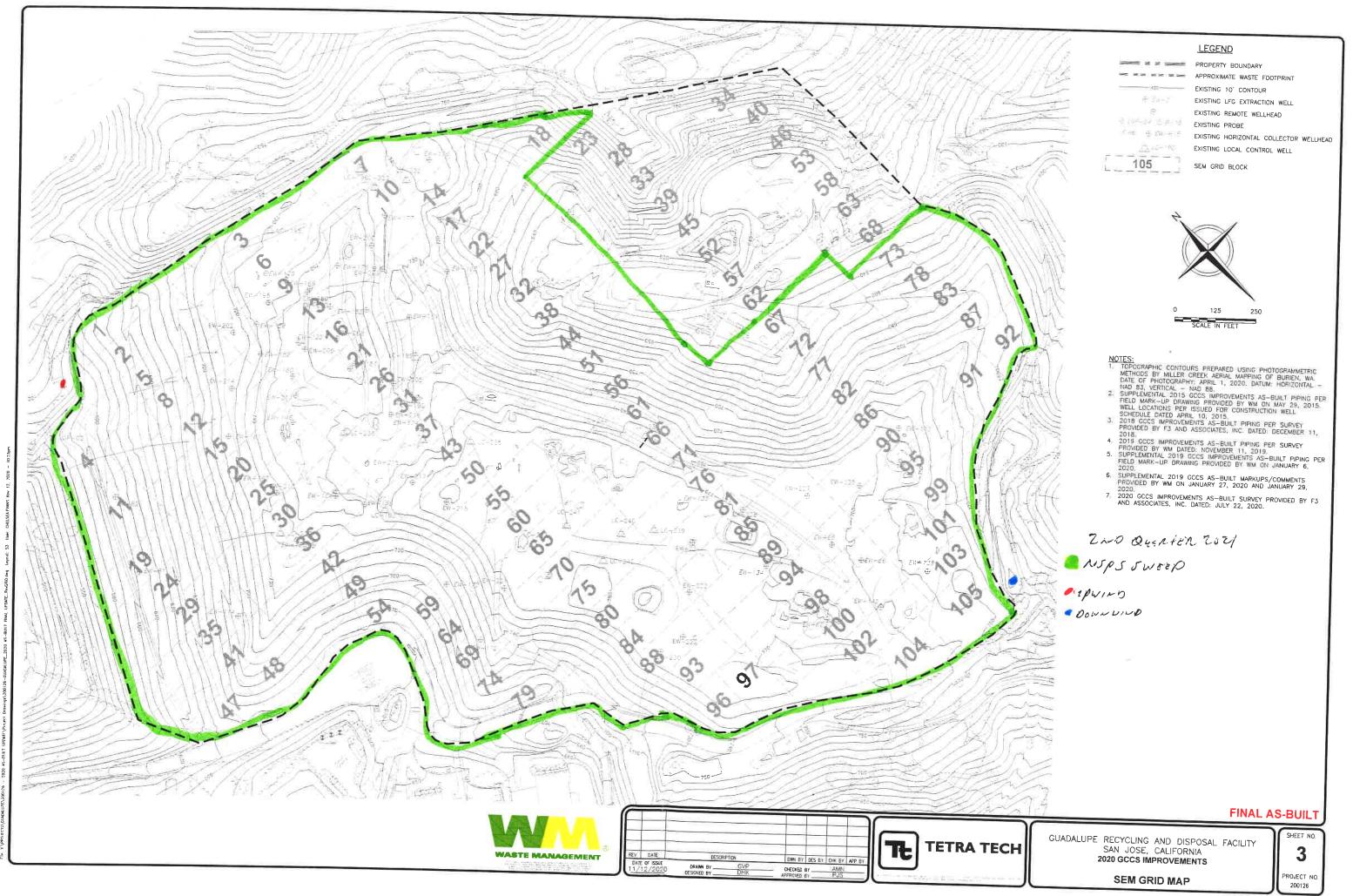
DATE:

PENETRATION ID	GRID NUMBER	INITIAL (PPM)	
WM1243	65	2.70	
6211241	65	2.08	
WEILZZG	66	4.15	
WE11238	66	17.92	
BISULCPAN	67	800	
BISLICPIPE	67	800	
Bleillpipr Dleillpipr	67 67)10 25	
U 511 172	69	i-1,51e	
NOAE	70		
NOAE	71		
140-8	72		
NONE	73		
NOAE	74		
2+11242	75	5,000	
WE11240	75	5413	
1211135	76	2.09	
NE11239	76	29.60	

SITE: 6constope


DATE: ____

PENETRATION ID	GRID NUMBER	INITIAL (PPM)	* * * * - * * * *
NOWE	77		
NOME	78		
NOAE	79		
AVAE	80		
WH11224	81	41.55	
Nouis	82		
LOAIE	83		
WENZZJ	84	5.04	
WE11228	28	3.48	
AONE	86		
NORE	87		
WE111222	88	5.15	
WE11270	88	1161	
W811227	89	5000.	
WE11124	89	470	


SITE: GLODELY T

DATE: /

PENETRATION ID	GRID NUMBER	INITIAL (PPM)	• • • •
WELLZZS	90	2.80	
WE1112		2.80 4.63	
AIOUE	91		
ANOWIE	92		
NOUE	93		
WEILGS	99	35,16	
NONE	95		
AONE	96		
NOAE	97		
tw 6 b	98	4,74	
WORE	95		
F662	100	12-60	
ROALE	101		
WM1142	102	5106	
WE11138	103	4,89	

<u>LEGEND</u> PROPERTY BOUNDARY APPROXIMATE WASTE FOOTPRINT EXISTING 10' CONTOUR EXISTING LFG EXTRACTION WELL EXISTING REMOTE WELLHEAD EXISTING PROBE 6 A6 - 🕀 E6 - A S EXISTING HORIZONTAL COLLECTOR WELLHEAD - 10- 9C EXISTING LOCAL CONTROL WELL 105 SEM GRID BLOCK CALE IN FEE NOTES: 1. TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY MILLER CREEK AERIAL MAPPING OF BURIEN, WA DATE OF PHOTOGRAPHY: APRIL 1, 2020. DATUM: HORIZONTAL – NAD 83. VERTICAL – NAD 88. 2. SUPPLEMENTAL 2015 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD MARK-UP DRAWING PROVIDED BY WM ON MAY 29, 2015. WELL LOCATIONS PER ISSUED FOR CONSTRUCTION WELL SCHEDULE DATED APRIL 10, 2015. 3. 2018 CCCS IMPROVEMENTS AS-BUILT PIPING PER SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED. DECEMBER 11, 2018. PROVIDED BT F3 AND ASSOCIATES, INC. DATED: DECEMBER 11, 2018 4. 2019 CCCS IMPROVEMENTS AS=BULT PIPING PER SURVEY PROVIDED BY WIM DATED: NOVEMBER 11, 2019. 5. SUPPLEMENTAL 2019 CCCS IMPROVEMENTS AS=BUILT PIPING PER FIELD MARK-UP DRAWING PROVIDED BY WIM ON JANUARY 6, 2020. SUPPLEMENTAL 2019 GCCS AS-BUILT MARKUPS/COMMENTS PROVIDED BY WM ON JANUARY 27, 2020 AND JANUARY 29, 2020.
 2020 GCCS IMPROVEMENTS AS-BUILT SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: JULY 22, 2020. InstandarEous 5-18-21 6 KIRS NONILOACO Active-tassh Starp Slopes · Nowards implace · 500 + ppm **FINAL AS-BUILT** GUADALUPE RECYCLING AND DISPOSAL FACILITY SAN JOSE, CALIFORNIA 2020 GCCS IMPROVEMENTS SHEET NO. 3 PROJECT NO SEM GRID MAP 200126

Attachment B

Integrated Surface Emission Monitoring Event Records

ate: <u>6-</u>	Bruch B. 8-21	enles						
	8-21						Cal. Gas Exp	. Date: 9-21-2
	1	Instrum	ent Used:	tual00	U	_ Grid S	Spacing:	251
emperati	ure: <u>5</u>	Preci	o:	Upwind	BG: <u>2</u>	. 2	_ Downwind	BG: 2-8
GRID	STAFF	START	STOP	тос	WIN	ND INFO	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
75	Lu	0545		7.14	4	5	6	
76	op	0545	0610	6.92	4	S	6	
27	NB	0545	0610	6.70	9	5	6	
78	OR LW	0348		7.42	4	5	6	
79		0610	0635	5-41	9	6	6	
80	op ND	0610	0635	6.12	9	6	þ	
81	ND	0610	0625	5.77	4	6	6	
82	DR	0610	0635	6.39	4	6	6	
83	12	0635	0700	6.02	9	8	Y	
84	op	0635	0700	5-41	4	8	7	
8.5	ND	0631	0700	5.78	4	8	1	
86	DA	0675	0700	5-13	14	8	7	
87	w	0700	0725	5.91	9	8	7	
88	op kb	6)00	0725	6.77	4	8	7	
85	ND	0700	0725	6.54	4	8	7	
90	DA	0700	0725	5.28	4	8	7	
91	LW	0725	0750	4.77	Ý	5	7	
92	00	0125	0750	6.51	9	8	7	
93	ND	250	0750	8.27	9	8	7	
24	DA	0)21	0754	5-31	Ý	8	4	
25	w	0750	0815	4.70	.91	10	4	
86	OP	0720	0815	4.26	4	10	7	
9>	NO	0720	21915	5-91	4	10	1	
28	DA	0750	0815	6-54	4	10	4	
99	lw	0815	0840	5-13	9	8	6	
100	Op	0815	0840	5.71	9	X	b	
101	an	0815	0840	4.25	9	X	6	
102	DA	58L	0840	4.17	9	8	6.	
103	LW	0840	2965	3.94	9	8	6	

Page _____ of _____

323

Personnel: LEISHWHOE	DWISHLANDERSON	
MICIE BEAKS	1	Cal. Gas Exp. Date: G-21-21
Date: <u>6-8-21</u> Instrument U	sed: <u>tvaluoo</u> Grid	d Spacing:
Tomo	2	

Temperature: <u>60</u> Precip: <u>0</u> Upwind BG: <u>2</u>, 2 Downwind BG: <u>2</u>, 8

GRID	STAFF	START	STOP	тос	WI	ND INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
105	NB	0840	0905	3-25	Ŷ	Y	b	
	-							
		1			-			
				1				
	-							
-							¢.	
	1.					15		
						1		
			P					
						123		

Page _____ of _____

	Nick						· ·	. Date: <u>G-21-21</u>
ate: 6	7-21	_ Instrum	ent Used:	FUA100	0	_ Grid S	Spacing:	251
emperat	ure: <u>64</u>	/ Preci	p:	Upwind	BG:	2.2	_ Downwind	BG: <u>Z+8</u>
GRID	STAFF	START	STOP	тос	WI	ND INFOR	RMATION	REMARKS
ID	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
i	LW	1200	1225	3.71	3	5	8	
2	op	1200	1225	4.12	3	5	8	
3	AB	1200	1225	3.89	Ĵ	5	8	
4	DA	1200	1228	5.64	3	5	8	
5	LW	1225	1250	6,13	Ý	5	17	
6	op	1225	1250	5.79	ý	5	4	
>	NO	1221	1250	6.04	4	5	1	
8	PA	1725	1200	7.21	4	5	7	
9	LW	1250	1315	6.54	9	6	8	
10	01	1210	1315	7.10	4	6	8.	
()	-	1250	1315	4.58	Ý	6	8	
12	DA	1250	1315	5.81	Ŷ	6	8	
3	W	1315	1340	5-20	9	8	4	
16	op	1315	1340	6-27	9	8	7	
21	NO	1315	1340	6.40	Ý	8	1	
26	DA	1315	1380	5.85	4	8	7	
31	LW	1340	1405	6.13	ÿ	8	14	
37	op	1340	1405	5.70	4	8	1	
11	RD	1340	1401	6.81	Щ	X	1	
42	DA	1340	1425	5.94	Ý	8	7	
43	LN	1405	1430	7.13	3	5	8	
17	00	1405	1420	6-82]	5	8	
48	NB	1405	1830	7.34	J	5	8	
49	DA	1405	1430	8.13	3	5	8	
50	LW	1430	1455	7.09	4	6	8	
54		1430	1455	5.30	Ϋ́	6	8	
55	an	1430	1455	5-71	4	6	ð	
19	DA	1430	1455	6.03	'Y	6	8	
50	LV	1455	1520	5.2.4	Y	6	8	
51	op	1.455	1520	5.98	'y		8	

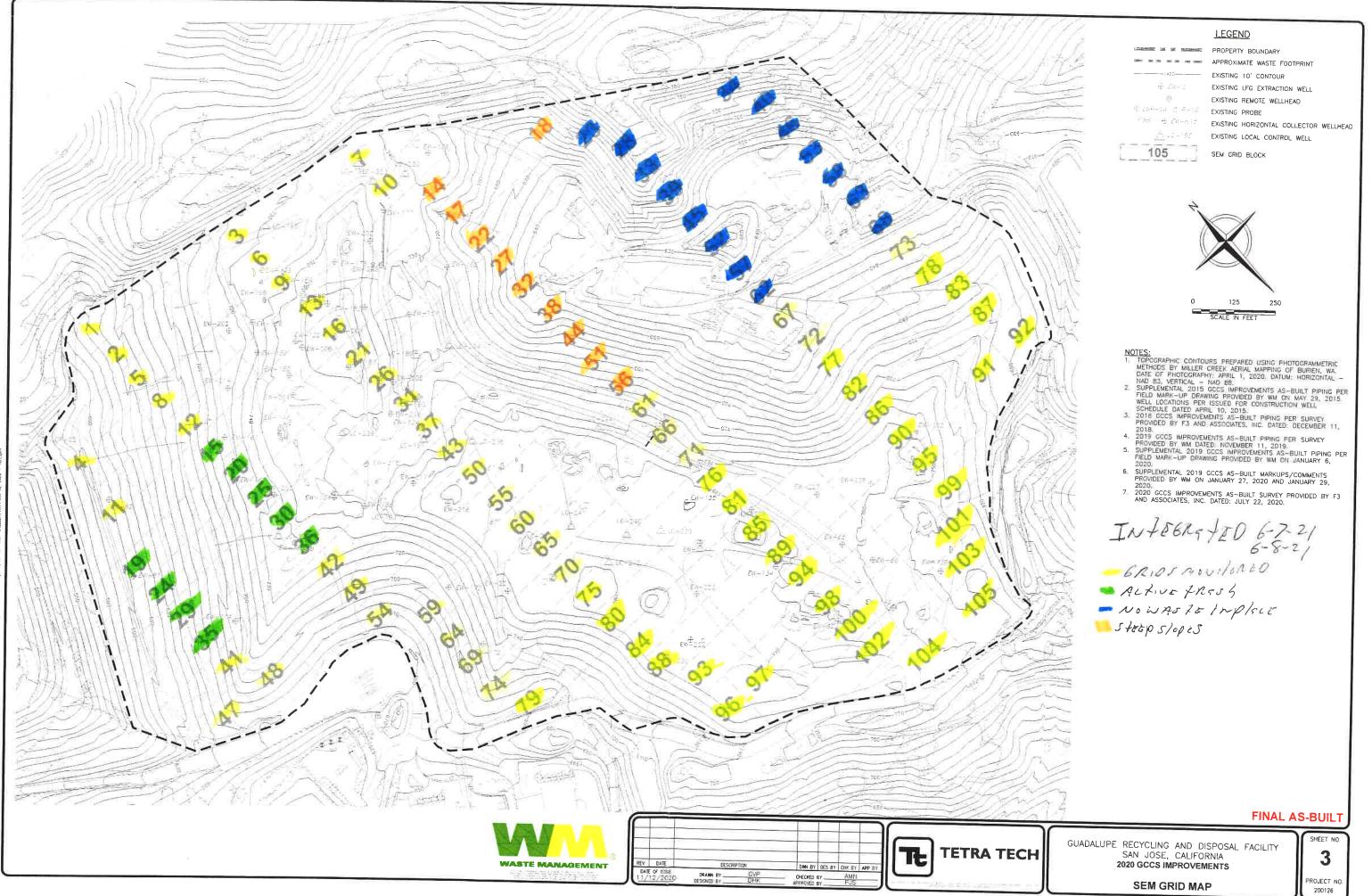
Page ______ of _____

Personnel: <u>LEISHWADE</u>	Dwight ANDERDI	V
ALIEL BEAKS		Cal. Gas Exp. Date: 9-21-2
Date: $6 - 7 - 2l$ Instrument Use	ed: WAIOUD	Grid Spacing: 281

Temperature: 72 Precip: D Upwind BG: 2.2 Downwind BG: 2.7

GRID	STAFF	START	STOP	тос	WIN	D INFO	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
64	NB	14.55	1520	7.13	4	6	8	
65	OA	1405	1520	6.49	y y	6	8	
6-6	LV	1520	154.5	6.03	Û	10	8	
67	OP	1520	1545	5.77	4	6	8	
69	an	1520	1545	6.34	4	b	8.	
70	DR	1520	1545	5.50	9	6	8	
71	LW	1545	1610	5.21	4	6	8	
72	00	1545	1610	7.13	4	6	8/	
73	NB	1525	1610	6.54	9	6	8	
74	DA	1545	1610	6.20	Ÿ.	6	8	
							4	
						1 mm		
				24.2.2.2				
						1.5		
			1					
						-		
						-		
				1				
				-				

Page \underline{z} of \underline{z}


ate 6								p. Date:
	7-2/	Instrume	nt Used: _			Grid S	Spacing:	
mperati	ure:	Precip	:	_ Upwind	BG:		Downwin	d BG:
GRID	STAFF	START	STOP	тос	WIN	D INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
15								Active-tR55
19								1
20								
24	·							
25								
29								
30								
35								
36								V
4								steepslopes
7								
18								
22				1	1			
27				1.1.1.1				
32								
38								
44			· · · · ·					
51								
r-6								M.
23			P					NOWAString
28								1
73					1			
34								
79								
40								
45						100		
46				1.1.1.1		1 - 1		
53 53				1.1		11		

Page $_$ of $_$

323

								. Date:
te: <u>6</u>	-7-21	Instrume	nt Used: _			Grid S	pacing:	
mperat	ure:	Precip	:	_ Upwind	BG:		Downwind	BG:
GRID	STAFF	START	STOP	тос	WIN	D INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
58								/
				e - 1				1
3								V
					-			
			6.2.2.3				1	
_								
		_					40	
		_						
						1		
_								
-								
				1				
_			Â.					

Page _____ of ____

115/00/20126 - 2020 AS-81111 IPINITY/Propet Dominary200126-044404/Pr_2020 AS-8111 FMM UPDUT_AndB0 dag Lanot 23 Une CHISSAFAMAN No 17

Attachment C

Component Leak Monitoring Event Records

Table C.1AB-32 Component Leak MonitoringSummary of Component Leaks Greater than 500 ppmv

2021 QUARTER:

INITIAL MONITORING PERFORMED BY: RES

FOLLOW-UP MONITORING PERFORMED BY: NA

2

LANDFILL NAME: Guadalupe Recycling & Disposal Facility

Location	1	nitial Monitorin	g	c	Corrective Action	10-	Day Remonito	ring
	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
Flare Station A-9	5/18/2021	ND	RES	NA	NA	NA	NA	NA
Flare Station A-14	5/18/2021	ND	RES	NA	NA	NA	NA	NA

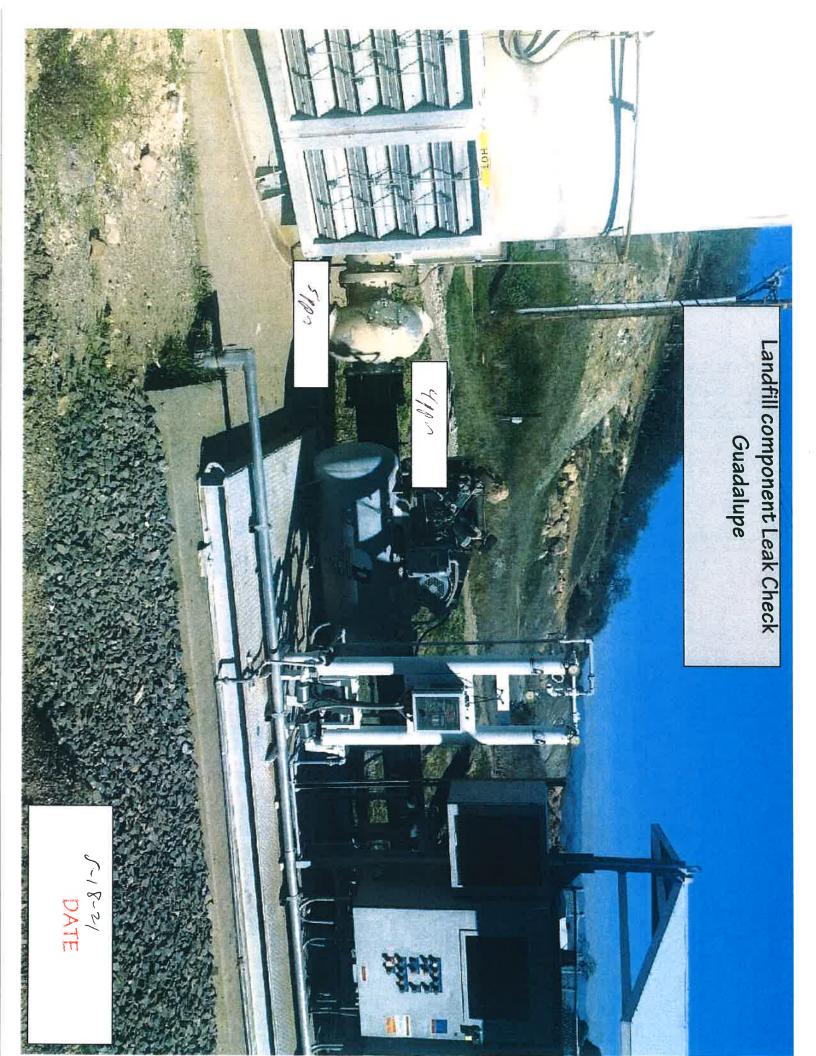
ND= Non Exceedances

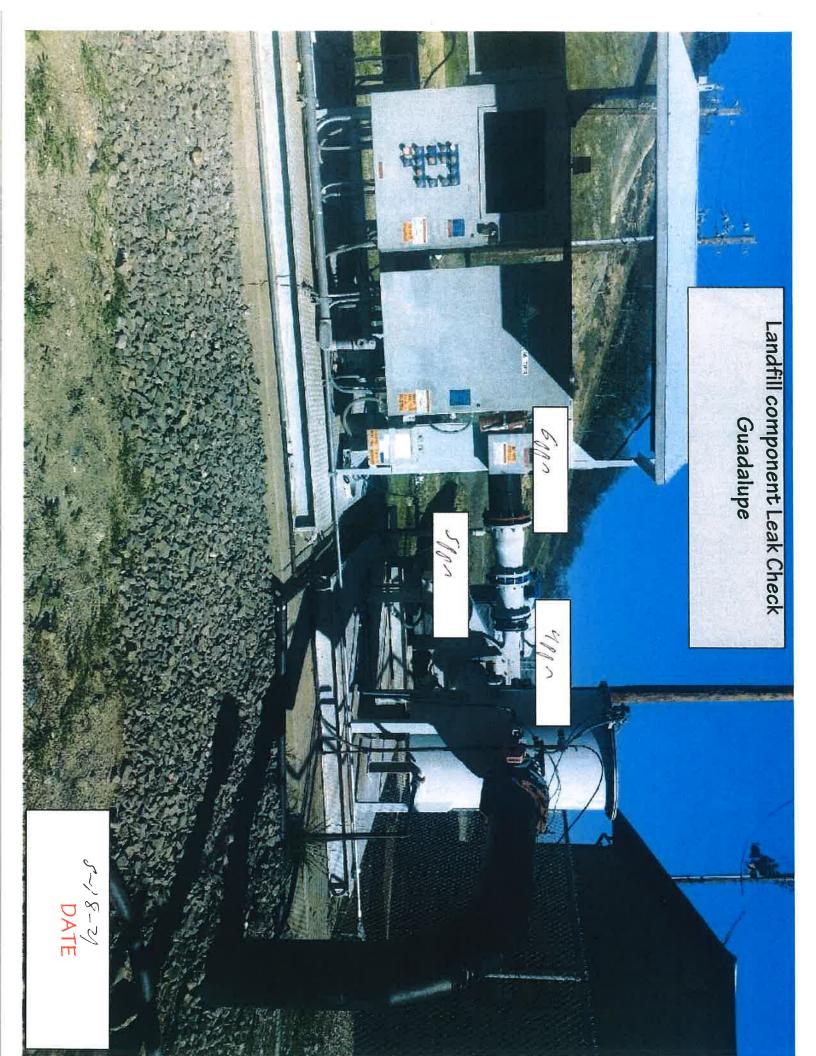
Table C.2BAAQMD Component Leak MonitoringSummary of Component Leaks Greater than 1,000 ppmv

2021 QUARTER:

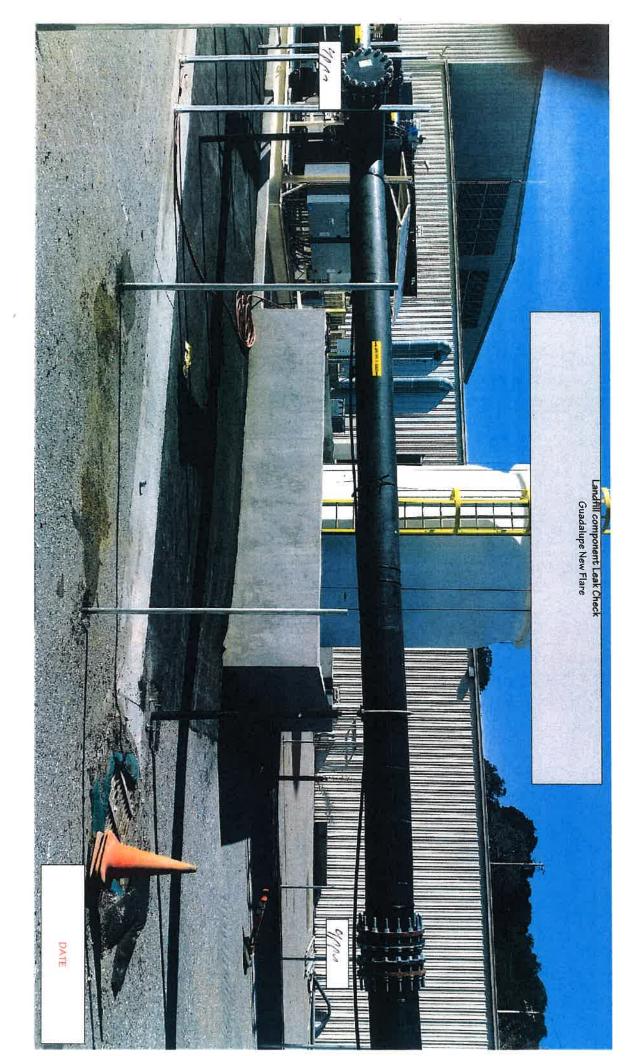
INITIAL MONITORING PERFORMED BY: RES

2


FOLLOW-UP MONITORING PERFORMED BY: NA


LANDFILL NAME: Guadalupe Recycling & Disposal Facility

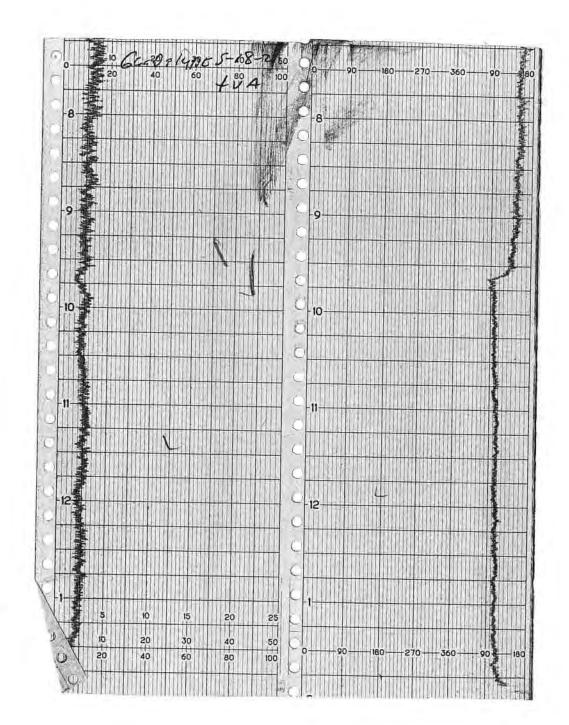
Location	1	nitial Monitorin	g	С	Corrective Action	7-[Day Remonitor	ing
	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
Flare Station A-9	5/18/2021	ND	RES	NA	NA	NA	NA	NA
Flare Station A-14	5/18/2021	ND	RES	NA	NA	NA	NA	NA


ND= Non Exceedances

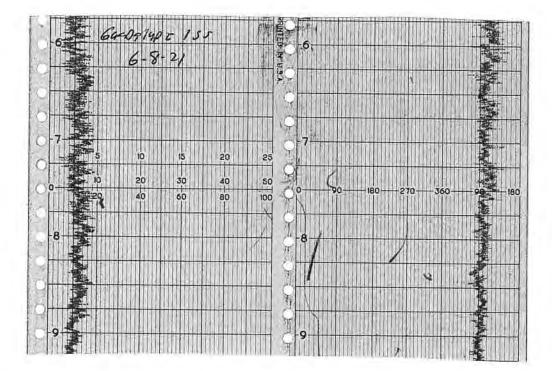
BAAQMD Component Leak Field Data Sheet Template 06052014

KCRDF Facility A1812

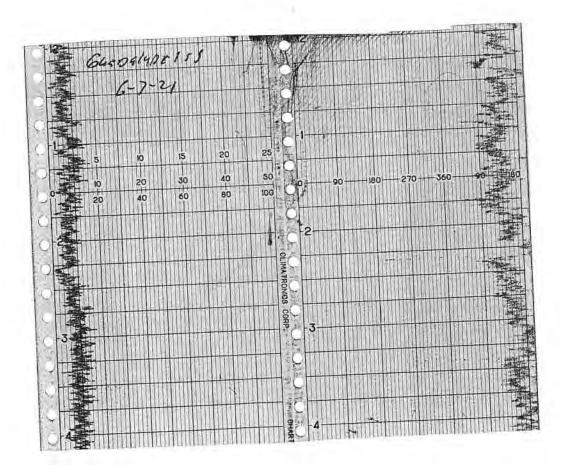
INSTRUMENT MAKE: Thermo Environr MODEL: TVA 1000 S/N: <i>j_bうらう やし</i> てつ	Ð	DATE OF SAMPLING:	3: 5-18-21 Lunar				
LOCATION OF LEAK	LEAK CONCENTRATION (ppmv)	DATE OF DISCOVERY	TECHNICIAN	ACTION TAKEN TO REPAIR LEAK	DATE OF REPAIR	DATE OF ANY REQUIRED RE- MONITORING	RE-MONITORED CONCENTRATION (PPmv)
Norketboardes							
In the event that an exce	edance is detected, pleas	se intiate corrective ac	tion and re-monito	In the event that an exceedance is detected, please intiate corrective action and re-monitor the exceedance location with	within 7 days of t	in 7 days of the initial exceedance.	
NOTE: Leaks over 500 ppmv methane 4, Subarticle 6, Section 95464(b)(1)(B)	opmv methane are excee 95464(b)(1)(B).	dances at any compo	nent containing lar	NOTE: Leaks over 500 ppmv methane are exceedances at any component containing landfill gas, pursuant to CARB Tr 4, Subarticle 6, Section 95464(b)(1)(B).	RB Title 17 of Cali	itle 17 of California Code of Regulations Subchapter 10, Article	ns Subchapter 10, Article
NOTE: Leaks over 1,000	D ppmv methane are exce	edances at any comp	oonent containing I	NOTE: Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas, pursuant to BAAQMD Regulation 8-34-301.2.	AQMD Regulatio	n 8-34-301.2.	


LANDFILL NAME: $\mathcal{G}_{Ur} \mathcal{O}_{\mathcal{T}} / \mathcal{U}_{\mathcal{P}} \mathcal{E}'$ QUARTERLY LFG COMPONENT LEAK MONITORING

Attachment D Weather Station Data


WIND SPEED & DIRECTION CHART ROLL

*


ï

WIND SPEED & DIRECTION CHART ROLL

WIND SPEED & DIRECTION CHART ROLL

	16-POINT V	VIND DIRECTION	INDEX	
NO	DIRECTION		DEGREES	
		FROM	CENTER	<u>T0</u>
16	NORTH (N)	348.8	369.0	U.1.3
1	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033.8	045.0	056.3
3	EAST-NORTHEAST (ENE)	056.3	067.5	078.8
4	EAST (E)	078.8	<u>090.0</u>	101.3
5	EAST-SOUTHEAST (ESE)	101.3	112.5	123.8
6	SOUTHEAST (SE)	123.8	135.0	146.3
7	SOUTH-SOUTHEAST (SSE)	146.3	157.5	168.8
8	SOUTH (S)	168.8	180.0	191.3
9	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213.8
6	SOUTHWEST (SW)	213.8	225.0	236.3
11	WEST-SOUTHWEST (WSW)	236,3	247.5	258.8
12	WEST (W)	258.8	<u>270.0</u>	281.3
13	WEST-NORTHWEST (WNW)	281.3	292.5	303.8
4	NORTHWEST (NW)	30.1.8	315.0	326.3
5	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8

865 Via Lata = Colton, California 92324 = (909) 422-1001 Fax (909) 422-0707

Attachment E

Calibration Records

LANDFILL NAME: GuoDalupt		INSTRUMEN	T MAKE - 74	ENNO
MODEL +VALOUD	EQUIPMENT #:	10	SERIAL #	1026346773
MONITORING DATE	6-8-21	TIME	0540	

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 2J ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background		Downwind Background		Background Value:	
Reading:		Reading:		(Upwind + Downwind)	
(Highest in 30 seconds)		(Highest in 30 seconds)		2	
2.2	ppm	Z-8	ppm	2.5	ppm

Background Value = 2.5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabili Reading	zed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	mqe	21.6	ppm	5	
#2	21	ppm	225	mqq	5	
#3	20	mqq	22.5	ррт	5	_
	Calculate Response	Time (<u>1</u> 3	+2+3)		J Must be less than 3	#DIV/0!

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	and a second second for the forther		Meter Reading Calibration Ga		Calculate Precision [STD - (E	
#1	0.30	ppm	24	ppm	1	
#2	0-17	ppm	25	ppm	Ð	
#3	0.13	ppm	25	ppm	0	
Calculate Precision [STD-B1] + [STD-B2] + [STD-B3] X 1 X 100 3 25 1					.1.3	#DIV/0!
					Must be less t	han 10%

Date/Time 6-8-21 - 0 540

LANDFIL' NAME: 660PS/4/PV		INSTRUMENT MAKE + HEATS			
MODEL EQUIPMENT #:	1.1		SERIAL # 10363412774		
MONITORING DATE 6-8-21		TIME:	0540		

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background		Downwind Back		Background Value:		
Reading:		Reading:		(Upwind + Downwind)		
(Highest in 30 seconds)		(Highest in 30 sec		2		
2-2	mqq	218	ppm	25	ppm	

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabilized Reading	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas
#1	24 ppm	21.6 pp	m 6
#2	24 ppm	7-1-6 pp	
#3	ZS ppm	2.2.5 pp	m 6
	Calculate Response Time ((+ <u>2+3)</u>	<pre> #DIV/0! Must be less than 30 seconds </pre>

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #			Meter Reading Calibration Ga		Calculate Precision [STD - (
#1	0.26	ppm	27	ppm	1	
#2	0-14	ppm	24	ppm	1	
#3	0-10	ppm	25	ppm	8	
Calculate Precisio	n [STD-B1] + [ST]	D-B2] + [3	STD-B3 X 1 2 25	< <u>100</u> 1	. 2.6	#DIV/0!
					Must be less that	an 10%

Performed By

OMEN PERECHN

Date/Time 6-8-21-0540

	INSTRUMENT	MAKE _ florio
MODEL EQUIPMENT #:		SERIAL # 1036246741
MONITORING DATE 6-8-21	TIME	0540

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air,
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{25}{2}$ ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background		Downwind Background		Background Value:		
Reading:		Reading:		(Upwind + Downwind)		
(Highest in 30 seconds)		(Highest in 30 seconds)		2		
2.2	ppm	2.8	ppm	2.5	ppm	

Background Value = 2-7 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabili Reading	zed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	23	mqq	20.7	ppm)	
#2	25	ppm	22.5	mqq	2	
#3	25	ppm	22-5	ppm	2	
	Calculate Response	e Time (<u>1</u> 3	+2+3)		Must be less that	#DIV/0! n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

		er Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision	[STD – (B)]	
#1	0.37	ppm	27	ppm	Z	
#2	0.12	ppm	25	ppm	B	
#3	0-08	ppm	25	ppm	8	
Calculate Precision	n [STD-B1] + [S	TD-B2] + [3	STD-B3] X 1 25	X <u>100</u> 1	. 2-6	#DIV/0!
					Must be less that	an 10%

Performed By LICK BENKS

Date/Time 6-8-21-0540

1

LANDFILL NAME: 6600510P	1-	IN	STRUMENT	MAKE FALANO
MODEL: LUALODO	EQUIPMENT #:			SERIAL #: 1102746775
MONITORING DATE 6-8-	21			0540

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{2J}{ppm}$
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backg		Downwind Background		Background Value:		
Reading:		Reading:		(Upwind + Downwind)		
(Highest in 30 se		(Highest in 30 seconds)		2		
2.2	ppm	2.8	ppm	2.5	ppm	

Background Value = 2.5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Read Calibration Gas	tabilized Reading Using 90% of the Stabilized alibration Gas Reading		ized Time to Reach Stabilized Read switching from Calibration Ga		iding after In Zero Air to	
#1	24	ppm	21.6	ppm	6		
#2	25	ppm	22.5	ppm	6		
#3	25	ppm	27.5	ppm	6		
	Calculate Respons	e Time (<u>1</u> 3	<u>+2+3)</u>		6 Must be less than	#DIV/0! 30 seconds	

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading Calibration Ga		Calculate Precision	[STD – (B)]
#1	0.31	ppm	24	ppm	7	
#2	0.17	ppm	25	ppm	Ð	
#3	0.14	ppm	25	ppm	0	
Calculate Precisio	on [STD-B1] + [S	TD-B2] + [3	STD-B3] X <u>1</u> X 25	(<u>100</u> 1	· /-3 Must be less th	#DIV/0!

Performed By Dwish + Arothson

Date/Time: 6-8-21-0592

al.

LANDFILL NAME 645Delipt	INSTRUMENT MAKE + Dom~
MODEL _ FUA 2000 EQUIPMENT #: 10	SERIAL # 1036346773
MONITORING DATE 6-7-21	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- Introduce calibration gas into the probe. Stabilized reading = _____ ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Background		Background Value:	
Reading:	Reading:		(Upwind + Downwind)	
(Highest in 30 seconds)	(Highest in 30 seconds)		2	
Z-Z ppm	2.8	ppm	2-5	ppm

Background Value = 2.5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		0% of ing after Zero Air to
#1	23	mqe	20.7	mqq	6	
#2	25	ppm	27.5	ppm	6	
#3	25	mqq	27.5	ppm	6	
	Calculate Response	e Time (<u>1</u> 3	+2+3)		6 Must be less tha	#DIV/0!

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero	Air (A)	Meter Reading Calibration Ga		Calculate Precision [STD – (B)]
#1	0-2>	ppm	23	ppm	2
#2	0-13	ppm	25	ppm	D
#3	0.09	ppm	25	ppm	ð
Calculate Precisi	an [STD-B1] + [STD)- <u>B2] + [</u> 3	<u>STD-B3</u> X <u>1</u>) 25	(<u>100</u> 1	Z · 6 #DIV/0 Must be less than 10%

Performed By LENSAWADE Date/Time 6-7-21-1155

2. C

LANDFILL NAME: <u>6400010000</u> INSTRUMENT MAKE <u>HADA</u> MODEL <u>FUAIDO</u> EQUIPMENT #: <u>11</u> SERIAL # <u>1036346774</u> MONITORING DATE <u>6-7-21</u> TIME <u>1155</u>

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
Z.Z ppm	Z. 8 ppm	Z.S ppm

Background Value = 2.5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		90% of ling after Zero Air to
#1	24	nqq	21.6	ppm	7	
#2	25	ppm	2.2.5	nqq	2	
#3	25	ppm	22.5	ppm	7	
	Calculate Response	Time (1 3	+2+3)		>	#DIV/0!
and the second second					Must be less that	in 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero A	ir (A)	Meter Reading Calibration Ga	-	Calculate Precision	[STD – (B)]
#1	0.29	ppm	24	ppm	/	
#2	0-16	ppm	21	ppm	0	
#3	0-14	ppm	25	ppm	0	
Calculate Precision	on [STD-B1] + [STD-B1] + [STD-B1] - 3	32] + [STD-B3] X 1) 25	K <u>100</u> 1	1.3	#D1V/0!
		_			Must be less th	nan 10%

Performed By OMANDERalAA Date/Time 6-7-24- 1155

 LANDFILL NAME
 6400/48
 INSTRUMENT MAKE
 41400 20

 MODEL
 444100
 EQUIPMENT #
 12
 SERIAL # 1036246791

 MONITORING DATE
 6-7-21
 TIME
 1155

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{25}{\text{ppm}}$
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
Z.Z ppm	2.8 ppm	2.5 ppm

Background Value = 2:5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	23	mqq	20.7	ppm	6	
#2	24	ppm	21.6	mqq	6	
#3	25	mqq	27.5	ppm	C	
	Calculate Response	Time (1 3	+2+3)		6	#DIV/0!
					Must be less that	in 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero	Air (A)	Meter Reading Calibration Ga		Calculate Precision	[STD – (B)]
#1	0.33	ppm	23	ppm	2	_
#2	0-20	ppm	24	ppm	L	
#3	0-16	ppm	25	ppm	б	
Calculate Precisio	IN [STD-B1] + [STD	-B2] + [3	STD-B3] X 1) 25	(<u>100</u> 1	Y. Ø Must be less tha	#D1V/0

Performed By NICK BENKS Cale/Time 6-7-21-1/15

LANDFILL NAME: <u>Buodeland</u> INSTRUMENT MAKE <u>HELDA</u> MODEL <u>HUAIOOD</u> EQUIPMENT #: <u>13</u> SERIAL # <u>1102746775</u> MONITORING DATE <u>6-7-21</u> TIME <u>1155</u>

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2 Introduce calibration gas into the probe. Stabilized reading = $\frac{2.5}{pom}$
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
ZIZ ppm	2.8 ppm	Z-S ppm

Background Value = 2.5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilia Reading	ced	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	mqq	21.6	mqq	5	
#2	25	ppm	22.5	mqq	5	
#3	25	mqq	22.5	ppm	5	
	Calculate Response	e Time (1 3	+2+3)		J Must be less that	#DIV/0!

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero			g for as (B)	Calculate Precision [STD – (B)]	
#1	0.4]	ppm	24	ppm	1	
#2	0.26	ppm	25	ppm	0	
#3	0-19	ppm	25	ppm	0	
Calculate Precisio		3-B2] + [STD-B3] X <u>1</u>) 25	K <u>100</u> 1	. 1.3	#D1V/0!
					Must be less that	an 10%

Performed By DWIPBLANDENSON Date/Time 6-7-21-1155

15

LANDFILL NAME: 64	e Delypo	1	NSTRUMEN	VT MAKE filtenno
MODEL: traises	EQUIPMENT #:	10		SERIAL #: 1636346777
MONITORING DATE	5-18-21		TIME	6710

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = <u>565</u> ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background	Downwind Background		Background Va	
Reading:	Reading:		(Upwind + Dox	
(Highest in 30 seconds)	(Highest in 30 seconds)		2	
2.6 ppr	2-8	ppm	2.7	ppm

Background Value = 2-> ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using 90% of the Stabilized Calibration Gas Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas
#1	567 opm	USS ppm	1
#2	500 DOM	450 pom	6
#3	500 00m	450 pộm	1 6
	Calculate Response Time ((+2+3) 3	6 #DiV/0!
	P.	the second s	Must be less than 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	asurement # Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate F		Calculate Precision	[STD - (B)]
#1	0.35	ppm	507	ppm	2	
#2	0.22	ppm	500	ppm	0	
#3	0114	ppm	500	ppm	0	
Calculate Precisio	n [STD-B1] + [S	TD-B2] + [3	<u>STD-B3]</u> X <u>1</u> X 500	<u>100</u> 1	Ø-46 Must be less tha	#DIV/0i

Performed B, LEIShWADE

Date/Time 5-18-21-0710

T mental ins

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME _ 6400	alup-		INSTRUMEN	TMAKE: + HERNO
MODEL: LUA 1000	EQUIPMENT #: _	11		SERIAL #: 1636346774
MONITORING DATE:	5-18-21		TIME:	0710

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{\int 0}{D} ppm$
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 seco	g: Reading:			Background Va (Upwind + Dow 2	
2.6	ppm	2-8	ppm	2.7	ppm

Background Value = Zi> ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	asurement # Stabilized Reading Using 90% of the Stabilized Calibration Gas Reading		Time to Reach Stabilized Rea switching from Calibration Ga	ding afte r Zero Ai r to		
#1	1490	mqc	440	ppm	5	
#2	500	mqq	450	ppm	5	
#3	500	mqç	450	ppm	J	
	Calculate Response	Time (1	+2+3)		J Must be less th	#DIV/0!

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurément #	Meter Reading for Zer	o Air (A)	Meter Reading Calibration Ga		Calculate Precision [STD	- (B)]
#1	0.22	ppm	450	ppm	10	
#2	0-15	ppm	500	ppm	в	
#3	0.08	ppm	500	ppm	0	
Calculate Precisio	n [STD-B1] + [ST	[D-B2] + [3	STD-B3] X <u>1</u> X 500	100 1	0-66 Must be less than 10%	#DIV/0

Forformed B, ONON PHARCHA

Cate/Tme 5-18-21 0710

Environmenta! In

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME: GGGOS/Apr			INSTRUMENT MAKE: + Hen 10			
MODEL: LURIODO	EQUIPMENT #:	12		SERIAL #: 1636296741		
MONITORING DATE:	5-18-21		TIME:	0710		

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing dir.
- 2. Introduce calibration gas into the probe. Stabilized reading = _____ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 sec.		Downwind Back Reading: (Highest in 30 sec		Background Value: (Upwind + Downwind) 2	
2.8	ppm	2,8	ppm	2.7	ppm

Background Value = Z.> ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the S Reading	Stabilized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	504 00	m 454	mqq	6	
#2	485 00	1 445	ppm	6	
#3	500 00	m 450	pộm	6	
	#DIV/0 Must be less than 30 seconds				

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading Calibration Ga		Calculate Precision	[STD - (B)]
#1	0.35	ppm	5.4	ppm	4	
#2	0,17	ppm	495	ppm	C	
#3	0.14	ppm	500	ppm	0	
Calculate Precisio	on [STD-B1] + [S	TD-B2] + [3	STD-B31 X 1) 500	(<u>100</u> 1	0.60 Must be less th	#DIV/0

9

Feromed B, JUSC LONNING

Date/Time 1-18-21-0310

Environmental Inc.

RES UNT # 10 CUSTOMER: 1036346 SERIAL NUMBER: DATE: 4-3-21 TECHNICIAN:

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	(00	+/- 25
500	500	493	+/- 125
10000	10000	(0,000	+/- 2500
< 1	ZERO GAS	0.68	< 3
	Pil	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100	/	+/- 25
500	500	/	+/- 125
< 1	ZERO GAS	/	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

P.O. Box 748 Colton, California 92324 (909) 422-1001 TOLL FREE (888) 325-1098 FAX (909) 422-0707 www.resenvironmental.com

RES CAT # 11 CUSTOMER: 1036346779 SERIAL NUMBER: ____ DATE: _______ TECHNICIAN:

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	(00	+/- 25
500	500	500	+/- 125
10000	10000	(0,00)	+/- 2500
<1	ZERO GAS	0.71	< 3
	PIL	0	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500	/	+/- 125
< 1	ZERO GAS	/	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

CUSTOMER: Yes want #12 1036246741 SERIAL NUMBER: DATE: 4-3-21 10315215 TECHNICIAN:

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	(00	+/- 25
500	500	600	+/- 125
10000	10000	10,102	+/- 2500
< 1	ZERO GAS	0.79	< 3
	PI	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100	/	+/- 25
500	500	/	+/- 125
<1	ZERO GAS	1	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

RES UNIT #13 CUSTOMER: 1102746775 SERIAL NUMBER: MUBIENTS DATE: 4-3-21 TECHNICIAN:

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	Fi	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	(0,000	+/- 2500
< 1	ZERO GAS	0:83	< 3
	Pli	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS	1	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

CUSTOMER: Dait # **SERIAL NUMBER:** 4-3-21 DATE: **TECHNICIAN:**

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	Q.89	< 3
	Pil	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
< 1	ZERO GAS	1	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

Serial # #10 1036346773

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

urpose:	<u></u>
perator:	M
ate: 5-8-21	Time: 0830

INSTRUMENT INTEGRITY CHECKLIST		INSTRUMENT CALIBRATION		
	0	CALIBRATION CHECK		
Battery test	(Pass / Fail	Calibration	Actual	%
Reading following ignition	2.0 ppm	Gas (ppm)	(ppm)	Accuracy
	ppm	- 500	500	100050
Leak test	(Pase / Fail / NA	900	300	1004
		RESPONSE TIME		
Clean system check	Pass / Fail / NA			2
(check valve chatter)		Calibration Gas, p		500
	A.	90% of Calibration	n Gas, ppm	450
H ₂ supply pressure gauge	Pass/ Fail / NA	Time required to a	attain 90% of Cal G	as ppm
(acceptable range 9.5 - 12)	<u> </u>	1.	<u> </u>	
Date of last factory calibration	4-3-21	2.	0	
Sale of last factory campration	-1σ	3.	6	
Factory calibration record	Ess DEail	Average (5.0	
w/instrument within 3 months		Equal to or less th	nan 30 seconds?	1 N
		Instrument calibra	ted to Clify	gas.

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

urpose:	,	
Operator:	1	
Date: 5-8-2-1	Time:	0945

Model # +UA 100015 Serial # # 11 1036346719

INSTRUMENT INTEGRITY CHECKLIST		INSTRUMENT CALIBRATION		
Potton tost	-00	CALIBRATION CHECK		
Battery test	ass/Fail	Calibration	Actual	%
Reading following ignition	2.1 ppm	Gas (ppm)	(ppm)	Accuracy
Leak test	ase / Fail / NA	500	500	100%
		RESPONSE TIME		
Clean system check	ass / Fail / NA			-
(check valve chatter)		Calibration Gas, ppm 500		00
-	~	90% of Calibratio		150
H ₂ supply pressure gauge	ass / Fail / NA		attain 90% of Cal G	
(acceptable range 9.5 - 12)		1		ac bhu
	10-21,	2.	7	
Date of last factory calibration	4-2-01	3. (/	
	1.0		0	
Factory calibration record	Pass) Fail	Average (ele_	Q
w/instrument within 3 months		Equal to or less the		O∕∕ N
		Instrument calibra	ated to Ulty	gas.

Comments:

Sorial # #12 103/0246741

SURFACE EMISSION MONITORING INSTRUMENT **CALIBRATION LOG**

Purpose:		
Operator:/4/14		
Date: 5-8-21	Time:	0900

INSTRUMENT INTEGRITY	CHECKLIST	INSTR	UMENT CALIBRA	TION
	2	CA	LIBRATION CHEC	к
Battery test	Pase / Fail	Calibration	Actual	%
Pooding following ignition	26	Gas (ppm)	(ppm)	Accuracy
Reading following ignition	<u>2.6</u> ppm	Can	C100	1001
Leak test	Fass / Fail / NA	500	500	1004
			RESPONSE TIME	
Clean system check	Fasy / Fail / NA		_	`
(check valve chatter)	0	Calibration Gas, p	pm 2	00
	5	90% of Calibration	Gas, ppm	150
H ₂ supply pressure gauge	Pass / Fail / NA	Time required to a	ttain 90% of Cal Ga	as ppm
(acceptable range 9.5 - 12)	-	1. 5		
Doto of loot footons and how the	1271	2. 5		
Date of last factory calibration	1-1-2-1	3. 6		
Factory calibration record	Foil	Average 5	.3	
w/instrument within 3 months	Cost Fall	Equal to or less th	an 30 seconds?	Ø N
		1		

Comments:

465

SURFACE EMISSION MONITORING INSTRUMENT

CALIBRATION LOG

Site:			_
Purpose:			
Operator:			
Date: 5-8-21	Time:	0915	_
Model # TUA LOOOD			
Serial # #13 1102746775			

INSTRUMENT INTEGRITY CHECKLIST		INSTRUMENT CALIBRATION		
	~~~	CALIBRATION CHECK		
Battery test	Fass/ Fail	Calibration	Actual	%
Reading following ignition	la ppm	Gas (ppm)	(ppm)	Accuracy
Leak test	Pase / Fail / NA	500	500	LOOY.
Lour lost	Fase/Fail/INA	RESPONSE TIME		
Clean system check (check valve chatter)	ass / Fail / NA			
(**************************************	A	90% of Calibratio		450
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA	Time required to attain 90% of Cal Gas ppm		
(	1100	1	<u> </u>	
Date of last factory calibration	4-3-01	3.	2	
	<u>^</u>		2	
Factory calibration record	Pass Fail	Average	00	
w/instrument within 3 months	$\sim$	Equal to or less the Instrument calibration	<b>^</b>	(Y) N

Comments:



## SURFACE EMISSION MONITORING INSTRUMENT

#### **CALIBRATION LOG**

Site:			
Purpose:			
Operator:			
Date: 5-8-21	Time:	0930	
Model # _ +UA-1000-18			
Serial # #14 103634671			

INSTRUMENT INTEGRITY CI	HECKLIST	INSTRUMENT CALIBRATION				
-	at a second second	CALIBRATION CHECK				
Battery test	Pass / Fail	Calibration	Actual	%		
Reading following ignition	(9 ppm	Gas (ppm)	(ppm)	Accuracy		
	G	500	500	100%		
Leak test	Rass / Fail / NA		RESPONSE TIME			
Clean system check 4	ass / Fail / NA					
(check valve chatter)		Calibration Gas, p	pm S	00		
	0	90% of Calibration	n Gas, ppm 4	USO -		
H ₂ supply pressure gauge	Pass / Fail / NA	Time required to a	attain 90% of Cal Ga	as ppm		
(acceptable range 9.5 - 12)		1				
Date of last factory calibration	4-3-21	2				
Bute of last factory calibration	. 10-1	3	2			
Factory calibration record	Pass/ Fail	Average(	.3			
w/instrument within 3 months		Equal to or less th	an 30 seconds?	<ul><li>𝔅 №</li></ul>		
	1.1.1.1	Instrument calibra	ited to COLY	gas.		
		Instrument calibra	ited to <u>COTY</u>	gas.		



#### INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

#### CERTIFICATE OF ANALYSIS

Composition Air - Zero THC Oxygen Nitrogen

Certification < 2 PPM 20.9%

Balance

 $\pm 2\%$ 

Analytical Accuracy

Lot # 19-6779

Mfg. Date: 4/3/2019 Parent Cylinder ID Number: 001739, 02268

Method of Preparation:

Gravimetric/Pressure Transfilled

#### Method of Analysis:

This mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 4/3/2019





#### INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

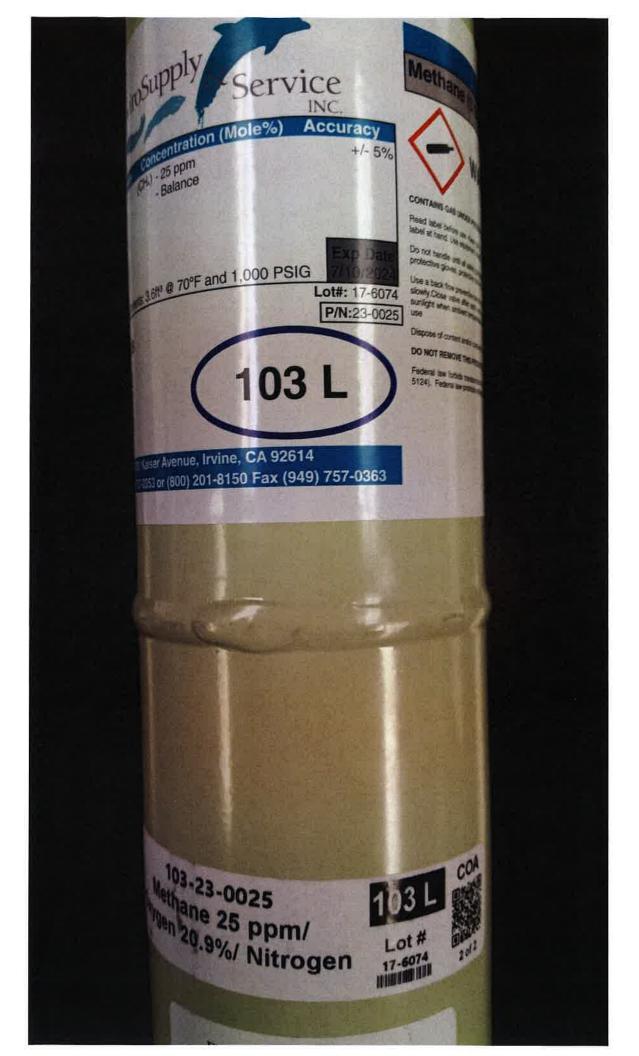
#### CERTIFICATE OF ANALYSIS

Composition Methane Air

Certification 25 ppm Balance Analytical Accuracy ± 5%

Lot # 17-6074

Mfg. Date: 10/16/2017 Parent Cylinder ID Number: 17161


#### **Method of Preparation**:

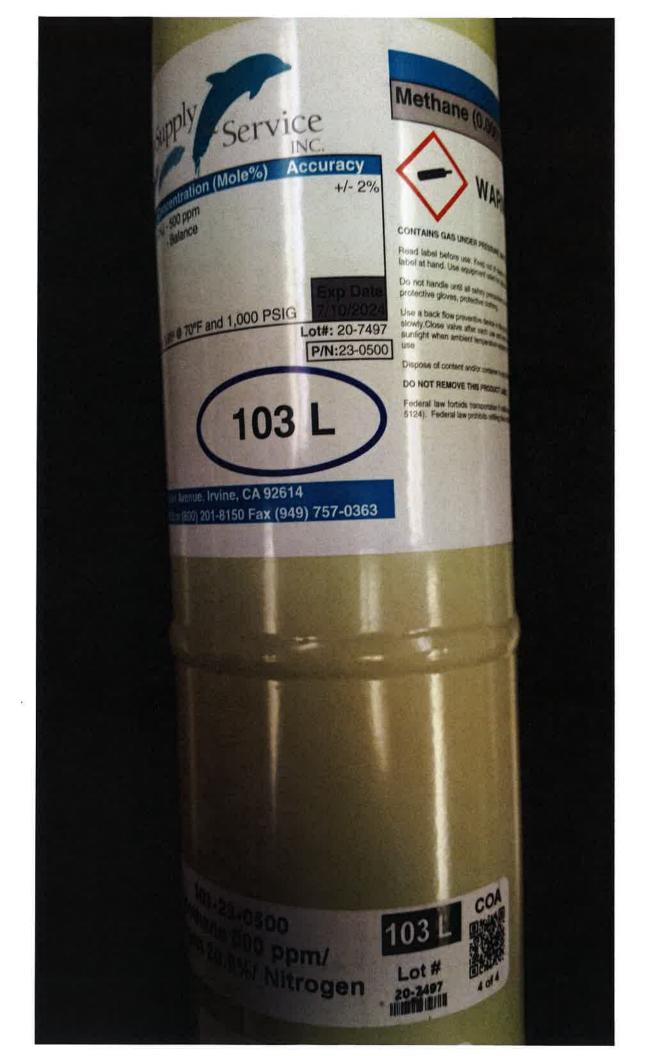
Gravimetric/Pressure Transfilled

#### Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 10/16/2017




## Intermountain Specialty Gases

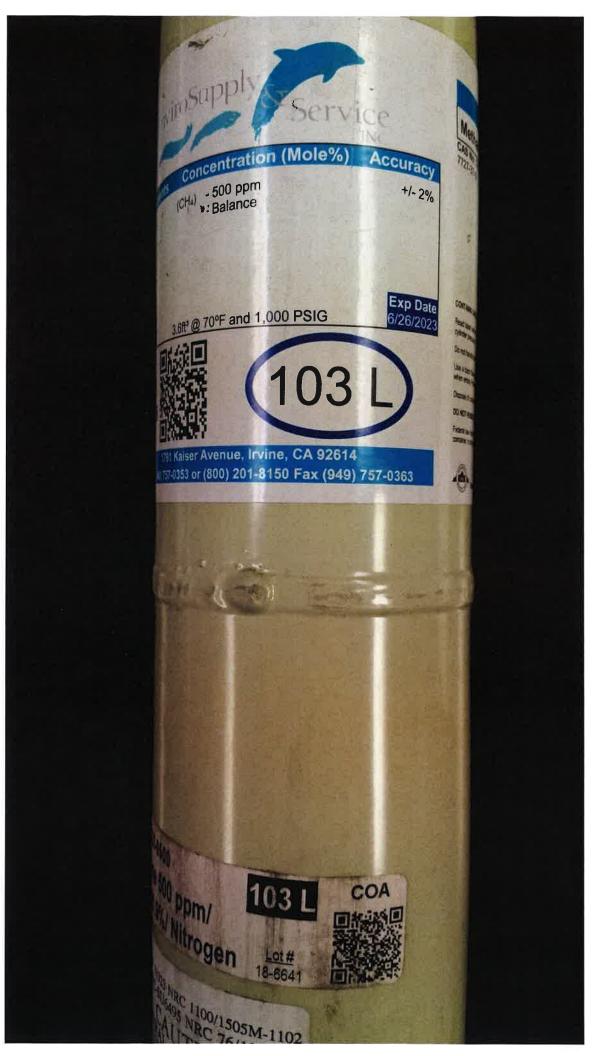
520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 <u>www.isgases.com</u>



## **CERTIFICATE OF ANALYSIS**

Composition		Certification	Analytical Accuracy (+/-)
Methane		500 ppm	2%
Oxygen Nitrogen		20.9 % Balance UHI	2%
Lot #	20-7497		
Mfg. Date: Expiration Date:	7/10/2020		
Transfill Date:	see cylinder		
Parent Cylinder ID Number:	TWC001763		
Method of Prepar	ation:		
Gravimetric/Pressu	re Transfilled		
Method of Analys	a.		
	s prepared gravimetrie	cally and is traceabl	e to the NIST by certified weights (ID
		Analysis By: Title: Certificate Date:	Tony Janquart Quality Assurance Manager 7/10/2020




## Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 <u>www.isgases.com</u>



## **CERTIFICATE OF ANALYSIS**

Composition		Certification	Analytical Accuracy (+/-)
Methane		500 ppm	2%
Oxygen Nitrogen		20.9 % Balance UHI	2%
Lot#	18-6641		
Mfg. Date: Expiration Date:	12/18/2018		
Transfill Date:	see cylinder		т. Т
Parent Cylinder ID Number:	001763		
Method of Prepar Gravimetric/Pressu			
Method of Analys	is:		
The parent mix was #CA10814) used to		cally and is traceabl	e to the NIST by certified weights (ID
		Analysis By: Title: Certificate Date:	Tony Janquart Quality Assurance Manager 12/18/2018



2100 MERIDIAN PARK BLVD

Concord, CA 94520 TO REORDER CALL 1 (888) 234-5678

## METHANE 500ppm AIR BALANCE

Analytical Accuracy +/- 2%

103L @ 70F & 1000 PSIG Lot# K024306 P/N MET-500-103L

EXP: 6/19/2022

#### CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name:	Guada	<u>lupe Rubbish I</u>	<u>Disposal</u>	Date:	5/27/21		
Time:	AM _	12:45 pm	PM				
Instrument Mak	te:	Thermo Scier	ntific	Model:	TVA 1000	S/N:	0928538411

#### Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>500 ppm</u>

3. Adjust meter to read 500 ppm.

#### Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): 7 ppm (a)
- 2. Downwind Reading (highest in 30 seconds): 2 ppm (b)

Calculate Background Value:

 $\underline{(a) + (b)}_{2} \qquad Background = \underline{4.5}_{ppm}$ 

Performed by: Markus Bernard

#### CALIBRATION PRECISION TEST RECORD

Date: <u>3/3/2021</u>	_	
Expiration Date (3 mo	onths): <u>6/2/2021</u>	
Time: <u>8:48</u> AM	PM	
Instrument Make:	Thermo Scientific Model: TVA	A 1000 S/N: 0928538411
Measurement #1:		
	Meter Reading for Zero Air:	<u>0</u> ppm (a)
Meter	Reading for Calibration Gas:	<u>500</u> ppm (b)
Measurement #2:		
	Meter Reading for Zero Air:	<u>0</u> ppm (c)
Meter	Reading for Calibration Gas:	<u>498</u> ppm (d)
Measurement #3:		
	Meter Reading for Zero Air:	<u>0</u> ppm (e)
Meter	Reading for Calibration Gas:	<u>496</u> ppm (f)
Calculate Precision:		
$\{ (500) - (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (500)  +  (5$	$\frac{100}{2} - (498)  +  (500) - (496)  x 1$	_ x 100
	3 500	

<u>1.2</u> % (must be < than 10%)

Performed by: <u>M. Bernard</u>

#### **RESPONSE TIME TEST RECORD**

Date: <u>3/3/21</u>	
Expiration Date (3 months): <u>6/2/21</u>	
Time: <u>8:48</u> AM PM	
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S/N: <u>09285384</u>	11
Measurement #1:	
Stabilized Reading Using Calibration Gas:500ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after450ppm	
switching from Zero Air to Calibration Gas: <u>10</u> seconds (	(a)
Measurement #2:	
Stabilized Reading Using Calibration Gas: 498 ppm	
90% of the Stabilized Reading: <u>450</u> ppm	
Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: <u>7</u> seconds (	(b)
Measurement #3:	
Stabilized Reading Using Calibration Gas:498 ppm	
90% of the Stabilized Reading: <u>450</u> ppm	
Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: <u>7</u> seconds (	(c)
Calculate Response Time:	

 $\frac{(a) + (b) + (c)}{3} = \frac{8}{3}$  seconds (must be less than 30 seconds)

Performed by: <u>M. Bernard</u>

#### CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name: Guadalupe Rubbish Disposal
 Date: 6/17/21

 Time: 10:00 AM _____ PM

 Instrument Make: Thermo Scientific Model: TVA 1000 S/N: 0928538411

#### Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>500 ppm</u>

3. Adjust meter to read 500 ppm.

#### Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): <u>4 ppm (a)</u>
- 2. Downwind Reading (highest in 30 seconds): 1 ppm (b)

Calculate Background Value:

 $\underline{(a) + (b)}_{2} \qquad Background = \underline{2.5}_{ppm}$ 

Performed by: Markus Bernard

#### CALIBRATION PRECISION TEST RECORD

Date: <u>6/4/2021</u>	_			
Expiration Date (3 mo	onths): <u>9/4/2021</u>			
Time: <u>8:45</u> AM	PM			
Instrument Make:	Thermo Scientific Model: TV	'A 1000	S/N:	0928538411
Measurement #1:				
	Meter Reading for Zero Air:	<u>0</u> ppm	(a)	
Meter	Reading for Calibration Gas:	496	ppm (b)	
Measurement #2:				
	Meter Reading for Zero Air:	0	ppm (c)	
Meter	Reading for Calibration Gas:	498	_ppm (d)	
Measurement #3:				
	Meter Reading for Zero Air:	0	ppm (e)	
Meter	Reading for Calibration Gas:	<u>496</u> pp	m (f)	
Calculate Precision:				
$\frac{ (496) - (500)  +  (500) }{ (500) }$	$\frac{(00) - (498)  +  (500) - (496) }{2} \times \frac{1}{500}$	x 100		
	3 500	)		

<u>1.0</u> % (must be < than 10%)

Performed by: <u>M. Bernard</u>

#### **RESPONSE TIME TEST RECORD**

Date: <u>6/4/21</u>
Expiration Date (3 months): <u>9/4/21</u>
Time: <u>8:50</u> AM PM
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S/N: <u>0928538411</u>
Measurement #1:
Stabilized Reading Using Calibration Gas:496ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:10seconds (a)
Measurement #2:
Stabilized Reading Using Calibration Gas:498ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:5seconds (b)
Measurement #3:
Stabilized Reading Using Calibration Gas: <u>496</u> ppm
90% of the Stabilized Reading: <u>450</u> ppm Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: <u>5</u> seconds (c)
Calculate Response Time:

Calculate Response Time:  $\frac{(a) + (b) + (c)}{3} = \frac{8}{3}$ seconds (must be less than 30 seconds)

Performed by: <u>M. Bernard</u>

#### **APPENDIX I**

## MONTHLY SOLID WASTE PLACEMENT TOTALS

#### Guadalupe Recycling & Disposal Facility, San Jose, CA Solid Waste Placement Totals

April 1, 2021 through September 30, 2021

Month	Decomposed Waste Disposed in tons	Total Waste Disposed During Reporting Period
Apr-21	9,604	
May-21	9,298	-
Jun-21	9,606	FC 994
Jul-21	9,335	- 56,881
Aug-21	9,590	1
Sep-21	9,448	1

#### **APPENDIX J**

## WELLFIELD MONITORING LOGS

#### Guadalupe Recycling & Disposal Facility, San Jose, CA

Wellfield Monitoring Report - April 1, 5, 6, 7, 8, and 9, 2021

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide)(%)	O2 (Oxygen) (%)	Balance Gas(%)	Initial Temperature (oF)	Adjusted Temperature (oF)	Initial Static Pressure("H2O)	Adjusted Static Pressure("H2O)
GDLC0188	4/6/2021 15:38	48.4	43	0.1	8.5	138.0	138.0	-17.8	-17.7
GDLC0189	4/8/2021 10:49	31	34.5	0.0	34.5	122.0	122.0	-1.6	-1.6
GDLC0190	4/6/2021 15:22	39.1	36.6	0.2	24.1	128.0	128.0	-4.0	-1.3
GDLC0191	4/6/2021 14:10	22.7	34.3	0.1	42.9	122.0	122.0	-3.8	-3.8
GDLC0192	4/5/2021 11:17	50.6	46.9	0.1	2.4	127.0	127.0	-10.4	-11.0
GDLC0193	4/6/2021 14:31	46.5	41	0.0	12.5	130.0	129.0	-0.4	-0.3
GDLC0196	4/7/2021 14:40	31	30.6	0.1	38.3	103.0	102.0	-3.1	-0.7
GDLC0197	4/8/2021 11:07	38.2	34.1	0.0	27.7	118.0	118.0	-0.6	-0.6
GDLC0232	4/7/2021 14:45	39.6	36.8	0.0	23.6	114.0	114.0	-0.4	-0.2
GDLC0233	4/7/2021 14:34	12.2	17.2	6.5	64.1	102.0	93.0	-1.3	-1.2
GDLC0233	4/7/2021 14:36	15	19.3	5.7	60	93.0	93.0	-1.1	-1.1
GDLC0233	4/9/2021 14:42	28.7	30	1.1	40.2	109.0	102.0	-5.5	-2.3
GDLC0233	4/9/2021 14:45	29.4	30.8	0.7	39.1	102.0	102.0	-3.7	-3.3
GDLC0234	4/7/2021 8:30	37.6	35.5	0.1	26.8	120.0	120.0	-0.6	-0.4
GDLC0235	4/5/2021 11:21	52.3	47.5	0.0	0.2	123.0	123.0	-19.5	-18.2
GDLC0236	4/6/2021 14:59	41.7	39.3	0.0	19	122.0	122.0	-0.4	-0.4
GDLC0237					Offline f	or filling			
GDLC0238	4/5/2021 12:52	21.3	28.8	0.0	49.9	110.0	111.0	-0.1	-0.1
GDLC0239	4/2/2021 14:05	25.1	29.2	0.0	45.7	107.0	107.0	-0.3	-0.2
GDLC0240	4/2/2021 14:02	48.2	40.3	0.0	11.5	116.0	116.0	-2.0	-1.9
GDLC0241	4/2/2021 13:52	53.6	45.7	0.0	0.7	122.0	122.0	-4.2	-4.2
GDLC0242	4/2/2021 13:55	54.5	43.5	0.9	1.1	115.0	116.0	-40.4	-40.3
GDLC0243	4/8/2021 11:24	39.9	42.2	0.0	17.9	82.0	93.0	-0.1	-0.1
GDLC0244	4/5/2021 12:46	32.4	36	0.0	31.6	109.0	109.0	-0.2	-0.2
GUAD0062	4/1/2021 11:56	47.4	37	0.0	15.6	98.0	98.0	-1.7	-1.7
GUAD0062	4/8/2021 13:30	54.4	40.7	0.1	4.8	110.0	110.0	-39.2	-39.7
GUAD0065	4/8/2021 14:30	54.4	40.7	0.1	4.8	110.0	110.0	-39.2	-39.7
GUAD0066	4/1/2021 11:07	43.6	35.3	0.1	21	106.0	104.0	-5.0	-5.0
GUAD0081	4/8/2021 14:19	49.5	39.9	0.0	10.6	114.0	114.0	-19.0	-19.0
GUAD0082	4/9/2021 14:29	46.8	34.4	0.1	18.7	101.0	101.0	-9.2	-9.2
GUAD0112	4/1/2021 11:26	36.6	32.6	0.0	30.8	124.0	125.0	-1.2	-0.8
GUAD0114	4/8/2021 14:03	52.6	40.5	0.1	6.8	133.0	133.0	-2.3	-2.3
GUAD0122	4/6/2021 11:27	56.5	43.3	0.0	0.2	135.0	135.0	-34.4	-34.3
GUAD0124	4/6/2021 14:00			1		CO was 0 pp	m		
GUAD0124	4/6/2021 14:04	55.8	43.9	0.1	0.2	117.0	117.0	0.7	0.6
GUAD0124	4/6/2021 14:06	55.8	43.9	0.1	0.2	117.0	117.0	0.7	0.5
GUAD0124	4/16/2021 15:52	55.6	44.1	0.1	0.2	98.0	98.0	1.0	1.1
GUAD0129	4/2/2021 13:41	57.7	42	0.1	0.2	106.0	106.0	-35.3	-35.2
GUAD0131	4/8/2021 11:33	56.9	42.9	0.0	0.2	108.0	108.0	-40.8	-41.2
GUAD0134	4/8/2021 11:12	46.9	37.6	0.0	15.5	120.0	120.0	-0.8	-0.8
GUAD0135	4/2/2021 13:27	47.7	39	0.1	13.2	132.0	132.0	-2.9	-2.9
GUAD0135	4/2/2021 13:28	47.7	39	0.1	13.2	132.0	132.0	-2.9	-2.9
GUAD0138	4/1/2021 11:00	30.1	31.7	0.1	38.1	96.0	96.0	-0.5	-0.3
GUAD0142	4/1/2021 11:47	47.6	36.6	0.0	15.8	107.0	108.0	-3.7	-3.7
GUAD0146	4/7/2021 15:59	56.2	43.7	0.0	0.1	132.0	132.0	-35.6	-35.9

(	I	1	I	1	I	I	I		
GUAD0147	4/7/2021 8:45	58.1	41.8	0.0	0.1	118.0	118.0	-2.0	-2.0
GUAD0151	4/6/2021 15:34	55.7	36.2	0.0	8.1	135.0	135.0	-27.7	-27.7
GUAD0152	4/7/2021 15:49	58.3	41.5	0.0	0.2	134.0	134.0	-31.9	-32.0
GUAD0154	4/6/2021 14:38	56	43.9	0.0	0.1	132.0	132.0	-8.9	-9.2
GUAD0156	4/7/2021 15:05	33.9	34.1	0.0	32	106.0	107.0	-2.0	-2.1
GUAD0158	4/7/2021 16:11	23.5	34.6	0.0	41.9	83.0	84.0	-0.9	-0.8
GUAD0161	4/8/2021 16:17	30.4	45.5	1.5	22.6	99.0	88.0	-7.1	-5.0
GUAD0162	4/6/2021 14:50	56.2	43.7	0.0	0.1	139.0	139.0	-12.9	-12.9
GUAD0172	4/8/2021 13:47	46	37.3	0.0	16.7	114.0	114.0	-3.0	-3.0
GUAD0173	4/8/2021 13:53	43.9	38.2	0.0	17.9	113.0	118.0	-0.2	-0.2
GUAD0173	4/8/2021 13:56			l		CO was 0 pp	om		1
GUAD0176	4/7/2021 14:26	47	38.7	0.1	14.2	127.0	127.0	-30.6	-29.9
GUAD0177	4/7/2021 14:48	49.7	39.8	0.0	10.5	128.0	128.0	-0.9	-0.9
GUAD0178	4/5/2021 13:37	56.3	43.5	0.0	0.2	97.0	97.0	-34.5	-36.4
GUAD0178	4/7/2021 15:43	56.9	42.1	0.6	0.4	85.0	84.0	-36.5	-36.3
GUAD0179	4/7/2021 14:57	23.9	29.3	0.0	46.8	109.0	106.0	-0.4	-0.3
GUAD0180	4/7/2021 16:07	53.4	41.4	0.3	4.9	129.0	129.0	-38.3	-38.1
GUAD0181	4/7/2021 15:53	54.6	45.3	0.0	0.1	138.0	139.0	-38.0	-37.6
GUAD0183	4/5/2021 11:28	55.3	44.5	0.1	0.1	129.0	129.0	-10.0	-9.7
GUAD0184	4/2/2021 13:47	46	41.7	0.1	12.2	128.0	128.0	-20.8	-20.8
GUAD0185	4/6/2021 14:41	52.2	43.2	0.0	4.6	135.0	135.0	-1.8	-1.9
GUAD0186	4/6/2021 14:33	53.1	44	0.1	2.8	131.0	131.0	-8.8	-8.6
GUAD0186	4/6/2021 14:34	53.1	44	0.1	2.8	131.0	131.0	-8.8	-9.0
GUAD0187	4/8/2021 10:13	55.5	44.2	0.1	0.2	124.0	124.0	-36.7	-36.7
GUAD0198	4/7/2021 15:01	50.4	38.7	0.0	10.9	125.0	126.0	-2.4	-2.4
GUAD0199	4/5/2021 13:25					CO was 0 pp			
GUAD0199	4/5/2021 13:32	49.3	38.9	0.0	11.8	131.0	131.0	-23.2	-23.0
GUAD0200	4/8/2021 10:59	52.7	41.8	0.1	5.4	127.0	127.0	-35.8	-36.4
GUAD0201	4/8/2021 10:20	54.3	44.5	0.4	0.8	116.0	116.0	-29.4	-29.7
GUAD0202	4/7/2021 15:20	47.8	36.6	0.1	15.5	126.0	126.0	-1.8	-1.7
GUAD0203	4/8/2021 10:30	50	36.4	3.2	10.4	101.0	101.0	-33.8	-33.4
GUAD0204	4/7/2021 8:40	55.4	44.4	0.0	0.2	132.0	133.0	-33.6	-33.4
GUAD0205	4/6/2021 15:18	29.2	33.2	0.0	37.6	134.0	133.0	-1.3	-0.7
GUAD0207	4/6/2021 11:24	22.6	29	0.1	48.3	127.0	128.0	-1.7	-0.1
GUAD0208	4/6/2021 11:18	28.9	33.1	0.1	37.9	126.0	126.0	-0.3	-0.2
GUAD0209	4/6/2021 11:32	52.6	47.1	0.1	0.2	85.0	86.0	-0.1	-0.1
GUAD0211	4/7/2021 16:02	50	39.9	0.0	10.1	101.0	101.0	-0.2	-0.2
GUAD0213	4/6/2021 14:45	53.9	45.1	0.1	0.9	133.0	133.0	-18.0	-18.0
GUAD0214	4/8/2021 16:33	55.6	44.3	0.0	0.1	111.0	111.0	-3.2	-3.2
GUAD0215	4/6/2021 14:55	49.2	42.5	0.0	8.3	132.0	132.0	-0.7	-0.8
GUAD0216	4/6/2021 15:13	46.7	42.3	0.0	11	133.0	133.0	-0.6	-0.6
GUAD0217	4/8/2021 10:04		1	1	1	CO was 0 pp			1
GUAD0217	4/8/2021 10:07	46.1	43.4	0.1	10.4	128.0	128.0	-0.7	-0.7
	l		40.2	0.0	20.1	123.0	120.0	-0.9	-0.7
GUAD0218	4/5/2021 11:42	39.7	40.2						
GUAD0218 GUAD0219	4/5/2021 11:42 4/5/2021 11:48	48.5	40.2	0.0	10.8	124.0	124.0	-2.2	-2.2
					10.8	124.0 CO was 0 pp		-2.2	-2.2

GUAD0221	4/5/2021 11:51	42.1	37.3	0.0	20.6	118.0	118.0	-1.3	-1.3
GUAD0222	4/8/2021 9:53	16	23.2	0.0	60.8	109.0	109.0	-0.1	-0.1
GUAD0223	4/8/2021 9:49	37	33.8	0.2	29	123.0	123.0	-0.3	-0.1
GUAD0224	4/2/2021 13:21	30.6	29.7	0.2	39.5	117.0	117.0	-1.0	-1.0
GUAD0225	4/1/2021 11:19	47.4	37.2	0.0	15.4	123.0	123.0	-0.3	-0.3
GUAD0226	4/2/2021 13:32	48.5	40.4	0.1	11	121.0	121.0	-26.1	-26.4
GUAD0227	4/1/2021 11:31	46.1	38.1	0.0	15.8	122.0	122.0	-0.5	-0.5
GUAD0228	4/1/2021 11:36	36.2	34.3	0.0	29.5	115.0	115.0	-0.1	-0.1
GUAD0230	4/1/2021 12:07	28.9	29.2	0.0	41.9	113.0	113.0	-4.1	-1.7
GUADH11L	4/8/2021 14:36	45.4	32	4.2	18.4	77.0	77.0	-7.9	-8.3
GUADH12L	4/8/2021 14:28	33.6	20.1	8.4	37.9	92.0	92.0	-2.4	-2.4
	101 105 110 151 1								

Wells 114, 122, 134, 135, 146, 151, 152, 154, 156, 158, 161, 162, 180, 181, 185, 186, 188, 189, 204, 205, 207, 213, 215, and 216 are approved to operate at a temperature HOV of 145°F.

There are 90 total collectors (88 vertical wells and 2 horizontal wells) at GRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

GCCS = Gas Collection and Control System

#### Guadalupe Recycling & Disposal Facility, San Jose, CA

#### Wellfield Monitoring Report -May 7, 8, 12, 13, 14, 17 and 18, 2021

	toring Report -Ivia	<i>y i</i> , 0, 12,	io, 14, 17 un	a 10, 202					
Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide)(%)	O2 (Oxygen) (%)	Balance Gas(%)	Initial Temperature (oF)	Adjusted Temperature (oF)	Initial Static Pressure("H2O)	Adjusted Static Pressure("H2O)
GDLC0188	5/14/2021 14:42	47.8	42.8	0.1	9.3	138	138	-18.00	-18.00
GDLC0189	5/14/2021 14:46	45.1	41.8	0.0	13.1	109	109	-0.10	-0.10
GDLC0190	5/14/2021 14:50	54.2	43	0.0	2.8	94	112	-0.50	-2.90
GDLC0191	5/18/2021 13:26	25.9	33.6	0.0	40.5	109	109	-0.90	-3.00
GDLC0192	5/14/2021 12:46	45.1	44.8	0.1	10	127	127	-11.50	-14.10
GDLC0193	5/17/2021 11:23	49.7	41.8	0.0	8.5	115	115	-0.20	-0.20
GDLC0196	5/14/2021 14:20	44.1	36.1	0.0	19.8	97	97	-0.80	-0.80
GDLC0197	5/18/2021 14:44	39.6	34.8	0.0	25.6	122	122	-0.60	-0.60
GDLC0232	5/14/2021 14:12	34	34.2	0.0	31.8	97	97	-0.30	-0.30
GDLC0233	5/14/2021 14:16	26	29.1	1.0	43.9	114	108	-5.20	-3.50
GDLC0234	5/14/2021 13:42	39.9	36.8	0.0	23.3	110	109	-0.30	-0.30
GDLC0235	5/14/2021 12:49	47.5	45.4	0.1	7	123	123	-20.10	-27.60
GDLC0236	5/17/2021 16:03	41.7	38.9	0.0	19.4	123	117	-0.60	-0.40
GDLC0236	5/17/2021 16:04	41.5	38.9	0.2	19.4	123	123	-0.30	-0.30
GDLC0236	5/18/2021 13:37	40.3	38.1	0.0	21.6	115	116	-0.10	-0.10
GDLC0237					Offline f	or filling			
GDLC0238	5/14/2021 13:28	19.1	28.8	0.0	52.1	110	111	-5.80	-5.80
GDLC0238	5/14/2021 13:30	19.1	28.8	0.0	52.1	110	110	-5.80	-0.30
GDLC0239	5/13/2021 13:54	25.5	28.9	0.0	45.6	103	107	-0.30	-0.30
GDLC0240	5/13/2021 14:01	44.9	38.4	0.0	16.7	116	117	-2.00	-2.00
GDLC0241	5/13/2021 14:12	50.6	44.4	0.0	5	123	122	-4.30	-4.30
GDLC0242	5/13/2021 14:03	55.1	44.8	0.0	0.1	117	120	-40.80	-40.80
GDLC0243	5/18/2021 13:00	36.6	39.7	0.0	23.7	81	82	-0.10	-0.10
GDLC0243	5/18/2021 13:03	38.1	40.7	0.0	21.2	110	94	-10.40	-0.20
GDLC0244	5/17/2021 11:13	28.6	33.6	0.1	37.7	105	105	-0.10	-0.10
GUAD0062	5/13/2021 10:02	45.8	36.2	0.1	17.9	95	95	-2.60	-2.60
GUAD0065	5/12/2021 12:50	54.2	40.5	0.1	5.2	113	119	-39.00	-38.60
GUAD0066	5/13/2021 13:12	43	34.3	0.1	22.6	106	105	-5.60	-5.00
GUAD0081	5/18/2021 16:12	49.1	39.8	0.0	11.1	114	114	-27.20	-27.60
GUAD0082	5/19/2021 10:57	49.9	34	2.9	13.2	112	112	-2.80	-2.60
GUAD0112	5/13/2021 13:34	35.5	32.1	0.0	32.4	125	125	-0.80	-0.40
GUAD0114	5/18/2021 15:45	51.2	39.8	0.4	8.6	132	132	-2.30	-2.30
GUAD0122	5/17/2021 13:39	56.9	43	0.0	0.1	135	135	-27.00	-27.00
GUAD0124	5/18/2021 13:13	55.1	44.8	0.0	0.1	114	114	1.30	1.40
GUAD0124	5/18/2021 13:14	55.1	44.8	0.0	0.1	114	114	1.30	0.00
GUAD0129	5/13/2021 14:16	58	41.9	0.0	0.1	109	109	-35.80	-35.80
GUAD0131	5/18/2021 15:13	57.6	42.1	0.2	0.1	115	115	-40.30	-40.10
GUAD0134	5/13/2021 10:37	46	37.4	0.0	16.6	122	122	-0.80	-0.80
GUAD0135	5/13/2021 10:54	47	38.8	0.1	14.1	130	130	-2.80	-2.80
GUAD0138	5/13/2021 13:16	53	35.2	0.0	11.8	89	89	-0.10	-0.10
GUAD0142	5/13/2021 13:04	45.4	35.9	0.1	18.6	105	105	-3.90	-3.90
GUAD0146	5/18/2021 13:40	56.2	43.6	0.0	0.2	134	134	-38.30	-38.30
GUAD0146	5/18/2021 13:41	56.2	43.6	0.0	0.2	134	134	-38.30	-38.30

			1			1	1		1
GUAD0147	5/14/2021 14:05	57.4	42.5	0.0	0.1	117	118	-0.90	-0.90
GUAD0151	5/17/2021 13:19	53.8	36.8	0.0	9.4	131	131	-30.20	-30.10
GUAD0152	5/17/2021 13:54	58	41.2	0.6	0.2	133	133	-33.50	-34.00
GUAD0154	5/17/2021 11:49	56.6	43.3	0.0	0.1	137	137	-11.30	-11.40
GUAD0156	5/7/2021 9:23	40.1	43.4	0.0	16.5	96	98	-1.50	-1.40
GUAD0158	5/7/2021 9:49	15	21.3	6.1	57.6	78	94	-2.80	-3.30
GUAD0158	5/7/2021 9:50		-	-		NSPS/EG C	AI		
GUAD0161	5/18/2021 13:57	45	43.2	0.0	11.8	117	117	-6.70	-6.70
GUAD0162	5/17/2021 11:46	55.9	44	0.0	0.1	139	139	-10.30	-10.30
GUAD0172	5/18/2021 15:23	41	35.1	0.0	23.9	112	112	-3.30	-1.30
GUAD0173	5/18/2021 15:30	41.4	36	0.0	22.6	115	115	-0.20	-0.10
GUAD0176	5/14/2021 14:08	47.6	40.6	0.0	11.8	104	104	-1.10	-1.10
GUAD0177	5/14/2021 14:30	44.6	39	0.0	16.4	128	128	-30.10	-30.00
GUAD0178	5/17/2021 13:26	56.1	43.7	0.0	0.2	95	95	-15.20	-15.80
GUAD0178	5/19/2021 10:07	55.1	44.7	0.0	0.2	89	91	-14.10	-14.10
GUAD0179	5/17/2021 14:35	33.5	33.3	0.0	33.2	110	110	-0.20	-0.30
GUAD0180	5/17/2021 16:07	56.1	43.7	0.1	0.1	129	129	-36.90	-37.60
GUAD0181	5/17/2021 13:50	55	44.9	0.0	0.1	139	139	-36.00	-36.10
GUAD0183	5/14/2021 12:53	56	43.8	0.0	0.2	129	129	-12.70	-12.70
GUAD0184	5/13/2021 14:19	41.9	41.3	0.0	16.8	129	129	-21.40	-21.50
GUAD0185	5/17/2021 11:27	50.8	41.3	0.0	7.9	135	135	-2.10	-2.10
GUAD0186	5/17/2021 11:19	52.2	43.8	0.0	4	121	121	-11.00	-11.50
GUAD0187	5/14/2021 12:42	56.5	43.3	0.1	0.1	125	125	-36.30	-36.20
GUAD0198	5/17/2021 14:39	51.2	39.1	0.0	9.7	125	125	-2.10	-2.10
GUAD0199	5/4/2021 15:19	56.8	42.9	0.2	0.1	128	128	-14.40	-14.40
GUAD0199	5/4/2021 17:23		•			CO was 0 pp	, om	•	•
GUAD0199	5/17/2021 13:35	52.1	39.6	0.0	8.3	131	131	-12.1	-12.0
GUAD0200	5/17/2021 15:52	54.4	41.5	0.0	4.1	127	127	-36.2	-36.1
GUAD0201	5/14/2021 13:45	55.5	44.1	0.2	0.2	123	123	-29.3	-29.3
GUAD0202	5/17/2021 14:42	48.3	40.2	0.0	11.5	123	123	-1.9	-1.9
GUAD0203	5/18/2021 14:33	55.7	43.4	0.8	0.1	106	106	-35.8	-35.5
GUAD0204	5/14/2021 14:02	54.6	45.3	0.0	0.1	129	129	-34.6	-34.5
GUAD0205	5/17/2021 13:14	38.8	36.6	0.0	24.6	118	118	-0.2	-0.2
GUAD0207	5/17/2021 13:31	41.9	37.9	0.0	20.2	119	118	-0.1	-0.1
GUAD0208	5/19/2021 9:52	38	36.5	0.1	25.4	125	125	-0.4	-0.5
GUAD0209	5/17/2021 13:42	52.7	47.2	0.0	0.1	92	96	-0.1	-0.1
GUAD0211	5/19/2021 9:46	51	41.7	0.2	7.1	121	121	-0.1	-0.1
GUAD0213	5/17/2021 11:35	54	43.8	0.2	2	134	134	-19.5	-19.8
GUAD0214	5/17/2021 16:14	56.4	43.4	0.1	0.1	118	118	-0.6	-0.6
GUAD0215	5/17/2021 11:54	48.9	42.6	0.0	8.5	131	131	-0.9	-0.9
GUAD0216	5/17/2021 13:06	46	41.5	0.1	12.4	131	131	-0.5	-0.4
GUAD0217	5/14/2021 13:03	44.8	41.6	0.0	13.6	128	128	-0.4	-0.4
GUAD0218	5/14/2021 13:07	40.4	38.8	0.0	20.8	119	117	-0.4	-0.3
GUAD0219	5/14/2021 13:11	42.7	37.9	0.0	19.4	121	120	-2.2	-2.0
GUAD0220	5/18/2021 12:52	46.5	42.2	0.1	11.2	125	125	-22.8	-23.1
GUAD0221	5/18/2021 12:46	37.5	35.7	0.1	26.7	116	116	-1.5	-1.6
					10	445	444	0.7	0.0
GUAD0222	5/13/2021 10:12	25.9	28.1	0.0	46	115	114	-0.7	-0.6

GUAD0224	5/13/2021 10:32	25.1	29.3	0.0	45.6	112	102	-0.2	-0.1
GUAD0225	5/13/2021 13:28	41.4	35.5	0.0	23.1	118	118	-0.3	-0.1
GUAD0226	5/13/2021 11:28	47.3	40.1	0.1	12.5	121	121	-26.0	-26.0
GUAD0227	5/13/2021 13:25	42.6	36.9	0.0	20.5	115	115	-0.6	-0.6
GUAD0228	5/13/2021 13:45	29.2	30.9	0.3	39.6	107	107	-0.2	-0.2
GUAD0230	5/13/2021 10:07	34.9	32.6	0.1	32.4	113	113	-1.4	-0.4
GUADH11L	5/18/2021 16:05	48.7	32.9	3.0	15.4	84	84	-2.6	-2.6
GUADH12L	5/18/2021 16:19	36.3	28	2.6	33.1	87	87	-1.8	-1.8

Wells 114, 122, 134, 135, 146, 151, 152, 154, 161, 162, 180, 181, 185, 186, 188, 189, 199, 204, 205, 207, 213, 215, and 216 are approved to operate at a temperature HOV of 145°F.

There are 87 total collectors (85 vertical wells and 2 horizontal wells) at GRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

GCCS = Gas Collection and Control System

Guadalupe Recycling & Disposal Facility, San Jose, CA Wellfield Monitoring Report -June 3, 9, 10, 11, 15, 16, 18 and 25, 2021

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide)(%)	O2 (Oxygen) (%)	Balance Gas(%)	Initial Temperature (oF)	Adjusted Temperature (oF)	Initial Static Pressure("H2O)	Adjusted Static Pressure("H2O)
GDLC0188	6/9/2021 10:12	47.3	42.2	0.3	10.2	138	138	-18.8	-18.9
GDLC0189	6/15/2021 13:29	47.6	43.3	0.1	9	109	109	-0.4	-0.8
GDLC0190	6/15/2021 13:33	50.1	41.7	0.1	8.1	107	107	-0.7	-1.5
GDLC0191	6/11/2021 13:10	24.3	32.3	0	43.4	114	123	-3.8	-33.7
GDLC0191	6/11/2021 13:14	24.2	31.9	0	43.9	123	120	-33.3	-7.6
GDLC0192	6/11/2021 13:27	43.9	43.6	0	12.5	127	127	-12	-14.2
GDLC0193	6/15/2021 14:56	51.9	42.4	0.6	5.1	121	120	-4.8	-1.3
GDLC0196	6/15/2021 12:41	30.5	29.8	0	39.7	98	98	-1.1	-1.3
GDLC0197	6/18/2021 10:16	37.7	34.1	0.1	28.1	124	124	-0.8	-0.8
GDLC0232	6/15/2021 12:35	27.5	31.5	0	41	96	96	-0.6	-0.8
GDLC0233	6/15/2021 12:38	20.1	25.7	1.1	53.1	116	116	-7.4	-3.9
GDLC0234	6/15/2021 10:23	38.4	36.4	0	25.2	113	113	-0.3	-0.3
GDLC0235	6/11/2021 13:02	45.8	44.1	0.2	9.9	123	124	-21.3	-21
GDLC0236	6/15/2021 14:19	44.4	39	0	16.6	115	115	-0.2	-0.3
GDLC0237	6/25/2021 14:27	53.9	42.2	0	3.9	126	126	-4.8	-4.75
GDLC0238	6/15/2021 10:10	16.9	28	0.1	55	103	103	-0.2	-0.2
GDLC0239	6/10/2021 12:37	18.3	25.5	0.3	55.9	107	107	-0.8	-0.8
GDLC0239	6/10/2021 12:39	18.5	25.4	0.4	55.7	107	107	-0.7	-0.5
GDLC0239	6/10/2021 12:42	21.2	27.3	0	51.5	107	107	-10.3	-1.1
GDLC0240	6/10/2021 12:47	35.2	34.8	0	30	117	117	-13.6	-10.8
GDLC0241	6/11/2021 12:46	42	42.1	0.2	15.7	123	122	-4.7	-3
GDLC0242	6/3/2021 12:36	55.4	44.5	0	0.1	122	122	-41.7	-42
GDLC0242	6/10/2021 12:55	55.6	44.2	0	0.2	122	122	-43.2	-43
GDLC0243	6/11/2021 13:51	24.9	34.4	0.1	40.6	104	103	-0.8	-0.3
GDLC0244	6/15/2021 10:18	29.4	34.6	0.1	35.9	104	104	-0.1	-0.1
GUAD0062	6/16/2021 12:24	45	35.6	0.4	19	97	97	-2.1	-2.1
GUAD0065	6/10/2021 12:02	45.1	35.3	0.2	19.4	95	95	-2.3	-2.3
GUAD0065	6/15/2021 9:44	54.4	40.7	0.1	4.8	110	110	-42.7	-43.8
GUAD0066	6/15/2021 9:47	43.3	34.7	0.1	21.9	102	102	-4.3	-4.3
GUAD0081	6/15/2021 15:22	55.2	42.5	0	2.3	109	109	-42.2	-41.9
GUAD0082	6/15/2021 15:28	52	37.4	0	10.6	98	102	-10.5	-11.6
GUAD0112	6/11/2021 14:43	41	34.5	0	24.5	125	124	-0.5	-0.3
GUAD0114	6/18/2021 9:27	51.7	40.2	0.4	7.7	129	129	-44	-3.1
GUAD0122	6/16/2021 15:25	56.8	43	0	0.2	133	133	-33.2	-34.9
GUAD0124	6/11/2021 13:05	55.4	44.5	0	0.1	116	116	1.3	1.3
GUAD0124	6/18/2021 11:27	55.5	44.4	0	0.1	127	128	-30.9	-31
GUAD0129	6/11/2021 12:49	58.6	41.2	0	0.2	109	109	-38.1	-38.2
GUAD0131	6/16/2021 12:46	57.7	42	0.2	0.1	107	107	-43.7	-43
GUAD0134	6/10/2021 12:29	45	36.2	0	18.8	122	122	-0.9	-0.9
GUAD0135	6/10/2021 12:34	46.4	38	0	15.6	129	129	-3	-2.9
GUAD0138	6/15/2021 9:51	29.6	30.7	0	39.7	91	88	-0.7	-0.5
GUAD0142	6/15/2021 9:56	44.2	35.5	0	20.3	102	102	-4.6	-4.6
GUAD0146	6/15/2021 14:11	54.3	41.1	1.2	3.4	129	129	-37.3	-37
GUAD0147	6/15/2021 10:44	58	41.3	0.6	0.1	113	111	-0.9	-1.1
GUAD0147	6/18/2021 10:30	47.4	37.9	0	14.7	115	115	-31.8	-32.3

	6/46/2004 45.47	E A	20	0	8	100	100	05.7	25.2
GUAD0151	6/16/2021 15:17	54	38	0	-	129	129	-25.7	-25.3
GUAD0152	6/9/2021 10:35	57.8	42	0	0.2	129	129	-37.8	-37.5
GUAD0154	6/17/2021 13:11	50.8	34.9	2.1	12.2	135	135	-15.9	-14.2
GUAD0161	6/17/2021 14:40	50.8	39.3	0.3	9.6	128	128	-4	-3.9
GUAD0162	6/17/2021 14:59	55.8	43.1	0.1	1	139	139	-7.1	-7.1
GUAD0172	6/18/2021 11:36	59.2	40.7	0	0.1	109	110	-1.8	-1.9
GUAD0173	6/18/2021 11:46	56	39.9	0	4.1	119	119	-0.6	-0.8
GUAD0176	6/15/2021 12:29	45.1	39	0.1	15.8	103	103	-1.2	-1.2
GUAD0177	6/16/2021 14:20	41.4	37.6	0.1	20.9	125	124	-27.2	-24.1
GUAD0178	6/16/2021 14:28	31.4	24.3	8.9	35.4	101	102	-1.2	-1.8
GUAD0178	6/16/2021 14:31	12.8	9.3	15.9	62	102	102	-2.2	-2.1
GUAD0178	6/18/2021 10:53	9.1	6.9	17.1	66.9	98	98	-2.6	-2.6
GUAD0178	6/25/2021 14:42	0	0.3	20.6	79.1	86.2	86.2	-1.6	-1.66
GUAD0179	6/16/2021 14:46	45.4	36	0.1	18.5	112	112	-0.1	-0.1
GUAD0180	6/18/2021 11:05	54.7	44.6	0.6	0.1	114	115	-37.7	-37.8
GUAD0181	6/16/2021 15:55	53.6	44.8	1.5	0.1	135	135	-29.9	-39.7
GUAD0183	6/11/2021 12:59	55.9	44	0	0.1	130	130	-15.7	-15.5
GUAD0184	6/16/2021 12:37	40.3	40.2	0.2	19.3	126	127	-23.5	-25.9
GUAD0185	6/16/2021 15:51	54.5	41.5	0	4	139	139	-39.3	-39.7
GUAD0186	6/15/2021 14:52	51.4	44.1	0.1	4.4	129	129	-39.7	-39.5
GUAD0187	6/11/2021 13:34	56.7	40.9	0.2	2.2	125	125	-39.8	-39.8
GUAD0198	6/16/2021 14:50	52.2	39.3	0.2	8.3	124	124	-1.5	-1.5
GUAD0199	6/16/2021 15:39			I		CO was 0 p	pm		I
GUAD0199	6/16/2021 15:40	57	41.2	0	1.8	128	128	-1.8	-1.8
GUAD0199	6/25/2021 14:39	48.7	41.1	0	10.2	128.7	128.9	-1.78	-1.76
GUAD0200	6/16/2021 14:35	52.7	40.8	0.2	6.3	126	127	-36.4	-37.7
GUAD0201	6/15/2021 10:28	55.4	44.1	0.3	0.2	118	118	-28.2	-28.4
GUAD0202	6/15/2021 13:20	52.2	40.3	0.2	7.3	121	118	-1.6	-1.7
GUAD0203	6/18/2021 10:23	56	43.6	0.2	0.2	112	113	-35.3	-35.4
GUAD0204	6/15/2021 10:38	55.3	44.5	0.1	0.1	129	129	-36.2	-36.4
GUAD0205	6/15/2021 13:37	42.8	39.5	0	17.7	123	128	-0.2	-0.2
GUAD0207	6/16/2021 15:37	40.5	37.3	0	22.2	124	127	-0.2	-0.1
GUAD0208	6/16/2021 15:33	29.5	38.9	0	31.6	123	123	0.00	0.00
GUAD0208	6/18/2021 11:23	28.1	39.1	0	32.8	123	123	-0.1	-0.1
GUAD0209	6/16/2021 15:29	40.7	45.7	0	13.6	128	128	-0.2	-0.1
GUAD0211	6/15/2021 14:15	51.4	43.6	0.1	4.9	124	124	-0.8	-0.9
GUAD0213	6/15/2021 14:31	55.7	43.5	0.6	0.2	132	132	-3.1	-3
GUAD0213	6/25/2021 14:33	51.4	43	0	5.6	135	135.1	-27.78	-27.75
GUAD0214	6/17/2021 15:13	57.5	42.3	0	0.2	119	119	0.3	0.3
GUAD0214	6/17/2021 15:16	56.3	42.9	0.7	0.1	119	119	0.3	0.3
GUAD0214	6/25/2021 14:50	40.8	43.7	0	15.5	129.1	127.8	-22.37	-12.08
GUAD0214	6/25/2021 14:53	39.5	42.8	0	17.7	125.3	125.8	-7.76	-7.77
GUAD0215	6/15/2021 15:03	49.2	42.6	0	8.2	128	128	-1	-1
GUAD0216	6/15/2021 13:41	42.8	39.8	0	17.4	124	124	-0.2	-0.2
GUAD0217	6/11/2021 13:19	44	40.9	0	15.1	129	129	-0.3	-0.3
GUAD0218	6/11/2021 13:24	38.4	38.1	0.1	23.4	118	118	-0.3	-0.3
GUAD0219	6/11/2021 13:45	44.3	37.9	0	17.8	123	123	-1.8	-1.8
GUAD0220	6/11/2021 13:32	45.2	41.1	0	13.7	126	125	-26.2	-23.1
GUAD0221	6/11/2021 13:41	37.6	35.3	0.1	27	115	115	-1.5	-1.5

GUAD0222	6/3/2021 12:27	29.6	30.1	0	40.3	116	116	-0.6	-0.6
GUAD0222	6/10/2021 12:11	27.1	28.3	0.1	44.5	115	115	-0.5	-0.5
GUAD0223	6/3/2021 12:32	38.3	35.1	0	26.6	113	114	-0.1	-0.2
GUAD0223	6/11/2021 12:05	37.3	34.6	0.2	27.9	116	116	-0.1	-0.1
GUAD0224	6/10/2021 12:23	21.9	26.7	0.2	51.2	106	106	-0.2	-0.2
GUAD0224	6/10/2021 12:24	21.9	26.8	0.3	51	106	106	-0.2	-0.2
GUAD0225	6/11/2021 14:38	47.9	37.9	0	14.2	117	117	-0.3	-0.4
GUAD0226	6/11/2021 14:23	44	39	0.1	16.9	121	121	-28.2	-28.4
GUAD0227	6/11/2021 14:35	48.3	39	0	12.7	114	115	-0.2	-0.4
GUAD0228	6/11/2021 14:29	31.4	31.8	0	36.8	105	105	-0.1	-0.1
GUAD0230	6/3/2021 12:22	35.7	33.5	0	30.8	113	113	-4.2	-1.6
GUAD0230	6/10/2021 12:08	32.6	32.1	0.3	35	112	111	-1.2	-0.8
GUADH11L	6/15/2021 15:17	52.9	35.5	2	9.6	88	88	-2.6	-3.3
GUADH12L	6/15/2021 15:34	31.1	19.1	8.2	41.6	104	104	-2.9	-2.7

Wells 114, 122, 134, 135, 146, 151, 152, 154, 161, 162, 180, 181, 185, 186, 188, 189, 199, 204, 205, 207, 213, 215, and 216 are approved to operate at a temperature HOV of 145°F.

There are 87 total collectors (85 vertical wells and 2 horizontal wells) at GRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

GCCS = Gas Collection and Control System

# Guadalupe Recycling & Disposal Facility, San Jose, CA Wellfield Monitoring Report -July 3, 6, 16, 19,24, 28, and 30, 2021

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide)(%)	O2 (Oxygen) (%)	Balance Gas(%)	Initial Temperature (oF)	Adjusted Temperature (oF)	Initial Static Pressure("H2O)	Adjusted Static Pressure("H2O)
GDLC0188	7/16/2021 14:02	49.5	43.6	0.3	6.6	133	136	-22.5	-22.7
GDLC0189	7/24/2021 15:52	44.1	45.5	0.1	10.3	130	132	-1	-2.5
GDLC0190	7/24/2021 16:09	44.6	43.6	0.0	11.8	123	123	-3.1	-3
GDLC0191	7/19/2021 18:50	18.7	27.1	0.4	53.8	118	118	-7.6	-3.4
GDLC0192	7/19/2021 18:37	40.5	41.3	0.3	17.9	123	124	-21.3	-15.4
GDLC0193	7/24/2021 13:40	29.5	32.2	0.1	38.2	126	127	-5.4	-0.9
GDLC0196	7/30/2021 7:46	28.2	31.5	0.0	40.3	101	101	-2.5	-2.5
GDLC0197	7/30/2021 17:57	40.8	35.1	0.0	24.1	119	118	-0.9	-1
GDLC0232	7/30/2021 8:00	26.8	32.9	0.0	40.3	108	109	-0.6	-0.7
GDLC0233	7/30/2021 7:50	17.6	23.6	3.0	55.8	81	88	-1	-1.1
GDLC0234	7/24/2021 15:59	36.2	35.5	0.0	28.3	116	117	-0.1	-0.2
GDLC0235	7/19/2021 18:40	44.6	42.7	0.1	12.6	120	120	-37.2	-34.3
GDLC0236	7/24/2021 14:25	29.2	33.6	0.2	37	120	121	-0.4	-0.5
GDLC0237	7/30/2021 16:25	47.3	41	0.0	11.7	123	123	-5.1	-5.7
GDLC0238 GDLC0238	7/16/2021 18:22	19.1 51.9	28 42.2	0.0	52.9 5.9	108 118	108 120	-0.1 -6.5	-0.1
GDLC0239	7/6/2021 13:20	10.4	23.1	0.0	66.5	96	96.5	-0.66	-0.64
GDLC0240	7/6/2021 13:24	33.3	34.2	0.0	32.5	116.2	115.7	-9.77	-2.44
GDLC0241	7/6/2021 13:31	52.1	42.3	0.6	5	121.9	122.7	-43.47	-43.49
GDLC0242	7/30/2021 8:52	54.9	45	0.0	0.1	121.0	121	-37.3	-37.3
GDLC0243	7/19/2021 17:10	39.2	37.8	0.5	22.5	104	105	-0.1	-0.1
GDLC0244	7/24/2021 17:01	30.1	33.4	0.1	36.4	112	113	-0.1	-0.1
GUAD0062	7/19/2021 16:57	45.4	34.8	0.3	19.5	97	98	-4.9	-2.1
GUAD0065	7/16/2021 17:40	54.2	40	0.0	5.8	110	110	-44.2	-40.9
GUAD0066	7/16/2021 17:23	43.7	34.4	0.0	21.9	109	109	-8.3	-3.5
GUAD0081	7/30/2021 15:36	49.5	38.4	2.0	10.1	106	107	-39.6	-36.8
GUAD0082	7/30/2021 15:45	50	37.6	0.1	12.3	102	103	-13.2	-10.1
GUAD0112	7/16/2021 17:54	43.5	34.1	0.0	22.4	124	124	-6.4	-0.2
GUAD0114	7/30/2021 16:00	52.3	47.3	0.2	0.2	107	107	-1.9	-0.3
GUAD0122	7/3/2021 10:32	55.6	41.9	0.2	2.3	136	136	-33.7	-33.73
GUAD0124	7/19/2021 18:47	56	42.4	0.1	1.5	126	127	-30.6	-30.8
GUAD0129	7/19/2021 17:28	59.9	39	0.6	0.5	106	106	-40.2	-36.8
GUAD0131	7/30/2021 18:08	57.6	42.3	0.0	0.1	112	112	-42.5	-38.5
GUAD0134	7/6/2021 13:11	42.9	36.3	0.0	20.8	124.9	124.6	-1.3	-1.19
GUAD0135	7/6/2021 13:16	44.2	37.4	0.0	18.4	132.2	132.2	-3.16	-2.58
GUAD0138	7/16/2021 17:26	33.1	30.1	0.0	36.8	97	97	-3	-0.3
GUAD0142	7/16/2021 17:18	44.7	34.7	0.1	20.5	104	104	-7.9	-4
GUAD0146	7/24/2021 14:20	53.6	40.4	1.6	4.4	129	129	-37	-33
GUAD0147	7/24/2021 17:22	35.3	32.1	0.0	32.6	117	118	-27.6	-20.6
GUAD0151	7/14/2021 11:56	51.2	35.5	0.4	12.9	128	128	-26.1	-26.3
GUAD0152	7/30/2021 17:45	58.4	38.4	0.0	3.2	126	126	-17.7	-14.5
GUAD0154	7/24/2021 13:30	47.6	36.2	3.3	12.9	131.0	131.0	-21.3	-18.8
GUAD0161	7/24/2021 14:05	44.6	39.2	0.0	16.2	132	133	-30.1	-28.1
GUAD0162 GUAD0172	7/24/2021 14:00	54.3 43.7	44.3 36.8	0.0	1.4 19.5	137 108	138 108	-39.5 -3.8	-39.5 -3.8

0114 50 470	7/00/0004 0.05	00.0			00 <del>7</del>		400	4.0	4.0
GUAD0173	7/30/2021 9:05	29.2	31.1	0.0	39.7	111	108	-1.6	-1.2
GUAD0176	7/24/2021 17:40	42.8	37.8	0.0	19.4	107	108	-0.9	-0.7
GUAD0177	7/24/2021 17:31	45.2	37.7	0.0	17.1	125	126	-20.3	-17.8
GUAD0178	7/3/2021 9:50	0.0	0.2	21.6	78.2	77.4	77.6	-3.01	-2.9
GUAD0178	7/14/2021 16:02	57.2	41.6	0.7	0.5	114	115	-38.6	-38.8
GUAD0178				ompleted (0					02)-new jumper install
GUAD0179	7/28/2021 18:13	18.5	26.6	0.1	54.8	112	112	-0.5	-0.6
GUAD0179	7/30/2021 8:06	17.3	26.9	0.0	55.8	109	108	-0.8	-0.7
GUAD0180	7/16/2021 18:40	51.3	42.4	0.3	6	125	126	-35.7	-35.9
GUAD0181	7/30/2021 16:35	54.1	45.7	0.1	0.1	137	138	-32.6	-30.1
GUAD0183	7/19/2021 17:32	39.7	38.1	0.2	22	126	126	-28.5	-9.8
GUAD0184	7/19/2021 18:44	56.6	42.2	0.2	1	125	125	-35.5	-35.4
GUAD0185	7/24/2021 13:46	46.2	39.7	0.0	14.1	135	135	-2.1	-2.1
GUAD0186	7/24/2021 13:34	42.1	40.1	0.5	17.3	130	130	-36.8	-36.8
GUAD0187	7/30/2021 8:39	56.1	43.8	0.0	0.1	120	120	-26.6	-26.5
GUAD0198	7/28/2021 18:16	43.4	37.3	0.8	18.5	112	121	-6.2	-2.3
GUAD0198	7/30/2021 8:09	44.1	39.3	0.0	16.6	123	123	-3.1	-2.9
GUAD0199	7/3/2021 9:45	57.8	42.2	0.0	0	129.7	129.8	-1.94	-1.93
GUAD0199	7/16/2021 18:34	49.4	38.8	0.1	11.7	127	128	-36.5	-31.4
GUAD0199	7/16/2021 18:35	49.4	38.8	0.1	11.7	127	128	-36.5	-30.8
GUAD0200	7/28/2021 21:11	49.7	39.4	0.5	10.4	124	124	-33.4	-27.3
GUAD0201	7/24/2021 16:06	52.1	39.2	1.6	7.1	119	109	-20.5	-10.1
GUAD0202	7/30/2021 8:15	38.1	37.9	0.0	24	123	123	-2.2	-1.8
GUAD0203	7/30/2021 17:49	55.4	44.4	0.0	0.2	117	118	-31.5	-28.8
GUAD0204	7/24/2021 17:08	52.2	40.7	1.2	5.9	125	126	-24.7	-24.1
GUAD0205	7/30/2021 17:10	52.8	46.7	0.3	0.2	128	128	-0.5	-0.8
GUAD0207	7/3/2021 9:38	53.8	44.7	0.0	1.5	125	125.2	-0.03	-0.02
GUAD0208	7/30/2021 16:42	36.6	42.9	1.2	19.3	123	123	-0.1	-0.1
GUAD0209	7/3/2021 10:39	31.5	41.2	0.0	27.3	132.7	131.1	-0.65	-0.13
GUAD0209	7/3/2021 10:40					CO was 0 pp	om		·
GUAD0209	7/3/2021 10:47	32.8	42	0.0	25.2	130.9	131	-0.05	-0.03
GUAD0209	7/14/2021 13:37		L		1	CO was 0 pp	om		•
GUAD0209	7/14/2021 16:05	53.4	39.5	0.1	7	128	128	-30.2	-30.4
GUAD0209	7/14/2021 16:05	53.4	39.5	0.1	7	128	128	-30.2	-30.3
GUAD0209	7/14/2021 16:13	43.7	43.9	0.1	12.3	119	97	-0.1	-0.1
GUAD0211	7/24/2021 14:17	43.7	42.5	0.0	13.8	119	119	-0.3	-0.3
GUAD0213	7/24/2021 13:55	46.6	40.6	0.1	12.7	132	132	-27.1	-27.3
GUAD0214	7/24/2021 14:10	45.8	42.6	0.0	11.6	126	126	-6.5	-4.1
GUAD0215	7/24/2021 14:28	40.7	39.6	0.0	19.7	130	130	-4.9	-1.9
GUAD0216	7/30/2021 16:20	47.2	47.1	0.0	5.7	132	133	-0.2	-0.2
GUAD0217	7/19/2021 18:54	27.3	32.1	0.2	40.4	127	126	-12.1	-1.6
GUAD0218	7/19/2021 18:57	33.3	34.4	0.0	32.3	121	121	-8.4	-0.4
GUAD0219	7/30/2021 8:45	42.7	38.6	0.0	18.7	118	119	-0.8	-0.7
GUAD0220	7/19/2021 18:31	44	39.3	0.3	16.4	121	122	-37.9	-32.8
GUAD0221	7/19/2021 19:04	39.4	35.5	0.2	24.9	121	121	-1	-1.4
GUAD0222	7/6/2021 13:38	27.1	27.8	0.0	45.1	75.4	75	-0.21	-0.16
GUAD0223	7/6/2021 13:34	36.5	33.6	0.0	29.9	123.5	124	-0.11	-0.14
GUAD0223	//6/2021 13:34	36.5	33.6	0.0	29.9	123.5	124	-0.11	-0.14

GUAD0224	7/6/2021 13:05	19.5	25.5	0.6	54.4	110.5	114.6	-0.49	-0.45
GUAD0225	7/16/2021 17:50	47.5	36.2	0.0	16.3	119	120	-2.8	-0.2
GUAD0226	7/19/2021 17:20	45.6	38.3	0.3	15.8	118	118	-31.2	-28.7
GUAD0227	7/16/2021 17:47	45.1	36.8	0.0	18.1	118	119	-0.3	-0.3
GUAD0228	7/30/2021 7:36	17.9	29	0.0	53.1	109	109	-0.9	-0.9
GUAD0230	7/6/2021 13:41	36.5	32.9	0.0	30.6	110.2	109.9	-0.7	-0.53
GUADH11L	7/30/2021 15:31	46.9	32.4	4.2	16.5	94	94	-4.6	-4.5
GUADH12L	7/30/2021 15:47	49.3	37.2	3.2	10.3	111	112	-3.2	-3.4

Wells 114, 122, 134, 135, 146, 151, 152, 154, 161, 162, 180, 181, 185, 186, 188, 189, 199, 204, 205, 207, 213, 215, and 216 are approved to operate at a temperature HOV of 145°F.

There are 87 total collectors (85 vertical wells and 2 horizontal wells) at GRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

GCCS = Gas Collection and Control System

# Guadalupe Recycling & Disposal Facility, San Jose, CA Wellfield Monitoring Report -August 9, 11, 12, and 13, 2021

Device Name	Date Time	CH4 (Methane)	•	O2 (Oxygen)	Balance Gas(%)	•	Adjusted Temperature (oF)	Initial Static Pressure("H2O)	Adjusted Static Pressure("H2O)
GDLC0188	8/11/2021 13:34	<b>(%)</b> 47.5	Dioxide)(%) 46.8	(%) 0.1	5.6	(oF) 137.0	(OF) 138.0	-16.7	-16.3
GDLC0189	8/11/2021 13:54	41.4	47.4	0.0	11.2	135.0	135.0	-3.7	-3.6
GDLC0190	8/11/2021 14:00	38.4	42.7	0.6	18.3	123.0	122.0	-1.6	-1.5
GDLC0191	8/9/2021 14:28	22.8	29.7	0.1	47.4	118.0	119.0	-2.9	-2.4
GDLC0192	8/9/2021 14:41	39.9	40.5	0.6	19.0	123.0	123.0	-12.4	-11.4
GDLC0193	8/9/2021 16:08	31.8	32.5	0.4	35.3	95.0	95.0	-0.3	-0.3
GDLC0196	8/12/2021 14:01	27.2	29.7	0.0	43.1	104.0	104.0	-2.8	-1.6
GDLC0197	8/13/2021 12:42	32.7	31.2	0.0	36.1	124.0	125.0	-0.5	-0.5
GDLC0232	8/12/2021 14:12	31.2	34.0	0.0	34.8	112.0	112.0	-0.7	-0.7
GDLC0233	8/12/2021 13:57	38.7	32.8	1.0	27.5	114.0	114.0	-3.4	-2.0
GDLC0234	8/11/2021 13:21	31.3	34.0	0.1	34.6	115.0	116.0	-0.3	-0.2
GDLC0235	8/9/2021 14:20	44.2	42.9	0.0	12.9	120.0	121.0	-27.5	-27.9
GDLC0236	8/11/2021 14:23	28.4	33.4	0.1	38.1	126.0	126.0	-0.5	-0.4
GDLC0237	8/9/2021 16:16	42.7	38.7	0.0	18.6	98.0	97.0	-10.7	-5.3
GDLC0238	8/11/2021 13:10	16.6	27.1	0.5	55.8	87.0	87.0	-0.6	-0.4
GDLC0239	8/9/2021 12:14	13.9	23.2	0.1	62.8	113.0	113.0	-4.2	-1.0
GDLC0240	8/9/2021 13:24	45.8	38.1	0.1	16.0	116.0	116.0	-0.8	-1.4
GDLC0241	8/9/2021 14:05	45.0	41.2	0.1	13.7	122.0	122.0	-4.3	-4.4
GDLC0242	8/9/2021 13:31	52.7	41.1	0.7	5.5	120.0	120.0	-40.4	-40.5
GDLC0243	8/9/2021 14:56	30.5	35.2	0.0	34.3	107.0	109.0	-0.1	-0.1
GDLC0244	8/11/2021 13:14	24.8	31.7	0.1	43.4	114.0	114.0	-2.4	-0.1
GUAD0062	8/9/2021 11:47	40.6	33.8	0.3	25.3	95.0	95.0	-6.3	-1.9
GUAD0065	8/9/2021 9:07	50.3	38.8	0.9	10.0	108.0	108.0	-38.4	-38.4
GUAD0066	8/9/2021 8:59	45.1	35.5	0.0	19.4	104.0	104.0	-2.5	-2.5
GUAD0081	8/13/2021 10:39	56.5	41.8	0.2	1.5	106.0	107.0	-43.4	-43.9
GUAD0082	8/13/2021 10:45	49.9	36.6	0.1	13.4	99.0	100.0	-10.8	-11.7
GUAD0112	8/9/2021 9:21	24.6	28.6	0.0	46.8	124.0	126.0	-5.6	-1.8
GUAD0114	8/13/2021 11:50	53.1	40.3	0.6	6.0	132.0	133.0	-3.3	-5.3
GUAD0122	8/12/2021 13:18	55.8	44.0	0.0	0.2	132.0	132.0	-36.1	-35.3
GUAD0124	8/9/2021 14:25	55.8	42.6	0.0	1.6	126.0	126.0	-24.1	-24.1
GUAD0129	8/9/2021 14:09	52.8	35.6	2.1	9.5	104.0	104.0	-35.5	-35.4
GUAD0131	8/13/2021 13:12	59.0	40.9	0.0	0.1	114.0	114.0	-44.9	-42.4
GUAD0134	8/9/2021 8:49	36.6	34.7	0.1	28.6	122.0	122.0	-2.2	-1.6
GUAD0135	8/9/2021 13:18	36.0	35.0	0.0	29.0	129.0	130.0	-7.2	-4.3
GUAD0138	8/9/2021 9:02	30.1	30.6	0.0	39.3	98.0	98.0	-0.8	-0.8
GUAD0142	8/9/2021 8:57	44.4	35.3	0.1	20.2	104.0	104.0	-4.3	-4.2
GUAD0146	8/11/2021 14:27	50.0	39.4	2.1	8.5	128.0	128.0	-35.3	-35.4
GUAD0147	8/13/2021 12:28	38.4	33.1	0.0	28.5	115.0	115.0	-19.4	-10.7
GUAD0151	8/11/2021 13:31	57.9	39.1	0.0	3.0	129.0	129.0	-18.4	-18.4
GUAD0152	8/12/2021 12:52	48.9	37.8	1.2	12.1	124.0	125.0	-34.5	-33.7
GUAD0154	8/9/2021 15:54	55.0	40.0	1.1	3.9	133.0	133.0	-21.9	-17.7
GUAD0161	8/13/2021 12:51	42.1	37.1	0.1	20.7	133.0	134.0	-29.4	-27.9
GUAD0162	8/13/2021 12:54	52.9	42.3	0.0	4.8	136.0	136.0	-40.2	-40.3
GUAD0172	8/13/2021 13:20	34.7	31.5	0.6	33.2	109.0	109.0	-5.1	-2.9

GUAD0220 GUAD0221 GUAD0222 GUAD0223 GUAD0224 GUAD0225 GUAD0226 GUAD0227 GUAD0227 GUAD0228 GUAD0230 GUAD0230 GUADH11L GUADH12L	8/11/2021 14:10 8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:32 8/9/2021 13:06 8/9/2021 14:49 8/9/2021 14:52 8/9/2021 14:52 8/9/2021 11:54 8/9/2021 12:05 8/9/2021 12:10 8/9/2021 9:16 8/9/2021 9:12 8/9/2021 9:12 8/9/2021 9:12 8/9/2021 9:12 8/9/2021 11:59 8/13/2021 10:31 8/13/2021 10:53	38.9         41.3         30.8         26.1         37.4         44.7         42.8         14.4         24.2         15.5         30.6         43.7         27.0         11.4         18.1         39.7         24.0	30.2           40.6           32.7           30.6           33.5           38.5           34.6           22.7           28.5           25.5           32.9           37.3           32.8           23.5           24.5           27.6	0.3           0.3           0.0           0.9           0.4           1.2           0.2           0.3           0.1           0.0           0.5           0.0           0.2           0.3           0.1           0.2           0.3           0.4	22.1         17.8         36.2         43.3         28.2         16.4         21.4         62.7         47.0         58.9         36.5         18.5         40.2         64.9         57.1         26.7         49.9	130.0         133.0         124.0         125.0         115.0         115.0         1112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         119.0         109.0         109.0         82.0         87.0	129.0         133.0         124.0         126.0         113.0         121.0         120.0         112.0         119.0         119.0         118.0         120.0         118.0         120.0         109.0         112.0         83.0         95.0	-4.4 -0.6 -5.9 -0.8 -28.8 -0.5 -0.4 -0.4 -0.4 -0.4 -0.8 -0.9 -29.7 -7.7 -1.1 -7.1 -7.1 -4.2 -2.2	-0.9 -0.3 -0.5 -3.5 -0.7 -28.8 -0.4 -0.4 -0.3 -0.2 -0.3 -0.6 -29.2 -2.4 -0.7 -1.5 -3.3 -1.8
GUAD0221 GUAD0222 GUAD0223 GUAD0224 GUAD0225 GUAD0226 GUAD0227 GUAD0228 GUAD0230	8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:38 8/13/2021 13:06 8/9/2021 14:49 8/9/2021 14:52 8/9/2021 11:54 8/9/2021 12:05 8/9/2021 12:10 8/9/2021 9:16 8/9/2021 9:12 8/9/2021 9:12 8/9/2021 9:26 8/9/2021 11:59	41.3 30.8 26.1 37.4 44.7 42.8 14.4 24.2 15.5 30.6 43.7 27.0 11.4 18.1	40.6 32.7 30.6 33.5 38.5 34.6 22.7 28.5 25.5 32.9 37.3 32.8 23.5 24.5	0.3           0.3           0.0           0.9           0.4           1.2           0.2           0.3           0.1           0.0           0.5           0.0           0.2           0.3	17.8         36.2         43.3         28.2         16.4         21.4         62.7         47.0         58.9         36.5         18.5         40.2         64.9         57.1	133.0         124.0         125.0         115.0         121.0         119.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         110.0         120.0         117.0         119.0         109.0         109.0	133.0         124.0         126.0         113.0         121.0         120.0         112.0         119.0         116.0         119.0         118.0         120.0         118.0         120.0         109.0         112.0	-4.4 -0.6 -5.9 -0.8 -28.8 -0.5 -0.4 -0.4 -0.4 -0.8 -0.9 -29.7 -7.7 -1.1 -7.1	-0.3 -0.5 -3.5 -0.7 -28.8 -0.4 -0.3 -0.3 -0.2 -0.3 -0.6 -29.2 -2.4 -0.7 -1.5
GUAD0221 GUAD0222 GUAD0223 GUAD0224 GUAD0225 GUAD0226 GUAD0227 GUAD0228	8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:38 8/13/2021 13:06 8/9/2021 14:49 8/9/2021 14:52 8/9/2021 11:54 8/9/2021 12:05 8/9/2021 12:10 8/9/2021 9:16 8/9/2021 9:12 8/9/2021 9:26	41.3 30.8 26.1 37.4 44.7 42.8 14.4 24.2 15.5 30.6 43.7 27.0 11.4	40.6 32.7 30.6 33.5 38.5 34.6 22.7 28.5 25.5 32.9 37.3 32.8 23.5	0.3           0.3           0.0           0.9           0.4           1.2           0.3           0.1           0.5           0.0           0.5           0.0           0.2	17.8         36.2         43.3         28.2         16.4         21.4         62.7         47.0         58.9         36.5         18.5         40.2         64.9	133.0         124.0         125.0         115.0         121.0         119.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         119.0         119.0         109.0	133.0         124.0         126.0         113.0         121.0         120.0         112.0         119.0         118.0         120.0         118.0         120.0         109.0	-4.4 -0.6 -5.9 -0.8 -28.8 -0.5 -0.4 -0.4 -0.4 -0.8 -0.9 -29.7 -7.7 -7.7 -1.1	-0.3 -0.5 -3.5 -0.7 -28.8 -0.4 -0.3 -0.2 -0.3 -0.2 -0.3 -0.6 -29.2 -2.4 -0.7
GUAD0221 GUAD0222 GUAD0223 GUAD0224 GUAD0225 GUAD0226 GUAD0227	8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:38 8/13/2021 13:06 8/9/2021 14:49 8/9/2021 14:52 8/9/2021 11:54 8/9/2021 12:05 8/9/2021 9:16 8/9/2021 9:12	41.3 30.8 26.1 37.4 44.7 42.8 14.4 24.2 15.5 30.6 43.7 27.0	40.6 32.7 30.6 33.5 38.5 34.6 22.7 28.5 25.5 32.9 37.3 32.8	0.3 0.3 0.0 0.9 0.4 1.2 0.2 0.3 0.1 0.0 0.5 0.0	17.8 36.2 43.3 28.2 16.4 21.4 62.7 47.0 58.9 36.5 18.5 40.2	133.0         124.0         125.0         115.0         121.0         119.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         119.0	133.0         124.0         126.0         113.0         121.0         120.0         112.0         119.0         116.0         119.0         118.0         120.0	-4.4 -0.6 -5.9 -0.8 -28.8 -0.5 -0.4 -0.4 -0.4 -0.4 -0.8 -0.9 -29.7 -7.7	-0.3 -0.5 -3.5 -0.7 -28.8 -0.4 -0.3 -0.2 -0.3 -0.6 -29.2 -2.4
GUAD0221 GUAD0222 GUAD0223 GUAD0224 GUAD0225 GUAD0226	8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:38 8/13/2021 13:06 8/9/2021 14:49 8/9/2021 14:52 8/9/2021 11:54 8/9/2021 12:05 8/9/2021 12:10 8/9/2021 9:16 8/9/2021 13:27	41.3 30.8 26.1 37.4 44.7 42.8 14.4 24.2 15.5 30.6 43.7	40.6 32.7 30.6 33.5 38.5 34.6 22.7 28.5 25.5 32.9 37.3	0.3 0.3 0.0 0.9 0.4 1.2 0.2 0.3 0.1 0.0 0.5	17.8         36.2         43.3         28.2         16.4         21.4         62.7         47.0         58.9         36.5         18.5	133.0         124.0         125.0         115.0         121.0         119.0         112.0         112.0         122.0         116.0         120.0         117.0	133.0         124.0         126.0         113.0         121.0         120.0         112.0         119.0         116.0         119.0         118.0	-4.4 -0.6 -5.9 -0.8 -28.8 -0.5 -0.4 -0.4 -0.4 -0.8 -0.9 -29.7	-0.3 -0.5 -3.5 -0.7 -28.8 -0.4 -0.4 -0.3 -0.2 -0.3 -0.6 -29.2
GUAD0221 GUAD0222 GUAD0223 GUAD0224 GUAD0225	8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:38 8/13/2021 13:06 8/9/2021 14:49 8/9/2021 14:52 8/9/2021 11:54 8/9/2021 12:05 8/9/2021 12:10 8/9/2021 9:16	41.3 30.8 26.1 37.4 44.7 42.8 14.4 24.2 15.5 30.6	40.6 32.7 30.6 33.5 38.5 34.6 22.7 28.5 25.5 32.9	0.3 0.3 0.0 0.9 0.4 1.2 0.2 0.3 0.1 0.0	17.8 36.2 43.3 28.2 16.4 21.4 62.7 47.0 58.9 36.5	133.0         124.0         125.0         115.0         121.0         119.0         112.0         122.0         116.0         120.0	133.0         124.0         126.0         113.0         121.0         120.0         112.0         119.0         116.0         119.0	-4.4 -0.6 -5.9 -0.8 -28.8 -0.5 -0.4 -0.4 -0.4 -0.8 -0.9	-0.3 -0.5 -3.5 -0.7 -28.8 -0.4 -0.3 -0.2 -0.3 -0.6
GUAD0221 GUAD0222 GUAD0223 GUAD0224	8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:38 8/13/2021 13:06 8/9/2021 14:49 8/9/2021 14:52 8/9/2021 11:54 8/9/2021 12:05 8/9/2021 12:10	41.3 30.8 26.1 37.4 44.7 42.8 14.4 24.2 15.5	40.6 32.7 30.6 33.5 38.5 34.6 22.7 28.5 25.5	0.3 0.3 0.0 0.9 0.4 1.2 0.2 0.3 0.1	17.8 36.2 43.3 28.2 16.4 21.4 62.7 47.0 58.9	133.0         124.0         125.0         115.0         121.0         119.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0	133.0         124.0         126.0         113.0         121.0         120.0         112.0         112.0         119.0         116.0	-4.4 -0.6 -5.9 -0.8 -28.8 -0.5 -0.4 -0.4 -0.4 -0.8	-0.3 -0.5 -3.5 -0.7 -28.8 -0.4 -0.3 -0.2 -0.3
GUAD0221 GUAD0222 GUAD0223	8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:38 8/13/2021 13:06 8/9/2021 14:49 8/9/2021 14:52 8/9/2021 11:54 8/9/2021 12:05	41.3 30.8 26.1 37.4 44.7 42.8 14.4 24.2	40.6 32.7 30.6 33.5 38.5 34.6 22.7 28.5	0.3 0.3 0.0 0.9 0.4 1.2 0.2 0.3	17.8 36.2 43.3 28.2 16.4 21.4 62.7 47.0	133.0         124.0         125.0         115.0         121.0         119.0         112.0         122.0	133.0         124.0         126.0         113.0         121.0         120.0         112.0         112.0         119.0	-4.4 -0.6 -5.9 -0.8 -28.8 -0.5 -0.4 -0.4	-0.3 -0.5 -3.5 -0.7 -28.8 -0.4 -0.3 -0.2
GUAD0221 GUAD0222	8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:38 8/13/2021 13:06 8/9/2021 14:49 8/9/2021 14:52 8/9/2021 11:54	41.3 30.8 26.1 37.4 44.7 42.8 14.4	40.6 32.7 30.6 33.5 38.5 34.6 22.7	0.3 0.3 0.0 0.9 0.4 1.2 0.2	17.8 36.2 43.3 28.2 16.4 21.4 62.7	133.0         124.0         125.0         115.0         121.0         119.0         112.0	133.0 124.0 126.0 113.0 121.0 120.0 112.0	-4.4 -0.6 -5.9 -0.8 -28.8 -0.5 -0.4	-0.3 -0.5 -3.5 -0.7 -28.8 -0.4 -0.3
GUAD0221	8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:38 8/13/2021 13:06 8/9/2021 14:49 8/9/2021 14:52	41.3 30.8 26.1 37.4 44.7 42.8	40.6 32.7 30.6 33.5 38.5 34.6	0.3 0.3 0.0 0.9 0.4 1.2	17.8 36.2 43.3 28.2 16.4 21.4	133.0         124.0         125.0         115.0         121.0         119.0	133.0 124.0 126.0 113.0 121.0 120.0	-4.4 -0.6 -5.9 -0.8 -28.8 -0.5	-0.3 -0.5 -3.5 -0.7 -28.8 -0.4
	8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:38 8/13/2021 13:06 8/9/2021 14:49	41.3 30.8 26.1 37.4 44.7	40.6 32.7 30.6 33.5 38.5	0.3 0.3 0.0 0.9 0.4	17.8 36.2 43.3 28.2 16.4	133.0 124.0 125.0 115.0 121.0	133.0 124.0 126.0 113.0 121.0	-4.4 -0.6 -5.9 -0.8 -28.8	-0.3 -0.5 -3.5 -0.7 -28.8
	8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:38 8/13/2021 13:06	41.3 30.8 26.1 37.4	40.6 32.7 30.6 33.5	0.3 0.3 0.0 0.9	17.8 36.2 43.3 28.2	133.0 124.0 125.0 115.0	133.0 124.0 126.0 113.0	-4.4 -0.6 -5.9 -0.8	-0.3 -0.5 -3.5 -0.7
GUAD0219	8/11/2021 14:04 8/9/2021 14:32 8/9/2021 14:38	41.3 30.8 26.1	40.6 32.7 30.6	0.3 0.3 0.0	17.8 36.2 43.3	133.0 124.0 125.0	133.0 124.0 126.0	-4.4 -0.6 -5.9	-0.3 -0.5 -3.5
GUAD0218	8/11/2021 14:04 8/9/2021 14:32	41.3	40.6 32.7	0.3	17.8 36.2	133.0 124.0	133.0 124.0	-4.4 -0.6	-0.3 -0.5
GUAD0217	8/11/2021 14:04	41.3	40.6	0.3	17.8	133.0	133.0	-4.4	-0.3
GUAD0216									
GUAD0215	8/11/2021 14:18	38.9	38.2	0.8	22.1	130.0	100.0	-1.3	-0.9
GUAD0214	8/11/2021 14:36	42.1	38.3	1.2	18.4	124.0	124.0	-3.3	-3.3
GUAD0213	8/9/2021 16:13	44.5	38.0	0.8	16.7	131.0	131.0	-27.2	-27.4
GUAD0211	8/11/2021 14:32	42.0	41.4	0.2	16.4	119.0	117.0	-0.1	-0.1
GUAD0209	8/12/2021 16:12					CO was 0 pp	m		
GUAD0209	8/12/2021 13:15	50.4	47.9	0.0	1.7	129.0	129.0	-0.1	-0.1
GUAD0208	8/12/2021 13:11	34.5	41.4	0.0	24.1	127.0	127.0	-0.5	-0.4
GUAD0207	8/12/2021 13:06	40.8	40.1	0.0	19.1	127.0	129.0	-0.1	-0.1
GUAD0205	8/11/2021 13:56	36.1	50.0	0.1	13.8	131.0	132.0	-1.5	-0.7
GUAD0204	8/11/2021 13:38	53.0	41.5	1.4	4.1	126.0	126.0	-31.0	-29.1
GUAD0203	8/13/2021 12:34	52.8	41.8	0.5	4.9	116.0	116.0	-33.9	-34.4
GUAD0202	8/13/2021 11:39	37.8	35.1	0.1	27.0	122.0	123.0	-1.6	-1.4
GUAD0201	8/11/2021 13:26	50.4	40.3	2.2	7.1	112.0	113.0	-23.0	-20.1
GUAD0200	8/12/2021 12:45	55.3	43.0	1.6	0.1	125.0	123.0	-29.4	-29.4
GUAD0199	8/12/2021 13:01	42.0	36.8	0.2	21.0	127.0	128.0	-32.9	-31.5
GUAD0199	8/12/2021 13:00					CO was 0 pp	m		
GUAD0198	8/13/2021 12:17	43.7	37.1	0.0	19.2	123.0	123.0	-2.7	-2.7
GUAD0187	8/9/2021 14:45	54.8	40.6	0.4	4.2	119.0	120.0	-28.3	-28.3
GUAD0186	8/9/2021 16:05	40.1	37.2	1.6	21.1	129.0	129.0	-36.2	-35.9
GUAD0185	8/9/2021 15:57	41.0	36.6	0.4	22.0	132.0	133.0	-7.9	-4.0
GUAD0184	8/9/2021 14:13	40.9	39.0	0.1	20.0	129.0	130.0	-25.7	-22.3
GUAD0183	8/9/2021 14:16	56.0	42.0	0.0	2.0	127.0	127.0	-27.8	-27.9
GUAD0181	8/12/2021 13:26	54.3	45.6	0.0	0.1	136.0	138.0	-34.3	-35.8
GUAD0180	8/12/2021 13:22	49.5	41.6	0.9	8.0	124.0	125.0	-38.0	-37.9
GUAD0179	8/12/2021 10:59	20.8	27.2	0.1	51.9	109.0	110.0	-0.7	-0.7
GUAD0178	8/12/2021 12:57	49.7	38.4	2.0	9.9	111.0	112.0	-40.3	-40.2
GUAD0177	8/12/2021 13:52	49.6	39.9	0.0	10.5	126.0	126.0	-16.8	-16.6
GUAD0176	8/12/2021 14:05	28.3	31.1	0.0	40.6	107.0	107.0	-6.8	-3.5

Wells 114, 122, 134, 135, 146, 151, 152, 154, 161, 162, 180, 181, 185, 186, 188, 189, 199, 204, 205, 207, 209, 213, 215, and 216 are approved to operate at a temperature HOV of 145°F.

There are 87 total collectors (85 vertical wells and 2 horizontal wells) at GRDF.

%= percent; in. w.c.= inches in water column

degrees F= degrees Fahrenheit

GCCS = Gas Collection and Control System

# Guadalupe Recycling & Disposal Facility, San Jose, CA Wellfield Monitoring Report -September 3, 10, 11,and 14, 2021

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide)(%)	O2 (Oxygen) (%)	Balance Gas(%)	Initial Temperature (oF)	Adjusted Temperature (oF)	Initial Static Pressure("H2O)	Adjusted Static Pressure("H2O)
GDLC0188	9/3/2021 9:19	45.6	42.6	0.0	11.8	138.3	138.3	-17.6	-17.56
GDLC0188	9/10/2021 14:41	56.3	42.6	0.0	1.1	120	121	-29.6	-29.6
GDLC0189	9/3/2021 10:52	38.8	43.5	0.0	17.7	84.5	84.2	-1.05	-1.24
GDLC0189	9/14/2021 10:50	43.9	45.8	0.1	10.2	135	135	-1.3	-1.2
GDLC0189	9/14/2021 10:51	43.9	45.8	0.1	10.2	135	134	-1.3	-1.1
GDLC0190	9/14/2021 11:06	53.9	43.2	0.3	2.6	105	112	-1	-3.7
GDLC0191	9/14/2021 15:50	25	31.6	0.0	43.4	120	121	-1.4	-1.4
GDLC0192	9/10/2021 14:45	42	43.5	0.0	14.5	124	124	-13.2	-6.2
GDLC0193	9/11/2021 11:53	23.4	29.6	0.0	47	115	114	-8.8	-1.4
GDLC0196	9/3/2021 9:55	32.8	32	0.1	35.1	100.1	100.1	-1.28	-1.26
GDLC0197	9/14/2021 14:03	35.7	32.7	0.0	31.6	125	126	-0.3	-0.3
GDLC0232	9/3/2021 10:06	30	32.1	0.0	37.9	115.3	114.5	-0.93	-0.65
GDLC0233	9/3/2021 10:00	22.4	27.2	4.5	45.9	106.7	106.7	-1.25	-1.19
GDLC0234	9/3/2021 11:03	30.4	33	0.0	36.6	115.9	115.9	-0.37	-0.38
GDLC0235	9/10/2021 15:35	44.1	43.8	0.0	12.1	121	121	-32.5	-31.1
GDLC0236	9/11/2021 12:22	37.2	36.8	0.0	26	126	126	-0.3	-0.2
GDLC0237	9/11/2021 12:04	36.3	36.6	0.1	27	124	125	-14.5	-5.1
GDLC0238	9/2/2021 10:45	15.1	26.9	0.0	58	110	109.5	-0.2	-0.06
GDLC0239	9/11/2021 11:04	19.3	26.7	0.0	54	112	111	-0.8	-0.3
GDLC0240	9/11/2021 11:09	39.3	35.6	0.0	25.1	116	116	-1.7	-1.1
GDLC0241	9/14/2021 15:24	44.5	41.2	0.0	14.3	122	122	-2.8	-1.6
GDLC0242	9/10/2021 16:08	44.6	41.4	0.0	14	122	122	-5.6	-3.7
GDLC0242	9/11/2021 11:18	52.5	41.5	0.0	6	122	122	-43.4	-43.3
GDLC0243	9/10/2021 16:12	25.6	33.2	0.0	41.2	105	105	-0.1	-0.1
GDLC0244	9/14/2021 15:59	20.2	28.7	0.0	51.1	114	114	-0.7	-0.2
GUAD0062	9/14/2021 15:38	46.5	35.4	0.2	17.9	94	95	-1.2	-1.2
GUAD0065	9/10/2021 13:22	47.6	36.2	2.1	14.1	108	108	-40.7	-40.7
GUAD0066	9/10/2021 13:02	48	36.5	0.1	15.4	105	106	-2.3	-2.3
GUAD0081	9/14/2021 13:28	57.1	42.3	0.0	0.6	107	107	-44.9	-44.9
GUAD0082	9/14/2021 13:33	50.4	37	0.0	12.6	102	103	-11.4	-10.8
GUAD0112	9/2/2021 10:18	32.9	31	0.0	36.1	125.6	125.4	-0.89	-0.7
GUAD0112	9/10/2021 13:46	35.4	32.1	0.0	32.5	125	124	-0.6	-0.3
GUAD0114	9/14/2021 16:47	36.3	34.1	0.0	29.6	131	132	-8.5	-6.8
GUAD0122	9/11/2021 13:05	57.5	42.1	0.2	0.2	126	126	-37.5	-36.9
GUAD0124	9/10/2021 15:39	55.8	44	0.0	0.2	126	126	-26.9	-26.9
GUAD0129	9/10/2021 15:54	58.7	41.2	0.0	0.1	105	105	-38.8	-38.9
GUAD0131	9/14/2021 15:07	57.4	40.6	0.2	1.8	114	114	-42.3	-40.7
GUAD0134	9/11/2021 10:32	46	37.6	0.0	16.4	123	123	-1	-1
GUAD0135	9/11/2021 11:01	51.9	39.4	0.0	8.7	129	129	-1.7	-1.7
GUAD0138	9/10/2021 13:13	31.2	30.7	0.0	38.1	100	100	-0.9	-0.7
GUAD0142	9/10/2021 12:54	45.9	35.6	0.2	18.3	104	104	-4.1	-4.1
GUAD0146	9/2/2021 16:41	55	40	1.4	3.6	131	130.9	-35.65	-34.78
GUAD0146	9/11/2021 12:27	55.3	41	0.8	2.9	128	126	-35.6	-34.7
GUAD0147	9/3/2021 10:18	55.5	37.9	0.0	6.6	113.7	115.6	-3.51	-5.62
GUAD0151	9/3/2021 10:27	55.7	35.7	0.0	8.6	129.6	129.6	-19.58	-19.62

r	[		r		1			r	T
GUAD0152	9/3/2021 9:06	56.7	40.6	0.4	2.3	125.2	125.3	-37.41	-37.41
GUAD0152	9/11/2021 13:19	57.7	41.9	0.0	0.4	126	127	-40	-39.2
GUAD0152	9/11/2021 13:20	57.7	41.9	0.0	0.4	126	125	-40	-40.3
GUAD0154	9/11/2021 12:13	56.6	41.6	0.2	1.6	134	135	-18.8	-19.4
GUAD0161	9/14/2021 11:21	44.4	39	0.0	16.6	137	137	-24.1	-22.6
GUAD0162	9/14/2021 11:26	51.4	42.3	0.0	6.3	141	142	-42.4	-42.8
GUAD0162	9/14/2021 11:30		[			CO was 5 pp	m	Γ	1
GUAD0172	9/14/2021 15:12	44.3	35.2	0.0	20.5	109	110	-1.5	-1.5
GUAD0173	9/14/2021 16:37	50.7	37.8	0.0	11.5	115	116	-0.1	-0.1
GUAD0176	9/2/2021 11:00	30.6	32.7	0.0	36.7	103.9	103.7	-3.01	-1.86
GUAD0177	9/3/2021 10:10	47.2	38.5	0.0	14.3	127.7	127.7	-17.85	-17.87
GUAD0178	9/2/2021 11:31	49.5	38.6	1.5	10.4	95.5	100.1	-42.16	-37.16
GUAD0178	9/11/2021 13:16	55.8	40.6	0.4	3.2	114	115	-39.3	-40
GUAD0179	9/14/2021 11:09	32.9	31.2	0.0	35.9	110	110	-0.8	-0.7
GUAD0180	9/2/2021 17:00	48.9	40.5	0.9	9.7	127.3	127	-38.07	-35.84
GUAD0180	9/11/2021 13:35	51.1	41	0.4	7.5	126	126	-36.8	-35.4
GUAD0181	9/2/2021 12:48	54.5	43.6	0.0	1.9	139.6	139.6	-36.34	-35.83
GUAD0181	9/11/2021 12:45	55	44.9	0.0	0.1	138	138	-37.1	-35.5
GUAD0183	9/10/2021 15:32	56.4	43.4	0.0	0.2	118	118	-36	-33.1
GUAD0184	9/10/2021 15:26	41.2	40.7	0.0	18.1	128	128	-19.4	-19.6
GUAD0185	9/11/2021 11:59	34.1	34.3	0.0	31.6	133	131	-6.9	-2.4
GUAD0186	9/11/2021 11:47	42.8	40.7	0.2	16.3	131	129	-38.6	-29.6
GUAD0187	9/14/2021 15:46	55.8	42.1	0.0	2.1	120	121	-33.9	-33.8
GUAD0198	9/14/2021 13:49	48.8	38.3	0.0	12.9	117	117	-2.5	-2.3
GUAD0199	9/3/2021 8:10	45.1	36	0.2	18.7	127.8	127.8	-32.24	-31.69
GUAD0199	9/3/2021 8:17					CO was 5 pp	m		_
GUAD0199	9/11/2021 13:08	46.9	37.6	0.1	15.4	127	127	-30.1	-29.9
GUAD0199	9/11/2021 13:10			n	0	CO was 0 pp	m	1	1
GUAD0200	9/3/2021 9:13	58.4	41.5	0.0	0.1	129.1	129.1	-27.72	-27.41
GUAD0200	9/11/2021 13:26	57.6	42.3	0.0	0.1	129	128	-34.1	-34.4
GUAD0201	9/3/2021 10:58	54.5	42.1	0.3	3.1	120.4	120.4	-22.29	-22.25
GUAD0202	9/3/2021 9:37	44.8	36.3	0.0	18.9	123.8	123.8	-1.01	-0.98
GUAD0203	9/14/2021 13:58	50.4	40.8	0.4	8.4	117	118	-33.3	-33.7
GUAD0204	9/3/2021 10:22	53.3	42.1	0.1	4.5	128.6	128.5	-28.45	-29.39
GUAD0205	9/14/2021 16:05	50.5	46.7	0.0	2.8	128	129	-0.2	-0.1
GUAD0207	9/2/2021 11:17	29.4	43.8	0.3	26.5	130.8	129.7	-0.24	-0.16
GUAD0207	9/11/2021 13:29	43.6	46.5	0.0	9.9	130	131	-0.1	-0.1
GUAD0208	9/3/2021 9:26	31	42.2	0.0	26.8	128.6	128.4	-0.49	-0.23
GUAD0208	9/11/2021 12:50	36.3	43.9	0.0	19.8	127	128	-0.1	-0.1
GUAD0209	9/3/2021 8:42	34.4	44.2	0.0	21.4	132.2	131.4	-0.16	-0.08
GUAD0209	9/3/2021 8:48			1	1	CO was 5 pp	em		1
GUAD0209	9/11/2021 13:02	42	46.3	0.0	11.7	130	132	-0.1	0.00
GUAD0209	9/14/2021 16:20	38.7	45.7	0.0	15.6	128	128	-0.2	-0.1
GUAD0211	9/2/2021 16:50	39.3	37.8	0.7	22.2	119.9	119.7	-0.48	-0.23
GUAD0211	9/11/2021 12:31	45.1	40.2	0.2	14.5	116	116	-0.1	-0.1
GUAD0213	9/11/2021 12:08	44.1	39.4	0.1	16.4	132	133	-33.1	-28.2
GUAD0214	9/11/2021 12:34	46.5	40.7	0.0	12.8	126	127	-5.4	-5.4
GUAD0215	9/11/2021 12:19	45.6	40.7	0.0	13.7	129	130	-0.6	-0.6

GUAD0216	9/14/2021 16:09	46.7	44.3	0.0	9	133	134	-0.4	-0.4
GUAD0217	9/10/2021 15:45	31.2	35.9	0.0	32.9	127	127	-3.3	-2.9
GUAD0218	9/10/2021 15:49	24.1	31.4	0.0	44.5	126	126	-6.2	-3.4
GUAD0219	9/10/2021 14:31	47.2	39.6	0.2	13	118	120	-0.7	-0.9
GUAD0220	9/10/2021 14:37	45.9	41	0.0	13.1	122	122	-28.6	-28.6
GUAD0221	9/10/2021 14:20	39.5	36.3	0.1	24.1	115	114	-0.7	-0.4
GUAD0222	9/11/2021 10:53	19.4	26.2	0.0	54.4	113	113	-0.3	-0.3
GUAD0223	9/11/2021 10:50	29.1	32.2	0.5	38.2	116	116	-0.2	-0.2
GUAD0224	9/11/2021 10:42	18	24	0.0	58	112	112	-0.4	-0.3
GUAD0225	9/10/2021 13:37	38.8	34.5	0.0	26.7	117	114	-0.7	-0.2
GUAD0226	9/11/2021 11:14	45.1	38.7	0.0	16.2	119	120	-19.2	-25.5
GUAD0227	9/2/2021 10:29	38.2	34.3	0.0	27.5	119	119	-2.5	-1.6
GUAD0227	9/10/2021 13:31	41.9	35.3	0.0	22.8	114	114	-0.5	-0.4
GUAD0228	9/14/2021 15:32	37.6	32.2	0.0	30.2	111	112	-0.1	-0.1
GUAD0230	9/11/2021 10:56	25.3	28.7	0.0	46	111	112	-3.6	-0.8
GUADH11L	9/14/2021 13:23	60.1	39.4	0.3	0.2	88	88	-1.9	-2.2
GUADH12L	9/14/2021 13:37	45.9	28	2.6	23.5	106	106	-2.3	-2

Wells 114, 122, 134, 135, 146, 151, 152, 154, 161, 162, 180, 181, 185, 186, 188, 189, 199, 204, 205, 207, 209, 213, 215, and 216 are approved to operate at a temperature HOV of 145°F.

There are 87 total collectors (85 vertical wells and 2 horizontal wells) at GRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

GCCS = Gas Collection and Control System

APPENDIX K

WELLFIELD DEVIATION LOGS

### Guadalupe Recycling & Disposal Facility, San Jose, CA Wellfield Deviation Report April 1, 2021 - September 30, 2021

REPORT PREPARED BY:	Rajan Phadnis
UPDATED DATE:	10/1/2021
LFG MONITORING DEVICE:	GEM
MODEL:	5000
DATE LAST CALIBRATED:	Daily

Wellhead ID.	Date Time	Gas	Gas Composition ( % by volume)			Initial	Adjusted	Initial Static Pressure	Adjusted Static Pressure	Comments	Duration of Exceedance As of the End of
Number	Date Time	CH₄	CO2	0 ₂	Balance	Temperature(oF)	Temperature(oF)	("H ₂ O)	("H ₂ O)	Comments	Reporting Period (Days
GUAD0147	3/17/2021 12:48	55.4	44.4	0	0.2	118	119	0.0	0.0	NSPS/EG CAI;Fully Open	
GUAD0147	3/17/2021 12:51	55.5	44.4	0	0.1	119	119	0.0	0.1	NSPS/EG CAI;Fully Open;Pinched	
GUAD0147	4/7/2021 8:45	58.1	41.8	0	0.1	118	118	-2.0	-2.0	NSPS/EG CAI;Fully Open;Surging	21
Well 147 had pre	essure exceedance during	g initial monito	oring in March	2021. Correc	ctive actions we	re initiated and exceed	dance was corrected	in April 7, 2021. A	Additional repairs we	ere completed in June 2021.	•
GUAD0199	3/22/2021 15:14	53.5	40	0	6.5	131	131	-19.0	-20.7	Inc. Flow/Vac.	
GUAD0199	3/23/2021 15:15					CO was 0 ppm					
GUAD0199	3/23/2021 15:23	53.1	40	0	6.9	131	131	-22.5	-23.0	NSPS/EG CAI;Surging	
GUAD0199	4/5/2021 13:25					CO was 0 ppm					
GUAD0199	4/5/2021 13:32	49.3	38.9	0	11.8	131.0	131.0	-23.2	-23.0	NSPS/EG CAI;No Adj. Made	
GUAD0199	5/4/2021 15:19	56.8	42.9	0.2	0.1	128	128	-14.4	-14.4	No Adj. Made	
GUAD0199	5/4/2021 17:23					Co was 0 ppm					46
Well 199 had terr	nperature exceedance du	uring March ar	nd April 2021.	CO readings	were below 10	0 ppm. HOV notificatio	on was submitted on l	May 7, 2021 and v	well was added to th	e HOV list.	
GDLC0233	4/7/2021 14:34	12.2	17.2	6.5	64.1	102.0	93.0	-1.3	-1.2	Barely Open;NSPS/EG CAI;Dec. Flow/Vac.;Surging	
GDLC0233	4/7/2021 14:36	15	19.3	5.7	60	93.0	93.0	-1.1	-1.1	NSPS/EG CAI;Barely Open	
GDLC0233	4/9/2021 14:42	28.7	30	1.1	40.2	109.0	102.0	-5.5	-2.3	NSPS/EG CAI;Barely Open	
GDLC0233	4/9/2021 14:45	29.4	30.8	0.7	39.1	102.0	102.0	-3.7	-3.3	NSPS/EG CAI;Barely Open;Dec. Flow/Vac.;Surging	2
Well 233 had oxy	/gen exceedance during	initial monitori	ing in April 20	21. Adjustme	ents were made	and exceedance was	corrected				
GUAD0158	5/7/2021 9:49	15	21.3	6.1	57.6	78	94	-2.8	-3.3	No Adj. Made	1
	gen exceedance during										
GUAD0124	4/6/2021 14:04	55.8	43.9	0.1	0.2	117.0	117.0	0.7	0.6	No Adj. Made	
GUAD0124	4/6/2021 14:06	55.8	43.9	0.1	0.2	117.0	117.0	0.7	0.5	NSPS/EG CAI;No Adj. Made	
GUAD0124	4/16/2021 15:52	55.6	44.1	0.1	0.2	98.0	98.0	1.0	1.1	NSPS/EG CAI;Pinched	
GUAD0124	5/18/2021 13:13	55.1	44.8	0	0.1	114	114	1.3	1.4	NSPS/EG CAI	
GUAD0124	5/18/2021 13:14	55.1	44.8	0	0.1	114	114	1.3	0.0	NSPS/EG CAI;Pinched	
GUAD0124	6/11/2021 13:05	55.4	44.5	0	0.1	116	116	1.3	1.3	NSPS/EG CAI;Fully Open;Pinched	
GUAD0124	6/18/2021 11:27	55.5	44.4	0	0.1	127	128	-30.9	-31	NSPS/EG CAI;Fully Open	73
	ssure exceedance during	Č	0 1		1		1				I
GUAD0209	7/3/2021 10:39	31.5	41.2	0	27.3	132.7	131.1	-0.65	-0.13	Dec. Flow/Vac.	
GUAD0209	7/3/2021 10:40		1		1	CO was 0 ppm	1	1	1		
GUAD0209	7/3/2021 10:47	32.8	42	0	25.2	130.9	131	-0.05	-0.03	Barely Open;Dec. Flow/Vac.	
GUAD0209	7/14/2021 13:37		1	1	1	CO was 0 ppm	1	r	1		
GUAD0209	7/14/2021 16:05	53.4	39.5	0.1	7	128	128	-30.2	-30.4	No Adj. Made	
GUAD0209	7/14/2021 16:05	53.4	39.5	0.1	7	128	128	-30.2	-30.3	NSPS/EG CAI;Fully Open	53
										on August 25, 2021 and well was added to the HOV list.	
GUAD0178	6/16/2021 14:28	31.4	24.3	8.9	35.4	101	102	-1.2	-1.8	NSPS/EG CAI;Fully Open;Inc. Flow/Vac.	
GUAD0178	6/16/2021 14:31	12.8	9.3	15.9	62	102	102	-2.2	-2.1	NSPS/EG CAI;Barely Open;Dec. Flow/Vac.	
GUAD0178	6/18/2021 10:53	9.1	6.9	17.1	66.9	98	98	-2.6	-2.6	NSPS/EG CAl;Barely Open	
GUAD0178	6/25/2021 14:42	0	0.3	20.6	79.1	86.2	86.2	-1.6	-1.7	NSPS/EG CAI;Fully Open;Pinched NSPS/EG CAI;Barely Open;Fully Open;Dec.	
GUAD0178	7/3/2021 9:50	0	0.2	21.6	78.2	77.4	77.6	-3.01	-2.9	Flow/Vac.;Pinched	
GUAD0178	7/14/2021 16:02	57.2	41.6	0.7	0.5	114	115	-38.6	-38.8	NSPS/EG CAI;Fully Open	
GUAD0178	7/14/2021 16:05	NSPS/EG Co	orrective Actio	on Completed	(CAC);NSPS/E	G Parameter Correct	ive Action Completed	(PCAC_O2)-new	jumper installed		28
Well 178 had oxy	gen exceedance during	initial monitori	ing in June an	d July 2021. I	New lateral was	installed and exceed	ance was cleared.				
GUAD0208	6/16/2021 15:33	29.5	38.9	0	31.6	123	123	0.0	0.0	No Adj. Made	
GUAD0208	6/18/2021 11:23	28.1	39.1	0	32.8	123	123	-0.1	-0.1	No Adj. Made	2
Well 208 had pre	ssure exceedance during	g initial monito	oring in June 2	2021. New lat			as cleared.	•			•

Wellhead ID.	Date Time	Gas	Compositio	on ( % by vo	olume)	Initial	Adjusted	Initial Static Pressure	Adjusted Static Pressure		Duration of Exceedance As of the End of
Number	Date Time	CH₄	CO2	O ₂	Balance	Temperature(oF)	Temperature(oF)	("H ₂ O)	("H ₂ O)	Comments	Reporting Period (Days)
GUAD0214	6/17/2021 15:13	57.5	42.3	0	0.2	119	119	0.3	0.3	Fully Open;NSPS/EG CAI;Pinched	
GUAD0214	6/17/2021 15:16	56.3	42.9	0.7	0.1	119	119	0.3	0.3	NSPS/EG CAI;Pinched	
GUAD0214	6/25/2021 14:50	40.8	43.7	0	15.5	129.1	127.8	-22.4	-12.1	Dec. Flow/Vac.	
GUAD0214	6/25/2021 14:53	39.5	42.8	0	17.7	125.3	125.8	-7.8	-7.8	NSPS/EG CAI;Dec. Flow/Vac.	8
Well 214 had pre	ssure exceedance durin	g initial monito	oring in June 2	2021. Adjustm	ents were mad	e and exceedance wa	s cleared.				

%= percent

in. w.c.= inches in water column

NSPS= New Source Performance Standards

EG CAI= Emissions Guidelines Corrective Action Initiated

EG CAC= Emissions Guidelines Corrective Action Completed

°F = degrees Fahrenheit

## APPENDIX L

## MONTHLY LANDFILL GAS FLOW RATES

### April 1, 2020 - September 30, 2021 SAR MONTHLY LFG Input to Flare (A-9) Guadalupe Recycling & Disposal Facility, San Jose, CA

#### A-9 Old Enclosed Flare

Month	Total Available Runtime (hours)	Total Downtime (hours)	Total Runtime (hours)	Average Flow (scfm)	Average CH ₄ (%)*	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Total MMBTU
April-21	720.00	720.00	0.00	0	49.9	0	0	0
May 2021	744.00	744.00	0.00	0	49.9	0	0	0
June 2021	720.00	720.00	0.00	0	49.9	0	0	0
July 2021	744.00	744.00	0.00	0	49.9	0	0	0
August 2021	744.00	744.00	0.00	0	49.9	0	0	0
September 2021	720.00	720.00	0.00	0	49.9	0	0	0
April 1, 2021 - September 30, 2021 Totals/Avg:	4,392.00	4,392.00	0.00	0	49.9	0	0	0
2021 (Partial) TOTALS/ AVERAGE :	6,551.00	6,551.00	0.00	0	49.9	0	0	0

Notes:

*Starting June 24, 2020 methane content determined from flare A-9 April 29, 2020 source test.

scfm= standard cubic feet per minute

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

San Jose, CA

Heat Input Rate

Flare A-9

IONTH: Date	April-21 Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH ₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Day
4/1/2021	0.0	49.9	0	0	0	1,013.0	0
4/2/2021	0.0	49.9	0	0	0	1,013.0	0
4/3/2021	0.0	49.9	0	0	0	1,013.0	0
4/4/2021	0.0	49.9	0	0	0	1,013.0	0
4/5/2021	0.0	49.9	0	0	0	1,013.0	0
4/6/2021	0.0	49.9	0	0	0	1,013.0	0
4/7/2021	0.0	49.9	0	0	0	1,013.0	0
4/8/2021	0.0	49.9	0	0	0	1,013.0	0
4/9/2021	0.0	49.9	0	0	0	1,013.0	0
4/10/2021	0.0	49.9	0	0	0	1,013.0	0
4/11/2021	0.0	49.9	0	0	0	1,013.0	0
4/12/2021	0.0	49.9	0	0	0	1,013.0	0
4/13/2021	0.0	49.9	0	0	0	1,013.0	0
4/14/2021	0.0	49.9	0	0	0	1,013.0	0
4/15/2021	0.0	49.9	0	0	0	1,013.0	0
4/16/2021	0.0	49.9	0	0	0	1,013.0	0
4/17/2021	0.0	49.9	0	0	0	1,013.0	0
4/18/2021	0.0	49.9	0	0	0	1,013.0	0
4/19/2021	0.0	49.9	0	0	0	1,013.0	0
4/20/2021	0.0	49.9	0	0	0	1,013.0	0
4/21/2021	0.0	49.9	0	0	0	1,013.0	0
4/22/2021	0.0	49.9	0	0	0	1,013.0	0
4/23/2021	0.0	49.9	0	0	0	1,013.0	0
4/24/2021	0.0	49.9	0	0	0	1,013.0	0
4/25/2021	0.0	49.9	0	0	0	1,013.0	0
4/26/2021	0.0	49.9	0	0	0	1,013.0	0
4/27/2021	0.0	49.9	0	0	0	1,013.0	0
4/28/2021	0.0	49.9	0	0	0	1,013.0	0
4/29/2021	0.0	49.9	0	0	0	1,013.0	0
4/30/2021	0.0	49.9	0	0	0	1,013.0	0
Totals/ Average:	0.0	49.9	0	0	0	1013.0	0
otes:						Maximum:	0

#### Notes:

*Methane content determined from the the April 29, 2020 source test.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units LFG= landfill gas

San Jose, CA

Heat Input Rate

Flare A-9

MONTH:	May-21	1		· · · · · · · · · · · · · · · · · · ·			
Date	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH ₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Day
5/1/2021	0.0	49.9	0	0	0	1,013.0	0
5/2/2021	0.0	49.9	0	0	0	1,013.0	0
5/3/2021	0.0	49.9	0	0	0	1,013.0	0
5/4/2021	0.0	49.9	0	0	0	1,013.0	0
5/5/2021	0.0	49.9	0	0	0	1,013.0	0
5/6/2021	0.0	49.9	0	0	0	1,013.0	0
5/7/2021	0.0	49.9	0	0	0	1,013.0	0
5/8/2021	0.0	49.9	0	0	0	1,013.0	0
5/9/2021	0.0	49.9	0	0	0	1,013.0	0
5/10/2021	0.0	49.9	0	0	0	1,013.0	0
5/11/2021	0.0	49.9	0	0	0	1,013.0	0
5/12/2021	0.0	49.9	0	0	0	1,013.0	0
5/13/2021	0.0	49.9	0	0	0	1,013.0	0
5/14/2021	0.0	49.9	0	0	0	1,013.0	0
5/15/2021	0.0	49.9	0	0	0	1,013.0	0
5/16/2021	0.0	49.9	0	0	0	1,013.0	0
5/17/2021	0.0	49.9	0	0	0	1,013.0	0
5/18/2021	0.0	49.9	0	0	0	1,013.0	0
5/19/2021	0.0	49.9	0	0	0	1,013.0	0
5/20/2021	0.0	49.9	0	0	0	1,013.0	0
5/21/2021	0.0	49.9	0	0	0	1,013.0	0
5/22/2021	0.0	49.9	0	0	0	1,013.0	0
5/23/2021	0.0	49.9	0	0	0	1,013.0	0
5/24/2021	0.0	49.9	0	0	0	1,013.0	0
5/25/2021	0.0	49.9	0	0	0	1,013.0	0
5/26/2021	0.0	49.9	0	0	0	1,013.0	0
5/27/2021	0.0	49.9	0	0	0	1,013.0	0
5/28/2021	0.0	49.9	0	0	0	1,013.0	0
5/29/2021	0.0	49.9	0	0	0	1,013.0	0
5/30/2021	0.0	49.9	0	0	0	1,013.0	0
5/31/2021	0.0	49.9	0	0	0	1,013.0	0
Totals/ Average:	0.0	49.9	0	0	0	1013.0	0
lotes:	•	•				Maximum:	0

#### Notes:

*Methane content determined from the the April 29, 2020 source test.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

San Jose, CA

Heat Input Rate

Flare A-9

/ONTH: Date	June-21 Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Day
6/1/2021	0.0	49.9	0	0	0	1,013.0	0
6/2/2021	0.0	49.9	0	0	0	1,013.0	0
6/3/2021	0.0	49.9	0	0	0	1,013.0	0
6/4/2021	0.0	49.9	0	0	0	1,013.0	0
6/5/2021	0.0	49.9	0	0	0	1,013.0	0
6/6/2021	0.0	49.9	0	0	0	1,013.0	0
6/7/2021	0.0	49.9	0	0	0	1,013.0	0
6/8/2021	0.0	49.9	0	0	0	1,013.0	0
6/9/2021	0.0	49.9	0	0	0	1,013.0	0
6/10/2021	0.0	49.9	0	0	0	1,013.0	0
6/11/2021	0.0	49.9	0	0	0	1,013.0	0
6/12/2021	0.0	49.9	0	0	0	1,013.0	0
6/13/2021	0.0	49.9	0	0	0	1,013.0	0
6/14/2021	0.0	49.9	0	0	0	1,013.0	0
6/15/2021	0.0	49.9	0	0	0	1,013.0	0
6/16/2021	0.0	49.9	0	0	0	1,013.0	0
6/17/2021	0.0	49.9	0	0	0	1,013.0	0
6/18/2021	0.0	49.9	0	0	0	1,013.0	0
6/19/2021	0.0	49.9	0	0	0	1,013.0	0
6/20/2021	0.0	49.9	0	0	0	1,013.0	0
6/21/2021	0.0	49.9	0	0	0	1,013.0	0
6/22/2021	0.0	49.9	0	0	0	1,013.0	0
6/23/2021	0.0	49.9	0	0	0	1,013.0	0
6/24/2021	0.0	49.9	0	0	0	1,013.0	0
6/25/2021	0.0	49.9	0	0	0	1,013.0	0
6/26/2021	0.0	49.9	0	0	0	1,013.0	0
6/27/2021	0.0	49.9	0	0	0	1,013.0	0
6/28/2021	0.0	49.9	0	0	0	1,013.0	0
6/29/2021	0.0	49.9	0	0	0	1,013.0	0
6/30/2021	0.0	49.9	0	0	0	1,013.0	0
Totals/ Average:	0.0	49.9	0	0	0	1013.0	0
lotes:						Maximum:	0

#### Notes:

*Methane content determined from the the April 29, 2020 source test.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas  $CH_4$ = methane

San Jose, CA

Heat Input Rate

Flare A-9

IONTH: Date	July-21 Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH ₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Da
7/1/2021	0.0	49.9	0	0	0	1,013.0	0
7/2/2021	0.0	49.9	0	0	0	1,013.0	0
7/3/2021	0.0	49.9	0	0	0	1,013.0	0
7/4/2021	0.0	49.9	0	0	0	1,013.0	0
7/5/2021	0.0	49.9	0	0	0	1,013.0	0
7/6/2021	0.0	49.9	0	0	0	1,013.0	0
7/7/2021	0.0	49.9	0	0	0	1,013.0	0
7/8/2021	0.0	49.9	0	0	0	1,013.0	0
7/9/2021	0.0	49.9	0	0	0	1,013.0	0
7/10/2021	0.0	49.9	0	0	0	1,013.0	0
7/11/2021	0.0	49.9	0	0	0	1,013.0	0
7/12/2021	0.0	49.9	0	0	0	1,013.0	0
7/13/2021	0.0	49.9	0	0	0	1,013.0	0
7/14/2021	0.0	49.9	0	0	0	1,013.0	0
7/15/2021	0.0	49.9	0	0	0	1,013.0	0
7/16/2021	0.0	49.9	0	0	0	1,013.0	0
7/17/2021	0.0	49.9	0	0	0	1,013.0	0
7/18/2021	0.0	49.9	0	0	0	1,013.0	0
7/19/2021	0.0	49.9	0	0	0	1,013.0	0
7/20/2021	0.0	49.9	0	0	0	1,013.0	0
7/21/2021	0.0	49.9	0	0	0	1,013.0	0
7/22/2021	0.0	49.9	0	0	0	1,013.0	0
7/23/2021	0.0	49.9	0	0	0	1,013.0	0
7/24/2021	0.0	49.9	0	0	0	1,013.0	0
7/25/2021	0.0	49.9	0	0	0	1,013.0	0
7/26/2021	0.0	49.9	0	0	0	1,013.0	0
7/27/2021	0.0	49.9	0	0	0	1,013.0	0
7/28/2021	0.0	49.9	0	0	0	1,013.0	0
7/29/2021	0.0	49.9	0	0	0	1,013.0	0
7/30/2021	0.0	49.9	0	0	0	1,013.0	0
7/31/2021	0.0	49.9	0	0	0	1,013.0	0
Totals/ Average:	0.0	49.9	0	0	0	1013.0	0
otes:	·	•				Maximum:	0

#### Notes:

*Methane content determined from the the April 29, 2020 source test.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

San Jose, CA

Heat Input Rate

Flare A-9

)	49.9 49.9 49.9	0	0		(BTU/scf)	(MMBTU)/Day
) ) )	49.9 49.9	0		0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)		0	0	0	1,013.0	0
	49.9	0	0	0	1,013.0	0
	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1,013.0	0
	49.9	0	0	0	1,013.0	0
)	49.9	0	0	0	1013.0	0
	0 0 0 0 0 0 0	0 49.9 0 49.9 0 49.9 0 49.9 0 49.9	0         49.9         0           0         49.9         0           0         49.9         0           0         49.9         0           0         49.9         0	0         49.9         0         0           0         49.9         0         0           0         49.9         0         0           0         49.9         0         0           0         49.9         0         0           0         49.9         0         0	0         49.9         0         0         0         0           0         49.9         0         0         0         0           0         49.9         0         0         0         0           0         49.9         0         0         0         0           0         49.9         0         0         0         0           0         49.9         0         0         0         0	0         49.9         0         0         0         1,013.0           0         49.9         0         0         0         1,013.0           0         49.9         0         0         0         1,013.0           0         49.9         0         0         0         1,013.0           0         49.9         0         0         0         1,013.0           0         49.9         0         0         0         1,013.0

#### Notes:

*Methane content determined from the the April 29, 2020 source test.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

San Jose, CA

Heat Input Rate

Flare A-9

#### MONTH: September-21

Totals/ Average: lotes:	0.0	49.9	0	0	0	1013.0 Maximum:	0
9/30/2021	0.0	49.9	0	0	0	1,013.0	0
9/29/2021	0.0	49.9	0	0	0	1,013.0	0
9/28/2021	0.0	49.9	0	0	0	1,013.0	0
9/27/2021	0.0	49.9	0	0	0	1,013.0	0
9/26/2021	0.0	49.9	0	0	0	1,013.0	0
9/25/2021	0.0	49.9	0	0	0	1,013.0	0
9/24/2021	0.0	49.9	0	0	0	1,013.0	0
9/23/2021	0.0	49.9	0	0	0	1,013.0	0
9/22/2021	0.0	49.9	0	0	0	1,013.0	0
9/21/2021	0.0	49.9	0	0	0	1,013.0	0
9/20/2021	0.0	49.9	0	0	0	1,013.0	0
9/19/2021	0.0	49.9	0	0	0	1,013.0	0
9/18/2021	0.0	49.9	0	0	0	1,013.0	0
9/17/2021	0.0	49.9	0	0	0	1,013.0	0
9/16/2021	0.0	49.9	0	0	0	1,013.0	0
9/15/2021	0.0	49.9	0	0	0	1,013.0	0
9/14/2021	0.0	49.9	0	0	0	1,013.0	0
9/13/2021	0.0	49.9	0	0	0	1,013.0	0
9/12/2021	0.0	49.9	0	0	0	1,013.0	0
9/11/2021	0.0	49.9	0	0	0	1,013.0	0
9/10/2021	0.0	49.9	0	0	0	1,013.0	0
9/9/2021	0.0	49.9	0	0	0	1,013.0	0
9/8/2021	0.0	49.9	0	0	0	1,013.0	0
9/7/2021	0.0	49.9	0	0	0	1,013.0	0
9/6/2021	0.0	49.9	0	0	0	1,013.0	0
9/5/2021	0.0	49.9	0	0	0	1,013.0	0
9/4/2021	0.0	49.9	0	0	0	1,013.0	0
9/3/2021	0.0	49.9	0	0	0	1,013.0	0
9/2/2021	0.0	49.9	0	0	0	1,013.0	0
9/1/2021	0.0	49.9	0	0	0	1,013.0	0
Date	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH ₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Da

#### Notes:

*Methane content determined from the the April 29, 2020 source test.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas  $CH_4$ = methane

### April 1, 2020 - September 30, 2021 SAR MONTHLY LFG Input to Flare A-17 Guadalupe Recycling & Disposal Facility, San Jose, CA

Month	Total Available Runtime (hours)	Total Downtime (hours)	Total Runtime (hours)	Average Flow (scfm)	Average CH ₄ (%)*	Total LFG Volume (scf)	Total CH ₄ Volume (scf)	Total MMBTU
April 2021	720.0	1.6	718.4	1,890	41.4	81,494,284	33,727,460	34,166
May 2021	744.0	0.2	743.8	1,859	40.4	82,965,408	33,547,063	33,983
June 2021	720.0	1.1	718.9	1,982	40.4	85,672,929	34,641,849	35,092
July 2021	744.0	0.0	744.0	2,146	40.4	96,206,587	38,901,133	39,407
August 2021	744.0	0.0	744.0	2,097	40.4	93,438,872	37,782,008	38,273
September 2021	720.0	1.9	718.1	1,887	40.4	81,103,196	32,794,077	33,220
April 1, 2021 - September 30, 2021 Totals/Avg:	4,392.0	4.8	4,387.2	1,977	40.6	520,881,276	211,393,591	214,142
2021 (Partial) TOTALS/ AVERAGE :	6,551.0	13.9	6,537.1	1,926	41.7	756,256,523	314,684,487	318,775

#### A-17 Enclosed Flare (Based on the correspondence with the BAAQMD, flare A-14 is now designated as flare A-17)

Notes:

NA= Initial startup of A-14 flare was on November 17, 2016. Stack was replaced with standard 120 MMBTU/HR stack at the end of October 2020. New designation is flare A-17.

*Starting April 9, 2021, Methane content determined from flare A-17 February 18, 2021 source test.

scfm= standard cubic feet per minute

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

San Jose, CA

Heat Input Rate

Flare A-17

MONTH:	April-21						
Date	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Day
4/1/2021	24.0	43.9	2,035	2,929,924	1,285,753	1,013.0	1,302.5
4/2/2021	24.0	43.9	1,982	2,853,596	1,252,258	1,013.0	1,268.5
4/3/2021	24.0	43.9	1,956	2,816,878	1,236,145	1,013.0	1,252.2
4/4/2021	24.0	43.9	1,958	2,819,434	1,237,266	1,013.0	1,253.4
4/5/2021	24.0	43.9	1,959	2,821,445	1,238,149	1,013.0	1,254.2
4/6/2021	24.0	43.9	1,937	2,789,180	1,223,990	1,013.0	1,239.9
4/7/2021	24.0	43.9	1,892	2,724,406	1,195,565	1,013.0	1,211.1
4/8/2021	24.0	43.9	1,893	2,725,827	1,196,188	1,013.0	1,211.7
4/9/2021	24.0	40.4	1,900	2,736,595	1,106,542	1,013.0	1,120.9
4/10/2021	24.0	40.4	1,908	2,747,326	1,110,881	1,013.0	1,125.3
4/11/2021	24.0	40.4	1,910	2,751,019	1,112,375	1,013.0	1,126.8
4/12/2021	24.0	40.4	1,903	2,740,515	1,108,127	1,013.0	1,122.5
4/13/2021	24.0	40.4	1,882	2,709,663	1,095,652	1,013.0	1,109.9
4/14/2021	24.0	40.4	1,868	2,690,537	1,087,919	1,013.0	1,102.1
4/15/2021	24.0	40.4	1,877	2,702,494	1,092,753	1,013.0	1,107.0
4/16/2021	24.0	40.4	1,874	2,698,579	1,091,170	1,013.0	1,105.4
4/17/2021	24.0	40.4	1,842	2,651,922	1,072,305	1,013.0	1,086.2
4/18/2021	24.0	40.4	1,854	2,670,320	1,079,744	1,013.0	1,093.8
4/19/2021	24.0	40.4	1,847	2,659,299	1,075,288	1,013.0	1,089.3
4/20/2021	24.0	40.4	1,835	2,641,997	1,068,291	1,013.0	1,082.2
4/21/2021	24.0	40.4	1,841	2,651,661	1,072,199	1,013.0	1,086.1
4/22/2021	24.0	40.4	1,843	2,654,542	1,073,364	1,013.0	1,087.3
4/23/2021	24.0	40.4	1,844	2,655,436	1,073,726	1,013.0	1,087.7
4/24/2021	24.0	40.4	1,846	2,657,940	1,074,738	1,013.0	1,088.7
4/25/2021	24.0	40.4	1,824	2,626,192	1,061,901	1,013.0	1,075.7
4/26/2021	24.0	40.4	1,814	2,611,599	1,056,000	1,013.0	1,069.7
4/27/2021	22.4	40.4	1,872	2,519,496	1,018,758	1,013.0	1,032.0
4/28/2021	24.0	40.4	1,917	2,761,088	1,116,446	1,013.0	1,131.0
4/29/2021	24.0	40.4	1,902	2,738,391	1,107,268	1,013.0	1,121.7
4/30/2021	24.0	40.4	1,901	2,736,983	1,106,699	1,013.0	1,121.1
Totals/ Average:	718.43	41.4	1,890	81,494,284	33,727,460	1013.0	34,166
Notes:						Maximum:	1,302

*Methane content determined from flare A-14 February 26, 2020 source test results.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

San Jose, CA

Heat Input Rate

### Flare A-17

MONTH:	May-21	1	1			1	
Date	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH ₄ Volume (scf)	Heating Value of CH₄ (BTU/scf)	Heat Input (MMBTU)/Da
5/1/2021	24.0	40.4	1,900	2,736,172	1,106,371	1,013.0	1,120.8
5/2/2021	24.0	40.4	1,896	2,729,986	1,103,870	1,013.0	1,118.2
5/3/2021	24.0	40.4	1,897	2,731,627	1,104,533	1,013.0	1,118.9
5/4/2021	24.0	40.4	1,925	2,772,014	1,120,864	1,013.0	1,135.4
5/5/2021	24.0	40.4	1,946	2,802,815	1,133,318	1,013.0	1,148.1
5/6/2021	24.0	40.4	1,925	2,771,536	1,120,671	1,013.0	1,135.2
5/7/2021	24.0	40.4	1,928	2,776,037	1,122,491	1,013.0	1,137.1
5/8/2021	24.0	40.4	1,937	2,789,593	1,127,972	1,013.0	1,142.6
5/9/2021	24.0	40.4	1,949	2,805,923	1,134,575	1,013.0	1,149.3
5/10/2021	24.0	40.4	1,946	2,802,523	1,133,200	1,013.0	1,147.9
5/11/2021	24.0	40.4	1,952	2,810,248	1,136,324	1,013.0	1,151.1
5/12/2021	24.0	40.4	1,937	2,788,946	1,127,710	1,013.0	1,142.4
5/13/2021	24.0	40.4	1,916	2,758,982	1,115,594	1,013.0	1,130.1
5/14/2021	24.0	40.4	1,893	2,726,571	1,102,489	1,013.0	1,116.8
5/15/2021	23.8	40.4	1,905	2,715,954	1,098,196	1,013.0	1,112.5
5/16/2021	24.0	40.4	1,923	2,768,538	1,119,458	1,013.0	1,134.0
5/17/2021	24.0	40.4	1,893	2,726,244	1,102,357	1,013.0	1,116.7
5/18/2021	24.0	40.4	1,886	2,716,535	1,098,431	1,013.0	1,112.7
5/19/2021	24.0	40.4	1,804	2,597,176	1,050,168	1,013.0	1,063.8
5/20/2021	24.0	40.4	1,784	2,568,573	1,038,602	1,013.0	1,052.1
5/21/2021	24.0	40.4	1,782	2,566,775	1,037,875	1,013.0	1,051.4
5/22/2021	24.0	40.4	1,780	2,562,674	1,036,217	1,013.0	1,049.7
5/23/2021	24.0	40.4	1,770	2,548,901	1,030,648	1,013.0	1,044.0
5/24/2021	24.0	40.4	1,774	2,554,791	1,033,030	1,013.0	1,046.5
5/25/2021	24.0	40.4	1,768	2,545,201	1,029,152	1,013.0	1,042.5
5/26/2021	24.0	40.4	1,765	2,540,928	1,027,424	1,013.0	1,040.8
5/27/2021	24.0	40.4	1,757	2,530,304	1,023,128	1,013.0	1,036.4
5/28/2021	24.0	40.4	1,779	2,561,443	1,035,719	1,013.0	1,049.2
5/29/2021	24.0	40.4	1,758	2,531,764	1,023,719	1,013.0	1,037.0
5/30/2021	24.0	40.4	1,777	2,559,595	1,034,972	1,013.0	1,048.4
5/31/2021	24.0	40.4	1,783	2,567,039	1,037,982	1,013.0	1,051.5
Totals/ Average:	743.77	40.4	1,859	82,965,408	33,547,063	1013.0	33,983
lotes:		-	,			Maximum:	1,151

*Methane content determined from flare A-14 February 26, 2020 source test results.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

San Jose, CA

Heat Input Rate

### Flare A-17

MONTH:	June-21						
Date	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Day
6/1/2021	24.0	40.4	1,896	2,730,011	1,103,880	1,013.0	1,118.2
6/2/2021	24.0	40.4	1,966	2,830,952	1,144,695	1,013.0	1,159.6
6/3/2021	24.0	40.4	1,936	2,787,572	1,127,155	1,013.0	1,141.8
6/4/2021	24.0	40.4	1,895	2,729,321	1,103,601	1,013.0	1,117.9
6/5/2021	24.0	40.4	1,896	2,729,648	1,103,733	1,013.0	1,118.1
6/6/2021	24.0	40.4	1,888	2,719,061	1,099,452	1,013.0	1,113.7
6/7/2021	24.0	40.4	1,862	2,681,715	1,084,351	1,013.0	1,098.4
6/8/2021	24.0	40.4	1,852	2,667,102	1,078,443	1,013.0	1,092.5
6/9/2021	24.0	40.4	1,844	2,654,811	1,073,473	1,013.0	1,087.4
6/10/2021	24.0	40.4	1,831	2,636,338	1,066,003	1,013.0	1,079.9
6/11/2021	24.0	40.4	1,817	2,616,231	1,057,873	1,013.0	1,071.6
6/12/2021	24.0	40.4	1,834	2,640,636	1,067,741	1,013.0	1,081.6
6/13/2021	24.0	40.4	1,833	2,640,122	1,067,533	1,013.0	1,081.4
6/14/2021	24.0	40.4	1,817	2,616,694	1,058,060	1,013.0	1,071.8
6/15/2021	24.0	40.4	1,826	2,629,680	1,063,311	1,013.0	1,077.1
6/16/2021	24.0	40.4	1,901	2,737,821	1,107,038	1,013.0	1,121.4
6/17/2021	24.0	40.4	2,033	2,928,124	1,183,987	1,013.0	1,199.4
6/18/2021	24.0	40.4	2,091	3,010,364	1,217,241	1,013.0	1,233.1
6/19/2021	24.0	40.4	2,116	3,046,650	1,231,913	1,013.0	1,247.9
6/20/2021	24.0	40.4	2,066	2,975,403	1,203,104	1,013.0	1,218.7
6/21/2021	23.8	40.4	2,134	3,042,572	1,230,264	1,013.0	1,246.3
6/22/2021	24.0	40.4	2,215	3,189,899	1,289,836	1,013.0	1,306.6
6/23/2021	23.1	40.4	2,123	2,946,268	1,191,323	1,013.0	1,206.8
6/24/2021	24.0	40.4	2,190	3,153,446	1,275,096	1,013.0	1,291.7
6/25/2021	24.0	40.4	2,162	3,113,175	1,258,812	1,013.0	1,275.2
6/26/2021	24.0	40.4	2,129	3,065,500	1,239,535	1,013.0	1,255.6
6/27/2021	24.0	40.4	2,117	3,048,622	1,232,710	1,013.0	1,248.7
6/28/2021	24.0	40.4	2,111	3,039,565	1,229,048	1,013.0	1,245.0
6/29/2021	24.0	40.4	2,113	3,042,075	1,230,063	1,013.0	1,246.1
6/30/2021	24.0	40.4	2,100	3,023,551	1,222,573	1,013.0	1,238.5
Totals/ Average:	718.90	40.4	1,982	85,672,929	34,641,849	1013.0	35,092
lotes:						Maximum:	1,307

#### Notes:

*Methane content determined from flare A-14 February 26, 2020 source test results.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

San Jose, CA

Heat Input Rate

Flare A-17

MONTH:	July-21						
Date	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Da
7/1/2021	24.0	40.4	2,106	3,033,249	1,226,494	1,013.0	1,242.4
7/2/2021	24.0	40.4	2,099	3,021,937	1,221,920	1,013.0	1,237.8
7/3/2021	24.0	40.4	2,082	2,998,580	1,212,476	1,013.0	1,228.2
7/4/2021	24.0	40.4	2,076	2,990,119	1,209,055	1,013.0	1,224.8
7/5/2021	24.0	40.4	2,071	2,981,850	1,205,711	1,013.0	1,221.4
7/6/2021	24.0	40.4	2,034	2,928,735	1,184,234	1,013.0	1,199.6
7/7/2021	24.0	40.4	1,993	2,869,616	1,160,329	1,013.0	1,175.4
7/8/2021	24.0	40.4	2,059	2,964,247	1,198,593	1,013.0	1,214.2
7/9/2021	24.0	40.4	2,110	3,039,079	1,228,852	1,013.0	1,244.8
7/10/2021	24.0	40.4	2,118	3,050,296	1,233,387	1,013.0	1,249.4
7/11/2021	24.0	40.4	2,103	3,029,030	1,224,788	1,013.0	1,240.7
7/12/2021	24.0	40.4	2,093	3,014,461	1,218,897	1,013.0	1,234.7
7/13/2021	24.0	40.4	2,093	3,014,469	1,218,901	1,013.0	1,234.7
7/14/2021	24.0	40.4	2,071	2,982,109	1,205,816	1,013.0	1,221.5
7/15/2021	24.0	40.4	2,052	2,954,712	1,194,738	1,013.0	1,210.3
7/16/2021	24.0	40.4	2,056	2,960,145	1,196,935	1,013.0	1,212.5
7/17/2021	24.0	40.4	2,042	2,941,192	1,189,271	1,013.0	1,204.7
7/18/2021	24.0	40.4	2,056	2,959,970	1,196,864	1,013.0	1,212.4
7/19/2021	24.0	40.4	2,033	2,927,950	1,183,917	1,013.0	1,199.3
7/20/2021	24.0	40.4	1,963	2,826,492	1,142,892	1,013.0	1,157.7
7/21/2021	24.0	40.4	1,962	2,825,930	1,142,665	1,013.0	1,157.5
7/22/2021	24.0	40.4	2,062	2,969,217	1,200,603	1,013.0	1,216.2
7/23/2021	24.0	40.4	2,249	3,238,383	1,309,440	1,013.0	1,326.5
7/24/2021	24.0	40.4	2,286	3,291,962	1,331,105	1,013.0	1,348.4
7/25/2021	24.0	40.4	2,313	3,331,410	1,347,056	1,013.0	1,364.6
7/26/2021	24.0	40.4	2,363	3,402,226	1,375,690	1,013.0	1,393.6
7/27/2021	24.0	40.4	2,444	3,519,049	1,422,927	1,013.0	1,441.4
7/28/2021	24.0	40.4	2,443	3,517,607	1,422,344	1,013.0	1,440.8
7/29/2021	24.0	40.4	2,452	3,530,971	1,427,748	1,013.0	1,446.3
7/30/2021	24.0	40.4	2,457	3,538,437	1,430,767	1,013.0	1,449.4
7/31/2021	24.0	40.4	2,467	3,553,157	1,436,719	1,013.0	1,455.4
Totals/ Average:	744.00	40.4	2,146	96,206,587	38,901,133	1013.0	39,407
lotes:			• •			Maximum:	1,455

#### Notes:

*Methane content determined from flare A-14 February 26, 2020 source test results.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

San Jose, CA

Heat Input Rate

## Flare A-17

/IONTH:	August-21						
Date	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Da
8/1/2021	24.0	40.4	2,434	3,505,341	1,417,385	1,013.0	1,435.8
8/2/2021	24.0	40.4	2,419	3,483,434	1,408,527	1,013.0	1,426.8
8/3/2021	24.0	40.4	2,423	3,489,779	1,411,092	1,013.0	1,429.4
8/4/2021	24.0	40.4	2,414	3,476,121	1,405,570	1,013.0	1,423.8
8/5/2021	24.0	40.4	2,421	3,486,447	1,409,745	1,013.0	1,428.1
8/6/2021	24.0	40.4	2,440	3,513,563	1,420,709	1,013.0	1,439.2
8/7/2021	24.0	40.4	2,440	3,513,293	1,420,600	1,013.0	1,439.1
8/8/2021	24.0	40.4	2,434	3,504,867	1,417,193	1,013.0	1,435.6
8/9/2021	24.0	40.4	2,281	3,284,336	1,328,021	1,013.0	1,345.3
8/10/2021	24.0	40.4	2,103	3,028,892	1,224,732	1,013.0	1,240.7
8/11/2021	24.0	40.4	2,089	3,007,651	1,216,144	1,013.0	1,232.0
8/12/2021	24.0	40.4	2,046	2,946,910	1,191,583	1,013.0	1,207.1
8/13/2021	24.0	40.4	1,976	2,845,044	1,150,394	1,013.0	1,165.3
8/14/2021	24.0	40.4	1,932	2,782,777	1,125,216	1,013.0	1,139.8
8/15/2021	24.0	40.4	1,952	2,810,763	1,136,532	1,013.0	1,151.3
8/16/2021	24.0	40.4	1,961	2,823,510	1,141,686	1,013.0	1,156.5
8/17/2021	24.0	40.4	1,951	2,809,190	1,135,896	1,013.0	1,150.7
8/18/2021	24.0	40.4	1,917	2,760,904	1,116,372	1,013.0	1,130.9
8/19/2021	24.0	40.4	1,922	2,767,828	1,119,171	1,013.0	1,133.7
8/20/2021	24.0	40.4	1,920	2,764,413	1,117,790	1,013.0	1,132.3
8/21/2021	24.0	40.4	1,921	2,766,845	1,118,774	1,013.0	1,133.3
8/22/2021	24.0	40.4	1,922	2,767,811	1,119,164	1,013.0	1,133.7
8/23/2021	24.0	40.4	1,919	2,762,774	1,117,128	1,013.0	1,131.7
8/24/2021	24.0	40.4	1,920	2,765,515	1,118,236	1,013.0	1,132.8
8/25/2021	24.0	40.4	1,934	2,784,979	1,126,106	1,013.0	1,140.7
8/26/2021	24.0	40.4	1,949	2,806,980	1,135,002	1,013.0	1,149.8
8/27/2021	24.0	40.4	1,973	2,841,129	1,148,811	1,013.0	1,163.7
8/28/2021	24.0	40.4	1,974	2,843,142	1,149,624	1,013.0	1,164.6
8/29/2021	24.0	40.4	1,955	2,815,046	1,138,264	1,013.0	1,153.1
8/30/2021	24.0	40.4	1,958	2,819,160	1,139,927	1,013.0	1,154.7
8/31/2021	24.0	40.4	1,986	2,860,428	1,156,614	1,013.0	1,171.7
Totals/ Average:	744.00	40.4	2,097	93,438,872	37,782,008	1013.0	38,273
otes:	-	·	•	· · · · · · · · · · · · · · · · · · ·		Maximum:	1,439

#### Notes:

*Methane content determined from flare A-14 February 26, 2020 source test results.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

San Jose, CA

MONTH:

Heat Input Rate Flare A-17

September-21

9/11/2021	24.0	40.4	1,867	2,688,382	1,087,047	1,013.0	1,101.2
9/12/2021	24.0	40.4	1,790	2,577,566	1,042,239	1,013.0	1,055.8
9/13/2021	24.0	40.4	1,806	2,600,904	1,051,676	1,013.0	1,065.3
9/14/2021 9/15/2021	24.0 24.0	40.4	1,796 1,760 1,744	2,586,901 2,534,082	1,046,013 1,024,656	1,013.0 1,013.0	1,059.6 1,038.0
9/16/2021	24.0	40.4	1,744	2,511,930	1,015,699	1,013.0	1,028.9
9/17/2021	24.0	40.4	1,742	2,507,840	1,014,045	1,013.0	1,027.2
9/18/2021	24.0	40.4	1,736	2,500,544	1,011,095	1,013.0	1,024.2
9/19/2021	24.0	40.4	1,756	2,528,064	1,022,223	1,013.0	1,035.5
9/20/2021	24.0	40.4	1,784	2,568,341	1,038,509	1,013.0	
9/21/2021	24.0	40.4	1,789	2,576,629	1,041,860	1,013.0	1,055.4
9/22/2021	24.0	40.4	1,794	2,582,918	1,044,403	1,013.0	1,058.0
9/23/2021	24.0	40.4 40.4	1,785	2,570,143	1,039,237	1,013.0	1,052.7
9/24/2021	24.0		1,773	2,553,628	1,032,559	1,013.0	1,046.0
9/25/2021	24.0	40.4	1,739	2,504,142	1,012,550	1,013.0	1,025.7
9/26/2021	24.0	40.4	1,734	2,496,660	1,009,524	1,013.0	1,022.6
9/27/2021	24.0	40.4	1,742	2,508,605	1,014,354	1,013.0	1,027.5
9/28/2021	22.1	40.4	1,724	2,283,181	923,204	1,013.0	935.2
9/29/2021	24.0	40.4	1,728	2,488,916	1,006,393	1,013.0	1,019.5
9/30/2021	24.0	40.4	1,749	2,518,228	1,018,245	1,013.0	1,031.5
Totals/ Average: Notes:	718.07	40.4	1,887	81,103,196	32,794,077	1013.0 Maximum:	33,220 1,337

*Methane content determined from flare A-14 February 26, 2020 source test results.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas CH₄= methane

## **APPENDIX M**

## **GAS MIGRATION MONITORING REPORTS**

#### WASTE MANAGEMENT 910 Coyote Creek Golf Drive, San Jose, CA 95037



October 6, 2021

Ms. Becky Azevedo Guadalupe Recycling & Disposal Facility 15999 Guadalupe Mines Road San Jose, CA 95120

### Re: Third Quarter 2021 Perimeter Gas and Methane in Structure Monitoring Report Guadalupe Recycling & Disposal Facility

Dear Ms. Azevedo:

This report for the Guadalupe Recycling & Disposal Facility (GRDF) contains the results of the Third Quarter 2021 Perimeter Gas and Methane in Structure Monitoring conducted at the GRDF. All monitoring was conducted by GRDF personnel.

### **REGULATORY REQUIREMENTS**

Requirements for monitoring are outlined in 40 CFR 258.23, Title 27 California Code of Regulations (CCR), Article 6, Gas Monitoring at Active and Closed Disposal Sites. These regulations require periodic monitoring to ensure that methane concentrations are less than 5 percent at the property boundary and less than 1.25 percent in on-site buildings and structures. Reporting requirements are presented in Title 27 §20934.

### MONITORING RESULTS AND MAP [TITLE 27 §20934(a)(1), (2), (3) AND (5)]

Monitoring was conducted in accordance with 40 CFR 258.23 and Title 27, Article 6 at the locations shown in the attached map (Attachment A). Results for both probes and structures are summarized in Table 1. Field data are presented in Attachment B.

Probe ID	Time	CH ₄	Probe Pressure		Condition ped, locked)	Comments
1100e ID	Time	(%)	(in-H ₂ 0)	Arrival	Departure	
GUADGP01	09/13/2021;3:29 PM	0	0.15	Yes	Yes	
GUADGP02	09/13/2021;3:22 PM	0	0.13	Yes	Yes	
GUADGP03	09/13/2021;3:15PM	0	0.00	Yes	Yes	
GUADGP04	09/13/2021;2:52PM	0	-0.47	Yes	Yes	
GUADGP05	09/13/2021;2:45PM	0	0.04	Yes	Yes	
GUADGP6S	09/13/2021;2:34PM	0	0.03	Yes	Yes	
GUADGP6D	09/13/2021;2:36 PM	0	0.02	Yes	Yes	

### **Table 1 Monitoring Results**

### STRUCTURE FID MONITORING DATA

### Analyst: M. Bernard Instrument: TVA 1000

### Date: 9/22/2021 Serial #:0928538411

Monitored Location	Time	PPM	Comments
Scale House #1 Occupied Space	12:00 PM	0	
Scale House #1 Electrical Closet	12:02 PM	0	
Scale House #2 Occupied Space	12:05 PM	105	
Scale House #2 Electrical Closet	12:07 PM	0	
Scale House #3 Occupied Space	12:10 PM	0	
Scale House #3 Electrical Closet	12:12 PM	0	
Admin Office Crawl Space	12:20 PM	0	
Admin Office Electrical Closet	12:25 PM	0	
Admin Trailer	12:30 PM	0	
Security Trailer	12:40 PM	0	
MRF Scale House	12:50 PM	0	
MRF Building East Electrical	12:52 PM	0	
Maintenance Building Office Outlet	1:05 PM	0	
Maintenance Building Kitchen Outlet	1:10 PM	0	
Maintenance Building Shower Drain	1:15 PM	0	
Maintenance Building Electrical Box	1:20 PM	0	
Training Room Trailer	1:25 PM	0	

#### **Immediately notify compliance personnel of any readings in excess of 1.25 percent methane.** ND = No detection

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

(1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.

(2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Note: The reading should not exceed 25% LEL = 1.25% CH₄ = 12,500 ppm CH₄

No exceedances of Subtitle D (40 CFR 258.23) and California Code of Regulations (CCR) Title 27, Division 2, Section 20919.5 were detected during the monitoring events.

### MONITORING EQUIPMENT AND METHODOLOGY [TITLE 27 §20934(a)(4)]

### **Perimeter Gas Monitoring**

The Third Quarter 2021 monitoring was conducted by M.Bernard on September 13, 2021, using a GEM 2000. The static pressure of each probe was monitored using the GEM 5000. Following the measurement of the static pressure, the probes were monitored to determine methane concentration.

### **Facility Structures**

M. Bernard used a Toxic Vapor Analyzer (TVA1000) to monitor buildings and structures to check for the presence of methane on September 22, 2021. The instrument was calibrated on September 22, 2021, using 500 parts per million by volume ( $ppm_v$ ) methane standard.

### **Combustible Methane Gas Monitor Calibration**

Some facility structures are monitored continuously using Sierra Monitors. The monitor is calibrated at a frequency determined by the manufacturer. This event was conducted by M.Bernard on September 24, 2021.

### GENERAL WEATHER CONDITIONS [TITLE 27 §20934(a)(3)]

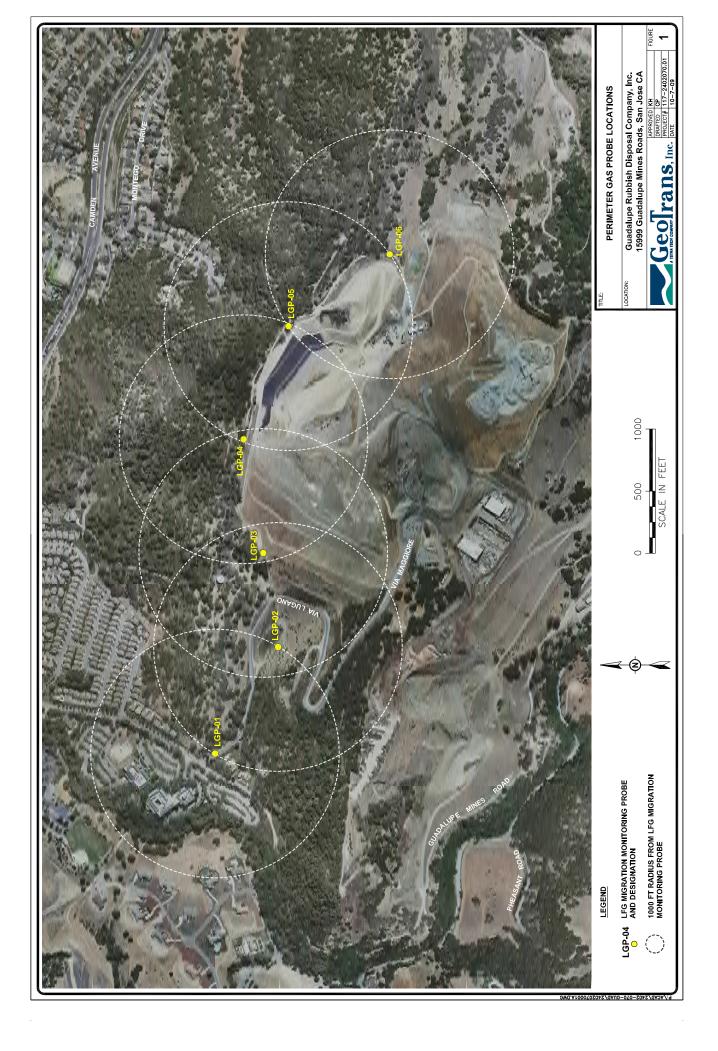
General weather conditions at the time of monitoring are presented in Table 2.

Description	09/13/2021
General Conditions	Sunny
Temperature (°F) Low/High	79/82
Wind Speed (mph)	9.3
Wind Direction	NW
Barometric Pressure ("Hg)	29.85

### Table 2 General Weather Conditions

### CLOSING

If you have any questions regarding this notification, please do not hesitate to contact me at rphadnis@wm.com.


Thank you,

Waste Management,

Rajan Phadnis Environmental Protection Specialist

### ATTACHMENT A

### PROBE LOCATION MAP



### ATTACHMENT B

### FIELD DATA

### **Guadalupe Rubbish Disposal Facility Perimeter Gas Monitoring Probe Results**

Analyst: Markus Bernard Date<u>: 9-13-21</u> Instrument: <u>Gem 2000</u> Serial <u>#: GM11977</u> Atmospheric Temperature (Deg F): <u>88</u> Barometric Pressure: 29__Inch of HG Wind Speed: <u>11 mph</u> Wind Direction: <u>NW</u> Weather Condition: <u>Sunny</u>

Decks ID	Time	CH4 (%)	Probe Pressu	Probe Condition (clean, capped, locked)		C t
Probe ID			re (in- H ₂ 0)	Arrival	Departure	Comments
GUADGP01	3:29 PM	0	0.15	Yes	Yes	
GUADGP02	3:22 PM	0	0.13	Yes	Yes	
GUADGP03	3:15PM	0	0.0	Yes	Yes	
GUADGP04	2:52PM	0	-0.47	Yes	Yes	
GUADGP05	2:45PM	0	0.04	Yes	Yes	
GUADGP6S	2:34PM	0	0.03	Yes	Yes	
GUADGP6D	2:36 PM	0	0.02	Yes	Yes	

Immediately notify compliance personnel of any readings in excess of 5 percent methane.

### STRUCTURE FID MONITORING DATA

Analyst: M. Bernard Instrument: TVA 1000	Date: 9/22/2021 Serial #: 0928538411				
Monitored Location	Time	PPM	Comments		
Scale House #1 Occupied Space	12:00 PM	0			
Scale House #1 Electrical Closet	12:02 PM	0			
Scale House #2 Occupied Space	12:05 PM	105			
Scale House #2 Electrical Closet	12:07 PM	0			
Scale House #3 Occupied Space	12:10 PM	0			
Scale House #3 Electrical Closet	12:12 PM	0			
Admin Office Crawl Space	12:20 PM	0			
Admin Office Electrical Closet	12:25 PM	0			
Admin Trailer	12:30 PM	0			
Security Trailer	12:40 PM	0			
MRF Scale House	12:50 PM	0			
MRF Building East Electrical	12:52 PM	0			
Maintenance Building Office Outlet	1:05 PM	0			
Maintenance Building Kitchen Outlet	1:10 PM	0			
Maintenance Building Shower Drain	1:15 PM	0			
Maintenance Building Electrical Box	1:20 PM	0			
Training Room Trailer	1:25 PM	0			

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane.

ND = No detection

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

(1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.(2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Note: The reading should not exceed 25% LEL = 1.25% CH₄ = 12,500 ppm CH₄



#### GAS DETECTOR CALIBRATION RECORD

LOCATION: Guadalupe Recycling and Disposal Inc.

MANUFACTURER & MODEL NUMBER: Sierra Monitor Corporation Model # 2001

CALIBRATED BY/INSTRUMENT USED: / Sierra Monitor Corporation

CALIBRATION GAS EXPIRATION DATE: September 27, 2021

	DATE		Methane LEL*	MAINTENANCE
LOCATION	CALIBRATED	SERIAL NUMBER	SENSOR alarm	PERFORMED/ COMMENTS
			10,000 ppm	ON MONITOR CONDITION
Scale House #1	9-24-21	1500700093GAM	Yes	Good Condition
Scale House #2	9-24-21	1500700098GAM	Yes	Good Condition
Scale House #3	9-24-21	1500700101GAM	Yes	Good Condition
Training Room Trailer	9-24-21	1500700096GAM	Yes	Good Condition
Admin. Trailer	9-24-21	1500700097GAM	Yes	Good Condition
Main Office	9-24-21	1500700090GAM	Yes	Good Condition
MRF Scale House	9-24-21	1500700099GAM	Yes	Good Condition
Materials Yard Trailer	9-24-21	1500700091GAM	Yes	Good Condition
Shop Office #1	9-24-21	1500700010GAM	Yes	Good Condition
Shop Office #2	9-24-21	1500700094GAM	Yes	Good Condition
Shop Office #3	9-24-21	1500700095GAM	Yes	Good Condition
Shop Office #4	9-24-21	1500700092GAM	Yes	Good Condition

*This form must be retained for 12 months after completion

# CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name:
 Guadalupe Rubbish Disposal
 Date: 9/22/21

 Time:
 9:00
 AM
 PM

 Instrument Make:
 Thermo Scientific
 Model:
 TVA 1000
 S/N: 0928538411

#### Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>500 ppm</u>

3. Adjust meter to read 500 ppm.

#### **Background Determination Procedure**

- 1. Upwind Reading (highest in 30 seconds): <u>3 ppm (a)</u>
- 2. Downwind Reading (highest in 30 seconds): 1 ppm (b)

Calculate Background Value:

 $\underline{(a) + (b)}_{2} \qquad Background = \underline{2.0}_{ppm}$ 

Performed by: Markus Bernard

# CALIBRATION PRECISION TEST RECORD

Date: <u>8/25/2021</u>
Expiration Date (3 months): <u>11/25/2021</u>
Time: <u>8:35</u> AM PM
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S/N: <u>0928538411</u>
Measurement #1:
Meter Reading for Zero Air: <u>0</u> ppm (a)
Meter Reading for Calibration Gas: <u>500</u> ppm (b)
Measurement #2:
Meter Reading for Zero Air: ppm (c)
Meter Reading for Calibration Gas: <u>499</u> ppm (d)
Measurement #3:
Meter Reading for Zero Air: ppm (e)
Meter Reading for Calibration Gas:500 ppm (f)
Calculate Precision:
$\frac{ (500) - (500)  +  (500) - (500)  +  (500) - (500) }{3} \times \frac{1}{500} \times \frac{1}{500}$
3 500

0.0 % (must be < than 10%)

Performed by: <u>M. Bernard</u>

# **RESPONSE TIME TEST RECORD**

Date: <u>8/25/21</u>	
Expiration Date (3 months): <u>11/25/21</u>	
Time: <u>8:35</u> AM PM	
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S/N: <u>0928</u>	538411
Measurement #1:	
Stabilized Reading Using Calibration Gas: 500 ppm	
90% of the Stabilized Reading: <u>450</u> ppm	
Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: <u>5</u> seco	nds (a)
Measurement #2:	
Stabilized Reading Using Calibration Gas: 500 ppm	
90% of the Stabilized Reading: 450 ppm	
Time to Reach 90% of Stabilized Reading after	
switching from Zero Air to Calibration Gas: <u>5</u> seco	nds (b)
Measurement #3:	
Stabilized Reading Using Calibration Gas: 500 ppm	
90% of the Stabilized Reading: 450 ppm	
Time to Reach 90% of Stabilized Reading after	
switching from Zero Air to Calibration Gas: <u>5</u> seco	nds (c)
Calculate Response Time:	

 $(\underline{a}) + (\underline{b}) + (\underline{c}) = \underline{5}$  seconds (must be less than 30 seconds)

Performed by: <u>M. Bernard</u>

#### WASTE MANAGEMENT 910 Coyote Creek Golf Drive, San Jose, CA 95037



July 14, 2021

Ms. Becky Azevedo Guadalupe Recycling & Disposal Facility 15999 Guadalupe Mines Road San Jose, CA 95120

## Re: Second Quarter 2021 Perimeter Gas and Methane in Structure Monitoring Report Guadalupe Recycling & Disposal Facility

Dear Ms. Azevedo:

This report for the Guadalupe Recycling & Disposal Facility (GRDF) contains the results of the Second Quarter 2021 Perimeter Gas and Methane in Structure Monitoring conducted at the GRDF. All monitoring was conducted by GRDF personnel.

# **REGULATORY REQUIREMENTS**

Requirements for monitoring are outlined in 40 CFR 258.23, Title 27 California Code of Regulations (CCR), Article 6, Gas Monitoring at Active and Closed Disposal Sites. These regulations require periodic monitoring to ensure that methane concentrations are less than 5 percent at the property boundary and less than 1.25 percent in on-site buildings and structures. Reporting requirements are presented in Title 27 §20934.

## MONITORING RESULTS AND MAP [TITLE 27 §20934(a)(1), (2), (3) AND (5)]

Monitoring was conducted in accordance with 40 CFR 258.23 and Title 27, Article 6 at the locations shown in the attached map (Attachment A). Results for both probes and structures are summarized in Table 1. Field data are presented in Attachment B.

Probe ID	Time	CH ₄	Probe Pressure		Condition ped, locked)	Comments	
r robe 1D	Time	(%)	(%)	(in-H ₂ 0)	Arrival	Departure	Comments
GUADGP01	4/22/2021;12:27 PM	0	0.15	Yes	Yes		
GUADGP02	4/22/2021;12:39 PM	0	0.13	Yes	Yes		
GUADGP03	4/22/2021;12:46 PM	0	0.00	Yes	Yes		
GUADGP04	4/22/2021;1:12 PM	0	-1.90	Yes	Yes		
GUADGP05	4/22/2021;1:05 PM	0	0.04	Yes	Yes		
GUADGP6S	4/22/2021;1:00 PM	0	0.03	Yes	Yes		
GUADGP6D	4/22/2021;12:58 PM	0	0.02	Yes	Yes		

## **Table 1 Monitoring Results**

# STRUCTURE FID MONITORING DATA

#### Analyst: M. Bernard Instrument: TVA 1000

#### Date: 06/24/2021 Serial #:0928538411

Monitored Location	Time	PPM	Comments
Scale House #1 Occupied Space	1:00 PM	0	
Scale House #1 Electrical Closet	1:02 PM	0	
Scale House #2 Occupied Space	1:05 PM	100	
Scale House #2 Electrical Closet	1:07 PM	0	
Scale House #3 Occupied Space	1:10 PM	0	
Scale House #3 Electrical Closet	1:12 PM	0	
Admin Office Crawl Space	1:20 PM	0	
Admin Office Electrical Closet	1:25 PM	0	
Admin Trailer	12:30 PM	0	
Security Trailer	12:40 PM	0	
MRF Scale House	12:50 PM	0	
MRF Building East Electrical	12:52 PM	0	
Maintenance Building Office Outlet	12:05 PM	0	
Maintenance Building Kitchen Outlet	12:10 PM	0	
Maintenance Building Shower Drain	12:15 PM	0	
Maintenance Building Electrical Box	12:20 PM	0	
Training Room Trailer	12:25 PM	0	

**Immediately notify compliance personnel of any readings in excess of 1.25 percent methane.** ND = No detection

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

(1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.

(2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Note: The reading should not exceed 25% LEL = 1.25% CH₄ = 12,500 ppm CH₄

No exceedances of Subtitle D (40 CFR 258.23) and California Code of Regulations (CCR) Title 27, Division 2, Section 20919.5 were detected during the monitoring events.

## MONITORING EQUIPMENT AND METHODOLOGY [TITLE 27 §20934(a)(4)]

#### **Perimeter Gas Monitoring**

The Second Quarter 2021 monitoring was conducted by M.Bernard on April 22, 2021 using a GEM 2000. The static pressure of each probe was monitored using the GEM 5000. Following the

measurement of the static pressure, the probes were monitored to determine methane concentration.

#### **Facility Structures**

M. Bernard used a Toxic Vapor Analyzer (TVA1000) to monitor buildings and structures to check for the presence of methane on June 24, 2021. The instrument was calibrated on June 24, 2021, using 500 parts per million by volume (ppm_v) methane standard.

#### **Combustible Methane Gas Monitor Calibration**

Some facility structures are monitored continuously using Sierra Monitors. The monitor is calibrated at a frequency determined by the manufacturer. This event was conducted by M.Bernard on June 24, 2021.

## GENERAL WEATHER CONDITIONS [TITLE 27 §20934(a)(3)]

General weather conditions at the time of monitoring are presented in Table 2.

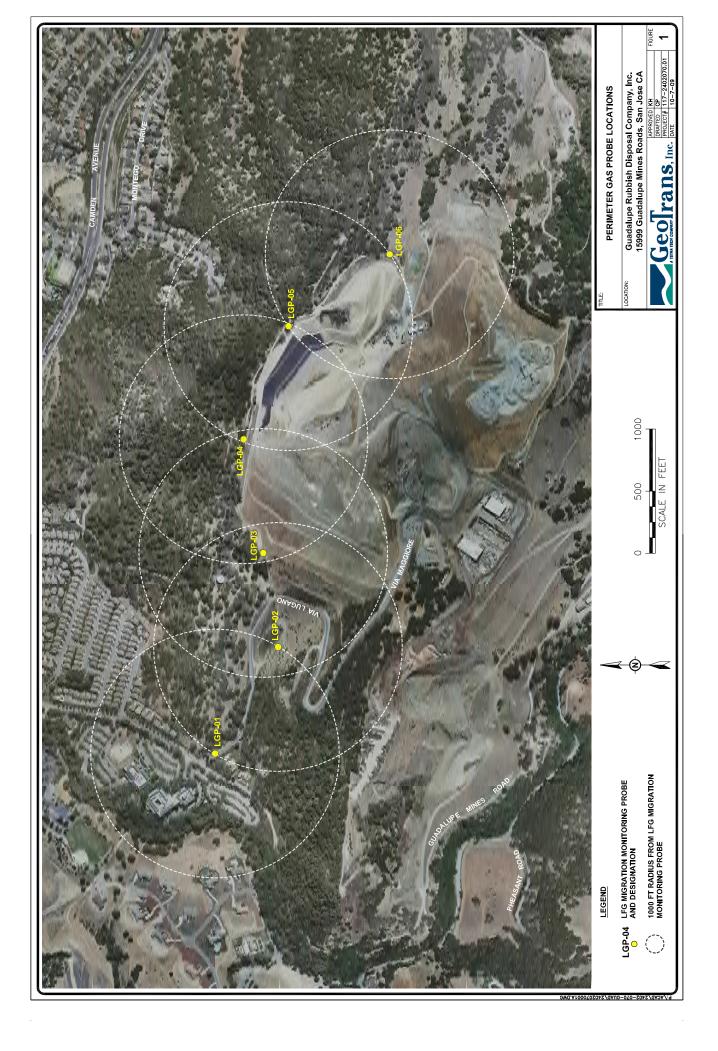
Description	04/22/2021
General Conditions	Partly Cloudy
Temperature (°F) Low/High	52/55
Wind Speed (mph)	13.1
Wind Direction	NNW
Barometric Pressure ("Hg)	29.97

#### Table 2 General Weather Conditions

## CLOSING

If you have any questions regarding this notification, please do not hesitate to contact me at rphadnis@wm.com.

Thank you,


Waste Management,

m

Rajan Phadnis Environmental Protection Specialist

# ATTACHMENT A

# PROBE LOCATION MAP



# ATTACHMENT B

# FIELD DATA

# **Guadalupe Rubbish Disposal Facility Perimeter Gas Monitoring Probe Results**

**Analyst: Markus Bernard** Date: 4/22/21 Instrument: Gem 2000 Serial #: GM11977 Atmospheric Temperature (Deg F): <u>61</u> **Barometric Pressure: 29___ Inch of HG** Wind Speed: <u>8 mph</u> Wind Direction: <u>NW</u> Weather Condition: <u>Sunny</u>

		CH ₄	Probe Pressu		ondition ped, locked)	<b>G</b> (
Probe ID	Time	(%)	re (in- H20)	Arrival	Departure	Comments
GUADGP01	12:27 PM	0	0.15	Yes	Yes	
GUADGP02	12:39 PM	0	0.13	Yes	Yes	
GUADGP03	12:46PM	0	0.0	Yes	Yes	
GUADGP04	1:12 PM	0	-1.9	Yes	Yes	
GUADGP05	1:05 PM	0	0.04	Yes	Yes	
GUADGP6S	1:00PM	0	0.03	Yes	Yes	
GUADGP6D	12:58 PM	0	0.02	Yes	Yes	

Immediately notify compliance personnel of any readings in excess of 5 percent methane.

## STRUCTURE FID MONITORING DATA

Analyst: M. Bernard	Date: 6/24/2021 Serial #: 0928538411				
Instrument: TVA 1000 Monitored Location	Time	Serial #: 0 PPM	Comments		
Scale House #1 Occupied Space	1:00 PM	0	Comments		
Scale House #1 Electrical Closet	1:02 PM	0			
Scale House #2 Occupied Space	1:05 PM	100			
Scale House #2 Electrical Closet	1:07 PM	0			
Scale House #3 Occupied Space	1:10 PM	0			
Scale House #3 Electrical Closet	1:12 PM	0			
Admin Office Crawl Space	1:20 PM	0			
Admin Office Electrical Closet	1:25 PM	0			
Admin Trailer	12:30 PM	0			
Security Trailer	12:40 PM	0			
MRF Scale House	12:50 PM	0			
MRF Building East Electrical	12:52 PM	0			
Maintenance Building Office Outlet	12:05 PM	0			
Maintenance Building Kitchen Outlet	12:10 PM	0			
Maintenance Building Shower Drain	12:15 PM	0			
Maintenance Building Electrical Box	12:20 PM	0			
Training Room Trailer	12:25 PM	0			

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane.

ND = No detection

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

(1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.(2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Note: The reading should not exceed 25% LEL = 1.25% CH₄ = 12,500 ppm CH₄



#### GAS DETECTOR CALIBRATION RECORD

LOCATION: Guadalupe Recycling and Disposal Inc.

MANUFACTURER & MODEL NUMBER: Sierra Monitor Corporation Model # 2001

CALIBRATED BY/INSTRUMENT USED: / Sierra Monitor Corporation

CALIBRATION GAS EXPIRATION DATE: September 27, 2021

	DATE		Methane LEL*	MAINTENANCE
LOCATION	CALIBRATED	SERIAL NUMBER	SENSOR alarm	PERFORMED/ COMMENT
			10,000 ppm	ON MONITOR CONDITION
Scale House #1	6-24-21	1500700093GAM	Yes	Good Condition
Scale House #2	6-24-21	1500700098GAM	Yes	Good Condition
Scale House #3	6-24-21	1500700101GAM	Yes	Good Condition
Training Room Trailer	6-24-21	1500700096GAM	Yes	Good Condition
Admin. Trailer	6-24-21	1500700097GAM	Yes	Good Condition
Main Office	6-24-21	1500700090GAM	Yes	Good Condition
MRF Scale House	6-24-21	1500700099GAM	Yes	Good Condition
Materials Yard Trailer	6-24-21	1500700091GAM	Yes	Good Condition
Shop Office #1	6-24-21	1500700010GAM	Yes	Good Condition
Shop Office #2	6-24-21	1500700094GAM	Yes	Good Condition
Shop Office #3	6-24-21	1500700095GAM	Yes	Good Condition
Shop Office #4	6-24-21	1500700092GAM	Yes	Good Condition

*This form must be retained for 12 months after completion

# CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name: Guadalupe Rubbish Disposal
 Date: 6/24/21

 Time: 11:30 AM _____ PM

 Instrument Make: Thermo Scientific Model: TVA 1000 S/N: 0928538411

#### Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>500 ppm</u>

3. Adjust meter to read 500 ppm.

#### Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): <u>2 ppm (a)</u>
- 2. Downwind Reading (highest in 30 seconds): 2 ppm (b)

Calculate Background Value:

 $\underbrace{(a) + (b)}{2} \qquad Background = \underline{2} ppm$ 

Performed by: Markus Bernard

# CALIBRATION PRECISION TEST RECORD

Date: <u>6/4/2021</u>	_			
Expiration Date (3 mo	onths): <u>9/4/2021</u>			
Time: <u>8:45</u> AM	PM			
Instrument Make:	Thermo Scientific Model: TV	'A 1000	S/N:	0928538411
Measurement #1:				
	Meter Reading for Zero Air:	<u>0</u> ppm	(a)	
Meter	Reading for Calibration Gas:	496	ppm (b)	
Measurement #2:				
	Meter Reading for Zero Air:	0	ppm (c)	
Meter	Reading for Calibration Gas:	498	_ppm (d)	
Measurement #3:				
	Meter Reading for Zero Air:	0	ppm (e)	
Meter	Reading for Calibration Gas:	<u>496</u> pp	m (f)	
Calculate Precision:				
$\frac{ (496) - (500)  +  (500) }{ (500) }$	$\frac{(00) - (498)  +  (500) - (496) }{2} \times \frac{1}{500}$	x 100		
	3 500	)		

<u>1.0</u> % (must be < than 10%)

Performed by: <u>M. Bernard</u>

# **RESPONSE TIME TEST RECORD**

Date: <u>6/4/21</u>
Expiration Date (3 months): <u>9/4/21</u>
Time: <u>8:50</u> AM PM
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S/N: <u>0928538411</u>
Measurement #1:
Stabilized Reading Using Calibration Gas:496ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:10seconds (a)
Measurement #2:
Stabilized Reading Using Calibration Gas:498ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:5seconds (b)
Measurement #3:
Stabilized Reading Using Calibration Gas: <u>496</u> ppm
90% of the Stabilized Reading: <u>450</u> ppm Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: <u>5</u> seconds (c)
Calculate Response Time:

Calculate Response Time:  $\frac{(a) + (b) + (c)}{3} = \frac{8}{3}$ seconds (must be less than 30 seconds)

Performed by: <u>M. Bernard</u>

# APPENDIX N

# SOURCE TEST SUMMARY AND RESULTS

# Guadalupe Rubbish Disposal Facility (GRDF)

Facility # 3294

# Compliance Emissions Test Report #20122 Landfill Gas Control Flare- Source A-9

Located at: 15999 Guadalupe Mines Road, San Jose, CA

#### **Prepared For:**

Dave Bearden SCS Engineers 3117 Fite Circle, Suite 108 Sacramento, CA 95827 (916) 361-1297 dbearden@scsengineers.com

#### For Submittal To:

Attn: Gloria Espena & Marco Hernandez Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105 gespena@baaqmd.gov & mhernandez@baaqmd.gov sourcetest@baaqmd.gov

#### **Testing Performed On:**

April 29th, 2020

#### **Final Report Submitted On:**

June 24th, 2020

#### Performed and Reported by:

Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706 bluesky@blueskyenvironmental.com Office (510) 525 1261 Cell (510) 508 3469

## **REVIEW AND CERTIFICATION**

#### Team Leader:

The work performed herein was conducted under my supervision, and I certify that: a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program; b) that the sampling and analytical procedures and data presented in the report are authentic and accurate; c) that all testing details and conclusions are accurate and valid, and: d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for Compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (510) 508-3469.

Mulmomafor

Guy Worthington Principal Project Manager

# **TABLE of CONTENTS**

SECTION	1. INTRODUCTION	4
1.1.	SUMMARY	4
SECTION	2. SOURCE TEST PROGRAM	6
2.1.	OVERVIEW	6
2.2.	Pollutants Tested	6
2.3.	TEST DATE(S)	6
2.4.	SAMPLING AND OBSERVING PERSONNEL	6
2.5.	SOURCE/PROCESS DESCRIPTION	6
2.6.	SOURCE OPERATING CONDITIONS	7
SECTION	3. SAMPLING AND ANALYSIS PROCEDURES	7
3.1.	PORT LOCATION	7
3.2.	POINT DESCRIPTION/LABELING – PORTS/STACK	7
3.3.	SAMPLE TRAIN DESCRIPTION	7
3.4.	SAMPLING PROCEDURE DESCRIPTION	7
3.5.	INSTRUMENTATION AND ANALYTICAL PROCEDURES	9
3.6.	COMMENTS: LIMITATIONS AND DATA QUALIFICATIONS	10
SECTION	4. APPENDICES	

- Tabulated Results А.
- В. Calculations
- С. Laboratory Reports
- D. Field Data Sheets
- Ε. Strip Charts
- F. Process Information
- G. Calibration Certifications and Quality Assurance Records
- Н. Sample Train Configuration and Stack Diagrams
- Ι. Related Correspondence (Source Test Plan)
- J. K. BAAQMD Permit Conditions
- Flare Flow Meter Calibration Document

### **SECTION 1. INTRODUCTION**

#### 1.1. Summary

Blue Sky Environmental, Inc was contracted to perform emissions testing on the A-9 Landfill Gas (LFG) Flare at Guadalupe Rubbish Disposal Facility. (GRDF), 15999 Guadalupe Mines Road, San Jose, California. This report presents the results of the test program. Table 1 summarizes the source test information. Table 2 summarizes the results compared to the emission limits. The flare met all compliance emission criteria when tested with Condensate On and Condensate Off.

Test Location:	Guadalupe Rubbish Facility (GRDF), 15999 Guadalupe Mines Road, San Jose, California, 95120, Site Number 3294
Source Contact:	Becky Azeredo (408) 960 - 0769
Source Tested:	Enclosed Gas Flare (A-9)
Source Test Date:	April 29th, 2020
Test Objective:	Determine Compliance with BAAQMD Regulation 8, Rule 34, AB32 Landfill Methane Rule and BAAQMD Permit Condition 6188
Test Performed By:	Blue Sky Environmental, Inc 624 San Gabriel Ave., Albany, CA 94706 Guy Worthington (510) 508-3469 <u>Blueskyenvironmental@yahoo.com</u>
Test Parameters:	Landfill GasO2, N2, CO2, BTU, THC, CH4, NMOC, HHV, F-Factor, SulfurSpecies, Volumetric Flow rateFlare EmissionsTHC, CH4, NMOC, NOX, CO, O2, SO2, Volumetric Flow rate.

#### Table 1. Source Test Information

Condensate On	Average Test Result	Permit Limit	Compliance Status
NO _x , ppmvd @ 15% O ₂	9.5	16	In Compliance
CO, ppmvd @ 15% O ₂	<3.3	134	In Compliance
SO ₂ , ppmvd	55.4	300	In Compliance
NMOC, (ppmvd @ 3% O ₂ as CH ₄ )	<0.5	30	In Compliance
NMOC Destruction Efficiency	>99.89	98%	In Compliance
Methane Destruction Efficiency	>99.998	99%	In Compliance
Condensate Off	Average Test Result	Permit Limit	Compliance Status
$NO_X$ , ppmvd @ 15% $O_2$	8.4	16	In Compliance
CO, ppmvd @ 15% O ₂	<3.4	134	In Compliance
SO ₂ , ppmvd	46.4	300	In Compliance
NMOC, (ppmvd @ 3% O ₂ as CH ₄ )	<1.6	30	In Compliance
NMOC Destruction Efficiency	>99.65	98%	In Compliance
Methane Destruction Efficiency	>99.996	99%	In Compliance

 Table 2. Compliance Summary

#### SECTION 2. SOURCE TEST PROGRAM

#### 2.1. Overview

This performance test was conducted to demonstrate that the LFG flare is operating in accordance with the Bay Area Air Quality Management District (BAAQMD) Title V Permit for Site Number 3294 and BAAQMD Regulation 8, Rule 34. Testing was also performed to demonstrate compliance with the State Landfill Methane Gas Rule AB32 for Flare performance with Condensate On and Condensate Off.

#### 2.2. Pollutants Tested

The following EPA and ASTM sampling and analytical methods were used:

EPA Method 1	Sample and Traverse Point Determination
EPA 3A	$O_2, CO_2$
EPA 10	СО
EPA 25A	THC, CH4 and NMOC
EPA 7E	NO _X
EPA 18	CH ₄
EPA 19	Flow Rate Calculation, DSCFM
EPA 25C	LFG Gas analysis for NMOC by GC
EPA 4 part 4.16	Moisture Calculated
ASTM 1945/3588	LFG Gas analysis for BTU and F-Factor
ASTM 5504	Sulfur Species, H ₂ S and TRS

#### 2.3. Test Date(s)

Testing was conducted on April 29th, 2020.

#### 2.4. Sampling and Observing Personnel

Testing was performed by Guy Worthington and Timothy Eandi representing Blue Sky Environmental.

Dave Bearden of SCS Engineers was present to operate the Flare and assist in coordinating testing and the collection of process data during testing.

The BAAQMD was notified of the test in a plan submitted by SCS Engineers on behalf of Waste Management dated April 8th, 2020 (NST #5928). A Source Test Protocol acknowledgement was received on April 8th, 2020, but no agency observers were present to witness the testing. A copy of the source test protocol and related email correspondence can be found in Appendix I.

#### 2.5. Source/Process Description

The enclosed LFG flare at GRDF consists of a 70 million British Thermal Units per hour (MMBtu/hr) multiple nozzle burner manufactured by LFG Specialties, Inc. The flare shell is 35 feet high and 9.5 feet in diameter. The inside diameter (ID) is approximately 8.5 feet.

The flare was operated at an average 901 standard cubic feet per minute (SCFM). The flare setpoint was established at 1,645 Degrees Fahrenheit (°F). Methane quality is typically about 46-49 percent (%), and the Oxygen content typically around 1% or less. Landfill gas condensate that is collected is periodically injected into the flare via one vertical nozzle positioned near the burner.

#### 2.6. Source Operating Conditions

The flare operating temperature and the LFG flow rate records are contained in Appendix-F. The condensate injection rate was 0.9 gallons per minute (gpm).

The flare was operated at 1,642 - 1,643 °F average (avg.). The average LFG flow rate ranged between 885 – 919 standard cubic feet per minute (scfm).

The LFG methane content ranged between 49.4 and 50.2 percent (%). The average LFG Methane content of the six test runs was 49.9%.

#### SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

#### 3.1. Port location

The Flare sampling was conducted in the 8 feet 6 inch diameter ID stack (102"), via ports approximately 30 feet above grade, accessible by boom-lift. Four, 4-inch flange ports are available approximately 5 stack diameters downstream from the burners and  $\sim$ 2 stack diameters upstream from the exit.

#### 3.2. Point description/Labeling - ports/stack

Blue Sky Environmental, Inc. conducted two perpendicular 8-point traverses per BAAQMD ST-18 and found O₂ stratification about 10% therefore subsequent CEM sampling was conducted with 8-point traverses per port to achieve the required (BAAQMD ST-7, 6.6) representative sampling of the emissions.

The traverse points for the exhaust of the flare with 8 feet 6 inch (102") diameter plus 4 inch ports were 7.3, 14.7, 23.8, 36.9, 73.1, 86.2, 95.3 and 102.7 inches.

#### 3.3. Sample train description

Sampling system diagrams are included in the appendices. Additional descriptive information is included in the following section.

#### 3.4. Sampling procedure description

Three, 30-minute minimum test runs were conducted with the Condensate Injection Off, and three 30-minute test runs with the Condensate Injection On.

Sampling & Traverse Points Selection by EPA Method 1. This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

EPA Method 3A (O₂, CO₂), 7E (NO_x) and 10 (CO) are continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample and analyzing it by continuous monitoring gas analyzers in a CEM test van. The sampling system consists of a stainless steel sample probe, a heated Teflon sample line, glass-fiber particulate filter, glass moisture-knockout condensers in ice, followed by thermoelectric coolers, Teflon sample transfer tubing, diaphragm pump and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI was provided to each analyzer to avoid pressure variable response differences. The entire sampling system was leak checked prior to and at the end of the sampling program. The sampling and analytical system (for EPA Methods) was checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations, and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations usually use the calibration gas that most closely matches the stack gas effluent. Along with the Sampling System Bias, the Zero and Calibration Drift values were determined for each test. Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, Span, Calibration Gas, Analyzer Calibration Error (Linearity), Sampling System Bias, Zero Drift, Calibration Drift and Response Time. In addition, the NO_X analyzer NO₂ to NO conversion efficiency check defers to EPA Method 20 section 5.6 for the criteria and procedure.

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of a Honeywell DPR3000 strip chart recorder supported by a Data Acquisition System (DAS).

bystem i enominance onterna	
Instrument Linearity	≤2% Full Scale
Instrument Bias	≤5% Full Scale
System Response Time	$\leq \pm 2$ minutes
NO _X Converter Efficiency (EPA 7E)	≥ 90%
Instrument Zero Drift	≤± 3% Full Scale
Instrument Span Drift	≤± 3% Full Scale

#### System Performance Criteria

**EPA Method 25A Total Hydrocarbons, Methane and Non-Methane Hydrocarbons.** EPA Method 25A employs a heated FID, Teflon sample gas transfer lines to provide a continuous sample to the heated FID Hydrocarbon Analyzer. Heated lines were used if necessary to avoid moisture or hydrocarbon condensation. Calibration gases are selected to fall within 25-35%, 45-55% and 80-90% of Range for Total Hydrocarbon.

Methane in the exhaust is usually determined per EPA Methods (M18). An integrated tedlar bag or SUMMA canister is collected and either analyzed by GC or onsite using a charcoal scrubber to remove the non-methane organics, and determining the difference between the total hydrocarbon and non-methane hydrocarbon concentrations. Where the total hydrocarbon numbers are well below detection limits and less than 5 ppm for example, the methane may not be determined separately.

**EPA Method 18 (VOC or Methane)** is used to measure the Methane and ethane to subtract from the THC of Method 25A. This method is used to determine emissions of volatile organics or Methane analyzed by gas chromatograph/mass spectroscopy (GC/MS). Gaseous emissions are drawn through a teflon sample line to a pre-evacuated 6-Liter SUMMA canister. Sample is drawn into the canister by pre-evacuating the container to stack gas pressure to allow sample flow without using a pump to avoid contamination. Negative pressure is adjusted to maintain an integrated sample flow between 20 to 60 minutes. The canister samples are taken to a laboratory and analyzed within 72 hours.

To prevent moisture condensation, a condenser may be used before the canister and the condensate analyzed separately, or the canister can be partially pre-filled with a known quantity zero air or nitrogen, prior to collecting the gas sample, or the system can be heated and kept heated above the condensation point until analysis.

**Method 19 (gas)** was used to determine stack gas volumetric flow rates using oxygen based F-factors. F-factors are ratios of combustion gas volumes generated from heat input. The heating value of the fuel in Btu per cubic foot is determined from analysis of the fuel gas samples using ASTM D1945/3588 gas chromatography analytical procedures. Total fuel consumption for each source is monitored by a dedicated fuel gas meter. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates were used to determine emission rates.

**Fuel Analysis per ASTM D-1945/3588 and ASTM D-5504** are used for fuel sampling and analysis for F-Factor and BTU determination, fixed gas analysis O₂, CO₂, CO, N₂, H₂, CH₄, C2-C6+, and sulfur compounds, including H2S. Samples may be collected in tedlar bags and analyzed within 24 hours or Silco SUMMA canisters and analyzed within 72 hours. Hydrogen Sulfide, Carbonyl Sulfide, Sulfur Dioxide, Methyl Mercaptan, Ethyl Mercaptan, Dimethyl Sulfide, Carbon Disulfide, Isopropyl Mercaptan, tert-Butyl Mercaptan, n-Propyl Mercaptan, Methylethylsulfide, sec-Butyl Mercaptan, Thiophene, iso-Butyl Mercaptan, Diethyl Sulfide, n-Butyl Mercaptan, Dimethyl Disulfide, 2-Methylthiophene, 3-Methylthiophene, Tetrahydrothiophene, Bromothiophene, Thiophenol, Diethyl Disulfide, Total Unidentified Sulfurs, Total Reduced Sulfurs as H2S.

**EPA Method 4-16.4** is an acceptable alternative to EPA Method 4 for the determination of moisture from combustion using F-factors. In this case the mole fraction of the moisture in the ambient air is calculated using equations in EPA Method 4-16.4 from 1) the measured ambient relative humidity, ambient temperature and barometric pressure, 2) the mole fraction from free water in the fuel, calculated from the moisture % in the fuel which is determined by the analytical lab to be the balance after all the major gaseous components have been summed, and 3) the mole fraction from the hydrogen in the fuel. To determine the moisture in the fuel, the sum of the raw fuel analysis before normalization, is subtracted from 100.

**ASTM Method 1945/5504/25C** Concurrent with the exhaust sampling, Blue Sky collected a total of six 6-L Silco Canisters of the LFG for analysis. The canisters were equipped with a 30 minute flow controller and vacuum gauge to aim for a final internal vacuum of the canister of approximately above 5" of Hg. The samples were collected directly from the inlet line. All the samples were analyzed for NMOC, HHV, F-Factor, Fixed Gases, Sulfur Species (including H₂S and TRS). The inlet volumetric flow rate was continuously measured and recorded by the LFG Flowmeter.

Instrumentation	Parameter	Principle
TECO 42C	NO _X	Chemiluminescence
TECO 42C	NO	Chemiluminescence
TECO 48C	СО	GFC/IR
Ratfisch RS-55	THC	FID
Fuji ZRH	CO ₂	IR
Servomex 1440	O ₂	Paramagnetic

3.5. Instrumentation and Analytical procedures

The following continuous emissions analyzers were used:

The instrument response was recorded on strip charts, but the analyzer data collected on the DAS was used for reporting the results. The averages were corrected for drift using EPA Method 7E equations.

#### 3.6. Comments: Limitations and Data Qualifications

The measured emissions meet the Permit required limits, no deviations from the protocol or abnormalities during the test were observed.

Blue Sky Environmental has reviewed this report for accuracy, and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text Review of calculations Review of CEMS data Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations, subsequent to this, and do not warranty the accuracy of information supplied by others.

# **SECTION 4.** <u>APPENDICES</u>

А.	Tabulated Results
В.	Calculations
С.	Laboratory Reports
D.	Field Data Sheets
Е.	Strip Charts
F.	Process Information
G.	Calibration Certifications and Quality Assurance Records
н.	Sample Train Configuration and Stack Diagrams
I.	Related Correspondence (Source Test Plan)
J.	BAAQMD Permit Conditions
K.	Flare Flow Meter Calibration Document

A Tabulated Results

#### TABLE #1

#### WM - GRDF Flare A-9 LFG - Condensate On

RUN	1	2	3	AVERAGE	LIMITS
Test Date	4/29/20	4/29/20	4/29/20		
Test Time	1018-1100	1127-1205	1231-1309		
Standard Temp., °F	70	70	70		
Flare Temperature, °F Average	1,643	1,642	1,643	1,643	
Condensate Injection, gpm	0.9	0.9	0.9	0.9	
Fuel Flow Rate, SCFM	885	901	919	902	1
Fuel Heat Input, MMBTU/Hr	26.3	26.7	27.4	26.8	1
Exhaust Flow Rate, DSCFM (Method 19)	9,850	10,127	10,365	10,114	
Oxygen, O ₂ , %	12.0	12.1	12.1	12.1	
Carbon Dioxide, CO ₂ , %	7.9	7.9	7.8	7.9	
Water Vapor, H ₂ O, % M4.16	5.6	5.4	5.6	5.5	
NO, ppm	14.6	14.6	14.5	14.6	
NO ₂ , ppm	<1.0	<1.0	<1.0	<1.0	
NO ₂ /NO	< 0.07	< 0.07	< 0.07	< 0.07	
NOx, ppm	14.2	14.2	14.3	14.2	
NOx, ppm @ 15% O ₂	9.4	9.5	9.6	9.5	16
NOx, lbs/hr	0.99	1.03	1.06	1.03	
CO, ppm	<5.0	<5.0	<5.0	<5.0	
CO, ppm @ 15% O ₂	<3.3	<3.3	<3.3	<3.3	134
CO, lbs/hr	< 0.21	< 0.22	< 0.23	< 0.22	
Total Sulfurs as H ₂ S in fuel, ppm	678	641	544	621	
SO ₂ calculated emission, ppm	60.9	57.0	48.3	55.4	300
THC, ppm (25A) wet	<1.0	<1.0	<1.0	<1.0	
THC, ppm dry	<1.1	<1.1	<1.1	<1.1	
THC, lbs/hr as CH ₄	< 0.03	< 0.03	< 0.03	< 0.03	
CH ₄ , ppm (M18)	0.9	0.8	0.7	0.8	
CH ₄ , lbs/hr	0.02	0.02	0.02	0.02	
NMOC, ppm as CH ₄	< 0.2	< 0.3	<0.4	< 0.3	
NMOC, lbs/hr as CH ₄	< 0.00	< 0.01	< 0.01	< 0.01	
NMOC, ppm (a) $3\%$ O ₂ as CH ₄	<0.3	<0.5	<0.7	<0.5	30
INLET TNMOC (Method 25C)	2,424	2,843	2,732	2,666	
INLET NMOC, lbs/hr as CH ₄	5.3	6.4	6.2	6.0	]
NMOC Removal Efficiency	99.93%	99.90%	99.85%	99.89%	98
INLET CH ₄ , ppm	495,000	494,000	497,000	495,333	
INLET CH ₄ , lbs/hr	1,088	1,104	1,134	1,109	1
CH ₄ Removal Efficiency	>99.998%	>99.998%	>99.998%	>99.998%	99
INLET THC (TOC), ppm as CH ₄	497,424	496,843	499,732	498,000	
INLET THC (TOC), lbs/hr as $CH_4$	1,093	1,111	1,141	1,115	1
THC (TOC) Removal Efficiency	99.998%	99.998%	99.998%	99.998%	1

< Value = 2% of Analyzer Range

#### WHERE,

ppm = Parts Per Million Concentration Lbs/hr = Pound Per Hour Emission Rate Tstd. = Standard Temp. (°R = °F+460) MW = Molecular Weight DSCFM = Dry Standard Cubic Feet Per Minute NOx = Oxides of Nitrogen as NO₂ (MW = 46) CO = Carbon Monoxide (MW = 28) TOC = THC = Total Organic Carbon as Methane including CH₄ (MW = 16) THC = Total Hydrocarbons as Methane (MW = 16) NMOC = Total Non-Methane Organic Carbon as Methane (MW = 16) SO₂ = Sulfur Dioxide as SO₂ (MW = 64.1)

#### CALCULATIONS,

 $\begin{array}{l} \label{eq:PPM @ 15\% O_2 = ppm * 5.9 / (20.9 - \%O_2) \\ \mbox{PPM @ 3\% O_2 = ppm * 17.9 / (20.9 - \%O_2) \\ \mbox{Lbs/hr = ppm x 8.223 E-05 x DSCFM x MW / Tstd. ^R \\ \mbox{Lbs/day = Lbs/hr * 24 } \\ \mbox{Removal Efficiency = (inlet lbs/hr- outlet lbs/hr) / inlet lbs/hr \\ \mbox{SO_2 emission ppm = H2S in fuel * Fuel Flow/Stack Gas Flow } \end{array}$ 

#### TABLE #2

#### WM - GRDF Flare A-9 LFG - Condensate Off

RUN	1	2	3	AVERAGE	LIMITS
Test Date	4/29/20	4/29/20	4/29/20		
Test Time	1346-1428	1448-1527	1604-1642		
Standard Temp., °F	70	70	70		
Flare Temperature, °F Average	1,642	1,643	1,643	1,643	
Condensate Injection, gpm	0.0	0.0	0.0	0.0	
Fuel Flow Rate, SCFM	913	891	894	899	
Fuel Heat Input, MMBTU/Hr	27.5	26.9	27.0	27.1	
Exhaust Flow Rate, DSCFM (Method 19)	10,738	10,506	10,427	10,557	
Oxygen, O ₂ , %	12.4	12.4	12.3	12.3	
Carbon Dioxide, CO ₂ , %	7.6	7.6	7.6	7.6	
Water Vapor, H ₂ O, % M4.16	5.5	5.5	5.7	5.6	
NO, ppm	12.1	12.3	12.6	12.3	
NO ₂ , ppm	<1.0	<1.0	<1.0	<1.0	1
NO ₂ /NO	< 0.08	< 0.08	< 0.08	< 0.08	
NOx, ppm	11.9	12.1	12.4	12.1	
NOx, ppm @ 15% O ₂	8.2	8.4	8.5	8.4	16
NOx, lbs/hr	0.91	0.91	0.92	0.91	
CO, ppm	<5.0	<5.0	<5.0	<5.0	
CO, ppm @ 15% O ₂	<3.5	<3.5	<3.4	<3.4	134
CO, lbs/hr	< 0.23	< 0.23	< 0.23	< 0.23	
Total Sulfurs as H ₂ S in fuel, ppm	616	583	436	545	
SO ₂ calculated emission, ppm	52.4	49.5	37.4	46.4	300
THC, ppm (25A) wet	<1.0	<1.0	<1.0	<1.0	
THC, ppm dry	<1.1	<1.1	<1.1	<1.1	1
THC, lbs/hr as CH ₄	< 0.03	< 0.03	< 0.03	< 0.03	1
CH ₄ , ppm (M18)	1.5	1.9	1.9	1.8	
CH ₄ , lbs/hr	0.04	0.05	0.05	0.05	
NMOC, ppm as CH ₄	< 0.5	<0.9	<0.9	< 0.8	]
NMOC, lbs/hr as CH ₄	< 0.01	< 0.02	< 0.02	< 0.02	]
NMOC, ppm (a) $3\%$ O ₂ as CH ₄	<1.0	<1.9	<1.9	<1.6	30
INLET TNMOC (Method 25C)	2,454	2,625	2,608	2,562	
INLET NMOC, lbs/hr as CH ₄	5.6	5.8	5.8	5.7	
NMOC Removal Efficiency	99.76%	99.60%	99.60%	99.65%	98
INLET CH ₄ , ppm	501,000	502,000	502,000	501,667	
INLET CH ₄ , lbs/hr	1,135.3	1,110.9	1,113.7	1,120	]
CH ₄ Removal Efficiency	>99.996%	>99.996%	>99.996%	>99.996%	99
INLET THC (TOC), ppm as $CH_4$	503,454	504,625	504,608	504,229	
INLET THC (TOC), lbs/hr as CH ₄	1,141	1,117	1,119	1,126	]
THC (TOC) Removal Efficiency	99.998%	99.998%	99.998%	99.998%	

< Value = 2% of Analyzer Range

#### WHERE,

ppm = Parts Per Million Concentration Lbs/hr = Pound Per Hour Emission Rate Tstd. = Standard Temp. (°R = °F+460) MW = Molecular Weight DSCFM = Dry Standard Cubic Feet Per Minute NOx = Oxides of Nitrogen as NO₂ (MW = 46) CO = Carbon Monoxide (MW = 28) TOC = THC = Total Organic Carbon as Methane including CH₄ (MW = 16) THC = Total Hydrocarbons as Methane (MW = 16) NMOC = Total Non-Methane Organic Carbon as Methane (MW = 16) SO₂ = Sulfur Dioxide as SO₂ (MW = 64.1)

#### CALCULATIONS,

 $\begin{array}{l} \label{eq:PPM @ 15\% O_2 = ppm * 5.9 / (20.9 - \%O_2) \\ \mbox{PPM @ 3\% O_2 = ppm * 17.9 / (20.9 - \%O_2) \\ \mbox{Lbs/hr = ppm x 8.223 E-05 x DSCFM x MW / Tstd. ^R \\ \mbox{Lbs/day = Lbs/hr * 24 } \\ \mbox{Removal Efficiency = (inlet lbs/hr- outlet lbs/hr) / inlet lbs/hr \\ \mbox{SO_2 emission ppm = H2S in fuel * Fuel Flow/Stack Gas Flow } \end{array}$ 

B Calculations

# Guadalupe Rubbish Disposal Facility (GRDF) BAAQMD Facility # 3294

# Initial Compliance Test Report #21054 Landfill Gas Flare A-17

Located at: Guadalupe Recycling and Disposal Facility 15999 Guadalupe Mines Road San Jose, CA 95120

# Prepared for:

SCS Engineers 3117 Fite Circle, Suite 108 Sacramento, CA 95827

Attn: Michael O'Connor moconnor@scsengineers.com

For Submittal to: **Bay Area Air Quality Management District** 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Gloria Espena/Marco Hernandez gespena@baaqmd.gov/mhernandez@baaqmd.gov sourcetest@baaqmd.gov

> Testing Performed on: February 18th, 2021

Final Report Submitted on: April 7th, 2021

Performed and Reported by: Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706 Office (510) 508-3469/Mobile (510) 508 3469 bluesky@blueskyenvironmental.com



# **REVIEW AND CERTIFICATION**

#### Team Leader:

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report are authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (925) 338-4875.

Unill Chi

Chuck Arrivas, QSTI Project Manager Blue Sky Environmental, Inc.



# **TABLE of CONTENTS**

SECTI	ON 1.	INTRODUCTION	
1.1.	Summa	.RY	4
SECTI	ON 2.	SOURCE TEST PROGRAM	6
2.1.	OVERV	7EW	6
2.2.		TANTS TESTED	
2.3.	TEST D	DATE(S)	6
2.4.		ING AND OBSERVING PERSONNEL	
2.5.		E/PROCESS DESCRIPTION	
2.6.	Source	E OPERATING CONDITIONS	7
SECTI	ON 3.	SAMPLING AND ANALYSIS PROCEDURES	
<b>SECTI</b> 3.1.			
	Port I	_OCATION	
3.1.	Port I Point Sampli	OCATION Description/Labeling – Ports/Stack e Train Description	
3.1. 3.2.	Port I Point Sampli	_OCATION	
3.1. 3.2. 3.3.	Port I Point Sampli Sampli Instru	LOCATION Description/Labeling – Ports/Stack E Train Description Ing Procedure Description Imentation and Analytical procedures	
3.1. 3.2. 3.3. 3.4.	Port I Point Sampli Sampli Instru	LOCATION Description/Labeling – Ports/Stack e Train Description ING Procedure Description	
<ol> <li>3.1.</li> <li>3.2.</li> <li>3.3.</li> <li>3.4.</li> <li>3.5.</li> <li>3.6.</li> </ol>	Port I Point Sampli Sampli Instru Commi	LOCATION Description/Labeling – Ports/Stack E Train Description Ing Procedure Description Imentation and Analytical procedures	

- Calculations В.
- Laboratory Reports С.
- D. Field Data Sheets
- Е. Strip Charts
- F. Process Information
- QC Calibration Certificates and Quality Assurance Records G.
- Sample Train Configuration and Stack Diagrams Н.
- Ι. Related Correspondence (Source Test Plan and Email)
- J. K. BAAQMD Permit Conditions
- Flare Flow Meter Calibration Records



## **SECTION 1. INTRODUCTION**

#### 1.1. Summary

Blue Sky Environmental, Inc. was contracted by SCS Engineers to perform the emissions testing for Waste Management (WM), at the Guadalupe Recycling and Disposal Facility (GRDF), located in San Jose, California. This initial source test was conducted to demonstrate that Landfill Gas Flare A-17 (previously Flare A-14) is operating in compliance with the Bay Area Air Quality Management District (BAAQMD) Authority to Construct 21927 for Facility #3294. Results of the test program are presented in this report. The source test information is summarized in Table 1. Test results derived from the source test are summarized in Table 2. Results for individual test runs are provided in Appendix A. The flare met all compliance emission criteria.

Test Location:	Guadalupe Recycling and Disposal Facility (GRDF), 15999 Guadalupe Mines Road, San Jose, CA 95120
Source Contact:	Michael O'Connor, SCS Engineers (707) 236-3791
Source Tested:	LFG Specialties, Inc. Enclosed Landfill Gas Flare A-17, 120 MMBtu/hr
Source Test Date:	February 18 th , 2020
Test Objective:	Determine Compliance with Bay Area Air Quality Management District (BAAQMD) Authority to Construct 21927 for Plant #3294, Condition 25320; Regulation 8, Rule 34; and the State Landfill Methane Gas Rule under AB32 for Flare performance.
Test Performed By:	Blue Sky Environmental, Inc 624 San Gabriel Avenue, Albany, CA 94706 Chuck Arrivas (925) 338-4875 <u>carrivas@blueskyenvironmental.com</u>
Test Parameters:	Landfill Gas O ₂ , N ₂ , CO ₂ , BTU, THC, CH ₄ , NMOC, HHV, F-Factor, Sulfur Species, Volumetric Flow rate Flare Emissions THC, CH ₄ , NMOC, NO _X , CO, O ₂ , SO ₂ , Moisture, Volumetric Flow rate.



Table 2. C	Compliance	Summary
------------	------------	---------

# Condensate On

Emission Parameter	Average Results (Condensate ON)	Permit Limit	Compliance Status
NO _x , ppm @ 15% O ₂	13.3	15	In Compliance
CO, ppm @ 15% O ₂	1.24	81	In Compliance
SO ₂ , ppm	51.3	300	In Compliance
NMOC, (ppm @ 3% O ₂ as CH ₄ )	<5.79	30	In Compliance
NMOC Destruction Efficiency	98.57	>98%	In Compliance
CH ₄ Destruction Efficiency	>99.974	>99%	In Compliance

# Condensate Off

Emission Parameter	Average Results (Condensate OFF)	Permit Limit	Compliance Status	
NOx, ppm @ 15% O ₂	10.3 15		In Compliance	
CO, ppm @ 15% O ₂	2.50	81	In Compliance	
SO ₂ , ppm	53.9	300	In Compliance	
NMOC, (ppm @ 3% O ₂ as CH ₄ )	<2.6	30	In Compliance	
NMOC Destruction Efficiency	99.53	>98%	In Compliance	
CH ₄ Destruction Efficiency	>99.973	>99%	In Compliance	



# SECTION 2. SOURCE TEST PROGRAM

#### 2.1. Overview

This initial source test was performed to demonstrate that landfill gas Flare A-17 (previously A-14) is operating in accordance with Bay Area Air Quality Management District (BAAQMD) Authority to Construct Application #21927 for Facility #3294, Condition 25320 and Regulation 8, Rule 34. This testing also satisfies the compliance requirements outlined in the State Landfill Methane Gas Rule under AB32 for Flare performance.

#### 2.2. Pollutants Tested

The following U.S. Environmental Protection Agency (EPA) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample and Traverse Point Determination
EPA Method 3A	O2 and CO2, Stack Gas Molecular Weight
EPA Method 10	СО
EPA Method 7E	$\mathrm{NO}_{\mathrm{X}}$ and $\mathrm{NO}_{\mathrm{2}}$ Converter Check
EPA Method 4, part 16.4	Moisture Calculation
EPA Method 18	CH4, THC, NMOC
EPA Method 19	Flow Rate Calculation DSCFM
EPA Method 25A	VOC Emissions
EPA Method 25C	TNMHC (NMOC) in fuel
ASTM D-1945/3588	BTU, F-Factor and Fixed Gases in Fuel
ASTM D-5504	Sulfur Species, Hydrogen Sulfide (H ₂ S) and TRS

## 2.3. Test Date(s)

Testing was conducted on February 18th, 2021.

#### 2.4. Sampling and Observing Personnel

Testing was conducted by Chuck Arrivas and Guy Worthington, representing Blue Sky Environmental, Inc.

Rajan Phadnis, Ben Tarver and Marcus Bernard of Waste Management (WM) were present to operate the Flare and assist in coordinating testing and the collection of process data during testing. Jon Silva of SCS Engineers was also on site to coordinate and assist.

The BAAQMD was notified of the scheduled testing in a plan submitted by SCS Engineering on behalf of Waste Management on January 27th, 2021. A Source Test Protocol acknowledgement (NST #6330) was received on February 9th, 2021; however, no agency observers were present during testing. A copy of the source test protocol and email correspondence are provided in Appendix I.

## 2.5. Source/Process Description

The Guadalupe Recycling and Disposal Facility, located in San Jose, CA, is a multi-material landfill with a gas collection system that is abated by an industrial landfill gas flare. Flare A-17



has a 120 MMBtu/hr multiple nozzle burner. The flare shell is 50 feet high and 12 feet in diameter. The inside diameter (ID) is approximately 130 inches.

The flare is typically operated at an average 1,945 standard cubic feet per minute (SCFM) with the Condensate On and 1,976 SCFM with the Condensate Off. The flare set-point is established at 1,500 °F. Methane quality typically ranges from 39-41 %, with an oxygen content of  $\leq$ 4.5%. Landfill gas condensate that is collected is periodically injected into the flare via one vertical nozzle positioned near the burner.

#### 2.6. Source Operating Conditions

The flare was operated on landfill gas under normal operating conditions during testing with the condensate injection both on and off. The condensate injection rate was approximately 1.88 gallons per minute (gpm).

The average exhaust temperature at normal operating condition was 1,499 °F. The LFG flowrate ranged from 1,937 to 1,984 SCFM. The operating exhaust temperature, and LFG flowrate records are provided in Appendix F.

Landfill gas samples collected at the head of the flare showed an average methane content of 40.4% and an oxygen content of 4.5%.



## SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

#### 3.1. Port Location

Sampling was conducted in the 130-inch diameter ID stack of the flare through ports that were accessed with a 60-foot boom lift. The four 4-inch flange ports were located approximately 45 feet above grade, five stack diameters downstream from the burners and one stack diameters upstream from the exhaust.

#### 3.2. Point Description/Labeling – Ports/Stack

Blue Sky Environmental, Inc. conducted two perpendicular 8-point traverses to check for the presence of cyclonic flow.  $O_2$  stratification was greater than 10%; therefore, subsequent CEM sampling was conducted using all traverse points. Sampling was performed for two minutes per point for a total of 16 points over a 32-minute test run. The traverse points for the 130-inch diameter stack with 8-inch ports were 4.2, 13.7, 25.2, 42.0, 88.0, 104.8, 116.4 and 125.8 inches from the inside wall of the stack.

#### 3.3. Sample Train Description

Sampling system diagrams are included in the Appendix H. Additional descriptive information is included in the following section.

#### 3.4. Sampling Procedure Description

Six consecutive 32-minute gaseous emissions tests were performed for oxides of nitrogen  $(NO_X)$ , nitric oxide (NO), carbon monoxide (CO), carbon dioxide  $(CO_2)$ , oxygen  $(O_2)$ , and total hydrocarbons (THC) at the flare exhaust stack. Three tests were performed with the Condensate Injection On and three tests were performed with the Condensate Injection Off. The gas flow was controlled with a rotameter to collect the 32-minute integrated samples.

The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. Any drift or bias was corrected using equation 100-3 from CARB Method 100. A NOx analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky collected a total of nine integrated fuel samples (three samples with the condensate injection on and six samples with the condensate injection off) for off-site analysis by Atmospheric Analysis & Consulting, Inc., located in Ventura, CA. The samples were collected in 6-liter SUMMA canisters and analyzed for hydrocarbons by EPA Method 25, sulfur species (incl. H₂S and TRS) by ASTM D-5504, and HHV, F-factor, fixed gases, volatile organic compounds (VOCs), nonmethane organic compounds (NMOCs) and C¹-C⁶⁺ hydrocarbons by EPA Method 25C and ASTM D-1945. Three landfill gas samples collected while the condensate injection was off were analyzed for toxic organic compounds by EPA Method TO-15 (AP-42 2.4-1).



The sampling and analysis procedures are summarized below:

#### EPA Method 1 – Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

# EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas.

# EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point.

# EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. Section 16.2.2 of the method is used to determine the  $NO_X$  analyzer  $NO_2$  to NO conversion efficiency.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.



#### System Performance Criteria

Instrument Linearity	≤2% Full Scale
Instrument Bias	≤5% Full Scale
System Response Time	$\leq \pm 2$ minutes
NO _X Converter Efficiency (EPA 7E)	$\geq 90\%$
Instrument Zero Drift	≤± 3% Full Scale
Instrument Span Drift	≤± 3% Full Scale

#### EPA Method 4-16.4 – Determination of Moisture Content in Stack Gas

This is an acceptable alternative to EPA Method 4 for the determination of moisture using Ffactors. The mole fraction of moisture in the ambient air is calculated using equations in EPA Method 4-16.4 from 1) the measured ambient relative humidity, ambient temperature, and barometric pressure, 2) the mole fraction of free water in the fuel, calculated from the moisture % in the fuel, which is determined by the analytical lab to be the balance after all the major gaseous components have been summed or directly measured by wet bulb, dry bulb of the landfill gas, and 3) the mole fraction of hydrogen in the fuel. To determine the moisture in the fuel, the raw fuel analysis before normalization to 100% is referenced.

# EPA Method 18 – Measurement of Gaseous Organic Compound Emissions by Gas Chromatography

This method is used to determine emissions of volatile organics by gas chromatograph/mass spectroscopy (GC/MS). Gaseous emissions are drawn through a Teflon sample transfer line to a Tedlar bag held in a rigid leak proof bag container. The sample is drawn into the bag by evacuating the container to stack gas pressure to allow sample flow without using a pump to avoid contamination. Negative pressure is adjusted to maintain an integrated sample flow for the collection time. The bag samples are taken to a laboratory and analyzed within 72 hours.

# EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates. 301.

# EPA Method 25A – Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This method is used to measure total hydrocarbons, methane, and non-methane hydrocarbons in stationary source emissions using a gas chromatograph with a flame ionization detector (GC/FID). Heated Teflon sample gas transfer lines are used to provide a continuous sample to the heated GC/FID hydrocarbon analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed



externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test.

# EPA Method 25C – Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. The method is written for evacuated tank sampling but is adaptable to Tedlar bag sampling procedures. The sampling equipment consists of a stainless steel or glass lined probe with a short stainless-steel or Teflon transfer line to a Tedlar bag housed in a sealed chamber. The chamber is evacuated by pump at a prescribed rate for the test duration and the Tedlar bag capacity, so the sample is integrated over the test period. The sample is injected into a GC column where the methane and  $CO_2$  are flushed through and removed then the NMOC (ROC) fraction is oxidized to form  $CO_2$  then reduced to methane and analyzed

#### ASTM D1945 - Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

# ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

# ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed 7 days.

#### 3.5. Instrumentation and Analytical procedures

The following continuous emissions analyzers were used:

Instrumentation	Parameter	Principle
TECO Model 42C	NO _X /NO	Chemiluminescence
TECO Model 48C	СО	GFC/IR
TECO Model 55C	NMOC/CH ₄	FID
CAI Fuji ZRH	CO ₂	IR
Servomex Model 1440	O ₂	Paramagnetic

The analyzer data recording system consists of a Honeywell DPR300 strip chart recorder, supported by a Data Acquisition System (DAS). The instrument response is recorded on strip charts and DAS. The averages are corrected for drift using BAAQMD and EPA Method 7E equations. All system performance criteria were met.



## 3.6. Comments: Limitations and Data Qualifications

This source test was performed in accordance with the protocol submitted to the BAAQMD. No deviations from the protocol or anomalies were observed during testing. The measured emissions from the flare comply with the permit limits.

Blue Sky Environmental has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text Review of calculations Review of CEMS data Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations, subsequent to this, and do not warranty the accuracy of information supplied by others.



# **SECTION 4. APPENDICES**

А.	Tabulated Results
В.	Calculations
С.	Laboratory Reports
D.	Field Data Sheets
Е.	Strip Charts
F.	Process Information
G.	QC Calibration Certificates and Quality Assurance Records
Н.	Sample Train Configuration and Stack Diagrams
I.	Related Correspondence (Source Test Plan and Email)
J.	BAAQMD Permit Conditions
К.	Flare Flow Meter Calibration Records



A Tabulated Results

#### TABLE #1

#### Guadalue Recycling and Disposal Facility (GRDF) Flare A-17 1,498°F - Condensate ON

RUN	1	2	3	AVERAGE	LIMITS
Test Date	2/18/21	2/18/21	2/18/21		
Test Time	0857-0934	1002-1040	1106-1142		
Standard Temperature, °F	70	70	70		
Flare Temperature, °F Average	1,498	1,499	1,498	1,498	
Condensate Injection, gpm	1.87	1.86	1.92	1.88	
Fuel Flow Rate, SCFM	1,948	1,937	1,950	1,945	
Fuel Heat Input, MMBTU/hr	46.3	46.4	47.0	46.6	
Exhaust Flow Rate, DSCFM (EPA M19)	19,071	18,845	18,427	18,781	
Oxygen, O ₂ , %	12.7	12.6	12.3	12.6	
Carbon Dioxide, CO ₂ , %	7.3	7.3	7.2	7.2	
Water Vapor, H ₂ O, % (EPA M4.16)	8.57	8.68	9.17	8.81	
NO, ppm	19.3	19.1	18.5	18.9	
NO ₂ , ppm	<1.0	<1.0	<1.0	<1.0	
NO ₂ /NO	< 0.05	< 0.05	< 0.05	< 0.05	
NOx, ppm	19.0	18.9	18.2	18.7	
NOx, ppm @ 15% O ₂	13.7	13.5	12.6	13.3	15
NOx, lbs/hr	2.59	2.54	2.40	2.51	
CO, ppm	2.26	1.42	1.56	1.75	
CO, ppm @ 15% O ₂	1.63	1.01	1.08	1.24	81
CO, lbs/hr	0.19	0.12	0.13	0.14	
TRS as $H_2S$ , ppm in Fuel	484	511	492	496	
SO ₂ , ppm Exhaust (calculated)	49.4	52.5	52.1	51.3	300
THC, ppm wet (Sum NMOC + $CH_4$ )	<14.2	<11.0	<12.1	<12.5	
THC, ppm dry	<15.6	<12.0	<13.3	<13.6	
THC, lbs/hr as CH ₄	< 0.737	< 0.563	< 0.607	< 0.636	
CH ₄ , ppm wet <i>(EPA ALT 097)</i>	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppm dry	<10.9	<10.9	<10.9	<10.9	
CH ₄ , lbs/hr	< 0.518	< 0.512	< 0.500	< 0.510	
TNMHC, ppm as CH ₄ (EPA ALT 097)	4.23	<1.00	2.13	<2.45	
TNMHC, ppm dry as CH ₄	4.63	<1.09	2.33	<2.68	
TNMHC, lbs/hr as CH ₄	0.219	< 0.051	0.106	< 0.126	
TNMHC, ppm (a) $3\%$ O ₂ as CH ₄	10.14	<2.37	4.87	<5.79	30
INLET TNMOC (EPA M25C)	1,735	1,845	1,981	1,854	0.7
INLET NMOC lbs/hr as CH ₄	8.4	8.9	9.6	9.0	or
NMOC Destruction Efficiency	97.39%	99.42%	98.89%	98.57%	98
INLET CH ₄ , ppm	398,000	401,000	403,000	400,667	
INLET CH ₄ lbs/hr	1,924.6	1,928.2	1,950.8	1,935	]
CH ₄ Destruction Efficiency	>99.973%	>99.973%	>99.974%	>99.974%	99
INLET THC (TOC) ppm as CH ₄	399,735	402,845	404,981	402,520	
INLET THC (TOC) lbs/hr as CH ₄	1,933	1,937	1,960	1,943	
THC (TOC) Destruction Efficiency	99.962%	99.971%	99.969%	99.967%	

< Value = 2% of Analyzer Range

#### WHERE,

 $\begin{array}{l} ppm = Parts per Million Concentration\\ Lbs/hr = Pound per Hour Emission Rate\\ Tstd. = Standard Temperature (°R = °F+460)\\ MW = Molecular Weight\\ DSCFM = Dry Standard Cubic Feet Per Minute\\ NOx = Oxides of Nitrogen as NO_2 (MW = 46)\\ CO = Carbon Monoxide (MW = 28)\\ TOC = THC = Total Organic Carbon as Methane including CH₄ (MW = 16)\\ THC = Total Hydrocarbons as Methane (MW = 16)\\ TNMOC = Total Non-Methane Hydrocarbons (MW = 16)\\ SO_2 = Sulfur Dioxide as SO_2 (MW = 64.1)\\ \end{array}$ 

#### CALCULATIONS,

 $\begin{array}{l} \label{eq:PPM} @ 15\% \ O_2 = ppm * 5.9 \ / \ (20.9 - \% O_2) \\ \mbox{PPM} @ 3\% \ O_2 = ppm * 17.9 \ / \ (20.9 - \% O_2) \\ \mbox{Lbs/hr} = ppm * 8.223 \ E-05 * \ DSCFM * MW \ / \ Tstd. \ ^R \\ \mbox{Lbs/hay} = \ Lbs/hr * 24 \\ \mbox{Removal Efficiency} = \ (inlet \ lbs/hr- \ outlet \ lbs/hr) \ / \ inlet \ lbs/hr \\ \mbox{SO}_2 \ emission \ ppm = H2S \ in \ fuel \ Flow \ Stack \ Gas \ Flow \end{array}$ 

#### TABLE #2

#### Guadalue Recycling and Disposal Facility (GRDF) Flare A-17 1,499°F - Condensate OFF

RUN	1	2	3	AVERAGE	LIMITS
Test Date	2/18/21	2/18/21	2/18/21		
Test Time	1205-1244	1313-1350	1412-1447		
Standard Temperature, °F	70	70	70		
Flare Temperature, °F Average	1,499	1,499	1,499	1,499	
Condensate Injection, gpm	0.00	0.00	0.00	0.00	
Fuel Flow Rate, SCFM	1,965	1,978	1,984	1,976	
Fuel Heat Input, MMBTU/hr	47.9	48.4	48.3	48.2	
Exhaust Flow Rate, DSCFM (EPA M19)	20,953	21,018	22,488	21,486	
Oxygen, O ₂ , %	13.23	13.18	13.70	13.37	
Carbon Dioxide, CO ₂ , %	6.47	6.47	5.99	6.31	
Water Vapor, H ₂ O, % <i>(EPA M4.16)</i>	7.64	7.75	7.19	7.53	
NO, ppm	13.43	13.67	12.50	13.20	
NO ₂ , ppm	<1.0	<1.0	<1.0	<1.0	
NO ₂ /NO	< 0.07	< 0.07	< 0.08	< 0.08	
NOx, ppm	13.30	13.67	12.39	13.12	
NOx, ppm @ 15% O ₂	10.2	10.4	10.2	10.3	
NOx, ppm @ 15% O ₂	10.2	10.4	10.2	10.3	15
NOx, lbs/hr	1.99	2.05	1.99	2.01	
CO, ppm	2.55	3.05	3.90	3.17	
CO, ppm @ 15% O ₂	1.96	2.33	3.20	2.50	81
CO, lbs/hr	0.23	0.28	0.38	0.30	
TRS as $H_2S$ , ppm in Fuel	485	772	494	584	
SO ₂ , ppm Exhaust (calculated)	45.5	72.7	43.6	53.9	300
THC, ppm wet <i>(EPA M25A)</i>	<1.0	<1.0	<1.0	<1.0	
THC, ppm dry	<1.1	<1.1	<1.1	<1.1	
THC, lbs/hr as CH ₄	< 0.056	< 0.057	< 0.060	< 0.058	
CH ₄ , ppm wet <i>(EPA ALT 097)</i>	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppm dry	<10.8	<10.8	<10.8	<10.8	
CH ₄ , lbs/hr	< 0.520	< 0.522	< 0.558	< 0.533	
TNMHC, ppm as CH ₄ (EPA ALT 097)	<1.08	<1.08	<1.08	<1.08	
TNMHC, ppm dry as CH ₄	<1.2	<1.2	<1.2	<1.2	
TNMHC, lbs/hr as CH ₄	< 0.056	< 0.057	< 0.060	< 0.058	
TNMHC, ppm (a) $3\% O_2$ as $CH_4$	<2.5	<2.5	<2.7	<2.6	30
INLET TNMOC (EPA M25C)	2,223	3,112	2,386	2,574	0.*
INLET NMOC lbs/hr as CH ₄	10.8	15.3	11.8	12.6	or
NMOC Destruction Efficiency	99.48%	99.63%	99.49%	99.53%	98
INLET CH ₄ , ppm	408,000	409,000	407,000	408,000	
INLET CH ₄ lbs/hr	1,990.2	2,008.3	2,004.5	2,001	
CH ₄ Destruction Efficiency	>99.974%	>99.974%	>99.972%	>99.973%	99
INLET THC (TOC) ppm as CH ₄	410,223	412,112	409,386	410,574	
INLET THC (TOC) lbs/hr as CH ₄	2,001	2,024	2,016	2,014	]
THC (TOC) Destruction Efficiency	99.997%	99.997%	99.997%	99.997%	

< Value = 2% of Analyzer Range

#### WHERE,

ppm = Parts per Million Concentration Lbs/hr = Pound per Hour Emission Rate Tstd. = Standard Temperature (°R = °F+460) MW = Molecular Weight DSCFM = Dry Standard Cubic Feet per Minute NOx = Oxides of Nitrogen as NO₂ (MW = 46) CO = Carbon Monoxide (MW = 28) TOC = THC = Total Organic Carbon as Methane including CH₄ (MW = 16) THC = Total Hydrocarbons as Methane (MW = 16) TNMOC = Total Non-Methane Hydrocarbons (MW = 16) SO₂ = Sulfur Dioxide as SO₂ (MW = 64.1)

#### CALCULATIONS,

 $\begin{array}{l} \label{eq:ppm} PPM @ 15\% O_2 = ppm * 5.9 / (20.9 - \%O_2) \\ PPM @ 3\% O_2 = ppm * 17.9 / (20.9 - \%O_2) \\ \mbox{Lbs/hr} = ppm * 8.223 E-05 * DSCFM * MW / Tstd. ^R \\ \mbox{Lbs/day} = Lbs/hr * 24 \\ \mbox{Removal Efficiency} = (inlet lbs/hr- outlet lbs/hr) / inlet lbs/hr \\ \mbox{SO}_2 emission ppm = H2S in fuel * Fuel Flow/Stack Gas Flow} \end{array}$