
TV Tracking #: 928 (Semi-Annual)

1. EI RECEIVED IN ENFORCEMENT: 06/26/2024

Appendix A
SEM Data- continued

May 14, 2024

Marcus Nettz Altamont Landfill and Resource Recovery Facility 10840 Altamont Road Livermore, California 94551

Re: Second Quarter 2024 Surface Emissions and Component Leak Monitoring Report for the Altamont Landfill and Resource Recovery Facility

Dear Mr. Nettz:

This monitoring report for the "Altamont Landfill and Resource Recovery Facility (ALRRF)" contains the results of the Second Quarter 2024 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by RES Environmental, Inc. (RES). Re-monitoring of surface emissions and site-wide component leak monitoring (except Linde Plant), wherever applicable was conducted by ALRRF personnel. The component leak monitoring for Linde Plant was conducted by third party contractor.

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, \$95460 to \$95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection procedures).
- United States Environmental Protection Agency's (USEPA) *Standards of Performance for Municipal Solid Waste Landfills*; 40 Code of Federal Regulations (CFR) Part 63, Subpart AAAA-National Emission Standards for Hazardous Air Pollutants (NESHAP).

Component Leak

- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 301 (Landfill Gas Collection and Emission Control System Requirements) and Section 602 (Collection and Control System Leak Inspection procedures).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95464, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

ALRRF Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 16, 2011. After receipt of comments, this ACO was amended, restated, and submitted to BAAQMD on July 1, 2016. SEM and Component Leak monitoring was conducted per the methods outlined in the July 1, 2016, ACO.

PROCEDURES

General

The surface of the ALRRF Fill Area 1 disposal area has been divided into one-hundred and ninety-three (193), approximately 50,000 square foot monitoring grids. The current surface of the ALRRF Fill Area II disposal area has been divided into forty-five (45), approximately 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the 25-foot walking pattern as depicted the 2011 ALRRF AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

Instantaneous Surface Emissions Monitoring

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume (ppm $_{v}$) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 $\S95471(a)$ and NSPS. The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d) and CCR Title 17 $\S95471(c)(2)$.

RES personnel walked the surface of the landfill on a grid-by-grid basis with the wand tip held at 2 inches from the landfill surface. While sampling the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks,

seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppm_v (areas of concern) or 500 ppm_v (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Appendices of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
 - o If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
 - o If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month remonitoring event shows the area is still corrected, monitoring requirements have been completed.

If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Integrated Surface Emissions Monitoring

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppm $_{\rm V}$ for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 \$95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held within 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 \$95471(c)(3).

Grids with results greater than 25 ppm_v were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppm_v are subject to the following re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.

- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, all remonitoring requirements have been completed.
- The second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the third exceedance.

Component Leak Monitoring Procedures

ALRRF/Third Party Contractor personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppm_v. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppm_v per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) and 1,000 ppm_v per requirements outlined in BAAQMD 8-34-303 were recorded. Applicable corrective action and re-monitoring timelines are listed below:

- Leaks between 500 and 999 ppm_v must be corrected and re-monitored within 10 days of the initial exceedance.
- Leaks at or above 1000 ppm_v must be corrected and re-monitored within 7 days of the initial exceedance.

SECOND QUARTER 2024 SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and component leak monitoring results completed for the Second Quarter 2024.

Instantaneous Surface Emissions Monitoring Results

The Instantaneous surface monitoring was performed on April 2, 3, 4, and 9, 2024, in accordance with the NSPS, BAAQMD 8-34, NESHAP, and CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

Initial Monitoring Event Exceedances of 500 ppm_v

There were 7 exceedances of 500 ppm_v as methane detected on April 9, 2024. Corrective actions to initiate repairs of the exceedances were completed within five days for all locations (April 10, 2024).

Ten-Day Re-Monitoring Results

The 10-day re-monitoring event was completed on April 10, 2024. All locations were observed at less than 500 ppm_v .

One-Month Re-Monitoring Results

The 1-month re-monitoring event was completed on May 6, 2024. All locations were observed at less than 500 ppm_v .

Readings between 200 ppm_v and 499 ppm_v (Initial and Re-monitored)

There were no readings between 200 ppm_v and 499 ppm_v as methane detected during the initial monitoring event on April 2, 3, 4, and 9, 2024. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppm_v but below 500 ppm_v are required to be recorded.

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on April 8, 9, and 10, 2024, in accordance with the ACO and requirements outlined in CCR Title 17 §95469.

*Initial Monitoring Event Exceedances of 25 ppm*_v

There were no grids with exceedances of 25 ppm_v as methane detected during the initial monitoring event on April 8, 9, and 10, 2024.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B, Integrated SEM 25 ppm_v Exceedances and Monitoring Log, and SEM Map included in Attachment B, for details.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on April 10, 2024 and May 3, 2024. No leaks greater than 500 ppm_v were identified. LNG Plant was permanently shut down and is being decommissioned. Please see Attachment C, for details.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). The average wind speed recorded during the re-monitoring event was 16 mph. These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

Precipitation Requirements

Per the ALRRF's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within

Mr. Marcus Nettz Page 6

24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25 ppm $_{\rm v}$ in air for integrated sample analyses and 500 ppm $_{\rm v}$ in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at rphadnis@wm.com.

Thank you, Waste Management

Rajan Phadnis

Environmental Protection Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map

Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment D – Weather Station Data

• Strip Chart Data

Attachment E – Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

Table A.1 Instantaneous Landfill Surface Emissions Monitoring Initial Monitoring Event Areas of Concern

2024 QUARTER: 2 PERFORMED BY: RES

Flag Number	Grid Number	Date of Monitoring	Concentration of Emission (ppmv)	Comments
01	62	4/9/2024	520	Well 739
O2	98	4/9/2024	700	Well 880
O3	152	4/9/2024	1,000	Well 772
04	138	4/9/2024	700	Well 775
O5	114	4/9/2024	5,000	Well 713
O6	36	4/9/2024	600	Well 824
07	55	4/9/2024	700	Well 877

Table A.2 Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2024 QUARTER: 2

INITIAL MONITORING PERFORMED BY:RES

FOLLOW-UP MONITORING PERFORMED BY: ALRRF

Initial			Corr	ective action within 5 days	1st 10-	day Follow	-Up	1st 30	-day Follov	v-Up	
Flag	Monitoring	Field	Repair	Repair Action	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	Taken	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
01	4/9/2024	520	4/10/2024	Compacted soil	4/10/2024	14		5/6/2024	11		Well 678
O2	4/9/2024	700	4/10/2024	Added and compacted soil	4/10/2024	116		5/6/2024	122		Well 713
O3	4/9/2024	1,000	4/10/2024	Compacted soil/ tuned	4/10/2024	113		5/6/2024	100		Well 733
04	4/9/2024	700	4/10/2024	Compacted soil	4/10/2024	28		5/6/2024	10		Well 862
O5	4/9/2024	5,000	4/10/2024	Compacted soil	4/10/2024	27		5/6/2024	55		Well 759
O6	4/9/2024	600	4/10/2024	Compacted soil/ tuned	4/10/2024	10		5/6/2024	7		Well 760
07	4/9/2024	700	4/10/2024	Compacted soil	4/10/2024	31		5/6/2024	82		Well 812

Table A.3 Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (AB-32)

2024 QUARTER: 2

INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: ALRRF

Initial	Monitoring	Event	1st Re-m	on 10-day F	ollow-Up	2nd Re-r	non Event	- 10 Days	
Flag	Monitoring	Field	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
01	4/9/2024	520	4/10/2024	14					Well 678
02	4/9/2024	700	4/10/2024	116					Well 713
O3	4/9/2024	1,000	4/10/2024	113					Well 733
04	4/9/2024	700	4/10/2024	28					Well 862
O5	4/9/2024	5,000	4/10/2024	27					Well 759
O6	4/9/2024	600	4/10/2024	10	·				Well 760
07	4/9/2024	700	4/10/2024	31					Well 812

Table A.4 Instantaneous Landfill Surface Emissions Monitoring Areas of Concern Greater than 200 ppmv

2024 QUARTER: 2

INITIAL MONITORING PERFORMED BY: RES

FOLLOW-UP MONITORING PERFORMED BY: NA

Initial	Monitoring	Event	Re-mo	n Event	
Exceedance	Monitoring	Field	Monitoring	Reading	Comments
Flag No.	Date	Reading	Date	ppm	
None					

Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2024 Quarter: 2nd Quarter

INITIAL MONITORING PERFORMED BY: RES

FOLLOW-UP MONITORING PERFORMED BY: Garry Carpenter

LANDFILL NAME: ALRRF
Wind Speed : 5 MPH
Wind Direction : E
Wind Direction : E

Initi	al Monitori	ng Event	Correc	tive action within 5 days	1st	10-day Follow	/-Up	1st	30-day Follow	-Up	Comments
Flag	Monitoring	Field	Repair	Repair Action	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	Taken	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	
01	4/9/2024	520	4/10/2024	compacted dirt	4/10/2024	14		5/6/2024	11		Well 739 Grid 62
02	4/9/2024	700	4/10/2024	Added and compacted dirt	4/10/2024	116		5/6/2024	122		Well 880 Grid 98
O3	4/9/2024	1,000	4/10/2024	compacted dirt/ increased becs	4/10/2024	113		5/6/2024	100		Well 772 Grid 152
04	4/9/2024	700	4/10/2024	compacted dirt	4/10/2024	28		5/6/2024	10		Well 775 Grid 138
O5	4/9/2024	5,000	4/10/2024	compcted dirt	4/10/2024	27		5/6/2024	55		Well 713 Grid 114
O6	4/9/2024	600	4/10/2024	compacted dirt/ increased becs	4/10/2024	10		5/6/2024	7		Well 824 Grid 36
				·							
07	4/9/2024	700	4/10/2024	compacted dirt	4/10/2024	31		5/6/2024	82		Well 877 Grid 55
		•		_							

Orange Flag Landfill Surface Emissions Monitoring Exceedances and Monitoring Log

site: Alfanort

			p Monitoring Comments	cd.	cd (13 W)	t ppm	cd	topom	cd. Pppm WE1/7 W	Depm WE! 8 WE! 8 WE! 8 WE! 9 WE! 9
				cd.	cd.	cd WE1/7	cd WE1/7	cd. Dpm WE!/7 WE	cd. Ppim WE!/7 W	1 ppm WE1/7 WE1/7
	The state of the s	low-up Monitoring	TO 201	>500 ppm	>500 ppm	>500 ppm	>500 ppm	2500 ppm	>500 ppm	200 ppm
Monitori	ay Follow-up Monitoring		+							
30-Day Follow-up M Date No Excd.	30-Day Follow-up M	Date No Excd.	Monitored <500 ppm	-						
e c	a C	Da	-	-						
lent /ent	onitoring Event - 10 D No Excd. Exc	No Excd. Exc	<500 ppm >500 ppm	+						
Second Re-Monito	Second Re-Monito Date No	Date No	Monitored <500	1						
10 Days Secon Excd. Date		-		-						
Ing Event - 10 Day Excd. Exc.	Excd. Exc	Excd. Exc		+						
First Re-Monitoring Event - 10 Date No Excd.	Re-Monitoring Exc	No Exc								
ž	ž	ž	-							
Date		Date	Monitored	4-6-24	_					+
Adard: Log 1909	iltoring Event	Ciald Danding	rieid Keading	225	700	0007		200	2000	2000
ie i		Initial Monit	Grid	-				38	138	138
Instrument:	Pration 5		Flag	-			77	1	26	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Personnel: LEISLVADE ENDIR DELING

MISHEC ESTASOA HYLEN ALDERION

Cal. Gas Exp. Date: 1/-/2-24

Date: 4-2-24 Instrument Used: 4VA 1000 Grid Spacing: 25'

Temperature: 65 Precip: Downwind BG: 2-8 Downwind BG: 2-2

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	NOITAN	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLIIAKKS
84	5.3	1030	1045	22.20	2	4	طا	
85		1045	1100	33.07	2	3	16	
86		1110	1125	30.09	2	3	16	
8>		1125	1140	44.60	3	4	16	
93		1140	1155	36.30	3	4	16	
92		1155		49.20	3	4	16	
91		1210	1225	37.28	3	4	15'	
20		1225	1240	40.09	3	4	15	
27			1255	29.18	2	4	15	
98			1310		3	4	15	
29		1310	1325	44.30	3	4	15	
100		1325	1340	27-28	3	4	15	
107		1340	1355	39.20	3	4	15	
106		1400	1415	55.22	3	4	15	
105		1415	1930	50-09	3	4	14	
124		1430		40.01	4	5	14	
111	V	1445	1500	47.08	4	S	14	
51	EO	1030	1045	47.44	2	4	16	
52		1045	1100	51.79	2	3	16	
53		1100	1115	48.57	3	4	16	
60		1120	1135	48.54	2	3	160	
59		1135	1150	54.64	3	4	16	
28		1150			3	4	16	
64		1205	1220	62.44	3	4	15	
65		1225	1240	60.18	3	4	15	
66		1245	-	64.32	3	4	15	
73		1300	1315	67.84	3	4	15	
		1315	7330		3	4	15	
72			1345		3	4	14	
78	V	14,0	1415		3	4	15	

Attach Calibration Sheet

Attach site map showing grid ID

Page / of 3

Personnel: LEIS LUNDE ENDIR DE LING

MIS MELESKASOR HY/ENGLOSENSON

Cal. Gas Exp Date: //-/0-29

Date 4-2-24 Instrument Used LUA 1010 Grid Spacing 25

Temperature. >D Precip: O Upwind BG: Z.Z Downwind BG: Z.Z

GRID ID	STAFF	START	STOP	TOC	WIN	ID INFORM	NOITAN	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKKS
79		1415	1430	64.74	3	+	14	
80		1430	1445	58.31	4	5	14	
14		1510	1525	74.88	4	6	14	
29	4	1530	1545	69.79	+	b	14	
2/	ME	1030	1045	17.1/	2	4	16	
22		1045	1/00	17.22	2	3	16	
23		1110	1115	16.80	3	4	16"	
28		1115	1130	14.61	2	3	16	
27		1170	1145	13.28	3	4	16	
26		1145	1200	14.41	3	4	16	
32		1200	1215	10.52	2	4	15	
33		1215	1230	12-21	3	5	15	
34		1230	1245	17.09	3	4	15	
41		1245	1300	17.17	3	4	15	
40		1300	1315	15.72	3	4	15	
39		1315	1330	20.37	3	4	15	
45		1330	1345	25.15	3	4	14	
46		1345	1400	27.41		4	15	
47		1400	1415	12.80	3	4	15	
3~		1435	1450	22.16	4		14	
42	V	1450	1505	21.61	4	5	14	
1	+A	1030	1045	43.38	2	4	16	
2		1045	1100	48.52	2	3	ال	
3		1100	1115	68.23	3	4	16	
6		1115	1130	72.89	2	3	طا	
5		1130	1145	58-72	3	4	16	
4		1187	1202	70.12	3	4	16	
8		1202	1217	112	2	4	15	
5		1719	1234	85.32	3	5	15	
10	V	1235	1210	127	3	4	15	

Attach Calibration Sheet

Attach site map showing grid ID

Page $\frac{2}{3}$ of $\frac{3}{3}$

Personnel:	MIGHEL	estreb 1	EDDIR DE IN Tylen andEN	isev		
	MISHEL	MENOZ	. //		Cal_Gas E	xo Date: //-10-2
Date _	4-2-24	_Instrument Use	tualow	Grid	Spacing =	25'
Temper	ature: 70	Precipi 0	Upwind BG:	2.8	Downwii	nd BG: Z.Z

GRID ID	STAFF	START	STOP	тос	MIV	ID INFORM	NOITAN	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KENAKKS
13	1	1250	1305	81.32	3	5	14	
12	1-16	1305	1320		3	4	15	
1)		1320	1335	48.29	3	4	15	
17		1335	1350	78.32	3	4	15	
18		1350	1425	60.55	3	4	15	
19		1410	1435	45.80	3	4	14	
54		1501	1516	21.66	4	5	14.	
74	1	1516	1531	27.45	4	5	10	
	1							
					. —		4-	
					1			
	4							

Attach Calibration Sheet Attach site map showing grid ID

Page 3 of 3

							Cal. Gas	Exp. Date:	
ate: 4	-4-24	Instrur	nent Used	1:		Gri	d Spacing:		
emperat	ure:	Pred	cip:	Up	wind BG:		Downv	vind BG:	
					WIN	ID INFORM	MATION		
GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS	
135					SPEED	SPEED	16 POINT	steep-Veb	
178				1 - 0.1				Jane Jane	
169								Q.	
211				0 ==== 1				Active-free &	
211								1	
213 215 216									
215									
216									
217									
217 218									
219									
220									
221									
222									
227									
224									
226									
227									
229									
229									
230									
231									
232									
277						f			
234									
235						V			
236									
237								7	

Attach Calibration Sheet Attach site map showing grid ID

Page 1 of 2

							Cal. Gas Ex	
ate: <u>4</u> -	4-24	_ Instrun	nent Used	l:		Gri	d Spacing; _	
emperat	ture:	Downwin	Downwind BG:					
GRID ID	STAFF	START	STOP	тос	WIN	ND INFORM	MATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	TEL II III.
234								
-								
			-					

Attach Calibration Sheet Attach site map showing grid ID

Page Z of Z

Personnel LEISHWADE BODIE OF 1. R9

MISWOLDS HEADT TY/EN ANDERS.~

Cal Gas Exp Date 11-10-29

Date 4-3-24 Instrument Used LUAIIO Grid Spacing 25'

Temperature: 4/ Precip: 0 Upwind BG: 2-8 Downwind BG: 2-2

GRID ID	STAFF START	TOC	WIN	ID INFORM	REMARKS			
	INITIALS				AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLIIAKKS
36	LW	0645	6700	125	4	· ·	12	
48	1	6700	07/0	97.13	4	5	12	
55		0110	0720	70-27	5	Ь	13	
61		0720	סנרס	50-44	5	6	13	
67		6733	0745	45.62	4	5	13	
68	7-14	6745	0800	78.21	3	4	14	
75		0800	0815	135		4	12	
82		0811	.830	90.13	3	5	13	
81		08)0	0845	65.47	4	55	14	
88		0841	6810	40-22	5	6	14	
95		0910	0925	51.58	5	7	13	
102		0925	0940	68.37	4	5	14	
109		0940	0955	40-29	3	5	13	
117		0955	1010	35.77	3	5	12	
125		1010	1,25	28.32	3	4	12	
133		1825	1040	50.10	3	5	12	
140		1200	1215	45.80	5	6	14	
147		1215	1230	29.64	5	7	13	
153		1300	1315	70.28	7	9	14	
154		1315	1370	48.23	5	7	14	
16/		1330	1340	145	6	7	14	
160	4	1340	1350	70.35	ý	6	14	
7	ME	0630	0645	105	5	ما	13	
15		0645	0700	101	4	6	12	
16		0000	2110	87.53	5	ط	13	
20		0715	0730	81.80	5	6	13	
25		0530	6745	98.30	4	5	1.3	
24		0748	0800	78.90	3	4	14	
30		6800	0815	103	3	4	12	
31	V	0815	0830	100	4	5	13	

Attach Calibration Sheet

Attach site map showing grid ID

Page 1 of 4

Personnel	MIGHER E	stron	tylen expen			
	JERRY M	LABZ	.1		Cal Gas Exp Da	te: //-10-24
Date	4-3-24	_ Instrument U	sed tualous	Grid	Spacing _ Z8	. /
Tempera	ture 50	Precip: 4	Upwind BG	3: Z.8	Downwind BG:	2-2

GRID ID STAFF	START STOP	тос	WIND INFORMATIO		NOITAN	REMARKS		
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKKS
38		0830	0845	88.30	4	5	14	
37		0845	0930	83.23	5	6	14	
43		0900	0815	91.28	5	7	13	
44		0915	0930	94.43	5	7	13	
50		0930	0965	45.22	4	5	13	
49		0845	1000	38.21	3	3	12	
56		1000	1015	42.61	4	5	12	
57		1015	1030	36.13	4	5	12	
63		1070	1845	34.28	4	S	12	
6 Z		1045	1/00	44.11	5	ما	13	
177		1220	1235	45.61	5	7	13	
183		1240	1300	37.53		9	13	
184		1300	1315	31.28	4	9	14	
189	1	1320	1335	32.13	5	7	14	
112	+A	0630	0645	50.74	5	Ь	13	
113		0645	0700	42.88	4	6	12	
114		0700	0715	56.25	5	6	13	
115		0711	0730	53.91	5	6	13	
123		0770	0745	33.74	4	5	13	
122		0745	0800	53.32	3	4	14	
121	1-1/0-1	0800	0815	37.49	3	4	12	
120		0815	0830	29.12	4	5	13	
128		0830	0845	27.78	4	5	14	
129		2842	0900	47.61	5	صا	14	
130		0900	0915	69.84	5	7	13	
131		0920	0975	71.58	5	1	13	
132		0532	0950	58.19	3	4	13	
124		0950	1005	43.22	3	4	12	
116		1005	1020	31.53	3	4	12	
198	V	1020	1035	38-88	4	5	12	

Attach Calibration Sheet

Attach site map showing grid ID

Page 2 of 4

Personnel: Leisland Bank of long

Might Esther Hylen Andrews Cal Gas Exp Date 11-10-29

Date 4-3-29 Instrument Used: +VAILOR Grid Spacing Zs'

Temperature: 57 Precip: D Upwind BG: 2.8 Downwind BG: Z.2

GRID ID	STAFF	START	STOP	TOC	MIN	ID INFORM	NOITAN	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	VENDINO.
101		1035	1050	48.62	4	5	12	
94		1050	1125	53.28	5	6	13	
165	///	1205	1220	40.82	5	1	13	
166		1220	1225	72.90	b	Q	13	
167		1225	1250	54.66	6	6	13	
168	V	1250	1305	32.12	6	9	13	
136	JM	0630	0645	34.09	5	6	13	
137	31.	0645	6700	44.17	4	6	12	
138		0700	0715	37.50	5	6	13	
139		6715	0730	30.57	5	6	13	
146		0730	0745	46.50	4	5	13	
145		0745	0800	55.07	3	4	14	
144		0800	0815	49.80	3	4	12	
143		0815	0830	35.0)	4	5	13	
150		0830	0845	10.17	4	5	14	
151		0885	0900	9.03	5	6	14	
152		0200	0915	10.38	5	1	13	
158		0915	0930	8.40	5	1	13	
157		0970	0945	10.05	4	5	13	
156		0945	1610	9.80	3	3	11	
155		1603	1015	9.11	4	5	12	
162		1015	1130	60.47	4	5	12	
163		1030	1045	65.00	4	5	12	
164		1045	1/00	70.01	5	b	13	
159		1215	1230	80.0>	5	1	13	
171		1270	1245	77.06	5	7	13	
182		1250	1305	64.77	Ь	9	13	
193	4	1310	1320	66.09	6	9	14	
69	さり	0670	0645	48.64	5	Ь	13	
70	4	0645	0700	54.49	4	Ь	12	

Attach Calibration Sheet

Attach site map showing grid ID

Page 3 of 4

Personnel: LEIShWADK ENDICOVING

MISURE ESTRUM TYPE ANDERSON

Cal Gas Exp Date: 11-10-14

Date: 4-3-24 Instrument Used. WAIOCO Grid Spacing ZS'

Temperature: 62 Precip: 0 Upwind BG: 28 Downwind BG: 22

GRID ID	STAFF	F START STOP TOC	TOC	WIND INFORMATION			REMARKS	
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKKS
77		6700	0715	56.82	5	Ь	13	
76		6715	6730	40.34	5	6	13	
83		0730	6745	33.12	4	5	13	
89		0745	0800	22.16	3	4	14	
96		0805	0850	55.81	3	5	13	
103		0820	2630	39.94	4	5	13	
110		0875		47.80	5	Ь	14"	
118		0850	0905	51.57	5	6	14	
119		0910	0925	81.06	5	7	13	
27		0925	0540	79.70	4	5	14	
26		0840	0905	51.69	3	4	13	
34		1000	1015	65.92	4	5	12	
4/		1815	1070	53.02	4	5	12	
142		1073	1045	88.70	4	5	12	
49		1045	1100	68.96	5	Ь	13	
148		1100	1115	75.57	5	6	13	
172		1210	1225	77.14	5	7	13	
73		1225	1240	21.86	5	1	13	
174		1300	1315	69.61	b	9	14	
175	1	1315	1330	24.52	5	1	14	

Attach Calibration Sheet Attach site map showing grid ID

Page 4 of 4

Personnel: Luish	WADE WALLOW	tylonamonson	/	
John	y hunor		Cal. Gas	Exp Date 11-10-29
Date 4-4-2	7 Instrument (ised: LUALOUD	Grid Spacing	211
Temperature:	40 Precip:	Upwind BG;	2-8 Down	vind BG: Z-Z

GRID ID	STAFF START STOP I	TOC	TOC WIND INFORMATION			REMARKS		
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	RLMARKS
179	LW	0630	0645	50-17	5	10	11	
185		0645	0700	107	3	5	10	
190		0).0	0715	82.10	4	8	10	
186		0715	6730	74.33	4	1	10	
180		6730	0745	60.12	5	10	10	
176	V	0745	0800	42-18	1	10	12	
181	ME	0630	0645	65.31	5	10	H	
187		0645	0700	50.36	3	5	16	
70		0)00	0745	38.2/	4	8	10	
88		0715	9730	75.60	4	7	10	
92	V	0730	0745	134	5	10	10	
194	JM	0630	0645	20.77	5	ID	11	
195		0645	0700	36.45	3	5	10	
196		0700	0715	29.34	4	8	10	
197		0)15	0730	36,55	4	7	10	
98		0773	0745	24.80	5	10	10	
199	ψ	0745	0800	57-35	7	[]	12	
200	ED	0(70	0645	85.77	5	[0	11	
201		0645	OUGO	45.38	3	5	lo	
202		6700	2160	34.58	4	8	10	
203		0715	0730	28.67	+ 4	1	lo	
204		0730	0745	39.80	5	10	10	
205	Y	0745	0800	41.67	1	10	12	
206	+A	0630	0645	19.54	5	lo	11	
207		0645	0710	30.27	3	5	10	
208		0700	2150	28.91	4	8	10	
209		0715	0730	41.60	4	1	10	
210	1	0775	0745	30.11	5	10	10	
214	V	0745	0800	47.68	7	10	12	

Attach Calibration Sheet

Attach site map showing grid ID

Page ______ of _____

QUARTER 2ND

	ALTAMONT (S0430	05)
IME DATE	IME LOCATION ID	IME CONCENTRATIONS (PPM
4-9-24	ALHC0825	28.30
4-2-24	ALLC0695	82.18
4-9-24	ALLC0700	48.15
4-2-24	ALLC0703	74.26
	ALLC0709	80.77
	ALLC0734	50.38
	ALLC0736	72.06
A	ALLC0737	65.12
4-9-24	ALLC0738	31.20
1	ALLC0739	520
	ALLC0740	12.18
	ALLC0743	78.32
	ALLC0744	28.32
	ALLC0745	11.66
	ALLC0746	
	ALLC0747	21.24 35.10
	ALLC0748	41.22
	ALLC0749	60.51
	ALLC0755	13.07
	ALLC0775	700
	ALLC0776	48,13
	ALLC0777	31.18
	ALLC0778	31.66
	ALLC0779	15.27
	ALLC0780	18.25
	ALLC0781	39.72
	ALLC0783	14.51
	ALLC0784	20.4/
	ALLC0785	70.66
	ALLC0786	45.10
	ALLC0787	15.54
	ALLC0788	17.22
	ALLC0789	21.48
	ALLC0790	18.50
	ALLC0791	26.22
	ALLC0792	17.12
4	ALLC0793	10.21

CU24

QUARTER: 201

	ALTAMONT (S0430	05)
IME DATE	IME LOCATION ID	(ME CONCENTRATIONS (PPM
4-9-24	ALLC0794	40.77
	ALLC0796	50.75
	ALLC0797	30.80
	ALLC0798	50.45
	ALLC0800	34.20
	ALLCO801	40.60
	ALLC0802	30.06
	ALLC0803	12.50
	ALLC0804	15.75
	ALLC0805	26.30
	ALLC0806	14.52
	ALLC0807	28.30
	ALLC0808	20.24
	ALLCO811	30.75
	ALLCO812	26.45
	ALLCO813	47.58
	ALLCO814	29.70
	ALLCO815	19.70
	ALLCO816	29.22
	ALLCO817	3/.20
	ALLCO819	46.15
٧	ALLC0820	21.47
4-2-24	ALLC0821	55.72
V	ALLC0822	26.21
4-9-24	ALLC0826	14.70
4-2-24	ALLCO827	78.06
	ALLC0828	115
V	ALLC0830	31.25
1-9-24	ALLCO831	15.90
	ALLCO832	25.10
	ALLC0833	40.66
	ALLC0834	18-71
	ALLC0835	26.15
	ALLC0836	27.04
	ALLCO837	24.15
	ALLC0838	34,50
V	ALLCO839	24.60

(IA) A 15 Hotel (ST0938) Personal policy framework in the consequence of the Co.

A framework

YEAR 2024
QUARTER 200

	ALTAMONT (S043)	05)
IME DATE	IME LOCATION ID	ME CONCENTRATIONS (PPM)
4-9-24	ALLC0840	70.13
4-2-24	ALLC0841	64.17
1	ALLC0842	59.11
	ALLC0843	21.26
	ALLC0844	32.17
	ALLC0845	41.20
	ALLC0846	70.24
	ALLC0847	68.27
	ALLC0848	113
	ALLC0849	50.07
	ALT20001	18.16
	ALT20002	24.22
	ALT20003	34.76
	ALT20004	29.14
	ALT20005	40.77
	ALT20006	28.11
	ALT20007	51.35
	ALT20008	16.24
	ALT20009	29.32
	ALT20010	16.55
	ALT20011	39.4/
	ALT20012	21.26
	ALT20013	35.11
	ALT20014	50.77
	ALT20015	62-34
	ALT20016	48.30
	ALT20017	32.12
	ALT20018	24.36
	ALT20019	31.57
	ALT20020	40.65
	ALT20021	68.47
	ALT20022	32.18
	ALT20023	29.60
	ALT20024	37.8/
	ALT20025	45.26
	ALT20026	28.44
	ALT20027	24.18

YEAR: 2024 QUARTER: 2019

4-2-24	ALT20028	17.34
4	ALT20029	40.16
4-9-24	ALTA0003	38.50
4-2-24	ALTA0054	37.60
	ALTA0056	90.12
V	ALTA0059	31.55
4-9-24	ALTA0087	39.21
42-24	ALTA0108	10.16
4-9-24	ALTA0201	GOVE
	ALTA0472	80.24
+	ALTAMONT (S0430	
IME DATE	IME LOCATION ID	IME CONCENTRATIONS (PPM
4-2-24	ALTA0483	34.22
4-9-24	ALTA0488	42.13
4-2-24	ALTA0491	31.15
	ALTA0508	75.22
	ALTA0517	124
V	ALTA0518	108
4-9-24	ALTA0529	111
4-2-24	ALTA0541	39.27
	ALTA0545	52.11
V	ALTA0551	77.30
4-9-24	ALTA0578	105
+	ALTA0579	90.12
4-2-24	ALTA0589	32.40
4-9-24	ALTA0611	57.15
*	ALTA0612	40.18
4-2-24	ALTA0624	48-13
V	ALTA0629	40.18
4-9-24	ALTA0639	51.10
1	ALTA0650	39.18
	ALTA0651	77.20
	ALTA0652	45.30
	ALTA0654	41.80
	ALTA0664	39.12
	ALTA0668	27.14
	ALTA0669	48130
+	ALTA0678	24.22
4-2-24	ALTA0682	51.77

VEAR 2024
QUARTER: 2007

4-9-24	ALTA0712	28,60
	ALTA0713	5,000
	ALTA0714	38.06
	ALTA0751	38.1/
	ALTA0753	40.22
	ALTA0755	
	ALTA0756	13.07
4	ALTA0759	31.18
	ALTAMONT (S0430	
IME DATE	IME LOCATION ID	IME CONCENTRATIONS (PPM
4-9-24	ALTA0760	26.07
	ALTA0761	70.32
	ALTA0762	40.15
A	ALTA0764	35.10
4-2-24	ALTA0765	18.26
4-9-24	ALTA0766	24.50
1	ALTA0767	15.05
	ALTA0769	31.15
	ALTA0770	28.14
	ALTA0771	70.32
	ALTA0772	1,000
	ALTA0733	106
	ALTA0850	21.37
	ALTA0851	19.20
	ALTA0852	17.60
	ALTA0853	24.91
	ALTA0854	32.10
	ALTA0855	37.20
1/2	ALTA0856	41.77
	ALTA0857	.30.70
	ALTA0858	24.66
	ALTA0859	35.20
	ALTA0860	41.10
	ALTA0861	50.17
	ALT0862A	39.20
	ALTA0863	25.2/
	ALTA0864	42.15
	ALTA0865	39.85
7	ALTA0866	31.22

74 - From 1990) fine expressable or operation of a property

QUARTER: 2024

4-9-24	ALTA0867	107
	ALTA0868	34.52
	ALTA0869	40.1/
	ALTA0870	51.36
	ALTA0872	70.14
	ALTA0873	70.14
	ALTA0875	40.16
	ALTA0876	34,50
1	ALTAMONT (S0430	
IME DATE	IME LOCATION ID	IME CONCENTRATIONS (PPM
49-24	ALTA0877	700
4-2-24	ALTA0878	80.75
1	ALTA0879	56.13
	ALTAFP02	70
	ALTAFP03	
	ALTAFP04	87
	ALTAFP05	27
	ALTAFP06	118
	ALTAFP07	56
	ALTAFP08	94
	ALTAFP09	121
	ALTAFP10	83
	ALTAFP11	70
	ALTAFP12	75
	ALTAFP13	108
	ALTAFP14	92
	ALTAFP15	180
	ALTAFP16	77
	ALTAFP17	125
	ALTAFP18	92
	ALTAFP19	150
	ALTAFP20	142
	ALTAFP21	170
	ALTAFP22	25
	ALTAFP23	70
	ALTAFP24	105
	ALTAFP25	75
,	ALTAFP26	65
V	ALTAFP27	74

VEAR 2024 QUARTER 2010

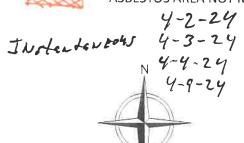
4-2-24	ALTAFP28	67
	ALTAFP29	41
	ALTAFP30	82
	ALTAFP31	106
	ALTAFP32	98
	ALTAFP33	86
	ALTAFP34	113
	ALTAFP35	175
	ALTAFP36	130
	ALTAFP37	88
+	ALTAFP38	64
	ALTAMONT (S0430	
IME DATE	IME LOCATION ID	IME CONCENTRATIONS (PPM
4-2-24	ALTAFP39	99
	ALTAFP40	167
	ALTAFP41	65
	ALTAFP42	84
	ALTAFP43	75
	ALTAFP44	111
	ALTAFP45	108
	ALTAFP46	114
	ALTAFP47	92
	ALTAFP48	8 b
	ALTAFP49	75
	ALTAFP50	94
	ALTAFP51	82
	ALTAFP52	110
	ALTAFP53	54
	ALTAFP54	70
	ALTAFP55	92
	ALTAFP56	77
	ALTAFP60	45
	ALTAFP61	87
	ALTAFP62	105
	ALTAFP63	64
	ALTAFP64	94
	ALTAFP65	59
	ALTAFP66	78
4	ALTAFP67	66

131 Commence (1904) Departure of Scientific Commence (1907) and Commence (1907)

QUARTER 2024

4-2-24	ALTAFP68	77
	ALTAFP69	108
	ALTAFP70	94
	ALTAFP71	54
	ALTAFP72	78
	ALTAFP73	69
	ALTAFP74	110
	ALTAFP75	55 84
	ALTAFP76	84
	ALTAFP77	79
	ALTAFP78	116
	ALTAFP79	24
	ALTAMONT (5043)	
IME DATE	IME LOCATION ID	IME CONCENTRATIONS (PPM
4-2-24	ALTAFP80	115
	ALTAFP81	127
	ALTAFP82	84
	ALTAFP83	115
	ALTAFP84	88
	ALTAFP85	27
	ALTAFP86	
	ALTAFP87	180
Y	ALTAFP88	125
4-9-24	ALTOTC15	34,22
4-9-24	ALUC0824	600
	DC683	6 = ~ &
4-9-24	VD2	30.28
4-9-24	VZMA	24.06
	SVF1	BANK GINE
4-9-24	LS2	32.80
	LS5	
	INJWELL104	Gort
4-2-24	ALLCSVEI	78-65
4-2-24	WEU 880	200 PM
4-9-21	a54 686	25,12
	1,700 885	031.4
		,

LEGEND


EXISTING 10' CONTOUR EXISTING LFG EXTRACTION WELL

EXISTING CONDENSATE INJECTION WELL

EXISTING LOCAL CONTROL WELL

EXISTING REMOTE WELLHEAD 105 SEM GRID BLOCK

= ASBESTOS AREA NOT MONITORED

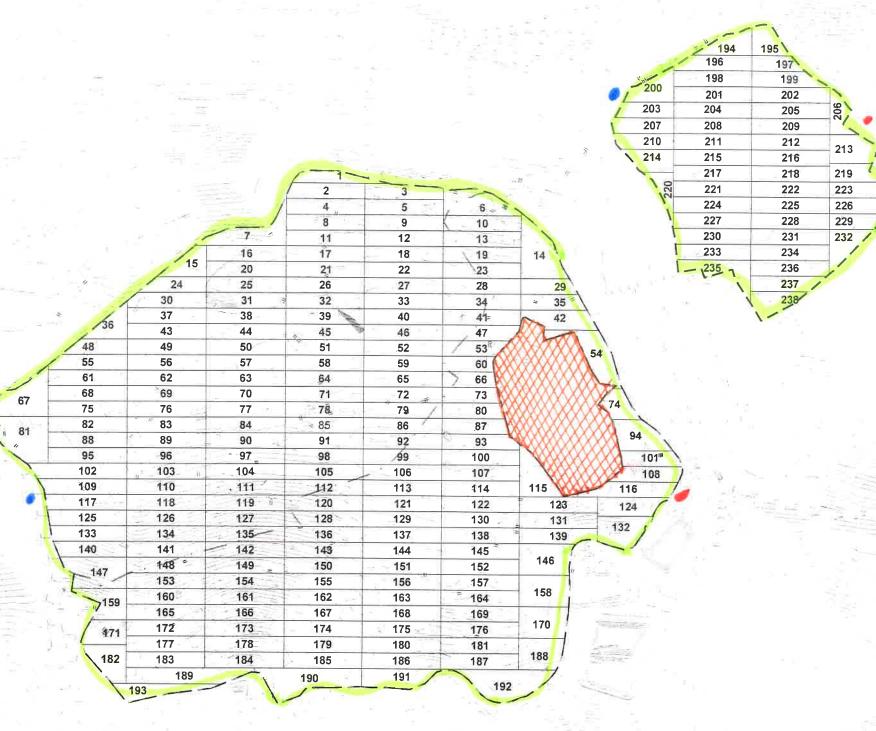
#500+PP1

NOTES:

- TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY MILLER CREEK AERIAL MAPPING INC. DATE OF PHOTOGRAPHY: DECEMBER 13, 2022 DATUM: HORIZONTAL ZONE 3, NAD27, VERTICAL NGVD29
- SUPPLEMENTAL 2014 GCCS IMPROVEMENTS AS—BUILT PIPING PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA PROVIDED BY EMAIL FROM F3 & ASSOCIATES. DATE OF SURVEY: FEBRUARY 17, 2015.
- 3. SUPPLEMENTAL 2015 GCCS IMPROVEMENTS AS—BUILT PIPING PER FIELD SURVEYS PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: DECEMBER 18, 2015 AND FEBRUARY 25, 2016 ADDITIONAL FIELD MARKUPS PROVIDED BY WM DATED MAY 17, 2016.
- 4 THE 2016 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE OF SURVEY: DECEMBER 22, 2016.
- THE 2017 GCCS IMPROVEMENTS AS—BUILT WELL LOCATIONS PER FIELD SURVEYS PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE SURVEYS RECEIVED: APRIL 17, 2018.
- 6 THE 2018 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEY: JUNE 26 AND JULY 30, 2018.
- 7. ASBESTOS AREA BOUNDARY LOCATION PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE OF SURVEY: APRIL 7, 2016,
- 8. THE 2019 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, ING. OF BENICA, CA. DATE OF SURVEYS: JANUARY 31 AND FEBRUARY 12, 2020.
- 9. THE 2020 GCCS IMPROVEMENTS AS—BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: JANUARY 7 AND 30, FEBRUARY 12, APRIL 22 AND 30, AND JUNE 19, 2020
- 10 SUPPLEMENTAL 2020 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEY: JULY 31, 2020.
- 11. FORCE MAIN PIPING LOCATIONS PER MARKUPS PROVIDED BY WM. DATE OF MARKUPS: APRIL 7, APRIL 9, AND MAY 7, 2020,
- 12 THE 2021 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: NOVEMBER 23, 2021, DECEMBER 9, 2021, DECEMBER 13, 2021, AND MARCH 8, 2022.
- 13, THE 2022 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: JUNE 8, 2023

FINAL RECORD DRAWINGS

REV DATE DESCRIPTION	EW.	N BY DES BY	CHK BY	APP BY



ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY ALAMEDA COUNTY, CALIFORNIA

2023 GCCS IMPROVEMENTS **SEM GRID MAP**

SHEET NO.

PROJECT NO. 230016

LEGEND

EXISTING 10' CONTOUR

EXISTING LFG EXTRACTION WELL

EXISTING CONDENSATE INJECTION WELL

EXISTING LOCAL CONTROL WELL EXISTING REMOTE WELLHEAD

105

SEM GRID BLOCK

= ASBESTOS AREA NOT MONITORED

zno qualter usps

perineten sweep

* DOWNWIN 10

SCALE IN FEET

NOTES:

- 1 TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY MILLER CREEK AERIAL MAPPING INC. DATE OF PHOTOGRAPHY: DECEMBER 13, 2022 DATUM: HORIZONTAL - ZONE 3, NAD27, VERTICAL - NGVD29
- SUPPLEMENTAL 2014 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA PROVIDED BY EMAIL FROM F3 & ASSOCIATES, DATE OF SURVEY: FEBRUARY 17, 2015.
- 3. SUPPLEMENTAL 2015 GCCS IMPROVEMENTS AS—BUILT PIPING PER FIELD SURVEYS PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: DECEMBER 18, 2015 AND FEBRUARY 25, 2016, ADDITIONAL FIELD MARKUPS PROVIDED BY WM DATED MAY 17, 2016.
- 4 THE 2016 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA, DATE OF SURVEY: DECEMBER 22, 2016.
- 5. THE 2017 GCCS IMPROVEMENTS AS-BUILT WELL LOCATIONS PER FIELD SURVEYS PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE SURVEYS RECEIVED: APRIL 17, 2018.
- 6 THE 2018 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEY: JUNE 26 AND JULY 30, 2018.
- ASBESTOS AREA BOUNDARY LOCATION PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE OF SURVEY: APRIL 7, 2016.
- THE 2019 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: JANUARY 31 AND FEBRUARY 12, 2020.
- 9. THE 2020 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: JANUARY 7 AND 30, FEBRUARY 12, APRIL 22 AND 30, AND JUNE 19, 2020.
- 10. SUPPLEMENTAL 2020 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEY: JULY 31, 2020.
- 11, FORCE MAIN PIPING LOCATIONS PER MARKUPS PROVIDED BY WM. DATE OF MARKUPS: APRIL 7, APRIL 9, AND MAY 7, 2020,
- 12. THE 2021 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: NOVEMBER 23, 2021, DECEMBER 9, 2021, DECEMBER 13, 2021, AND MARCH 8, 2022.
- 13, THE 2022 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC., OF BENICA, CA. DATE OF SURVEYS: JUNE 8, 2023

FINAL RECORD DRAWINGS

REV	DATE	DESCR	HETON:	DWC Ex.	CES B1	CHE BY	APF EY

ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY ALAMEDA COUNTY, CALIFORNIA

> 2023 GCCS IMPROVEMENTS SEM GRID MAP

SHEET NO

PROJECT NO 230018

Attachment B

Integrated Surface Emission Monitoring Event Records

Table B.1 Integrated Landfill Surface Monitoring Exceedances and Monitoring Log

2024 QUARTER: 2

INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: NA

LANDFILL NAME: Altamont Landfill and Resource Recovery Facility

Initial	Monitoring	Event	1st Re-m	on Event -		
Exceedance	nce Monitoring Field		Monitoring No Exced. N		No Exced.	
Grid ID No.	Date	Reading	Date	<25 ppm	>25 ppm	Comments
No exceedances						

Date 4-8-24 Instrument Used fullor Grands Downwind BG. 2.2

GRID	STAFF	START	STOP	тэс	MI	ND INFOR	REMARKS	
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 15 POINT	KEN IANSO
7	LW	0935	0955	20.17	5	7	4	
15		0855	1015	18.45	5	b	4	
16		1015	1040	12.71	6	8	5	
20		1040	1/00	14.58	6	8	5	
25		1100	1120	10.61	5	6	ا ا	
24		1120	1135	18.52	5	6	6	
30		1135	1155	16.40	4	6	5	
3/		1185	1210	10.37	4	5	5	
38		1210	1230	9.56	4	5	4	
37		1230	1250	14.75	4	4	4	
43		1250	1310	16.92	5	7	5	
44		1310	1330	11.24	5	6	5	
50		1330	1355	8.62	6	1	4	
49		1400	1425	13.21	4	5	4	
51	V	1425	1450	9.68	5	6	4	
70	ME	0930	0955	8,10	5	1	4	
69		0955	1020	12.87	5	7	5	
76		1020	1045	10.21	5	0	5	
77		1065	2)10	8.52	5	1	6	
78		1110	1135	7.38	5	b	6	
79		1175	12001	7.41	5	7	6	
80		1200	1225	8.20	5	6	4	
8>		1225	1250	7,60	4	5	4	
86		1210	1315	6.55	4	5	5	
85		1315	1340	6.92	5	7	5	
84		1340	1401	7.06	5	6	4	
83		1403	1470	13.16	4	5	4	
89		1470	1455	11.55	5	6	4	
20	170	1485	1520	7.52	5	b	4	
91	4	1520	1545	7,06	4	5	4	

Attach Calibration Sheet

Attach site map showing grid ID

Page / of 3

Person e	Mighel STARIOR	ty for mornin			
	JERRY MENOZ		Cal Gas	Eko Date: //	10-24
Drafe	l-8-24 Instrument Use	tVAION 3	nd Spating .	251	
Tampara	atura 65 Precio D	Howlad RG 7-8	C Downw	2133 7	2

GRID	STAFF	START	STOP	TOC	WI	ND INFOR	REMARKS	
D	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	N20146 N3
52	Jm	0930	0955	7.81	5	7	4	
53		0911	1020	16.41	5	7	5	
60		1020	1085	9.77	5	6	5	
59		1045	1110	8.27	5	7	4	
59		1110	1135	7.26	5	6	6	
		1175	1700	6.55	5	1	10	
56		1700	1225	10.18	5	Ь	4	
62		1221	1250	11.47		5	4	
63		1250	1320	8.12	4	5		
64		1320	1345	7-43	5	7 5 5	5	
61		1345	1410	7,10	4	5	5	
66		1410	1435	6.40	+	5	5	
73		1485	1520	6-10	5	b	4	
>2		1520	1545	6-38		5	4	
7/	4	1545	1610	7.04	4	6	4	
1	ED	0930	0955	12.15	5	7	4	
2		0955	1820	10.77	5	1	5	
3		1020	1045	14.60	5	6	5	
6		1045	1110	19.42	5	17	9	
5		1110	1135	14.38	5	6	6	
4		1130	1200	16.2-6	5	1	6	
8		1700	1225	8.51	5	b	4	
9		1225	1250	12-39	4	5	4	
1 D		1250	1315	20-22	4	5	5	
13		1320	1345	1658	5	7	4	
12		1345	1410	10.18	4	5	5	
11		1410	1425	8-5-6	4	5	4	
17		1470		6.47	5	6	4	
18		1500		10.90	5	ь		
15	1	1525	1550	13,71	4	5	4	

Attach Calibration Sheet

Attach site map showing grid ID

Page 2 of 3

Temperatural 70 Precipi 0 Upwind B3: 2-8 Downwind BG: 2.2

GRID	STAFF	START	STOP	TOC	WIT	ND IMFOR	REMARKS	
[D	INITIALS	TIME	TIME	эрм	AVG SPEED	MAX, SPEED	DIRECTION 16 POINT	KUNAKAS
21	+A	0930	0911	7.1/	5	7	4	
22		6955	1020	7.45	5	1	5	
23		1020	104	9.60	5	6	5	
28		1045	1110	13.22	5	7	6	
マフ		1110	1125	10-71	5	6	6	
26		11.35	1200	9,43	5	7		
32		1700	1225	7.50	5	6	4	
33		1225	1250	7.12	4	6	4	
34		1250	1340	11.39	5			
4/		1315	1340	9.45	554555	7	5	
40		1340	1405	7.80	5	6	4	
39		1415	1470	8.32	4	5	4	
45		1430	1455	7,13	5	ь	4	
46		1415	1520	8.04	5	6	4	
4>	V	1520	1545	9.57	4	5	4	
		-						
			1					

Attach Calibration Sheet
Attach site map showing grid ID

Page 3 of 3

Parsonnier	My boles Menor	tylenaubensur	,		
	sno. enoling		Call Gas E	kp Date, 11-10-	24
Date	4-9-24 Instrument Used	+VA1000	Grid Sparing (25'	
Tempera	ature 50 Pregio O	Upwind BG	2.8 Down	nd 8G: Z.8	

GRID	STAFF	START	STOP	TOC	WI)	ID INFOR	REMARKS	
[D	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX SPEED	DIRECTION 16 POINT	1741101110
92	ME	0630	0655	8.70	3	4	2	
92		0655	0720	6-51	3	4	2	
100		0720	0745	7.52	3	4	1	
99		0745	0810	9.41	2	4	2	
98		0810	0835	8.17	3	5	2	
97		0835	0910	7.76	3	4	4	
96		0900	0915	10-30	4	4	6	
163		0525	0955	8-41	4	5	6	
109		0915	1020	6.86	3	5	6	
105		1620	1045	7.44	4	5	4	
106		1645	1110	6.58	4	6	6	
107		1200	1225	6.52	3	5	4	
114		1725	1250	7.18	3	5	5	
1/3		1250	1315	8.14	3	4	4	
1/2	1	1315	1340	7-52	2	3	4	
138	200	0630	0655	11-77	3	4	2	
139		0655	0720	8,50	3	4	2	
146		0720	6745	10.66	3	4		
145		0745	0810	12-71	2	4	2	
144		0860	0825	9,30	3	5	2	
143		0875	0800	8.64	3	4	4	
142		0500	0925	1290	4	6	6	
141		0525	0550	10.46	4	5	6	
148		0550	1015	9.60	3	5	6	
149		1615	1040	11.47	4	5	6	
150		1048	1105	13.86	4	4	5	
151		1105	1130	10.35	5	6	4	
152		1130	1185	17-12	2	3	5	
157		1300	1325		3	5		
158	V	1321	1310	11.64	4	6	4	

Attach Calibration Sheet Attach site map showing grid ID

Page 1 of 2

TERRY MUNOS

EDD. C DEINS

Cai Gas Exo Date. 11-10-24

Date: 4-9-24 Instrument Used 4VAIDOD Ging Sparing 25

Temperature 68 Predipt 0 Upwind BG 2.8 Downwind BG: 2.2

GRID	STAFF	START	STOP	TOC	WIN	ND INFOR	REMARKS	
[D	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 15 POINT	76776773
111	EO	0870	0655	7.49	3	4	2	
110		0615	0720	6.96	3	4	2	
118		0720	0745	6.14	3	4		
119		0745	0819	6.24	2	4	2	
120		0810	0875	7.11	3	5	2	
121		0875	0900	8,60	3	4	4	
122		0500	091	7.44	3 4	4	4	
130		0225	0950	8.4	4	5	4	
129		0950	1615	738	3	5	6	
128		1015	1040	9-12	4	5	4	
127		1040	1105	6.45	4	6	5	
126		1270	1205	2.15	3	5	5	
134		1211	1320	8.33	3	5	4	
136		1320	1345	6.41	2	3	4	
137	Y	1345	1410	8.16	2	3	4	
14	+A	0630	0633	20.77	3	4	2	
25		0811	0720	9,60	3	4	2	
35		0720	orw	11.14	2	4	2	
42		0745	0810	9.41	2	4	2	
54		0816	2690	7,60	3	5	2	
74		082	05001	8.32	3	4	2	
24		0500	0925	6.55	4	6	b	
15/		0820	0850	10-31	4	5	6	
108		0950	1015	2.16	3	5	6	
116		1015	1040	8.41	4	5	b	
115		1040	UN	7.28	4	6	5	
123		1200	1270	11.55	3	5	þ	
124		1230	1265	12-62	3	5	5	
132		1255	1320	2.88	3	5	b	
131	Y	1320	1341	10-48	2	3	4	

Attach Calibration Sheet

Attach site map showing grid ID

Page 2 of Z

Personnei LEISLUNDE MILLES JACON	typic OF line		
genry menor	-11-	Cal. Gas Exp. Date:	11-10-24
Date 4-10-24 Instrument Us	ed; LVA1000 G	rid Spacing 251	
Temperature 5/ Precip:	D Upwind BG Z	Downwind BG: 4	2-2

GRID	STAFF	START	STOP	TOC	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKKO
200	LW	0640	67 00	7.88	4	6		
201		0700	0720	6.65	4	6		
202		0720	0740	2-22	4	ما		
206		ones	0750	6.94	4	6		
205		6750	0815	7.15	3	4		
204		0815	0840	6.50	3	4	1	
203		0840	0500	8.55	3	4	2	
207		0900	0920	9.70	3	4	1	
210		0920	0940	10.47	2	3	1	
214		0540	1000	8.77	3	4	16	
208		1000	1020	8.52	2	3	16	
209	4	1020	1040	7.58	2	4		
170	ME	0630	0655	7.50	4	6		
176		0655	6720	8,64	4	6		
175		0720	0745	10.81	4	6	1	
180		6745	0810	12.21	3	4		
181		0710	0835	9.68	3	4	J	
188		6835	0900	14.52	3	4	2	
18>		0900	0925	16.49	3	4		
186		0525	0950	13.80	3	3	16	
192		0950	1015	19.57	2	3	طا	
194		1035	1100	8.60	2	4	16	
195		1100	1125	6.47	5	6	2	
197		1125	1150	9.12	4	V	2	
196		1150	125	7.32	5	6	16	
158		1215	1240	7.06	4	5		
199	4	1240	1300	8.14	3	5	16	
36	Ja	0670	0845	22.12	4	5	2	
48	1	0840	0700	20.19	4	6		
50	V	6700	0715	17.38	4	4		

Attach Calibration Sheet

Attach site map showing grid ID

Page / of 3

Personnel:	Leighwanr	pople Deling	
	MISHIN ESFACION	tylmanoun	
	JUNNY ALLON		Cai, Gas Exp. Date: //-/0-14
Date: _/	179-24 Instrument Use	ed turious	Grid Spacing

Temperature: 57 Precip: 0 Upwind BG: Z-F Downwind BG: Z-2

GRID	STAFF	START	RT STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS		TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
61		0715	6730	15.46	4	5	ما	
67		0730	6745	12.40	4	6	16	
68		6745	6860	14.58	3	4	2	
25		18 M	0815	11.60	3	4		
82		0815	0870	2.58	3	4		
81		0873	2880	8,20	4	5	2	
88		0815	0520	10.40	3	5	Í	
95		0520	0945	8,65	2	3		
102		0845	1000	760	3	4	16	
105		1000	1010	8.45	3	4	طا	
117		1010	1020	11.70	2	3	16	
125	V	1020	1070	9,66	2	3	1	
193	ED	0630	6645	11.50	4	5	2	
189		0645	6700	13.65	4	6		
183		0700	0715	10.40	4	6		
184		0715	6743	14166	4	6		
190		0740	0705	12,20	3	4	2	
185		0800	0870	11.52	3	4		
179		0830	0865	17.60	3	4		
174		6840	0850	14.55	3	4		
167		0850	0510	10.81	3	4	2	
162		0510	0910	12.45	3	4	2	
155		0510	8520	9,71	3	4		
156		0970	0845	8,60	2	3	1	
163		8941	1010	6.64	3	4	16	
164		1010	1000	9.71	2	3		
168	A	1675	1100	8.50	2	4	16	
133	+1	0630	0615	8.14	4	5	16	
140	1	0855	0720	2.70	4	b		
147	1	6770	0745	7.22	4	6		

Attach Calibration Sheet

Attach site map showing grid ID

Page 2 of 3

Pets (The	MIGHEL WART	tylen Annuar	-	
	JENMY ALLON		Call Gas	10 Date 11-10-24
Data 4	4-10-29 Instrument Use	+UA10US	Gha Stating	25'
Temper	ature 67 Precio: 6	Upwind Rg. Z	F Dawawi	0133 2.2

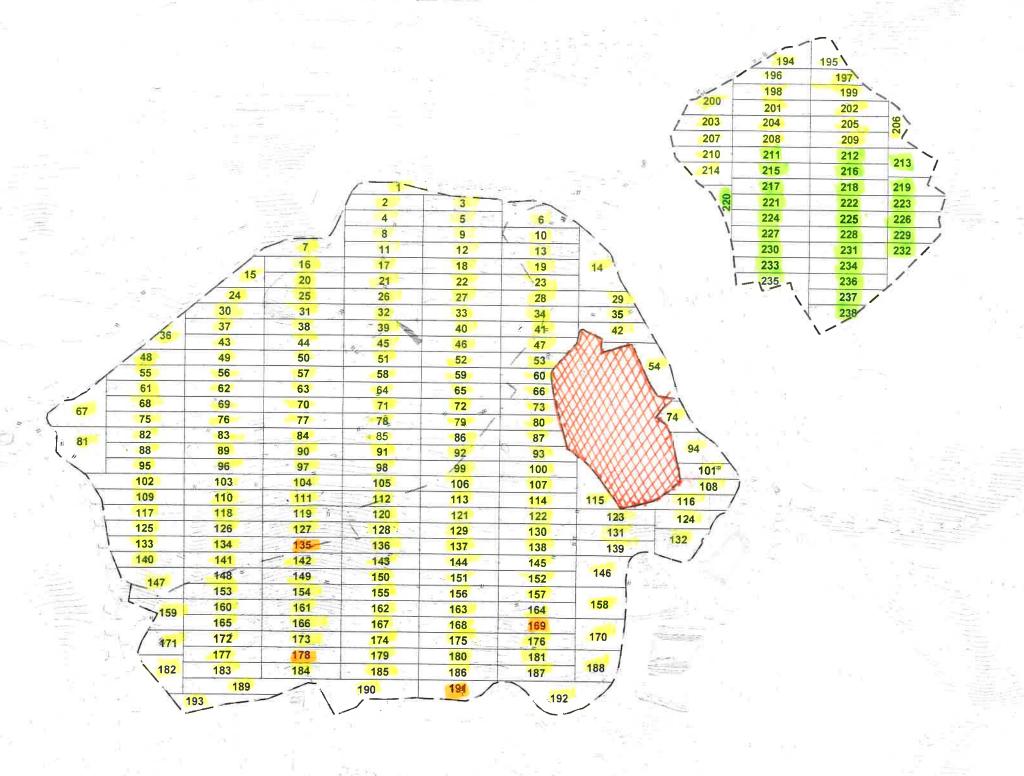
GRID	STAFF	START	STOP	ТЭС	WIN	ND INFOR	NOTAM	REMARKS
[D	ENITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DERECTION 16 POINT	(CITAL)
159	1	0745	6810	6.51	3	4	1	
157		6810	0835	6.45	3	4		
154		6835	845	10.20		4	1	
16/		0845	685	5,25	3	5	2	
160		6855	094	8.41	3	4	2	
165		092	OSV	8.08	3	4		
166		0915	0535	11.47	2	3		
173		057	1000	13.51	3	4	16	
172		1000	1010	9,50	3	4	16	
17/		10/0	1020	6.85	2	3	ا طا	
185		2070	1040	9.40	2	4	i	
177	V	1040	1100	13.58	2	4	14	

Attach Calibration Sheet Attach site map showing grid ID

Page 3 of 3

							Cal Gas Ex	o Data
4	-10-24	Instrume	nt Used					
								13G
GRID	STAFE	START	STOP	TOC	WIN	ND INFOR	MOITAM	REMARKS
[D		TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 15 POINT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
135								Steen-VEB
178								1
169								
191								1
211								Active-their
212								1
213								
215								
216								
217								
218								
219								
220								
24								
222								
223								
224								
225								
226								
227					1			
228			ľ					
225								
マファ								
231								
232								
233								
274								
235								
236								

Attach Calibration Sheet Attach site map showing grid ID


23>

Page 1 of 2

							Cal Gas Eko	Date
- 4-	10-24	instrume:	musad _				bacing	
							Downwind i	
GRID	STAFF	START	STOP	ТЭС	Miy	ID INFOR	MOITAM	REMARKS
[D	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
738								7
		1						
				11				
							,	
				Ĭ.				
		~						
			-	1,				

Attach Calibration Sheet Attach site map showing grid ID

Page 7 of 2

WASTE MANAGEMENT

LEGEND

EXISTING 10' CONTOUR EXISTING LFG EXTRACTION WELL

EXISTING CONDENSATE INJECTION WELL

EXISTING LOCAL CONTROL WELL

EXISTING REMOTE WELLHEAD

105

SEM GRID BLOCK

= ASBESTOS AREA NOT MONITORED

NOTES:

- TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY MILLER CREEK AERIAL MAPPING INC. DATE OF PHOTOGRAPHY: DECEMBER 13, 2022 DATUM: HORIZONTAL ZONE 3, NAD27, VERTICAL NGVD29.
- 2 SUPPLEMENTAL 2014 GCGS IMPROVEMENTS AS—BUILT PIPING PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA PROVIDED BY EMAIL FROM F3 & ASSOCIATES, DATE OF SURVEY: FEBRUARY 17, 2015.
- SUPPLEMENTAL 2015. GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD SURVEYS PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: DECEMBER 18, 2015. AND FEBRUARY 25, 2016. ADDITIONAL FIELD MARKUPS PROVIDED BY WM. DATED MAY 17, 2016.
- 4. THE 2016 GCCS IMPROVEMENTS AS—BUILT PIPING PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE OF SURVEY: DECEMBER 22, 2016.
- 5. THE 2017 GCCS IMPROVEMENTS AS-BUILT WELL LOCATIONS PER FIELD SURVEYS PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE SURVEYS RECEIVED: APRIL 17, 2018.
- 6 THE 2018 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEY: JUNE 26 AND JULY 30,
- 7. ASBESTOS AREA BOUNDARY LOCATION PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE OF SURVEY: APRIL 7, 2016.
- 8. THE 2019 GCCS IMPROVEMENTS AS—BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: JANUARY 31 AND FEBRUARY
- 9 THE 2020 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS. JANUARY 7 AND 30, FEBRUARY 12, APRIL 22 AND 30, AND JUNE 19, 2020.
- 10. SUPPLEMENTAL 2020 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEY: JULY 31, 2020.
- 11. FORCE MAIN PIPING LOCATIONS PER MARKUPS PROVIDED BY WM. DATE OF MARKUPS: APRIL 7, APRIL 9, AND MAY 7, 2020.
- 12 THE 2021 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: NOVEMBER 23, 2021, DECEMBER 9, 2021, DECEMBER 13, 2021, AND MARCH 8, 2022.
- 13. THE 2022 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS, JUNE 8, 2023

CHECKED BY ___

DESIGNED BY

TETRA TECH

ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY ALAMEDA COUNTY, CALIFORNIA

2023 GCCS IMPROVEMENTS **SEM GRID MAP**

SHEET NO

FINAL RECORD DRAWINGS

PROJECT NO 230018

Attachment C

Component Leak Monitoring Event Records

Table C.1

AB-32 Component Leak Monitoring Summary of Component Leaks Greater than 500 ppmv

2024 QUARTER: 2

INITIAL MONITORING PERFORMED BY: ALRRF
FOLLOW-UP MONITORING PERFORMED BY: ALRRF

LANDFILL NAME: Altamont Landfill and Resource Recovery Facility

Location	Init	al Monitoring			Corrective Action	10)-Day Remonit	oring
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
A15- Flare Station	4/10/2024	ND						
A16- Flare Station	4/10/2024	ND						
S6 and S7 Turbines	5/3/2024	ND						

Note: LNG Plant was shutdown during the entire quarter and is being decommissioned.

ND= No exceedances detected

Table C.2

BAAQMD Component Leak Monitoring Summary of Component Leaks Greater than 1,000 ppmv

2024 QUARTER: 2

INITIAL MONITORING PERFORMED BY: ALRRF
FOLLOW-UP MONITORING PERFORMED BY: ALRRF

LANDFILL NAME: Altamont Landfill and Resource Recovery Facility

Location	Init	al Monitoring			Corrective Action		7-Day Remo	nitoring
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
A15- Flare Station	4/10/2024	ND						
A16- Flare Station	4/10/2024	ND						
S6 and S7 Turbines	5/3/2024	ND						

Note: LNG Plant was shutdown during the entire quarter and is being decommissioned.

ND= No exceedances detected

				QI	JARTERL	Y LFG CC	OMPONE	NT LEAK	MONTOF	RING						
EQUIPMENT:	A15															
INSTRUMENT:	FID															
MAKE:	Photovac															
MODEL:	Micro FID)														
S/N:	CZPD312	2														
DATE OF SAMPLING:	04.10.24															
TECHNICIAN:	Garry Ca	rpenter														
LOCATION OF LEAK(S)	Bolte	ed Connec	ctions	Pipes	(Flanged,	Unions)	Dis	charge Bl	ower	FI	ame Arres	stor		Pipe to Sensors		Tank and ping
	#1	# 2	#3	#1	# 2	#3	#1	# 2	#3	#1	# 2	# 3	# 1	# 2	# 1	# 2
A-15 Flare Station																
TEST DATE		04.10.24			04.10.24			04.10.24			04.10.24		04.1	0.24	04.	10.24
LEAK CONCENTRATION FOUND (ppm)		N/D			N/D			N/D			N/D		N	/D	N	I/D
ACTION TAKEN																
REPAIR DATE																
RE-TEST DATE																
RE-TEST CONCENTRATION (ppm)																
Comments: Bolt connect Note: In the event the Leaks over 50 Article 4, Subs	nat an exce	eedance is ethane ar	s detected	l, please i	ntiate corre											ter 10,

Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.

										QU	ARTER	LY LFG	COMPON	NENT L	EAK MO	NTORIN	١G																
EQUIPMENT:	A16 Fla	е																															
INSTRUMENT:	Photova	С																															
MAKE:	Thermo	scientific																															
MODEL:	Micro FI	D																															
S/N:	CZPD31	2																															
DATE OF SAMPLING:	04.10.24																																
TECHNICIAN:	Garry C	arpenter																															
LOCATION OF LEAK(S)	Bolte	d Connec	ctions	Pipes ((Flanged	, Unions)		Valves, S and Pipir		E	Blowers				ensors an Isolation		leader	r to Land	dfill		e Tanks Piping	IC	Engine Va Senso		and	IC En	gine Co Skid		ssion	IC Engi and	ne Mai Metal (
	#1	#2	#3	#1	#2	#3	#1	#2	#3	#1	#2	#3	# 1	#2	#3	# 1	,	#2	#3	#1	# 2	#1	#2	#	#3	#1	#2		#3	#1	#2		#3
A-16																																	
TEST DATE		04.10.24			04.10.2	4		04.10.24	4	0	4.10.24			04.10.2	24		04.	.10.24		04.	10.24									i			
LEAK CONCENTRATION FOUND (ppm)		N/D			N/D			N/D			N/D			N/D			1	N/D		N/D										ł			
ACTION TAKEN																						1	N/A				N/A	٨		1	N/A		
REPAIR DATE																						1	IN/P	,			IN/A	,		1	IN//	٠	
RE-TEST DATE																						Ī								1			
RE-TEST CONCENTRATION (ppm)																						Ī								ł			
Note: In the event that Leaks over 500 Leaks over 1,000	t an exce	edance is	detected	d, please	any com	ponent c	ontaining	g landfill g	as pursua	ant to CARI	3 Title 1	7 of Cal	ifornia Co	de of R				10, Artic	cle 4, S	ubarticle	6, Sectio	on 9546	64(b)(1)(E	3).					_				

ALRRF Plant No. 2066
A16 Qtrly leak check form 4.10.2024 2nd Qtr

	QUARTERLY LFG COMPONENT LEAK MONITORING
EQUIPMENT:	Turbine Gas skids
INSTRUMENT:	FID
MAKE:	Photovac
MODEL:	MicroFiD I/S
S/N:	CZPD312
DATE OF SAMPLING:	5/3/2024
TECHNICIAN:	L.LaCerra Company Comp

LOCATION OF LEAK(S)	Bolte	d Connec	ctions	(Flar	Pipes nged, Uni	ons)	Roots	Flex Cou	ıplings	Howden Compressor	Inte	rstageVe	ssel	Oil/Gas	Separato	r Vessel	Gas Se Ves	-		g Towers nanger Pi	
	#1	# 2	# 3	#1	# 2	#3	#1	#2	#3	# 1	#1	# 2	# 3	#1	#2	#3	# 1	# 2	# 1	# 2	# 3
Compressor skid # 1			•				-			-				-			-	•	-		
TEST DATE	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24
LEAK CONCENTRATION FOUND (ppm)		8.0 PPM			12.0 PPM	1		3.0 PPM		1.0 PPM		3.0 PPM			3.0 PPM		2.0 PPM			1.0 PPM	
ACTION TAKEN																					
REPAIR DATE																					
RE-TEST DATE																					
RE-TEST																					
CONCENTRATION (ppm)																					
Compressor skid # 2																					
TEST DATE	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24	5/3/24
LEAK CONCENTRATION FOUND (ppm)		2.0 PPM			6.0 PPM			9.0 PPM		2.0 PPM		2.0 PPM			5.0 PPM		3.0 PPM			3.0 PPM	
ACTION TAKEN																					
REPAIR DATE																					
RE-TEST DATE																					
RE-TEST CONCENTRATION (ppm)																					

Comments:

Note:

In the event that an exceedance is detected, please intiate corrective action and re-monitor the exceedance location within 7 days of the initial exceedance.

Leaks over 500 ppmv methane are exceedances at any component containing landfill gas pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.

							QUART	ERLY LF	G COMP	ONENT	LEAK M	ONITORI	NG							
EQUIPMENT:	Turbine	Gas skids	s																	
INSTRUMENT:	FID																			
MAKE:	Photova	С																		
MODEL:	MicroFi) I/S																		
S/N:	CZPD31	12																		
DATE OF SAMPLING:	5/3/2024	1																		
TECHNICIAN:	L.LaCeri	ra																		
LOCATION OF LEAK(S)	Bolte	ed connec	ctions	Pipes (flange	d, unions)	Inlet p	oiping and	d valves	Sense	ors, trans	ducers	Propa	ne tank 8	k piping			Gas man	ifold and	piping
	#1	# 2	# 3	#1	# 2	# 3	#1	# 2	# 3	#1	# 2	# 3	#1	# 2	# 3	# 1	# 2	# 3	# 4	# 5
Turbine 1																				
TEST DATE		5/3/24			5/3/2	.4		5/3/24			5/3/24			5/3/24					5/3/24	
LEAK CONCENTRATION FOUND (ppm)		3.0 PPM			1.0 PF	PM		2.0 PPN	Л		1.0 PPM	1		1.0 PPN	1		4.0 PP	М		
ACTION TAKEN																				
REPAIR DATE																				
RE-TEST DATE																				
RE-TEST CONCENTRATION (ppm)																				
Turbine 2		5/3/24			5/3/2	<u>.</u> 4		5/3/24			5/3/24			5/3/24				•	5/3/24	

Comments:

TEST DATE
LEAK CONCENTRATION

FOUND (ppm)
ACTION TAKEN

REPAIR DATE

RE-TEST DATE

RE-TEST

CONCENTRATION (ppm)

3.0 PPM

Note:

In the event that an exceedance is detected, please intiate corrective action and re-monitor the exceedance location within 7 days of the initial exceedance.

11.0 PPM

Leaks over 500 ppmv methane are exceedances at any component containing landfill gas pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

2.0 PPM

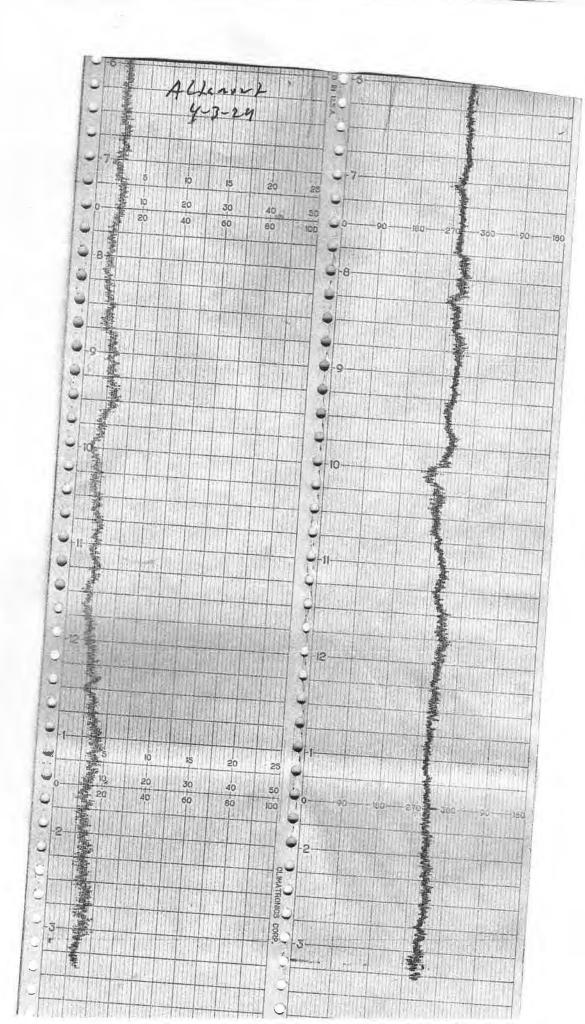
1.0 PPM

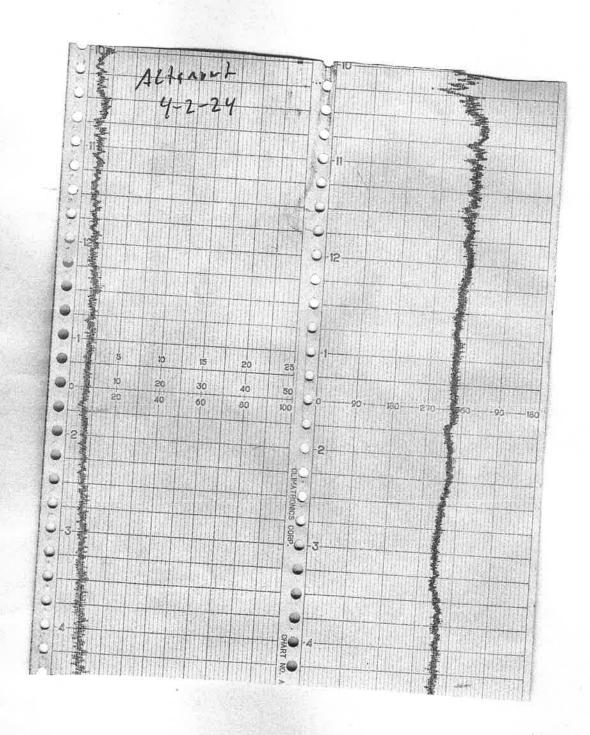
150 PPM

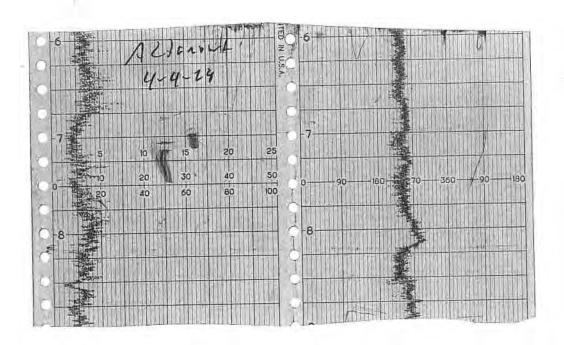
Tightened fittings

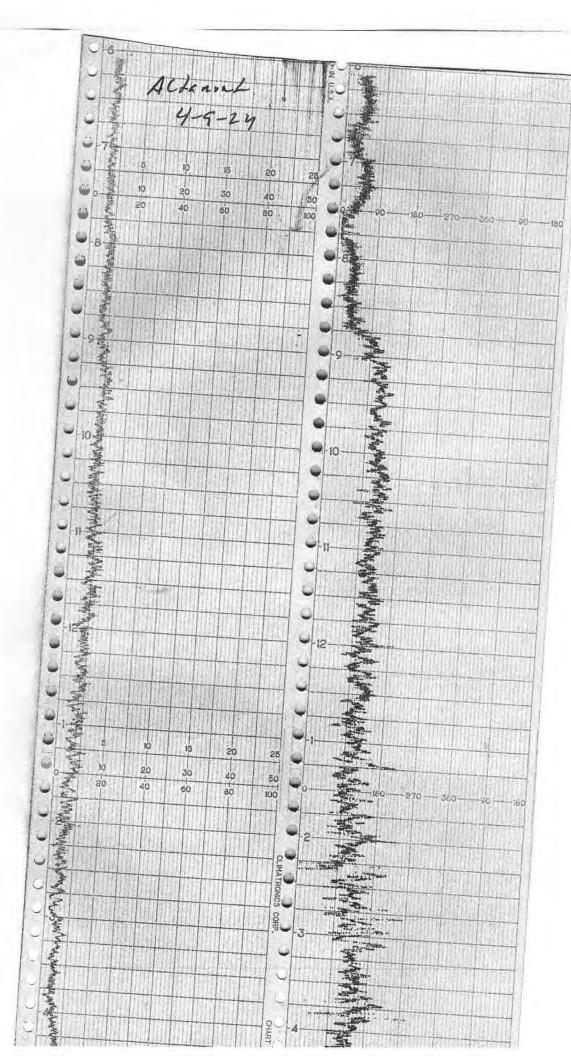
5/3/24

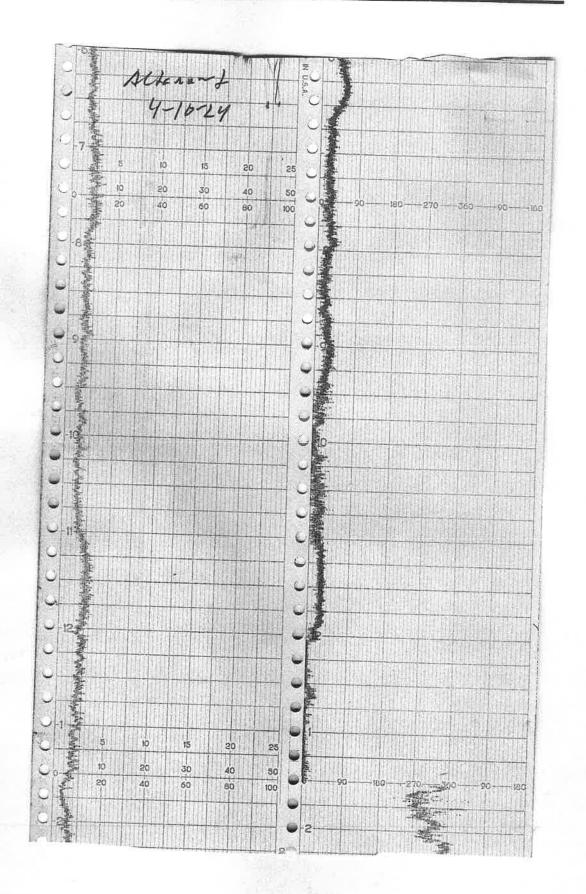
5/3/24

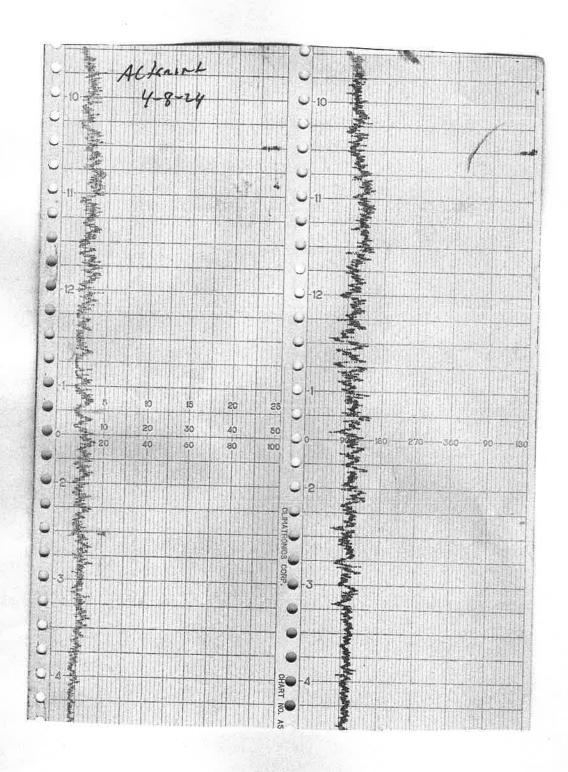

4.0 PPM


Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.


2.0 PPM


Attachment D


Weather Station Data



	16-POINT V	VIND DIRECTION	INDEX	
NO	DIRECTION		DEGREES	
		FROM	CENTER	<u>T0</u>
16	NORTH (N)	348.8	369.0	trata
ţ	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033.8	045.0	056.3
5	EAST-NORTHEAST (ENE)	056,3	067.5	078.8
r l	EAST (E)	078.8	090.0	101.3
5	EAST-SOUTHEAST (ESE)	101,3	112.5	123.8
	SOUTHEAST (SE)	123.8	135.0	146.3
	SOUTH-SOUTHEAST (SSE)	146.3	<u>157.5</u>	168.8
	SOUTH (S)	168.8	180.0	191.3
1	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213,8
ů.	SOUTHWEST (SW)	213.8	225.0	430.3
1	WEST-SOUTHWEST (WSW)	236.3	<u>247.</u> 5	258.8
2	WEST (W)	258.8	<u>270.0</u>	281.3
3	WEST-NORTHWEST (WNW)	281.3	292.5	303.8
4	NORTHWEST (NW)	30.2.8	315.0	326.3
5	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8

Attachment E

Calibration Records

LANDFILL NAME ALFEAIR	INSTRUMENT MAKE: + HUNRO			
MODEL TUATION EC	QUIPMENT #:	10	SERIAL #:	1036346773
MONITORING DATE: 4-2-2	4	TIME	0943	,

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 500 ppm
- 3. Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value; (Upwind + Downwind) 2
Z.8 ppm	Z-Z ppm	2.5 ppm

Background Value = 2 -5 ppm

INSTRUMENT RESPONSE TIME RECORD

leasurement #	Stabilized Reading Usi Calibration Gas	90% of the Stabilized Reading		Time to Reach 9 Stabilized Readi switching from 2 Calibration Gas	ng after	
#1	490	ppm	440	ppm	6	
#2	500	ppm	450	ppm	6	
#3	500	ppm	450	ppm	6	
	Calculate Response Time	(<u>1</u>	<u>+2+3</u>)		6	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Gas		Calculate Precision	[STD – (B)]
#1	0.12	ppm	490	ppm	10	
#2	0.09	ppm	500	ppm	0	
#3	0.04	ppm	500	ppm	0	
Calculate Precision	[STD-B1] + [S	TD-B2] + [5 3	STD-B3] X <u>1</u> X 500	100 1	0.66 Must be less tha	#DIV/0!

Performed By:	LENGHWADE	Date/Time: 4-2-24	0945
_	0		

CALIDDATION	DDOCEDIDE AME		DEDODT IA	ICTANTANEOUS
CALIDRATION	PROCEDURE AND	DAUNGROUND	KEPUKI - II	13 I AN I ANEUU3

LANDFILL NAME ALLANINT	INSTRUMENT MAKE +11+12
MODEL: WA 1860 EQUIPMENT #:	1. 2/2//77
MONITORING DATE 4-2-24	TIME: OFUS

Calibration Procedure:

1 Allow instrument to zero itself while introducing air

Introduce calibration gas into the probe. Stabilized reading = 500

3 Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2	
2.8 ppm	2-2 ppm	2.5 ppm	1

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Reading		Time to Reach 9 Stabilized Readi switching from a Calibration Gas	ng after	
#1	504	ppm	454	ppm	5	
#2	498	ppm	448	ppm	5	
#3	500	ppm	450	ppm	5	
	Calculate Response T	ime (<u>1</u> - 3	+2+3)		5	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		Calculate Precision [STD - (B)]
#1	0.14	ppm	504	ppm	4	
#2	80.0	ppm	498	ppm	2	
#3	0-06	ppm	500	ppm	D	
Calculate Precision	on [STD-B1] + [S	3 TD-B2] +	STD-B3] X 1 X 500	<u>100</u> 1	0.40	#DIV/0!
					Must be less that	n 10%

4-2-24-	0945
	4-2-24-

CALIBRATION PROCEDURE	AND BACKGROUND	REPORT - INST.	ANTANEOUS

LANDFILL NAME ALLA	INSTRUMENT MAKE + HUNW			
MODEL LUALOUD	EQUIPMENT #:	12	SERIAL #:	1036246741
MONITORING DATE 4-1	2-24	TIME	0945	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading = 500
- 3_ Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec		Downwind Background Reading: (Highest in 30 seconds)		Background Value: (Upwind + Downwind) 2	
2.8	ppm	2.2	ppm	2.5	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	y Using	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	501	ppm	451	ppm	4	
#2	498	ppm	448	ppm	4	
#3	500	ppm	450	ppm	4	
	Calculate Response	Γime (<u>1</u> - 3	+2+3)		4	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]	
#1	0.10	ppm	501	ppm	/	
#2	0.07	ppm	498	ppm	2	
#3	0.03	ppm	500	ppm	D	
Calculate Precision	STD-B1] + [S	[STD-B1] + [STD-B2] + [S		<u>100</u> 1	0.20	#DIV/0!
					Must be less than	10%

Performed By:	Jonny	MUNUZ	Date/Time _ 4-2-24- 09 W	

CALIBRATION PRO	CEDURE AND	BACKGROUND	REPORT - IN	STANTANEOUS
ORLIDITATION	OLDONL AND	DAGINGUID	MEL OIL - III	DIANIANLOUS

LANDFILL NAME ALKANY	INSTRUMENT MAKE + HONW		
MODEL: LUA 1860 EQUIPMENT #	1) 2774 (27 (
MONITORING DATE 4-2-14	TIME OF45		

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 3 Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Background Reading: (Highest in 30 seconds)		Background Value: (Upwind + Downwind) 2	
2.8	ppm	2-2	ppm	2-5	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	495	ppm	445	ppm	>	
#2	502	ppm	452	ppm	7	
#3	500	ppm	410	ppm	7	
Calculate Response Time (1+2+3)					7	#DIV/0!
					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)	
#1	0-18	ppm	495	ppm	5	
#2	6-1/	ppm	J, Z	ppm	2	
#3	0.07	ppm	500	ppm	0	
Calculate Precision	n [STD-B1] + [S	TD-B2] + [3	STD-B3] X <u>1</u> X 500	100 1	0,46	#DIV/0
					Must be less than	10%

Performed Bv:	600, a DEling	Date/Time:	4-2-24-	0985
r chomica by.		Date/ Hille.		

LANDFILL NAME ALLGARY		INSTRUMENT MAKE JUM WO		
	PMENT#: 16	SERIAL#	1102746776	
MONITORING DATE 4-2-24		TIME 0945		

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- Introduce calibration gas into the probe Stabilized reading = 500 ppm
- 3 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading:		Downwind Backs Reading:		Background Value: (Upwind + Downwind)		
(Highest in 30 seconds)		(Highest in 30 seco	nds)	2		
3.8	ppm	2.2	ppm	2.5	ppm	

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	ent # Stabilized Reading Using 90% of the Stabilized Reading Reading				Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	507	ppm	457	ppm	5		
#2	500	ppm	450	ppm	5		
#3	500	ppm	450	ppm	5		
	Calculate Response Ti	me (<u>1</u> .	<u>+2+3</u>)		5	#DIV/0!	
					Must be less than	30 seconds	

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Z	Meter Reading for Zero Air (A)		for s (B)	Calculate Precision [STD – (B)]	
#1	0.13	ppm	507	ppm	>	
#2	0.06	ppm	500	ppm	0	
#3	0-05	ppm	5.0	ppm	D	
Calculate Precision	on [STD-B1] + [STD-B2] + [3 3	STD-B3] X <u>1</u> X 500	<u>100</u> 1	O·46 Must be less tha	#DIV/0! n 10%

Performed By: Ly/on Ann uno

Date/Time 2-2-24 - 0945

LANDFILL NAME ALLENONT	INSTRUM	MENT MAKE: 7	HENNO
MODEL FURIOUD EQUIPMENT#	1400		1036346773
MONITORING DATE: 4-3-24	TIME:	0600	

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading = \(\int \text{ 00} \) ppm
- 3. Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds) Downwind Background Reading: (Highest in 30 seconds)					
2-8	ppm	212	ppm	7.5	ppm

Background Value = 25 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	zed Reading Using 90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	490	ppm	440	ppm	5	
#2	500	ppm	450	ppm	5	
#3	500	ppm	450	ppm	5	
	5	#DIV/0!				
					Must be less than	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	eter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B		
#1	0.13	ppm	490	ppm	10	
#2	0.10	ppm	500	ppm	0	
#3	0.08	ppm	500	ppm	٥	
Calculate Precisio	n [STD-B1] + [S	STD-B2] + [S	STD-B3] X <u>1</u> X 500	<u>100</u> 1	0.66	#DIV/0!
					Must be less tha	n 10%

ate/Time: 4-3-24-	0680
а	te/Time: 4-3-24-

LANDFILL NAME ALLANT	INSTRUM	ENT MAKE: +	Herm
	ENT#		1036346774
MONITORING DATE: 4-3-24	TIME	0600	

Calibration Procedure:

1 Allow instrument to zero itself while introducing air

3. Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 seco		Background Value: (Upwind + Downwind) 2	
Zub	ppm	2.2	ppm	2.5	ppm

Background Value = 225 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	g Using	90% of the Stabil Reading	ized	Time to Reach 9 Stabilized Read switching from Calibration Gas	ing after Zero Air to
#1	507	ppm	457	ppm	6	
#2	500	ppm	450	ppm	6	
#3	500	ppm	450	ppm	6	
	Calculate Response	Time (<u>1</u> 3	+2+3)		6 Must be less tha	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)		
#1	0.09	ppm	507	ppm	>	
#2	0.06	ppm	500	ppm	0	
#3	0.05	ppm	500	ppm	0	
Calculate Precision	[STD-B1] + [S	TD-B2] + [\$ 3	STD-B3] X <u>1</u> X 500	100 1	0.46	#DIV/0!
					Must be less that	n 10%

Performed By: Misable	ESTROPA	Date/Time:	4-7-24-	0600	

LANDFILL NAME A	INSTRUMENT MAKE: Horas			
MODEL: FUALUUD	EQUIPMENT #	12	SERIAL #:	103624674/
MONITORING DATE:	4-3-24	TIME:	0600	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- Allow instrument to zero itself while introducing air
 Introduce calibration gas into the probe. Stabilized reading = ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds) Downwind Background Reading: (Highest in 30 seconds)		Background Value: (Upwind + Downwind) 2			
2.8	ppm	2,2	ppm	2-5	ppm

Background Value = 25 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	ent # Stabilized Reading Using 90% of the Stabilized Reading Reading		ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	495	ppm	445	ppm	5	
#2	504	ppm	454	ppm	5	
#3	500	ppm	450	ppm	5	
	Calculate Response 1	ime (<u>1</u> -	+2+3)		5	#DIV/0!
		3			Must be less than	1 30

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)			
#1	0118	ppm	485	ppm	5	
#2	0.04	ppm	504	ppm	4	
#3	0.02	ppm	500	ppm	70	
Calculate Precision	[STD-B1] + [S	3 3 STD-B2]	STD-B3] X <u>1</u> X 500	100 1	0.60	#DIV/0!
					Must be less that	1 10%

Porformed By:	Jenny	MUNOZ	Date/Time 2	4-3-24	0600
Performed By:	D		Date/Time	1-1	- •

LANDFILL NAME AUG.	INSTRUMENT MAKE + Hon m			
MODEL: LUAIDO			SERIAL	# /162746775
MONITORING DATE 4-3-	-24	TIME	0600	

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- Allow instrument to zero itself while introducing air
 Introduce calibration gas into the probe Stabilized reading = ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backge Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 seco		Background Val (Upwind + Dow 2	
2-8	ppm	2.2	ppm	2.5	ppm

Background Value = 25 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	y Using	90% of the Stabi Reading	lized	Time to Reach Stabilized Read switching from Calibration Gas	ling after Zero Air to
#1	50>	ppm	457	ppm	>	
#2	485	ppm	4 45	ppm	フ	
#3	500	ppm	450	ppm	>	
	Calculate Response	Time (<u>1</u> - 3	+2+3)		7	#DIV/0!
					Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading Calibration Gas		Calculate Precision [STD - (B)]
#1	0-10	ppm	567	ppm	フ	
#2	8028	ppm	495	ppm	5	
#3	0.04	ppm	500	ppm	D	
Calculate Precision	[STD-B1] + [S	TD-B2] + [S	STD-B3] X <u>1</u> X 500	<u>100</u> 1	0.80	#DIV/0!
					Must be less than	1 10%

		_	
Performed B	y Eno.	CDE	1115

Date/Time 4-3-24 0816

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTA	ANEOUS	S
--	--------	---

LANDFILL NAME ALLENDA	INSTRUMENT MAKE: +HUN AS
MODEL LUAIDUS EQUIPMENT #:	16 SERIAL #: //02746776
MONITORING DATE: 4-3-24	TIME 06.0

- 1 Allow instrument to zero itself while introducing air
- Allow instrument to zero itself while introducing air
 Introduce calibration gas into the probe. Stabilized reading = ppm
- 3 Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
Z.8 ppm	Z-Z ppm	Z.S ppm

Background Value = _____ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	490	ppm	443	ppm	6	
#2	501	ppm	451	ppm	6	
#3	500	ppm	450	ppm	6	
	Calculate Response T	ime (<u>1</u>	<u>+2+3</u>)		Must be less tha	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading Calibration Gas		Calculate Precision	[STD - (B)]
#1	0:15	ppm	490	ppm	10	
#2	0.09	ppm	501	ppm	1	
#3	0.07	ppm	002	ppm	D	
Calculate Precision	[STD-B1] + [S	TD-B2] + [5	STD-B3] X <u>1</u> X 500	<u>100</u> 1	0.73	#DIV/0!
					Must be less tha	n 10%

Performed By:	tylen Andensur	Date/Time	4-3-24	0600
,				

LANDFILL NAME A LICAUNT	INSTRUMENT MAKE + Honne		
MODEL WALOOD EQUIPMENT #:			
MONITORING DATE: 4-4-24	TIME: 0615		

Calibration Procedure:

- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Backg Reading: (Highest in 30 seco		Background Val (Upwind + Dow 2	
2.8	ppm	2.2	ppm	2.5	ppm

Background Value = 25 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	g Using	90% of the Stabilized Reading		Time to Reach 9 Stabilized Readi switching from 2 Calibration Gas	ing after
#1	502	ppm	452	ppm	5	
#2	500	ppm	450	ppm	5	
#3	500	ppm	450	ppm	5	
Calculate Response Time (1+2+3)					5	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]	
#1	0.09	ppm	502	ppm	2	
#2	0.06	ppm	500	ppm	0	
#3	0.04	ppm	510	ppm	0	
Calculate Precision	on [STD-B1] + [ST	TD-B2] + [: 3	STD-B3] X <u>1</u> X 500	100 1	0.13	#DIV/0!
					Must be less than	10%

Performed By: LE	ISLWADE	Date/Time 4-4-24	0615

LANDFILL NAME ALL	nort	INSTRUMENT M	MAKE JHMW
MODEL LUAIDU	EQUIPMENT#	1/	SERIAL #: 1036346774
MONITORING DATE 4-4	1-24	TIME	0615

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading = 500
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 se		Downwind Backg Reading: (Highest in 30 seco		Background Val (Upwind + Dow	
2-8	ppm	2-2	ppm	2-5	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stab Reading	ilized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	489 ppn	439	ppm	5	
#2	50/ ppn	457	ppm	5	
#3	5 vo ppn	450	ppm	5	
	Calculate Response Time (1+2+3) 3		~	#DIV/0!
				Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]	
#1	0-15	ppm	489	ppm	1/	
#2	0-05	ppm	501	ppm	1	
#3	0.04	ppm	500	ppm	D	
Calculate Precision [STD-B1] + [STD-B1] + 3		D-B2] + [+ [STD-B3] X <u>1</u> X <u>100</u> 500 1		0.80	#DIV/0!
					Must be less tha	n 10%

Performed By:	MIGHEL ESTROBA	Date/Time 4-4-24 - 06/5	

CALIBRATION PROCEDUR	E AND BACKGROUND	REPORT - INST	TANTANEOUS
----------------------	------------------	---------------	------------

LANDFILL NAME ALGENDAL		INSTRUMENT MAKE + HEAR W			
MODEL FUA 1000	EQUIPMENT#	12	SERIAL #	1036246741	
MONITORING DATE	4-4-24	TIME	0615		

- 1. Allow instrument to zero itself while introducing air
- Allow instrument to zero itself while importanting air
 Introduce calibration gas into the probe. Stabilized reading = _____ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgre Reading: (Highest in 30 sec		Downwind Backg Reading: (Highest in 30 seco		Background Valu (Upwind + Dow 2	
2.8	ppm	2.2	ppm	2.5	ppm

Background Value = 2.5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	easurement # Stabilized Reading Calibration Gas		90% of the Stabilized Reading		Time to Reach Stabilized Read switching from Calibration Gas	ding after Zero Air to
#1	495	ppm	445	ppm	ン	
#2	502	ppm	452	ppm	7	
#3	500	ppm	450	ppm	>	
	Calculate Response T	ime (<u>1</u> -	<u>+2+3</u>)		7 Must be less tha	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero			for s (B)	Calculate Precision [STD – (E	
#1	0.18	ppm	485	ppm	5	
#2	0.14	ppm	502	ppm	2,	
#3	0.88	ppm	500	ppm	ь	
Calculate Precision	on [STD-B1] + [ST	D-B2] + [5 3	STD-B3] X <u>1</u> X 500	<u>100</u> 1	O, 4 B Must be less that	#DIV/0! n 10%

Performed By	TEXKY	MLXUZ	Date/Time	4-4-24 -0615
,	0			

CALIBRATION PROCEDURE	AND BACKGROUND	REPORT - INS	TANTANEOUS

LANDFILL NAME A LLGA	int	INSTRUMENT	MAKE: 4 HERN
	EQUIPMENT #:		SERIAL # /1027 46725
MONITORING DATE 4-	4-24	TIME	0615

- 1 Allow instrument to zero itself while introducing air.
- 2 Introduce calibration gas into the probe. Stabilized reading = _______ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 sec		Background Val	
2.8	ppm	2.2	ppm	25	ppm

Background Value = 2.1 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabiliz Reading	Time to Reach 9 Stabilized Readi switching from a Calibration Gas	ing after Zero Air to	
#1	507 ppm	457	ppm	4	
#2	498 ppm	448	ppm	4	
#3	500 ppm	450	ppm	4	
	Calculate Response Time (1)	+2+3)		Must be less than	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		Calculate Precision [STD - (E	
#1	0.14	ppm	507	ppm	7	
#2	0.09	ppm	834	ppm	2	
#3	0.05	ppm	500	ppm	D D	
Calculate Precision	[STD-B1] + [S	TD-B2] + [:	STD-B3] X <u>1</u> X 500	100 1	0.60	#DIV/0!
					Must be less than	10%

Performed By:	EDDIR	pE/ing	Date/Time	4-4-2	4-0615
enomica by.			Date/ Hitte	-	

CALIBRATION PROCEDURE	AND BACKGROUND	REPORT - INST	ANTANEOUS

LANDFILL NAME ACTANOL	INSTRUMENT MAKE + Hon ~
MODEL: FUNION EQUIPMENT#	16 SERIAL #: 11877 46776
MONITORING DATE U-4-24	TIME 6115

- 1. Allow instrument to zero itself while introducing air 2. Introduce calibration gas into the probe Stabilized reading = 500
- 3 Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Backg Reading: (Highest in 30 seco		Background Valu (Upwind + Dow 2	
2-8	ppm	2.2	ppm	2.5	ppm

Background Value = 25 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabilized Reading		Time to Reach 90' Stabilized Readin switching from Ze Calibration Gas	g after
#1	504 ppm	44	ppm	6	
#2	So o ppm	450	ppm	6	
#3	ppm o v	450	ppm	6	
	6	#DIV/0!			
				Must be less than 3	0 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B		
#1	0.10	ppm	504	ppm	ily		
#2	0-07	ppm	500	ppm	3		
#3	0.04	ppm	100	ppm	<i>O</i>		
Calculate Precision	n [STD-B1] + [S	3 3	5TD-B3] X <u>1</u> X 500	1 <u>00</u> 1	0.26 Must be less than 1	#DIV/0	

Performed By:	tylen amons	Date/Time	4-4-24	-0615	

LANDFILL NAME: ACTAA	int	INSTRUME	ENT MAKE: 7	HERNO
MODEL TVA1000	EQUIPMENT #:	10	SERIAL#	1036346773
MONITORING DATE: 4-8	3-24	TIME:	0520	, ,

Calibration Procedure:

1 Allow instrument to zero itself while introducing air

2 Introduce calibration gas into the probe Stabilized reading = 25 ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds) Downwind Background Reading: (Highest in 30 seconds)		Background Val			
2.8	ppm	2.2	ppm	2.5	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Reading	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24 pp	n 21	6 PI	pm	4	
#2	7) pp	n Z 2	Pl V	pm	4	
#3	75 pp	n ZZ	PI	pm	4	
	Calculate Response Time	(<u>1+2+3</u>) 3		1	#DIV/0	
					Must be less than 30 seconds	

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	ment # Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision	[STD - (B)]		
#1	0.18	ppm	24	ppm	1	
#2	0.11	ppm	25	ppm	0	
#3	0.07	ppm	25	ppm	0	
Calculate Precision	[STD-B1] + [STI	0-B2] + [S	STD-B3] X <u>1</u> >	(<u>100</u> 1	1.3	#DIV/0!
					Must be less tha	п 10%

Performed By	LEISTNADE

Date/Time: 4-8-24-6920

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRA	TED
---	-----

LANDFILL NAME. ACFGAILL	INSTRUMENT MAKE +HERRO
MODEL TVA 1000 EQUIPMENT #	// SERIAL #: 1036346772
MONITORING DATE: 4-8-24	TIME: 0920

1. Allow instrument to zero itself while introducing air.

2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm

3 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Reading:	Upwind Background Reading: (Highest in 30 seconds) Downwind Background Reading: (Highest in 30 seconds)		Background Val	1.0	
2.8	ppm	2.2	ppm	2.5	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using 90% of the Stabilized Reading		Calibration Gas		zed	Time to Reach S Stabilized Read switching from Calibration Gas	ing after Zero Air to
#1	23	ppm	20.7	ppm	6		
#2	25	ppm	27.5	ppm	6		
#3	25	ppm	21.5	ppm	6		
	Calculate Response	Time (<u>1</u> -	+2+3)		-6	#DIV/0!	
					Must be less than	30 seconds	

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision	[STD – (B)]
#1	0.15	ppm	23	ppm	Z	
#2	0.09	ppm	25	ppm	6	
#3	0.04	ppm	25	ppm	D	
Calculate Precision	n [STD-B1] + [S	TD-B2] + [8	STD-B3] X <u>1</u> X 25	1 <u>00</u>	2.6	#DIV/0
					Must be less that	an 10%

Performed By Moskuc Estrant

Date/Time 4-8-24 - 0920

LANDFILL NAME ACTAIN	INSTRUMENT	MAKE FHERRO
MODEL: +VA 1000 EQUIPMENT #	+ 12	SERIAL #: 1036246741
MONITORING DATE: 4-8-74	TIME	0920

Calibration Procedure:

1 Allow instrument to zero itself while introducing air.

2 Introduce calibration gas into the probe. Stabilized reading = 25 ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 sec		Downwind Background Reading: (Highest in 30 seconds)		Background Value (Upwind + Dow 2	
2.8	ppm	2.2	ppm	25	ppm

Background Value = 25 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabilized Reading		Time to Reach 9 Stabilized Readi switching from a Calibration Gas	ng after Zero Air to
#1	24	ppm	21.6	ppm	4	
#2	21	ppm	225	ppm	4	
#3	25	ppm	225	ppm	4	
	Calculate Response T	ime (<u>1</u> ·	+2+3)		4	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (E	
#1	0.10	ppm	24	ppm	7	
#2	0.08	ppm	28	ppm	0	
#3	0.05	ppm	25	ppm	Ø	
Calculate Precision [STD-B1] + [STD-B2] + 3		TD-B2] + [S	STD-B3] X <u>1</u> 25	X <u>100</u>	1.3	#DIV/0!
					Must be less th	an 10%

Performed I	Ву	TEU	4	Mh	102	

Date/Time: 4-8-24- 0910

LANDFILL NAME ACTAIN	INSTRUMENT	MAKE: 76	/ed no	
MODEL: +VA1000	EQUIPMENT #	13		1102746775
MONITORING DATE: 4-8-24	1	TIME	0921	7

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2 Introduce calibration gas into the probe Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Reading:	Reading: Read		Downwind Background Reading: (Highest in 30 seconds)		ue: rnwind)
2.8	ppm	2-2	ppm	2.5	ppm

Background Value = 2.5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #			90% of the Stabilized Reading		Time to Reach 9 Stabilized Readi switching from a Calibration Gas	ng after
#1	23	ppm	20.7	ppm	5	
#2	24	ppm	21.6	ppm	5	
#3	25	ppm	225	ppm	5	
	Calculate Response	Time (<u>1</u> - 3	+2+3)		5	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	eter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)				[STD - (B)]
#1	0.16	ppm	23	ppm	Z	
#2	0.11	ppm	24	ppm	1	
#3	0.08	ppm	75	ppm	٥	
Calculate Precision	on [STD-B1] + [S	TD-B2] + [3	STD-B3] X <u>1</u> X 25	1 100 1	Y- D Must be less tha	#DIV/0!

Performed	Ву	EDDICOELING	

Date/Time: 4-8-24-0910

LANDFILL NAME ACTO	INSTRUMEN	TMAKE +6	YERRO	
MODEL: TVA1000	EQUIPMENT #	16		1/02746776
MONITORING DATE 4-8-	-24	TIME:	0920	2

Calibration Procedure:

1. Allow instrument to zero itself while introducing air

2. Introduce calibration gas into the probe Stabilized reading = 25 ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)		Downwind Background Reading: (Highest in 30 seconds)		Background Val	
2.8	ppm	2.2	ppm	2.5	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

leasurement #	Stabilized Readir Calibration Gas	90% of the Stabiliz Reading	ed	Time to Reach S Stabilized Read switching from Calibration Gas	ing after Zero Air to	
#1	24	ppm	21.6	ppm	5	
#2	25	ppm	22-5	ppm	5	
#3	25	ppm	27.5	ppm	5	
	Calculate Response	Time (<u>1</u> -	+2+3)		5	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	Meter Reading for Zero Air (A)		g for as (B)	Calculate Precision	[STD – (B)]
#1	0.17	ppm	24	ppm	1	
#2	0-10	ppm	25	ppm	0	
#3	0.05	ppm	25	ppm	0	
Calculate Precision	n [STD-B1] + [S	TD-B2] + [5 3	1.3	#DIV/0		
					Must be less th	an 10%

Performed	D.	tylen ANDENIUT	
renormed	ВУ:	TYTERCHERE	

Date/Time 4-8-24-0910

CALIBRATION PROCEDURE AND BACKGROUND	REPORT - INTEGRATED
--------------------------------------	---------------------

LANDFILL NAME AC	efgnint		INSTRUMENT	MAKE	+ HER NO
MODEL: TVA1000	EQUIPMENT#	[/			# 1036346774
MONITORING DATE	4-9-24		TIME	060	0

- 1 Allow instrument to zero itself while introducing air
- Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2.8 ppm	2.2 ppm	2.5 ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Read Calibration Gas	_	90% of the Stabil Reading	ized	Time to Reach Stabilized Reac switching from Calibration Gas	ling after Zero Air to
#1	24	ppm	21.6	ppm	5	
#2	21	ppm	22.5	ppm	1	
#3	25	ppm	27.5	ppm	1	
	5	#DIV/0!				
					Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze			Meter Reading for Calibration Gas (B)		[STD - (B)]
#1	0.21	ppm	24	ppm	1	
#2	0.14	ppm	マノ	ppm	20	
#3	0.10	ppm	25	ppm	0	
Calculate Precision	[STD-B1] + [S	TD-B2] + [5	STD-B3] X <u>1</u> > 25	100	1.3	#DIV/0
					Must be less th	an 10%

Performed By: MISHEL ESTACOR	Date/Time	4-9-24	0600	
------------------------------	-----------	--------	------	--

LANDFILL NAME: ACTA	INSTRUMENT MAKE + HELRO			
MODEL: TVA1000	EQUIPMENT#	12	SERIAL #:	1036246741
MONITORING DATE: 4-	9-24	TIME	0600	

Calibration Procedure:

1 Allow instrument to zero itself while introducing air

2 Introduce calibration gas into the probe Stabilized reading = 25 ppm

3 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Reading:	Upwind Background Reading: (Highest in 30 seconds) Downwind Background Reading: (Highest in 30 seconds)		Background Value (Upwind + Dow 2		
2.8	ppm	2.2	ppm	25	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readir Calibration Gas	90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	23	ppm	20-7	ppm	6	
#2	25	ppm	275	ppm	6	
#3	25	ppm	22.5	ppm		
	Calculate Response	Time (<u>1</u>	+2+3)		6	#DIV/0!
					Must be less th	an 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		Calculate Precision	[STD - (B)]
#1	0.17	ppm	23	ppm	2	
#2	0-13	ppm	28	ppm	9	
#3	0.08	ppm	25	ppm	0	
Calculate Precision	[STD-B1] + [S	[STD-B1] + [STD-B2] + [S		100	2.6	#DIV/0
			25		Must be less th	an 10%

Performed By	JENRY	MULLE	Date/Time;	4-9-24	0600
	-				

LANDFILL NAME: AC	farint	INSTRUMENT MAKE: +HELRO		
MODEL: TVA1000	EQUIPMENT #	13	SERIAL #: //02746775	
MONITORING DATE:	4-9-24	TIME:	0600	

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3 Adjust meter settings to read 25 ppm

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)		Downwind Background Reading: (Highest in 30 seconds)		Background Value: (Upwind + Downwind) 2		
2.8	ppm	2.2	ppm	2.5	ppm	

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabi Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24 ppn	2/16	ppm	5	
#2	2 y ppn	21.6	ppm	5	
#3	25 ppn	22.5	ppm	5	
	Calculate Response Time (1+2+3) 3		5	#DIV/0!
				Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD -	
#1	6.11	ppm	24	ppm	/	
#2	0-0>	ppm	24	ppm	,	
#3	0-05	ppm	20	ppm	0	
Calculate Precisio	on [STD-B1] + [S	STD-B2] + [S	STD-B3] X <u>1</u> 25	(<u>100</u> 1	2.6	#DIV/0
					Must be less th	ian 10%

Performed By EPD. CDE /ING

Date/Time: 4-9-24- 0600

LANDFILL NAME AC	farint	INSTRUMENT MAKE + HER NO		
MODEL TVA1000	EQUIPMENT #.	16	SERIAL #: //02746776	
MONITORING DATE:	4-9-24	TIME	0600	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- 2 Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds		Downwind Back Reading: (Highest in 30 seco		Background Val	
2.8 P	pm	2-2	ppm	2.5	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabi Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24 ppm	21.6	ppm	4	
#2	2 ppm	225	ppm	4	
#3	25 ppm	27.5	ppm	4	
	Calculate Response Time (1	+2+3)		4 #DIV/0!	
				Must be less than 30 seconds	

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze			for s (B)	Calculate Precision [STD – (B)]	
#1	0.15	ppm	24	ppm	/	
#2	0.09	ppm	25	ppm	0	
#3	0.06	ppm	w	ppm	0	
Calculate Precision	on [STD-B1] + [S	TD-B2] + [5 3	STD-B3] X <u>1</u> X 25	1 <u>00</u>	1.3	#DIV/0
					Must be less th	an 10%

Performed By: 44/EN ANDENSVY	Date/Time:	0600
7	Date/ Title L	

LANDFILL NAME ALtanont		INSTRUMENT MAKE, + HERAD			
MODEL LUA 1000 EQUIPMENT #	10		_SERIAL#:_	1036346773	
MONITORING DATE 4-9-24		TIME	0600		

Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

2. Introduce calibration gas into the probe Stabilized reading = 560 ppm

3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds) Downwind Background Reading: (Highest in 30 seconds)		Background Value (Upwind + Dow 2	- 27 6 1		
2.8	ppm	2-2	ppm	2.5	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	495	ppm	445	ppm	5	
#2	500	ppm	450	ppm	5	
#3	500	ppm	450	ppm	~	
Calculate Response Time (1+2+3) 3					5	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision	[STD – (B)]
#1	0.10	ppm	495	ppm	5	
#2	0.07	ppm	100	ppm	0	
#3	0.04	ppm	500	ppm	8	
Calculate Precision	STD-B1] + [ST	TD-B2] + [\$	B2] + [STD-B3] X <u>1</u> X <u>100</u> 500 1		0.33	#DIV/0!
					Must be less tha	n 10%

Performed By:	wighvane	Date/Time: 4	1-9-24	0600
		200111110		

CALIBRATION PROCEDURE AND B	BACKGROUND	REPORT - I	NTEGRATED
-----------------------------	------------	------------	-----------

LANDFILL NAME ACTAINAL		INSTRUM	MENT MAKE +	HERNO
MODEL TVA1000	EQUIPMENT #:	10	SERIAL #:	1026346773
MONITORING DATE	4-10-24	TIME:	a. I. D	1

1 Allow instrument to zero itself while introducing air

2 Introduce calibration gas into the probe. Stabilized reading = 25 ppm

3 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds) Downwind Background Reading: (Highest in 30 seconds)				Background Value (Upwind + Dow 2	
2.8	ppm	2.2	ppm	25	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas Reading		90% of the Stabil Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	ppm	21.6	ppm	6	
#2	75	ppm	225	ppm	6	
#3	25	ppm	225	ppm	6	
Calculate Response Time (1+2+3) 3					6	#DIV/0!
					Must be less tha	an 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	fleter Reading for Zero Air (A)		Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		1		n [STD – (B)]
#1	0.//	ppm	24	ppm	/			
#2	0207	ppm	21	ppm	6			
#3	6.04	ppm	20	ppm	O			
Calculate Precision	on [STD-B1] + [STD-B2] + [STD-B3] X <u>1</u> 25	X <u>100</u> 1	1.3	#DIV/0		
					Must be less t	han 10%		

Performed By Lows Lwhrt	Date/Time: 4-10-74-0600
-------------------------	-------------------------

CALIBRATION PROCEDURE AND BACKGROUND	D REPORT - INTEGRATE	D
--------------------------------------	----------------------	---

LANDFILL NAME AC	efanink	INSTRUMENT	MAKE +	Herro
MODEL TVA1000	EQUIPMENT #			1636746774
MONITORING DATE:	4-10-24	TIME	0600	,

1. Allow instrument to zero itself while introducing air

2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm

3 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 seco		Downwind Back Reading: (Highest in 30 second		Background Value (Upwind + Dow 2	
2.8	ppm	2.2	ppm	25	ppm

Background Value = 2.5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas	ng Using	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading aft switching from Zero A Calibration Gas	
#1	23	ppm	20.7	ppm	>	
#2	21	ppm	27.5	ppm	7	
#3	75	ppm	22.5	ppm	フ	
	7	#DIV/0!				
					Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD ~ (E	
#1	045	ppm	2.3	ppm	2	
#2	6-09	ppm	25	ppm	8	
#3	0-07	ppm	20	ppm	0	
Calculate Precision [STD-B1] + [STD-B2] + [STD-B3] X 1 X 100 25 1		2.8	#DIV/0!			
					Must be less t	han 10%

Performed By	Masher or Ingol	Date/Time 4-10-24- 0600	
		Date in the	

LANDFILL NAMEAC	farind	INSTRUME	ENT MAKE +6	led no
MODEL TVA1000	EQUIPMENT #	12	SERIAL #:	103624674/
MONITORING DATE:	4-10-24	TIME	0600	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3 Adjust meter settings to read 25 ppm

Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 sec		Downwind Back Reading: (Highest in 30 seco		Background Value (Upwind + Dow 2	100.11
2.8	ppm	2.2	ppm	25	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #			90% of the Stabilized Reading		Time to Reach Stabilized Rea switching fron Calibration Ga	ding after I Zero Air to
#1	24	ppm	21.6	ppm	5	
#2	24	ppm	21.6	ppm	~	
#3	21	ppm	27.5	ppm	5	
	~	#DIV/0!				
					Must be less that	an 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]	
#1	6.17	ppm	24	ppm	7	
#2	0.11	ppm	24	ppm	1	
#3	0.09	ppm	20	ppm	0	
Calculate Precision [STD-B1] + [STD-B2] + [STD-B3] X 1 X 25				2.6	#DIV/0	
					Must be less th	nan 10%

Performed By	JORKY MENT	Date/Time	4-10-24	-0600
	0		_	

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED	CALIBRATION	PROCEDURE	AND B	ACKGROUND	REPORT -	INTEGRATED
--	-------------	-----------	-------	-----------	----------	------------

LANDFILL NAME ACTA	nint	INSTRUMEN	TMAKE: JHERRO
MODEL: +VA1000	EQUIPMENT #:	13	SERIAL #: //077467 W
MONITORING DATE 4	-10-24	TIME:	0610

1 Allow instrument to zero itself while introducing air

2 Introduce calibration gas into the probe Stabilized reading = 25 ppm

3. Adjust meter settings to read 25 ppm

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec		Downwind Back Reading: (Highest in 30 seco		Background Val (Upwind + Dow	
2.8	ppm	2.2	ppm	2.5	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas	90% of the Stabilized Reading		Time to Reach stabilized Read switching from Calibration Gas	ling after Zero Air to	
#1	24	ppm	21.6	ppm	6	
#2	25	ppm	22.5	ppm	6	
#3	25	ppm	22.5	ppm	6	
	Calculate Response	Time (<u>1</u> -	+2+3)		6	#DIV/0!
					Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision	n [STD – (B)]
#1	0:15	ppm	24	ppm	/	
#2	0-88	ppm	25	ppm	0	
#3	0-04	ppm	25	ppm	6	
Calculate Precision	[STD-B1] + [S	TD-B2] + [5	STD-B3] X <u>1</u> 25	X <u>100</u> 1	1.3	#DIV/0!
					Must be less t	han 10%

Performed By ENDIG 05/115	Date/Time: 4-10-24-0600
---------------------------	-------------------------

LANDFILL NAME ACTAIN	INSTRUMENT MAKE + HEL NO
MODEL: +VA 1000 EQUIPMENT #	# 16 SERIAL # 1/02746776
MONITORING DATE 4-10-24	TIME: 0600

Calibration Procedure:

1 Allow instrument to zero itself while introducing air

2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm

3 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec	1.7	Downwind Back Reading: (Highest in 30 sec		Background Val	
2.8	ppm	2.2	ppm	2.5	ppm

Background Value = 2-5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement # Stabilized Reading Using 90% o Calibration Gas Reading				lized	Time to Reach Stabilized Read switching from Calibration Gas	ding after Zero Air to
#1	23	ppm	20-7	ppm	6	
#2	24	ppm	2/18	ppm	6	
#3	25	ppm	27~	ppm	6	
	Calculate Response	e Time (<u>1</u> - 3	+2+3)		-6	#DIV/0!
					Must be less tha	an 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for 2			Meter Reading for Calibration Gas (B)		i [STD – (B)]
#1	0.16	ppm	23	ppm	Z	
#2	0.08	ppm	24	ppm	1	
#3	0.04	ppm	25	ppm	۵	
Calculate Precision	[STD-B1] + [STD-B2] + [5 3	STD-B3] X <u>1</u> 25	X <u>100</u> 1	ر Must be less th	#DIV/0!

Performed By	tyloner non som	Date/Time	4-10-24-0600
enormed by	0410	Date/Time _	9-10-01

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name: Altamont Landfill Date: 4-1024
Time: 9:20 AM PM
Instrument Make: Photo Voa Model: Micro FID S/N: CZPO 312
Calibration Procedure
1. Allow instrument to internally zero itself while introducing zero air.
2. Introduce the calibration gas into the probe.
Stable Reading =ppm
3. Adjust meter to read 500 ppm.
Background Determination Procedure
1. Upwind Reading (highest in 30 seconds): ppm (a)
2. Downwind Reading (highest in 30 seconds): ppm (b)
Calculate Background Value:
$\frac{(a) + (b)}{2} \text{Background} = \frac{2}{2} \text{ppm}$

Performed By: 6 any Campale

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name: Altamont Landfill Date: 5-6-24
Time: _AM L.15 PM
Instrument Make: Photolac Model: McroFID S/N: CZPD312
Calibration Procedure
1. Allow instrument to internally zero itself while introducing zero air.
2. Introduce the calibration gas into the probe.
Stable Reading = 500 ppm
3. Adjust meter to read 500 ppm.
Background Determination Procedure
1. Upwind Reading (highest in 30 seconds): ppm (a)
2. Downwind Reading (highest in 30 seconds): ppm (b)
Calculate Background Value:
$\frac{(a) + (b)}{2} \qquad \text{Background} = \underbrace{\qquad} \text{ppm}$

Performed By: Gary Carpelor

RESPONSE TIME TEST RECORD

Date: 4-10-24		
Expiration Date (3 months): 7-10-24		
Time: 9:15 AM PM		
Instrument Make: Photolac Model: Microt (D S/N: CZP)	N 317	
Measurement #1:	0 3/2	
Stabilized Reading Using Calibration Gas: 90% of the Stabilized Reading:	560	ppm
Time to Reach 90% of Stabilized Reading after		
switching from Zero Air to Calibration Gas:	2.5	_ seconds (a)
Measurement #2:		
Stabilized Reading Using Calibration Gas:	501	ppm
90% of the Stabilized Reading:	451	ppm
Time to Reach 90% of Stabilized Reading after		
switching from Zero Air to Calibration Gas:	3,0	seconds (b)
Measurement #3:		
Stabilized Reading Using Calibration Gas:	500	ppm
90% of the Stabilized Reading:	450	ppm
Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:	3.€	_ seconds (c)
Calculate Response Time:		
$\frac{(a) + (b) + (c)}{3} = \frac{3.17}{3}$ seconds (must be less than 30)	seconds)	
Performed By: Garpaty		

CALIBRATION PRECISION TEST RECORD

Date: 4-16-24		
Expiration Date (3 months): 7-10-24		
Time: 918 AM PM		
Instrument Make: Pholac Model: Mad F()	S/N: CZ	D 3 12
Measurement #1:		
Meter Reading for Zero Air:	0	ppm (a
Meter Reading for Calibration Gas:	500	ppm (b
Measurement #2:		
Meter Reading for Zero Air:	0	ppm (c)
Meter Reading for Calibration Gas: _	200	ppm (d
Measurement #3:		
Meter Reading for Zero Air:	0	_ ppm (e
Meter Reading for Calibration Gas: _	800	ppm (f)
Calculate Precision:		
$\frac{\{ (500) - (b) + (500) - (d) + (500) - (f) \}}{3} \times \frac{1}{500} \times \frac{1}{500}$	100	
% (must be < than 10%	%)	
Performed By: Gary Curpela		

TECHNICIAN: My DATE: 46-29

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,006	+/- 2500
< 1	ZERO GAS	0:071	< 3
	PIL)	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

CUSTOMER: RES VAN # 11

SERIAL NUMBER: 1036386779

TECHNICIAN: MM M DATE: 4-6-79

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,001	+/- 2500
< 1	ZERO GAS	0.069	< 3
	PII		
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS ₋ (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
< 1	ZERO GAS	/	< 3

CUSTOMER: MAS CLAUT # 1	2
SERIAL NUMBER:	
TECHNICIAN: DATE	=:_4-6-24

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	99	+/- 25
500	500	499	+/- 125
10000	10000	(0,003	+/- 2500
< 1	ZERO GAS	0.63	< 3
	PIL)	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

CUSTOMER:	ès Ung	# 13	91
SERIAL NUMBER:	110774	5775	
TECHNICIAN:	M	DATE: _	4-6-29

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	800	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0.68	< 3
	PI)	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

CUSTOMER:	PIES Vait #16
SERIAL NUMBER:	1102746776
TECHNICIAN:	Mr My DATE: 4-6-29

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,111	+/- 2500
< 1	ZERO GAS	0,73	< 3
	PIL)	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	0	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

Site:				
Purpose:				
Operator:	4 W	M		
Date: 4-6-24		Time:	0845	
Model #				
Serial # #10 1036	346,773			
INSTRUMENT INTEGRITY	CHECKLIST	INSTR	RUMENT CALIBRA	ATION
Pottonitont	Air		LIBRATION CHE	
Battery test	Pass / Fail	Calibration Gas (ppm)	Actual (ppm)	% Accuracy
Reading following ignition	21 ppm			
Leak test	Pass / Fail / NA	500	500	1001.
Clean system check	Pass / Fail / NA		RESPONSE TIME	
(check valve chatter)	Pass / Fall / NA	Calibration Gas, p	opm S	00
il a sail	<u></u>	90% of Calibration	Gas, ppm 4	'50
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA		nttain 90% of Cal C	as ppm
	4-6-24	1	[2	
Date of last factory calibration	79071	3.	5	
Factory calibration record	Pass / Fail	Average 5	.6	A
w/instrument within 3 months	0	Equal to or less the Instrument calibra		_ (Ŷ) N _gas.
Comments:				

Site:	¥
Purpose:	
Operator:	My
Date: 46-34	Time:
Model #	
Serial # #11 (036346)	19
INSTRUMENT INTEGRITY CHECKI	LIST INSTRUMENT CALIBRATION
Battery test	CALIBRATION CHECK Fail Calibration Actual % Gas (ppm) (ppm) Accuracy
Reading following ignition 2.3	$\frac{1}{2} \text{ ppm} = \frac{\frac{1}{200}}{\frac{200}{100\%}}$
Leak test Pass /	Fail / NA
Clean system check (check valve chatter)	Fail / NA Calibration Gas, ppm
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Fail / NA 90% of Calibration Gas, ppm <u>450</u> Time required to attain 90% of Cal Gas ppm 1.
Date of last factory calibration 44	6-29 2.
Factory calibration record w/instrument within 3 months	Fail Average 90 Equal to or less than 30 seconds? Instrument calibrated to CHY gas.
Comments:	

465

Purpose: Operator:	2 M			
Date: 4-6-20	1	Time:	0915	
Model #				
Serial # # 12 103	624674			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	RUMENT CALIBRA	TION
D=M==+4	0		LIBRATION CHEC	
Battery test	Pass / Fail	Calibration Gas (ppm)	Actual	%
Reading following ignition	_2,3_ppm		(ppm)	Accuracy
	^	500	500	100%
eak test	Sass / Fail / NA		RESPONSE TIME	
Clean system check	Pass / Fail / NA		_	
check valve chatter)		Calibration Gas, p		00
12 supply pressure gauge	Pass / Fail / NA	90% of Calibration		150
acceptable range 9.5 - 12)	r ass / r all / IVA	1 ime required to a	ttain 90% of Cal G	as ppm
,	4-629	2.	9	
ate of last factory calibration	1-00-7		2	
actory calibration record	Pass / Fail	Average 6	0	<i>α</i> 2
v/instrument within 3 months		Equal to or less th		(Y) N
		Instrument calibra	ted to CL47	gas.
Comments:				

Purpose: Operator:	Mr
Date:	Time:
Model #	
Serial # # 13 1027467)	
INSTRUMENT INTEGRITY CHECKLI	ST INSTRUMENT CALIBRATION
	CALIBRATION CHECK
Battery test Pass / F	Fail Calibration Actual %
eading following ignition 2, (Gas (ppm) (ppm) Accuracy
Coding following ignition	500 S00 100%
eak test (Pass / F	ail / NA
lean system check Pass / F	ail / NA
check valve chatter)	Calibration Gas, ppm
	90% of Calibration Gas, ppm 450
2 supply pressure gauge Pass / F	ail / NA Time required to attain 90% of Cal Gas ppm
acceptable range 9.5 - 12)	1
ate of last factory calibration	$\frac{1}{2}$ $\frac{6}{}$
<u></u>	3. 6 Average 60
actory calibration record //ass / F /instrument within 3 months	Equal to or less than 30 seconds?
Within o months	Instrument calibrated to CUA gas.
comments:	

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

1000
Time:(0 5
INSTRUMENT CALIBRATION
CALIBRATION CHECK Calibration Actual % Gas (ppm) (ppm) Accuracy RESPONSE TIME Calibration Gas, ppm 90% of Calibration Gas, ppm 1. 2. 3. Average
1

465

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition Certification Analytical Accuracy (+/-)

Oxygen

20.9 %

2%

Nitrogen

Balance UHP

Lot # 20-7421

Mfg. Date:

5/20/2020

Expiration Date:

Transfill Date:

see cylinder

Parent Cylinder ID NY02268

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Tony Janquart

Title:

Quality Assurance Manager

Certificate Date:

5/20/2020

(%eloM) notisatines Aldduson

Accuracy

negonin Jea -196/xO %6'02

MAJ THESE

DIS9 000,1 bns 7007 @ off 8 2mg

Lot#: 20-7421

103 [

24833 or (800) 201-8150 Fax (949) 757-0363 Mikaiser Avenue, Irvine, CA 92614

103-01-100

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Methane

Air

Certification

25 ppm

Balance

Analytical Accuracy

 $\pm 5\%$

Lot #

17-6074

Mfg. Date:

10/16/2017

Parent Cylinder ID

17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Certification

Analytical Accuracy

Methane

25 ppm

 $\pm 5\%$

Air

Balance

Lot#

17-6074

Mfg. Date:

10/16/2017

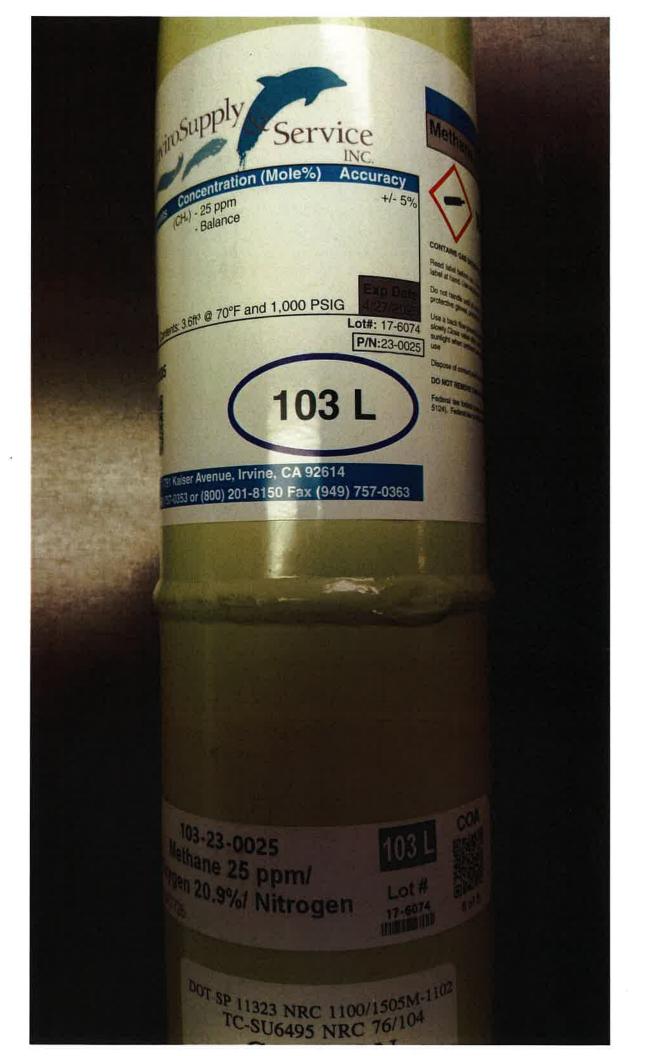
Parent Cylinder ID

17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Certification	Analytical Accuracy (+/-)
500 ppm	2%
20.9 %	2%
	500 ppm

Lot# 20-7497

Mfg. Date: 7/10/2020

Expiration Date:

Transfill Date: see cylinder

Parent Cylinder ID TWC001763

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Tony Janquart

Title:

Quality Assurance Manager

Certificate Date:

7/10/2020

Methane (0) Service INC. niration (Mole%) Accuracy +/- 2% Sto ppm Blance CONTAINS GAS UNDER PROM Read label before use King street label at hand. Use streets Do not handle until all sales and protective gloves, protective gloves, protective sales 10 70°F and 1,000 PSIG Use a back flow prevents are slowly. Close valve after some surlight when antiers around Lot#: 20-7497 P/N:23-0500 Dispose of content ardy on DO NOT REMOVE THE PROD Federal law forbids 103 5124). Federal lawpoores as Minue, Irvine, CA 92614 (949) 201-8150 Fax (949) 757-0363

No ppm/
Nitrogen Lot#

0

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 69671309 PO Number 08361523

Lot Number Norlab Part#

2-108-80 J1971500PA

Cylinder Size

103 Liter

Number of Cyl

Customer Part# N/A

Date on Manufacture

6/10/2022

Expires

06/2025

Analytical Accuracy

+/- 2 %

Component Methane Air

Reported Concentration

500 ppm Balance

Requested Concentration

> 500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

David Reed

Date Signed:

6/10/2022

Lab Technician

800.962.7837 wa premiers afety.com 33596 Sterling Production Sterling Height, 5

Components

Methane Air

Concentration (Mole

500 ppm Balance

2-108-80

lecuracy: +/- 2 %

J1971500PA

ments: 103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

5/5/2022

05/2025

CALIBRATION GAS

NON-FLAMMABLE GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Norco, Inc Twin Falls Warehouse 203 S. Park Ave. West Twin Falls, ID 83301 Cust Number WH012 Order Number 71846398 PO Number 04A35563

Lot Number

3-088-88

Norlab Part#

J1971500PA

Cylinder Size

103 Liter

5

Component

Methane

Air

Number of Cyl

Customer Part# N/A

Date on Manufacture

4/7/2023

Expires

04/2027

Analytical Accuracy

+/- 2 %

Reported

Concentration

500 ppm Balance Requested

Concentration

500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Jeff Korn/

Lah Technician

Date Signed:

4/7/2023

898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

800.962.7837 www.premiers afety.com

33596 Sterling Posterling Height

Components

Methane

Concentration (Mole

500 ppm Balance

lutt: 3-088-88

MOUNTY 4-2%

J1971500PA

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

4/7/2023

CALIBRATION GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312 Cust Number 07152 Order Number 69679439 PO Number 04906817

Lot Number

2-154-85 J1002

Norlab Part# Cylinder Size

103 Liter

1

Number of Cyl

Customer Part# N/A

Date on Manufacture

6/13/2022

Expires

06/2025

Analytical Accuracy

Certified

Component

Air

Oxygen

T.H.C. (as Methane)

Nitrogen

Reported

Concentration
Zero Grade

20.9 % < 1.0 ppm Balance Requested

Concentration
Zero Grade
20.9 %
< 1.0 ppm

Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

Minor constituents tested with standards traceable to NIST by mass or comparison to SRM's (Standard Reference Materials).

NIST Traceable Numbers are available upon request.

Approved:

David Reed

_Date Signed:

6/13/2022

Lab Technician

\$00.962.7837 premiersafety.com

Sterling Hall

components

orygen TH.C. (as Methane) Mrogen

Concentration (M

Zero Grade 20.9 % < 1.0 ppm Balance

2-154-85

Amusy: Certified

J1002

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

8/13/2022

08/2025

CALIBRATION GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 73732858

PO Number 04B70733

Lot Number Norlab Part# 3-340-61 J1971500PA

Cylinder Size

103 Liter

Number of Cyl

Component

Methane

Air

Date on Manufacture

12/7/2023

Expires

12/2027

Analytical Accuracy

+/- 2 %

Customer Part# N/A

Reported

Concentration

500 ppm Balance

Requested

Concentration

500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager

Date Signed:

12/7/2023

800.962.7837 angremiers afely, com

Concentration

500 ppm Balance

MFG Date:

Exp. Date:

Contents: 103Liters-3.6Cu.Ft.,-1000psig

Part J1971500PA

Accuracy: +/- 2 %

3-340-61

CALIBRATION GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 73732858 PO Number 04B70733

Lot Number Norlab Part# 3-340-62 J197125PA

Cylinder Size

103 Liter

Number of Cyl 5

Customer Part# N/A

Date on Manufacture

12/7/2023

Expires

12/2027

Analytical Accuracy

+/- 5 %

Component Methane Air

Reported Concentration

> 25 ppm Balance

Requested

Concentration

25 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager

Date Signed:

12/7/2023

800.962.7837 www.premiersafety.com 33596 Sterling Peads Sterling Heights High

Components

Methane

Concentration (Mole)

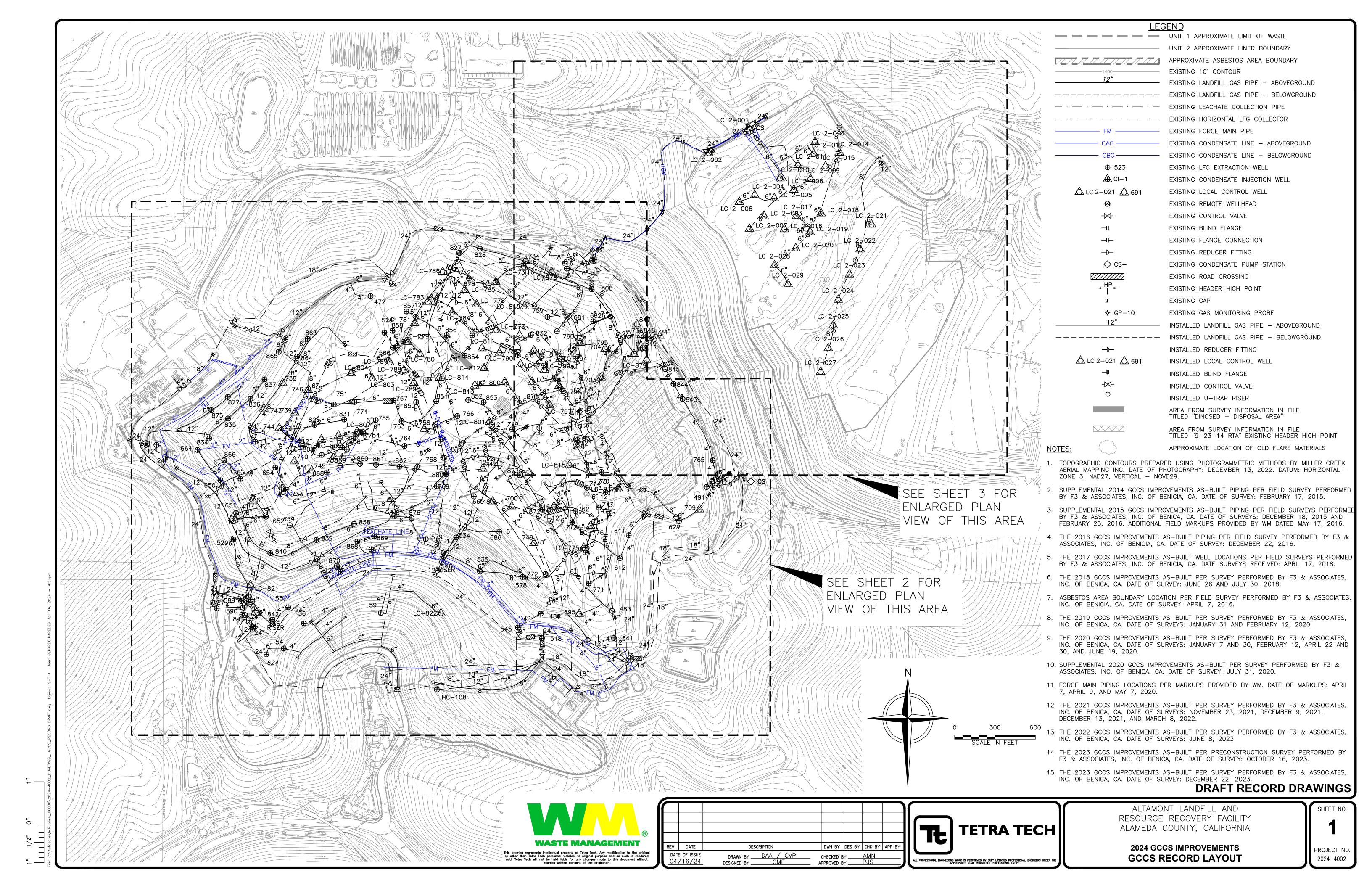
25 ppm Balance

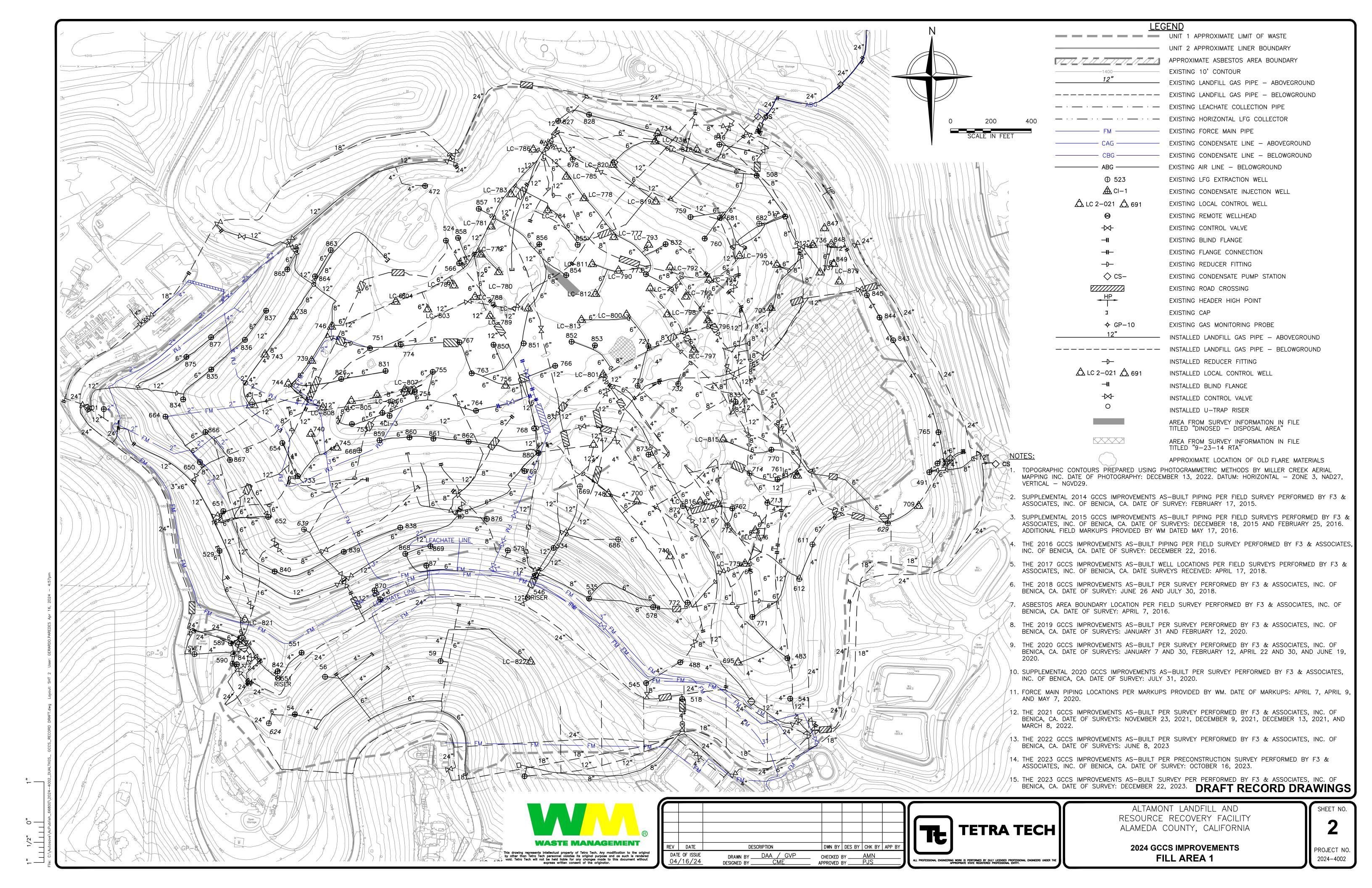
3-340-62

cy: +1-5%

J197125PA

103Liters-3.6Cu.Ft.,-1000psig


MFG Date:


Exp. Date:

12/7/2023 12/2027

CALIBRATION GAS

Appendix B GCCS Map

Appendix C Root Cause/Corrective Action Analyses Notifications

No Root Cause/Corrective Action Analyses during the reporting period

Appendix D 40 CFR 62, SUBPART OOO SEMI-ANNUAL REPORT

40 CFR 62, SUBPART 000 SEMI-ANNUAL REPORT

Altamont Landfill and Resource Recovery Facility Facility Number A-2066 10840 Altamont Pass Road, Livermore, CA 94551

EXECUTIVE SUMMARY

The Altamont Landfill and Resource Recovery Facility (ALRRF) is a municipal solid waste (MSW) landfill located in Livermore, California, in Alameda County, and is owned/operated by Waste Management of Alameda County, Inc. The facility is subject to the requirements of the United States Environmental Protection Agency's (USEPA) *Standards of Performance for Municipal Solid Waste Landfills*; 40 Code of Federal Regulations (CFR) Part 63, Subpart AAAA.

Waste Management of Alameda County, Inc is submitting following information for 40 CFR 62, Subpart OOO for the Altamont Landfill and Resource Recovery Facility (ALRRF). The requirements from 40 CFR 62.16716(c) incorporated requirements for landfill gas temperatures at wellheads from sections of that were incorporated into the California State Plan 40 CFR 62 Subpart F. This report covers the period from December 1, 2023, to May 31, 2024.

TABLE OF CONTENTS

1.0 40 CFR 40 CFR 62.1115(B)(2) SEMI-ANNUAL REPORT						
1.1.1	Wellhead Monitoring §62.16722(a)(2) and (3)	2				
1.1.2	Root Cause/Corrective Action Analysis §62.16724(h)(7)	4				

1.0 40 CFR 40 CFR 62.1115(B)(2) SEMI-ANNUAL REPORT

ALRRF is submitting this Report because the existing MSW landfill owns and/or operates an active landfill gas collection and control system. The following summarizes the report requirements from 40 CFR 62, Subpart OOO. This report covers from December 1, 2023, through May 31, 2024.

1.1.1 Wellhead Monitoring §62.16722(a)(2) and (3)

\$62.16722(a) requires each owner or operator seeking to comply with \$62.16714(b)(2) for an active gas collection system to install a sampling port and a thermometer, other temperature measuring device, or an access port for temperature measurements at each wellhead; and

- (2) Monitor nitrogen or oxygen concentration in the landfill gas on a monthly basis
- (3) Monitor temperature of the landfill gas on a monthly basis as provided in §62.16720(a)(4). The temperature measuring device must be calibrated annually using the procedure in 40 CFR part 60, appendix A-1, EPA Method 2, section 10.3.

ALRRF operated in compliance with all wellhead monitoring standards listed in §62.16716(a)(2) and (3) during the reporting period. Each landfill gas collector is equipped with an access port allowing for measuring temperature at each wellhead. On a monthly basis operations and maintenance personnel measure the gauge pressure, temperature, and oxygen concentration at each well head. The gauge pressure taken at the wellhead is used in determining the presence of vacuum at the collector. Measurements are taken with a portable meter which is calibrated per the manufacturer's specifications.

Wells that were found to be operating at temperatures greater than 131°F (or HOV) are summarized in the following tables.

Wells with Landfill Gas Temperatures Greater than 131°F or HOV

Name	Initial Reading			Final Ro	eading	Duration
	Date	Temp (°F)	5-Day Corrective Action	Date	Temp (°F)	(days)
ALT20012	5/1/2024	131.1	NSPS/EG CAI;Dec. Flow/Vac.	5/1/2024	129.9	<1
ALT20012	5/15/2024	131.3	No Adj. Made;NSPS/EG CAI	5/28/202 4	80.1	<15
ALTA0855*	4/12/2024	164.6	NSPS/EG CAI;Barely Open;Dec. Flow/Vac.	4/16/202 4	144.2	<5
ALTA0880**	A0880** 12/27/2023 135		NSPS/EG CAI;Barely Open	2/19/202 4	125	<60
ALTA0834**	12/27/2023	133	NSPS/EG CAI;Inc. Flow/Vac.	1/5/2024	129	<15

^{*}WellALTA0855 was on HOV list. WellALTA0855 was damaged and decommissioned on April 18, 2024 ** Wells ALTA0834 and ALTA0880 were added to the HOV list on April 3, 2024.

A list of all current HOVs is presented in the following table.

Wells with Temperature HOVs

Device	Date	HOV
ALLC0745	7/1/2018	145°F
ALTA0579	1/22/2011	145°F
ALTA0589	1/18/2018	145°F
ALTA0611	1/22/2011	145°F
ALTA0612	3/3/2011	145°F
ALTA0639	12/1/2014	145°F
ALTA0652	6/1/2016	145°F
ALLC0836	9/23/2021	145°F
ALLC0798	7/29/2022	145°F
ALTA0850	3/14/2023	145°F
ALTA0867	3/14/2023	145°F
ALTA0858	6/9/2023	145°F
ALTA0767	9/25/2023	145°F
ALT20017	9/25/2023	145°F

Device	Date	HOV
ALTA0733	10/3/2017	145°F
ALLC0740	6/3/2019	145°F
ALTA0755	2/1/2019	145°F
ALTA0721	3/24/2017	145°F
ALTA0723	3/24/2017	145°F
ALTA0732	3/24/2017	145°F
ALTA0654	1/1/2017	145°F
ALLC0835	9/23/2021	145°F
ALLC0837	9/23/2021	145°F
ALTA0859	3/14/2023	145°F
ALTA0760	1/31/2023	145°F
ALT20013	7/6/2023	145°F
ALTA0834	4/3/2024	145°F
ALTA0880	4/3/2024	145°F

Wells with Temperature HOVs

Device	Date	HOV		
ALT20012	6/10/2024	145°F		

Device	Date	HOV		
-	-	-		

1.1.2 Root Cause/Corrective Action Analysis §62.16724(h)(7)

§62.16724(h)(7): For any corrective action analysis for which corrective actions are required in §62.16720(a)(3) or (4) and that take more than 60 days to correct the exceedance, the root cause analysis conducted, including a description of the recommended corrective action(s), the date for corrective action(s) already completed following the positive pressure or elevated temperature reading, and, for action(s) not already completed, a schedule for implementation, including proposed commencement and completion dates.

During the reporting period all temperature exceedances were within 0 to 60 days.

40 CFR 62, SUBPART OOO Root Cause/Corrective Action Analyses Notifications

Altamont Landfill

Root Cause / Corrective Action Analysis

Well ID	ALTA	.0880	Analysis Category		Temperature				
Initial Exce	edance Da	te	1	12/27/2023 Exceedance Correction Date				2/19/2024	
Form Completed By Rajan Phadnis									
Root Caus	e Analysis								
Were hoses and filters from the monitor connected properly? Yes									
Is the well	turned off	for fire miti	gation?				No		
Initial Asse	ssment of I	ssue		Tempera	ture chan	ge - cause ι	unknown		
Issue Inves	tigated		Result					Date Co	mpleted
Evidence of	Fire		No indicat	tors of fire, no	further ac	tion require	d		12/27/2023
Gas Analys	es (if requi	red)							
Parameter		Result		Source		Date			
Carbon Mo	onoxide	20	ppm	Stain tube		12	2/27/2024		
Carbon Mo	onoxide	20	ppm	Stain tube			1/5/2024		
Carbon Mo	onoxide	20	ppm	Stain tube		7	2/26/2024		
Carbon Mo	onoxide	20	ppm	Stain tube		3	3/19/2024		
Certification	on		Raj	an Phadnis	Ap	proved By			Ben Tarver
Exceedanc	e corrected	within 60	days of init	ial exceedan	ce?	Yes			
Exceedance	e corrected	d within 120	days of in	itial exceeda	nce?	Yes			
_									
	Action Ana						1		
Scope of C	orrective A	ction			NA				_
Start Date		NA			Compl	etion Date		NA	
Certification	on				Ар	proved By			
Summary of Completed Actions									
Submitted	HOV letter	r to BAAQN	1D request	ing well to b	e added to	o HOV list t	o 145°F.		