

Tri-Cities Recycling and Recovery Facility 7010 Auto Mall Parkway, Fremont, CA 94538

May 28, 2021

Bay Area Air	Reports	Director of the Air Division USEPA, Region IX 75 Hawthorne Street San Francisco, CA 94105 Attn: Air-3 r9.aeo@epa.gov
SUBJECT:	Combined Title V Semi-Annual and 40 CFR 63 Subpart AAAA Semi-Ar Tri-Cities Recycling and Disposal Fa 7010 Auto Mall Parkway, Fremont, Plant Number A2246	acility

Dear Sir or Madam:

The Tri-Cities Recycling and Disposal Facility (TCRDF) is pleased to submit the attached Combined Title V Semi-Annual and Partial 8-34 Annual Report for the period of November 1, 2020 to April 30, 2021 to the Bay Area Air Quality Management District (BAAQMD) and the United States Environmental Protection Agency (USEPA), Region IX. As required by 40 CFR Part 63 Subpart AAAA, the Semi-Annual Startup, Shutdown and Malfunction (SSM) Report is also enclosed. The Combined Title V Semi-Annual and Partial 8-34 Annual Report satisfies the requirements of the Title V Permit listed in Condition Number 8366, Part 19 and Standard Condition I.F.

Based on information and belief formed after reasonable inquiry, I certify under penalty of law that the statements included in this report are true, accurate, and complete.

Sincerely,

Patrick Madej

Patrick Madej District Manager

Attachments: Combined Title V Semi-Annual and Partial 8-34 Annual Report Combined Title V Semi-Annual and Partial 8-34 Annual Report For the Tri-Cities Recycling and Disposal Facility 7010 Auto Mall Parkway Fremont, California 94538 Plant Number A2246 November 1, 2020 to April 30, 2021

> Prepared for Tri-Cities Recycling and Disposal Facility 7010 Auto Mall Parkway Fremont, California 94538

For Submittal to: The Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

and

US EPA, Region IX 75 Hawthorne Street San Francisco, California 94105

Prepared by

Waste Management of Alameda County, Inc. 172 98th Ave Oakland, California 94603

CONTENTS

1	INTRO	DDUCTION	.1
	1.1 1.2 1.3	Purpose Record Keeping and Reporting Report Preparation	. 1
2	SEMI	ANNUAL MONITORING REPORT	.2
	2.1 2.2	Collection System Operation (BAAQMD 8-34-501.1 & §60.757(f)(4)) Emission Control Device Downtime (BAAQMD 8-34-501.2 & §60.757(f)(3))	
	2.3	Temperature Monitoring Results (BAAQMD 8-34-501.3, 8-34-507, & §60.757(f)(1))	.4
	2.4	Monthly Cover Integrity Monitoring (BAAQMD 8-34-501.4)	.5
	2.5	Less Than Continuous Operation (BAAQMD 8-34-501.5)	5
	2.6	Surface Emissions Monitoring (BAAQMD 8-34-501.6, 8-34-506, & §60.757(f)(5))	.5
	2.7	Component Leak Testing (BAAQMD 8-34-501.6 & 8-34-503)	6
	2.8	Waste Acceptance Records (BAAQMD 8-34-501.7)	.6
	2.9	Non-Degradable Waste Acceptance Records (BAAQMD 8-34-501.8)	
	2.10 2.11	Wellhead Monitoring Data (BAAQMD 8-34-501.4 & 8-34-505) Gas Flow Monitoring Results (BAAQMD 8-34-501.10, 8-34-508, &	6
		§60.757(f)(1))	.7
	2.12	Compliance with §60.757(f)(6)	
	2.13	Compliance with Title V Permit Condition 8366, Part 12	
	2.14	Compliance with Title V Permit Condition 2593 for S-24	.8
3	PERF	ORMANCE TEST REPORT	. 9
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Flare Compliance Demonstration Test Results (BAAQMD 8-34-412) Compliance with $60.757(g)(1)$ Compliance with $60.757(g)(2)$ Compliance with $60.757(g)(3)$ Compliance with $60.757(g)(4)$ Compliance with $60.757(g)(5)$ Compliance with $60.757(g)(6)$	10 10 11 11
4	STAR	TUP, SHUTDOWN, MALFUNCTION (SSM) REPORT1	3

LIST OF TABLES

- Table 2-1Semi-Annual Report Requirements
- Table 2-2Collection System Downtime
- Table 2-3Flare A-3 Downtime
- Table 2-4
 Applicable 3-hr Temperature Limits
- Table 2-5Wellfield Deviation Summary
- Table 2-6 LFG Input to A-3 Flare
- Table 3-1
 Performance Test Requirements
- Table 3-2
 A-3 Flare Compliance Demonstration Test Results

LIST OF APPENDICES

- Appendix A Site Map
- Appendix B Flare SSM Log
- Appendix C Wellfield SSM Log
- Appendix D Flare Temperature and Flow Deviation Report
- Appendix E Cover Integrity Reports
- Appendix F Surface Emissions/Component Leak Check Monitoring Reports
- Appendix G Wellfield Monitoring Logs
- Appendix H Wellfield Deviation Log
- Appendix I Monthly Landfill Gas Flow Rates
- Appendix J Structure Monitoring Reports
- Appendix K H2S Monitoring
- Appendix L Source Test Report Summary
- Appendix M Correspondence

1.1 PURPOSE

This document is a Title V Combined Semi-Annual and Partial 8-34 Annual Report for the Tri-Cities Recycling and Disposal Facility (TCRDF), a Waste Management of Alameda County, Inc. (WMAC) facility, pursuant to Title V Permit Condition Number 8366, Part 19. This Combined Report satisfies the requirements of Bay Area Air Quality Management District's (BAAQMD) Regulation 8, Rule 34, Section 411 and Title 40 Code of Federal Regulations (CFR) Part 60 Subpart WWW, New Source Performance Standards (NSPS) for municipal solid waste (MSW) landfills (40 CFR §60.757[f]), the TCRDF Title V Standard Condition I.F, and covers compliance activities conducted from November 1, 2020 to April 30, 2021. This Combined Report also includes the semiannual report of Start-up, Shutdown, Malfunction (SSM) Plan activities, pursuant to National Emission Standards for Hazardous Air Pollutants (NESHAP), 40 CFR Part 63, Subpart AAAA for landfills.

Section 2 of this report contains the elements required to satisfy both BAAQMD Regulation 8-34-411 and 40 CFR §60.757(f). A summary of the results from the February 4, 2021 Performance Test Report that meets the requirements of both BAAQMD Regulation 8-34-413 and 40 CFR §60.758(g) is included in Appendix L. Section 4 of this Combined Report includes the semi-annual report of the SSM Plan activities, pursuant to NESHAP, 40 CFR Part 63, Subpart AAAA for landfills.

1.2 RECORD KEEPING AND REPORTING

Records are maintained and available for inspection in accordance with BAAQMD Regulation 8-34-501.12 and 40 CFR §60.758. The primary location for records storage is at the TCRDF. Records are maintained at this location for a minimum of five years.

1.3 REPORT PREPARATION

This Combined Report has been prepared by WMAC and was based on WMAC's review of information pertaining to the site operations.

In accordance with Title V Permit Standard Condition I.F and Condition 8366, Part 19, BAAQMD Regulation 8-34-411, and 40 CFR §60.757(f) in the NSPS, this Report is a Combined Title V Semi-Annual and Partial 8-34 Annual Report that is required to be submitted by TCRDF. The report contains monitoring data for the operation of the landfill gas collection and control system (GCCS). The operational records have been reviewed and summarized. The timeframe included in this report is November 1, 2020 to April 30, 2021. The following table lists the rules and regulations that are required to be included in this Combined Report.

RULE	REQUIREMENT	LOCATION IN REPORT
8-34-501.1 §60.757(f)(4)	All collection system downtime, including individual well shutdown times and the reason for the shutdown.	Section 2.1, Appendices B & C
8-34-501.2 §60.757(f)(3)	All emission control system downtime and the reason for the shutdown.	Section 2.2, Appendix B
8-34-501.3, 8-34-507, §60.757(f)(1)	Continuous temperature for all operating flares and any enclosed combustor subject to Section 8-34-507.	Section 2.3, Appendix D
8-34-501.4, 8-34-505, 8-34-510	Testing performed to satisfy any of the requirements of this Rule.	Sections 2.4 & 2.10 Appendices E & G
8-34-501.5	Monthly landfill gas flow rates and well concentration readings for facilities subject to 8-34-404.	Sections 2.5 & 2.11 Appendix J
8-34-501.6, 8-34-503, 8-34-506, §60.757(f)(5)	For operations subject to Section 8-34-503 and 8-34-506, records of all monitoring dates, leaks in excess of the limits in Section 8-34-301.2 or 8-34-303 that are discovered by the operator, including the location of the leak, leak concentration in parts per million by volume (ppm _v), date of discovery, the action taken to repair the leak, date of the repair, date of any required re-monitoring, and the re-monitored concentration in ppmv.	Sections 2.6 & 2.7, Appendix F
8-34-501.7	Annual waste acceptance rate and current amount of waste in place.	Section 2.8,
8-34-501.8	Records of the nature, location, amount, and date of deposition of non-degradable wastes, for any landfill areas excluded from the collection system requirement as documented in the GCCS Design Plan.	Section 2.9
8-34-501.9, 8-34-505, §60.757(f)(1)	For operations subject to Section 8-34-505, records of all monitoring dates and any excesses of the limits stated in Section 8-34-305 that are discovered by the operator, including well identification number, the measured excess, the action taken to repair the excess, and the date of repair.	Section 2.10, Appendices G & H

Table 2-1 Semi-Annual Report Requirements

RULE	REQUIREMENT	LOCATION IN REPORT
8-34-501.10, 8-34-508, §60.757(f)(1)	Continuous gas flow rate records for any site subject to Section 8-34- 508.	Section 2.11, Appendices D & I
8-34-501.11, 8-34-509	For operations subject to Section 8-34-509, records of key emission control system operating parameters.	Section 2.2.2
8-34-501.12	The records required above shall be made available and retained for a period of five years.	Section 1.2
§60.757(f)(2)	Description and duration of all periods when the gas stream is diverted from the control device through a bypass line or the indication of bypass flow as specified under §60.756.	Section 2.2.1
§60.757(f)(6)	The date of installation and the location of each well or collection system expansion added pursuant to paragraphs (a)(3), (b), (c)(4) of §60.755.	Section 2.12
§60.10 (d)(5)(i)	Startup, Shutdown, Malfunction Events	Section 4, Appendices B & C

Table 2-1 Semi-Annual Report Requirements (continued)

2.1 COLLECTION SYSTEM OPERATION (BAAQMD 8-34-501.1 & §60.757(F)(4))

Appendix A contains a map dated February 2, 2017 of TCRDF's existing GCCS. No wells were added to or removed from the collection system during the reporting period.

Appendix B includes all collection system downtimes and the reason for the shutdowns. The information contained in Section 2.1.2 and Appendix C includes the individual well shutdown times and the reason for each shutdown.

2.1.1 COLLECTION SYSTEM DOWNTIME

During the period covered in this report, the landfill gas (LFG) collection system was not shut down for more than five (5) days on any one occasion. Pursuant to BAAQMD Regulation 8-34-113, Limited Exemption, Inspection and Maintenance, the total downtime is summarized below:

PERIOD	DOWNTIME (HOURS)
2020 Calendar Year	16.0
November 1, 2020 – April 30, 2021	22.4
2021 Year to Date	22.4

 Table 2-2 Collection System Downtime

A Flare SSM Log that lists dates, times, and lengths of shutdowns for the reporting period is included in Appendix B.

2.1.2 WELL DISCONNECTION LOG

During the reporting period, zero (0) wellfield SSM events occurred. In addition, zero wells (out of a possible 3) remain disconnected at the end of the reporting period, pursuant to BAAQMD Regulation 8-32-116.2 (Limited Exemption, Well Raising).

A Wellfield SSM Log that lists dates, times, and lengths of disconnections for the reporting period is included in Appendix C.

2.2 EMISSION CONTROL DEVICE DOWNTIME (BAAQMD 8-34-501.2 & §60.757(F)(3))

The emission control system consists of the A-3 Enclosed Flare. No bypassing of the control system or emissions of raw LFG occurred. A Flare SSM Log for the A-3 Flare is included in Appendix B. Total downtime is summarized in the following table:

PERIOD	DOWNTIME (HOURS)
2020 Calendar Year	16.0
November 1, 2020 – April 30, 2021	22.4
2021 Year to Date	22.4

 Table 2-3 Flare A-3 Downtime

2.2.1 LFG BYPASS OPERATIONS (§60.757(f)(2))

Title 40 CFR §60.757(f)(2) is not applicable at the TCRDF because no bypass line is installed. LFG cannot be diverted from the control equipment.

2.2.2 KEY EMISSION CONTROL OPERATING PARAMETERS (BAAQMD 8-34-501.11 & 8-34-509)

BAAQMD Regulations 8-34-501.11 and 8-34-509 are not applicable to the A-3 Flare because the A-3 Flare is subject to continuous temperature monitoring as required by BAAQMD Regulation 8-34-507 and §60.757(f)(1).

2.3 TEMPERATURE MONITORING RESULTS (BAAQMD 8-34-501.3, 8-34-507, & §60.757(F)(1))

The combustion zone temperature of the flare is monitored with thermocouples and recorded with a Yokogawa paperless chart recorder. There were no continuous recorder device SSM events during the reporting period. As shown in Appendix D, there were no periods of missing temperature data for the flares during the reporting period.

Title V Permit Condition Number 8366 Part 6 states that the minimum combustion zone temperature, averaged over a 3-hour period, shall be equal to the average combustion zone temperature determined during the most recent complying source test minus 50°F,

provided that the minimum combustion zone temperature is not less than 1,450°F. Pursuant to Part 6, the following temperature limits applied during the reporting period:

Table 2-4 Applicable 3-Hour Temperature Limits						
Test Date	Report Submitted	Average Temperature During Test (°F)	3-hr Minimum Temperature (°F)			
2/11/2020	3/16/2020	1,594	1,544			
2/4/2021	3/10/2021	1,594	1,544			

2.4 MONTHLY COVER INTEGRITY MONITORING (BAAQMD 8-34-501.4)

The Monthly Cover Integrity Monitoring Reports are included in Appendix E. The cover integrity monitoring was performed on the following dates:

- November 27, 2020
- December 28, 2020
- January 26, 2021
- February 23, 2021
- March 30, 2021
- April 27, 2021

LESS THAN CONTINUOUS OPERATION (BAAQMD 8-34-501.5) 2.5

The TCRDF does not operate under BAAQMD Regulation 8-34-404 (Less Than Continuous Operation) and therefore is not required to submit monthly LFG flow rates.

SURFACE EMISSIONS MONITORING (BAAQMD 8-34-501.6, 8-34-2.6 506, & §60.757(F)(5))

The TCRDF is a closed landfill as defined by 8-34-223. As of the First Quarter 2016 event completed March 1, 2016, the Site has achieved three consecutive quarters with no Surface Emissions Monitoring (SEM) exceedances. Therefore, the TCRDF may now reduce the frequency of SEM events to annually. The 2021 annual SEM occurred during the reporting period on January 12, 2021.

Flame ionization detectors (FID) were used during the SEM event to monitor the landfill surface according to the SEM Map. Any areas suspected of having emission issues by visible observation were also monitored. Prior to all monitoring events, the FID used was zeroed and calibrated using zero air and 500 ppmv methane calibration gas.

There were zero (0) locations with exceedances detected during either monitoring event. No corrective actions or follow-up monitoring was required. Copies of the SEM Reports are included in Appendix F.

The next SEM event is due by March 31, 2022. Any exceedance detected during annual monitoring will require the Site to revert to quarterly monitoring.

2.7 COMPONENT LEAK TESTING (BAAQMD 8-34-501.6 & 8-34-503)

Quarterly Component Leak Testing using FIDs, pursuant to 8-34-503, occurred during the reporting period on the following date:

- Fourth Quarter 2020 October 27, 2020
- First Quarter 2021 January 12, 2021

No component leaks were discovered during either test event. Quarterly LFG Component Leak Check logs are presented in Appendix F.

2.8 WASTE ACCEPTANCE RECORDS (BAAQMD 8-34-501.7)

The TCRDF is closed and all final closure documentation has been received. No degradable waste was accepted during the reporting period. The total waste in place is 12.78 million tons.

2.9 NON-DEGRADABLE WASTE ACCEPTANCE RECORDS (BAAQMD 8-34-501.8)

TCRDF does not have non-degradable waste areas that are excluded from the collection system. Therefore, BAAQMD Regulation 8-34-501.8 is not applicable.

2.10 WELLHEAD MONITORING DATA (BAAQMD 8-34-501.4 & 8-34-505)

Wellhead monitoring was performed on a monthly basis pursuant to 8-34-505. The wellhead concentration readings for the reporting period are included in Appendix G. Each well was monitored in accordance with the following requirements:

- 8-34-305.1 Each wellhead shall operate under a vacuum.
- 8-34-305.2 The LFG temperature in each wellhead shall be less than 55 degrees Celsius (°C) (131°F).
- 8-34-305.4 The oxygen (O₂) concentration in each wellhead shall be less than 5 percent by volume.

The wellhead monitoring was performed on the following dates:

- November 3, 2020
- December 21 and 29, 2020
- January 6, 19, and 26, 2021
- February 2 and 9, 2021
- March 2, 9, and 16, 2021
- April 6, 20, and 27, 2021

Wellhead Deviations (BAAQMD 8-34-501.9 & §60.757(f)(1))

Wellfield deviations from BAAQMD Regulation 8-34-305 during the reporting period are summarized in Table 2-5. The Wellfield Deviation Log is attached in Appendix H.

Well ID	Exceedance Date	Exceedance Value	Re-monitoring Date	Compliance Date and Reading	Days in Exceedance	
No well exceedances during the reporting period.						

Table 2-5 Wellfield Deviation Summary

% – percent O₂ – oxygen "w.c. – Inches Water Column

2.11 GAS FLOW MONITORING RESULTS (BAAQMD 8-34-501.10, 8-34-508, & §60.757(F)(1))

Flow is measured using a Kurz flow meter installed on March 12, 2015. The LFG flow is displayed and digitally recorded with a General Electric data panel and Yokogawa Digital Recorder, which records flow every two minutes. The flow data readings are saved to a compact flash card. The flow meter is maintained and calibrated pursuant to the manufacturer's recommendations. The flare flow meter meets the requirements of BAAQMD Regulation 8-34-508 by recording at least every 15 minutes. The flow records for the flare are available for review at the TCRDF. As shown in Appendix D, no flare temperature or flow deviations occurred from November 1, 2020 to April 30, 2021.

Title V Permit Condition Number 8366, Part 11 limits daily heat input to 1,800 Million British thermal units (MMBTU) per day and annual heat input to 657,000 MMBTU. Table 2-6 below is a summary of the total LFG flow for the reporting period of November 1, 2020 to April 30, 2021. Monthly and daily flow rates are presented in Appendix I.

Emission Control Device	Average Flow (scfm)	Average CH₄ (%)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heat Input (MMBtu)	Max Daily Heat Input (MMBtu)
A-3 Flare	984	47.50	255,536,106	121,398,965	122,977	788

Table 2-6 LFG Input to A-3 Flare

(1) The methane content was determined from the February 11, 2020 (3/16/20-3/9/21) and February 4, 2021 (3/10/21 - current) source tests.

BAAQMD issued Notice of Violation (NOV) #A57024 on 3/10/21 for non-operation of the flare during an unplanned utility power outage on 4/7/2020. The NOV 10-day Response Letter and Title V 10-day report were submitted on March 19, 2021. The Title V 30-day report was submitted on April 2, 2021. Reports presented in Appendix M.

2.12 COMPLIANCE WITH §60.757(F)(6)

"The date of installation and the location of each well or collection system expansion added pursuant to (a)(3), (b), (c)(4) of §60.755."

At the end of the reporting period, the GCCS consisted of thirty-eight (38) vertical LFG collection wells. No wells were added to or removed from the collection system during the reporting period.

2.13 COMPLIANCE WITH TITLE V PERMIT CONDITION 8366, PART 12

Title V Condition Number 8366, Part 12 requires annual monitoring for hydrogen sulfide using a Draeger tube. The 2020 Annual sample concentration was 100 ppm_v (collected July 15, 2020). Data from the monitoring event is presented in Appendix K.

2.14 COMPLIANCE WITH TITLE V PERMIT CONDITION 2593 FOR S-24

Daily records were maintained and totaled as required by Condition 2593 Part 4. Concrete accepted at S-24 did not exceed 150,000 tons during any consecutive 12-month period. Combined concrete and asphalt accepted and removed from the site did not exceed 2,500 tons in any day.

In accordance with BAAQMD Regulation 8-34-413 and 40 CFR §60.757(g) in the NSPS, a Performance Test Report is required to be submitted for subject facilities containing performance and monitoring data for the operation of the GCCS. The operational records listed in Table 3-1 have been reviewed, summarized, and are included in this Performance Test Report.

RULE	REQUIREMENT	LOCATION IN REPORT
8-34-412, §60.8, §60.752(b)(2)(iii)(B), §60.754(d)	Compliance Demonstration Test	Section 3.1, Appendix L
§60.757(g)(1)	A diagram of the collection system showing collection system positioning including all wells, horizontal collectors, surface collectors, or other gas extraction devices, including the locations of any areas excluded from collection and the proposed sites for future collection system expansion.	Section 3.2, Appendix A
§60.757(g)(2)	The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based.	Section 3.3
§60.757(g)(3)	The documentation of the presence of asbestos or non-degradable material for each area from which collection wells have been excluded based on the presence of asbestos or non-degradable material.	Section 3.4
§60.757(g)(4)	The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on non-productivity and the calculations of gas generation flow rate for each excluded area.	Section 3.5
§60.757(g)(5)	The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is inadequate to move the maximum flow rate expected over the life of the landfill.	Section 3.6
§60.757(g)(6)	The provisions for the control of off-site migration.	Section 3.7, Appendix J

 Table 3-1 Performance Test Requirements

3.1 FLARE COMPLIANCE DEMONSTRATION TEST RESULTS (BAAQMD 8-34-412)

The most recent A-3 Flare Annual Compliance Demonstration Test was conducted on February 4, 2021. The Source Test Report was submitted to the BAAQMD on March 10, 2021.

Table 3-3 shows the results of the A-3 2021 Flare Compliance Demonstration Test, averaged from three test runs. A summary of the results from the February 4, 2021 Compliance Demonstration Test in Appendix L.

Condition	Flare Average Results	Applicable Limit	Compliance Status
NOx, lbs/MMBTU	0.04	< 0.06	In Compliance
CO, lbs/MMBTU	0.006	< 0.30	In Compliance
NMOC (ppm _v @ 3% O ₂)	< 4.5	< 30	In Compliance

Table 3-2 A-3 Flare Compliance Demonstration Test Results

3.2 COMPLIANCE WITH §60.757(G)(1)

"A diagram of the collection system showing collection system positioning including wells, horizontal collectors..."

A map dated February 2, 2017 of the LFG collection system showing the positioning of all vertical wells, horizontal collectors, and other LFG extraction devices is included in Appendix A.

3.3 COMPLIANCE WITH §60.757(G)(2)

"The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based."

In general, the sufficient capacities of the GCCS components are based on establishing, maintaining, and documenting that the surface emissions of non-methane organic compounds (NMOCs) and subsurface LFG migration are controlled within compliance limits. Over the monitoring period covered by this Combined Report, the sufficiency of the GCCS components was based as follows:

- The existing GCCS has historically provided LFG wells and collectors spaced in accordance with standard industry practices. The installed collector density during the reporting period appears to be more than adequate for controlling surface emissions and subsurface LFG migration, based on continuous compliance and operational experience.
- The total capacity of the LFG mover equipment exceeds the current United States Environmental Protection Agency (USEPA) Model AP-42 projections of LFG generation and the historic LFG extraction rates determined to be continuously available from the landfill.

The landfill operator conducts routine monitoring in accordance with NSPS requirements. If the TCRDF GCCS does not meet the measures of performance set forth in the NSPS, the GCCS will be adjusted or modified, as required.

Demonstrating Compliance with §60.757(g)(2)

"The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based."

The Site is now closed; therefore peak generation has already occurred. LFG generation will decline over time. The existing GCCS conveyance piping has sufficient capacity to handle all current and future LFG flow rates based on well vacuum data, LFG generation estimates, and surface emissions monitoring.

Compliance with 40 CFR §60.757(g)(2) is demonstrated by performing SEM. Refer to Section 2.6, Surface Emissions Monitoring for information pertaining to the SEM results.

3.4 COMPLIANCE WITH §60.757(G)(3)

"The documentation of the presence of asbestos or non-degradable material for each area from which collection wells have been excluded based on the presence of asbestos or non-degradable material."

No segregated areas or accumulations of asbestos or non-degradable material are documented for the TCRDF in the GCCS Design Plan. Therefore, 40 CFR §60.757(g)(3) is not applicable.

3.5 COMPLIANCE WITH §60.757(G)(4)

"The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on non-productivity and the calculations of gas generation flow rate for each excluded area."

No non-productive areas have been excluded from the coverage of the GCCS. Therefore, 40 CFR §60.757(g)(4) is not applicable.

3.6 COMPLIANCE WITH §60.757(G)(5)

"The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is inadequate to move the maximum flow rate expected over the life of the landfill."

The present gas mover equipment capacity is adequate to move the current LFG flow rate. The current A-3 Flare has a capacity of 2,500 scfm at 50 percent methane. Since the Site is now closed, peak generation has already occurred; therefore the current equipment is capable of moving the maximum flow rate over the remaining life of the landfill.

3.7 COMPLIANCE WITH §60.757(G)(6)

"The provisions for the control of off-site migration."

There have been no significant LFG migration occurrences at the TCRDF. The most recent Perimeter Gas Migration Monitoring Plan (PGMMP) was updated in January 2012 to include a variance from probe monitoring requirements and recent changes to building monitoring locations. Buildings on-site at the TCRDF are monitored quarterly for LFG migration.

Quarterly Methane-In-Structure Monitoring occurred on the following dates:

- Fourth Quarter 2020 October 27, 2020
- First Quarter 2021 January 12, 2021

All in-structure locations were in compliance with no detections above the 1.25 percent methane limit. The Methane-In-Structure Survey Reports are included in Appendix J.

Demonstrating Compliance with §60.757(g)(6)

"The provisions for the control of off-site migration."

The landfill operator will continue monitoring in accordance with the existing plan as discussed above. If the GCCS at the TCRDF does not meet the measures of performance set forth in the NSPS, the GCCS will be adjusted or modified in accordance with the NSPS requirements.

4 STARTUP, SHUTDOWN, MALFUNCTION (SSM) REPORT

SSM Report for the GCCS at the Tri-Cities Recycling and Disposal Facility

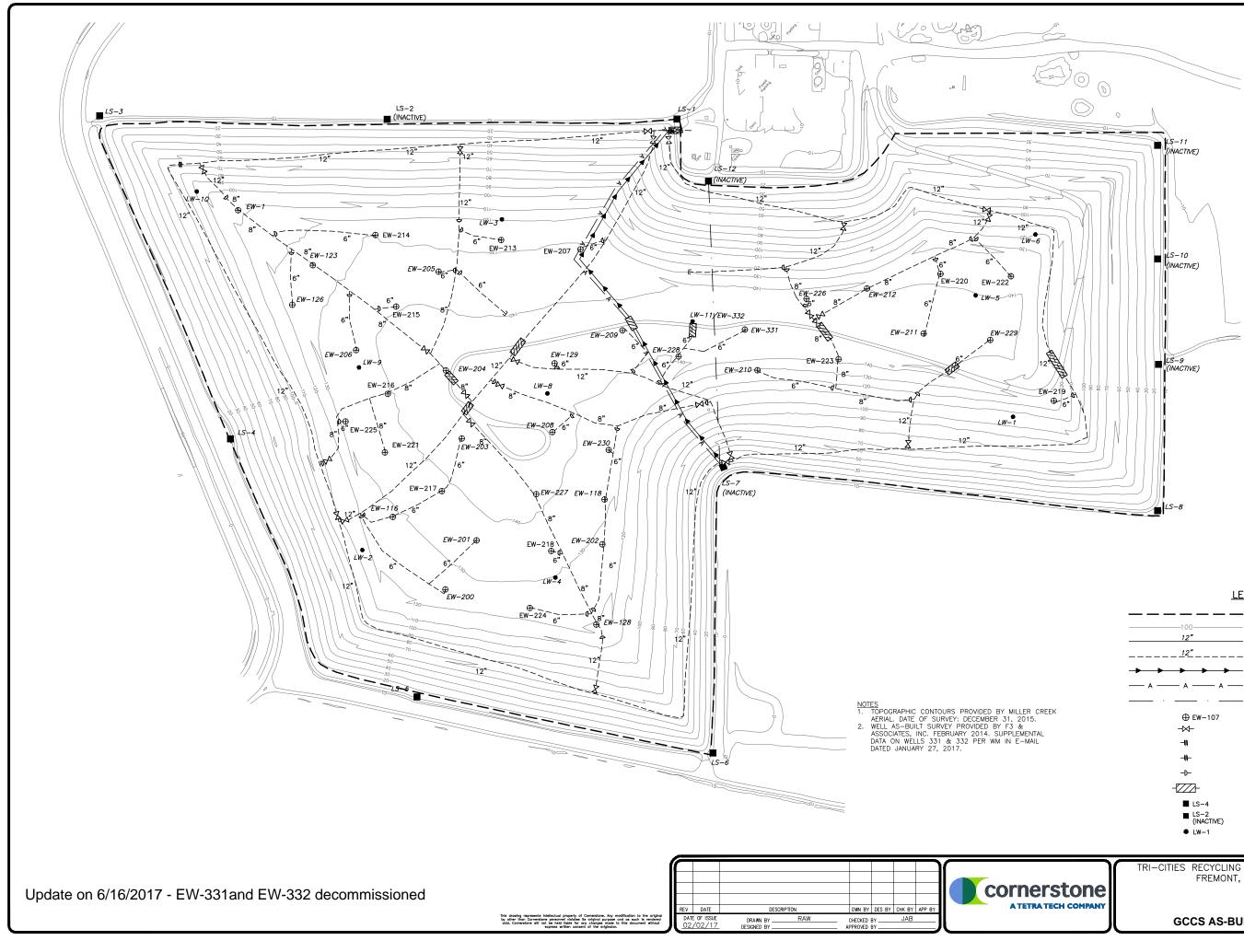
The NESHAP contained in 40 CFR Part 63, AAAA for MSW landfills to control hazardous air pollutants include the regulatory requirements for submittal of a semiannual report (under 40 CFR 63.10(d)(5) of the general provisions) if an SSM event occurred during the reporting period. The reports required by 40 CFR §63.1980(a) of the NESHAP and 40 CFR §60.757(f) of the NSPS summarize the GCCS exceedances. These two semi-annual reports contain similar information and have been combined as allowed by 40 CFR §63.10(d)(5)(i) of the General Provisions.

NESHAP 40 CFR Part 63, AAAA became effective on January 16, 2004. Those SSM events that occurred during the NSPS semi-annual reporting period (November 1, 2020 to April 30, 2021) are reported in this section. The following information is included as required:

- During the reporting period, 12 flare SSM events occurred. The cause, time and duration of each event are presented in the Flare SSM Log, which is contained in Appendix B.
- During the reporting period, 0 wellfield SSM events occurred to allow for active filling, repairs, and well raising. The time and duration of each event are presented in the Wellfield SSM Log, which is contained in Appendix C.
- During the reporting period, 0 recorder SSM events occurred.
- In all, 12 events were consistent with the standard operating procedures contained in the SSM Plan.
- No exceedances of any applicable emission limitation in the landfill's NESHAP (63.10(d)(5)(i)) occurred.
- Revisions of the SSM Plan to correct deficiencies in the landfill operations or procedures were neither required, nor prepared (§63.6(e)(3)(viii)).

I certify the following:

Based on information and belief formed after reasonable inquiry, information on the startup, shutdown, malfunction forms, all accompanying reports, and other required certifications are true, accurate, and complete.

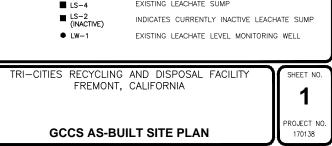

atrick Mades

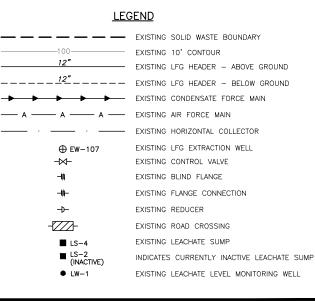
Signature of Responsible Official

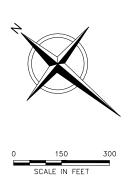
May 28, 2021 Date

Patrick Madej Name of Responsible Official **APPENDIX A**

SITE MAP




"_ —


° —

1/2"

<u>_</u>___

APPENDIX B

FLARE SSM LOG

(7) Check (3) (8) Did Steps Procedure (1) Event Start (2) Event End Downtime Event Device Duration **Taken Vary From** Applicable (4) Cause or Reason (5) Applicable Regulation (6) Type of Event No. Date/Time Date/Time (Hrs) s Used Event (Hrs) (7) (a),(b) No flare SSM events in November 2020 No flare SSM events in December 2020 x 113: Inspection/Maintenance Manual (Go to 7) Yes (Go to 9) Procedures 1/14/21 11:20 1/14/21 11:22 0.03 1 to 3 116: Well Raising Automatic (Go to 9) x Startup No Manual shutdown for flare station A-3 Flare 0.83 Manual (Go to 7) x Shutdown maintenance. 117: Gas Collection Yes (Go to 9) Procedures 1/14/21 12:10 1/14/21 12:12 0.03 1 to 4 Malfunction 118: Construction Activities Automatic (Go to 9) No x 113: Inspection/Maintenance Manual (Go to 7) Procedures Yes (Go to 9) 1/21/21 7:10 1/21/21 7:12 0.03 1 to 3 x Startup 116: Well Raising Automatic (Go to 9) No Manual shutdown for flare station 2 A-3 Flare 1.42 x Shutdown maintenance. 117: Gas Collection Manual (Go to 7) Procedures Yes (Go to 9) 1/21/21 8:35 1/21/21 8:37 0.03 Malfunctior 118: Construction Activities Automatic (Go to 9) 1 to 4 < No 113: Inspection/Maintenance Manual (Go to 7) Yes (Go to 9) Procedures 1/26/21 22:20 1/26/21 22:22 0.03 All control devices were shut 116: Well Raising 1 to 3 Startup Automatic (Go to 9) No A-3 Flare 3 0.08 down due to a site-wide power x Shutdown 117: Gas Collection Manual (Go to 7) Yes (Go to 9) Procedures 1/26/21 22:25 1/26/21 22:27 0.03 surge. 1 to 4 Malfunction 118: Construction Activities Automatic (Go to 9) No 113: Inspection/Maintenance Manual (Go to 7) Yes (Go to 9) System remained shutdown unti Procedures 1/26/21 22:25 1/26/21 22:27 0.03 system was inspected and 1 to 3 Startup 116: Well Raising Automatic (Go to 9) No manually restart the control 4 A-3 Flare 7.33 devices. Visual inspections and 117: Gas Collection Shutdown Manual (Go to 7) Yes (Go to 9) PLC checks were conducted Procedures 1/27/21 5:45 1/27/21 5:47 0.03 prior to restart. 1 to 4 Malfunction 118: Construction Activities x No Automatic (Go to 9) x 113: Inspection/Maintenance Manual (Go to 7) Yes (Go to 9) Procedures 2/1/21 15:42 2/1/21 15:40 0.03 116: Well Raising 1 to 3 Startup Automatic (Go to 9) No Manual shutdown for flare station 5 A-3 Flare 0.17 maintenance. 117: Gas Collection x Shutdown Manual (Go to 7) Procedures Yes (Go to 9) 2/1/21 15:50 2/1/21 15:52 0.03 1 to 4 Malfunction 118: Construction Activities Automatic (Go to 9) x No x 113: Inspection/Maintenance Manual (Go to 7) Yes (Go to 9) Procedures 2/2/21 11:12 0.03 2/2/21 11:10 116: Well Raising 1 to 3 x Startup Automatic (Go to 9) x No Manual shutdown for flare station A-3 Flare 0.17 6 x Shutdown maintenance. 117: Gas Collection Manual (Go to 7) Yes (Go to 9) Procedures 2/2/21 11:20 2/2/21 11:22 0.03 Malfunction 1 to 4 118: Construction Activities Automatic (Go to 9) x No x 113: Inspection/Maintenance Manual (Go to 7) Yes (Go to 9) Procedures 2/3/21 8:30 2/3/21 8:32 0.03 1 to 3 116: Well Raising x Startup Manual shutdown for flare station Automatic (Go to 9) No 7 A-3 Flare 1.92 maintenance x Shutdown 117: Gas Collection Manual (Go to 7) Procedures Yes (Go to 9) 2/3/21 10:25 2/3/21 10:27 0.03 Malfunction 118: Construction Activities 1 to 4 Automatic (Go to 9) x 113: Inspection/Maintenance Manual (Go to 7) Yes (Go to 9) Procedures 2/3/21 15:55 2/3/21 15:57 0.03 1 to 3 x Startup 116: Well Raising Automatic (Go to 9) (No Vanual shutdown for flare station A-3 Flare 4.25 8 x Shutdown maintenance 117: Gas Collection Manual (Go to 7) Yes (Go to 9) Procedures 2/3/21 20:10 2/3/21 20:12 0.03 1 to 4 Malfunction 118: Construction Activities Automatic (Go to 9) x No x 113: Inspection/Maintenance Manual (Go to 7) Yes (Go to 9) Procedures 2/4/21 14:45 2/4/21 14:47 0.03 116: Well Raising 1 to 3 x Startup Automatic (Go to 9) No Manual shutdown for flare station 9 A-3 Flare 2.17 maintenance. 117: Gas Collection x Shutdown Manual (Go to 7) Yes (Go to 9) Procedures 2/4/21 16:55 2/4/21 16:57 0.03 1 to 4 Malfunction 118: Construction Activities Automatic (Go to 9) x No

TRI-CITIES RECYCLING AND DISPOSAL FACILITY CONTROL DEVICE DOWNTIME LOG

(9) Did Event Cause Any Emission Limit Exceedance?		I0) Describe Emission Standard(s) xceeded (b)	Completed By	(11) Date Entry Completed
Yes (Go to No Yes (Go to No			Mike Chan	1/14/2021
Yes (Go to No Yes (Go to No	,		Mike Chan	1/21/2021
Yes (Go to x No Yes (Go to No	· _		Mike Chan	1/26/2021
Yes (Go to No Yes (Go to No			Mike Chan	1/27/2021
Yes (Go to No Yes (Go to No	,		Mike Chan	2/1/2021
Yes (Go to No Yes (Go to No	,		Mike Chan	2/2/2021
Yes (Go to No Yes (Go to No			Mike Chan	2/3/2021
Yes (Go to No Yes (Go to No			Mike Chan	2/3/2021
Yes (Go to No Yes (Go to No			Mike Chan	2/4/2021

TRI-CITIES RECYCLING AND DISPOSAL FACILITY CONTROL DEVICE DOWNTIME LOG

Event No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason	(5) Applicable Regulation	(6) Type of Event	(7) Procedure s Used (a),(b)	(8) Did Steps Taken Vary From (7)	(9) Did Event Cause Any Emission Limit Exceedance?	(10) Describe Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed
	_		2/5/21 10:25	2/5/21 10:27	0.03			x 113: Inspection/Maintenance	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
10	x Startup	A-3 Flare				0.50	Manual shutdown for flare station	116: Well Raising	Automatic (Go to 9)	1 to 3	x No	No		Mike Chan	2/5/2021
10	x Shutdown		2/5/21 10:55	2/5/21 10:57	0.03	0.00	maintenance.	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		Mike Onan	2/3/2021
	Malfunction		2/3/21 10:35 2/3/21 10	2/3/21 10.37	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			2/5/21 11:40	2/5/21 11:42	0.03			x 113: Inspection/Maintenance	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
11	x Startup	A-3 Flare		2/3/2111.42	0.00	2.25	Manual shutdown for flare station	116: Well Raising	Automatic (Go to 9)	1 to 3	x No	No		Mike Chan	2/5/2021
11	x Shutdown	A-3 Flate	2/5/21 13:55	2/5/21 13:57	0.03	2.20	maintenance.	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		Mike Chan	2/5/2021
	Malfunction		2/3/21 13.33	2/3/21 13.37	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/12/21 13:25	4/12/21 13:27	0.03			x 113: Inspection/Maintenance	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
12	x Startup	A-3 Flare		4/12/21 15.27	0.05	0.67	Manual shutdown for flare station	116: Well Raising	Automatic (Go to 9)	1 to 3	x No	No		Mike Chan	4/12/2021
12	x Shutdown	A-3 Flate	4/12/21 14:05	4/12/21 14:07	0.03	0.07	maintenance.	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		wike Chan	4/12/2021
	Malfunction		4/12/21 14.05	4/12/21 14.07	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			

(a) STANDARD OPERATING PROCEDURES

Shutdown							
Procedure No.							
1.							
2.							

- Procedure
 Ensure that there are no unsafe conditions present, contact manager immediately
 Initiate shutdown sequence below by one or more of the following (Note date and time in Section 1 of form above)
 a. Press Emergency Stop if necessary
 b. Close on/Off switch(es) or Push On/Off button(s)
 c. Close adjacent valves if necessary
 Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note date and time in Section 2 of form above)

3. Startup Procedure No.

Ensure that there are no unsafe conditions present Ensure that the system is ready to start by one of the following: 1. 2.

- a. Valves are in correct position
- b. Levels, pressures, and temperatures are within normal starting range
- c. Alarms are cleared
 - d. Power is on and available to control panel and ready to energize equipment. e. Emergency stop is de-energized
- Initiate start sequence (Note time and date in section 1 of form above) Observe that system achieves normal startup ranges for levels, pressures, and temperatures (Note time and date in Section 2 of form above)

3. 4. Malfunction

EQUIPMENT	PURPOSE	MALFUNCTION EVENT	COMMON CAUSES	PROCEDURE NOTYPICAL RESPONSE ACTIONS
LFG Collection and Control System		2,111		
Blower or Other Gas Mover Equipment	Applies vacuum to wellfield to	Loss of LFG Flow/Blower Malfunction	-Flame arrestor fouling/deterioration	1. Repair breakages in extraction piping
blower of Oaler Cas Mover Equipment	extract LFG and transport to	Loss of Li G How/Blower Manufelon	-Automatic valve problems	2. Clean flame arrestor
	control device		-Blower failure (e.g., belt, motor, impeller,	3. Repair blockages in extraction piping
			coupling, seizing, etc.)	5. Repair blockages in extraction piping
			-Loss of power	4. Verify automatic valve operation, compressed air/nitrogen supply
			-Extraction piping failure	5. Notify power utility, if appropriate
			-Condensate knock-out problems	6. Provide/utilize auxiliary power source, if necessary
			-Extraction piping blockages	7. Repair Settlement in Collection Piping
				8. Repair Blower
				9. Activate back-up blower, if available
				Clean knock-up pot/demister
				11. Drain knock-out pot
Extraction Wells and Collection Piping	Conduits for extractions and	Collection well and pipe failures	-Break/crack in header or lateral piping	12. Repair leaks or breaks in lines or wellheads
	movement of LFG flow		 -Leaks at wellheads, valves, flanges, Test -Collection piping blockages 	 Follow procedures for loss of LFG flow/blower malfunction Repair blockages in collection piping
			-Problems due to settlement (e.g. pipe	15. Repair settlement in collection piping
			separation, deformation, development of	
			low points)	16. Re-install, repair, or replace piping
Blower or Other Gas Mover Equipment	Collection and control of LFG	Loss of electrical power	- Force majeure/Act of God (e.g.,	17. Check/reset breaker
			lightning, flood, earthquake, etc.)	
And			-Area-wide or local blackout or brown-out	18. Check/repair electrical panel components
a . 15 .				
Control Device			-Interruption in service (e.g. blown service	19. Check/repair transformer
			fuse) -Electrical line failure	20. Check/repair motor starter
			-Electrical line failure -Breaker trip	
				21. Check/repair electrical line
			-Transformer failure	22. Test amperage to various equipment
			-Motor starter failure/trip	23. Contact electricity supplier
			-Overdraw of power	24. Contact/contract electrician
			-Problems in electrical panel	25.Provide auxiliary power (if necessary)
			-Damage to electrical equipment from on- site operations	
LFG Control Device	Combusts LFG	Low temperature conditions at control	-Problems with temperature -monitoring	26. Check/repair temperature monitoring equipment
		device	equipment	
			-Problems/failure of -thermocouple and/or	27. Check/repair thermocouple and/or wiring
			thermocouple wiring -Change of LFG flow	28. Follow procedures for loss of flow/blower malfunction
			-Change of LFG quality -Problems with air louvers	29. Check/adjust louvers
				 Check/adjust air/fuel controls
			-Problems with air/fuel controls	
			-Change in atmospheric conditions	
LFG Control Device	Combusts LFG	Loss of Flame	-Problems/failure of thermocouple	31. Check/repair temperature monitoring equipment
			-Loss/change of LFG flow	 Check/repair thermocouple
			-Loss/change of LFG quality	33. Follow procedures for loss of flow/blower malfunction
			-Problems with air/fuel controls	 Check/adjust air/fuel controls
			-Problems/failure of flame sensor	35. Check/adjust/repair flame sensor
			-Problems with temperature monitoring	36. Check/adjust LFG collectors
These Manifestine (Maximum days 1 a	Malfunctions of Flow	equipment	27 Chadde firsterni Americani 1 1 1
Flow Monitoring/	Measures and records gas flow from collection system to control	Malfunctions of Flow Monitoring/Recording Device	-Problems with orifice plate, pitot tube, or other in-line flow measuring device	37. Check/adjust/repair flow measuring device and/or wiring
Recording Device			-Problems with device controls and/or	38. Check/repair chart recorder
			wiring	· · · · · · · · · · · · · · · · · · ·
			-Problems with chart recorder	39. Replace paper in chart recorder
Temperature Monitoring/	Monitors and records combustion	Malfunctions of Temperature	-Problems with thermocouple	40. Check/adjust/repair thermocouple
Recording Device	temperature of enclosed	Monitoring/Recording Device	-Problems with device controls and/or	41. Check/adjust/repair controller and/or wiring
	combustion device		wiring Broklomo with about secondar	42 Chask/adjust/sensis algebriad as 1
			-Problems with chart recorder	42. Check/adjust/repair electrical panel components
				43. Check/repair chart recorder
				44. Replace paper in chart recorder
	a 1 . Ira			
Control Device	Combusts LFG	Other Control Device Malfunctions	 Control device smoking (i.e. visible emissions) 	45. Site-specific diagnosis procedures
	1		-Problems with flare insulation	46. Site-specific responses actions based on diagnosis
1			-Problems with pilot light system	
1			-Problems with pilot light system	47. Open manual louvers 48. Clean pitot orifice
			-Problems with air/fuel controllers	49. Clean/drain flame arrestor
			-Problems with thermocouple	50. Refill propane supply
			-Problems with burners	51. Check/repair pilot sparking system
			-Problems with flame arrester	
			-Alarmed malfunction conditions not	
			 Alarmed malfunction conditions not covered above 	
			-Unalarmed conditions discovered during	
			inspection not covered above	
			-	
1				
	1	F		I I

(b) For each permit limit exceedance complete an "SSM Plan Departure Form". Notify BAAQMD verbally or by fax within 2 working days after commencing the actions that an event inconsistent with the SSM Plan and which resulted in an exceedance of an applicable emission permit has occured. Follow up in writing to the agency within 7 working days after the end of the event.

APPENDIX C

WELLFIELD SSM LOG

TRI-CITIES RECYCLING & DISPOSAL FACILITY COLLECTION SYSTEM DOWNTIME LOG

Event No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason	(5) Applicable Regulation	(6) Type of Event	(7) Procedure s Used (a),(b)	(8) Did Steps Taken Vary From (7)	(9) Did Event Cause Any Emission Limit Exceedance?	(10) Describe Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed
	No Well SSM Events in November 2020														
	No Well SSM Events in December 2020														
	No Well SSM Events in January 2021														
	No Well SSM Events in February 2021														
	No Well SSM Events in March 2021														
	No Well SSM Events in April 2021														

(a) STANDARD OPERATING PROCEDURES

Shutdown	
Procedure No.	Procedure
1.	Ensure that there are no unsafe conditions present, contact manager immediately
2.	Initiate shutdown sequence below by one or more of the following (Note date and time in Section 1 of form above)
	a. Press Emergency Stop if necessary b. Close On/Off switch(es) or Push On/Off button(s) c. Close adiacent valves if necessarv
3.	Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note date and time in Section 2 of form above)
<u>Startup</u> Procedure No.	
1.	Ensure that there are no unsafe conditions present
2.	Ensure that the system is ready to start by one of the following:

a. Valves are in correct position

b. Levels, pressures, and temperatures are within normal starting range

c. Alarms are cleared

d. Power is on and available to control panel and ready to energize equipment.

e. Emergency stop is de-energized Initiate start sequence (Note time and date in section 1 of form above) Observe that system achieves normal startup ranges for levels, pressures, and temperatures (Note time and date in Section 2 of form above)

4. Malfunction

3.

Control UNNE Interaction Distribution Interaction Interaction Interaction Distribution Apples seamine with an example of the Cash Moor Fujiping Interaction function Interaction Above Interaction function Interaction function Interaction function Interaction function Above Interaction function Interaction function Interaction function Interaction function Interaction function Interaction function Interaction function Interaction function Interaction function Interaction function Interaction function Interaction function Interaction function Interaction function Extraction Wolds and Collection Figure Interaction function Interaction function Interaction function Interaction function Boorner of Other Cas Moore Experiment Interaction function Interaction function Interaction function Interaction function Boorner of Other Cas Moore Experiment Interaction function Interaction function Interaction function Boorner of Other Cas Moore Experiment Interaction function Interaction function Interaction function fun	Malfunction				
 Bioner or Ohler Gas Moore Lagenton Bioner and Ohler Gas Moore Lagenton Casa dara program Versite fail to a set of control Mallaciana Manuari and Casa dara program Casa dara	EQUIPMENT	PURPOSE		COMMON CAUSES	PROCEDURE NO TYPICAL RESPONSE ACTIONS
 Bioner or Ohler Gas Moore Lagenton Bioner and Ohler Gas Moore Lagenton Casa dara program Versite fail to a set of control Mallaciana Manuari and Casa dara program Casa dara	LFG Collection and Control System				
Indication statut by where and problem is a statut by base Multiculus is a function problem is a statut pr		Applies vacuum to	Loss of LFG Flow/Blower	-Flame arrestor fouling/deterioration	1. Repair breakages in extraction piping
Image is normal circle <b< td=""><td>1 1</td><td></td><td></td><td>-</td><td></td></b<>	1 1			-	
Note Los of poer 4. Verify attention; but operation; comprosed a minimingenum consistence brief pains consistence consistence consistence consistence consistence con					
Long Lattice pign false Contents lack or pign false Content false Contents		device			
				Loss of porter	in verny automate varie operation, compressed automatogen suppry
Image: Second Decision Project				-Extraction piping failure	5. Notify power utility, if appropriate
Linear ColumbusColumbusColumbusColumbusExpansionLinear Columbus				-Condensate knock-out problems	6. Provide/utilize auxiliary power source, if necessary
LancesSectorSectorSectorSectorSectorSectorSectorSectorLancesSector				-Extraction piping blockages	7. Repair Settlement in Collection Piping
LandIn Case and ControlIn Case and ControlExtension Wold and Collations Prome HowCollations well as pre- influenceCollations well as pre- influenceCollations well as pre- influenceCollations well as pre- influenceCollations well and pre- influence1.9. Equin fails were and the Coll influence1.9. Equin fails were and the Coll influence1.9. Equin fails were and the Coll Coll influence1.9. Equin fails were and the Coll influence2.9. Equin fails were and the Coll influence2.9. Equin fails were and the Coll influence2.9. Equin					8. Repair Blower
Interface					9. Activate back-up blower, if available
Extraction With and Collection Pergn An enverted CLTD And nervenet CLTD And Ner					
Induce Information Inf					11. Drain knock-out pot
Induce Information Inf	Extraction Walls and Collection Dining	Conduits for artmations	Collection well and nine	Prosk/oreak in bander or lateral nining	12 Papair lasks or breaks in lines or wellbacks
Box Collector physic box 14. Reper box data, in objection physic Box Collector (is More Papered) 14. Reper box data, in objection physic Box Collector (is More Papered) 16. Reper box data, in objection physic Box Collector (is More Papered) 16. Reper box data, in objection physic Control Dovice Information and control of Lange and the set information (is physics particle (is physics parthysics particle (is physics particle (is physics partic	Extraction wens and conection r iping				
IndexParketParket and the standing of pipe sprandor, deformation, development of Dow15. Repair settement of pipe spring 16. Research or pipe spring 17. Charlow treating of pipe 17. Charlow treating of pipe 					
Interface poin prim Le. Research of the prime Le. Research of the prime Blower or Other Gat More Treguess Collection and control Collection and control A carve wide or folde loads or forwors on the prime of the prima of the prime of the prima of the prime of the prima				1100	1 0 110
Image: Control Device Problem with Interpendent encounter operations Problem with Interpendent encounter operations Control Device Control Device Control Device Control Device Problem with Interpendent encounter operations Control Device Problem with Interpendent encounter operations Control Device Problem with Interpendent encounter operations					15. Repair settlement in collection piping
Bioner or Other Can More Equipment And Loard Device Collection and control of LG Lon of detricial power - force majorar/at of Cold (cg., lightning, Book, arthquake, ec.) 11 C. Deckforest bracker in the control of the control of the control of the contr				points)	16 Balinstell annuis an amhan aininn
Ind Ind -Arca wile relaablactout or brown-out 18. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relectrical panel components 19. Checkrepair relearch relearch 19. Checkrepair relearch -Arra wide relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch 19. Checkrepair relearch	Blower or Other Gas Mover Fauir	Collection and control -f	Loss of electrical norman	- Force majeure/Act of God (e.g. lightning flood sorthousles ats.)	
Control DeviceI of Clock/oper note function10 Clock/oper note functionControl DeviceI clock/oper note functionI Clock/oper note functionControl DeviceControl DeviceI Clock/oper note functionLFO Control DeviceControl DeviceI Clock/oper note functionLFO Control DeviceControl Clock/oper note functionI Clock/oper note functionLFO Control DeviceMalinectons of PlaneProblem with c	biower of Other Gas Mover Equipment	LFG	Loss of electrical power	- rore majourezzer or coor (e.g., ngnunng, nood, carunquake, etc.)	17. CHCK/ICSELUIEdKEI
LFG Central DeviceCombasise LFGLoss of PlaneeProblems with a final controls20. Check/orpair moor starter 21. Contary arguing the varies on equipment 23. Contary device in line in the control panel 23. Contary device in line in the control panel 24. Context Control Control26. Check/orpair temperature monitoring equipment 27. Check/orpair temperature monitoring equipment 28. Check/orpair temperature monitoring equipment 29. Check/orpair temperature monitoring equipment 20. Check/orpair temperature monitori	And			-Area-wide or local blackout or brown-out	18. Check/repair electrical panel components
InterfactParker rigParker rig <t< td=""><td>Control Device</td><td></td><td></td><td>-Interruption in service (e.g. blown service fuse)</td><td>19. Check/repair transformer</td></t<>	Control Device			-Interruption in service (e.g. blown service fuse)	19. Check/repair transformer
For Monitoring!Combusts LFGLow temperature conditions of Hore with dispersion of LFG four biologic conditions of the condi				-Electrical line failure	20. Check/repair motor starter
For Monitoring!Combusts LFGLow temperature conditions of Hore with dispersion of LFG four biologic conditions of the condi				-Breaker trip	21. Check/repair electrical line
HereActor starter functivity21. Contra clearing supplar-Overtraw of power-Overtraw of power22. Posside anciliary power (if necessary)-FG Centrel DeviceCombusts LFGLow temperature conditions-Overtraw with inspective form on-site operationsLFG Centrel DeviceCombusts LFGLow temperature conditions-Overtraw with inspective conditions27. Cocket/spit temperature monitoring equipment-Control device-Overtraw with inspective conditions-Overtraw with inspective conditions27. Cocket/spit temperature monitoring equipment-Control DeviceCombusts LFGLow of FIRE-Overtraw with a former comple and/or thermocouple and/or thermocouple and/or thermocouple and/or thermocouple witing27. Cocket/spit temperature monitoring equipment-DeviceCombusts LFGLoss of FIRE-Overtraw with a former comple31. Check/apit at fine controls-Poolems with a final controls-Ouer controls31. Check/apit at fine controls33. Follow procedures for loss of flow-blower maliner, on a spit controls-Poolems with affine controls-Ouer with affine controls-Ouer with affine controls33. Check/apit affine controls-Poolems with affine controls-Ouer with affine controls33. Follow procedures for loss of flow-blower maliner, on a spit control with a spit controlsFor Monitoring RecordingMainter or outrol-Ouer with affine controls33. Check/apit affine controlsFor Monitoring RecordingMainter on outrol with affine controls-Ouer with affine controls33. Check/apit affine controlsFor Monitoring RecordingMaintering equipment <t< td=""><td></td><td></td><td></td><td></td><td>-</td></t<>					-
Left Control DeviceConstruct Control					
LFG Centrol DeviceCombusts LFGLow control deviceProblems with dependence quipment -Dunge to electrical quupment for on-site operations2.0 Check/repair tempendence quipment 2.0 Check/repair tempendence show some 2.0 Check/repair tempendence 2.0 Check/repair					
FG Control DeviceCombusts LFGLow temperature condition at control deviceProblems with temperature -monitoring equipment -Problems with control device26. Check/repair temperature monitoring equipment -27. Check/repair temperature monitoring equipment 					
LFG Control Device Combusts LFG Low temperature conditions at control device Problems with temperature -monitoring equipment -Problems of Life Gow -Change of LFG flow -Change of LFG flow -Problems with air lowers -Problems with entroperature monitoring equipment -Loss/change of LFG flow -Loss/change of LFG flow -Problems with emperature monitoring equipment -Loss/change of LFG flow -Problems with emperature flow flow result -Problems with emperature flow flow result -Problems with emperature flow result -Problems with emperature flow result -Problems with emperature flow result -Problems with exceeder -Problems with flow infing -Problems with flow infine -Problems with flow infine					
It control deviceIt control deviceProblems with air contens couple and/or thermocouple and/or thermocouple and/or wiring27. Check-repair thermocouple and/or wiring2. Change of LFG quality-Change of LFG quality-Problems with air lowers-Problems with air lowers-Problems with air lowers2. For Control DeviceCombusts LFGLoss of Flame-Problems with air lowers-Problems with air lowers-Problems with air lowers2. For Control DeviceCombusts LFGLoss of Flame-Problems with air lowers-Problems with air lowers-Problems with air lowers2. For Control DeviceCombusts LFGLoss of Flame-Problems with air lowers-Problems with air lowers-Problems with air lowers2. For Control DeviceCombusts LFGLoss of Flame-Problems with air lowers-Problems with air lowers-Problems with air lowers2. For Control DeviceMainter of there source-Problems with air line of thermocouple couplement-Problems with air line control-Problems with air line control2. For Control DeviceMainter of Recording-Problems with air line control-Problems with air line control-Problems with air line control2. For Control DeviceMainter of Recording-Problems with air lowers-Problems with air line control-Problems with air line control2. For Control DeviceMainter of Recording-Problems with air te cooder-Problems with air line control-Problems with air line control2. Control DeviceMainter of Recording-Problems with air te cooder-Problems with air te cooder-Problems with ai				-Damage to electrical equipment from on-site operations	
Clarge of LFG flow28. Follow procedures for loss of flow/blower malinetion-Charge of LFG flow-Charge of LFG quility29. Check/adjust in/rEG controls-Problems with air forevrs-Problems with air forevrs-Problems with air forevrs-Problems with air fuel controls	LFG Control Device	Combusts LFG	Low temperature conditions	-Problems with temperature -monitoring equipment	26. Check/repair temperature monitoring equipment
Image: space s			at control device	-Problems/failure of -thermocouple and/or thermocouple wiring	27. Check/repair thermocouple and/or wiring
LengthProblems with sit leuvers -Problems with leuvers -Problems with leuve controls and/or wring -Problems with leuvers -Problems with leuvers				-Change of LFG flow	28. Follow procedures for loss of flow/blower malfunction
LFG Control DeviceCombusts LFGLoss of FlameProblems with sirfuel controls -Change in atmospheric conditions31. Check/repair temperature monitoring equipment 32. Check/repair temperature monitoring equipment 33. Follow procedures for loss of flow/betwer malfunction 34. Check/adjust irfuel controls -Problems with airfuel controls -Problems with airfuel controls -Problems with airfuel controls -Problems with airfuel controls -Problems with engretature monitoring equipment31. Check/adjust irfuel controls - 32. Check/adjust irfuel controls - 34. Check/adjust irfuel controls - Problems with engretature monitoring equipment - Problems with engretature monitoring equipment 				-Change of LFG quality	29. Check/adjust louvers
LFG Control DeviceCombusts LFGLoss of FlameProblems with sirfuel controls -Change in atmospheric conditions31. Check/repair temperature monitoring equipment 32. Check/repair temperature monitoring equipment 33. Follow procedures for loss of flow/betwer malfunction 34. Check/adjust irfuel controls -Problems with airfuel controls -Problems with airfuel controls -Problems with airfuel controls -Problems with airfuel controls -Problems with engretature monitoring equipment31. Check/adjust irfuel controls - 32. Check/adjust irfuel controls - 34. Check/adjust irfuel controls - Problems with engretature monitoring equipment - Problems with engretature control - Problems with engretature monitoring equipment - Problems with engretature control - Problems with encouple - Problems with encou				-Problems with air louvers	30. Check/adjust air/fuel controls
LFG Control Device Combusts LFG Loss of Flame -Problems/failur of thermecouple 31. Check/repair thempcouple - Loss/change of LFG flow 32. Check/repair thempcouple 32. Check/repair thempcouple - Loss/change of LFG quality -Problems with airfael controls 34. Check/adjust/repair flow - Problems with airfael controls -Problems with airfael controls 35. Check/adjust/repair flame sensor - Froblems with encreature monitoring equipment 6. Check/adjust/repair flame sensor 36. Check/adjust/repair flame sensor - Problems with temperature monitoring equipment -Problems with chice plate, pitot tube, or other in-line flow measuring device 37. Check/adjust/repair flame sensor - Problems with office plate, pitot tube, or other in-line flow measuring device -Problems with chice plate, pitot tube, or other in-line flow measuring device 37. Check/adjust/repair tecm/re - Problems with device controls and/or wring -Problems with device controls and/or wring 38. Check/repair chart recorder 39. Replace paper in chart recorder - Problems with device -Problems with device controls and/or wring 40. Check/adjust/repair devical panel components device Other Control Device -Problems with device controls and/or wring 42. Check/adjust/repair controller and/or wring - Problems with flare insulation -Problems wi					
LFG Control Device Combusts LFG Loss of Flame -Problems/failur of thermecouple 31. Check/repair thempcouple - Loss/change of LFG flow 32. Check/repair thempcouple 32. Check/repair thempcouple - Loss/change of LFG quality -Problems with airfael controls 34. Check/adjust/repair flow - Problems with airfael controls -Problems with airfael controls 35. Check/adjust/repair flame sensor - Froblems with encreature monitoring equipment 6. Check/adjust/repair flame sensor 36. Check/adjust/repair flame sensor - Problems with temperature monitoring equipment -Problems with chice plate, pitot tube, or other in-line flow measuring device 37. Check/adjust/repair flame sensor - Problems with office plate, pitot tube, or other in-line flow measuring device -Problems with chice plate, pitot tube, or other in-line flow measuring device 37. Check/adjust/repair tecm/re - Problems with device controls and/or wring -Problems with device controls and/or wring 38. Check/repair chart recorder 39. Replace paper in chart recorder - Problems with device -Problems with device controls and/or wring 40. Check/adjust/repair devical panel components device Other Control Device -Problems with device controls and/or wring 42. Check/adjust/repair controller and/or wring - Problems with flare insulation -Problems wi				-Change in atmospheric conditions	
Less-Loss/change of LFG flow32. Check/repair thermocouple-Loss/change of LFG quality33. Follow procedures for loss of flow/blower malfunction-Loss/change of LFG quality33. Follow procedures for loss of flow/blower malfunction-Problems with air/fuel controls35. Check/adjust/repair flam sensor-Problems with orifice plate, piot tube, or other in-line flow measuring device36. Check/adjust/repair flam measuring device and/or wiringRecording DeviceMailinctions of FlowProblems with orifice plate, piot tube, or other in-line flow measuring deviceProblems with orifice plate, piot tube, or other in-line flow measuring device37. Check/adjust/repair flow measuring device and/or wiringRecording DeviceMonitoring/Recording poviceProblems with thermocouple40. Check/adjust/repair flow measuring device and/or wiringTemperature Monitoring/ control flow controlMalfunctions of Temperature of enclosed combustionInfluencions of Temperature of enclosed combustionProblems with thermocoupleProblems with chart recorder of enclosed combustionMalfunctions of Temperature of enclosed combustionProblems with thermocouple40. Check/adjust/repair controller and/or wiring +Problems with thermocoupleControl DeviceCombusts LFGOther Control Device Problems with air loucers-Control device smoking (i.e. visible emissions) +Problems with air loucers45. Site-specific diagnosis procedures 46. Site-specific flog on sign of conders 46. Site-specific flog on sign of conders 46. Site-specific diagnosis procedures 47. Open manual louvers +Problems with hair loucers +Problems with hair aurestr -Problems with ha	LFG Control Device	Combusts LFG	Loss of Flame		31. Check/repair temperature monitoring equipment
Image: series of the series					
Image: state in the state in				-	
Image: series of the series					
Image: Control DeviceCombusts LFGOther Control Device-Problems with temperature monitoring (equipment36. Check/adjust LFGControl DeviceMalfunctions of Flow Bow from collection system to controlMalfunctions of Flow Dovice-Problems with ordice plate, pitot tube, or other in-line flow measuring device -Problems with outrice controls and/or wiring -Problems with device controls and/or wiring -Problems with device controls and/or wiring -Problems with chart recorder37. Check/adjust/repair flow measuring device and/or wiring 38. Check/repair aft art recorder 39. Replace paper in chart recorder 40. Check/adjust/repair thermocouple -Problems with device controls and/or wiring -Problems with device controls and/or wiring -Problems with chart recorder40. Check/adjust/repair thermocouple -Problems with device controls and/or wiring -Problems with chart recorder40. Check/adjust/repair thermocouple -Problems with device controls and/or wiring -Problems with chart recorderControl DeviceCombusts LFGOther Control Device -Problems with flare insulation -Problems with ari louvers -Problems with ari louvers -Problems with ari louvers -Problems with ari louvers -Problems with flare insulation -Problems with flare insulation -Problems with process -Problems with influe controllers -Problems with flare insulation -Problems with flare insulation -Problems with flare insulation -Problems with flare insulation -Problems with flare controllers -Problems with flare					-
Flow Monitoring/ flow from collection system to control Malfunctions of Flow Monitoring Recording pevice -Problems with orifice plate, pilot tube, or other in-line flow measuring device 37. Check/adjust/repair flow measuring device and/or wiring Recording Device Monitoring Recording pevice -Problems with orifice plate, pilot tube, or other in-line flow measuring device 37. Check/adjust/repair flow measuring device and/or wiring Temperature Monitoring/ Recording Device Monitors and records combustion temperature of enclosed combustion device Malfunctions of Temperature of enclosed combustion device -Problems with thermocouple -Problems with device controls and/or wiring -Problems with chart recorder 40. Check/adjust/repair thermocouple (1. Check/adjust/repair controller and/or wiring -Problems with device controls and/or wiring -Problems with chart recorder 40. Check/adjust/repair chart recorder Control Device Combusts LFG Other Control Device Malfunctions -Control device smoking (i.e. visible emissions) -Problems with flare insulation -Problems with flare arrester -Problems with flare insulatin -Problems with flare arrester -Problems with flare ar					
Recording Device system to control Device	Flow Monitoring/	Measures and records gas	Malfunctions of Flow		
system to control Device -Problems with chart recorder 39. Replace paper in chart recorder Temperature Monitoring/ Malfunctions of Temperature combustion temperature of enclosed combustion device Malfunctions of Temperature Monitoring/Recording Device -Problems with thermocouple -Problems with device controls and/or wiring -Problems with device control sand/or wiring -Problems with chart recorder 40. Check/adjust/repair thermocouple 41. Check/adjust/repair dectrical panel components 43. Check/repair chart recorder Control Device Combusts LFG Other Control Device Malfunctions -Control device smoking (i.e. visible emissions) -Problems with flare insulation -Problems with flare insulation -Problems with flare insulation -Problems with air louvers -Problems with air louvers 45. Site-specific diagnosis procedures 46. Site-specific responses actions based on diagnosis 47. Open manual louvers -Problems with pilot light system -Problems with air louvers -Problems with air louvers -Problems with air louvers -Problems with threncocuple -Problems with threncocuple -Pro	Recording Device		Monitoring/Recording	-Problems with device controls and/or wiring	38. Check/repair chart recorder
Recording Device combustion temperature of enclosed combustion device Monitoring/Recording Device -Problems with device controls and/or wiring 41. Check/adjust/repair controller and/or wiring Problems with chart recorder 42. Check/adjust/repair controller and/or wiring 42. Check/adjust/repair cleatrical panel components Control Device Combusts LFG Other Control Device -Control device smoking (i.e. visible emissions) 45. Site-specific diagnosis procedures Malfunctions -Problems with flare insulation -Problems with flare insulation 46. Site-specific diagnosis procedures Problems with pilot light system 47. Open manual louvers 48. Clean/drain flame arrestor -Problems with in flue controllers -Problems with air flue controllers 49. Clean/drain flame arrestor -Problems with flume arrester -Problems with flume arrester 50. Refil propane supply -Problems with flume arrester -Alarmed malfunction conditions not covered above 51. Check/repair pilot sparking system	5	system to control	Device		-
Recording Device combustion temperature of enclosed combustion device Monitoring/Recording Device -Problems with device controls and/or wiring 41. Check/adjust/repair controller and/or wiring Problems with chart recorder 42. Check/adjust/repair controller and/or wiring 42. Check/adjust/repair cleatrical panel components Control Device Combusts LFG Other Control Device -Control device smoking (i.e. visible emissions) 45. Site-specific diagnosis procedures Malfunctions -Problems with flare insulation -Problems with flare insulation 46. Site-specific diagnosis procedures Problems with pilot light system 47. Open manual louvers 48. Clean/drain flame arrestor -Problems with in flue controllers -Problems with air flue controllers 49. Clean/drain flame arrestor -Problems with flume arrester -Problems with flume arrester 50. Refil propane supply -Problems with flume arrester -Alarmed malfunction conditions not covered above 51. Check/repair pilot sparking system					
of enclosed combustion device Device -Problems with chart recorder 42. Check/adjust/repair electrical panel components 43. Check/adjust/repair chart recorder 43. Check/adjust/repair electrical panel components 43. Check/adjust/repair electrical panel components Control Device Combusts LFG Other Control Device -Control device smoking (i.e. visible emissions) 45. Site-specific diagnosis procedures Malfunctions -Problems with flare insulation 46. Site-specific responses actions based on diagnosis -Problems with pilot light system 47. Open manual louvers -Problems with in louvers 48. Clean/train flame arrestor -Problems with infract controlIers 40. Clean/train flame arrestor -Problems with flame arrester -Problems with flame arrester -Alarmed malfunction conditions not covered above 51. Check/repair pilot sparking system	Temperature Monitoring/	Monitors and records		-Problems with thermocouple	40. Check/adjust/repair thermocouple
device 42. Checkvapisrophareet on pair components 42. Checkvapisrophareet on pair components 43. Checkvapisrophareet on pair components 44. Replace paper in chart recorder 45. Site-specific diagnosis procedures Malfunctions -Problems with flare insulation -Problems with pilot light system 47. Open manual louvers -Problems with air fuevores 48. Clean/pilot office -Problems with thrmcouple 50. Refill propane supply -Problems with flare arester -Problems with flare strester -Alarmed malfunction conditions not covered above 51. Check/repair pilot sparking system	Recording Device			-Problems with device controls and/or wiring	41. Check/adjust/repair controller and/or wiring
device 43. Check/repair chart recorder Control Device Combusts LFG Other Control Device -Control device smoking (i.e. visible emissions) 45. Site-specific diagnosis procedures Malfunctions -Problems with flare insulation 46. Site-specific responses actions based on diagnosis -Problems with pilot light system 47. Open manual louvers -Problems with pilot upvers 48. Clean/tain flame arrestor -Problems with thermocouple 50. Refill propane supply -Problems with flame arrester 51. Check/repair pilot sparking system			Device	-Problems with chart recorder	42. Check/adjust/repair electrical panel components
Control Device Control Device -Control device smoking (i.e. visible emissions) 45. Site-specific diagnosis procedures Control Device Malfunctions -Problems with flare insulation 46. Site-specific responses actions based on diagnosis -Problems with pilot light system 47. Open manual louvers 47. Open manual louvers -Problems with pilot light system 48. Clean pilot orifice -Problems with air louvers -Problems with infue controllers 49. Clean/drain flame arrestor -Problems with burnets -Problems with flame arrester -Problems with flame arrester -Problems with flame arrester -Alarmed malfunction conditions not covered above -Alarmed malfunction conditions not covered above 51. Check/repair pilot sparking system		uevice			43. Check/repair chart recorder
Malfunctions -Problems with flare insulation 46. Site-specific responses actions based on diagnosis -Problems with pilot light system 47. Open manual louvers -Problems with pilot light system 47. Open manual louvers -Problems with air/fuel controllers 48. Clean pilot orifice -Problems with fuer controllers 49. Clean/tarin flame arrestor -Problems with flame arrester 50. Refill propane supply -Problems with flame arrester -Alarmed malfunction conditions not covered above		1			44. Replace paper in chart recorder
Malfunctions -Problems with flare insulation 46. Site-specific responses actions based on diagnosis -Problems with pilot light system 47. Open manual louvers -Problems with pilot light system 47. Open manual louvers -Problems with air/fuel controllers 48. Clean pilot orifice -Problems with fuer controllers 49. Clean/tarin flame arrestor -Problems with flame arrester 50. Refill propane supply -Problems with flame arrester -Alarmed malfunction conditions not covered above					
-Problems with pilot light system 47. Open manual louvers -Problems with air louvers 48. Clean joit or fifce -Problems with air fuel controllers 49. Clean/drain flame arrestor -Problems with hurnecouple 50. Refill propane supply -Problems with hurners 51. Check/repair pilot sparking system -Problems with flame arrester -Alarmed malfunction conditions not covered above	Control Device	Combusts LFG			
-Problems with air louvers 48. Clean pitot orifice -Problems with air/fuel controllers 49. Clean/drain flame arrestor -Problems with thermocouple 50. Refill propane supply -Problems with flame arrester 51. Check/repair pilot sparking system -Problems with flame arrester -Alarmed malfunction conditions not covered above		1	Malfunctions		
-Problems with air/fuel controllers 49. Clean/drain flame arrestor -Problems with thermocouple 50. Refill propane supply -Problems with flame arrester 51. Check/repair pilot sparking system -Problems ding function conditions not covered above 61. Check/repair pilot sparking system					
-Problems with thermocouple 50. Refill propane supply -Problems with burners 51. Check/repair pilot sparking system -Problems with finame arrester -Alarmed malfunction conditions not covered above					
-Problems with burners 51. Check/repair pilot sparking system -Problems with flame arrester -Alarmed malfunction conditions not covered above		1			
-Problems with flame arrester -Alarmed malfunction conditions not covered above					
-Alarmed malfunction conditions not covered above					51. Check repair prior sparking system
		1			
				-Alarmed malfunction conditions not covered above	

(b) For each permit limit exceedance complete an "SSM Plan Departure Form". Notify BAAQMD verbally or by fax within 2 working days after commencing the actions that an event inconsistent with the SSM Plan and which resulted in an exceedance of an applicable emission permit has occured. Follow up in writing to the agency within 7 working days after the end of the event.

APPENDIX D

FLARE TEMPERATURE AND FLOW DEVIATION REPORT

TRI-CITIES RECYCLING & DISPOSAL FACILITY, Fremont, CA TEMPERATURE & FLOW DEVIATION REPORT November 1, 2020 - April 30, 2021

REPORT PREPARED BY: TEMPERATURE SENSING DEVICE:			Mike Chan Thermocouple		DATE: MODEL:	May 25, 2021 Thermo-Electric				
START DATE TIME	END DATE TIME	DURATION (Hours)	TEMPERATURE (°F) / FLOW (SCFM)	CAUSE	EXPLANATION	ACTION TAKEN				
	No Deviations were reported in November 2020									
	No Deviations were reported in December 2020									
	No Deviations were reported in January 2021									
			No D	eviations were reported in Feb	uary 2021					
			No	Deviations were reported in Ma	rch 2021					
			No	Deviations were reported in Ap	oril 2021					
COMMENTS:	COMMENTS: 1) The A-3 Flare combustion zone 3-hour average temperature did not drop below the 1,450F limit, as required by Title V Permit Condition Number 8366, Part 6, during the reporting period while the flare was in operation.									
	2) The A-3 Flare 3-hour average combustion zone temperature did not drop below the 1,544°F (3/16/20 - 3/9/21) and 1,544°F (3/10/21 - present) limits established during the February 11, 2020 and February 4, 2021 source tests pursuant to 40 CFR §60.758(c)(1)(i).									
sofm - standard cubic feet per minute _ °E - Degrees Fabrenbeit										

scfm - standard cubic feet per minute °F - Degrees Fahrenheit

APPENDIX E

COVER INTEGRITY RESULTS

LOCATION:Tri-Cities Recycling and Disposal FacilityINSPECTION DATE:November 27, 2020TECHNICIAN:Matthew Frame

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation	Х		Bushses are green, grasses are brown
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap		Х	
Surface cracking		Х	
Storm water down drains clear	Х		
Storm water ditches inspected	Х		
Acceptable vegetation	Х		
Exposed waste		Х	

EPAIR AREAS:									
GPS	Coordinates	Date of Repair	COMMENTS						
Northing	Easting	Date of Repair	COMMENTS						

LOCATION:Tri-Cities Recycling and Disposal FacilityINSPECTION DATE:December 28, 2020TECHNICIAN:Matthew Frame

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap		Х	
Surface cracking		Х	
Storm water down drains clear	Х		
Storm water ditches inspected	Х		
Acceptable vegetation	Х		
Exposed waste		Х	

EPAIR AREAS:									
Coordinates	Data of Bonair	COMMENTS							
Easting		COMMENTS							
	Coordinates Easting	Coordinates Date of Repair Easting							

LOCATION:Tri-Cities Recycling and Disposal FacilityINSPECTION DATE:January 26, 2021TECHNICIAN:Matthew Frame

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap		Х	
Surface cracking		Х	
Storm water down drains clear	Х		
Storm water ditches inspected	Х		
Acceptable vegetation	Х		
Exposed waste		X	

Coordinates	Data of Bonair	COMMENTS
Easting		COMMENTS
	Coordinates Easting	Coordinates Date of Repair Easting

LOCATION:Tri-Cities Recycling and Disposal FacilityINSPECTION DATE:February 23, 2021TECHNICIAN:Matthew Frame

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap		Х	
Surface cracking		Х	
Storm water down drains clear	Х		
Storm water ditches inspected	Х		
Acceptable vegetation	Х		
Exposed waste		Х	

Coordinates	Data of Bonair	COMMENTS
Easting		COMMENTS
	Coordinates Easting	Coordinates Date of Repair Easting

LOCATION:Tri-Cities Recycling and Disposal FacilityINSPECTION DATE:March 30, 2021TECHNICIAN:Matthew Frame

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap		Х	
Surface cracking		Х	
Storm water down drains clear	Х		
Storm water ditches inspected	Х		
Acceptable vegetation	Х		
Exposed waste		Х	

Coordinates	Data of Bonair	COMMENTS
Easting		COMMENTS
	Coordinates Easting	Coordinates Date of Repair Easting

LOCATION:Tri-Cities Recycling and Disposal FacilityINSPECTION DATE:April 27, 2021TECHNICIAN:Matthew Frame

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation	Х		Dead from lack of rain.
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap		Х	
Surface cracking		Х	
Storm water down drains clear	Х		
Storm water ditches inspected	Х		
Acceptable vegetation	Х		
Exposed waste		Х	

REPAIR AREAS:			
GPS	S Coordinates	Data of Danair	COMMENTS
Northing	Easting	Date of Repair	COMIMENTS

APPENDIX F

SURFACE EMISSIONS/COMPONENT LEAK CHECK MONITORING REPORTS

WASTE MANAGEMENT

172 98th Avenue Oakland, CA 94603 (510) 430-8509

December 1, 2020

Mr. Patrick Madej Tri-Cities Recycling and Disposal Facility 7010 Auto Mall Parkway Fremont, California 94538

Re: Fourth Quarter 2020 Surface Emissions and Component Leak Monitoring Report for Tri-Cities Recycling and Disposal Facility

Dear Mr. Madej:

This monitoring report for "Tri-Cities Recycling and Disposal Facility (TCRDF)" contains the results of the Fourth Quarter 2020 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. All monitoring was performed by SCS Engineers (SCS).

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection procedures).

Component Leak

- BAAQMD Regulation 8, Rule 34, Section 301 (Landfill Gas Collection and Emission Control System Requirements) and Section 602 (Collection and Control System Leak Inspection procedures).
- CCR Title 17, Subchapter 10, Article 4, Subarticle 6, §95464.

TCRDF Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 16, 2011. After receipt of comments, this ACO was amended, restated, and submitted to BAAQMD on July 1, 2016. SEM and Component Leak monitoring was conducted according to the methods outlined in the July 1, 2016 ACO.

PROCEDURES

General

The surface of the TCRDF disposal area has been divided into one-hundred-and-nine (109), approximately 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the walking pattern as depicted the 2011 TCRDF AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

The monitoring probe was positioned 2 inches above the ground surface. While walking, the wand tip of the flame ionization detector (FID) was held within 2 inches of the landfill surface while traversing the grid. Per the approved alternative request, the wand tip of the FID was held at 2 inches of vegetation in areas where the landfill surface is covered with low-lying vegetation such as grasses while traversing the grid.

Monitoring Path

The TCRDF completed four consecutive instantaneous and integrated monitoring events with no exceedances. Pursuant to \$95471(c)(1)(B)1., sites that complete four consecutive integrated and instantaneous monitoring events with no exceedances may increase the walking pattern spacing from a 25-foot spacing to a 100-foot spacing. In the event that an integrated or instantaneous exceedance cannot be remediated within 10 calendar days or an exceedance is observed during a compliance inspection, the TCRDF will be required to revert to 25-foot spacing.

Combined Instantaneous and Integrated Surface Emissions Monitoring

The instantaneous and integrated SEM were performed simultaneously by SCS using Landtec SEM-500 flame ionization detectors (FID), calibrated to 500 parts per million by volume (ppm_v) methane. The devices meet or exceed all guidelines set forth in the CCR Title 17 §95471(a) and the United States Environmental Protection Agency (USEPA) Method 21 requirements.

SCS personnel walked the surface of the landfill on a grid by grid basis. After completing the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks.

Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppm_v (areas of concern) or 500 ppm_v (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map. Applicable corrective action and re-monitoring timelines are listed below:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
 - If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
 - If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed, and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.
- If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

The combined monitoring was conducted in accordance with the requirements of CCR Title 17 §95471(c)(2). Grids with integrated results greater than 25 ppm_v were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppm_v are subject to the following corrective action and re-monitoring timeline:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.
- If the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed, and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, all re-monitoring requirements have been completed.

• The second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the initial exceedance.

Component Leak Monitoring Procedures

SCS monitored the exposed LFG components under positive pressure (pipes, well heads, valves, blowers, and other mechanical appurtenances). All component leaks measured within 0.5 inches exceeding the compliance limit of 500 ppm_v per requirements outlined in pursuant to §Section 95464(b)(1)(B) and 1,000 ppm per requirements outlined in BAAQMD 8-34-303 were recorded. Component leaks are subject to the following timelines:

- 500-999 ppm_v leaks are subject to a 10-day repair and re-monitoring deadline from §95469(b)(3).
- Leaks at or above 1000 ppm_v are subject a 7-day repair and re-monitoring deadline from BAAQMD 8-34-301.2.

FOURTH QUARTER 2020 SEM AND COMPONENT LEAK RESULTS

Reduction of SEM Frequency

The TCRDF has completed four consecutive instantaneous and integrated monitoring events with no exceedances. Pursuant to §95469(2)(C), any closed or inactive areas of active MSW landfills with no integrated exceedances for four consecutive quarters may reduce the frequency of integrated and instantaneous SEM to an annual basis. In the event that an exceedance cannot be remediated within 10 calendar days or an exceedance is observed during a compliance inspection, the TCRDF will be required to revert to quarterly monitoring. The next SEM event is due by March 31, 2021.

Pursuant to 8-34-506, landfills that are closed as defined in 8-34-223 with no exceedances in three consecutive quarters may reduce the frequency of instantaneous SEM to an annual basis. Any exceedance detected during annual monitoring will require the site to revert to quarterly monitoring.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on October 27, 2020. There were no leaks detected above 500 ppm_v. Results are summarized in Attachment A.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 500 ppm_v in air to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: Response time test record; Response factor determination for methane; Calibration Precision test records; and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment B.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at (510) 613-2852.

Thank you, Waste Management

Auchael Chan

Michael Chan Environmental Protection Air Specialist

Attachment A –Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment B – Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Component Leak Monitoring Event Records

Table A.1AB-32 Component Leak MonitoringSummary of Component Leaks Greater than 500 ppmv

2020 QUARTER: 4 LANDFILL NAME: Tri-Cities Recycling and Disposal Facility

Location	Initial Monitoring			С	orrective Action	10-Day Remonitoring		
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
October 27, 2020: No Exceedances								

Table A.2BAAQMD Component Leak MonitoringSummary of Component Leaks Greater than 1,000 ppmv

2020 QUARTER: 4 LANDFILL NAME: Tri-Cities Recycling and Disposal Facility

Location	Initial Monitoring			С	orrective Action	7-Day Remonitoring		
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
October 27, 2020: No Exceedances								

Attachment B

Calibration Records

		SURFACE EMISSI			
Date:	_ 10-27-	70	Site Name:	Tri-cities	
Inspector(s):	Ryan Has	an	Instrument:	TVA 2020	
WEATHER C	BSERVATIONS			194	
		Wind		Barometric	
Wind Spe	ed:МРН	Direction: 5	-	Pressure: 30	"Hg
Temperatu	Air re: 76 °F	General Weather Conditions:			
ALIBRATIO	N INFORMATION				
re-monitorir	ng Calibration Precision Check				
rocedure: Ca	librate the instrument. Make	a total of three measuremen	its by alternatina zei	o air and the calibration	aas Record the reading
nd calculate	the average algebraic differe	nce between the instrument r	reading and the calil	pration gas as a percenta	ges. The calibration
recision mus	t be less than or equal to 10% rial Number: $ \mathcal{P} $				
nstrument Se	rial Number:		(Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading		Cal Gas Reading	Response Time (secon
1	.3	500	0		3
2	- 3	500	0		3
	- 7	501	[)
		= 100%-		00 x 100%	
		= 99,9	%		
an Sensitivit	y:				
<u>ial 1:</u>	Counts Observed for the Span	= [1248]	Trial 3: Counts (Observed for the Span=	111997
	unters Observed for the Zero	= 3834	Counters	Observed for the Zero=	3791
al 2:	Counts Observed for the Span	10.007			
	Journs Observed for the span	= 112391			
(unters Observed for the Span				
(Co					
Co Dost Monitorin	unters Observed for the Zero	- 3880			
Co St Monitorin ro Air	unters Observed for the Zero		500 ppr	n	
Co Ost Monitorin ro Air rəding:	unters Observed for the Zero g Calibration Check	= 3880 Cal Gas Reading:	500 ppr	n	
Co est Monitorin ro Air ading: ACKGROUNE	unters Observed for the Zero g Calibration Check	= 3880 Cal Gas Reading: (s entrance			om
Co Oost Monitorin Pro Air Pro	unters Observed for the Zero g Calibration Check	= 3880 Cal Gas Reading:	Rea	ding:p	om

SCS DataServices - Secure Environmental Data

1				POST
		CALIBRATION ANI	D PERTINENT DATA	1001
Date:		LO	Site Name: Tricitle	5
Inspector	(s): <u>Ryan Itaslan</u>	1	Instrument: TVA 2020	
WEATHE	ROBSERVATIONS			
Wind	Speed: <u> </u>	Wind Direction:	Barometric Pressure: 30	"Hg
Temper	Air 76 °F	General Weather Conditions:	<i>F</i>	
CALIBRA	TION INFORMATION			
Pre-monit	oring Calibration Precision Check			
and calcul precision r		e between the instrument r ^t the calibration gas value.	its by alternating zero air and the calibratic reading and the calibration gas as a percen Cal Gas Concentration:	
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
1	- 3	501		4 1
2	. 3	500	0	3
3	•2	499		3
		= 100%- = 99, 8	<u>7</u> /500 x 100% %	
pan Sensi	tivity:			
rial 1:	Counts Observed for the Span=	109466	Trial 3: Counts Observed for the Span=	110500
	Counters Observed for the Zero=	4022	Counters Observed for the Zero=	
rial 2:	Counts Observed for the Span=	110371		
	Counters Observed for the Zero=	4054		
ost Monit	oring Calibration Check			
ara Air				
ero Air eading:	ppm	Cal Gas Reading:	500 ppm	
ACKGRO	UND CONCENTRATIONS CHECKS			
pwind Loc	ation Description:	entrance	Reading:	ppm
ownwind	Location Description;	entrance Flare	Reading: 1.5	ppm
otes:	exceeded 20 miles per hour.	No rainfall had occurred wi	e alternative requested 10 miles per hour a thin the previous 24 hours of the monitorir ernatives of the LMR requirements on the a	ng event. Therefore, site

And the second

	3(CS.	Data	Services -	Secure Environmental	Date
--	----	-----	------	------------	----------------------	------

22 Albiston Way Auburn, ME 04210 800-292-6218 207-777-6218 Fax 207-777-6215 www.specair.com

Date: 03/25/2020

Certificate of Analysis

Customer: QED EVIRONMENTAL SYSTEMS Cylinder Size: 105L CGA Connection: C10 Fill Pressure: 1000 PSI

Analysis: Certified Batch Analysis

Lot #: 4008501

Order #: 1736278

Purchase Order #: 135856

Component(s): Methane Air

Requested Concentration(s): 500 PPM BALANCE

Actual Concentration(s): 495 PPM BALANCE

Expiration Date: 03/2023

Comments: MIX MADE USING DIGITAL BALANCES CALIBRATED TO NIST TRACEABLE WEIGHTS / ACCURACY: +/- 5% METHOD OF PREPARATION: GRAVIMETRIC / PRESSURE TRANSFILLING ANALYTICAL PRINCIPLE: GC (TCD)

Approved By:

Ron Allon J.

Ron Abbott

• Results are reported in mole percent, unless otherwise indicated. Mixes are prepared via partic

Jh load high sensitivity electronic scales. Prior to use, scales are verified for accuracy using applicable NIST traceable weights; analyses are calibrated against reference materials traceable to NIST weights and/or NIST gas reference materials.

• The information contained herein has been prepared at your request by qualified experts. While we believe that the information is accurate within the limits of the analytical methods employed, and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability arising out of the use of the information contained herein exceed the fee established for providing such information.

• This certifies that the instruments used for this analysis have been calibrated in compliance with the specifications in the order using SI/NIST traceable standards. When a statement of conformity is made, accept/reject decisions consider the measurement uncertainty and the specification tolerance. When the measurand and uncertainty are reported, measurement uncertainties are declared in the analytical results and the analytical results are not adjusted to consider measurement uncertainties.

22 Albiston Way Auburn, ME 04210 800-292-6218 207-777-6218 Fax 207-777-6215 www.specair.com

Date: 11/25/2019

Certificate of Analysis

Customer: QED EVIRONMENTAL SYSTEMS Order #: 1666448 Purchase Order #: 134463

Results are reported in mole percent, unless otherwise indicated. Mixes are prepared via partial pressure methods, or gravimetrically, using high load high sensitivity electronic scales. Prior to use, scales are verified for accuracy using applicable NIST traceable weights; analyses are calibrated against reference materials traceable to NIST weights and/or NIST gas reference materials.

Cylinder Size: 105L	CGA Connection: C10 Fill Pr	essure: 1000 PSI	
Analysis: Air Batch A	nalysis	Lot #: 4932903	
Component(s):	Requested Concentration(s):	Actual Concentration(s):	
Oxygen	19.5%-23.5%	20.8%	
Moisture	< 3 PPM	1.2 PPM	
THC	< 0.1 PPM	< 0.1 PPM	
CO/CO2	< 1 PPM	< 1 PPM	

Expiration Date: 11/2022

Comments: MEETS OR EXCEEDS ULTRA ZERO GRADE AIR

Approved By:

Kon Allan !

Ron Abbott

CGAIR-O AIR: ULTRA ZERO GRADE

The information contained herein has been prepared at your request by qualified experts. While we believe that the information is accurate within the limits of the analytical methods employed, and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability arising out of the use of the information contained herein exceed the fee established for providing such information.

WASTE MANAGEMENT

172 98th Avenue Oakland, CA 94603 (510) 430-8509

May 4, 2021

Mr. Patrick Madej Tri-Cities Recycling and Disposal Facility 7010 Auto Mall Parkway Fremont, California 94538

Re: First Quarter 2021 Surface Emissions and Component Leak Monitoring Report for Tri-Cities Recycling and Disposal Facility

Dear Mr. Madej:

This monitoring report for "Tri-Cities Recycling and Disposal Facility (TCRDF)" contains the results of the First Quarter 2021 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. All monitoring was performed by SCS Engineers (SCS).

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection procedures).

Component Leak

- BAAQMD Regulation 8, Rule 34, Section 301 (Landfill Gas Collection and Emission Control System Requirements) and Section 602 (Collection and Control System Leak Inspection procedures).
- CCR Title 17, Subchapter 10, Article 4, Subarticle 6, §95464.

TCRDF Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 16, 2011. After receipt of comments, this ACO was amended, restated, and submitted to BAAQMD on July 1, 2016. SEM and Component Leak monitoring was conducted according to the methods outlined in the July 1, 2016 ACO.

PROCEDURES

General

The surface of the TCRDF disposal area has been divided into one-hundred-and-nine (109), approximately 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the walking pattern as depicted the 2011 TCRDF AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

The monitoring probe was positioned 2 inches above the ground surface. While walking, the wand tip of the flame ionization detector (FID) was held within 2 inches of the landfill surface while traversing the grid. Per the approved alternative request, the wand tip of the FID was held at 2 inches of vegetation in areas where the landfill surface is covered with low-lying vegetation such as grasses while traversing the grid.

Monitoring Path

The TCRDF completed four consecutive instantaneous and integrated monitoring events with no exceedances. Pursuant to \$95471(c)(1)(B)1., sites that complete four consecutive integrated and instantaneous monitoring events with no exceedances my increase the walking pattern spacing from a 25-foot spacing to a 100-foot spacing. In the event that an integrated or instantaneous exceedance cannot be remediated within 10 calendar days or an exceedance is observed during a compliance inspection, the TCRDF will be required to revert to 25-foot spacing.

Combined Instantaneous and Integrated Surface Emissions Monitoring

The instantaneous and integrated SEM were performed simultaneously by SCS using Thermo Scientific TVA2020 flame ionization detectors (FID), calibrated to 500 parts per million by volume (ppm_v) methane. The devices meet or exceed all guidelines set forth in the CCR Title 17 §95471(a) and the United States Environmental Protection Agency (USEPA) Method 21 requirements.

SCS personnel walked the surface of the landfill on a grid by grid basis. After completing the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppm_v (areas of concern) or 500 ppm_v (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map. Applicable corrective action and re-monitoring timelines are listed below:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
 - If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
 - If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.
- If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

The combined monitoring was conducted in accordance with the requirements of CCR Title 17 §95471(c)(2). Grids with results greater than 25 ppm_v were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppm_v are subject to the following corrective action and re-monitoring timeline:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.
- If the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.

- If the second 10-day re-monitoring event shows the second exceedance is corrected, all re-monitoring requirements have been completed.
- The second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the initial exceedance.

Component Leak Monitoring Procedures

SCS monitored the exposed LFG components under positive pressure (pipes, well heads, valves, blowers, and other mechanical appurtenances). All component leaks measured within 0.5 inches exceeding the compliance limit of 500 ppm_v per requirements outlined in pursuant to §Section 95464(b)(1)(B) and 1,000 ppm per requirements outlined in BAAQMD 8-34-303 were recorded. Component leaks are subject to the following timelines:

- 500-999 ppm_v leaks are subject to a 10-day repair and re-monitoring deadline from \$95469(b)(3).
- Leaks at or above 1000 ppm_v are subject a 7-day repair and re-monitoring deadline from BAAQMD 8-34-301.2.

FIRST QUARTER 2021 SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and component leak monitoring results completed for the First Quarter 2021.

Instantaneous Surface Emissions Monitoring Results

The Instantaneous surface monitoring was performed on January 12, 2021 in accordance with the NSPS, BAAQMD 8-34, and CCR Title 17 §95469 and ACO. There were no readings greater than 200 ppm_v or 500 ppm_v observed during the initial monitoring. Results are summarized in Attachment A.

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on January 12, 2021 in accordance with the ACO and requirements outlined in CCR Title 17 §95469. There were no grids with exceedances of 25 ppm_v as methane detected. Results are summarized in Attachment B.

Reduction of SEM Frequency

The TCRDF has completed four consecutive instantaneous and integrated monitoring events with no exceedances. Pursuant to §95469(2)(C), any closed or inactive areas of active MSW landfills with no integrated exceedances for four consecutive quarters may reduce the frequency of integrated and instantaneous SEM to an annual basis. In the event that an exceedance cannot be remediated within 10 calendar days or an exceedance is observed during a compliance inspection, the TCRDF will be required to revert to quarterly monitoring. The next SEM event is due by March 31, 2022.

Pursuant to 8-34-506, landfills that are closed as defined in 8-34-223 with no exceedances in three consecutive quarters may reduce the frequency of instantaneous SEM to an annual basis. Any exceedance detected during annual monitoring will require the site to revert to quarterly monitoring.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on January 12, 2021. There were no leaks detected above 500 ppm_v. Results are summarized in Attachment C.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a data recorder that records the wind speed and direction. The chart data is in Attachment D and shows that all monitoring met the wind speed requirements from the ACO (no gusts greater than 20 miles per hour, average wind speed cannot exceed 10 mph).

Precipitation Requirements

Initial monitoring was carefully scheduled to meet the precipitation requirements from the BAAQMD's June 27, 2016 response letter to the ACO (no precipitation ≥ 0.01 " within 24 hours, ≥ 0.16 " within 48 hours, nor ≥ 0.25 " within 72 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document. Precipitation data is included with the wind data in Attachment D.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25 ppm_v in air for integrated sample analyses and 500 ppm_v in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: response time test record; response factor determination for methane; Calibration Precision test records; and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at (510) 613-2852.

Thank you, Waste Management

Auchael Chan

Michael Chan Environmental Protection Air Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map
- Instantaneous Surface Emissions Monitoring Results

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map
- Integrated Surface Emissions Monitoring Results

Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment D – Weather Data

• Weather Station Chart Data

Attachment E – Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

Table A.1Instantaneous Landfill Surface Emissions MonitoringInitial Monitoring Event Areas of Concern

2021 QUARTER:1PERFORMED BY:SCSLANDFILL NAME:Tri-Cities Recycling and Disposal Facility

Flag Number	Grid Number	Date of Monitoring	Concentration of Emission (ppmv)	Comments				
		No exceedances						
Notes: Please refer t	Notes: Please refer to field data sheets for details							

Table A.2Instantaneous Landfill Surface Emissions MonitoringExceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

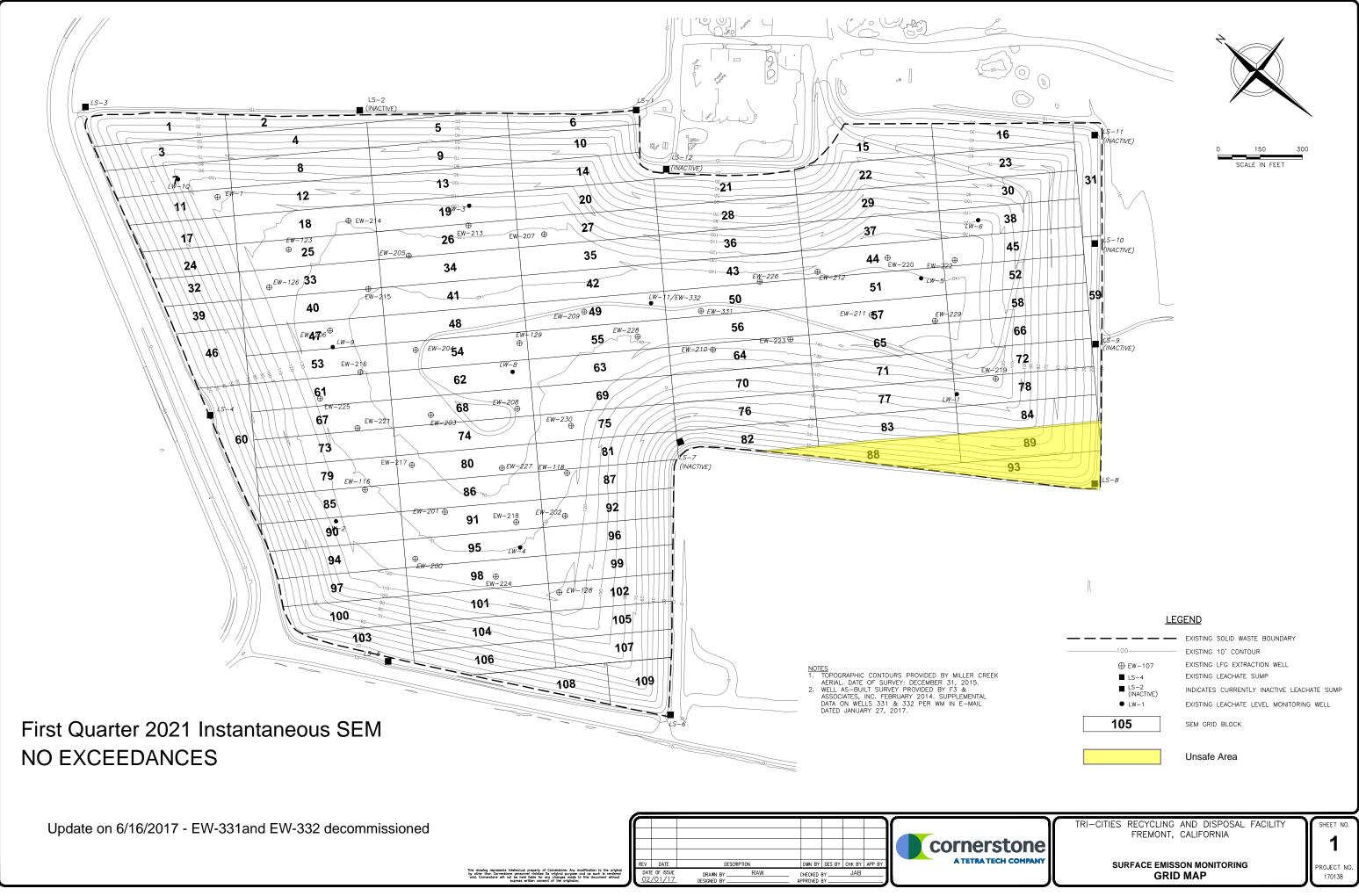
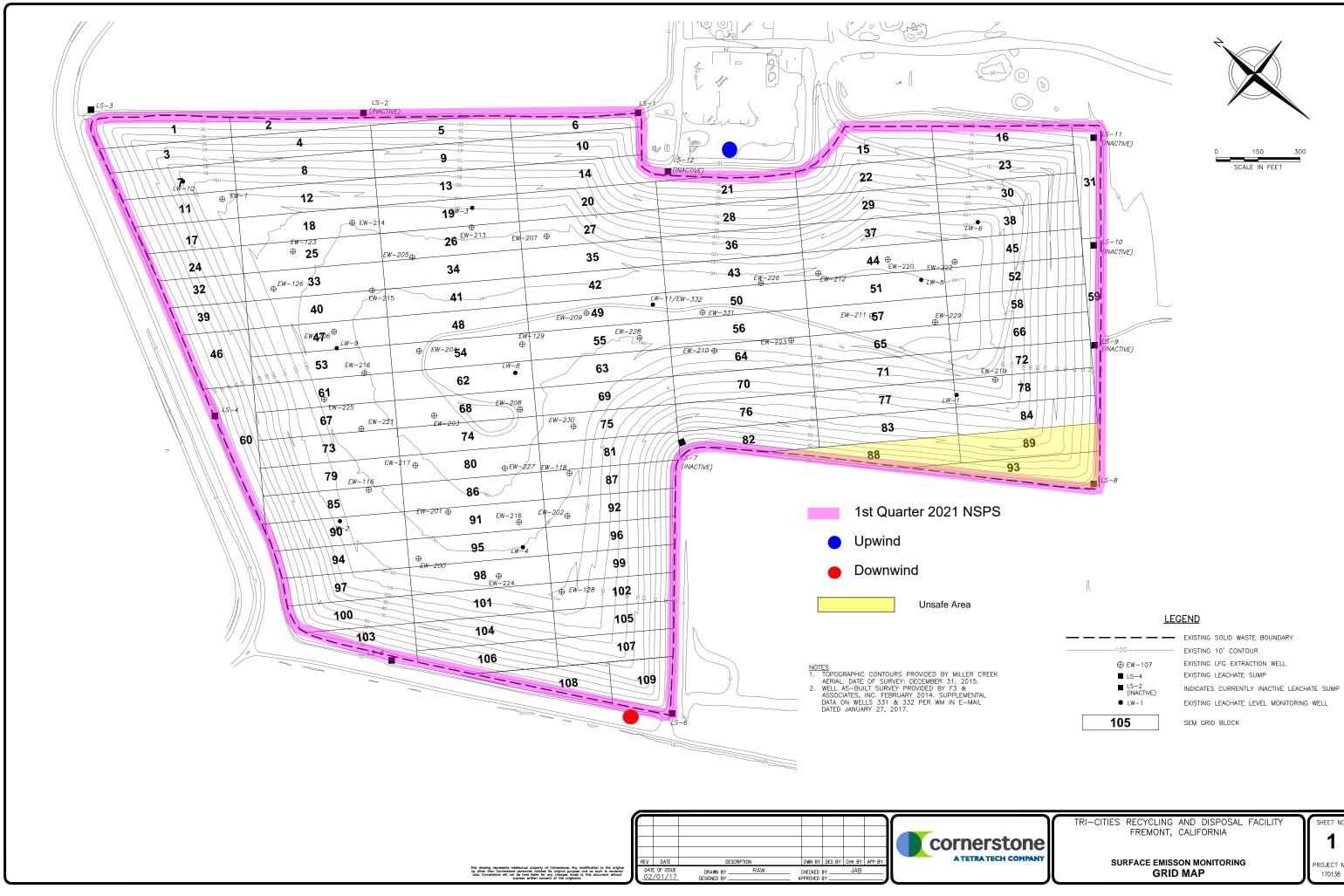

Initial	Monitoring	Event	1st 1	0-day Follo	-day Follow-Up		0-day Follo		
Flag	Monitoring	Field	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
N/A									No exceedances

Table A.3Instantaneous Landfill Surface Emissions MonitoringExceedance and Monitoring Logs (AB-32)

Initial	Initial Monitoring Event			non Event -		
Flag	Monitoring	Field	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	<500 ppm	>500 ppm	Comments
N/A						No exceedances


Table A.4Instantaneous Landfill Surface Emissions MonitoringAreas of Concern Greater than 200 ppmv

Initial Monitoring Event			itial Monitoring Event Re-mon Event			
Flag	Monitoring	Field	Monitoring	Reading	Comments	
Number	Date	Reading	Date	ppm		
N/A					No 200-499 ppmv locations	

1/2" 0" ||||||||

~— —

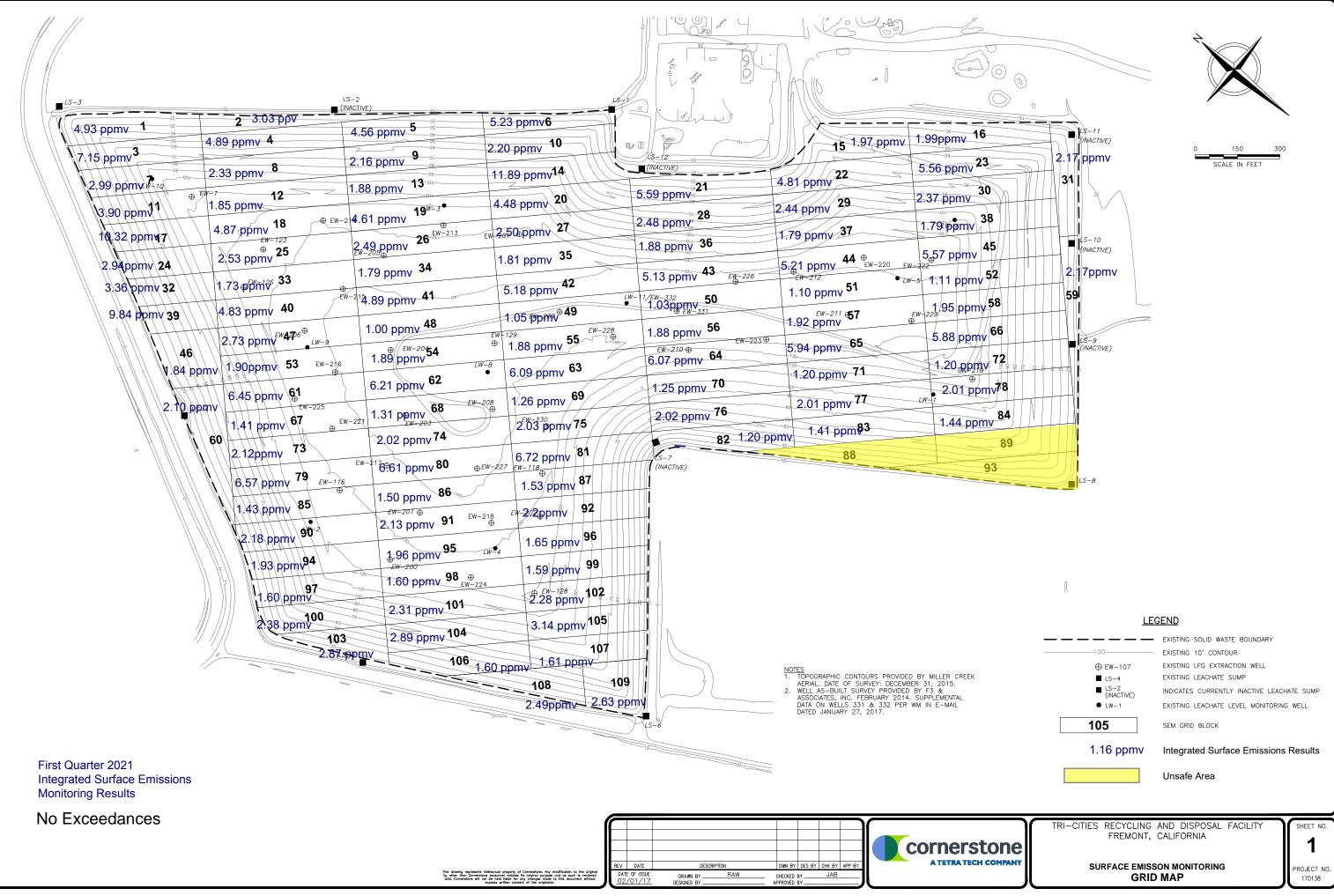
° —

1/2"

SHEET NO. PROJECT NO. 170138

Point Name	Record Date	FID Concentration (ppm)	Minimum Instantaneous Concentration (ppmv)	Maximum Instantaneous Concentration (ppmv)	Comments
1	1/12/2021	4.93	2.40	11.20	
2	1/12/2021	3.03	2.30	6.40	
3	1/12/2021	7.15	2.40	46.40	
4	1/12/2021	4.98	4.40	6.80	
5	1/12/2021	4.56	3.80	5.70	
6	1/12/2021	5.23	4.40	6.90	
7	1/12/2021	2.99	2.20	5.00	
8	1/12/2021	2.33	2.10	3.30	
9	1/12/2021	2.16	2.10	2.20	
10	1/12/2021	2.20	2.20	2.30	
11	1/12/2021	3.90	2.00	7.40	
12	1/12/2021	1.85	1.70	2.00	
13	1/12/2021	1.88	1.80	1.90	
14	1/12/2021	1.89	1.80	2.00	
15	1/12/2021	1.97	1.90	2.10	
16	1/12/2021	1.99	1.90	2.00	
17	1/12/2021	10.32	5.20	24.50	
18	1/12/2021	4.87	4.60	5.30	
19	1/12/2021	4.61	4.30	4.90	
20	1/12/2021	4.48	4.20	4.90	
21	1/12/2021	5.59	4.40	13.60	
22	1/12/2021	4.81	4.40	5.20	
23	1/12/2021	5.56	4.90	6.00	
24	1/12/2021	2.94	2.60	4.50	
25	1/12/2021	2.53	2.50	2.60	
26	1/12/2021	2.49	2.40	2.50	
27	1/12/2021	2.50	2.50	2.50	
28	1/12/2021	2.48	2.40	2.50	
29	1/12/2021	2.44	2.40	2.50	
30	1/12/2021	2.37	2.30	2.40	
31	1/12/2021	2.17	1.80	2.30	
32	1/12/2021	3.36	2.00	7.40	
33	1/12/2021	1.73	1.70	1.90	
34	1/12/2021	1.79	1.70	2.10	
35	1/12/2021	1.81	1.70	1.90	
36	1/12/2021	1.88	1.80	2.00	
37	1/12/2021	1.79	1.70	1.90	
38	1/12/2021	1.79	1.70	1.80	
39	1/12/2021	9.84	5.40	18.80	
40	1/12/2021	4.83	4.60	5.10	
41	1/12/2021	4.89	4.60	5.10	
42	1/12/2021	5.18	4.90	5.40	
43	1/12/2021	5.13	4.60	5.80	
44	1/12/2021	5.21	5.00	5.60	
45	1/12/2021	5.57	5.30	5.80	
46	1/12/2021	1.84	0.90	2.70	
47	1/12/2021	2.73	2.70	2.80	

Point Name	Record Date	FID Concentration (ppm)	Minimum Instantaneous Concentration (ppmv)	Maximum Instantaneous Concentration (ppmv)	Comments
48	1/12/2021	1.00	1.00	1.00	
49	1/12/2021	1.05	1.00	1.10	
50	1/12/2021	1.03	1.00	1.10	
51	1/12/2021	1.10	1.00	1.10	
52	1/12/2021	1.11	1.00	1.20	
53	1/12/2021	1.90	1.80	2.00	
54	1/12/2021	1.89	1.80	1.90	
55	1/12/2021	1.88	1.80	1.90	
56	1/12/2021	1.88	1.80	1.90	
57	1/12/2021	1.92	1.90	2.00	
58	1/12/2021	1.95	1.90	2.00	
59	1/12/2021	2.17	2.10	2.40	
60	1/12/2021	2.21	2.10	2.30	
61	1/12/2021	6.45	6.10	6.80	
62	1/12/2021	6.21	6.00	6.40	
63	1/12/2021	6.09	5.90	6.30	
64	1/12/2021	6.07	5.90	6.20	
65	1/12/2021	5.94	5.70	6.20	
66	1/12/2021	5.88	5.70	6.00	
67	1/12/2021	1.41	1.30	1.50	
68	1/12/2021	1.31	1.30	1.40	
69	1/12/2021	1.26	1.20	1.30	
70	1/12/2021	1.25	1.20	1.30	
71	1/12/2021	1.20	1.20	1.20	
72	1/12/2021	1.20	1.20	1.20	
73	1/12/2021	2.12	2.10	2.20	
74	1/12/2021	2.02	2.00	2.10	
75	1/12/2021	2.03	2.00	2.10	
76	1/12/2021	2.02	2.00	2.10	
77	1/12/2021	2.01	2.00	2.10	
78	1/12/2021	2.01	2.00	2.10	
79	1/12/2021	6.57	6.40	6.90	
80	1/12/2021	6.61	6.40	6.90	
81	1/12/2021	6.72	6.40	6.90	
82	1/12/2021	1.20	1.00	1.40	
83	1/12/2021	1.41	1.20	1.70	
84	1/12/2021	1.44	1.20	1.80	
85	1/12/2021	1.43	1.40	1.50	
86	1/12/2021	1.50	1.50	1.50	
87	1/12/2021	1.53	1.50	1.60	
88					Native
89					Native
90	1/12/2021	2.18	2.10	2.20	
91	1/12/2021	2.13	2.10	2.20	
92	1/12/2021	2.20	2.10	2.30	
93					Native
94	1/12/2021	1.93	1.60	2.20	


Point Name	Record Date	FID Concentration (ppm)	Minimum Instantaneous Concentration (ppmv)	Maximum Instantaneous Concentration (ppmv)	Comments
95	1/12/2021	1.96	1.70	2.30	
96	1/12/2021	1.65	1.40	1.80	
97	1/12/2021	1.60	1.60	1.60	
98	1/12/2021	1.60	1.50	1.60	
99	1/12/2021	1.59	1.50	1.60	
100	1/12/2021	2.38	2.30	2.40	
101	1/12/2021	2.31	2.20	2.40	
102	1/12/2021	2.28	2.20	2.30	
103	1/12/2021	2.87	2.70	3.10	
104	1/12/2021	2.89	2.70	3.10	
105	1/12/2021	3.14	2.80	3.50	
106	1/12/2021	1.60	1.60	1.60	
107	1/12/2021	1.61	1.60	1.70	
108	1/12/2021	2.49	2.40	2.50	
109	1/12/2021	2.63	2.50	2.70	

Attachment B

Integrated Surface Emission Monitoring Event Records

Table B.1 Integrated Landfill Surface Monitoring Exceedances and Monitoring Log

Initial Monitoring Event			1st Re-m			
Exceedance	Monitoring	Field	Monitoring	No Exced.	No Exced.	
Grid ID No.	Date	Reading	Date	<25 ppm	>25 ppm	Comments
			No Exceeda	nces		

Point Name	Record Date	FID Concentration (ppm)	Minimum Instantaneous Concentration (ppmv)	Maximum Instantaneous Concentration (ppmv)	Comments
1	1/12/2021	4.93	2.40	11.20	
2	1/12/2021	3.03	2.30	6.40	
3	1/12/2021	7.15	2.40	46.40	
4	1/12/2021	4.98	4.40	6.80	
5	1/12/2021	4.56	3.80	5.70	
6	1/12/2021	5.23	4.40	6.90	
7	1/12/2021	2.99	2.20	5.00	
8	1/12/2021	2.33	2.10	3.30	
9	1/12/2021	2.16	2.10	2.20	
10	1/12/2021	2.20	2.20	2.30	
11	1/12/2021	3.90	2.00	7.40	
12	1/12/2021	1.85	1.70	2.00	
13	1/12/2021	1.88	1.80	1.90	
14	1/12/2021	1.89	1.80	2.00	
15	1/12/2021	1.97	1.90	2.10	
16	1/12/2021	1.99	1.90	2.00	
17	1/12/2021	10.32	5.20	24.50	
18	1/12/2021	4.87	4.60	5.30	
19	1/12/2021	4.61	4.30	4.90	
20	1/12/2021	4.48	4.20	4.90	
21	1/12/2021	5.59	4.40	13.60	
22	1/12/2021	4.81	4.40	5.20	
23	1/12/2021	5.56	4.90	6.00	
24	1/12/2021	2.94	2.60	4.50	
25	1/12/2021	2.53	2.50	2.60	
26	1/12/2021	2.49	2.40	2.50	
27	1/12/2021	2.50	2.50	2.50	
28	1/12/2021	2.48	2.40	2.50	
29	1/12/2021	2.44	2.40	2.50	
30	1/12/2021	2.37	2.30	2.40	
31	1/12/2021	2.17	1.80	2.30	
32	1/12/2021	3.36	2.00	7.40	
33	1/12/2021	1.73	1.70	1.90	
34	1/12/2021	1.79	1.70	2.10	
35	1/12/2021	1.81	1.70	1.90	
36	1/12/2021	1.88	1.80	2.00	
37	1/12/2021	1.79	1.70	1.90	
38	1/12/2021	1.79	1.70	1.80	
39	1/12/2021	9.84	5.40	18.80	
40	1/12/2021	4.83	4.60	5.10	
41	1/12/2021	4.89	4.60	5.10	
42	1/12/2021	5.18	4.90	5.40	
43	1/12/2021	5.13	4.60	5.80	
44	1/12/2021	5.21	5.00	5.60	
45	1/12/2021	5.57	5.30	5.80	
46	1/12/2021	1.84	0.90	2.70	
47	1/12/2021	2.73	2.70	2.80	

Point Name	Record Date	FID Concentration (ppm)	Minimum Instantaneous Concentration (ppmv)	Maximum Instantaneous Concentration (ppmv)	Comments
48	1/12/2021	1.00	1.00	1.00	
49	1/12/2021	1.05	1.00	1.10	
50	1/12/2021	1.03	1.00	1.10	
51	1/12/2021	1.10	1.00	1.10	
52	1/12/2021	1.11	1.00	1.20	
53	1/12/2021	1.90	1.80	2.00	
54	1/12/2021	1.89	1.80	1.90	
55	1/12/2021	1.88	1.80	1.90	
56	1/12/2021	1.88	1.80	1.90	
57	1/12/2021	1.92	1.90	2.00	
58	1/12/2021	1.95	1.90	2.00	
59	1/12/2021	2.17	2.10	2.40	
60	1/12/2021	2.21	2.10	2.30	
61	1/12/2021	6.45	6.10	6.80	
62	1/12/2021	6.21	6.00	6.40	
63	1/12/2021	6.09	5.90	6.30	
64	1/12/2021	6.07	5.90	6.20	
65	1/12/2021	5.94	5.70	6.20	
66	1/12/2021	5.88	5.70	6.00	
67	1/12/2021	1.41	1.30	1.50	
68	1/12/2021	1.31	1.30	1.40	
69	1/12/2021	1.26	1.20	1.30	
70	1/12/2021	1.25	1.20	1.30	
71	1/12/2021	1.20	1.20	1.20	
72	1/12/2021	1.20	1.20	1.20	
73	1/12/2021	2.12	2.10	2.20	
74	1/12/2021	2.02	2.00	2.10	
75	1/12/2021	2.03	2.00	2.10	
76	1/12/2021	2.02	2.00	2.10	
77	1/12/2021	2.01	2.00	2.10	
78	1/12/2021	2.01	2.00	2.10	
79	1/12/2021	6.57	6.40	6.90	
80	1/12/2021	6.61	6.40	6.90	
81	1/12/2021	6.72	6.40	6.90	
82	1/12/2021	1.20	1.00	1.40	
83	1/12/2021	1.41	1.20	1.70	
84	1/12/2021	1.44	1.20	1.80	
85	1/12/2021	1.43	1.40	1.50	
86	1/12/2021	1.50	1.50	1.50	
87	1/12/2021	1.53	1.50	1.60	
88					Native
89					Native
90	1/12/2021	2.18	2.10	2.20	
91	1/12/2021	2.13	2.10	2.20	
92	1/12/2021	2.20	2.10	2.30	
93					Native
94	1/12/2021	1.93	1.60	2.20	

Point Name	Record Date	FID Concentration (ppm)	Minimum Instantaneous Concentration (ppmv)	Maximum Instantaneous Concentration (ppmv)	Comments
95	1/12/2021	1.96	1.70	2.30	
96	1/12/2021	1.65	1.40	1.80	
97	1/12/2021	1.60	1.60	1.60	
98	1/12/2021	1.60	1.50	1.60	
99	1/12/2021	1.59	1.50	1.60	
100	1/12/2021	2.38	2.30	2.40	
101	1/12/2021	2.31	2.20	2.40	
102	1/12/2021	2.28	2.20	2.30	
103	1/12/2021	2.87	2.70	3.10	
104	1/12/2021	2.89	2.70	3.10	
105	1/12/2021	3.14	2.80	3.50	
106	1/12/2021	1.60	1.60	1.60	
107	1/12/2021	1.61	1.60	1.70	
108	1/12/2021	2.49	2.40	2.50	
109	1/12/2021	2.63	2.50	2.70	

Attachment C

Component Leak Monitoring Event Records

Table C.1AB-32 Component Leak MonitoringSummary of Component Leaks Greater than 500 ppmv

2021 QUARTER:

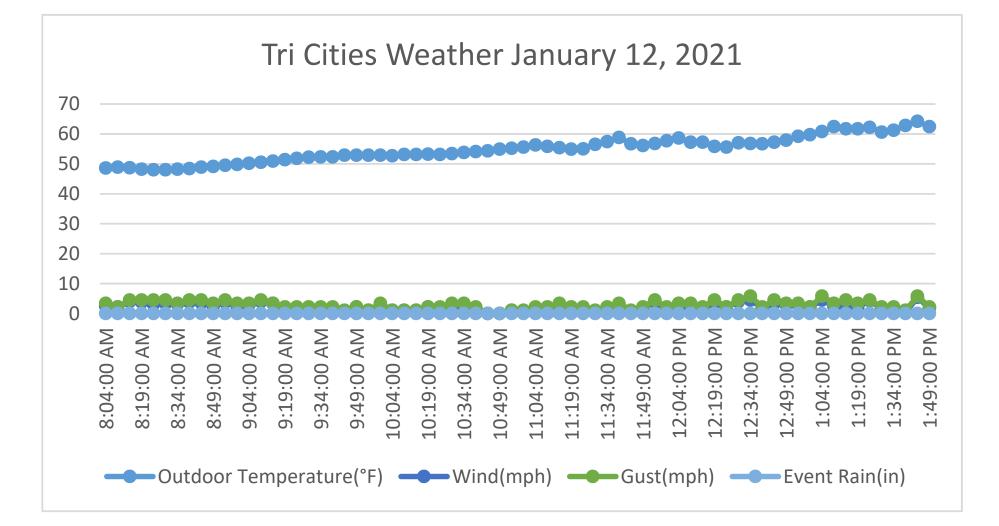
LANDFILL NAME: Tri-Cities Recycling and Disposal Facility

1

Location	Initial Monitoring		Corrective Action		10-Day Remonitoring			
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
No Exceedances								

Table C.2BAAQMD Component Leak MonitoringSummary of Component Leaks Greater than 1,000 ppmv

2021 QUARTER: 1 LANDFILL NAME: Tri-Cities Recycling and Disposal Facility


Location	Initial Monitoring		Corrective Action		7-Day Remonitoring			
Eocation	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
No Exceedances								

First Quarter 2021 Component Emissions Monitoring Tri-Cities Recycling and Disposal Facility, Fremont, California

Device Name	Date Time	Valve PPM	Flex PPM	Bore Seal	Comments
TRIC0001	1/12/2021 0:00	2	2	3	
TRIC0116	1/12/2021 0:00	3	2	3	
TRIC0118	1/12/2021 0:00	2	2	3	
TRIC0123	1/12/2021 0:00	2	2	3	
TRIC0126	1/12/2021 0:00	2	2	5	
TRIC0128	1/12/2021 0:00	3	3	3	
TRIC0129	1/12/2021 0:00	2	2	3	
TRIC0200	1/12/2021 0:00	3	2	5	
TRIC0201	1/12/2021 0:00	2	2	3	
TRIC0202	1/12/2021 0:00	3	3	3	
TRIC0204	1/12/2021 0:00	3	2	5	
TRIC0205	1/12/2021 0:00	2	2	3	
TRIC0206	1/12/2021 0:00	4	3	3	
TRIC0207	1/12/2021 0:00	3	2	3	
TRIC0208	1/12/2021 0:00	3	3	5	
TRIC0209	1/12/2021 0:00	4	2	5	
TRIC0210	1/12/2021 0:00	3	3	3	
TRIC0211	1/12/2021 0:00	3	2	3	
TRIC0212	1/12/2021 0:00	3	3	2	
TRIC0213	1/12/2021 0:00	2	2	3	
TRIC0214	1/12/2021 0:00	2	3	3	
TRIC0215	1/12/2021 0:00	2	3	2	
TRIC0218	1/12/2021 0:00	3	3	3	
TRIC0219	1/12/2021 0:00	2	2	3	
TRIC0220	1/12/2021 0:00	3	2	4	
TRIC0222	1/12/2021 0:00	2	3	3	
TRIC0223	1/12/2021 0:00	2	3	4	
TRIC0224	1/12/2021 0:00	2	2	3	
TRIC0225	1/12/2021 0:00	3	3	3	
TRIC0226	1/12/2021 0:00	3	2	3	
TRIC0227	1/12/2021 0:00	3	3	4	
TRIC0228	1/12/2021 0:00	2	3	3	
TRIC0229	1/12/2021 0:00	3	3	3	
TRIC0220	1/12/2021 0:00	3	2	4	
TRICO203	1/12/2021 0:00	3	3	3	
TRICO203	1/12/2021 0:00	2	3	3	
TRICO205	1/12/2021 0:00	3	3	4	
TRICO217	1/12/2021 0:00	2	3	3	
TRICO217	1/12/2021 0:00	4	2	2	
Cond 1	1/12/2021 0:00	2	3	3	
PVC 1	1/12/2021 0:00	3	2	3	
PVC 1 PVC 2	1/12/2021 0:00	3	3	3	
Eiection Station 2	1/12/2021 0:00	3	3	3	
		÷	3	3	
EW 131 GW	1/12/2021 0:00	2	-		
GW	1/12/2021 0:00	2	2	4	

Attachment D

Weather Data

Attachment E

Calibration Records

		SURFACE EMISS			
Date:	1-12-21		Site Name:	Tri citi	ies
Inspector(s):	Ryan		Instrument:	TVA 2020	
WEATHER O	BSERVATIONS				
Wind Spee	ed:МРН	Wind Direction:	-	Barometric Pressure: 30	"Hg
/ Temperatur	Air re: <u>49</u> °F	General Weath Condition		14	
CALIBRATIO	N INFORMATION			4	
Pre-monitorin	g Calibration Precision Check				
and calculate	librate the instrument. Make the average algebraic differe t be less than or equal to 10% rial Number:	nce between the instrument	reading and the		
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas	ConcCal Gas Reading	Response Time (seconds)
1 2	2	<u> </u>			3
3	ō	501		9	3
		= 100% = 99,8	- <u>7</u> %	_/500 x 100%	
ipan Sensitivit	y:				
f <mark>rial 1:</mark> (Counts Observed for the Spar	106616	Trial 3: Cou	unts Observed for the Span=	105152
Co	ounters Observed for the Zero	- 4093	Coun	ters Observed for the Zero=	4083
frial 2:	Counts Observed for the Spar	1= 105216			
Co	ounters Observed for the Zero	- 4089			
ost Monitorin	g Calibration Check				
ero Air	Č	Cal Gas			
eading:	ppm	Reading:		_ppm	
ACKGROUNI	O CONCENTRATIONS CHEC	KS		2	
pwind Locatic	on Description:	Flare	÷	Reading:	ppm
ownwind Loca	ation Description:	Grid 120	2	Reading: 1.3	ppm
lotes:	exceeded 20 miles per hou	observed to remain below t r. No rainfall had occurred v were within the requested a	within the previo	us 24 hours of the monitorin	g event. Therefore, site

			DNS MONITORING D PERTINENT DATA	
Date:	1-72.71		Site Name: Trick	tics
Inspector(s):	Rugari	H	Instrument: TVA 2020	
WEATHER OBSE			Ť	
	-2	Wind	Barometric	
Wind Speed:	МРН	Direction:	Pressure: SO	_ "Hg
Air Temperature:	56 "	General Weather Conditions:		
CALIBRATION IN	FORMATION		9	~
Pre-monitoring Ca	alibration Precision Check			
	less than or equal to 10%	nce between the instrument r of the calibration gas value.	eading and the calibration gas as a percent Cal Gas Concentration:	age. The calibration 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
1	1	199		5
2	1	498	L	3
3	0	301		Z
alibration Precisi	on= Average Difference/C		*Perform recalibration if average difference is greater than	10
Calibration Precisi	on= Average Difference/C	al Gas Conc. X 100% = 100%-	*Perform recalibration if average difference is greater than $\frac{1.3}{500 \times 100\%}$	10
	on= Average Difference/C	al Gas Conc. X 100%	12	10
pan Sensitivity: rial 1:		al Gas Conc. X 100% = 100%- = 9(9, -7	1.3 /500 x 100% % Trial 3:	
pan Sensitivity: irial <u>1:</u> Cou	nts Observed for the Span	al Gas Conc. X 100% = 100%- = 99.7 = <u>105 231</u>	1.3 /500 x 100% % Trial 3: Counts Observed for the Span=	10
pan Sensitivity: rial 1: Cou Count rial 2:	nts Observed for the Span ers Observed for the Zero	al Gas Conc. X 100% = 100% = 99.7 = 105231 = 3976	1.3 /500 x 100% % Trial 3:	105 117 400 09
pan Sensitivity: rial 1: Cou Count rial 2: Court	nts Observed for the Span ers Observed for the Zero nts Observed for the Span	al Gas Conc. X 100% = 100% = 99.7 = 105234 = 3976 = 105316 = 105316 = 105316	1.3 /500 x 100% % Trial 3: Counts Observed for the Span=	10 105117 21002
pan Sensitivity: rial 1: Cou Count rial 2: Count Count	nts Observed for the Span ers Observed for the Zero nts Observed for the Span ers Observed for the Zero	al Gas Conc. X 100% = 100% = 99.7 = 105234 = 3976 = 105316 = 105316 = 105316	1.3 /500 x 100% % Trial 3: Counts Observed for the Span=	10 105117 21009
pan Sensitivity: rial 1: Cou <u>Count</u> rial 2: Count ost Monitoring Ca	nts Observed for the Span ers Observed for the Zero nts Observed for the Span ers Observed for the Zero	al Gas Conc. X 100% = 100% = 99.7 = 105234 = 3916 = 105316 = 105316 = 39188	1.3 /500 x 100% % Trial 3: Counts Observed for the Span=	105117
pan Sensitivity: rial 1: Cou <u>Count</u> rial 2: Count Ost Monitoring Ca	nts Observed for the Span ers Observed for the Zero nts Observed for the Span ers Observed for the Zero	al Gas Conc. X 100% = 100% = 99.7 = 105234 = 3976 = 105316 = 105316 = 105316	1.3 /500 x 100% % Trial 3: Counts Observed for the Span=	10 105117 21002
pan Sensitivity: rial 1: Count rial 2: Count count count count count count count count count count count count count count count	nts Observed for the Span ers Observed for the Zero nts Observed for the Span ers Observed for the Zero alibration Check	al Gas Conc. X 100% = 100% = 99.7 = 99.7 = 39.76 = 105.316 = 105.316 = 105.316 = 39.88 Cal Gas Reading:	1.3 /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	10 105117 21009
pan Sensitivity: rial 1: Count rial 2: Count count cost Monitoring Ca ero Air eading: ACKGROUND CO	nts Observed for the Span ters Observed for the Zero nts Observed for the Span ters Observed for the Zero alibration Check	al Gas Conc. X 100% = 100% = 99.7 = 99.7 = 39.76 = 105.316 = 105.316 = 105.316 = 39.88 Cal Gas Reading:	1.3 /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	10 105 117 UO Day
pan Sensitivity: rial 1: Cou Count rial 2: Count count cost Monitoring Ca ero Air eading:	nts Observed for the Span eers Observed for the Zero nts Observed for the Span eers Observed for the Zero alibration Check	al Gas Conc. X 100% = 100% = 99.7 = 99.7 = 39.76 = 105.316 = 105.316 = 105.316 = 39.88 Cal Gas Reading:	1.3 /500 x 100% % Trial 3: Counts Observed for the Span= Counters Observed for the Zero=	105117

-		Second St.	 the party of the second second	and the second	a marker 1	Concernant of the	at the second local second	and a second second	1.2
-)	100	1.10	A*# # - X -		en na en		onmen	1.1 21.	N C

		CALIBRATION AND	D PERTINENT DATA	
Date:	1-12-21		Site Name: TVI CIER	25
Inspector(s):	Bryan Oc	hoer	Instrument:TVA 2020	
WEATHER OB	SERVATIONS			
	7	Wind	Barometric	
Wind Speed	н:мрн	Direction: 5	Pressure: 30	"Hg
A Temperature	ir <u>49</u> °F	General Weather Conditions:		
CALIBRATION	INFORMATION			
re-monitoring	Calibration Precision Check			
Procedure: Cali and calculate to	brate the instrument. Make a he average algebraic difference	total of three measurement to between the instrument re	ts by alternating zero air and the calibration g eading and the calibration gas as a percentage	os. Record the readings
recision must	be less than or equal to 10% o	f the calibration gas value.		
nstrument Seri	ial Number: <u>2</u> 1	<u>b</u>	Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds
1 2		502	2	3
3		501		
libration Prec	ision= Average Difference/Cal		*Perform recalibration if average difference is greater than 10	
alibration Prec	ision= Average Difference/Cal		*Perform recalibration if average difference is greater than 10	
alibration Prec	ision= Average Difference/Cal	Gas Conc. X 100% = 100%-	. <i>3</i> .	
alibration Prec		Gas Conc. X 100%	. <i>3</i> .	
oan Sensitivity rial 1:		Gas Conc. X 100% = 100%- = 99.7	. <i>3</i> .	32849
pan Sensitivity rial 1: Ci	:	Gas Conc. X 100% = 100%- = 99.7	<u>、う</u> /500 x 100% % Trial 3: Counts Observed for the Span=	32849
oan Sensitivity r <mark>ial 1:</mark> Շու ۲ ial 2:	: ounts Observed for the Span=	Gas Conc. X 100% = 100%- = 99.7	<u>、</u> /500 x 100% % Trial 3:	32849
oan Sensitivity rial 1: Cou rial 2: Cou	: ounts Observed for the Span= unters Observed for the Zero=	Gas Conc. X 100% = 100%- = 99.7	<u>、う</u> /500 x 100% % Trial 3: Counts Observed for the Span=	32849 3376
oan Sensitivity rial 1: Cou rial 2: Cou Cou	: ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span=	Gas Conc. X 100% = 100%- = 99.7	<u>、う</u> /500 x 100% % Trial 3: Counts Observed for the Span=	32849
pan Sensitivity rial 1: Cou rial 2: Cou Cou	: ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero=	Gas Conc. X 100% = 100%- = 99.7	<u>、う</u> /500 x 100% % Trial 3: Counts Observed for the Span=	3376
ban Sensitivity ial 1: Cou ial 2: Cou ost Monitoring ro Air	: ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero=	Gas Conc. X 100% = $100%$ = 99.7 132583 3316 3316 32643 3438	<u>、う</u> /500 x 100% % Trial 3: Counts Observed for the Span=	3376
oan Sensitivity rial 1: Cou rial 2: Cou cou cou cou cou cou cou cou cou cou c	: ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check	Gas Conc. X 100% = 100% - = 99.7 132583 3316 3316 32583 3316 332643 3438 Cal Gas Reading:	1.3 /500 x 100% Trial 3: Counts Observed for the Span= 1 Counters Observed for the Zero=	32849
oan Sensitivity rial 1: Cou rial 2: Cou cost Monitoring ero Air eading: ACKGROUND	: ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check	Gas Conc. X 100% = 100% - = 99.7 132583 3316 3316 32583 3316 332643 3438 Cal Gas Reading:	1.3 /500 x 100% Trial 3: Counts Observed for the Span= 1 Counters Observed for the Zero=	32849 3376
oan Sensitivity rial 1: Cou rial 2: Cou cost Monitoring ero Air eading: ACKGROUND	: ounts Observed for the Span= unters Observed for the Zero= ounts Observed for the Span= unters Observed for the Zero= calibration Check	Gas Conc. X 100% = 100% - = 99.7 132583 3316 3316 32583 3316 332643 3438 Cal Gas Reading:	1.3 /500 x 100% % Trial 3: Counts Observed for the Span= 1 Counters Observed for the Zero=	

l

				Ģ	ost
1		SURFACE EMISSI	ONS MONI	TORING	
		CALIBRATION ANI	D PERTINE	NT DATA	
Date:	1-12-2	l	Site Name:	tri cit	lies
Inspector(s):	Bryanc	ochog	Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			*	
Wind Speed		Wind A		Barometric Pressure: <u>30</u>	
Air Temperature:	7 17	General Weather Conditions:		40	
	INFORMATION			3	
Pre-monitoring	Calibration Precision Check				
nd calculate th precision must b	e average algebraic differen e less than or equal to 10%	a total of three measuremen nce between the instrument r of the calibration gas value.	its by alternating reading and the	calibration gas as a percer	ntage. The calibration
nstrument Seria	al Number:	r)		Cal Gas Concentration:	500ppm
Frial	Zero Air Reading	Cal Gas Reading	Cal Gas C	ConcCal Gas Reading	Response Time (seconds
1	0	uaq	1		5
2	0	304	1		C
3		501			
		= 100%- - 6G 1	1.3	_/500 x 100%	
		= 5(-/* (%		
pan Sensitivity: rial 1:			Trial 3:		,
Co	unts Observed for the Span	134563		nts Observed for the Span	134421
Cour rial 2:	nters Observed for the Zero	= 5403	Count	ers Observed for the Zero	3481
Со	unts Observed for the Span	21:01			
	nters Observed for the Zero	= 5460			
	Calibration Check				
ero Air eading:	Dppm	Cal Gas Reading:	500	ppm	
ACKGROUND	CONCENTRATIONS CHECK	<s< td=""><td></td><td></td><td></td></s<>			
pwind Location	Description:	Flore		Reading:	ppm
ownwind Locati	on Description:	arid 120	0	Reading:	_ppm
	exceeded 20 miles per hour	observed to remain below th . No rainfall had occurred wi vere within the requested alt	thin the previou	is 24 hours of the monitori	ng event. Therefore, site

		SURFACE EMISSI			
Date:	1-12-21			Triciti	29
	Liam		Site Name:		5
nspector(s):			Instrument:	TVA 2020	
WEATHER OBS	SERVATIONS			*r	
Wind Speed:		Wind Direction:	-	Barometric Pressure: 30	"Hg
Air Temperature:	1 / Ch	General Weather Conditions	01	<u>y</u>	
ALIBRATION	INFORMATION				
re-monitoring (Calibration Precision Check				
nd calculate th	e average algebraic difference e less than or equal to 10% of Number:	e between the instrument i f the calibration gas value.		calibration gas as a percente	age. The calibration
				Cal Gas Concentration:	500ppm
rial 1	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (secon
2	0 1	500		0	3
3	0	499			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	sion= Average Difference/Cal	= 100%-	\	/500 x 100%	
		=	%		
oan Sensitivity:					
ial 1: Co	unts Observed for the Span=	158856	Trial 3: Cou	ints Observed for the Span=	159992
	nters Observed for the Zero=	3270	Coun	ters Observed for the Zero=	3246
ial 2: Co	unts Observed for the Span=	160444			
Cour	nters Observed for the Zero=	3225			
st Monitoring (Calibration Check				
ero Air	0	Cal Gas	600		
ading: -	ppm	Reading:	500	_ppm	
	CONCENTRATIONS CHECKS	5			
wind Location	Description:	Flare		Reading: <u>}.4</u>	ppm
wnwind Locati	on Description:	C7112/20	2	Reading: 1.2	ppm
e	Wind speed averages were o exceeded 20 miles per hour.	No rainfall had occurred w	ithin the previou		g event. Therefore, site

				Post
				and the second second
			D PERTINENT DATA	N 1 1
Date:	1.12-21	· · · · · · · · · · · · · · · · · · ·	Site Name: Tri C	ities
Inspector(s):	Liam	\sim	Instrument: TVA 2020	
WEATHER OB	SERVATIONS			
Wind Speed	МРН	Wind Direction: 5	Barometric Pressure:	<u>О</u> "нg
Air Temperature	7_1	General Weather Conditions:		
CALIBRATION	INFORMATION			
² re-monitoring	Calibration Precision Check			
			ts by alternating zero air and the cal eading and the calibration gas as a p	
	pe less than or equal to 10% (euoling una the culturation gus us a p	ercentage. The contraction
nstrument Seria	al Number:	3	Cal Gas Concentra	ation: 500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	Response Time (seconds)
1		502	7.	
2	1	501	Ĭ	3
3	0	1012	Ĭ	- G
		= 100%-	100% × 100%	
		=99.7	%	
pan Sensitivity:				
<u>rial 1:</u> Co	ounts Observed for the Span-	158642	Trial 3: Counts Observed for the	Span= 158865
	nters Observed for the Zero-	-7111	Counters Observed for the	= 7 00
rial 2: Co	unts Observed for the Span=	159351		
	nters Observed for the Zero-	- 0		
	Calibration Check			
ero Air		Cal Gas	-	
eading:	D ppm	Reading:	500 ppm	
ACKGROUND	CONCENTRATIONS CHECK	S	* 32	
pwind Location	Description:	Flare	Reading:	ppm
ownwind Locati	ion Description:	gri 2120	Reading:	ppm
	exceeded 20 miles per hour.	No rainfall had occurred wi	e alternative requested 10 miles per thin the previous 24 hours of the mo ernatives of the LMR requirements o	nitoring event. Therefore, site

		SURFACE EMISSI	ONS MONITORING		
			D PERTINENT DATA		
Date:	1-12-21		Site Name: TV	icit	ies
Inspector(s):	Don Gibsu	on	Instrument: TVA 20	20	
WEATHER OF	BSERVATIONS				
Wind Speed	d: <u>3</u> MPH	Wind Direction: <u></u>	Barome Pressi	etric ure: <u>30</u>	
A Temperature	e: <u>VQ</u> *F	General Weather Conditions:			
CALIBRATION	INFORMATION				
Pre-monitoring	g Calibration Precision Check				
and calculate to precision must	ibrate the instrument. Make the average algebraic differen be less than or equal to 10% to	ice between the instrument i of the calibration gas value.	reading and the calibration	gas as a percent	age. The calibration
Instrument Seri	ial Number: 1220		Cal Gas	Concentration:	500ppm
Trial	Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal G	as Reading	Response Time (seconds)
1	+ +	500	2		3
3	t i -	500			R
Calibration Prec	cision= Average Difference/Ca	al Gas Conc. X 100% = 100%- =	<u>, </u>	0%	
Span Sensitivity					
Trial 1:	Counts Observed for the Span=		Trial 3: Counts Observe	ed for the Span=	141580
	unters Observed for the Zero=	4520	Counters Observ	ed for the Zero=	4473
	ounts Observed for the Span- unters Observed for the Zero-	1.1110			
Post Monitoring	g Calibration Check				
Zero Air		Cal Gas			
Reading:	ppm	Reading:	<u>500</u> ppm		
BACKGROUND	CONCENTRATIONS CHECK	is		.)	
Upwind Location	n Description:	Flowe	Reading:	1.5	ppm
Downwind Locat	tion Description:	GV12120	Reading:	<u>\U</u>	ppm
Notes:	Wind speed averages were of exceeded 20 miles per hour. meteorological conditions w	No rainfall had occurred wi	ithin the previous 24 hours	of the monitorin	g event. Therefore, site

SCS DataServices - Secure Environmental Data

			Post
		ONS MONITORING	
7 - 7			-11.0
Date: $1 \cdot 1 \subset - C$	<u> </u>	Site Name:	cities
Inspector(s): Don G		Instrument: TVA 2020	
WEATHER OBSERVATIONS		*	
Wind Speed: MPH	Wind Direction:	Barometric S	О" _{Нg}
Air 56 °F	General Weather Conditions:	cloudy	
CALIBRATION INFORMATION			
Pre-monitoring Calibration Precision Check			
Procedure: Calibrate the instrument. Make and calculate the average algebraic differe precision must be less than or equal to 10%	nce between the instrument r	ts by alternating zero air and the cal eading and the calibration gas as a g	ibration gas. Record the readings percentage. The calibration
nstrument Serial Number:	(5	Cal Gas Concentra	ation: 500ppm
Trial Zero Air Reading	Cal Gas Reading	Cal Gas ConcCal Gas Reading	g Response Time (seconds)
2 0	500	0	3 2
3 (bol	2	<u>2</u>
Calibration Precision= Average Difference/C	Cal Gas Conc. X 100%	1.3 /500 x 100%	
	= 99(.)	%	
pan Sensitivity: rial 1:	2 2 2	Trial 3:	
Counts Observed for the Spar	= 14036L	Counts Observed for the	span= 140213
Counters Observed for the Zerc	- 4421	Counters Observed for the	Zero= 4466
rial 2: Counts Observed for the Spar	= 140211		
Counters Observed for the Zerc	J= 4473		
ost Monitoring Calibration Check			
ero Air eading:ppm	Cal Gas Reading:	500 ppm	
ACKGROUND CONCENTRATIONS CHEC	KS		
pwind Location Description:	Flare Carid 170	Reading: 1.9	3ppm
ownwind Location Description:	C2510 120	Reading:	- l ppm
exceeded 20 miles per hour	r. No rainfall had occurred wit	e alternative requested 10 miles per thin the previous 24 hours of the mo ernatives of the LMR requirements o	nitoring event. Therefore, site n the above mentioned date.

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name:	TCRFD	Date:	01/12/2021	
Time: <u>07:12</u> AM _	PM			
Instrument Make:	Thermo Scientific	Model:	TVA 2020	S/N: <u>202016021153</u>

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.
 - Stable Reading = 500 ppm
- 3. Adjust meter to read 500 ppm.

Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): <u>1.4</u> ppm (a)
- 2. Downwind Reading (highest in 30 seconds): 1.2 ppm (b)

Calculate Background Value:

 $(a) + (b) \qquad Background = \underline{1.35} ppm$

Performed by: Liam McGinn

RESPONSE TIME TEST RECORD

Date: 01/12/2021					
Expiration Date (3 n	nonths): <u>04/12/2021</u>				
Time: <u>7:00</u> AM	PM				
Instrument Make:	Thermo Scientific	Model:	TVA 2020	S/N:	202016021153
Measurement #1:					
Ti	Stabilized Reading Us 90% of the me to Reach 90% of Stal Switching from Zero Ai	Stabilized	l Reading: ding after	<u>502</u> 450 3	_ ppm _ ppm _ seconds (a)
Measurement #2:	0				_ ()
	Stabilized Reading Us	ing Calibra	ation Gas:	500	_ ppm
.	90% of the		-	450	_ ppm
11	me to Reach 90% of Stal Switching from Zero Ai		-	3	_ seconds (b)
Measurement #3:					
	Stabilized Reading Us	ing Calibr	ation Gas:	499	_ ppm
	90% of the			450	_ ppm
Ti	me to Reach 90% of Stal Switching from Zero Ai		-	3	_ seconds (c)
C = 1 + D	T				

Calculate Response Time:

 $\frac{(a) + (b) + (c)}{3} = \frac{3.0}{3}$ seconds (must be less than 30 seconds)

Performed by: Liam McGinn

CALIBRATION PRECISION TEST RECORD

Date: 01/12/2021 Expiration Date (3 months): 04/12/2021 PM Time: 7:00 AM Instrument Make: Thermo Scientific Model: TVA 2020 S/N: 202016021153 Measurement #1: Meter Reading for Zero Air: _____ ppm (a) Meter Reading for Calibration Gas: <u>502</u> ppm (b) Measurement #2: Meter Reading for Zero Air: _____ ppm (c) Meter Reading for Calibration Gas: ______ 500 __ppm (d) Measurement #3: Meter Reading for Zero Air: _____ ppm (e) Meter Reading for Calibration Gas: ______ 499 ____ ppm (f) Calculate Precision: $\frac{\{|(500) - (b)| + |(500) - (d)| + |(500) - (f)|\}}{3} \times \frac{1}{500} \times 100$

<u>0.2 % (</u>must be < than 10%)

Performed by: Liam McGinn

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name:TCRFDDate:01/12/2021Time:07:30 AMPMInstrument Make:Thermo ScientificModel:TVA 2020S/N:2020116031211

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.
 - Stable Reading = 500 ppm
- 3. Adjust meter to read 500 ppm.

Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): 1.2 ppm (a)
- 2. Downwind Reading (highest in 30 seconds): 1.3 ppm (b)

Calculate Background Value:

 $\frac{(a) + (b)}{2} \qquad Background = \underline{1.25 \text{ ppm}}$

Performed by: <u>Ryan Haslam</u>

RESPONSE TIME TEST RECORD

Date: 01/12/2021					
Expiration Date (3 n	nonths): <u>04/12/2021</u>				
Time: <u>7:20</u> AM	PM				
Instrument Make:	Thermo Scientific	Model:	TVA 2020	S/N:	202016031211
Measurement #1:					
Ti	Stabilized Reading Us 90% of the me to Reach 90% of Stal Switching from Zero Ai	e Stabilized bilized Rea	l Reading: ding after	<u>499</u> <u>450</u> <u>3</u>	_ ppm _ ppm _ seconds (a)
Measurement #2:					
Ti	Stabilized Reading Us 90% of the me to Reach 90% of Stal	Stabilized	l Reading:	<u>498</u> 450	_ ppm _ ppm
	Switching from Zero Ai	r to Calibr	ation Gas:	3	_ seconds (b)
Measurement #3:					
	Stabilized Reading Us 90% of the	Stabilized	l Reading:	501 450	_ ppm _ ppm
Ti	me to Reach 90% of Stal Switching from Zero Ai		-	2	_ seconds (c)
Calquiata Documenca	Time				

Calculate Response Time:

 $\frac{(a) + (b) + (c)}{3} = \frac{2.67}{3}$ seconds (must be less than 30 seconds)

Performed by: <u>Ryan Haslam</u>

CALIBRATION PRECISION TEST RECORD

Date: 01/12/2021
Expiration Date (3 months): <u>04/12/2021</u>
Time: <u>7:20 AM PM</u>
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 2020</u> S/N: <u>202016031211</u>
Measurement #1:
Meter Reading for Zero Air: ppm (a)
Meter Reading for Calibration Gas: 499 ppm (b)
Measurement #2:
Meter Reading for Zero Air: ppm (c)
Meter Reading for Calibration Gas: <u>498</u> ppm (d)
Measurement #3:
Meter Reading for Zero Air: ppm (e)
Meter Reading for Calibration Gas: <u>501</u> ppm (f)
Calculate Precision:
$\frac{\{ (500) - (b) + (500) - (d) + (500) - (f) \}}{2} \times \frac{1}{500} \times 100$
3 500

<u>0.27 % (</u>must be < than 10%)

Performed by: <u>Ryan Haslam</u>

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name:TCRFDDate:01/12/2021Time:08:00 AMPMInstrument Make:Thermo ScientificModel:TVA 2020S/N:202016031215

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.
 - Stable Reading = 501 ppm
- 3. Adjust meter to read 500 ppm.

Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): <u>1.1</u> ppm (a)
- 2. Downwind Reading (highest in 30 seconds): 1.4 ppm (b)

Calculate Background Value:

 $\frac{(a) + (b)}{2} \qquad Background = \underline{1.25 \text{ ppm}}$

Performed by: <u>Bryan Ochoa</u>

RESPONSE TIME TEST RECORD

Date: 01/12/2021
Expiration Date (3 months): 04/12/2021
Time: 07:45 AM PM
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 2020</u> S/N: <u>202016031215</u>
Measurement #1:
Stabilized Reading Using Calibration Gas:502ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after Switching from Zero Air to Calibration Gas:3seconds (a)
Measurement #2:
Stabilized Reading Using Calibration Gas: 501 ppm
90% of the Stabilized Reading: <u>450</u> ppm
Time to Reach 90% of Stabilized Reading after Switching from Zero Air to Calibration Gas: <u>4</u> seconds (b)
Measurement #3:
Stabilized Reading Using Calibration Gas:501 ppm
90% of the Stabilized Reading: <u>450</u> ppm
Time to Reach 90% of Stabilized Reading after Switching from Zero Air to Calibration Gas: <u>2</u> seconds (c)
Calculate Response Time:

$$\frac{(a) + (b) + (c)}{3} = \frac{3.00}{3}$$
 seconds (must be less than 30 seconds)

Performed by: Bryan Ochoa

CALIBRATION PRECISION TEST RECORD

Date: <u>01/12/2021</u>	
Expiration Date (3 months): <u>04/12/2021</u>	
Time: <u>07:45</u> AM PM	
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 2020</u>	<u>)</u> S/N: <u>202016031215</u>
Measurement #1:	
Meter Reading for Zero Air:2	ppm (a)
Meter Reading for Calibration Gas:502	ppm (b)
Measurement #2:	
Meter Reading for Zero Air:1	ppm (c)
Meter Reading for Calibration Gas: 501	ppm (d)
Measurement #3:	
Meter Reading for Zero Air:1	ppm (e)
Meter Reading for Calibration Gas: 501	ppm (f)
Calculate Precision:	
$\frac{\{ (500) - (b) + (500) - (d) + (500) - (f) \}}{2} \times \frac{1}{100} \times 100$	
3 500	

<u>0.27 % (</u>must be < than 10%)

Performed by: Bryan Ochoa

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name:	TCRFD	Date:	01/12/2021	
Time: <u>8:25</u> AM	PM			
Instrument Make:	Thermo Scientific	Model:	TVA 2020	S/N: <u>202016031220</u>

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.
 - Stable Reading = 500 ppm
- 3. Adjust meter to read 500 ppm.

Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): 1.3 ppm (a)
- 2. Downwind Reading (highest in 30 seconds): 1.4 ppm (b)

Calculate Background Value:

 $(a) + (b) \qquad Background = \underline{1.35} ppm$

Performed by: <u>Don Gibson</u>

RESPONSE TIME TEST RECORD

Date: 01/12/2021					
Expiration Date (3 n	nonths): <u>04/12/2021</u>	-			
Time: <u>8:15</u> AM	PM				
Instrument Make:	Thermo Scientific	Model:	TVA 2020	S/N:	202016031220
Measurement #1:					
Ti	Stabilized Reading Us 90% of the me to Reach 90% of Sta	e Stabilized	l Reading:	<u>498</u> 450	_ ppm _ ppm
	Switching from Zero Ai		-	2	_ seconds (a)
Measurement #2:					
	Stabilized Reading Us	-		500	_ ppm
T		e Stabilized		450	ppm
11	me to Reach 90% of Sta Switching from Zero A		e	3	_ seconds (b)
Measurement #3:					
	Stabilized Reading Us	-		502	ppm
Ti	90% of the me to Reach 90% of Sta	e Stabilized	· -	450	_ ppm
11	Switching from Zero A		-	2	_ seconds (c)

Calculate Response Time:

$$\frac{(a) + (b) + (c)}{3} = \frac{2.33}{2.33}$$
 seconds (must be less than 30 seconds)

Performed by: Don Gibson

CALIBRATION PRECISION TEST RECORD

Date: 01/12/20	021
Expiration Date	e (3 months): <u>04/12/2021</u>
Time: <u>8:15</u>	AM <u>PM</u>
Instrument Mal	ke: <u>Thermo Scientific</u> Model: <u>TVA 2020</u> S/N: <u>202016031220</u>
Measurement #	41:
	Meter Reading for Zero Air: ppm (a)
	Meter Reading for Calibration Gas: <u>498</u> ppm (b)
Measurement #	2:
	Meter Reading for Zero Air:0 ppm (c)
	Meter Reading for Calibration Gas: <u>500</u> ppm (d)
Measurement #	43:
	Meter Reading for Zero Air: ppm (e)
	Meter Reading for Calibration Gas: <u>502</u> ppm (f)
Calculate Preci	sion:
$\frac{ (500) - (b) + }{ (500) - (b) }$	(500) - (d) + (500) - (f) x 100
	3 500

<u>0.27 % (</u>must be < than 10%)

Performed by: Don Gibson

Thermo Environmental Instruments, Inc

27 Forge Parkway Franklin, MA. 02038 Phone: 866-282-0430 Fax: 508-520-2800

DATE COMPLETED
3/3/2020
SERIAL NUMBER
202016031220

REPORT SUBMITTED BY Contact: Daniel Pacheco Email: daniel.pacheco@thermofisher.com

DESCRIPTION OF SERVICE REQUIRED: Repair

CONTAMINATED/HAZARDOUS: No **DECONTAMINATION METHOD:** N/A

ACCESSORIES RECEIVED: enhanced probe, battery, tank, case, w/t probe (2), strap, tool kit, ext. probe.

PHYSICAL INSPECTION (inspected for damage, missing items, pm required, cleanliness, and accuracy)

✓ Compare unit to RA detail
 ✓ H2 Tank
 ✓ Probe Cables and Connectors
 ✓ Labeling
 ✓ H2 Tank Expiration Date: 6/29
 ✓ Battery Information: 8.0v
 ✓ Last Service Date: 7/19
 ✓ Hardware

RECEIVED CONDITION: Shows normal wear and tear for age and application

INSTRUMENT AS FOUND: turns on, pump issues.

Sample Flow (ml/min)	FID Flow (ml/min)	H2 Pressure (psi)	H2 Flow (ml/min)
1076	495	12	12

FLOWS AS LEFT

Sample Flow (ml/min)	FID Flow (ml/min)	H2 Pressure (psi)	H2 Flow (ml/min)
1006	418	12	13.3

TEST EQUIPMENT AND SOURCES USED Fluke Digital Voltmeter, Brooks Flow Meter, Model 146 Dilution Calibrator, Isobutylene (PID) and Methane Gas Standards

REPAIR NOTES: 202016031220

replace Ext probe CR011PF at customer request at \$762 and add it to \$1133 fixed price.

replace faulty pump and main board. update boot loader and install ver. 55S. change inlet filter. Perform a full pump & gas flow adjustment, testing, and calibration. Replaced defective parts listed.

INSTRUMENT AS LEFT: TVA performs fully to manufacturer specifications

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology, formally the National Bureau of Standards (NBS). Calibration of customer equipment is performed with appropriate environmental controls, as required.

PASSED HYDROGEN LEAK TEST YES

DRIFT TEST

Detector	Hour 1 Reading (ppm)	Hour 4 Reading (ppm)	Delta (ppm)	Tolerance
FID	2.4	1.8	.6	≤ 1 ppm Delta

H2 RUN TIME TEST

Starting H2 psi	Run Time	Tolerance
2000	12+ hrs	\geq 1 hour run time per 200 psi of H2

FINAL CALIBRATION

Detector	Cal Zero Counts	Cal Span Counts	Span Concentration (ppm)	Response Factor
FID	3142	118900	500	1

REPEATABILITY TEST

FID	1 ST Check	2 ND Check	3 RD Check	Final Check	Tolerance
500 PPM	501	500	504	499	± 10%

CALIBRATION CONCENTRATION TEST

Detector	Calibration Gas	Concentration(ppm)	TVA actual reading (ppm)	Tolerance (ppm)
FID	Zero Air	0	.1	≤3
FID	Methane	100	102	± 25
FID	Methane	500	500	± 125
FID	Methane	10000	1.0%	±2500

Phone: 866-282-0430 Fax: 508-520-2800

PRE-BUTTON UP INSPECTION

- \checkmark Tubing is secured and not crimped (where applicable).
- ✓ Serial Number/Voltage Labels intact and legible.
- ✓ Instrument cleaned.
- ✓ All hardware is secured. (Ex. Screws, connectors, tubing, etc.)
- ✓ Battery door lock tight
- ✓ Cables secured and Tie wrapped where applicable
- ✓ No loose debris within the instrument closure. (Screws, washers tubing, tywraps, etc.)
- ✓ Make sure TVA does not flame out when bumped.
- ✓ Remove sample line TVA should **NOT** flame out. Leave off for 5 minutes minimum.
- ✓ Check battery voltage without charger being plugged in.
- Perform quick cal check with 10,000 ppm gas and insure spec. is met (90% of reading in 3.5 seconds up and 10% of reading in 20 seconds down)

FINAL QC CHECKLIST

- ✓ Serial Number/Voltage Labels intact and legible.
- ✓ Instrument cleaned.
- ✓ Service Report and Calibration Report created for unit
- ✓ All received customer accessories accounted for and clearly identified.
- ✓ Instrument turns on.
- ✓ Ignition test (TVA models).
- ✓ Calibration labels/Report with instrument.
- ✓ Bill To/Ship to information properly indicated on CO.
- ✓ Quantities correct and complete on CO.

Thermo Environmental Instruments, Inc

27 Forge Parkway Franklin, MA. 02038 Phone: 866-282-0430 Fax: 508-520-2800

RA#	DATE COMPLETED
2004289043	4/29/2020
CUSTOMER	
SCS ENG.	
CONTACT	
E SUAREZ	
MODEL	SERIAL NUMBER
TVA2020	202016031211

REPORT SUBMITTED BY Contact: Daniel Pacheco Email: daniel.pacheco@thermofisher.com

DESCRIPTION OF SERVICE REQUIRED: Repair

CONTAMINATED/HAZARDOUS: No **DECONTAMINATION METHOD:** N/A

ACCESSORIES RECEIVED: enhanced probe, std probe, battery, refill, tank, case, w/t probe, tool kit, ext. probe

PHYSICAL INSPECTION (inspected for damage, missing items, pm required, cleanliness, and accuracy)

✓ Compare unit to RA detail
 ✓ H2 Tank
 ✓ Probe Cables and Connectors
 ✓ Labeling
 ✓ H2 Tank Expiration Date: 12/25
 ✓ Battery Information: 7.9v
 ✓ Last Service Date: 4/19
 ✓ Hardware

RECEIVED CONDITION: Shows normal wear and tear for age and application

INSTRUMENT AS FOUND: bad probe cable, dirty filters.

FLOWS.	AS FOUND
--------	----------

Sample Flow (ml/min)	FID Flow (ml/min)	H2 Pressure (psi)	H2 Flow (ml/min)
1213	495	12	12

FLOWS AS LEFT

Sample Flow (ml/min)	FID Flow (ml/min)	H2 Pressure (psi)	H2 Flow (ml/min)
1006	420	12	13.3

TEST EQUIPMENT AND SOURCES USED Fluke Digital Voltmeter, Brooks Flow Meter, Model 146 Dilution Calibrator, Isobutylene (PID) and Methane Gas Standards

Thermo Environmental Instruments, Inc 27 Forge Parkway Franklin, MA. 02038 Phone: 866-282-0430 Fax: 508-520-2800

REPAIR NOTES: 202016031211

Replace probe cable assembly. change dirty inlet and water trap filters. replace broken extension probe. install new boot loader and ver. 55S

INSTRUMENT AS LEFT: TVA performs fully to manufacturer specifications

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology, formally the National Bureau of Standards (NBS). Calibration of customer equipment is performed with appropriate environmental controls, as required.

PASSED HYDROGEN LEAK TEST YES

DRIFT TEST

Detector	Hour 1 Reading (ppm)	Hour 4 Reading (ppm)	Delta (ppm)	Tolerance
FID	1.9	1.3	.6	≤ 1 ppm Delta

H2 RUN TIME TEST

Starting H2 psi	Run Time	Tolerance
2000	12+ hrs.	\geq 1 hour run time per 200 psi of H2

FINAL CALIBRATION

Detector	Cal Zero Counts	Cal Span Counts	Span Concentration (ppm)	Response Factor
FID	3524	112548	500	1

REPEATABILITY TEST

FID	1 ST Check	2 ND Check	3 RD Check	Final Check	Tolerance
500 PPM	500	506	506	499	± 10%

CALIBRATION CONCENTRATION TEST

Detector	Calibration Gas	Concentration(ppm)	TVA actual reading (ppm)	Tolerance (ppm)
FID	Zero Air	0	0	≤3
FID	Methane	100	100	± 25
FID	Methane	500	500	± 125
FID	Methane	10000	1.09%	±2500

Phone: 866-282-0430 Fax: 508-520-2800

PRE-BUTTON UP INSPECTION

- \checkmark Tubing is secured and not crimped (where applicable).
- ✓ Serial Number/Voltage Labels intact and legible.
- ✓ Instrument cleaned.
- ✓ All hardware is secured. (Ex. Screws, connectors, tubing, etc.)
- ✓ Battery door lock tight
- ✓ Cables secured and Tie wrapped where applicable
- ✓ No loose debris within the instrument closure. (Screws, washers tubing, tywraps, etc.)
- ✓ Make sure TVA does not flame out when bumped.
- ✓ Remove sample line TVA should **NOT** flame out. Leave off for 5 minutes minimum.
- ✓ Check battery voltage without charger being plugged in.
- Perform quick cal check with 10,000 ppm gas and insure spec. is met (90% of reading in 3.5 seconds up and 10% of reading in 20 seconds down)

FINAL QC CHECKLIST

- ✓ Serial Number/Voltage Labels intact and legible.
- ✓ Instrument cleaned.
- ✓ Service Report and Calibration Report created for unit
- ✓ All received customer accessories accounted for and clearly identified.
- ✓ Instrument turns on.
- ✓ Ignition test (TVA models).
- ✓ Calibration labels/Report with instrument.
- ✓ Bill To/Ship to information properly indicated on CO.
- ✓ Quantities correct and complete on CO.

Thermo Environmental Instruments, Inc 27 Forge Parkway Franklin, MA. 02038

Phone: 866-282-0430 Fax: 508-520-2800

REPORT SUBMITTED BY Contact: Daniel Pacheco Email: daniel.pacheco@thermofisher.com

RA#	DATE COMPLETED
1909266773	10/11/19
CUSTOMER	
SCS FIELD SERVICES	
CONTACT	
R Lucero	
MODEL	SERIAL NUMBER
TVA2020	202016021153

DESCRIPTION OF SERVICE REQUIRED: Calibration

CONTAMINATED/HAZARDOUS: No **DECONTAMINATION METHOD:** N/A

ACCESSORIES RECEIVED: all

PHYSICAL INSPECTION (inspected for damage	e, missing items, pm required, cleanliness, and accuracy)
---	---

✓ Compare unit to RA detail
 ✓ H2 Tank
 ✓ Battery Door Lock
 ✓ Labeling
 ✓ H2 Tank Expiration Date: c/r
 ✓ Battery Information: 7.8v
 ✓ Warranty Label Intact: n/a
 ✓ Hardware
 ✓ Last Service Date: n/a
 ✓ Probe Cables and Connectors

RECEIVED CONDITION: Shows normal wear and tear for age and application

INSTRUMENT AS FOUND: turns on, needs calibration.

FLOWS AS FOUND

Sample Flow (ml/min)	FID Flow (ml/min)	PID Flow (ml/min)	H2 Pressure (psi)	H2 Flow (ml/min)
962	368		12	14

FLOWS AS LEFT

Sample Flow (ml/min)	FID Flow (ml/min)	PID Flow (ml/min)	H2 Pressure (psi)	H2 Flow (ml/min)
1004	418		12	13.6

TEST EQUIPMENT AND SOURCES USED Fluke Digital Voltmeter, Brooks Flow Meter, Model 146 Dilution Calibrator, Isobutylene (PID) and Methane Gas Standards

Thermo Environmental Instruments, Inc 27 Forge Parkway Franklin, MA. 02038 Phone: 866-282-0430 Fax: 508-520-2800

REPAIR NOTES:

INSTRUMENT AS LEFT: TVA performs fully to manufacturer specifications

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology, formally the National Bureau of Standards (NBS). Calibration of customer equipment is performed with appropriate environmental controls, as required.

PASSED HYDROGEN LEAK TEST YES

DRIFT TEST

Detector	Hour 1 Reading (ppm)	Hour 4 Reading (ppm)	Delta (ppm)	Tolerance
FID	1.5	1.6	.1	≤ 1 ppm Delta
PID	.2	.2	0	≤ 1 ppm Delta

H2 RUN TIME TEST

Starting H2 psi	Run Time	Tolerance
2000	11 hrs	\geq 1 hour run time per 200 psi of H2

FINAL CALIBRATION

Detector	Cal Zero Counts	Cal Span Counts	Span Concentration (ppm)	Response Factor
FID	3342	126112	500	1
PID	1352	2898	100	1

REPEATABILITY TEST

FID	1 ST Check	2 ND Check	3 RD Check	Final Check	Tolerance
500 PPM	499	495	493	496	± 10%

CALIBRATION CONCENTRATION TEST

Detector	Calibration Gas	Concentration(ppm)	TVA actual reading (ppm)	Tolerance (ppm)
FID	Zero Air	0	.2	≤ 3
FID	Methane	100	99	± 25
FID	Methane	500	496	± 125
FID	Methane	10000	1.03%	±2500
PID	Zero Air	0	0	≤ 3
PID	Isobutylene	50	52	± 12.5
PID	Isobutylene	100	100	± 25
PID	Isobutylene	500	514	± 125

PRE-BUTTON UP INSPECTION

- \checkmark Tubing is secured and not crimped (where applicable).
- ✓ Serial Number/Voltage Labels intact and legible.
- ✓ Instrument cleaned.
- ✓ All hardware is secured. (Ex. Screws, connectors, tubing, etc.)
- ✓ Battery door lock tight
- ✓ Cables secured and Tie wrapped where applicable
- ✓ No loose debris within the instrument closure. (Screws, washers tubing, tywraps, etc.)
- \checkmark Make sure TVA does not flame out when bumped.
- ✓ Remove sample line TVA should **NOT** flame out. Leave off for 5 minutes minimum.
- ✓ Check battery voltage without charger being plugged in.
- ✓ Perform quick cal check with 10,000 ppm gas and insure spec. is met (90% of reading in 3.5 seconds up and 10% of reading in 20 seconds down)

FINAL QC CHECKLIST

- ✓ Serial Number/Voltage Labels intact and legible.
- ✓ Instrument cleaned.
- ✓ Service Report and Calibration Report created for unit
- ✓ All received customer accessories accounted for and clearly identified.
- ✓ Instrument turns on.
- ✓ Ignition test (TVA models).
- ✓ Calibration labels/Report with instrument.
- ✓ Bill To/Ship to information properly indicated on CO.
- ✓ Quantities correct and complete on CO.

22 Albiston Way Auburn, ME 04210 800-292-6218 207-777-6218 Fax 207-777-6215 www.specair.com

Date: 12/23/2020

Certificate of Analysis

Customer: QED ENVIRONMENTAL S	SYSTEMS	Order #: 1881326 Purchase Order #: 138961	
Cylinder Size: 105L	CGA Connection: C10 Fill Pr	ressure: 1000 PSI	
Analysis: Air Batch An	alysis	Lot #: 4035802	
Component(s):	Requested Concentration(s):	Actual Concentration(s):	
Oxygen	19.5% - 23.5%	21.0%	
Moisture	< 3 PPM	0.2 PPM	
ТНС	< 0.1 PPM	0.1 PPM	
	< 1 PPM	< 0.1 PPM	

Comments: MEETS OR EXCEEDS SPECIFICATION FOR ULTRA ZERO AIR

Approved By:

Ron Abbath J.

Ron Abbott

• Results are reported in mole percent, unless otherwise indicated. Mixes are prepared via partial pressure methods, or gravimetrically, using high load high sensitivity electronic scales. Prior to use, scales are verified for accuracy using applicable NIST traceable weights; analyses are calibrated against reference materials traceable to NIST weights and/or NIST gas reference materials.

• The information contained herein has been prepared at your request by qualified experts. While we believe that the information is accurate within the limits of the analytical methods employed, and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability arising out of the use of the information exceed the fee established for providing such information.

• This certifies that the instruments used for this analysis have been calibrated in compliance with the specifications in the order using SI/NIST traceable standards. When a statement of conformity is made, accept/reject decisions consider the measurement uncertainty and the specification tolerance. When the measurand and uncertainty are reported, measurement uncertainties are declared in the analytical results and the analytical results are not adjusted to consider measurement uncertainties.

22 Albiston Way Auburn, ME 04210 800-292-6218 207-777-6218 Fax 207-777-6215 www.specair.com

Date: 02/12/2021			Certificate of Analysis
Customer: QED ENVIRONMENTAL	SYSTEMS	Order #:] Purchase	1903560 Order #: 139463
Cylinder Size: 105L	CGA Connection: C10	Fill Pressure: 1000	PSI
Analysis: Certified Bat	ch Analysis	Lot #: 410	04346
Component(s):	Requested Concentration	-	encentration(s):
Methane Air	500 PPM BALANCE	505 PPM BALANCE	
Expiration Date: 02/2	2024		
	USING DIGITAL BALANCES CAI ION: GRAVIMETRIC / PRESSURE		CEABLE WEIGHTS / ACCURACY: +/- 2%

ANALYTICAL PRINCIPLE: GC (TCD)

Approved By:

Kyle Christianson

• Results are reported in mole percent, unless otherwise indicated. Mixes are prepared via partial pressure methods, or gravimetrically, using high load high sensitivity electronic scales. Prior to use, scales are verified for accuracy using applicable NIST traceable weights; analyses are calibrated against reference materials traceable to NIST weights and/or NIST gas reference materials.

• The information contained herein has been prepared at your request by qualified experts. While we believe that the information is accurate within the limits of the analytical methods employed, and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability arising out of the use of the information contained herein exceed the fee established for providing such information.

• This certifies that the instruments used for this analysis have been calibrated in compliance with the specifications in the order using SI/NIST traceable standards. When a statement of conformity is made, accept/reject decisions consider the measurement uncertainty and the specification tolerance. When the measurand and uncertainty are reported, measurement uncertainties are declared in the analytical results and the analytical results are not adjusted to consider measurement uncertainties.

APPENDIX G

WELLFIELD MONITORING LOGS

Tri-Cities Recycling & Disposal Facility

Wellfield Monitoring Report - November 3, 2020

Wellfield M	onitoring Report -	November 3,	2020		•				
Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
TRIC0001	11/3/2020 10:39	49.7	38.0	0.0	12.3	-51.88	78.8	-51.87	78.8
TRIC0116	11/3/2020 10:22	57.9	36.4	1.0	4.7	-46.75	78.8	-46.75	78.8
TRIC0118	11/3/2020 9:59	21.0	26.1	0.0	52.9	-0.87	95.1	-0.85	95.1
TRIC0123	11/3/2020 10:34	48.3	35.9	0.0	15.8	-16.54	119.4	-16.53	119.3
TRIC0126	11/3/2020 10:31	49.3	35.3	0.0	15.4	-6.92	103.9	-6.91	104.0
TRIC0128	11/3/2020 10:04	47.2	32.5	0.0	20.3	-10.83	113.7	-10.83	113.8
TRIC0129	11/3/2020 12:58	42.7	30.2	4.9	22.2	-39.16	90.0	-39.19	88.0
TRIC0200	11/3/2020 10:15	47.6	33.7	0.0	18.7	-10.82	113.4	-10.81	113.4
TRIC0201	11/3/2020 13:09	31.4	28.0	0.0	40.6	-0.47	99.2	-0.47	99.5
TRIC0202	11/3/2020 10:01	49.4	35.3	0.0	15.3	-11.34	114.6	-11.34	114.6
TRIC0204	11/3/2020 13:17	49.8	36.7	0.1	13.4	-9.43	129.1	-9.36	129.1
TRIC0205	11/3/2020 10:48	49.4	36.3	0.0	14.3	-13.74	125.1	-13.73	125.1
TRIC0206	11/3/2020 13:25	50.6	36.5	0.0	12.9	-3.60	120.4	-3.57	120.4
TRIC0207	11/3/2020 12:27	45.0	34.2	0.1	20.7	-37.40	120.2	-37.40	120.2
TRIC0208	11/3/2020 13:00	48.6	33.5	0.0	17.9	-25.50	121.7	-25.50	121.8
TRIC0209	11/3/2020 12:51	49.2	36.4	0.0	14.4	-47.84	77.8	-47.84	77.7
TRIC0210	11/3/2020 9:50	46.1	35.4	0.0	18.5	-1.66	120.1	-1.66	120.0
TRIC0211	11/3/2020 12:48	49.2	34.6	0.0	16.2	-20.92	117.1	-20.92	117.2
TRIC0212	11/3/2020 12:34	31.6	25.9	0.0	42.5	-1.03	90.2	-1.01	90.4
TRIC0212	11/3/2020 12:35	31.3	26.9	0.0	41.8	-0.95	89.3	-0.95	89.8
TRIC0213	11/3/2020 10:52	48.9	35.7	0.0	15.4	-2.68	110.3	-2.68	110.4
TRIC0214	11/3/2020 10:42	45.3	36.0	0.0	18.7	-1.35	90.1	-1.36	90.2
TRIC0215	11/3/2020 13:28	49.9	36.0	0.2	13.9	-49.32	125.8	-49.31	125.8
TRIC0218	11/3/2020 13:06	28.4	25.4	0.0	46.2	-1.21	98.0	-1.20	98.0
TRIC0219	11/3/2020 9:36	42.4	32.6	0.0	25.0	-2.10	112.3	-2.10	112.3
TRIC0220	11/3/2020 12:39	37.3	29.4	0.0	33.3	-1.49	96.1	-1.51	95.9
TRIC0222	11/3/2020 12:42	48.3	32.8	0.0	18.9	-7.87	113.2	-7.87	113.2
TRIC0223	11/3/2020 9:47	45.8	34.2	0.0	20.0	-3.82	117.0	-3.82	117.0
TRIC0224	11/3/2020 10:13	40.7	29.0	0.0	30.3	-2.05	75.3	-2.05	75.4
TRIC0225	11/3/2020 10:28	52.1	35.4	0.0	12.5	-3.44	105.1	-3.45	105.2
TRIC0226	11/3/2020 12:31	47.3	34.3	0.0	18.4	-1.59	90.4	-1.58	90.5
TRIC0227	11/3/2020 13:03	29.8	29.8	0.0	40.4	-0.42	75.2	-0.41	75.2
TRIC0228	11/3/2020 9:53	43.5	34.5	0.0	22.0	-2.01	117.6	-2.02	117.6
TRIC0229	11/3/2020 12:45	49.6	33.2	0.0	17.2	-4.01	90.8	-4.01	91.5
TRIC0230	11/3/2020 9:56	37.3	32.2	0.0	30.5	-1.64	125.8	-1.64	125.9
TRICO203	11/3/2020 13:14	50.0	36.5	0.0	13.5	-5.57	111.6	-5.56	111.6
TRICO216	11/3/2020 13:19	43.9	33.5	0.0	22.6	-1.12	107.2	-1.12	107.2
TRICO217	11/3/2020 10:24	48.8	35.9	0.0	15.3	-5.02	117.4	-5.02	117.4
TRICO221	11/3/2020 13:22	49.6	35.2	0.0	15.2	-0.31	106.6	-0.31	106.5

 Tri-Cities Recycling & Disposal Facility

 Wellfield Monitoring Report December 21 and 29, 2020

Wellfield M	onitoring Report -	December 21	and 29, 2020)					
Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
TRIC0001	12/29/2020 13:00	51.2	38.7	1.1	9.0	-54.38	70.1	-54.42	70.2
TRIC0116	12/29/2020 11:05	60.5	39.5	0.0	0.0	-43.58	71.6	-43.60	71.6
TRIC0118	12/21/2020 15:16	23.6	29.4	0.0	47.0	-0.03	92.2	-0.09	92.2
TRIC0123	12/29/2020 12:45	46.7	36.8	0.0	16.5	-17.35	118.5	-17.34	118.5
TRIC0126	12/29/2020 12:50	47.2	36.0	0.0	16.8	-7.13	108.2	-7.14	108.2
TRIC0128	12/21/2020 15:31	46.6	35.6	0.0	17.8	-9.51	113.0	-9.49	113.0
TRIC0129	12/21/2020 15:10	54.8	41.2	1.0	3.0	-35.91	68.8	-37.33	68.9
TRIC0200	12/29/2020 15:08	45.6	34.2	0.0	20.2	-11.53	112.6	-11.51	112.6
TRIC0201	12/21/2020 16:03	36.3	34.7	0.0	29.0	-0.11	86.6	-0.10	86.7
TRIC0202	12/21/2020 15:27	48.3	37.8	0.1	13.8	-9.72	117.6	-9.73	117.6
TRIC0204	12/29/2020 12:05	47.1	37.5	0.3	15.1	-11.90	127.3	-11.90	127.3
TRIC0205	12/29/2020 13:22	46.7	36.9	0.0	16.4	-15.21	124.4	-15.20	124.3
TRIC0206	12/29/2020 12:42	47.4	36.9	0.0	15.7	-5.57	122.4	-5.58	122.4
TRIC0207	12/29/2020 13:33	42.2	34.7	0.0	23.1	-40.08	119.5	-40.08	119.5
TRIC0208	12/21/2020 14:53	47.8	38.9	0.0	13.3	-24.82	123.5	-24.88	123.5
TRIC0209	12/29/2020 14:20	47.4	37.7	0.0	14.9	-51.90	107.7	-51.91	107.8
TRIC0210	12/21/2020 14:31	48.8	39.0	0.0	12.2	-0.71	120.2	-0.71	120.2
TRIC0211	12/29/2020 14:13	47.3	36.1	0.0	16.6	-22.98	111.5	-22.98	111.5
TRIC0212	12/29/2020 13:51	28.4	28.6	0.0	43.0	-1.74	74.1	-1.75	74.0
TRIC0213	12/29/2020 13:26	44.7	35.9	0.0	19.4	-3.29	99.1	-3.26	100.0
TRIC0213	12/29/2020 13:28	44.7	36.0	0.0	19.3	-3.16	99.7	-3.17	99.8
TRIC0214	12/29/2020 13:15	42.3	36.1	0.0	21.6	-1.42	87.4	-1.44	87.8
TRIC0214	12/29/2020 13:18	42.2	36.3	0.0	21.5	-1.48	87.3	-1.47	87.3
TRIC0215	12/29/2020 13:10	47.8	37.8	0.0	14.4	-53.72	125.0	-53.74	125.0
TRIC0218	12/21/2020 15:53	38.3	34.8	0.0	26.9	-0.59	97.1	-0.59	97.2
TRIC0219	12/21/2020 13:33	45.7	35.4	0.1	18.8	-1.28	111.5	-1.28	111.5
TRIC0220	12/29/2020 13:57	36.0	31.9	0.0	32.1	-2.50	66.4	-2.46	67.8
TRIC0220	12/29/2020 13:58	36.3	32.1	0.0	31.6	-2.37	70.8	-2.37	70.8
TRIC0222	12/29/2020 14:02	47.0	35.4	0.0	17.6	-8.72	116.4	-8.71	116.4
TRIC0223	12/21/2020 14:25	46.6	36.9	0.0	16.5	-2.53	120.7	-2.53	120.7
TRIC0224	12/21/2020 15:46	39.8	33.1	0.0	27.1	-0.55	68.0	-0.54	68.0
TRIC0225	12/29/2020 12:34	48.8	35.8	0.0	15.4	-4.31	116.7	-4.29	116.7
TRIC0226	12/29/2020 13:44	43.9	36.9	0.0	19.2	-2.13	96.1	-2.10	95.6
TRIC0226	12/29/2020 13:46	44.3	37.2	0.0	18.5	-1.92	95.9	-1.92	96.0
TRIC0227	12/21/2020 15:59	37.4	36.4	0.0	26.2	-0.01	69.1	-0.01	69.2
TRIC0228	12/21/2020 14:40	46.2	38.4	0.0	15.4	-0.80	118.0	-0.80	118.1
TRIC0229	12/29/2020 14:06	47.2	36.2	0.0	16.6	-4.58	87.5	-4.57	89.1
TRIC0230	12/21/2020 14:44	48.7	39.7	0.0	11.6	-0.67	107.1	-0.68	107.3
TRICO203	12/29/2020 11:48	40.9	35.5	0.0	23.6	-3.11	93.8	-3.10	94.0
TRICO216	12/29/2020 12:12	28.9	30.7	0.0	40.4	-3.18	96.9	-3.18	94.9
TRICO216	12/29/2020 12:15	28.6	30.5	0.0	40.9	-3.16	89.9	-3.16	90.1
TRICO217	12/29/2020 11:37	47.1	36.8	0.0	16.1	-6.49	120.1	-6.51	120.1
TRICO221	12/29/2020 12:27	44.2	35.0	0.0	20.8	-1.69	108.4	-1.60	106.9
TRICO221	12/29/2020 12:29	44.3	34.9	0.0	20.8	-1.54	106.6	-1.55	106.6

Tri-Cities Recycling & Disposal FacilityWellfield Monitoring Report -January 6, 19, and 26, 2021

Wellfield Mo	onitoring Report -	January 6, 19), and 26, 202	1					
Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
TRIC0001	1/19/2021 12:39	57.6	40.7	0.0	1.7	-51.81	72.0	-54.47	73.2
TRIC0001	1/19/2021 12:42	56.5	40.8	0.2	2.5	-55.39	73.1	-55.38	73.1
TRIC0116	1/19/2021 13:22	60.5	39.1	0.4	0.0	-38.26	75.7	-38.26	75.7
TRIC0118	1/6/2021 13:09	19.7	26.7	0.0	53.6	-0.56	90.2	-0.53	90.1
TRIC0123	1/19/2021 12:53	46.6	36.4	0.0	17.0	-16.81	118.0	-16.63	118.0
TRIC0123	1/19/2021 12:55	47.1	37.3	0.0	15.6	-15.68	117.8	-15.68	117.8
TRIC0126	1/19/2021 12:59	47.6	36.4	0.0	16.0	-6.37	106.6	-6.39	106.6
TRIC0128	1/19/2021 14:14	47.9	34.7	0.0	17.4	-10.60	112.8	-10.60	112.9
TRIC0129	1/19/2021 14:35	58.3	41.2	0.5	0.0	-29.90	69.2	-30.55	69.1
TRIC0200	1/19/2021 14:00	48.0	35.0	0.0	17.0	-11.08	112.6	-11.08	112.6
TRIC0201	1/19/2021 14:05	30.9	30.5	0.0	38.6	-1.10	72.4	-1.08	72.5
TRIC0202	1/6/2021 13:16	49.1	36.4	0.2	14.3	-11.20	117.4	-11.20	117.4
TRIC0204	1/19/2021 13:39	49.9	38.6	0.2	11.3	-10.12	127.2	-10.12	127.3
TRIC0205	1/19/2021 12:17	48.7	37.1	0.0	14.2	-14.09	124.4	-14.10	124.4
TRIC0206	1/6/2021 14:00	47.7	37.9	0.0	14.4	-0.94	89.8	-0.94	90.2
TRIC0207	1/19/2021 12:00	42.8	34.6	0.0	22.6	-39.38	119.3	-38.81	119.4
TRIC0207	1/19/2021 12:02	42.9	34.7	0.0	22.4	-38.01	119.4	-38.00	119.4
TRIC0208	1/19/2021 14:30	48.9	38.1	0.0	13.0	-27.40	123.2	-27.38	123.3
TRIC0209	1/26/2021 15:10	48.6	38.5	0.0	12.9	-52.70	94.0	-52.70	94.2
TRIC0210	1/6/2021 12:31	46.5	36.4	0.0	17.1	-1.81	119.0	-1.79	118.9
TRIC0211	1/19/2021 11:10	49.0	36.1	0.0	14.9	-23.32	112.4	-23.32	112.5
TRIC0212	1/6/2021 14:08	29.6	29.0	0.0	41.4	-0.60	66.7	-0.60	66.8
TRIC0213	1/6/2021 13:37	48.8	37.1	0.0	14.1	-1.98	92.4	-1.98	92.6
TRIC0213	1/19/2021 12:13	47.6	36.6	0.0	15.8	-2.38	79.8	-2.38	80.7
TRIC0214	1/6/2021 13:28	46.5	37.6	0.0	15.9	-0.71	87.6	-0.71	87.7
TRIC0214	1/19/2021 12:32	45.7	37.1	0.0	17.2	-0.75	86.3	-0.69	87.4
TRIC0214	1/19/2021 12:35	45.8	37.2	0.0	17.0	-0.56	87.7	-0.57	87.8
TRIC0215	1/19/2021 12:25	48.7	37.4	0.0	13.9	-54.35	124.9	-54.34	125.0
TRIC0218	1/19/2021 14:20	28.3	29.5	0.0	42.2	-1.99	93.6	-1.97	93.9
TRIC0218	1/19/2021 14:22	28.6	29.7	0.0	41.7	-2.02	93.6	-2.00	93.6
TRIC0219	1/6/2021 12:11	43.6	34.1	0.1	22.2	-2.02	110.7	-2.01	110.7
TRIC0220	1/19/2021 11:34	36.2	31.4	0.0	32.4	-2.36	69.4	-2.33	69.4
TRIC0222	1/19/2021 11:23	48.5	35.4	0.0	16.1	-9.07	116.3	-9.08	116.3
TRIC0223	1/6/2021 12:25	45.9	35.1	0.3	18.7	-3.74	120.5	-3.75	120.6
TRIC0224	1/19/2021 14:09	41.1	31.4	0.0	27.5	-1.79	69.7	-1.78	69.7
TRIC0225	1/19/2021 13:09	49.8	36.3	0.0	13.9	-3.38	117.7	-3.38	117.7
TRIC0226	1/19/2021 11:53	46.2	37.0	0.0	16.8	-1.64	90.9	-1.60	90.8
TRIC0226	1/19/2021 11:54	46.6	37.3	0.0	16.1	-1.41	90.0	-1.40	89.9
TRIC0227	1/19/2021 14:26	28.0	31.1	0.0	40.9	-0.88	71.1	-0.89	71.1
TRIC0228	1/6/2021 12:37	42.9	35.7	0.0	21.4	-2.10	115.8	-2.09	115.6
TRIC0228	1/6/2021 12:40	42.1	35.3	0.0	22.6	-1.93	114.5	-1.93	114.4
TRIC0229	1/19/2021 11:21	49.1	36.2	0.0	14.7	-4.64	84.5	-4.65	84.5
TRIC0230	1/6/2021 12:55	37.8	33.7	0.0	28.5	-1.26	106.0	-1.27	106.2
TRIC0230	1/6/2021 12:58	37.7	33.8	0.0	28.5	-1.24	104.6	-1.24	104.6
TRICO203	1/19/2021 13:32	50.5	39.7	0.0	9.8	-1.09	96.4	-1.08	96.8
TRICO203	1/19/2021 13:36	50.4	39.4	0.0	10.2	-1.01	96.3	-1.02	96.3
TRICO216	1/19/2021 13:04	39.0	33.8	0.0	27.2	-1.26	80.1	-1.25	80.4
TRICO216	1/19/2021 13:06	38.9	34.0	0.0	27.1	-1.26	78.0	-1.26	78.0
TRICO217	1/19/2021 13:27	49.5	37.5	0.0	13.0	-4.46	120.5	-4.47	120.5
TRICO221	1/19/2021 13:16	49.9	37.6	0.0	12.5	-0.55	105.9	-0.56	106.0

Tri-Cities Recycling & Disposal FacilityWellfield Monitoring Report -February 2 and 9, 2021

Wellfield M	onitoring Report -	February 2 a	nd 9, 2021			r			
Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
TRIC0001	2/9/2021 11:45	53.4	39.9	1.4	5.3	-48.54	68.9	-48.54	69.0
TRIC0116	2/2/2021 14:13	59.8	40.2	0.0	0.0	-9.60	73.3	-9.66	73.4
TRIC0116	2/9/2021 12:43	60.2	39.8	0.0	0.0	-26.29	71.7	-26.29	71.7
TRIC0118	2/2/2021 15:18	21.8	26.8	0.0	51.4	-0.80	90.7	-0.80	90.9
TRIC0118	2/9/2021 14:01	23.2	26.9	0.0	49.9	-0.60	90.5	-0.59	90.5
TRIC0123	2/9/2021 11:50	49.4	37.8	0.0	12.8	-14.02	116.4	-14.03	117.7
TRIC0126	2/9/2021 11:54	49.9	37.0	0.0	13.1	-6.27	106.0	-6.27	106.1
TRIC0128	2/2/2021 16:09	49.1	35.5	0.0	15.4	-10.89	112.8	-10.90	112.8
TRIC0128	2/9/2021 13:25	48.0	34.9	0.0	17.1	-10.03	112.8	-10.02	112.8
TRIC0129	2/2/2021 13:37	54.0	40.2	1.0	4.8	-37.85	73.4	-37.84	73.4
TRIC0129	2/9/2021 13:52	54.4	40.1	1.3	4.2	-30.26	64.8	-30.22	64.8
TRIC0200	2/2/2021 14:58	47.6	35.1	0.0	17.3	-11.30	112.6	-11.30	112.7
TRIC0200	2/9/2021 12:48	47.1	35.5	0.0	17.4	-10.11	112.5	-10.11	112.6
TRIC0201	2/2/2021 15:05	30.8	31.2	0.2	37.8	-1.10	71.6	-1.11	71.6
TRIC0201	2/9/2021 12:52	30.3	30.7	0.0	39.0	-0.84	70.4	-0.83	70.4
TRIC0202	2/2/2021 15:27	49.7	37.5	0.0	12.8	-11.73	116.6	-11.73	116.9
TRIC0202	2/9/2021 13:57	49.2	36.8	0.0	14.0	-10.06	116.9	-10.06	116.9
TRIC0204	2/2/2021 16:38	49.8	39.8	0.3	10.1	-10.76	127.1	-10.79	127.2
TRIC0204	2/9/2021 12:25	48.8	39.0	0.1	12.1	-9.73	127.3	-9.72	127.3
TRIC0205	2/9/2021 11:28	49.0	37.8	0.0	13.2	-13.30	124.2	-13.30	124.3
TRIC0206	2/2/2021 16:42	50.7	39.1	0.0	10.2	-4.16	121.5	-4.16	121.6
TRIC0206	2/9/2021 12:01	50.0	38.5	0.0	11.5	-3.98	122.2	-4.00	122.1
TRIC0207	2/9/2021 11:16	44.6	35.4	0.0	20.0	-33.35	119.4	-33.37	119.5
TRIC0208	2/2/2021 14:00	48.3	38.5	0.0	13.2	-27.64	123.1	-27.66	123.2
TRIC0208	2/9/2021 13:42	48.3	38.2	0.0	13.5	-24.30	123.1	-24.30	123.1
TRIC0209	2/2/2021 13:27	48.3	37.5	0.0	14.2	-53.24	113.7	-53.25	113.7
TRIC0209	2/9/2021 14:14	47.4	37.0	0.6	15.0	-45.14	111.5	-45.14	111.5
TRIC0210	2/2/2021 11:02	45.6	36.8	0.0	17.6	-2.03	118.9	-2.02	118.9
TRIC0210	2/9/2021 14:19	50.0	37.8	0.0	12.2	-0.87	117.6	-0.86	118.1
TRIC0211	2/9/2021 10:30	49.0	36.4	0.0	14.6	-21.08	111.7	-21.08	111.8
TRIC0212	2/9/2021 11:06	33.6	29.5	0.0	36.9	-1.73	67.1	-1.73	67.2
TRIC0213	2/9/2021 11:20	49.1	37.6	0.0	13.3	-2.70	69.2	-2.69	71.0
TRIC0214	2/9/2021 11:39	47.2	38.0	0.0	14.8	-1.22	86.4	-1.21	86.4
TRIC0215	2/9/2021 11:36	49.3	38.0	0.0	12.7	-47.20	124.9	-47.21	124.9
TRIC0218	2/2/2021 15:32	28.6	30.5	0.0	40.9	-2.10	93.1	-2.05	93.0
TRIC0218	2/2/2021 15:35	28.5	30.2	0.0	41.3	-1.98	93.1	-2.01	93.1
TRIC0218	2/9/2021 13:31	28.8	29.7	0.0	41.5	-1.60	92.4	-1.60	92.4
TRIC0219	2/2/2021 10:39	41.3	34.0	0.0	24.7	-2.36	110.9	-2.42	110.9
TRIC0219	2/2/2021 10:41	41.3	34.0	0.0	24.7	-2.31	110.5	-2.31	110.6
TRIC0219	2/9/2021 14:28	45.5	34.9	0.0	19.6	-1.26	110.3	-1.25	110.5
TRIC0220	2/9/2021 11:02	39.2	32.1	0.0	28.7	-2.31	60.0	-2.30	60.0
TRIC0222	2/9/2021 10:56	49.0	36.1	0.0	14.9	-8.57	116.1	-8.57	116.1
TRIC0223	2/2/2021 10:55	45.3	35.9	0.0	18.8	-4.15	119.2	-4.13	120.1
TRIC0223	2/2/2021 10:56	45.2	36.0	0.0	18.8	-4.09	120.2	-4.08	120.2
TRIC0223	2/9/2021 14:23	47.7	36.1	0.0	16.2	-2.88	119.8	-2.89	119.9
TRIC0224	2/2/2021 16:18	42.2	32.0	0.0	25.8	-1.93	64.5	-1.92	64.7
TRIC0224	2/9/2021 12:59	41.9	31.5	0.0	26.6	-1.58	68.1	-1.58	68.2
TRIC0225	2/2/2021 14:30	52.4	37.5	0.0	10.1	-3.20	116.1	-3.21	116.1
TRIC0225	2/9/2021 12:15	51.5	37.2	0.0	11.3	-3.39	116.6	-3.39	116.6
TRIC0226	2/9/2021 11:11	47.7	38.2	0.0	14.1	-1.63	92.7	-1.64	92.7
TRIC0227	2/2/2021 16:13	26.6	30.5	0.2	42.7	-1.10	62.0	-1.11	62.2
TRIC0227	2/9/2021 13:36	27.5	30.9	0.0	41.6	-0.73	64.2	-0.73	64.2
TRIC0228	2/2/2021 13:20	44.2	35.3	0.0	20.5	-1.57	114.4	-1.57	114.4

Tri-Cities Recycling & Disposal FacilityWellfield Monitoring Report -February 2 and 9, 2021

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
TRIC0228	2/2/2021 13:25	42.6	35.1	0.0	22.3	-1.53	113.5	-1.53	113.5
TRIC0228	2/9/2021 14:09	46.6	36.9	0.0	16.5	-1.05	113.1	-1.03	113.1
TRIC0229	2/9/2021 10:42	49.6	36.7	0.0	13.7	-4.44	82.2	-4.44	82.3
TRIC0230	2/2/2021 14:06	37.1	33.0	0.0	29.9	-1.39	87.8	-1.38	88.0
TRIC0230	2/9/2021 14:06	42.0	35.0	0.0	23.0	-0.92	102.2	-0.91	102.2
TRICO203	2/2/2021 15:13	48.6	39.7	0.0	11.7	-1.44	98.7	-1.44	99.0
TRICO203	2/9/2021 12:29	48.5	39.3	0.0	12.2	-1.53	98.1	-1.50	98.2
TRICO216	2/2/2021 14:42	34.6	32.1	0.0	33.3	-1.37	71.8	-1.38	72.0
TRICO216	2/9/2021 12:07	33.5	31.6	0.1	34.8	-1.54	70.8	-1.54	70.8
TRICO217	2/2/2021 15:09	49.3	38.6	0.0	12.1	-5.28	120.4	-5.27	120.4
TRICO217	2/9/2021 12:35	48.0	37.8	0.0	14.2	-4.87	120.3	-4.89	120.4
TRICO221	2/2/2021 14:23	49.0	37.2	0.0	13.8	-0.86	105.7	-0.87	106.2
TRICO221	2/9/2021 12:20	49.1	37.4	0.0	13.5	-0.77	105.5	-0.78	105.5

March 2, 9, and 16, 2021

Wellfield M	Ionitoring Report -	March 2, 9, a	nd 16, 2021						
Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure (''H2O)	Adjusted Temperature (°F)
TRIC0001	3/9/2021 12:38	57.6	42.2	0.2	0.0	-48.39	67.3	-48.62	67.2
TRIC0116	3/2/2021 12:38	57.1	37.9	1.1	3.9	-7.38	76.6	-9.11	76.6
TRIC0118	3/2/2021 12:10	27.4	28.0	0.0	44.6	-0.17	92.2	-0.15	92.3
TRIC0123	3/9/2021 12:29	51.6	37.7	0.0	10.7	-13.29	117.5	-13.31	117.5
TRIC0126	3/9/2021 12:18	53.1	36.8	0.0	10.1	-5.55	104.2	-5.57	104.2
TRIC0128	3/2/2021 14:16	48.0	34.7	0.0	17.3	-8.48	112.8	-8.50	112.8
TRIC0129	3/2/2021 13:39	51.6	39.1	1.7	7.6	-12.65	75.3	-13.42	75.3
TRIC0200	3/2/2021 12:26	46.6	35.5	0.0	17.9	-9.04	112.8	-9.04	112.8
TRIC0200	3/16/2021 11:55	45.4	34.9	0.0	19.7	-10.31	112.5	-10.24	112.6
TRIC0201	3/2/2021 15:01	44.2	36.2	0.0	19.4	-0.02	102.0	-0.02	102.0
TRIC0201	3/9/2021 15:06	34.7	32.7	0.0	32.6	-0.92	105.9	-0.93	105.9
TRIC0201	3/16/2021 12:02	30.9	30.8	0.0	38.3	-2.15	103.9	-2.07	103.3
TRIC0202	3/2/2021 14:11	49.8	36.5	0.0	13.4	-8.52	117.4	-8.53	117.4
TRIC0202	3/2/2021 15:16	50.7	39.6	0.0	9.6	-7.75	127.6	-7.75	127.7
TRIC0204	3/9/2021 13:10	50.2	38.1	0.0	11.7	-11.95	124.2	-11.96	124.3
TRIC0205	3/2/2021 15:35	53.4	39.1	0.0	7.5	-1.82	124.2	-1.87	124.5
TRIC0206	3/16/2021 12:20	49.9	38.1	0.0	12.0	-5.29	122.5	-5.29	122.0
TRIC0200	3/9/2021 13:27	49.9	35.2	0.0	12.0	-32.46	123.3	-30.29	119.7
TRIC0207	3/16/2021 12:32	45.8	34.9	0.0	19.3	-32.40	119.7	-24.55	119.7
TRIC0207	3/2/2021 13:15	43.8	38.5	0.0	19.3	-23.23	123.3	-24.55	123.3
									+
TRIC0209	3/2/2021 13:21	49.0	38.1	0.0	12.9	-45.20	117.6	-45.21	117.7
TRIC0210	3/2/2021 11:52	52.3	38.4	0.0	9.3	-0.43	119.8	-0.43	119.8
TRIC0210	3/9/2021 15:35	53.5	38.9	0.0	7.6	-0.27	116.4	-0.23	118.4
TRIC0210	3/16/2021 11:37	50.7	37.7	0.0	11.6	-1.50	119.0	-1.48	119.0
TRIC0211	3/9/2021 14:24	48.7	36.7	0.0	14.6	-19.48	118.8	-19.48	118.8
TRIC0212	3/9/2021 13:59	37.5	30.1	0.0	32.4	-0.10	85.8	-0.10	85.8
TRIC0213	3/9/2021 13:18	51.4	38.4	0.0	10.2	-1.44	111.7	-1.43	111.7
TRIC0214	3/9/2021 12:47	51.8	39.4	0.0	8.8	-0.35	114.1	-0.35	114.1
TRIC0215	3/9/2021 13:02	49.0	37.9	0.1	13.0	-46.78	125.1	-46.78	125.1
TRIC0218	3/2/2021 14:32	42.4	34.3	0.0	23.3	-0.02	97.9	-0.03	98.1
TRIC0218	3/9/2021 14:51	36.3	32.3	0.0	31.4	-0.72	94.4	-0.74	96.1
TRIC0218	3/16/2021 11:48	27.1	29.2	0.0	43.7	-2.21	96.5	-2.25	96.7
TRIC0219	3/2/2021 11:30	46.9	35.1	0.1	17.9	-1.00	111.2	-0.99	111.3
TRIC0219	3/16/2021 11:17	44.4	34.3	0.1	21.2	-1.56	110.3	-1.47	110.3
TRIC0220	3/16/2021 12:44	39.8	31.7	0.0	28.5	-1.74	68.6	-1.74	68.5
TRIC0222	3/9/2021 14:06	48.7	36.1	0.0	15.2	-7.17	116.1	-7.16	116.1
TRIC0223	3/2/2021 11:40	48.9	36.0	0.2	14.9	-2.56	120.4	-2.53	120.4
TRIC0224	3/2/2021 12:20	39.6	31.3	0.5	28.6	-0.45	74.2	-0.46	74.1
TRIC0225	3/2/2021 15:30	56.0	37.8	0.0	6.2	-1.78	116.8	-1.78	116.8
TRIC0225	3/9/2021 15:25	54.5	37.4	0.0	8.1	-3.04	115.4	-3.11	115.5
TRIC0225	3/16/2021 12:13	50.9	36.7	0.0	12.4	-5.14	116.5	-5.14	116.5
TRIC0226	3/9/2021 13:53	50.9	38.9	0.0	10.2	-0.28	115.8	-0.29	115.8
TRIC0227	3/9/2021 12:00	28.6	31.0	0.0	40.4	-0.67	83.8	-0.67	83.8
TRIC0228	3/2/2021 12:01	50.5	38.8	0.0	10.7	-0.29	115.2	-0.22	115.2
TRIC0228	3/9/2021 14:35	51.6	38.9	0.0	9.5	-0.14	112.9	-0.14	112.9
TRIC0229	3/9/2021 14:12	51.1	37.1	0.0	11.8	-3.01	114.9	-3.01	114.9
TRIC0230	3/2/2021 13:53	53.8	40.9	0.0	5.3	-0.03	126.0	-0.03	125.8
TRIC0230	3/9/2021 14:42	47.4	37.7	0.0	14.9	-0.50	125.3	-0.47	125.4
TRICO203	3/2/2021 13:09	52.8	41.4	0.0	5.8	-0.02	115.8	-0.03	115.8
TRICO203	3/9/2021 15:13	50.2	39.9	0.0	9.9	-0.58	109.1	-0.57	109.5
TRICO216	3/2/2021 15:13	58.8	38.0	0.0	3.2	-0.02	84.4	-0.02	84.5
TRICO216	3/9/2021 15:31	46.1	36.4	0.0	17.5	-1.42	107.1	-1.38	107.4
TRICO217	3/2/2021 12:46	48.3	37.5	0.0	14.2	-3.66	120.8	-3.68	120.8

Tri-Cities Recycling & Disposal Facility

Wellfield Monitoring Report -	March 2, 9, and 16, 2021
rienden der	

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
TRICO221	3/2/2021 15:08	56.3	40.3	0.1	3.3	-0.02	113.8	-0.01	113.7
TRICO221	3/9/2021 15:19	49.0	37.6	0.0	13.4	-0.46	110.9	-0.47	111.1

Tri-Cities Recycling & Disposal Facility Wellfield Monitoring Report April 6, 20, and 27, 2021

vvelifield iv	onitoring Report -	April 6, 20, a	na 27, 2021	1	1				
Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
TRIC0001	4/6/2021 15:08	58.4	41.6	0.0	0.0	-49.09	75.0	-49.11	75.5
TRIC0001	4/20/2021 13:34	57.8	42.1	0.1	0.0	-48.87	74.8	-48.90	74.9
TRIC0001	4/27/2021 15:39	56.2	41.8	0.0	2.0	-49.01	79.3	-49.00	79.3
TRIC0116	4/6/2021 14:17	58.4	38.1	0.8	2.7	-38.94	78.1	-38.95	78.1
TRIC0118	4/6/2021 12:52	20.5	24.9	0.0	54.6	-0.70	91.8	-0.69	92.0
TRIC0123	4/6/2021 15:02	52.3	37.6	0.0	10.1	-13.80	117.8	-13.80	117.8
TRIC0123	4/20/2021 13:42	51.8	38.6	0.0	9.6	-13.55	118.3	-13.54	118.3
TRIC0123	4/27/2021 15:35	51.0	37.7	0.0	11.3	-13.98	118.1	-14.77	118.3
TRIC0126	4/6/2021 15:04	52.2	36.1	0.0	11.7	-5.89	105.7	-5.90	106.5
TRIC0126	4/20/2021 13:49	51.2	37.5	0.0	11.3	-5.33	107.4	-5.33	107.4
TRIC0126	4/27/2021 14:53	50.3	36.4	0.0	13.3	-5.99	106.3	-6.26	107.1
TRIC0128	4/6/2021 13:06	47.4	34.3	0.0	18.3	-10.07	112.8	-10.12	112.8
TRIC0120	4/6/2021 13:24	53.6	39.5	1.6	5.3	-29.73	78.7	-30.20	78.6
TRIC0200	4/6/2021 13:46	46.0	34.2	0.0	19.8	-8.52	112.3	-8.53	112.3
TRIC0200	4/6/2021 13:55	30.4	29.1	0.0	40.5	-1.38	102.8	-1.40	103.3
TRIC0201	4/6/2021 13:01	49.0	36.2	0.0	14.8	-10.43	102.0	-10.43	103.3
TRIC0202 TRIC0204	4/6/2021 13:58	49.0	38.6	0.0	14.0	-9.47	117.3	-10.43	117.3
TRIC0204	4/6/2021 15:15	49.2 51.5	37.6	0.0	10.9	-12.56	124.0	-9.47	127.7
TRIC0205	4/20/2021 13:13	51.5	38.4	0.0		-12.30	124.0	-12.33	124.0
TRIC0205	4/20/2021 15:17	51.5	37.6	0.0	10.1	-11.66	124.3	-11.87	124.3
		+			11.8				
TRIC0206	4/6/2021 14:56	49.0	36.7	0.0	14.3	-4.95	123.6	-4.95	123.6
TRIC0206	4/27/2021 14:58	46.8	37.2	0.0	16.0	-5.56	123.2	-5.54	123.3
TRIC0207	4/6/2021 15:21	49.3	35.3	0.0	15.4	-19.66	119.7	-19.67	119.7
TRIC0208	4/6/2021 13:19	48.8	37.4	0.0	13.8	-24.54	123.1	-24.54	123.1
TRIC0209	4/6/2021 13:28	50.5	37.7	0.0	11.8	-45.54	107.0	-45.55	107.1
TRIC0210	4/6/2021 12:29	51.2	37.4	0.0	11.4	-1.46	119.4	-1.47	119.4
TRIC0211	4/6/2021 15:43	50.2	36.4	0.0	13.4	-20.15	106.2	-20.15	106.9
TRIC0212	4/6/2021 15:31	38.6	29.2	0.0	32.2	-0.77	76.0	-0.76	75.9
TRIC0213	4/6/2021 15:18	52.6	37.8	0.0	9.6	-1.75	87.1	-1.74	88.3
TRIC0213	4/20/2021 14:28	54.8	37.5	1.5	6.2	-1.45	109.5	-1.45	109.5
TRIC0213	4/27/2021 14:40	52.0	37.3	0.0	10.7	-2.66	114.1	-2.86	115.3
TRIC0214	4/6/2021 15:12	52.5	38.5	0.0	9.0	-0.71	79.5	-0.75	80.5
TRIC0214	4/20/2021 13:24	53.0	40.0	0.0	7.0	-0.49	113.7	-0.48	113.9
TRIC0214	4/27/2021 14:46	50.0	37.3	0.0	12.7	-1.22	114.3	-1.24	114.7
TRIC0215		50.3	37.0	0.0	12.7	-47.38	124.6	-47.38	124.9
TRIC0215	4/27/2021 15:23	49.7	36.9	0.0	13.4	-47.01	125.0	-47.02	125.0
TRIC0218	4/6/2021 13:10	28.5	28.0	0.0	43.5	-2.04	97.9	-1.95	98.2
TRIC0219	4/6/2021 12:14	46.1	33.8	0.0	20.1	-0.67	110.0	-0.70	109.9
TRIC0220	4/6/2021 15:35	39.5	31.1	0.2	29.2	-1.11	69.2	-1.11	69.3
TRIC0222	4/6/2021 15:37	49.5	35.3	0.0	15.2	-7.43	115.8	-7.44	116.0
TRIC0223	4/6/2021 12:25	50.1	35.7	0.0	14.2	-3.03	119.9	-3.04	119.9
TRIC0224	4/6/2021 13:43	36.8	28.3	1.7	33.2	-1.28	75.1	-1.29	75.1
TRIC0225	4/6/2021 14:38	49.3	36.0	0.0	14.7	-4.81	116.6	-4.81	116.6
TRIC0226	4/6/2021 15:28	52.0	38.2	0.0	9.8	-0.70	86.7	-0.71	86.9
TRIC0226	4/20/2021 13:03	53.6	38.4	0.0	8.0	-0.28	116.1	-0.37	116.6
TRIC0227	4/6/2021 13:16	25.3	28.3	0.0	46.4	-1.01	86.0	-1.00	88.0
TRIC0228	4/6/2021 12:34	49.6	37.5	0.0	12.9	-1.15	113.1	-1.15	113.2
TRIC0229	4/6/2021 15:40	51.0	36.6	0.0	12.4	-3.31	80.8	-3.32	81.0
TRIC0230	4/6/2021 12:41	43.0	33.8	0.0	23.2	-1.74	125.1	-1.66	125.4
TRICO203	4/6/2021 14:02	47.2	38.4	0.0	14.4	-1.34	85.5	-1.38	87.2
TRICO216	4/6/2021 14:35	37.2	32.1	0.0	30.7	-2.50	106.7	-2.50	106.8
TRICO216	4/27/2021 15:17	31.3	30.4	0.0	38.3	-2.62	100.5	-2.64	100.5
TRICO217	4/6/2021 14:11	47.6	36.6	0.0	15.8	-4.84	120.4	-4.80	120.4

Tri-Cities Recycling & Disposal Facility Wellfield Monitoring Report April 6, 20, and 27, 2021

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
TRICO221	4/6/2021 14:31	43.4	34.8	0.0	21.8	-1.24	113.0	-1.25	113.0

APPENDIX H

WELLFIELD DEVIATION LOGS

						Т	Wellf	CYCLING & DISP ield Deviation R per 1, 2020 - April 3	•		
UPDATED D FLOW SENS MODEL: 200	SING DEVICE: G										
Well ID	Time	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	Balance Gas (%)	Initial Static Pressure (" w.c.)	Initial Temperature (°F)	Adjusted Static Pressure (" w.c.)	Adjusted Temperature (°F)	Comments	Duration of Exceedance (Days)
							No well exe	ceedances in Nove	mber 2020		
							No well ex	ceedances in Dece	mber 2020		
							No well e	xceedances in Janu	uary 2021		
							No well ex	ceedances in Febr	uary 2021		
							No well e	exceedances in Ma	rch 2021		
							No well	exceedances in Ap	oril 2021		
2) Abbreviati	ons - CAI: Correc	ctive Actio	n Initiate	d, NSPS	/EG: New So	urce Performance	e Standards/Emissio	ons Guidelines	was slightly opened, slig ppmv - parts per millio	hly closed, fully closed, or fully opened). n by volume	

APPENDIX I

MONTHLY LANDFILL GAS FLOW RATES

2020 Monthly LFG Input to Flare (A-3) TRI-CITES RECYCLING AND DISPOSAL FACILITY, Fremont, CA

A-3 (Flare)

Month	Total Available Runtime (Hours)	Total Downtime (Hours)	Total Runtime (Hours)	Average Flow (scfm)	CH ₄ (%) ⁽¹⁾	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Total Heat Input (MMBTU)
January-20	744.00	1.37	742.63	1,135	46.77	50,568,456	23,649,198	23,957
February-20	696.00	0.93	695.07	1,114	46.77	46,461,108	21,728,327	22,011
March-20	743.00	3.37	739.63	1,082	47.28	48,001,492	22,693,357	22,988
April-20	720.00	10.30	709.70	1,051	47.77	44,752,164	21,376,632	21,655
May-20	744.00	0.00	744.00	1,046	47.77	46,694,272	22,304,313	22,594
June-20	720.00	0.00	720.00	1,042	47.77	44,995,137	21,492,692	21,772
July-20	744.00	0.00	744.00	1,035	47.77	46,209,630	22,072,815	22,360
August-20	744.00	0.00	744.00	1,031	47.77	46,006,908	21,975,982	22,262
September-20	720.00	0.00	720.00	1,029	47.77	44,433,184	21,224,266	21,500
October-20	744.00	0.00	744.00	1,025	47.77	45,774,202	21,864,826	22,149
November-20	721.00	0.00	721.00	1,024	47.77	44,280,473	21,151,321	21,426
December-20	744.00	0.00	744.00	1,022	47.77	45,602,628	21,782,871	22,066
TOTAL/AVERAGE:	8,784.00	15.97	8,768.03	1,053	47.56	553,779,654	263,316,599	266,740

NOTE: The annual heat input rate for the A-3 Flare shall not exceed 657,000 MMBtu (Title V Condition No. 8366, Part No. 11).

(1) The methane content was determined from the February 6, 2019 (3/22/19-3/15/20) and February 11, 2020 (3/16/20 - current) source tests.

scfm - standard cubic feet per minute % - percent scf - standard cubic feet MMBTU - million British thermal units

November 1, 2020 - April 30, 2021 Monthly LFG Input to Flare (A-3)

TRI-CITES RECYCLING AND DISPOSAL FACILITY, Fremont, CA

A-3 (Flare)

Month	Total Available Runtime (Hours)	Total Downtime (Hours)	Total Runtime (Hours)	Average Flow (scfm)	CH ₄ (%) ⁽¹⁾	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Total Heat Input (MMBTU)
November-20	721.00	0.00	721.00	1,024	47.77	44,280,473	21,151,321	21,426
December-20	744.00	0.00	744.00	1,022	47.77	45,602,628	21,782,871	22,066
January-21	744.00	9.67	734.33	1,018	47.77	44,844,945	21,420,950	21,699
February-21	672.00	11.00	661.00	941	47.77	37,313,215	17,823,291	18,055
March-21	743.00	0.00	743.00	961	47.11	42,819,990	20,171,155	20,433
April-21	720.00	0.67	719.33	942	46.83	40,674,855	19,049,377	19,297
TOTAL/AVERAGE:	4,344.00	21.33	4,322.67	984	47.50	255,536,106	121,398,965	122,977

NOTE: The annual heat input rate for the A-3 Flare shall not exceed 657,000 MMBtu (Title V Condition No. 8366, Part No. 11). (1) The methane content was determined from the February 11, 2020 (3/16/20-3/9/21) and February 4, 2021 (3/10/21 - current) source tests. scfm - standard cubic feet per minute % - percent scf - standard cubic feet MMBTU - million British thermal units

Heat Input Rate

MONTH: Nov-20

Date	Runtime (Hours)	CH₄* (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (BTU/scf)	Heat Input (MMBTU)/Day
11/1/2020	25.00	47.8	1,026	1,538,484	734,883	1,013	744
11/2/2020	24.00	47.8	1,028	1,479,683	706,796	1,013	716
11/3/2020	24.00	47.8	1,023	1,473,732	703,953	1,013	713
11/4/2020	24.00	47.8	1,026	1,477,064	705,545	1,013	715
11/5/2020	24.00	47.8	1,035	1,489,983	711,716	1,013	721
11/6/2020	24.00	47.8	1,023	1,472,545	703,386	1,013	713
11/7/2020	24.00	47.8	1,011	1,455,967	695,467	1,013	705
11/8/2020	24.00	47.8	1,006	1,448,544	691,922	1,013	701
11/9/2020	24.00	47.8	1,011	1,456,384	695,667	1,013	705
11/10/2020	24.00	47.8	1,028	1,480,175	707,031	1,013	716
11/11/2020	24.00	47.8	1,029	1,481,548	707,687	1,013	717
11/12/2020	24.00	47.8	1,023	1,473,435	703,811	1,013	713
11/13/2020	24.00	47.8	1,022	1,471,046	702,670	1,013	712
11/14/2020	24.00	47.8	1,024	1,474,400	704,272	1,013	713
11/15/2020	24.00	47.8	1,031	1,484,481	709,088	1,013	718
11/16/2020	24.00	47.8	1,035	1,490,667	712,042	1,013	721
11/17/2020	24.00	47.8	1,017	1,465,107	699,833	1,013	709
11/18/2020	24.00	47.8	1,014	1,460,779	697,766	1,013	707
11/19/2020	24.00	47.8	1,022	1,472,264	703,252	1,013	712
11/20/2020	24.00	47.8	1,027	1,479,216	706,573	1,013	716
11/21/2020	24.00	47.8	1,029	1,481,525	707,676	1,013	717
11/22/2020	24.00	47.8	1,026	1,477,352	705,682	1,013	715
11/23/2020	24.00	47.8	1,022	1,470,984	702,641	1,013	712
11/24/2020	24.00	47.8	1,020	1,468,595	701,499	1,013	711
11/25/2020	24.00	47.8	1,021	1,470,252	702,291	1,013	711
11/26/2020	24.00	47.8	1,026	1,476,748	705,394	1,013	715
11/27/2020	24.00	47.8	1,025	1,476,518	705,284	1,013	714
11/28/2020	24.00	47.8	1,027	1,478,788	706,368	1,013	716
11/29/2020	24.00	47.8	1,026	1,477,681	705,839	1,013	715
11/30/2020	24.00	47.8	1,025	1,476,526	705,288	1,013	714
Total/Average	721.00	47.8	1,024	44,280,473	21,151,321	1,013	21,426
				·	·	Maximum:	744
						Average:	714

Notes:

The methane content was determined from the February 11, 2020 (3/16/20 - current) source test.

Heat Input Rate

MONTH: Dec-20

Date	Runtime (Hours)	CH ₄ * (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (BTU/scf)	Heat Input (MMBTU)/Day
12/1/2020	24.00	47.8	1,030	1,482,946	708,354	1,013	718
12/2/2020	24.00	47.8	1,025	1,476,272	705,166	1,013	714
12/3/2020	24.00	47.8	1,021	1,470,564	702,440	1,013	712
12/4/2020	24.00	47.8	1,030	1,482,623	708,200	1,013	717
12/5/2020	24.00	47.8	1,024	1,474,434	704,288	1,013	713
12/6/2020	24.00	47.8	1,028	1,480,379	707,128	1,013	716
12/7/2020	24.00	47.8	1,026	1,477,068	705,547	1,013	715
12/8/2020	24.00	47.8	1,026	1,477,671	705,835	1,013	715
12/9/2020	24.00	47.8	1,024	1,473,865	704,017	1,013	713
12/10/2020	24.00	47.8	1,016	1,462,980	698,817	1,013	708
12/11/2020	24.00	47.8	1,019	1,466,954	700,716	1,013	710
12/12/2020	24.00	47.8	1,019	1,467,478	700,966	1,013	710
12/13/2020	24.00	47.8	1,020	1,468,524	701,465	1,013	711
12/14/2020	24.00	47.8	1,021	1,470,945	702,622	1,013	712
12/15/2020	24.00	47.8	1,025	1,476,481	705,266	1,013	714
12/16/2020	24.00	47.8	1,031	1,485,040	709,355	1,013	719
12/17/2020	24.00	47.8	1,018	1,466,109	700,312	1,013	709
12/18/2020	24.00	47.8	1,017	1,464,358	699,475	1,013	709
12/19/2020	24.00	47.8	1,025	1,475,373	704,737	1,013	714
12/20/2020	24.00	47.8	1,030	1,483,617	708,675	1,013	718
12/21/2020	24.00	47.8	1,025	1,476,036	705,054	1,013	714
12/22/2020	24.00	47.8	1,017	1,465,006	699,785	1,013	709
12/23/2020	24.00	47.8	1,018	1,466,578	700,536	1,013	710
12/24/2020	24.00	47.8	1,024	1,474,140	704,148	1,013	713
12/25/2020	24.00	47.8	1,022	1,471,733	702,998	1,013	712
12/26/2020	24.00	47.8	1,019	1,466,877	700,679	1,013	710
12/27/2020	24.00	47.8	1,027	1,479,018	706,478	1,013	716
12/28/2020	24.00	47.8	1,005	1,447,671	691,505	1,013	700
12/29/2020	24.00	47.8	1,004	1,445,799	690,610	1,013	700
12/30/2020	24.00	47.8	1,015	1,462,134	698,413	1,013	707
12/31/2020	24.00	47.8	1,017	1,463,955	699,283	1,013	708
Total/Average	744.00	47.8	1,022	45,602,628	21,782,871	1,013	22,066
					-	Maximum:	719
						Average:	712

Notes:

The methane content was determined from the February 11, 2020 (3/16/20 - current) source test.

Heat Input Rate

MONTH: Jan-21

Date	Runtime (Hours)	CH ₄ * (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (BTU/scf)	Heat Input (MMBTU)/Day
1/1/2021	24.00	47.8	1,013	1,458,930	696,883	1,013	706
1/2/2021	24.00	47.8	1,015	1,461,615	698,165	1,013	707
1/3/2021	24.00	47.8	1,018	1,465,220	699,887	1,013	709
1/4/2021	24.00	47.8	1,010	1,453,870	694,466	1,013	703
1/5/2021	24.00	47.8	1,012	1,457,325	696,116	1,013	705
1/6/2021	24.00	47.8	1,012	1,456,890	695,908	1,013	705
1/7/2021	24.00	47.8	1,012	1,457,875	696,379	1,013	705
1/8/2021	24.00	47.8	1,008	1,451,820	693,487	1,013	703
1/9/2021	24.00	47.8	1,011	1,455,220	695,111	1,013	704
1/10/2021	24.00	47.8	1,011	1,456,250	695,603	1,013	705
1/11/2021	24.00	47.8	1,012	1,457,935	696,407	1,013	705
1/12/2021	24.00	47.8	1,016	1,463,330	698,984	1,013	708
1/13/2021	24.00	47.8	1,023	1,473,170	703,685	1,013	713
1/14/2021	23.17	47.8	1,027	1,427,500	681,870	1,013	691
1/15/2021	24.00	47.8	1,027	1,478,675	706,314	1,013	715
1/16/2021	24.00	47.8	1,025	1,476,290	705,175	1,013	714
1/17/2021	24.00	47.8	1,022	1,471,775	703,018	1,013	712
1/18/2021	24.00	47.8	1,016	1,463,135	698,891	1,013	708
1/19/2021	24.00	47.8	1,000	1,440,665	688,158	1,013	697
1/20/2021	24.00	47.8	995	1,432,205	684,117	1,013	693
1/21/2021	22.58	47.8	1,004	1,360,875	650,045	1,013	658
1/22/2021	24.00	47.8	998	1,437,435	686,615	1,013	696
1/23/2021	24.00	47.8	992	1,428,520	682,357	1,013	691
1/24/2021	24.00	47.8	994	1,430,740	683,417	1,013	692
1/25/2021	24.00	47.8	987	1,421,910	679,199	1,013	688
1/26/2021	22.25	47.8	990	1,321,450	631,213	1,013	639
1/27/2021	18.33	47.8	1,091	1,200,560	573,468	1,013	581
1/28/2021	24.00	47.8	1,131	1,628,465	777,864	1,013	788
1/29/2021	24.00	47.8	1,044	1,503,495	718,170	1,013	728
1/30/2021	24.00	47.8	1,017	1,464,655	699,617	1,013	709
1/31/2021	24.00	47.8	1,033	1,487,145	710,360	1,013	720
Total/Average	734.33	47.8	1,018	44,844,945	21,420,950	1,013	21,699
<u>J</u> =		-	, -	, ,	, -,,	Maximum:	788
						Average:	700

Notes:

The methane content was determined from the February 11, 2020 (3/16/20 - current) source test.

Heat Input Rate

MONTH: Feb-21

Date	Runtime (Hours)	CH₄* (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (BTU/scf)	Heat Input (MMBTU)/Day
2/1/2021	23.83	47.8	1,027	1,468,325	701,370	1,013	710
2/2/2021	23.83	47.8	1,008	1,441,690	688,648	1,013	698
2/3/2021	18.08	47.8	1,016	1,102,180	526,475	1,013	533
2/4/2021	21.83	47.8	979	1,282,500	612,608	1,013	621
2/5/2021	21.42	47.8	922	1,184,565	565,828	1,013	573
2/6/2021	24.00	47.8	938	1,351,105	645,378	1,013	654
2/7/2021	24.00	47.8	935	1,346,385	643,124	1,013	651
2/8/2021	24.00	47.8	926	1,334,065	637,239	1,013	646
2/9/2021	24.00	47.8	925	1,331,700	636,109	1,013	644
2/10/2021	24.00	47.8	925	1,332,015	636,260	1,013	645
2/11/2021	24.00	47.8	931	1,340,235	640,186	1,013	649
2/12/2021	24.00	47.8	923	1,329,365	634,994	1,013	643
2/13/2021	24.00	47.8	927	1,335,530	637,939	1,013	646
2/14/2021	24.00	47.8	927	1,334,615	637,502	1,013	646
2/15/2021	24.00	47.8	926	1,332,990	636,725	1,013	645
2/16/2021	24.00	47.8	926	1,333,165	636,809	1,013	645
2/17/2021	24.00	47.8	927	1,334,935	637,654	1,013	646
2/18/2021	24.00	47.8	928	1,336,085	638,204	1,013	647
2/19/2021	24.00	47.8	936	1,348,550	644,158	1,013	653
2/20/2021	24.00	47.8	927	1,334,925	637,650	1,013	646
2/21/2021	24.00	47.8	935	1,346,540	643,198	1,013	652
2/22/2021	24.00	47.8	949	1,366,700	652,827	1,013	661
2/23/2021	24.00	47.8	944	1,358,835	649,071	1,013	658
2/24/2021	24.00	47.8	930	1,338,560	639,386	1,013	648
2/25/2021	24.00	47.8	932	1,342,350	641,196	1,013	650
2/26/2021	24.00	47.8	935	1,347,025	643,429	1,013	652
2/27/2021	24.00	47.8	928	1,336,390	638,349	1,013	647
2/28/2021	24.00	47.8	932	1,341,890	640,977	1,013	649
Total/Average	661.00	47.8	941	37,313,215	17,823,291	1,013	18,055
						Maximum:	710
						Average:	645

Notes:

The methane content was determined from the February 11, 2020 (3/16/20 - current) source test.

Heat Input Rate

MONTH: Mar-21

Date	Runtime (Hours)	CH₄* (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (BTU/scf)	Heat Input (MMBTU)/Day
3/1/2021	24.00	47.8	938	1,351,405	645,522	1,013	654
3/2/2021	24.00	47.8	959	1,380,860	659,591	1,013	668
3/3/2021	24.00	47.8	973	1,401,360	669,383	1,013	678
3/4/2021	24.00	47.8	959	1,381,400	659,849	1,013	668
3/5/2021	24.00	47.8	988	1,422,345	679,407	1,013	688
3/6/2021	24.00	47.8	972	1,399,670	668,576	1,013	677
3/7/2021	24.00	47.8	978	1,408,410	672,751	1,013	681
3/8/2021	24.00	47.8	970	1,396,735	667,174	1,013	676
3/9/2021	24.00	47.8	978	1,407,680	672,402	1,013	681
3/10/2021	24.00	46.8	970	1,397,360	654,430	1,013	663
3/11/2021	24.00	46.8	961	1,384,110	648,224	1,013	657
3/12/2021	24.00	46.8	969	1,395,745	653,673	1,013	662
3/13/2021	24.00	46.8	964	1,388,650	650,351	1,013	659
3/14/2021	23.00	46.8	1,021	1,409,360	660,050	1,013	669
3/15/2021	24.00	46.8	973	1,400,465	655,884	1,013	664
3/16/2021	24.00	46.8	954	1,374,010	643,494	1,013	652
3/17/2021	24.00	46.8	947	1,364,170	638,886	1,013	647
3/18/2021	24.00	46.8	942	1,356,650	635,364	1,013	644
3/19/2021	24.00	46.8	946	1,362,465	638,087	1,013	646
3/20/2021	24.00	46.8	942	1,356,725	635,399	1,013	644
3/21/2021	24.00	46.8	953	1,372,190	642,642	1,013	651
3/22/2021	24.00	46.8	955	1,374,575	643,759	1,013	652
3/23/2021	24.00	46.8	954	1,373,265	643,145	1,013	652
3/24/2021	24.00	46.8	954	1,374,185	643,576	1,013	652
3/25/2021	24.00	46.8	950	1,368,075	640,715	1,013	649
3/26/2021	24.00	46.8	935	1,345,945	630,350	1,013	639
3/27/2021	24.00	46.8	944	1,359,360	636,633	1,013	645
3/28/2021	24.00	46.8	958	1,379,810	646,211	1,013	655
3/29/2021	24.00	46.8	963	1,387,370	649,751	1,013	658
3/30/2021	24.00	46.8	951	1,370,080	641,654	1,013	650
3/31/2021	24.00	46.8	955	1,375,560	644,220	1,013	653
Total/Average	743.00	47.1	961	42,819,990	20,171,155	1,013	20,433
	ļ ļ			, ,	, , , , , , , , , , , , , , , , , , , ,	Maximum:	688
						Average:	659

Notes: The methane content was determined from the February 11, 2020 (3/16/20-3/9/21) and February 4, 2021 (3/10/21 - current) source tests.

Heat Input Rate

MONTH: Apr-21

Date	Runtime (Hours)	CH₄* (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (BTU/scf)	Heat Input (MMBTU)/Day
4/1/2021	24.00	46.8	964	1,388,740	650,393	1,013	659
4/2/2021	24.00	46.8	945	1,360,455	637,146	1,013	645
4/3/2021	24.00	46.8	942	1,356,815	635,441	1,013	644
4/4/2021	24.00	46.8	952	1,371,185	642,171	1,013	651
4/5/2021	24.00	46.8	955	1,374,495	643,721	1,013	652
4/6/2021	24.00	46.8	942	1,357,010	635,533	1,013	644
4/7/2021	24.00	46.8	925	1,331,745	623,700	1,013	632
4/8/2021	24.00	46.8	935	1,346,750	630,727	1,013	639
4/9/2021	24.00	46.8	932	1,342,160	628,578	1,013	637
4/10/2021	24.00	46.8	939	1,352,635	633,484	1,013	642
4/11/2021	24.00	46.8	938	1,351,285	632,851	1,013	641
4/12/2021	23.33	46.8	936	1,310,935	613,954	1,013	622
4/13/2021	24.00	46.8	931	1,341,255	628,154	1,013	636
4/14/2021	24.00	46.8	927	1,334,640	625,056	1,013	633
4/15/2021	24.00	46.8	933	1,343,755	629,325	1,013	638
4/16/2021	24.00	46.8	936	1,348,335	631,470	1,013	640
4/17/2021	24.00	46.8	938	1,350,230	632,357	1,013	641
4/18/2021	24.00	46.8	941	1,355,275	634,720	1,013	643
4/19/2021	24.00	46.8	941	1,354,945	634,565	1,013	643
4/20/2021	24.00	46.8	949	1,366,480	639,968	1,013	648
4/21/2021	24.00	46.8	941	1,355,750	634,942	1,013	643
4/22/2021	24.00	46.8	935	1,346,990	630,840	1,013	639
4/23/2021	24.00	46.8	937	1,348,740	631,659	1,013	640
4/24/2021	24.00	46.8	944	1,358,970	636,450	1,013	645
4/25/2021	24.00	46.8	942	1,355,890	635,008	1,013	643
4/26/2021	24.00	46.8	938	1,350,145	632,317	1,013	641
4/27/2021	24.00	46.8	944	1,359,230	636,572	1,013	645
4/28/2021	24.00	46.8	960	1,382,170	647,316	1,013	656
4/29/2021	24.00	46.8	965	1,390,145	651,051	1,013	660
4/30/2021	24.00	46.8	964	1,387,700	649,906	1,013	658
Total/Average	719.33	46.8	942	40,674,855	19,049,377	1,013	19,297
0						Maximum:	660
						Average:	643

Notes: The methane content was determined from the February 11, 2020 (3/16/20-3/9/21) and February 4, 2021 (3/10/21 - current) source tests.

APPENDIX J

STRUCTURE MONITORING REPORTS

WASTE MANAGEMENT

172 98th Avenue Oakland, CA 94603 (510) 430-8509

December 22, 2020

Mr. Patrick Madej Tri-Cities Recycling and Disposal Facility 7010 Auto Mall Parkway Fremont, California 94538

Re: Fourth Quarter 2020 Methane-In-Structure Monitoring Report for Tri-Cities Recycling and Disposal Facility

Dear Mr. Madej:

This report for the Tri-Cities Recycling and Disposal Facility (TCRDF) contains the results of the Fourth Quarter 2020 Perimeter Gas and Methane in Structure Monitoring conducted at the TCRDF.

REGULATORY REQUIREMENTS

Requirements for monitoring are outlined in 40 CFR 258.23, Title 27 California Code of Regulations (CCR), Article 6, Gas Monitoring at Active and Closed Disposal Sites. These regulations require periodic monitoring to ensure that methane concentrations are less than 5 percent at the property boundary and less than 1.25 percent in on-site buildings and structures. Reporting requirements are presented in Title 27 §20934.

MONITORING RESULTS AND MAP [TITLE 27 §20934(a)(1), (2), (3) AND (5)]

Monitoring was conducted in accordance with 40 CFR 258.23 and Title 27, Article 6 at the locations shown in the attached map (Attachment A). Results for both probes and structures are summarized in Table 1. Field data are presented in Attachment B.

I able I M	lonitoring Results	
Device ID or Structure	Date	CH ₄ (Methane) (ppm _v)
S-3 Ops Trailer	10/27/2020	1.4
S-4 Break Area	10/27/2020	11.3
S-5 Collection Booths	10/27/2020	2.5
S-9 Maintenance Break Area	10/27/2020	2.5
S-10 Parts Wash Room	10/27/2020	2.3
S-12 Compressor Room	10/27/2020	1.3
S-13 Raisch Room	10/27/2020	2.3

Table 1 Monitoring Results

MONITORING EQUIPMENT AND METHODOLOGY [TITLE 27 §20934(a)(4)]

Perimeter Gas Monitoring

CalRecycle granted TCRDF a variance from probe monitoring on July 2, 2010. Therefore probe monitoring was not conducted due to the decommissioning of Probe TCGP005.

Facility Structures

The technician used a FID to monitor buildings and structures to check for the presence of methane on October 27, 2020. The instrument was calibrated prior to monitoring using 500 parts per million by volume (ppm_v) methane standard.

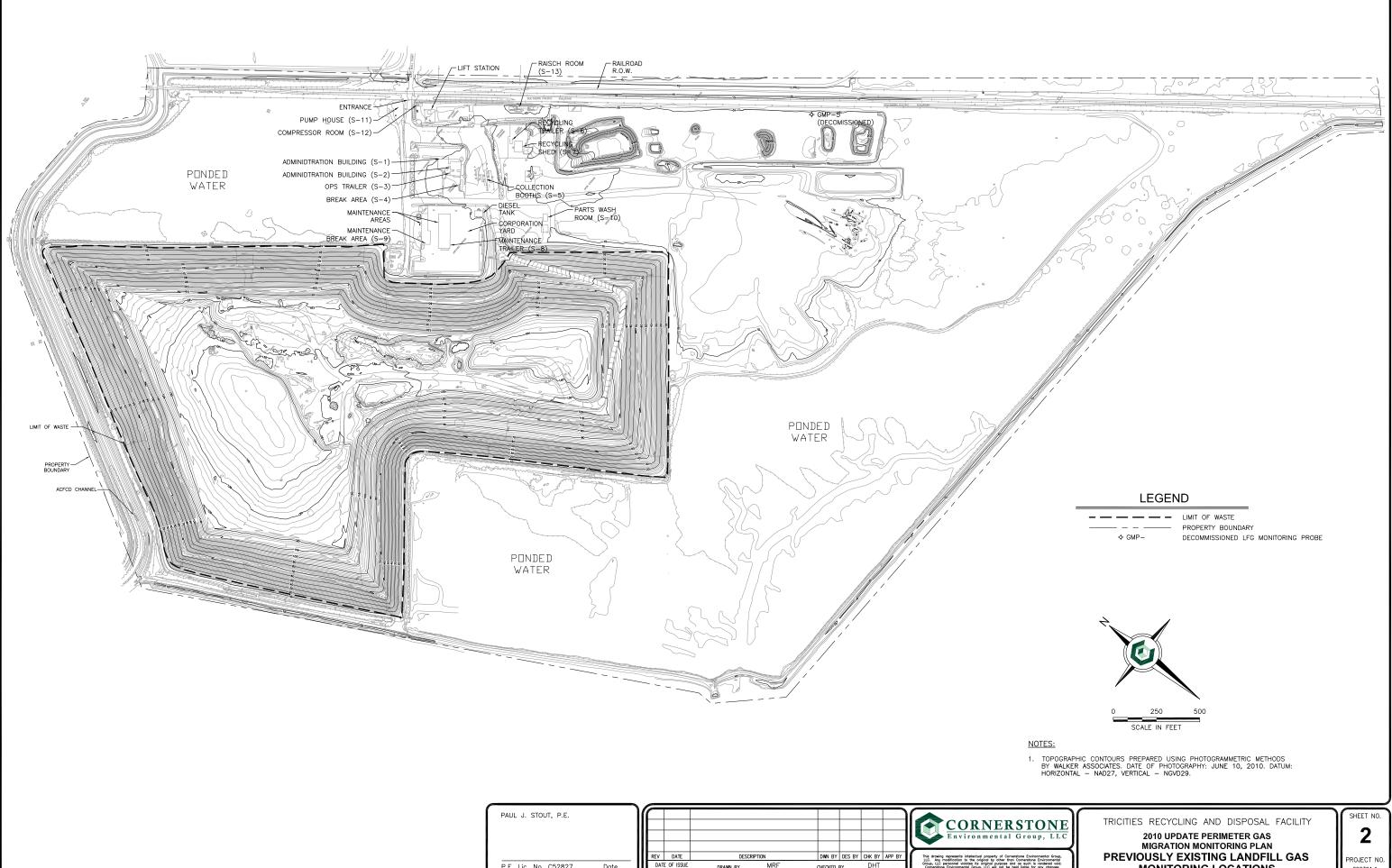
Combustible Methane Gas Monitor Calibration

Some facility structures are monitored continuously using Sierra Monitors. The monitor is calibrated at a frequency determined by the manufacturer. The most recent calibration was conducted on December 15, 2020.

CLOSING

If you have any questions regarding this notification, please do not hesitate to contact me at (510) 613-2852.

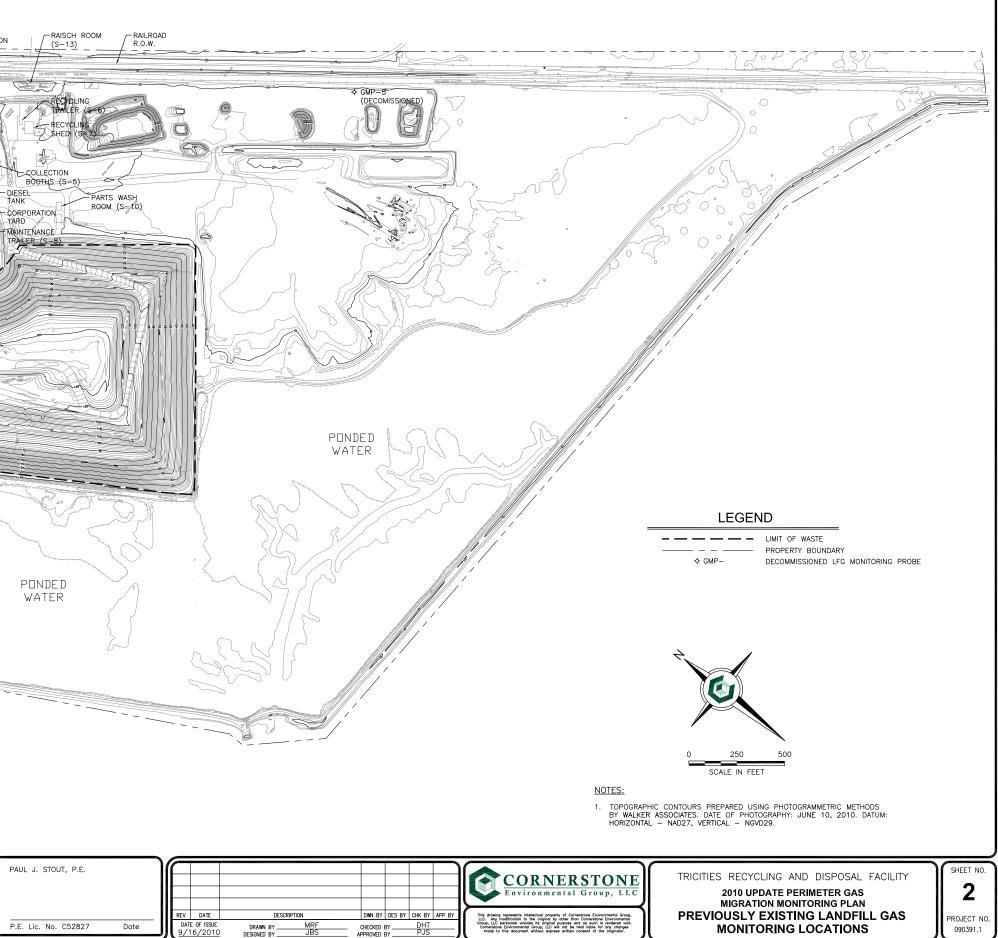
Thank you,


Waste Management

Auchael Chan

Michael Chan Environmental Protection Specialist

ATTACHMENT A


SITE MAP

-

ò

1/2

ATTACHMENT B

FIELD DATA

<u>Tri-Cities Recycling and Disposal Facility</u> <u>Gas Detector Calibration Record and Structure Monitoring</u>

Table 1

FI	D Structure Mon	itoring Data	
Analyst: <u>Ryan Haslam</u>		Date: <u>10-</u>	27-20
Instrument: <u>TVA 2020</u>		Serial <u>#: 2020160</u>	031211
Monitored Location	Time	PPM	Comments
S-3 Ops Trailer		1.4	
S-4 Break Area		11.3	
S-5 Collection Booths		2.5	
S-9 Maintenance Break Area		2.5	
S-10 Parts Wash Room		2.3	
S-12 Compressor Room		1.3	
S-13 Raisch Room		2.3	

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane.

ND = No detection

Table 2

LOCATION: TRI-CITIES RECYCLING AND DISPOSAL FACILITY

MANUFACTURER & MODEL NUMBER: Sierra Monitor Corporation Model # 2001

CALIBRATED BY / INSTRUMENT USED: <u>Matt Frame / Cal System Model# 26</u> CALIBRATION GAS EXPIRATION DATE: <u>5/31/2021</u>

	Gas D	etector Calibr	ation Reco	ord
LOCATION	DATE CALIBRATED and TIME	SERIAL NUMBER	Methane LEL* SENSOR alarm 10,000 ppm	MAINTENANCE PERFORMED / COMMENTS ON MONITOR CONDITION
S-3 Ops Trailer	12/15/2020	1629404204	Yes	good calibration
S-9 Maintenance Break Area	12/15/2000 9:58	0724904533M TS	Yes	good calibration
S-4 Break Area	12/15/2020	0608001242	Yes	good calibration
S-5 Collection Booths	10:09	401705272 GCN	Yes	good calibration
S-12 Compressor Room	12/15/2020	401705272 GCN	Yes	good calibration
S-13 Raisch Room	12/15/2020	1915102415 GLN	Yes	good calibration

This form must be retained for 12 months after completion.

**

		SURFACE EMISSIO			
Date:	10-27-	70	Site Name:	Tri-cities	
Inspector(s):	Ryan Has	an	Instrument:	TVA 2020	
WEATHER C) BSERVATIONS			15	
		Wind		Barometric	
Wind Spe	ed:МРН	Direction:	-	Pressure: 30	"Hg
Temperatu	Air re: 76 °F	General Weather Conditions:			
ALIBRATIO	N INFORMATION				
're-monitorii	ng Calibration Precision Check				
rocedure: Co	librate the instrument. Make	a total of three measuremen	ts bv alternatina	zero air and the calibration	aas Record the reading
nd calculate	the average algebraic differen	nce between the instrument r	eading and the c	alibration gas as a percenta	ges. The calibration
recision mus	t be less than or equal to 10%				
nstrument Se	rial Number:	1		Cal Gas Concentration: _	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas Co	ncCal Gas Reading	Response Time (secon
1	.3	500		0	3
2	- 3	500		0	3
3	- ?	501			3
		= 100%-			
				/500 x 100%	
		= 99,9		/500 x 100%	
an Sensitivit	у:			/500 x 100%	
ial 1:	y: Counts Observed for the Span	= 99,9	% Trial <u>3:</u>	/500 x 100% s Observed for the Span=_	111997
ial 1: Co		= 99,9 = 112481	% Trial 3: Count		111997
<u>ial 1:</u> Co ial 2:	Counts Observed for the Span	= 99,9 = <u>112481</u> = <u>3834</u>	% Trial 3: Count	s Observed for the Span=	are starting
rial 1: Co ial 2:	Counts Observed for the Span ounters Observed for the Zero	= 99,9 $= 112 - 481$ $= 3834$ $= 112 - 397$	% Trial 3: Count	s Observed for the Span=	and the second sec
Co rial 2: Co	Counts Observed for the Span punters Observed for the Zero Counts Observed for the Span	= 99,9 = <u>112481</u> = <u>3834</u> = <u>112397</u>	% Trial 3: Count	s Observed for the Span=	and the second sec
rial 1: Co rial 2: Co Dost Monitorin	Counts Observed for the Span ounters Observed for the Zero Counts Observed for the Span ounters Observed for the Zero	= 99,9 = <u>112 481</u> = <u>3834</u> = <u>112 397</u> = <u>3880</u>	% Trial 3: Count	s Observed for the Span=	are starting
rial 1: Co ial 2: Co ost Monitorin ro Air	Counts Observed for the Span ounters Observed for the Zero Counts Observed for the Span ounters Observed for the Zero	= 99,9 = <u>112481</u> = <u>3834</u> = <u>112397</u>	% Trial 3: Count Counte	s Observed for the Span=	and the second sec
ial 1: Co ial 2: Co st Monitorin ro Air ading:	Counts Observed for the Span ounters Observed for the Zero Counts Observed for the Span ounters Observed for the Zero g Calibration Check	= 99.9 $= 12.481$ $= 3834$ $= 1/2.397$ $= 3880$ Cal Gas Reading:	% Trial 3: Count Counte	s Observed for the Span=_ rs Observed for the Zero=	and the second sec
ial 1: Co ial 2: Co ost Monitorin ro Air ading: CKGROUNI	Counts Observed for the Span punters Observed for the Zero Counts Observed for the Span punters Observed for the Zero g Calibration Check	= 99,9 = 112 481 = 3834 = 112 397 = 3880 Cal Gas Reading: s s	% Trial 3: Counte	s Observed for the Span= rs Observed for the Zero=	and the second sec
rial 1: Co rial 2: Ost Monitorin Pro Air Pro A	Counts Observed for the Span punters Observed for the Zeros Counts Observed for the Spans punters Observed for the Zeros g Calibration Check	= 99.9 = <u>112 481</u> = <u>3834</u> = <u>112 397</u> = <u>3880</u> Cal Gas Reading: S	% Trial 3: Counte	The second for the Span= rs Observed for the Zero=	3 79 [

SCS DataServices - Secure Environmental Data

		SURFACE EMISSI			
Date:	10-27-2	20	Site Name:	Tricitie	5
Inspector(s):	Ryan Itasla	M	Instrument:	TVA 2020	
WEATHER	DBSERVATIONS			A.	
Wind Spe	ed: MPH	Wind Direction:	-	Barometric Pressure: 30	"Hg
Temperatu	Air Ire: 76 °F	General Weathe Conditions		_	
CALIBRATIC	N INFORMATION				
re-monitori	ng Calibration Precision Check				
recision mu:	the average algebraic differences the less than or equal to 10% certain Number:			Cal Gas Concentration:	500ppm
rial	Zero Air Reading	Cal Gas Reading	Cal Gas (ConcCal Gas Reading	Response Time (seconds
1	- 3	501			4
2	.2	500	-	0	3
		1 -117		1	
		= 100%- = 99,8		_/500 x 100%	
oon Soncitivi	h				
pan Sensitivi rial 1:			Trial 3:		
	Counts Observed for the Span=	109466		nts Observed for the Span=	110500
c rial 2:	ounters Observed for the Zero=	4022	Count	ers Observed for the Zero=	3987
	Counts Observed for the Span=	110371			
C	ounters Observed for the Zero=	4054			
ost Monitorii	ng Calibration Check				
ero Air	10	Cal Gas	(és)		
eading:	0ppm	Reading:	500	ppm	
ACKGROUN	D CONCENTRATIONS CHECKS	5		la selan	
owind Locati	on Description:	entrance Flare		Reading: <u>\.</u>	ppm
ownwind Loc	ation Description:	Flare	÷	Reading: 1.5	opm
otes:	Wind speed averages were o exceeded 20 miles per hour. meteorological conditions we	No rainfall had occurred w	ithin the previou	s 24 hours of the monitoring	g event. Therefore, site

-lay tri - tur

3	(e	1	D	Y:	1	12	1	1		144	7	1	7	1	2.	P	-	6	2	2	-	n	al.	ar.		3	÷,	N.	2Ĥ	ei,	~	1	T.	-	-	1	T	G	1		D	0	ά.	2	ł.
24	-	н.		1 C		1	10	1	2			11.		10	11	1		Sec.	л	-	-	-	11.2	A .		٥.			e 1	1.11	1	<u>.</u>	11.1		1.0			1.0	1	1.0		1.		1	

WASTE MANAGEMENT 172 98th Avenue Oakland, CA 94603

(510) 430-8509

April 15, 2021

Mr. Patrick Madej Tri-Cities Recycling and Disposal Facility 7010 Auto Mall Parkway Fremont, California 94538

Re: First Quarter 2021 Methane-In-Structure Monitoring Report for Tri-Cities Recycling and Disposal Facility

Dear Mr. Madej:

This report for the Tri-Cities Recycling and Disposal Facility (TCRDF) contains the results of the First Quarter 2021 Perimeter Gas and Methane in Structure Monitoring conducted at the TCRDF.

REGULATORY REQUIREMENTS

Requirements for monitoring are outlined in 40 CFR 258.23, Title 27 California Code of Regulations (CCR), Article 6, Gas Monitoring at Active and Closed Disposal Sites. These regulations require periodic monitoring to ensure that methane concentrations are less than 5 percent at the property boundary and less than 1.25 percent in on-site buildings and structures. Reporting requirements are presented in Title 27 §20934.

MONITORING RESULTS AND MAP [TITLE 27 §20934(a)(1), (2), (3) AND (5)]

Monitoring was conducted in accordance with 40 CFR 258.23 and Title 27, Article 6 at the locations shown in the attached map (Attachment A). Results for both probes and structures are summarized in Table 1. Field data are presented in Attachment B.

Table 1 Monitoring Results								
Device ID or Structure	Date	CH ₄ (Methane) (ppm _v)						
S-3 Ops Trailer	1/12/2021	2.3						
S-4 Break Area	1/12/2021	2.4						
S-5 Collection Booths	1/12/2021	3.1						
S-9 Maintenance Break Area	1/12/2021	2.3						
S-10 Parts Wash Room	1/12/2021	3.3						
S-12 Compressor Room	1/12/2021	2.6						
S-13 Raisch Room	1/12/2021	2.6						

Table 1 Monitoring Results

MONITORING EQUIPMENT AND METHODOLOGY [TITLE 27 §20934(a)(4)]

Perimeter Gas Monitoring

CalRecycle granted TCRDF a variance from probe monitoring on July 2, 2010. Therefore probe monitoring was not conducted due to the decommissioning of Probe TCGP005.

Facility Structures

The technician used a FID to monitor buildings and structures to check for the presence of methane on January 12, 2021. The instrument was calibrated prior to monitoring using 500 parts per million by volume (ppm_v) methane standard.

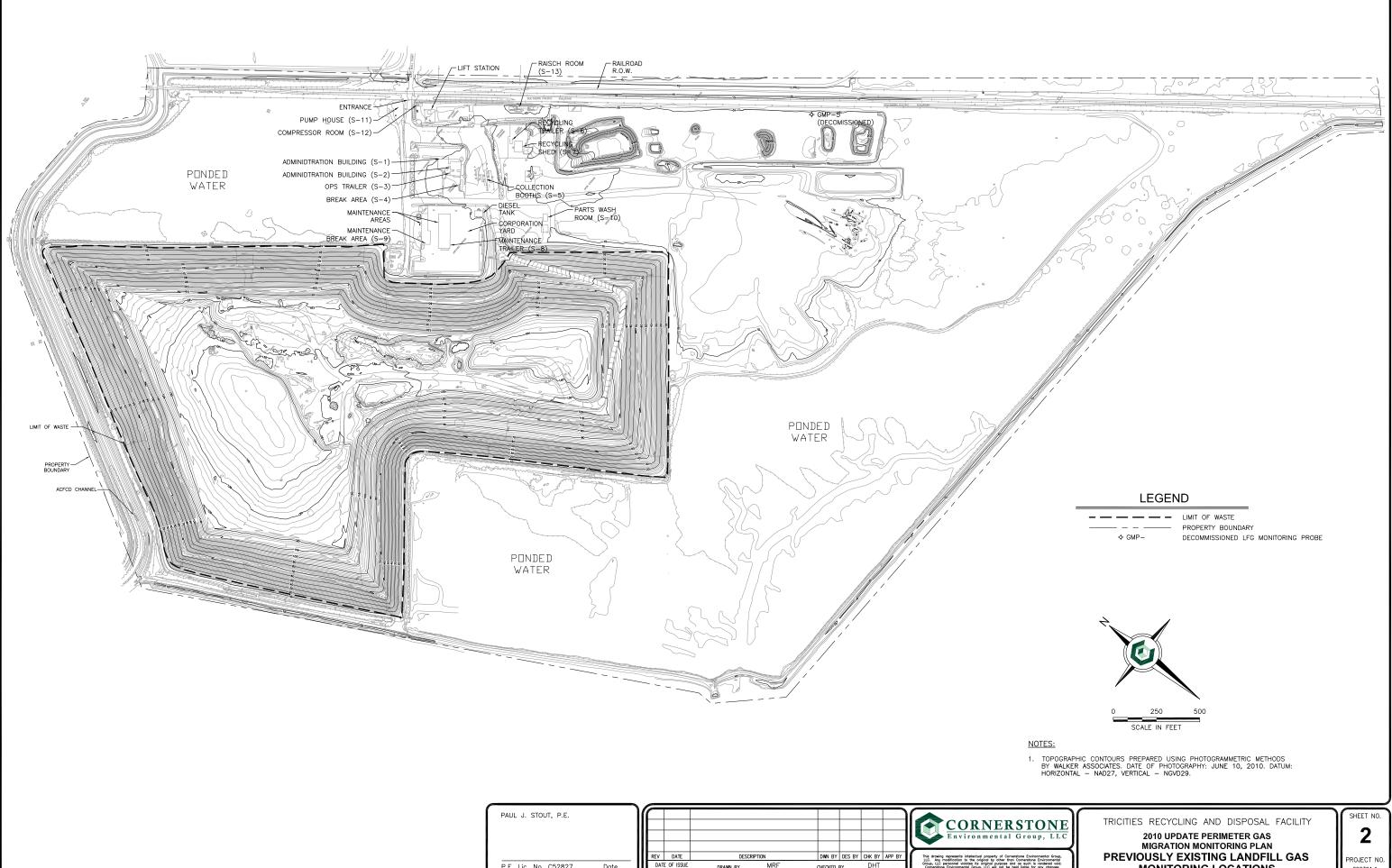
Combustible Methane Gas Monitor Calibration

Some facility structures are monitored continuously using Sierra Monitors. The monitor is calibrated at a frequency determined by the manufacturer. The most recent calibration was conducted on March 23, 2021.

CLOSING

If you have any questions regarding this notification, please do not hesitate to contact me at (510) 613-2852.

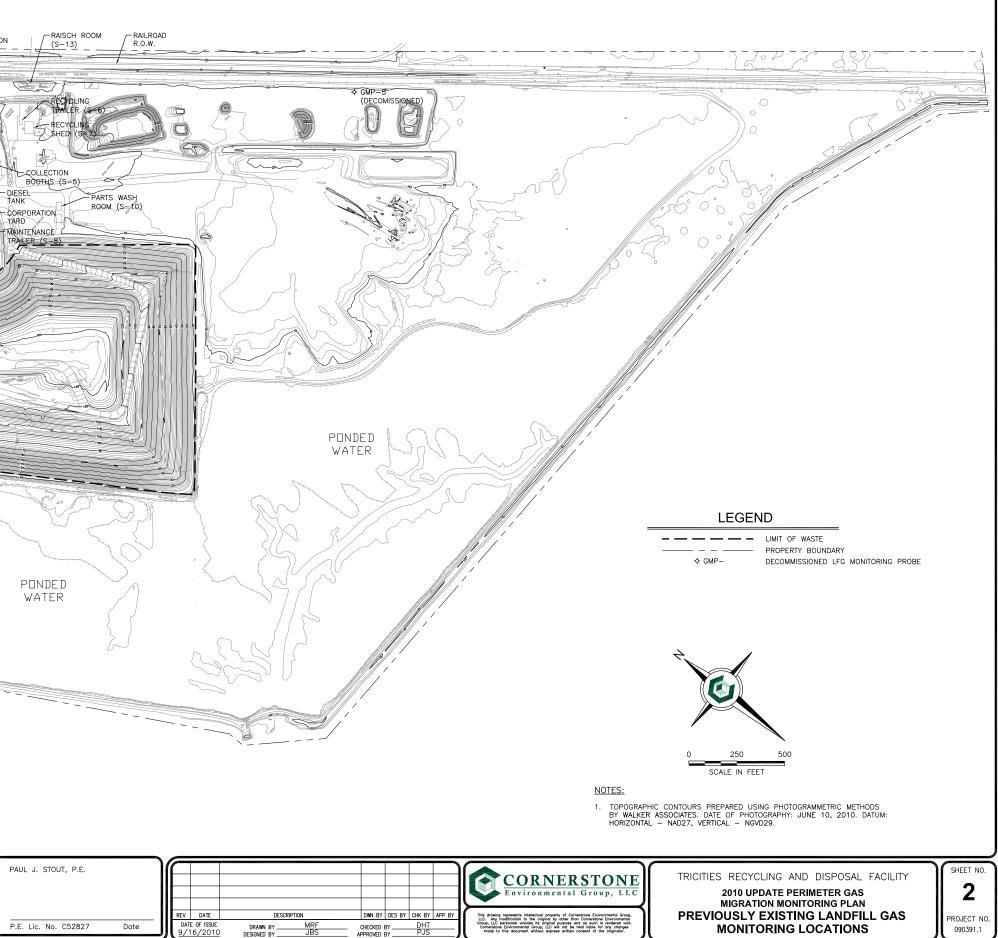
Thank you,


Waste Management

Auchael Chan

Michael Chan Environmental Protection Specialist

ATTACHMENT A


SITE MAP

-

ò

1/2

ATTACHMENT B

FIELD DATA

<u>Tri-Cities Recycling and Disposal Facility</u> <u>Gas Detector Calibration Record and Structure Monitoring</u>

Table 1

FID Structure Monitoring Data				
Analyst: <u>Ryan Haslam</u>		Date: <u>1-</u>	12-21	
Instrument: TVA 2020 Serial #: 202016031211				
Monitored Location	Time	PPM	Comments	
S-3 Ops Trailer		2.3		
S-4 Break Area		2.4		
S-5 Collection Booths		3.1		
S-9 Maintenance Break Area		2.3		
S-10 Parts Wash Room		3.3		
S-12 Compressor Room		2.6		
S-13 Raisch Room		2.6		

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane.

ND = No detection

Table 2

CALIBRATED BY / INSTRUMENT USED: Tyler Bort / Cal System Model# 26 CALIBRATED BY / INSTRUMENT DATE 05/31 / 2022

Gas Detector Calibration Record				
LOCATION	DATE CALIBRATED and TIME	SERIAL NUMBER	Methane LEL* SENSOR alarm 10,000 ppm	MAINTENANCE PERFORMED / COMMENTS ON MONITOR CONDITION
S-3 Ops Trailer	3/23 /21 12:30PM	1629404204	Yes	Collibration
S-9 Maintenance Break Area	3/23/21 11:20 AM	€724904533M TS	Yes	colibration
S-4 Break Area	3/23/21 12:20 PM	0608001242	(Yes)	colibration
S-5 Collection Booths	3/23/21 12:087M	401705272 GCN	Yes	collibration
S-12 Compressor Room	3/23/21	401705272 GCN	Yes	Calibration
S-13 Raisch Room	3/23/21 11:45 AM	1915102415 GLN	Yes	colibration

This form must be retained for 12 months after completion.

**

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name:TCRFDDate:01/12/2021Time:07:30 AMPMInstrument Make:Thermo ScientificModel:TVA 2020S/N:2020116031211

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.
 - Stable Reading = 500 ppm
- 3. Adjust meter to read 500 ppm.

Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): 1.2 ppm (a)
- 2. Downwind Reading (highest in 30 seconds): 1.3 ppm (b)

Calculate Background Value:

 $\frac{(a) + (b)}{2} \qquad Background = \underline{1.25 \text{ ppm}}$

Performed by: <u>Ryan Haslam</u>

RESPONSE TIME TEST RECORD

Date: 01/12/2021
Expiration Date (3 months): 04/12/2021
Time: <u>7:20</u> AM PM
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 2020</u> S/N: <u>202016031211</u>
Measurement #1:
Stabilized Reading Using Calibration Gas:499ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after Switching from Zero Air to Calibration Gas:3seconds (a)
Measurement #2:
Stabilized Reading Using Calibration Gas: 498 ppm
90% of the Stabilized Reading: <u>450</u> ppm
Time to Reach 90% of Stabilized Reading after Switching from Zero Air to Calibration Gas: <u>3</u> seconds (b)
Measurement #3:
Stabilized Reading Using Calibration Gas:501 ppm
90% of the Stabilized Reading: <u>450</u> ppm
Time to Reach 90% of Stabilized Reading after Switching from Zero Air to Calibration Gas: <u>2</u> seconds (c)
Calculate Response Time:

$$\frac{(a) + (b) + (c)}{3} = \frac{2.67}{3}$$
 seconds (must be less than 30 seconds)

Performed by: <u>Ryan Haslam</u>

CALIBRATION PRECISION TEST RECORD

Date: 01/12/2	021			
Expiration Dat	e (3 months): <u>04/12/2021</u>			
Time: <u>7:20</u>	AMPM			
Instrument Ma	ke: <u>Thermo Scientific</u> Mode	1: <u>TVA 2</u>	2020	S/N: <u>202016031211</u>
Measurement #	#1:			
	Meter Reading for Zero Air:	1		ppm (a)
	Meter Reading for Calibration Gas:	4	99	_ppm (b)
Measurement #	#2:			
	Meter Reading for Zero Air:	1		_ ppm (c)
	Meter Reading for Calibration Gas:	4	98	_ppm (d)
Measurement #	#3:			
	Meter Reading for Zero Air:	0		ppm (e)
	Meter Reading for Calibration Gas:	5	01	ppm (f)
Calculate Prec	ision:			
$\{ (500) - (b) + $	$\frac{ (500) - (d) + (500) - (f) }{3} \times \frac{1}{500}$	_ x 100		
	3 500			

<u>0.27 % (</u>must be < than 10%)

Performed by: <u>Ryan Haslam</u>

APPENDIX K

ANNUAL H_2S MONITORING REPORTS

WM - TRI-CITIES LANDFILL, Fremont, CA				
ANNUAL HYDROGEN SULFIDE (H ₂ S) MONITORING				
SAMPLE TAKEN BY: Matthew Frame				
DATE	SAMPLE LOCATION H ₂ S CONCENTRATION (PPM) COMMENTS			
7/15/2020 Flare Inlet 100 None				
COMMENTS: PPM - parts per million				
Sample taken with a Draeger Tube per Title V Permit Condition No. 8366, Part 12				

APPENDIX L

SOURCE TEST REPORT SUMMARY

Waste Management of Alameda County BAAQMD Facility #2246

Annual Compliance Emissions Test Report #21039 Landfill Gas Flare (A-3)

Located at: **Tri-Cities Recycling and Disposal Facility** 7010 Auto Mall Parkway Fremont, CA 94538

Prepared for:

SCS Engineers 3117 Fite Circle Suite 108 Sacramento, CA 95827 Attn: Michael O'Connor moconnor@scsengineers.com

For Submittal to: **Bay Area Air Quality Management District** 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Gloria Espena & Marco Hernandez gespena@baaqmd.gov & mhernandez@baaqmd.gov sourcetest@baaqmd.gov

> Testing Performed on: February 4th, 2021

Final Report Submitted on: March 10th, 2021

Performed and Reported by: Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706 bluesky@blueskyenvironmental.com Office (510) 525-1261 / Cell (510) 508-3469

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report are authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for Compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (925) 338-4875.

Chull Chi

Chuck Arrivas, QSTI Project Manager

TABLE of CONTENTS

SECTIO	N 1. INTRODUCTION	4
1.1.	SUMMARY	4
SECTIO	N 2. SOURCE TEST PROGRAM	6
2.1.	OVERVIEW	6
2.2.	Pollutants Tested	
2.3.	TEST DATE(S)	
2.4.	SAMPLING AND OBSERVING PERSONNEL	
2.5.	SOURCE/PROCESS DESCRIPTION	
2.6.	SOURCE OPERATING CONDITIONS	7
SECTIO	N 3. SAMPLING AND ANALYSIS PROCEDURES	8
3.1.	Port Location	
3.2.	POINT DESCRIPTION/LABELING – PORTS/STACK	
3.3.	SAMPLE TRAIN DESCRIPTION	
3.4.	SAMPLING PROCEDURE DESCRIPTION	
3.5.	INSTRUMENTATION AND ANALYTICAL PROCEDURES	
3.6.	COMMENTS: LIMITATIONS AND DATA QUALIFICATIONS	
SECTIO	N 4. APPENDICES	
A.	Tabulated Results	
В.	Calculations	
С.	Laboratory Reports	
D.	Field Data Sheets	
Ε.	Strip Chart Records	
F.	Process Information	
<i>G</i> .	QC Calibration Certificates and Quality Assurance Records	
Н.	Sample Train Configuration and Stack Diagrams	
Ι.	Related Correspondence (Source Test Plan)	
J.	Permit to Operate	

SECTION 1. INTRODUCTION

1.1. Summary

Blue Sky Environmental, Inc. was contracted by SCS Engineers to perform the emissions testing for Waste Management of Alameda County, Inc. (WMAC), at the Tri-Cities Recycling Disposal Facility (TRCDF), located in Fremont, California. Testing was conducted to demonstrate that Landfill Gas Flare A-3 is operating in compliance with the Bay Area Air Quality Management District (BAAQMD) Permit to Operate for Facility #2246. Results of the test program are presented in this report. The source test information is summarized in Table 1. Test results derived from the source test are summarized in Table 2. Results for individual test runs are included in Appendix A. The flare met all compliance emission criteria.

Test Location:	Tri-Cities Recycling and Disposal Facility 7010 Auto Mall Parkway, Fremont, CA 94538
Source Contact:	Michael O'Connor, SCS Engineers (707) 236-3791
Source Tested:	Enclosed Landfill Gas Flare (A-3) – 76 MMBtu/hr
Source Test Date:	February 4 th , 2021
Test Objective:	Determine compliance with Bay Area Air Quality Management District (BAAQMD) Permit to Operate for Facility #2246, Condition 8366
Test Performed By:	Blue Sky Environmental, Inc 624 San Gabriel Avenue, Albany, CA 94706 Wesley Alder (510) 910-5795 <u>bluesky@blueskyenvironmental.com</u>
Test Parameters:	Landfill Gas Oxygen (O ₂), Nitrogen (N ₂), Carbon Dioxide (CO ₂), Total Hydrocarbons (THC), Methane (CH ₄), Non-Methane Organic Compounds (NMOC), High Heating Value (HHV), Gas F-Factor, Total Reduced Sulfur (TRS) & Sulfur Species, Volumetric Flow Rate Flare Emissions THC, CH ₄ , NMOC, NO _X , CO, O ₂ , SO ₂ , Volumetric Flow Rate, Stack Exhaust Temperature.

Table 1. Source Test Information

Emission Parameter	Average Results (Flare A-3)	Permit Limit	Status
NO _X , lbs/MMBtu	0.037	0.06	In Compliance
CO, lbs/MMBtu	0.006	0.3	In Compliance
TNMOC, ppm @ 3% O ₂ as CH ₄	<4.5	30	La Camalianas
NMOC Destruction Efficiency, %	>99.03	or >98	In Compliance
CH4 Destruction Efficiency, %	>99.995	>99	In Compliance
TRS as H ₂ S, ppm in Fuel	89.1	1,300	In Compliance

SECTION 2. SOURCE TEST PROGRAM

2.1. Overview

This annual source test was performed to demonstrate that landfill gas flare A-3 is operating in accordance with the Bay Area Air Quality Management District (BAAQMD) Permit to Operate (PTO) for Facility #2246, Condition 8366.

2.2. Pollutants Tested

The following US Environmental Protection Agency (EPA), Bay Area Air Quality Management District (BAAQMD) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample and Traverse Point Determination
EPA Method 3A	O2 and CO2, Stack Gas Molecular Weight
EPA Method 7E	NO _X and NO ₂ Converter Check
EPA Method 10	CO
EPA Method 4	Moisture Calculation
EPA Method 19	Flow Rate Calculation, DSCFM
EPA Method 25C	Analysis of landfill gas for TNMHC (NMOC)
EPA Method 25A	VOC Emissions
EPA Method 18	THC/CH ₄ /NMHC Emissions
ASTM D-1945/3588	Fuel Analysis for BTU, F-Factors & Fixed Gases
ASTM D-5504	Sulfur Species, Hydrogen Sulfide (H ₂ S) and TRS
BAAQMD ST-19A	SO ₂ calculated from TRS

2.3. Test Date(s)

Testing was conducted on February 4th, 2021.

2.4. Sampling and Observing Personnel

Testing was performed by Wesley Alder, Timothy Eandi and Guy Worthington representing Blue Sky Environmental, Inc.

John Silva of SCS Engineers was present to oversee flare operations and assist in coordinating testing and the collection of process data to verify the accuracy of digitally recorded data collected during testing.

The BAAQMD was notified of the scheduled testing in a plan submitted by SCS Engineering on behalf of Waste Management, on January 13th, 2021. A Source Test Protocol acknowledgement (NST #6296) was received on January 14th, 2021; however, no agency observers were present during testing. A copy of the source test protocol and email correspondence are provided in Appendix I.

2.5. Source/Process Description

The Tri-Cities Recycling Disposal Facility, located in Fremont, CA, is a multi-material landfill with a gas collection system that is abated by an industrial landfill gas enclosed flare. Flare A-3 has a 75 MMBtu/hr multiple nozzle burner. The flare shell is approximately 40 feet high with an approximately 102-inch inside diameter (ID).

2.6. Source Operating Conditions

The flare was operated on landfill gas under normal operating conditions during testing with no condensate injection. The average exhaust temperature at normal operating condition was 1,594 °F. The operating exhaust temperature, and flow records are provided in Appendix F.

The fuel volumetric flow rate was continuously measured and recorded by the LFG flow meter at 15-minute intervals in accordance with 40 CFR 60.756(b)(2), BAAQMD Regulation 8-34-507, and permit condition 8366 Part 7.

Landfill gas samples collected at the head of the flare showed an average methane content of 46.8% and an oxygen range of 0.5 to 0.7%.

SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

3.1. Port Location

Sampling was conducted at the 102-inch diameter ID exhaust stack of the flare through ports that were accessed with a 40-foot boom lift. The four-inch flange ports on the flare were located 35-feet above grade, approximately four stack diameters downstream from the burners and approximately one stack diameters upstream from the exhaust.

3.2. Point Description/Labeling – Ports/Stack

Blue Sky Environmental conducted an eight point traverse to check for the presence of cyclonic flow. O_2 stratification was greater than 10%; therefore, subsequent CEM sampling was conducted using all traverse points. The traverse points for the 102-inch diameter stack with 4-inch ports were 7.3, 14.7, 23.8, 36.9, 73.1, 86.2, 95.3 and 102.7 inches.

3.3. Sample Train Description

Sampling system diagrams are included in the Appendix H. Additional descriptive information is included in the following section.

3.4. Sampling Procedure Description

Three consecutive thirty-minute gaseous emissions tests were performed for oxides of nitrogen (NOx), nitric oxide (NO), carbon monoxide (CO), carbon dioxide (CO₂), oxygen (O₂), and total hydrocarbons (THC) at each turbine exhaust stack. The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. Any drift or bias was corrected using equation 100-3 from CARB Method 100. A NOx analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky collected a total of three integrated samples of landfill gas for off-site analysis by Atmospheric Analysis & Consulting, Inc., located in Ventura, CA. The samples were collected in 6-liter SUMMA canisters and analyzed for NMOC, HHV, F-factor, fixed gases, and sulfur species (incl. H₂S and TRS). The gas was controlled with a rotameter to collect a 30-minute integrated sample.

EPA Method 1 - Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas.

EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. Section 16.2.2 of the method is used to determine the NO_X analyzer NO_2 to NO conversion efficiency.

EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

System Performance Criteria

Instrument Linearity	≤2% Full Scale
Instrument Bias	≤5% Full Scale
System Response Time	$\leq \pm 2$ minutes
NO _X Converter Efficiency (EPA 7E)	$\geq 90\%$
Instrument Zero Drift	≤± 3% Full Scale
Instrument Span Drift	≤± 3% Full Scale

EPA Method 4 - Determination of Moisture Content in Stack Gas

The method is used for accurate determinations of moisture content in stack gas using a wet bulb – dry bulb technique. This approximation method provides estimates of percent moisture to aid in setting isokinetic sampling rates prior to a pollutant emission measurement run.

BAAQMD Source Test Procedure ST-19 – Sulfur Dioxide, Continuous Sampling

This method is used to quantify sulfur dioxide emissions and determine compliance with Regulations 9-1-302, 9-1-304 through 310, and 10-1-301.

EPA Method 18 – Measurement of Gaseous Organic Compound Emissions by Gas Chromatography

This method is used to determine emissions of volatile organics by gas chromatograph/mass spectroscopy (GC/MS). Gaseous emissions are drawn through a Teflon sample transfer line to a Tedlar bag held in a rigid leak proof bag container. The sample is drawn into the bag by evacuating the container to stack gas pressure to allow sample flow without using a pump to avoid contamination. Negative pressure is adjusted to maintain an integrated sample flow for the collection time. The bag samples are taken to a laboratory and analyzed within 72 hours.

EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates.

EPA Method 25C – Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. The method is written for evacuated tank sampling but is adaptable to Tedlar bag sampling procedures. The sampling equipment consists of a stainless steel or glass lined probe with a short stainless-steel or Teflon transfer line to a Tedlar bag housed in a sealed chamber. The chamber is evacuated by pump at a prescribed rate for the test duration and the Tedlar bag capacity, so the sample is integrated over the test period. The sample is injected into a GC column where the methane and CO₂ are flushed through and removed then the NMOC (ROC) fraction is oxidized to form CO₂ then reduced to methane and analyzed.

EPA Method 25A – Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This method is used to measure total hydrocarbons, methane, and non-methane hydrocarbons in stationary source emissions using a gas chromatograph with a flame ionization detector (GC/FID). Heated Teflon sample gas transfer lines are used to provide a continuous sample to the heated GC/FID hydrocarbon analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. All data is corrected according to the method.

ASTM D1945 - Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed within 72 hours.

3.5. Instrumentation and Analytical Procedures

The following continuous emissions analyzers were used:

Instrumentation	Parameter	Principle
TECO Model 42C	NO/NO _X	Chemiluminescence
TECO Model 48C	СО	GFC/IR
Ratfisch Model RS-66	THC	FID
Servomex 1440	CO ₂	IR
Servomex 1440	O ₂	Paramagnetic

The analyzer data recording system consists of a Honeywell DPR300 strip chart recorder, which can be supported by a Data Acquisition System (DAS). The instrument response is recorded on strip charts and DAS. The averages are corrected for drift using BAAQMD and EPA Method 7E equations.

3.6. Comments: Limitations and Data Qualifications

This source test was performed in accordance with the protocol submitted to the BAAQMD. No deviations from the protocol or anomalies were observed during testing. The measured emissions comply with the permitted limits.

Blue Sky Environmental has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text Review of calculations Review of CEMS data Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations, subsequent to this, and do not warranty the accuracy of information supplied by others.

SECTION 4. <u>APPENDICES</u>

А.	Tabulated Results
В.	Calculations
С.	Laboratory Reports
D.	Field Data Sheets
Е.	Strip Charts
F.	Process Information
G.	Calibration Certifications and Quality Assurance Records
н.	Sample Train Configuration and Stack Diagrams
I.	Related Correspondence (Source Test Plan and Email Correspondence)
I.	BAAOMD Permit to Operate

A Tabulated Results

TABLE #1

Tri-Cities Recycling & Disposal Facility Flare A-3 1,594°F

Test Date Test Time Standard Temperature, °F Flare Temperature, °F Fuel Flow Rate, SCFM Fuel Heat Input, MMBtu/hr Exhaust Flow Rate, DSCFM <i>(EPA M19)</i> Oxygen, O ₂ , % Carbon Dioxide, CO ₂ , %	2/4/21 1028-1103 70 1,594 1,015 28.5 12,032 12.9 7.1	2/4/21 1150-1226 70 1,594 1,018 28.6 12,127 12.9	2/4/21 1306-1341 70 1,595 1,020 28.5 12,056	1,594 1,018 28.5	
Standard Temperature, °F Flare Temperature, °F Fuel Flow Rate, SCFM Fuel Heat Input, MMBtu/hr Exhaust Flow Rate, DSCFM <i>(EPA M19)</i> Oxygen, O ₂ , %	70 1,594 1,015 28.5 12,032 12.9	70 1,594 1,018 28.6 12,127	70 1,595 1,020 28.5	1,018	
Flare Temperature, °F Fuel Flow Rate, SCFM Fuel Heat Input, MMBtu/hr Exhaust Flow Rate, DSCFM <i>(EPA M19)</i> Oxygen, O ₂ , %	1,594 1,015 28.5 12,032 12.9	1,594 1,018 28.6 12,127	1,595 1,020 28.5	1,018	
Fuel Flow Rate, SCFM Fuel Heat Input, MMBtu/hr Exhaust Flow Rate, DSCFM <i>(EPA M19)</i> Oxygen, O ₂ , %	1,015 28.5 12,032 12.9	1,018 28.6 12,127	1,020 28.5	1,018	
Fuel Heat Input, MMBtu/hr Exhaust Flow Rate, DSCFM <i>(EPA M19)</i> Oxygen, O ₂ , %	28.5 12,032 12.9	28.6 12,127	28.5	-	1 1
Exhaust Flow Rate, DSCFM <i>(EPA M19)</i> Oxygen, O ₂ , %	12,032 12.9	12,127		28.5	1
Oxygen, O ₂ , %	12.9		12.056	-0.0	
	12.9		12,000	12,071	
	7.1	12.7	12.9	12.9	
Curson Dionico, 002, 70		6.9	6.9	7.0	
Water Vapor, H ₂ O, % (EPA M4)	2.5	2.5	2.5	2.5	
NO, ppm	12.6	12.3	12.5	12.4	
NO ₂ , ppm	<1.0	<1.0	<1.0	<1.0	
NO ₂ /NO	< 0.08	< 0.08	< 0.08	< 0.08	
NOx, ppm	12.4	11.9	12.2	12.1	
NOx, ppm @ 15% O ₂	9.1	8.8	8.9	8.9	
NOx, lbs/hr	1.06	1.03	1.05	1.05	
NOx, lbs/day	25.5	24.7	25.1	25.1	
NOx, lbs/MMBtu	0.037	0.036	0.037	0.037	0.06
CO, ppm	3.1	2.8	3.3	3.1	
CO, ppm @ 15% O ₂	2.3	2.1	2.5	2.3	
CO, lbs/hr	0.16	0.15	0.18	0.16	
CO, lbs/day	3.9	3.5	4.2	3.9	
CO, lbs/MMBtu	0.006	0.005	0.006	0.006	0.30
TRS as H_2S , ppm in Fuel	57.2	91.1	119.0	89.1	1,300
SO_2 , ppm Exhaust (calculated)	4.83	7.65	10.07	7.51	,
THC, ppm <i>(EPA M25A)</i>	<2.0	<2.0	<2.0	<2.0	
THC, lbs/hr as CH_4	< 0.060	< 0.060	< 0.060	< 0.060	
CH ₄ , ppm	<2.0	<2.0	<2.0	<2.0	
CH_4 , lbs/hr	< 0.060	< 0.060	< 0.060	< 0.060	
TNMOC, ppm as CH ₄	<2.0	<2.0	<2.0	<2.0	
TNMOC, lbs/hr as CH_4	< 0.060	< 0.060	< 0.060	< 0.060	
TNMOC, ppm (a) 3% O ₂ as CH ₄	<4.5	<4.5	<4.5	<4.5	30
INLET TNMOC, ppm as CH ₄ (EPA M25C)	2,407	2,443	2,463	2,438	
INLET NMOC, lbs/hr as CH ₄	6.1	6.2	6.2	6.2	or
NMOC Removal Efficiency	>99.02%	>99.02%	>99.04%	>99.03%	98
INLET CH ₄ , ppm	469,000	469,000	467,000	468,333	
INLET CH ₄ , lbs/hr	1,182	1,185	1,182	1,183	
CH ₄ Removal Efficiency	>99.995%	>99.995%	>99.995%	>99.995%	99
INLET THC (TOC), ppm as CH ₄	471,407	471,443	469,463	470,771	
INLET THC (TOC), lbs/hr as CH ₄	1,188	1,191	1,189	1,189	
THC (TOC) Removal Efficiency	99.995%	99.995%	99.995%	99.995%	

< Value = 2% of Analyzer Range

WHERE,

ppm = Parts per Million Concentration

Lbs/hr = Pound per Hour Emission Rate

Tstd. = Standard Temperature (°R = °F+460)

MW = Molecular Weight

DSCFM = Dry Standard Cubic Feet per Minute

 $NOx = Oxides \text{ of Nitrogen as } NO_2 (MW = 46)$

CO = Carbon Monoxide (MW = 28)

 $\mathrm{TOC}=\mathrm{THC}=\mathrm{Total}\;\mathrm{Organic}\;\mathrm{Carbon}\;\mathrm{as}\;\mathrm{Methane}\;\mathrm{including}\;\mathrm{CH}_4\;(\mathrm{MW}=16)$

THC = Total Hydrocarbons as Methane (MW = 16)

TNMOC = Total Non-Methane Organic Carbon as Methane (MW = 16)

 $SO_2 = Sulfur Dioxide as SO_2 (MW = 64.1)$

CALCULATIONS,

 $\begin{array}{l} \label{eq:PPM} @ 15\% \ O_2 = ppm * 5.9 \ / \ (20.9 - \%O_2) \\ \ PPM \ @ 3\% \ O_2 = ppm * 17.9 \ / \ (20.9 - \%O_2) \\ \ Lbs/hr = ppm * 8.223 \ E-05 * DSCFM * MW \ / \ Tstd. \ ^R \\ \ Lbs/hr = pth \ / \ a \approx 24 \end{array}$

Lbs/day = Lbs/hr * 24

 $\label{eq:Removal Efficiency} \begin{array}{l} {\rm Removal Efficiency} = ({\rm inlet}\; lbs/hr \ {\rm - outlet}\; lbs/hr) \ / \; {\rm inlet}\; lbs/hr \\ {\rm SO}_2\; {\rm emission}\; {\rm ppm} = {\rm H2S}\; {\rm in}\; {\rm fuel}\; {\rm * \; Fuel}\; {\rm Flow}/{\rm Stack}\; {\rm Gas}\; {\rm Flow} \end{array}$

APPENDIX M

CORRESPONDENCE

TRI-CITIES RECYCLING AND DISPOSAL FACILITY

7010 Auto Mall Parkway, Fremont, CA 94538 (510) 376-7700

March 19, 2021

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 compliance@baaqmd.gov Patricia Barnes Air Quality Inspector II Compliance and Enforcement Bay Area AQMD PBarnes@baaqmd.gov

Re: Tri-Cities Recycling and Disposal Facility, Fremont, California Facility Number A2246 10-Day NOV Response to BAAQMD Notice of Violation A- 57024 (March 10, 2021)

Dear Sir or Madam:

The Tri-Cities Recycling and Disposal Facility (TCRDF) is submitting this 10-day response letter to Notice of Violation (NOV) Number A-57024, dated March 10, 2021 (see attachment) for alleged temporary flare shutdown event caused by unplanned utility power outage on April 7, 2020 ("NOV Date"). A signed copy of the NOV is attached. The NOV alleges violation of:

- 1. Regulation 2, Section 6-307 "…has not submitted a timely and complete permit application by the deadlines set forth in Section 2-6-404..." ("2-6-307")
- 2. Regulation 1, Section 523.3 "...violation of permit conditions or District regulations to which the source is required to conform...shall be reported to the APCO within 96 hours after such occurrence..." ("1-523.3")
- 3. Regulation 8 Section 34-301.1 "...gas collection and emission control systems are operated continuously..." ("8-34-301.1")

Alleged violations of 2-6-307 and 1-523.3 are predicated on an alleged violation of 8-34-301.1. However, TCRDF was not in violation of 8-34-301.1. For Kirby Canyon Landfill (also a Waste Management landfill) the period October 26, 2019 to November 27, 2019, BAAQMD Hearing Board issued an emergency variance for Public Safety Power Shutoff ("PSPS") events. The variance stated that "[t]he magnitude and scale of the PSPS event was unforeseeable and the resultant power outage at Kirby Canyon Landfill was unpreventable." Similarly, the alleged NOV Date had an unforeseeable and unpreventable power outage at TCRDF.

Regulation 8, Rule 34, Section 113 ("8-34-113") Limited Exemption, Inspection and Maintenance, states that "requirements of Sections 8-34-301...shall not apply to solid waste sites during inspection and maintenance of the landfill gas collection or emission control system..." TCRDF appropriately reported flare downtime events under 8-34-113, as each event required inspection and maintenance during the downtime. These events were reported in TCRDF's startup and shutdown logs in its semi-annual reports. Startup could begin only after the restoration of power by the utility company and TCRDF's safety and environmental inspection and maintenance process for flare startup and emission minimization. Further, the exemption in 8-34-113 applies as TCRDF met the requirement that the "gas collection and emission control systems are not

shutdown for more than 240 hours in any calendar year." As TCRDF did not violate 8-34-301.1, it also did not violate 2-6-307 nor 1-523.3.

BAAQMD's apparent interpretation that 8-34-113 does not apply where inspection and maintenance has occurred simply because an unplanned power shutoff event also occurred leads to a result that may create harm to health, safety and/or the environment. Automatically restarting flares and auxiliary equipment (blower skid, air compressor, condensate injection system, PLC and data logger, etc.) without a safety and environmental inspection and/or maintenance may cause serious health, safety and/or environmental concerns. Similarly, using an automatic backup generator would have the same concerns, with the addition of potential additional emissions associated with the generator. Further, switching between a generator and the power system creates additional downtime, as does refueling or other issues that may be associated with use of a generator.

TCRDF additionally asserts that the downtime events did not: 1) interfere with attainment of the BAAQMD, federal, or state standards; 2) endanger health, safety, or welfare of any person; 3) endanger the environment; 4) increase emissions of toxic air contaminants; 5) cause or contribute to a violation of a SAAQS or NAAQS; 6) interfere with the BAAQMD's compliance work; nor 7) result in emissions exceeding de minimis levels. Moreover, TCRDF's downtime events were not the result of equipment malfunction, knowing, willful, intentional, chronic nor committed by a recalcitrant, and did not benefit TCRDF economically nor result in a nuisance. The frequency and duration of weather or utility-related electrical interruptions are outside of TCRDF's control but in either case, best practice requires inspection and/or maintenance prior to startup and, therefore, is reported as such.

For the above reasons, TCRDF asserts that it did not violate 2-6-307, 1-523.3 nor 8-34-301.1 and respectfully requests the NOV be rescinded.

Despite its objections, at BAAQMD's suggestion, TCRDF has begun to investigate the feasibility of a solution to reduce power outage downtime hours by reconfiguring the existing electrical panel for transfer switch operation and adding a backup generator to serve as an emergency power source.

TCRDF is committed to operating its landfill in compliance with applicable regulations and requests a meeting with BAAQMD executive staff to discuss Regulation 8-34-301.1. We may supplement this response in the future. If you have any questions or need any additional information, please do not hesitate to contact me at (510) 376-7700.

Thank you, **Tri-Cities Recycling and Disposal Facility**

Patrick Madej

Patrick Madej District Manager

ATTACHMENT A

NOTICE OF VIOLATION

BAY AREA AIR QUALITY MANAGEMENT DISTRICT NOTICE OF VIOLA	et, Suite 600, Sa (415) 749-500	an Francisco, CA 94105
	ь-	
ISSUED TO: Tri-Cities Waste Manageme		✓ P G N# <u>A2246</u>
ADDRESS: 7010 Auto Mall Parkway		04529
CITY: Fremont	STATE: CA	ZIP: <u>94536</u>
PHONE: (510) <u>376-7700</u>		
▶ N# Mailing Address on F61		
OCCURRENCE		
ADDRESS:		
CITY: SOURCE: S#1 NAME: Waste	ZIP Decomposition Process w/	Gas Collection System: abated by A-3, flare
EMISSION PT: P# NAME: DATE: 4/7/2020	TIME: 0648	а to 1536 нвс
REG 2 RULE 1 SEC 301 No Authority to Construct		RULE 1 SEC 302 rmit to Operate
REG 1 SEC 301 H & S CODE - 41700 Public Nuisance		PRULE SEC 307
REG 5 SEC 301 Prohibited Open Burning		8 RULE 1 SEC 301 sive Visible Emissions
\checkmark REG 8 RULE 34	SECTION 301.1	CODE
✓ REG 1 RULE	SECTION 523.3	
Details: min. flare temp, abatement device	not operated continuo	usly(PC 8366-5,6); RCA not reported
RECIPIENT NAME: Patrick Madej		
TITLE: Waste Management	District Manager	
SIGNING THIS NOTICE IS NOT AN ADMISSION OF GUILT X	Patrick	Madez
WITHIN 10 DAYS, RETUR DESCRIPTION OF THE IMM TAKEN TO PREVENT CONT VIOLATION IS SUBJECT TO DOES NOT PRECLUDE FURT	NEDIATE CORRECT INUED OR RECUR SUBSTANTIAL PEN	IVE ACTION YOU HAVE RENT VIOLATION. <u>THIS</u> MALTY, YOUR RESPONSE
ISSUED BY: Patricia Barnes		INSP #
DATE: 3/10/21	TIME: 1055	

PLEASE PRESS HARD

INSTRUCTIONS

PERMIT VIOLATIONS - (REG 2, RULE 1, SECTION 301 AND/OR 302)

Within 30 days, a permit application must be submitted to the District's Permit Division. The permit application must reference the Violation Notice Number Shown on the front of this notice. If either the Violation Notice Number is not referenced or no permit application is received, then this matter will be referred to the District's Legal Department for legal action. Your response does not preclude further legal action.

If there are any questions regarding the submission of a Permit Application, call the Permit Services Division at (415) 749-4990.

ALL OTHER VIOLATIONS

Within 10 days, return a copy of this notice with a written description of the corrective action you have taken to prevent continued or recurrent violation. Immediate corrective action must be taken to stop the violation. This violation is subject to substantial penalty. Your response does not preclude further legal action.

A variance should be sought if it is necessary to continue to operate in violation of District Regulations. For information on eligiblity for, or filing of, a variance, call (415) 749-5073.

ATTACHMENT B

REPORTABLE COMPLIANCE ACTIVITY (RCA) FORM

Reportable Compliance Activity (RCA)

1.N/A

See back of form for instructions \rightarrow

BREAKDOWN RELIEF: District Use Only BREAKDOWN REFERENCE #:

2. N/A MONITOR EXCESS EMISSION or EXCURSION: District Use Only REFERENCE #:

3. N/A

MONITOR IS INOPERATIVE: District Use Only REFERENCE #:

₄ N/A PRESSURE RELIEF DEVICE (PRD): District Use Only PRD REFERENCE #:

SITE INFORMATION AND DESCRIPTION INFORMATION (REQUIRED)													
Company	Tri-Citie	Tri-Cities Recycling and Disposal Facility					Site #			A	2246		
Address	7010 A	uto Mall P	Parkwa	ıy, Fre	emont C	A 9453	38	Source #			S	-1	
Reported by	Patricia	Barnes/E	BAAQN	٨D				Phone #		5	510-376-7700		
Indicated Excess	- N/A							Fax #			Γ		
Allowable Limit	-							Averaging Time					
Start Time/Date	6:48/ A	April 7, 202	20					Cle	ar	Time	1	15:36/ April 7, 2020	
Monitor/device type(s)		► CEM ► GLM ► Parametric					▶PRD		► Non-monitor				
Monitor description(s) Monitor recorded temporary shutdown event.													
Parameter(s) exceeded or not functioning due to inoperation													
► NO _x ► SC	2				►CO ₂			►H ₂ S ►TRS ►N			► NH ₃		
	D 🗌	Opacity			Lead	1		Gau	ige	Pressure		► Flow	
► Hydrocarbon Breakthrough (VOC)			;)		►Tem	perat	ure			Wind Spee	ed		
Wind Direction				Stea	m		Х		Other (desc	ribe)	Power Outage		
Unit(s) of Measurement													
▶ ppm ▶ ppt)	▶ min/hr > 20%						►inches H ₂ O			► mmHg		
▶ psig ▶ pH		▶⁰Fah	renhe	eit				► Ot	the	(describe)			

Event Description:

Due to the direction from BAAQMD staff, Tri-Cities is submitting this RCA form. The Initial power surge from an unplanned power outage occurring 6:48 am to 9:28 am (2.7 hours) on April 7, 2020 resulted in the pilot system thermocouple needing to be replaced. The unforeseeable and unpreventable event at Tri-Cities resulted in damage to the pilot system thermocouple and was not the result of an intentional or negligent failure to maintain and operate the Tri-Cities equipment. Tri-Cities asserts that it did not violate 2-6-307, 1-523.3, nor 8-34-301.1 and respectfully requests the NOV be rescinded. Tri-Cities disagrees RCA is the appropriate methodology for compliance during an unplanned power outage event. The flare was restarted after the system was inspected and the pilot system thermocouple was replaced.

District Use Only						
Received by	Da	ate	Time			
General Instructions						

General Instructions

- ✓ Check the Box numbers 1-4 that apply to the RCA you are trying to report or request and read the detailed instructions.
- ✓ You will receive an ID # for each RCA you submit. In the case of a request for Breakdown Relief where multiple monitors are affected, you do not need to submit multiple forms, as long as all necessary information is given on one form. RCA reported during other than core business hours will be assigned an ID # the following working day. If you do not receive an ID #, it is your responsibility to contact the BAAQMD to get one.
- ✓ You may submit only one request for breakdown relief per form. However, you may submit multiple indicated excess, inoperative monitors and PRD reports on one form, provided that the start and end times given for the events in the required information section is inclusive of all events. Information on parameters exceeded, units of measurement and allowable limits can be provided in the event description box or when contacted by District staff with questions.
 - Fill out the "Site Information and Description Information Required" areas of this form and email to rca@baaqmd.gov
- A 30-day written follow-up report is required for Breakdown Requests and PRD Releases. Reports for these types of RCA must contain a quantification of emissions, the calculations used to derive the emissions, and their duration. Reference <u>Breakdown Admissions Advisory dated 12/3/04</u>. Send 30-day report letters to: BAAQMD Compliance and Enforcement Division, MAILSTOP: RCA 30-DAY REPORT, 375 Beale Street, Ste. 600 San Francisco, CA 94105. NOTE: You may have additional report requirements under Title V.

Detailed Instructions

Box 1: To Request Breakdown Relief (Regulations 1-112, 1-113, 1-208, 1-431, 1-432)

If you have an equipment malfunction (e.g.; breakdown) that leads to the release of air pollutants above the regulatory or your permitted levels, you may request relief from BAAQMD enforcement action.

- Check Box #1.
- NOTE: Start and end times given for these events in the required information section must be inclusive of all events.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Requests for breakdown relief may not be withdrawn and must be called in or faxed to the BAAQMD <u>immediately upon</u> <u>discovery</u> of an equipment malfunction.
- Receipt of an RCA ID# for a breakdown does not mean relief has been granted. An Inspector will visit your facility to determine compliance.

Box 2: Monitor Indicates Excess Emission or Excursion (Regulation 1-522.7, 1-523.3, 1-542)

When a BAAQMD-required monitor indicates an excess or excursion, you must report it to the BAAQMD.

- Check Box #2.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Any excess emission indicated by a CEM or excursion of a parametric monitor, shall be reported to the BAAQMD within 96 hours.
- Area concentration excesses over the limits prescribed in District regulations shall be reported to the BAAQMD within the next normal working day following the examination of data.

Box 3: Monitor Is Inoperative (Regulations 1-522, 1-523, 1-530)

When a BAAQMD-required monitor is inoperative for greater than 24 hours, you must report it to the BAAQMD.

- Check Box #3 only if inoperative for greater than 24 hours.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All reports of inoperative monitors must be reported by the following BAAQMD working day and additionally be cleared by a notification of resumption of monitoring. <u>To notify the BAAQMD regarding the resumption of monitoring</u>, do not send in a separate RCA form; call (415) 749-4979 and give the RCA ID #, date, and the time of resumption.
- Inoperative monitors (except parametric monitors) with downtime greater than 15 days must furnish proof of expedited repair in a follow-up report.

Box 4: Pressure Relief Device (PRD) Is Released (Regulation 8-28-401)

When a PRD at your refinery/chemical plant vents to the atmosphere, you must report it to the BAAQMD.

- Check Box #4 only if a pressure relief device is released.
- Separate RCA ID #'s can be applied to monitor(s) affected by a PRD by also checking Box #2 if other monitors record an
 excess or excursion.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All PRD release reports must be reported by the following BAAQMD working day.

Email to ► rca@baaqmd.gov - Telephone ► 415.749.4979 (M-F 8:30 am – 5:00 pm) - After core business hours, email or call ► 415.749.4666 Form Revision Dated: 12-12-18

Chan, Michael

From:	Madej, Patrick
Sent:	Friday, March 19, 2021 12:26 PM
То:	compliance@baaqmd.gov; PBarnes@baaqmd.gov
Cc:	Chan, Michael
Subject:	Plant# A2246 Notice of Violation# A57024 10-Day Response
Attachments:	TriCities Title V 10day NOV A57024 210319 Submittal.pdf; TriCities NOV A57024 10day 210319
	Final.pdf

Attached please find NOV# A57024 10-day Response Letter, including the signed NOV, and the Title V 10-Day Report. Please reach out to me at your convenience if you have any questions or concerns, thank you.

Patrick Madej District Manager Environmental Legacy Management Group pmadej@wm.com

Waste Management 2615 Davis St. San Leandro, CA. 94577 Cell/Office 510 376 7700 Fax 510 463 4210

TRI-CITIES RECYCLING AND DISPOSAL FACILITY

7010 Auto Mall Parkway, Fremont, CA 94538 (510) 376-7700

March 19, 2021

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 Attn: Title V Reports compliance@baaqmd.gov Patricia Barnes Air Quality Inspector II Compliance and Enforcement Bay Area AQMD PBarnes@baaqmd.gov

Re: Tri-Cities Recycling and Disposal Facility, Fremont, California Facility Number A2246 Title V Section I.F, 10-Day written report (NOV A- 57024)

Dear Sir or Madam:

The Tri-Cities Recycling and Disposal Facility (TCRDF) is submitting this 10-day written report to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F. On March 10, 2021, Patricia Barnes, Bay Area Air Quality Management District (BAAQMD) Air Quality Inspector, issued Notice of Violation ("NOV") Number A-57024, (see attachment) for alleged temporary flare shutdown events caused by unplanned utility power outages on April 7, 2020 ("NOV Date"). The NOV alleges violation of:

- 1. Regulation 2, Section 6-307 "…has not submitted a timely and complete permit application by the deadlines set forth in Section 2-6-404..." ("2-6-307")
- 2. Regulation 1, Section 523.3 "...violation of permit conditions or District regulations to which the source is required to conform...shall be reported to the APCO within 96 hours after such occurrence..." ("1-523.3")
- 3. Regulation 8 Section 34-301.1 "...gas collection and emission control systems are operated continuously..." ("8-34-301.1")

The unplanned power outage shutdowns noted in the NOV did not result in emissions and do not qualify as non-compliance. The downtime recorded for each of the events noted on the NOV was significantly less than 24 hours. TCRDF believes that it complied with the Title V permit conditions and safety protocols. TCRDF followed all measures to ensure gas movers and valves were closed during the shutdown events. TCRDF's downtime event was not the result of equipment malfunction, knowing, willful, intentional, chronic nor committed by a recalcitrant, and did not benefit TCRDF economically nor result in a nuisance. The frequency and duration of weather or utility-related electrical interruptions are outside of TCRDF's control.

TCRDF is committed to operating its landfill in compliance with applicable regulations and will ensure that compliance is achieved. However, TCRDF disagrees with the BAAQMD that temporary shutdowns resulting from unplanned power outages are violations of any BAAQMD regulation. As required, a 30-day follow-up letter will confirm the contents of this submittal.

If you have any questions or need any additional information, please do not hesitate to contact me at (510) 376-7700.

Thank you, **Tri-Cities Recycling and Disposal Facility**

Patrick Madej

Patrick Madej District Manager

ATTACHMENT A

NOTICE OF VIOLATION

BAY AREA AIR QUALITY MANAGEMENT DISTRICT NOTICE OF VIOLA	et, Suite 600, Sa (415) 749-500	an Francisco, CA 94105
	ь-	
ISSUED TO: Tri-Cities Waste Manageme		✓ P G N# <u>A2246</u>
ADDRESS: 7010 Auto Mall Parkway		04529
CITY: Fremont	STATE: CA	ZIP: <u>94536</u>
PHONE: (510) <u>376-7700</u>		
▶ N# Mailing Address on F61		
OCCURRENCE		
ADDRESS:		
CITY: SOURCE: S#1 NAME: Waste	ZIP Decomposition Process w/	Gas Collection System: abated by A-3, flare
EMISSION PT: P# NAME: DATE: 4/7/2020	TIME: 0648	а to 1536 нвс
REG 2 RULE 1 SEC 301 No Authority to Construct		RULE 1 SEC 302 rmit to Operate
REG 1 SEC 301 H & S CODE - 41700 Public Nuisance		PRULE SEC 307
REG 5 SEC 301 Prohibited Open Burning		8 RULE 1 SEC 301 sive Visible Emissions
\checkmark REG 8 RULE 34	SECTION 301.1	CODE
✓ REG 1 RULE	SECTION 523.3	
Details: min. flare temp, abatement device	not operated continuo	usly(PC 8366-5,6); RCA not reported
RECIPIENT NAME: Patrick Madej		
TITLE: Waste Management	District Manager	
SIGNING THIS NOTICE IS NOT AN ADMISSION OF GUILT X	Patrick	Madez
WITHIN 10 DAYS, RETUR DESCRIPTION OF THE IMM TAKEN TO PREVENT CONT VIOLATION IS SUBJECT TO DOES NOT PRECLUDE FURT	NEDIATE CORRECT INUED OR RECUR SUBSTANTIAL PEN	IVE ACTION YOU HAVE RENT VIOLATION. <u>THIS</u> MALTY, YOUR RESPONSE
ISSUED BY: Patricia Barnes		INSP #
DATE: 3/10/21	TIME: 1055	

PLEASE PRESS HARD

Chan, Michael

From:	Madej, Patrick
Sent:	Friday, March 19, 2021 12:26 PM
То:	compliance@baaqmd.gov; PBarnes@baaqmd.gov
Cc:	Chan, Michael
Subject:	Plant# A2246 Notice of Violation# A57024 10-Day Response
Attachments:	TriCities Title V 10day NOV A57024 210319 Submittal.pdf; TriCities NOV A57024 10day 210319
	Final.pdf

Attached please find NOV# A57024 10-day Response Letter, including the signed NOV, and the Title V 10-Day Report. Please reach out to me at your convenience if you have any questions or concerns, thank you.

Patrick Madej District Manager Environmental Legacy Management Group pmadej@wm.com

Waste Management 2615 Davis St. San Leandro, CA. 94577 Cell/Office 510 376 7700 Fax 510 463 4210

TRI-CITIES RECYCLING AND DISPOSAL FACILITY

7010 Auto Mall Parkway, Fremont, CA 94538 (510) 376-7700

April 2, 2021

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 Attn: Title V Reports compliance@baaqmd.gov

Re: Tri-Cities Recycling and Disposal Facility, Fremont, California Facility Number A2246 Title V Section I.F, 30-Day written report (NOV A- 57024)

Dear Sir or Madam:

The Tri-Cities Recycling and Disposal Facility (TCRDF) is submitting this 30-day written report to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F. On March 10, 2021, Patricia Barnes, Bay Area Air Quality Management District (BAAQMD) Air Quality Inspector, issued Notice of Violation ("NOV") Number A-57024, (see attachment) for alleged temporary flare shutdown events caused by unplanned utility power outages on April 7, 2020 ("NOV Date"). The NOV alleges violation of:

- 1. Regulation 2, Section 6-307 "…has not submitted a timely and complete permit application by the deadlines set forth in Section 2-6-404..." ("2-6-307")
- 2. Regulation 1, Section 523.3 "...violation of permit conditions or District regulations to which the source is required to conform...shall be reported to the APCO within 96 hours after such occurrence..." ("1-523.3")
- 3. Regulation 8 Section 34-301.1 "...gas collection and emission control systems are operated continuously..." ("8-34-301.1")

Alleged violations of 2-6-307 and 1-523.3 are predicated on an alleged violation of 8-34-301.1. However, TCRDF was not in violation of 8-34-301.1. The alleged NOV Date had an unforeseeable and unpreventable power outage at TCRDF.

Regulation 8, Rule 34, Section 113 ("8-34-113") Limited Exemption, Inspection and Maintenance, states that "requirements of Sections 8-34-301...shall not apply to solid waste sites during inspection and maintenance of the landfill gas collection or emission control system..." TCRDF appropriately reported flare downtime events under 8-34-113, as each event required inspection and maintenance during the downtime. These events were reported in TCRDF's startup and shutdown logs in its semi-annual reports. Startup could begin only after the restoration of power by the utility company and TCRDF's safety and environmental inspection and maintenance process for flare startup and emission minimization. Further, the exemption in 8-34-113 applies as TCRDF met the requirement that the "gas collection and emission control

systems are not shutdown for more than 240 hours in any calendar year." As TCRDF did not violate 8-34-301.1, it also did not violate 2-6-307 nor 1-523.3.

BAAQMD's apparent interpretation that 8-34-113 does not apply where inspection and maintenance has occurred simply because an unplanned power shutoff event also occurred leads to a result that may create harm to health, safety and/or the environment. Automatically restarting flares and auxiliary equipment (blower skid, air compressor, condensate injection system, PLC, and data logger, etc.) without a safety and environmental inspection and/or maintenance may cause serious health, safety and/or environmental concerns. Similarly, using an automatic backup generator would have the same concerns, with the addition of potential additional diesel fueled emissions associated with the generator. Further, switching between a generator and the power system creates additional downtime, as does refueling or other issues that may be associated with use of a generator.

TCRDF additionally asserts that the unplanned power outage shutdown event did not: 1) interfere with attainment of the BAAQMD, federal, or state standards; 2) endanger health, safety, or welfare of any person; 3) endanger the environment; 4) increase emissions of toxic air contaminants; 5) cause or contribute to a violation of a SAAQS or NAAQS; 6) interfere with the BAAQMD's compliance work; nor 7) result in emissions exceeding de minimis levels. Moreover, TCRDF's downtime event was not the result of equipment malfunction, knowing, willful, intentional, chronic nor committed by a recalcitrant, and did not benefit TCRDF economically nor result in a nuisance. The frequency and duration of weather or utility-related electrical interruptions are outside of TCRDF's control.

For the above reasons, TCRDF asserts that the downtime event noted in the NOV does not qualify as non-compliance and that it did not violate 2-6-307, 1-523.3 nor 8-34-301.1 and respectfully requests the NOV be rescinded.

TCRDF disagrees with the BAAQMD that temporary shutdowns resulting from unplanned power outages are violations of any BAAQMD regulation. TCRDF is committed to operating its landfill in compliance with applicable regulations.

If you have any questions or need any additional information, please do not hesitate to contact me at (510) 376-7700.

Thank you, **Tri-Cities Recycling and Disposal Facility**

Patrick Madej

Patrick Madej District Manager

ATTACHMENT A

NOTICE OF VIOLATION

BAY AREA AIR QUALITY MANAGEMENT DISTRICT NOTICE OF VIOLA	et, Suite 600, Sa (415) 749-500	an Francisco, CA 94105
	ь-	
ISSUED TO: Tri-Cities Waste Manageme		✓ P G N# <u>A2246</u>
ADDRESS: 7010 Auto Mall Parkway		04529
CITY: Fremont	STATE: CA	ZIP: <u>94536</u>
PHONE: (510) <u>376-7700</u>		
▶ N# Mailing Address on F61		
OCCURRENCE		
ADDRESS:		
CITY: SOURCE: S#1 NAME: Waste	ZIP Decomposition Process w/	Gas Collection System: abated by A-3, flare
EMISSION PT: P# NAME: DATE: 4/7/2020	TIME: 0648	а to 1536 нвс
REG 2 RULE 1 SEC 301 No Authority to Construct		RULE 1 SEC 302 rmit to Operate
REG 1 SEC 301 H & S CODE - 41700 Public Nuisance		PRULE SEC 307
REG 5 SEC 301 Prohibited Open Burning		8 RULE 1 SEC 301 sive Visible Emissions
\checkmark REG 8 RULE 34	SECTION 301.1	CODE
✓ REG 1 RULE	SECTION 523.3	
Details: min. flare temp, abatement device	not operated continuo	usly(PC 8366-5,6); RCA not reported
RECIPIENT NAME: Patrick Madej		
TITLE: Waste Management	District Manager	
SIGNING THIS NOTICE IS NOT AN ADMISSION OF GUILT X	Patrick	Madez
WITHIN 10 DAYS, RETUR DESCRIPTION OF THE IMM TAKEN TO PREVENT CONT VIOLATION IS SUBJECT TO DOES NOT PRECLUDE FURT	NEDIATE CORRECT INUED OR RECUR SUBSTANTIAL PEN	IVE ACTION YOU HAVE RENT VIOLATION. <u>THIS</u> MALTY, YOUR RESPONSE
ISSUED BY: Patricia Barnes		INSP #
DATE: 3/10/21	TIME: 1055	

PLEASE PRESS HARD

Chan, Michael

From:	Madej, Patrick
Sent:	Monday, April 5, 2021 11:23 AM
То:	'compliance@baaqmd.gov'; 'PBarnes@baaqmd.gov'
Cc:	Chan, Michael
Subject:	Plant# A2246 Notice of Violation# A57024 30-Day Response
Attachments:	TriCities Title V 30day NOV A57024 Submittal.pdf

Attached please find NOV# A57024 30-day written report, including the signed NOV. Please reach out to me at your convenience if you have any questions or concerns, thank you.

Patrick Madej District Manager Environmental Legacy Management Group pmadej@wm.com

Waste Management 2615 Davis St. San Leandro, CA. 94577 Cell/Office 510 376 7700 Fax 510 463 4210