

Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037 T: 408.779.2206

July 25, 2024

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street. Suite 600 San Francisco, CA 94105 Attn: Title V Reports

Compliance@baaqmd.gov

Director of Enforcement Division USEPA, Region IX 75 Hawthorne Street San Francisco, CA 94105 Attn: TRI and Air Section (ENF-2-1)

r9.aeo@epa.gov

SUBJECT: Combined Title V Semi-Annual and Partial 8-34 Annual Report 40 CFR 63

Subpart AAAA Semi-Annual Report

The Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive, San Jose, CA 95037

Facility Number A1812

Dear Sir or Madam:

The Kirby Canyon Recycling & Disposal Facility (KCRDF) is pleased to submit the attached Combined Title V Semi-Annual and Partial 8-34 Annual Report for the period of January 1, 2024, through June 30, 2024, to the Bay Area Air Quality Management District (BAAQMD) and the United States Environmental Protection Agency (USEPA), Region IX. As required by 40 Code of Federal Regulations (CFR) Part 63 Subpart AAAA, the Semi-Annual Startup, Shutdown and Malfunction (SSM) Report is also enclosed. The Combined Title V Semi-Annual and Partial 8-34 Annual Report satisfies the requirements of the Title V Permit listed in Condition Number 1437 Part 16 and Standard Condition I.F.

Based on information and belief formed after reasonable inquiry, I certify under penalty of law that the statements included in this report are true, accurate, and complete.

Sincerely,

The Kirby Canyon Recycling & Disposal Facility

Michael Tejero

Mike Tejero

Responsible Official

Attachments:

Combined Title V Semi-Annual and Partial 8-34 Annual Report

Combined Title V Semi-Annual and Partial 8-34 Annual Report

For the Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive San Jose, California 95037 Facility Number A1812 January 1, 2024, through June 30, 2024

Submitted on: July 29, 2024

Prepared for:
The Kirby Canyon Recycling & Disposal Facility

For Submittal to:
The Bay Area Air Quality Management District
375 Beale Street, Suite 600
San Francisco, CA 94105
Attn: Title V Reports

and

USEPA, Region 9
75 Hawthorne Street
San Francisco, CA 94105
Attn: Director Enforcement Division, TRI & Air Section (ENF-2-1)

Prepared by:

Kirby Canyon Recycling & Disposal Facility

TABLE OF CONTENTS

1		INTRODUCTION	3
	1.1	Purpose	3 3 3
	1.2	Record Keeping and Reporting	3
	1.3	Report Preparation	3
2		SEMI-ANNUAL MONITORING REPORT	4
	2.1	Collection System operation (BAAQMD 8-34-501.1 & §60.757(f)(4))	5
		.1 Collection System Downtime	5
		.2 Well Start-Up and Disconnection Log	_
	2.2	Emission Control Device Downtime (BAAQMD 8-34-501.2 & §60.757(f) (3	• •
			5
		.1 LFG Bypass Operations (§60.757(f)(2))	6
	2.2	.2 Key Emission Control Operating Parameters (BAAQMD 8-34-501.11 & 8-	_
	0.0	34-509)	6
	2.3	Temperature Monitoring Results (BAAQMD 8-34-501.3, 8-34-507, &	_
	2.4	§60.757(f)(1)) Monthly Cover Integrity Monitoring (BAACMD 8 34 540)	ט
	2.4 2.5	Monthly Cover Integrity Monitoring (BAAQMD 8-34-510) Less than Continuous Operation (BAAQMD 8-34-501.5)	6 7 7
	2.5 2.6	Surface Emissions Monitoring (BAAQMD 8-34-501.6, 8-34-506, &	′
	2.0	\$60.757(f)(5))	7
	2.7	Component Leak Testing (BAAQMD 8-34-501.6 & 8-34-503)	8
	2.8	Solid Waste Placement Records (BAAQMD 8-34-501.7)	g
	2.9	Non-degradable Waste Acceptance Records (BAAQMD 8-34-501.8)	9 9
	2.10	Wellhead Monitoring Data (BAAQMD 8-34-501.4 & 8-34-505)	9
		0.1 Wellhead Deviations (BAAQMD 8-34-501.9 & §60.757(f)(1))	9
	2.11	Gas Flow Monitoring Results (BAAQMD 8-34-501.10, 8-34-508, &	
			10
	2.12	Compliance with Title V Permit Cond. No. 1437, Part 14	10
	2.13	Compliance with §60.757(f)(6)	11
	2.14	Compliance with Title V Permit Cond. No. 1437, Parts 2 and 3	11
	2.15	•	11
	2.16	·	11
	2.17	Compliance with Title V Permit Cond. No. 25872	12
3		PERFORMANCE TEST REPORT	13
	3.1		13

3.2	Compliance with §60.757(g)(1)	14
3.3	Compliance with §60.757(g)(2)	14
3.4	Compliance with §60.757(g)(3)	15
3.5	Compliance with §60.757(g)(4)	15
3.6	Compliance with §60.757(g)(5)	15
3.7	Compliance with §60.757(g)(6)	15
4	START-UP, SHUTDOWN, MALFUNCTION REPORT	17
4.1	SSM Report for the Collection and Control Systems at the KCRDF	17

LIST OF TABLES

- Table 2-1 Semi-Annual Report Requirements
- Table 2-2 Solid Waste Placement
- Table 2-3 Total LFG Flow A-12 Flare January 1, 2024, through June 30,2024
- Table 2-4 Condensate Injection Rates
- Table 3-1 Performance Test Requirements
- Table 3-2 A-12 Flare Performance Test Results February 14, 2024

List of Appendices

APPENDIX A – Landfill Gas Collection System Site Map

APPENDIX B – Flare SSM Log and GCCS Downtime Report

APPENDIX C – Wellfield SSM Log

APPENDIX D – Flare Temperature Deviation/ Inoperative Monitor/ Missing Data Reports

APPENDIX E – Cover Integrity Monitoring Reports

APPENDIX F – Surface Emissions Monitoring Reports

APPENDIX G – Component Leak Check Reports

APPENDIX H – Monthly Solid Waste Placement Totals

APPENDIX I – Wellfield Monitoring Logs

APPENDIX J - BAAQMD Correspondence

APPENDIX K – Wellfield Deviation Log

APPENDIX L - Monthly Landfill Gas Flow Rates

APPENDIX M – Monthly Condensate Injection Logs

APPENDIX N – Gas Migration Monitoring Reports

APPENDIX O – A-12 Flare February 14, 2024, Performance (Source) Test Summary

APPENDIX P – A-12 Flare 12- Month Sulfur Dioxide Emissions Log

1 INTRODUCTION

1.1 Purpose

This document is a Combined Semi-Annual Title V Report and Partial 8-34 Annual Report for the Kirby Canyon Recycling & Disposal Facility (KCRDF), pursuant to Title V Permit Standard Condition 1.F and Condition Number 1437 Part 16. This Combined Report satisfies the requirements of Regulation 8, Rule 34, Section 411 of the Bay Area Air Quality Management District (BAAQMD) and Title 40 Code of Federal Regulations (CFR) Part 60 Subpart CC, Emission Guidelines (EG) for municipal solid waste (MSW) landfills. This Combined Report meets the requirements of Title V Standard Condition 1.F, BAAQMD Regulation 8-34-411, and 40 CFR §60.757(f) and 40 CFR part 62, Subpart F and OOO and covers compliance activities conducted from January 1, 2024, through June 30, 2024. During the timeframe included in this report from January 1, 2024, through June 30, 2024, the site began compliance activities with specific conditions of 40 CFR part 63, Subpart AAAA (effective September 27, 2021) for wellhead temperature and pressure standards. This Combined Report also includes the Semi-Annual Report of Start-up, Shutdown and Malfunction (SSM) Plan activities pursuant to National Emission Standards for Hazardous Air Pollutants (NESHAP), 40 CFR Part 63, Subpart AAAA for Landfills.

Section 2 of this Combined Report contains the elements required to satisfy both BAAQMD Regulation 8-34-411 and 40 CFR §60.757(f). A Performance Test Report for the A-12 Flare that meets the requirements of both BAAQMD Regulation 8-34-413 and 40 CFR §60.758(g) was conducted on February 14, 2024. Section 3 of this Combined Report includes performance test data collected during the reporting period as well as a discussion of the data from the Performance Test for the A-12 Flare, in compliance with BAAQMD Regulation 8-34-412, and Title V Permit Condition Number 1437 Parts 12 and 13. The February 14, 2024, Performance Test Report results for the A-12 Flare are included in Appendix O of the Combined Report.

Section 4 contains the Semi-Annual Report of SSM Plan activities.

1.2 Record Keeping and Reporting

Records are maintained and available for inspection in accordance with BAAQMD Regulation 8-34-501.12 and 40 CFR §60.758. The primary location for records storage is at the KCRDF. Records are maintained at this location for a minimum of five years.

1.3 Report Preparation

This Combined Report has been prepared by the KCRDF.

2 SEMI-ANNUAL MONITORING REPORT

In accordance with the KCRDF Title V Permit Standard Condition 1.F; Condition 1437, Part 16; BAAQMD Regulation 8-34-411 and 40 CFR §60.757(f), this report is a Combined Semi-Annual Title V Report and Partial 8-34 Annual Report that is required to be submitted by the KCRDF. The report contains monitoring data for the operation of the landfill gas collection and control system (GCCS). The operational records have been reviewed and summarized. The timeframe included in this report is January 1, 2024, through June 30, 2024. The following table lists the rules and regulations that are required to be included in this Combined Report.

Table 2-1 Semi-Annual Report Requirements

RULE	REQUIREMENT	LOCATION IN REPORT
8-34-501.1 §60.757(f)(4)	All collection system downtime, including individual well shutdown times and the reason for the shutdown.	Section 2.1, Appendices B & C
8-34-501.2 §60.757(f)(3)	All emission control system downtime and the reason for the shutdown.	Section 2.2, Appendix B
8-34-501.3, 8-34-507, §60.757(f)(1)	Continuous temperature for all operating flares and any enclosed combustor subject to Section 8-34-507.	Section 2.3, Appendix D
8-34-501.4, 8-34-510	Testing performed to satisfy any of the requirements of this Rule.	Sections 2.4 & 2.10, Appendix E
8-34-501.5, 8-34-505	Monthly landfill gas (LFG) flow rates and well concentration readings for facilities subject to 8-34-404.	Sections 2.5, 2.10 & 2.11, Appendices I & L
8-34-501.6, 8-34-503, 8-34-506, §60.757(f)(5)	For operations subject to Section 8-34-503 and 8-34-506, records of all monitoring dates, leaks in excess of the limits in Section 8-34-301.2 or 8-34-303 that are discovered by the operator, including the location of the leak, leak concentration in parts per million by volume (ppmv), date of discovery, the action taken to repair the leak, date of the repair, date of any required remonitoring, and the re-monitored concentration in ppmv.	
8-34-501.7	Annual waste acceptance rate and current amount of waste in place.	Section 2.8
8-34-501.8	Records of the nature, location, amount, and date of deposition of non- degradable wastes, for any landfill areas excluded from the collection system requirement as documented in the Collection and Control Design Plan.	Section 2.9
8-34-501.9, 8-34-505, §60.757(f)(1)	For operations subject to Section 8-34-505, records of all monitoring dates and any excesses of the limits stated in Section 8-34-305 that are discovered by the operator, including well identification number, the measured excess, the action taken to repair the excess, and the date of repair.	Section 2.10, Appendices I & K
8-34-501.10, 8-34-508, §60.757(f)(1)	Continuous gas flow rate records for any site subject to Section 8-34-508.	Section 2.11, Appendix L
8-34-501.11, 8-34-509	For operations subject to Section 8-34-509, records or key emission control system operating parameters.	Section 2.2.2

Table 2-1 (Continued)

RULE	REQUIREMENT	LOCATION IN REPORT
8-34-501.12	The records required above shall be made available and retained for a period of five years.	Section 1.2
	Description and duration of all periods when the gas stream is diverted from the control device through a bypass line or the indication of bypass flow as specified under §60.756.	
§60.757(f)(6)	The date of installation and the location of each well or collection system expansion added pursuant to paragraphs (a)(3), (b), (c)(4) of §60.755.	Section 2.13
§60.10 (d)(5)(i)	Start-up, Shutdown, and Malfunction Events	Section 4, Appendices B & C
§63	Subpart AAAA	Section 2.10

2.1 Collection System operation (BAAQMD 8-34-501.1 & §60.757(f)(4))

Appendix A contains a map of the KCRDF's existing landfill GCCS. Section 2.1.1 summarizes the collection system downtime. Section 2.1.2 includes the individual well shutdown times and the reason for each shutdown.

2.1.1 Collection System Downtime

During the period covered in this report, the landfill GCCS was not shut down for more than five days on any one occasion. The total GCCS Downtime for the reporting period of January 1, 2024, through June 30, 2024, is 31.0 hours. The downtime for the partial 2024 calendar year is 31.0 hours out of an allowable 240 hours per year pursuant to BAAQMD Regulation 8-34-113.2 (Limited Exemption, Inspection and Maintenance). The Flare SSM Log that list dates, times, and lengths of shutdowns for the reporting period is included in Appendix B.

2.1.2 Well Start-Up and Disconnection Log

There were nine (9) Well SSM events during the reporting period. Wellfield construction activity is discussed in Section 2.13.

The Wellfield SSM Log that list dates, times, and lengths of shutdowns for the reporting period is included in Appendix C.

2.2 Emission Control Device Downtime (BAAQMD 8-34-501.2 & §60.757(f) (3))

No bypassing of the control system or other emissions of raw LFG occurred during the reporting period. The SSM Log that includes all downtimes and reasons for each shutdown for the A-12 Flare is presented in Appendix B. As indicated in Section 2.1.1, the collection system downtime for the partial 2024 calendar year (January 1, 2024,

through June 30, 2024) is 31.0 hours out of an allowable 240 hours per year pursuant to BAAQMD Regulation 8-34-113.2 (Limited Exemption, Inspection and Maintenance).

During the reporting period, KCRDF submitted the BAAQMD Reportable Compliance Activity Form for temporary flare shutdown events on March 6, 2024 (RCA Number RCA 200227), March 30, 2024 (RCA Number 200259), and April 8, 2024 (RCA Number 200267), caused due to unplanned utility power interruption. KCRDF submitted the 30-day breakdown report letters and the Title V 10 and 30-day letters. Copies of submitted letters are included in Appendix J.

2.2.1 LFG Bypass Operations (§60.757(f)(2))

Title 40 CFR §60.757(f)(2) is not applicable at the KCRDF because a bypass line has not been installed. LFG cannot be diverted from the control equipment.

2.2.2 Key Emission Control Operating Parameters (BAAQMD 8-34-501.11 & 8-34-509)

The A-12 Flare is subject to continuous temperature monitoring as required in BAAQMD Regulation 8-34-507 and §60.757(f)(1). See Section 2.3 for flare temperature monitoring results.

2.3 Temperature Monitoring Results (BAAQMD 8-34-501.3, 8-34-507, & §60.757(f)(1))

The combustion zone temperature of the A-12 Flare is monitored with Type K Thermocouples. The temperature is displayed and digitally recorded with a General Electric (GE) data panel and Yokogawa FX112 continuous digital recorder. The temperature readings are downloaded and archived each working day.

Flare operating records indicate that the A-12 Flare three-hour average combustion zone temperature did not drop below the 1,400 degrees Fahrenheit (°F) limit, as required by Title V Permit A1812 Condition 1437 Part 10, during the reporting period when the A-12 Flare was in operation.

The flare operating records also indicate that the A-12 Flare combustion zone temperature did not drop below 1,433°F and 1,412°F on a three-hour average basis, while in operation during the other reporting periods, pursuant to the limits established during the March 3, 2023, and February 14, 2024, Performance Tests.

Appendix D contains flare temperature deviation/ inoperative monitor reports for the reporting period while the A-12 Flare was in operation.

2.4 Monthly Cover Integrity Monitoring (BAAQMD 8-34-510)

The Monthly Cover Integrity Monitoring Reports are included in Appendix E. The cover integrity monitoring was performed on the following dates:

- January 25, 2024
- February 8 and 26, 2024
- March 7, 11, and 26, 2024
- April 10, 19, and 26, 2024
- May 16, 22 and 28, 2024
- June 25, 2024

During the reporting period, site technician noted few locations with erosion, surface cracks and ponding. No other areas of concern were found during the reporting period. See Appendix E, Cover Integrity Monitoring Reports for repair details.

2.5 Less than Continuous Operation (BAAQMD 8-34-501.5)

The KCRDF does not operate under BAAQMD Regulation 8-34-404 (Less Than Continuous Operation) and therefore is not required to submit monthly LFG flow rates.

2.6 Surface Emissions Monitoring (BAAQMD 8-34-501.6, 8-34-506, & §60.757(f)(5))

Quarterly Surface Emissions Monitoring (SEM), pursuant to BAAQMD Regulation 8-34-506, occurred during the reporting period on the following dates:

- First Quarter 2024 January 16, 2024
- Second Quarter 2024 April 24, 2024

A Thermo Scientific Toxic Vapor Analyzer 1000 (TVA1000) flame ionization detector (FID) was used to perform the SEM during the First and Second Quarter 2024 events. The landfill surface was monitored along the path delineated on the SEM walking path map. Any areas suspected of having emission problems by visible observations were also monitored. Immediately prior to the First and Second Quarter 2024 monitoring events, the monitoring equipment was calibrated using zero air and 500 parts per million by volume (ppmv) methane (CH₄) calibration gas.

The First Quarter 2024 routine SEM was performed on January 16, 2024, and six (6) exceedances (FID readings greater than 500 ppm CH₄ above background measurements) were detected. The ten-day re-monitoring event was conducted on January 23, 2024, and no further exceedances were detected. The thirty-day follow-up monitoring event was conducted on February 12, 2024, and no exceedances were detected.

The Second Quarter 2024 SEM was performed on April 24, 2024, and seven (7) exceedances (FID readings greater than 500 ppm CH₄ above background measurements) were detected. Corrective actions were completed. The ten-day remonitoring event was conducted on April 24, 2024, and no further exceedances were detected. The thirty-day follow-up monitoring event was conducted on May 17, 2024, and no exceedances were detected. The First and Second Quarter 2024 SEM Reports are included in Appendix F.

2.7 Component Leak Testing (BAAQMD 8-34-501.6 & 8-34-503)

Quarterly component leak testing, pursuant to BAAQMD Regulation 8-34-503, occurred during the reporting period on the following dates:

- First Quarter 2024 January 10, 2024
- Second Quarter 2024 April 24, 2024

A Thermo Scientific TVA1000 FID was used to perform both the First and Second Quarter 2024 component leak testing events. No exceedances of 1,000 ppm were identified during the First and Second Quarter 2024 monitoring events.

Appendix G contains the Quarterly Component Leak Check Monitoring Reports.

2.8 Solid Waste Placement Records (BAAQMD 8-34-501.7)

The solid waste placement records were reviewed for the timeframe of January 1, 2024, through June 30, 2024. The current waste-in-place figure includes solid waste placed in the landfill through June 30, 2024. A table of monthly totals for the reporting period is provided in Appendix H. The total waste accepted and placed at the KCRDF landfill did not exceed the 2,600 ton-per-day limit during the reporting period, pursuant to Title V Permit Condition Number 1437, Part 1a. The current waste-in-place tonnage listed below did not exceed the 19.84 million tons limit as required in the Title V Permit Condition Number 1437, Part 1b. Table 2-2 summarizes the solid waste placement records for the reporting period.

Table 2-2 Solid Waste Placement

Waste Placement	Total Waste Landfilled Excluding Cover
January 1, 2024, through June 30, 2024	100,588 tons
Current Waste-In-Place as of June 30, 2024	Approximately 8.62 Million tons

2.9 Non-degradable Waste Acceptance Records (BAAQMD 8-34-501.8)

The GCCS Design Plan for the KCRDF does not include non-degradable waste areas that are excluded from the collection system. Therefore, BAAQMD Regulation 8-34-501.8 is not applicable.

2.10 Wellhead Monitoring Data (BAAQMD 8-34-501.4 & 8-34-505)

Wellhead monitoring was performed on a monthly basis pursuant to BAAQMD Regulation 8-34-505. Effective September 27, 2021, the site began compliance activities with specific conditions of 40 CFR part 63, Subpart AAAA for wellhead temperature and pressure standards. The well readings for January 1, 2024, through June 30, 2024, are included in Appendix I. Each well was monitored in accordance with the following requirements:

- 8-34-305.1 Each wellhead shall operate under a vacuum.
- 8-34-305.2 The LFG temperature in each wellhead shall be less than 55 degrees Celsius (131°F).
- 8-34-305.4 The oxygen (O₂) concentration in each wellhead shall be less than 5 percent (%) by volume.

The wellhead monitoring was performed on the following dates:

- January 5, 8, 10, 23, and 25, 2024
- February 6, 9, 12, and 13, 2024
- March 5, 6, 11, 12, and 27, 2024
- April 9, 10, 11, 12, 15, 16, and 24, 2024
- May 6, 7, 8, 9, 10, and 14, 2024
- June 3, 4, 5, 6, 10, and 14, 2024

2.10.1 Wellhead Deviations (BAAQMD 8-34-501.9 & §60.757(f)(1))

Please refer to the Wellfield Deviation Log, included in Appendix K, for exceedance records for the reporting period of January 1, 2024, through June 30, 2024. BAAQMD Regulation 8-34-305 (Wellhead Requirements) requires that each wellhead shall operate under a vacuum; wellhead temperature shall be less than 131°F (55 Degrees Celsius); and either the nitrogen concentration shall be less than 20 percent or the oxygen concentration shall be less than 5 percent. During this reporting period, there were no additional exceedances associated with specific conditions of 40 CFR part 63, Subpart AAAA for wellhead temperature and pressure standards.

2.10.2 Higher Operating Value (HOV) Wells

During the reporting period, the following wells are approved to operate at a higher operating value (HOV) temperature of 145°F: 51, 57, 58, 65, 66, 71, 74, 78, 86, 91, 92, 95, 98, 99, 119, 127, 128, 133, and 135. Wells 56, 75, 76, 87, and 89, are approved to operate at a HOV temperature of 156°F.

Copies of all BAAQMD correspondence are located in Appendix J.

2.11 Gas Flow Monitoring Results (BAAQMD 8-34-501.10, 8-34-508, & §60.757(f)(1)

The A-12 Flare LFG flow rate is measured continuously with a Kurz flowmeter. The LFG flow is displayed and digitally recorded with a General Electric data panel and Yokogawa FX112 continuous digital recorder. The flow meter is maintained pursuant to the manufacturer's recommendations. The flare flow meter meets the requirements of BAAQMD Regulation 8-34-508 by recording fuel flow at least every fifteen (15) minutes. Appendix D contains the specific details. The flow data for the flare are available for review at the KCRDF. Appendix L contains a summary of the monthly LFG flow rates and heat input for the flare.

Table 2-3 below is a summary of the LFG flow from January 1, 2024, through June 30, 2024, for the A-12 Flare. The A-12 Flare did not exceed the annual heat input rate of 1,087,700 million British Thermal Units (MMBTU), pursuant to Title V Permit A1812 Condition Number 1437, Part 8. The A-12 Flare did not exceed the permitted daily limit of 2,980 million British Thermal Units (BTU) for the duration of this event.

Table 2-3 Total LFG Flow A-12 Flare - January 1, 2024, through June 30, 2024

Emission Control Device	Average Flow (scfm)	Methane (%)	Total LFG Volume (scf)	Total CH ₄ Volume (scf)	Heat Input (MMBTU)
A-12 Flare	2,058	47.6	535,427,022	254,818,721	258,131

scfm = standard cubic feet per minute CH₄ = methane % = percent scf = standard cubic feet *Methane concentration from March 3, 2023 and February 14, 2024, Source Tests for the A-12 Flare.

2.12 Compliance with Title V Permit Cond. No. 1437, Part 14

The condensate injection rate did not exceed five (5) gallons per minute (gpm) during injection events (excluding startup times).

Table 2-4 summarizes the condensate injection rate and 12-month (consecutive) throughput in gallons for January 1, 2024, through June 30, 2024. Per Title V Permit A1812 Condition Number 1437 Part 14, the 12-month rolling average is below the permitted condensate injection limit of 2.0 million gallons per year. The monthly condensate injection logs are included in Appendix M.

Table 2-4 Condensate Injection Rates

Month	Average Condensate Injection Rate (gpm)	Monthly Condensate Injection Throughput (gallons)	Condensate Injection Throughput 12-Month Total (gallons)
January-24	2.6	80,846	802,017
February-24	2.3	65,252	796,111

Month	Average Condensate Injection Rate (gpm)	Monthly Condensate Injection Throughput (gallons)	Condensate Injection Throughput 12-Month Total (gallons)
March-24	2.4	64,364	784,028
April-24	2.6	60,932	771,643
May-24	1.8	57,774	756,516
June-24	2.0	48,981	736,625

gpm= gallons per minute

2.13 Compliance with §60.757(f)(6)

"The date of installation and the location of each well or collection system expansion added pursuant to (a)(3), (b), (c)(4) of §60.755."

The GCCS was modified pursuant to Title V Permit Number A1812 during the reporting period. During the reporting period, no vertical wells were decommissioned. No new vertical wells were started.

As of June 30, 2024, the GCCS system consists of 89 vertical wells, 0 horizontal collectors, and 4 leachate collection risers (LCRS).

2.14 Compliance with Title V Permit Cond. No. 1437, Parts 2 and 3

A total of 0.0 tons of contaminated soil containing volatile organic compounds (VOCs) greater than 50 parts per million (ppm) was received during the reporting period. Low-VOC soil (containing less than 50 ppm of VOCs) was received during the reporting period. Required records of soil acceptance are available for review at the KCRDF.

2.15 Compliance with Title V Permit Cond. No. 23022, Part 2

Diesel Engine S-8 (the diesel engine for the portable compressor) is required to be operated less than 1,290 hours during any consecutive 12-month period. S-8 operated a total of 36 hours during the 12-month period, July 1, 2023, through June 30, 2024. S-8 operated a total of 9 hours during the 6-month reporting period, January 1, 2024, through June 30, 2024. S-8 used a total of approximately 27 gallons of diesel fuel during the 6-month reporting period.

2.16 Compliance with Title V Permit Cond. No. 1437, Part 20

Effective July 2012, the A-12 Flare Sulfur dioxide emissions shall not exceed 300 ppmv and SO₂ (dry) emissions shall not exceed 94.9 tons per year. The total reduced sulfur (TRS) shall not exceed 860 ppmv (dry) expressed as hydrogen sulfide.

To demonstrate compliance with above limits, the site will conduct annual testing of total TRS at the landfill gas main header. The source test data for (source test conducted on March 3, 2023, and February 14, 2024) TRS value was used to calculate the monthly SO₂

emissions in tons. The SO_2 emission did not exceed limit during the reporting period. The SO_2 tons 12-month rolling logs are included in Appendix P.

2.17 Compliance with Title V Permit Cond. No. 25872

To demonstrate compliance with permit limits for Source S-24, Construction & Demolition Debris Stockpile, the total construction & demolition debris accepted at S-24 in any consecutive 12-month period is limited to 104,000 tons and 500 tons for each day. To demonstrate compliance with Source S-25 Green and Wood Waste Stockpile the total combined green waste and wood waste debris accepted at S-25 in any consecutive 12-month period is limited to 250,000 and 4,500 tons each day. During the reporting period, the site did not exceed the permitted annual and daily limits. Required records are available for review at the KCRDF.

3 PERFORMANCE TEST REPORT

In accordance with BAAQMD Regulation 8-34-413 and 40 CFR §60.757(g) in the New Source Performance Standard (NSPS), a Performance Test Report is required to be submitted from subject facilities containing performance and monitoring data for the operation of the GCCS. The operational records listed in Table 3-1 have been reviewed, summarized, and are included in this Performance Test Report.

Table 3-1 Performance Test Requirements

RULE	REQUIREMENT	LOCATION IN REPORT
8-34-412, §60.8, §60.752(b)(2)(iii)(B), §60.754(d)	Compliance Demonstration Test	Section 3.1, Appendix O
§60.757(g)(1)	A diagram of the collection system showing collection system positioning including all wells, horizontal collectors, surface collectors, or other gas extraction devices, including the locations of any areas excluded from collection and the proposed sites for future collection system expansion.	Section 3.2, Appendix A
§60.757(g)(2)	The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based.	Section 3.3
§60.757(g)(3)	The documentation of the presence of asbestos or non-degradable material for each area from which collection wells have been excluded based on the presence of asbestos or non-degradable material.	Section 3.4
§60.757(g)(4)	The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on non-productivity and the calculations of gas generation flow rate for each excluded area.	Section 3.5
§60.757(g)(5)	The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is inadequate to move the maximum flow rate expected over the life of the landfill.	Section 3.6
§60.757(g)(6)	The provisions for the control of off-site migration.	Section 3.7 Appendix N

3.1 A-12 Flare Performance Test Results (BAAQMD 8-34-412)

The most recent A-12 Flare Compliance Demonstration Test (Performance Test) was performed on the A-12 Flare by Blue Sky Environmental, LLC on February 14, 2024, pursuant to Title V Permit A1812 Condition Number 1437 Part 12. The Performance Test Report for the A-12 Flare indicates that the flare is in compliance with BAAQMD Regulation 8-34-301.3. As required by BAAQMD Regulation 8-34-301.3, the flare meets the non-methane organic compound (NMOC) emission rate of less than 30 ppmv. Pursuant to Title V Permit A1812 Condition Number 1437 Part 10, the A-12 Flare meets the oxides of nitrogen (NO_x) emission concentration limit of less than 0.06 pounds (lbs)/MMBTU. The A-12 Flare meets the carbon monoxide (CO) emission concentration limit of less than 0.3 lbs/MMBTU, pursuant to Title V Permit A1812 Condition Number 1437 Part 11. Table 3-2 shows the results of the A-12 Flare Performance Test, averaged from six test runs - three with condensate on, and three with condensate off.

The A-12 2024 Source Test Report was submitted to the BAAQMD on April 11, 2024, within 60 days of the test date. The source test correspondence and results for the above control device is included in Appendix O.

Table 3-2 A-12 Flare Performance Test Results – February 14, 2024

Condition	Flare (A-12) Average Results Condensate ON OFF		8-34-301.3 limit	Compliance Status
NMOC (ppmv @ 3% O ₂ , as CH ₄)	<2.5	<2.5	30 ppmv	In Compliance
NO _x , lbs/MMBTU	0.0439	0.0383	0.06	In Compliance
CO, lbs/MMBTU	0.0704	0.0619	0.30	In Compliance

3.2 Compliance with §60.757(g)(1)

"A diagram of the collection system showing collection system positioning including wells, horizontal collectors..."

A map dated November 30, 2023, of the landfill GCCS showing the positioning of all vertical wells, horizontal collectors, and other LFG extraction devices is included in Appendix A.

3.3 Compliance with §60.757(g)(2)

"The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based."

The KCRDF GCCS has historically provided LFG wells and collectors spaced in accordance with standard industry practices. The A-12 flare, LFG extraction wells, and piping are more than adequate to move the current LFG flow rate. KCRDF will continue to add additional LFG control capacity as necessary with the approval of BAAQMD. The installed collector density appears more than adequate for controlling surface emissions, based on continuous compliance and operational experience.

The total capacity of the LFG mover equipment was designed and will be designed to meet the current United States Environmental Protection Agency (USEPA) Model AP- 42 projections of LFG generation and the historic LFG extraction rates determined to be continuously available from the facility.

Demonstrating Compliance with §60.757(g)(2)

"The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based."

Compliance with 40 CFR §60.757(g)(2) is maintained by performing quarterly SEM. Refer to Section 2.6, Surface Emissions Monitoring for information pertaining to the SEM results. These results show that the GCCS has sufficient coverage over the waste footprint. Combined LFG recovery for the reporting period was 2,058 scfm. The current A-12 flare system has the capacity to destroy ~ twice the actual recovery. Well monitoring data shows that adequate vacuum is available at all points in the wellfield, demonstrating that the piping network is sufficient to handle all extracted LFG.

3.4 Compliance with §60.757(g)(3)

"The documentation of the presence of asbestos or non-degradable material for each area from which collection wells have been excluded based on the presence of asbestos or non-degradable material."

There are no segregated areas or accumulations of asbestos material documented for the site in the GCCS Design Plan. Therefore, 40 CFR §60.757(g)(3) is not applicable.

3.5 Compliance with §60.757(g)(4)

"The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on non-productivity and the calculations of gas generation flow rate for each excluded area."

Non-productive areas have not been excluded from the coverage of the GCCS. Therefore, 40 CFR §60.757(g)(4) is not applicable.

3.6 Compliance with §60.757(g)(5)

"The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is inadequate to move the maximum flow rate expected over the life of the landfill."

The A-12 Flare and blower system were installed in October and November 2007 and started up on December 3, 2007. The A-12 Flare and blower system is anticipated to be able to accommodate the expected LFG flow rate over the life of the landfill.

3.7 Compliance with §60.757(g)(6)

"The provisions for the control of off-site migration."

Quarterly LFG migration monitoring, including all on-site buildings, occurred on the following dates:

- First Quarter 2024 February 27, 2024
- Second Quarter 2024 April 11 and 17, 2024

All probes were in compliance with no detections above the 5.0 percent methane limit during the First and Second Quarter 2024 monitoring events. There were no LFG migration occurrences at the KCRDF, and no areas of concern were identified during the First and Second Quarter 2024 monitoring events. The LFG migration monitoring and building monitoring results for both quarterly events are included in Appendix N.

Demonstrating Compliance with §60.757(g)(6)

"The provisions for the control of off-site migration."

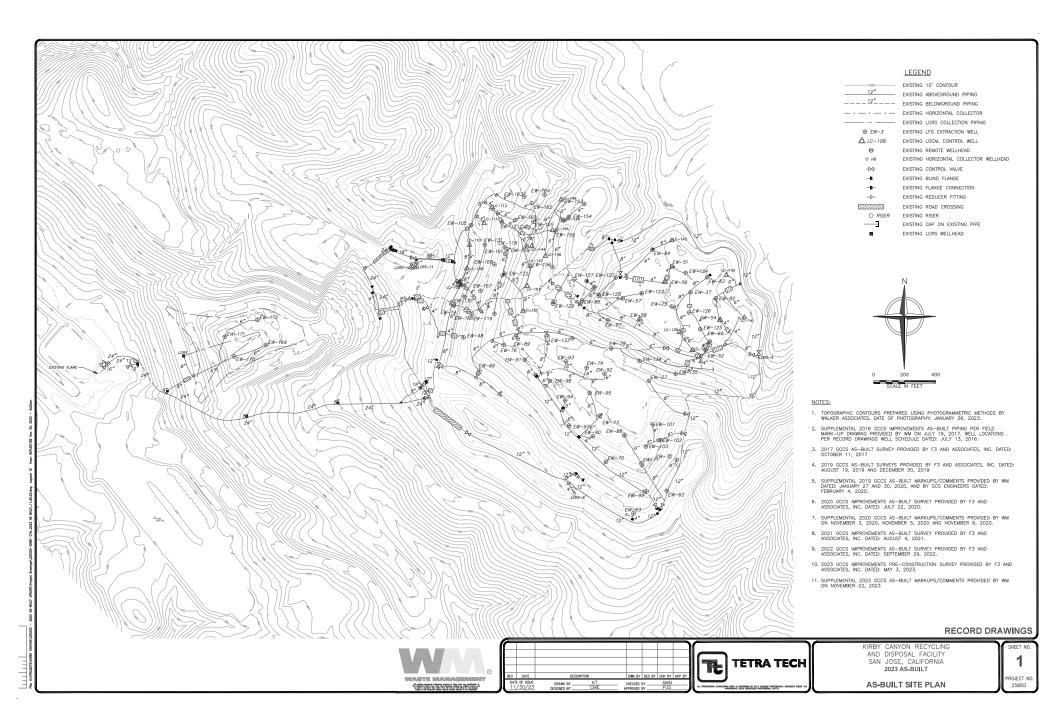
The landfill operator will continue surface and perimeter monitoring in accordance with the approved monitoring plans. If the GCCS at the KCRDF does not meet the measures of performance set forth in the NSPS/EG, the GCCS will be adjusted or modified in accordance with the NSPS/EG requirements.

4 START-UP, SHUTDOWN, MALFUNCTION REPORT

4.1 SSM Report for the Collection and Control Systems at the KCRDF

The NESHAPS contained in 40 CFR Part 63, AAAA for MSW landfills to control hazardous air pollutants include the regulatory requirements for submittal of a Semi-Annual Report (under 40 CFR §63.10(d)(5) of the general provisions) if an SSM event occurred during the reporting period. The reports required by §63.1980(a) of the NESHAP and §60.757(f) of the NSPS summarize the GCCS exceedances. These two Semi-Annual Reports contain similar information and have been combined as allowed by §63.10(d)(5)(i) of the General Provisions.

NESHAP 40 CFR Part 63, AAAA became effective on January 16, 2004. Those SSM events that occurred during the semi-annual reporting period are reported in this section (January 1, 2024-June 30, 2024). The following information is included as required:


- During the reporting period, thirty (30) A-12 Flare SSM events occurred. During the reporting period. The A-12 Flare shut down and restarted during the reporting period due to the reasons noted in the Flare SSM Log, located in Appendix B.
- During the reporting period, nine (9) wellfield SSM events occurred. Details are included in the Wellfield SSM Log, located in Appendix C.
- During the reporting period, there was one (1) zero monitoring/recorder equipment SSM events occurred.
- In all forty (40) events, automatic systems and operator actions were consistent with the standard operating procedures contained in the SSM Plan.
- No exceedances of any applicable emission limitation in the landfills NESHAP (63.10(d)(5)(i)) occurred.
- Revisions of the SSM Plan to correct deficiencies in the landfill operations or procedures were neither required, nor prepared (§63.6(e)(3)(viii)).

	4.6	4 1			-	
•	certify	tha	tal	10	เหเก	~:
	CEILIIV	uic	101	ıv	vviii	u.

Based on information and belief formed after reasonable inquiry, information on the startup, shutdown, malfunction forms, all accompanying reports, and other required certifications are true, accurate, and complete.

Mike Tejero	07.25.2024
Signature of Responsible Official	Date
Michael Tejero	
Name of Responsible Official	

APPENDIX A LANDFILL GAS COLLECTION SYSTEM SITE MAP

APPENDIX B

FLARE SSM LOG AND GCCS DOWNTIME REPORT

Completed By: Rajan Phadnis/Tino Robles

KIRBY CANYON REC		SAL FACILITY, San Jose, CA													
Identify Flare & Check Applicable Event	(1) Start of Event	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form Completed		(8) Type of Event up and Shutdown Events Only)	(9) Procedures Used	(10) Did Steps Taken Vary From Section 9?	(1 Em	Did Event Cause Any hission Limit Exceedance	(12) Describe Emission Standard(s) Exceeded
Component: A-12 Flare Startup Event x Shutdown Event	1/10/24 23:34	1/10/24 23:38	0.07	,		X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	1/10/2024	,	Manual (Go to Section 9)	Procedure No. 1 to 3		Yes (Go to Section 11)		Yes (Go to Section 12)	
Malfunction Event Component: A-12 Flare				0.5	Flare shutdown due to low temperature alarm. Flare auto restarted. Flare was	118: Construction Activities			itomatic (Go to Section 11)	1 10 3		No (Stop)	Х	No (Stop)	
x Startup Event Shutdown Event	1/11/24 00:02	1/11/24 00:08	0.10		inspected during morning hours.	116: Well Raising 117: Gas Collection	1/11/2024	\vdash	Manual (Go to Section 9)	Procedure No. 1 to 4	L	Yes (Go to Section 11)		Yes (Go to Section 12)	
Malfunction Event Component: A-12 Flare						118: Construction Activities X 113: Inspection and Maintenance		Au	tomatic (Go to Section 11)		X	No (Stop)		No (Stop)	
Startup Event x Shutdown Event	1/19/24 09:14	1/19/24 09:18	0.07		Flare shutdown during planned power outage (PPO) event. Emergency generator was started. PG&E later	116: Well Raising 117: Gas Collection	1/19/2024	\ \ \ \ \ \ \ \ \	Manual (Go to Section 8)	Procedure 1 to 3	×	Yes (Go to Section 10) No (Stop)		Yes (Go to Section 11) No (Stop)	
Malfunction Event Component: A-12 Flare				0.5	canceled the PPO and scheduled for next month. Power was switched back	118: Construction Activities X 113: Inspection and Maintenance		x Y	Manual (Go to Section 8)		Ĥ	Yes (Go to Section 10)		Yes (Go to Section 11)	
x Startup Event Shutdown Event Malfunction Event	1/19/24 09:42	1/19/24 09:48	0.10		to utility power and flare was started. Flare was inspected and restarted.	116: Well Raising 117: Gas Collection 118: Construction Activities	1/19/2024	H A	Automatic (Go to Section 10)	Procedure 1 to 4	х	No (Stop)		No (Stop)	
Component: A-12 Flare Startup Event	1/22/24 08:08	4/00/04 00:40	0.07			X 113: Inspection and Maintenance 116: Well Raising	1/22/2024	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	
x Shutdown Event Malfunction Event	1/22/24 08:08	1/22/24 08:12	0.07	0.4	Flare was shut down for flowmeter maintenance. Flare was inspected and	117: Gas Collection 118: Construction Activities	1/22/2024	A	Automatic (Go to Section 10)	1 to 3	х	No (Stop)		No (Stop)	
Component: A-12 Flare x Startup Event Shutdown Event	1/22/24 08:32	1/22/24 08:38	0.10	0.4	restarted.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	1/22/2024		Manual (Go to Section 8)	Procedure 1 to 4		Yes (Go to Section 10)		Yes (Go to Section 11)	
Malfunction Event Component: A-12 Flare						118: Construction Activities X 113: Inspection and Maintenance		-	Automatic (Go to Section 10)	1 10 4	X	No (Stop)		No (Stop)	
Startup Event x Shutdown Event	1/22/24 08:36	1/22/24 08:40	0.07		Flare shutdown during startup	116: Well Raising 117: Gas Collection	1/22/2024	\vdash	Manual (Go to Section 9)	Procedure No. 1 to 3	H	Yes (Go to Section 11) No (Stop)	×	Yes (Go to Section 12) No (Stop)	
Malfunction Event Component: A-12 Flare x Startup Event				0.03	sequence. Flare was inspected and restarted.	118: Construction Activities X 113: Inspection and Maintenance 116: Well Raising			Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event Malfunction Event	1/22/24 08:38	1/22/24 08:44	0.10			116: Well Raising 117: Gas Collection 118: Construction Activities	1/22/2024	Au	Itomatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	
Component: A-12 Flare Startup Event	1/22/24 08:40	1/22/24 08:44	0.07			X 113: Inspection and Maintenance 116: Well Raising	1/22/2024		Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
X Shutdown Event Malfunction Event Component: A-12 Flare	112224 00.40	17EEE - 00.44		0.1	Flare shutdown during startup sequence. Flare was inspected and	117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance			tomatic (Go to Section 11)	1 to 3		No (Stop)	х	No (Stop)	
x Startup Event Shutdown Event	1/22/24 08:46	1/22/24 08:52	0.10		restarted.	116: Well Raising	1/22/2024	\vdash	Manual (Go to Section 9)	Procedure No. 1 to 4	L	Yes (Go to Section 11)		Yes (Go to Section 12)	
Malfunction Event Component: A-12 Flare						118: Construction Activities X 113: Inspection and Maintenance		-	Manual (Go to Section 11)		X	No (Stop) Yes (Go to Section 11)		No (Stop) Yes (Go to Section 12)	
Startup Event X Shutdown Event	1/22/24 08:48	1/22/24 08:52	0.07		Flare shutdown during startup	116: Well Raising 117: Gas Collection	1/22/2024		Itomatic (Go to Section 11)	Procedure No. 1 to 3		No (Stop)	X	No (Stop)	
Malfunction Event Component: A-12 Flare x Startup Event				0.1	sequence. Flare was inspected and restarted.	118: Construction Activities X 113: Inspection and Maintenance 116: Well Raising		X I	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event Malfunction Event	1/22/24 08:52	1/22/24 08:58	0.10			117: Gas Collection 118: Construction Activities	1/22/2024	Au	itomatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	
Component: A-12 Flare Startup Event	1/22/24 16:14	1/22/24 16:18	0.07			X 113: Inspection and Maintenance 116: Well Raising	1/22/2024	,	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
X Shutdown Event Malfunction Event Component: A-12 Flare				0.3	Flare shutdown due to low temperature alarm. Flare auto restarted.	117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance			tomatic (Go to Section 11)	1 to 3		No (Stop)	Х	No (Stop)	
x Startup Event Shutdown Event	1/22/24 16:34	1/22/24 16:40	0.10		diam. Fair date restained.	116: Well Raising 117: Gas Collection	1/22/2024	\vdash	Manual (Go to Section 9)	Procedure No. 1 to 4	×	Yes (Go to Section 11) No (Stop)		Yes (Go to Section 12) No (Stop)	
Malfunction Event Component: A-12 Flare						118: Construction Activities X 113: Inspection and Maintenance			Manual (Go to Section 9)	Donation No.	 ^	Yes (Go to Section 11)	\vdash	Yes (Go to Section 12)	
Startup Event x Shutdown Event Malfunction Event	1/22/24 16:56	1/22/24 17:00	0.07		Flare shutdown due to low temperature	116: Well Raising 117: Gas Collection 118: Construction Activities	1/22/2024	\vdash	Itomatic (Go to Section 11)	Procedure No. 1 to 3		No (Stop)	x	No (Stop)	
Component: A-12 Flare x Startup Event			0.40	0.4	alarm. Checked louvers. Flare was inspected and restarted.	X 113: Construction Activities X 113: Inspection and Maintenance 116: Well Raising	4/00/000	X I	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event Malfunction Event	1/22/24 17:20	1/22/24 17:26	0.10			117: Gas Collection 118: Construction Activities	1/22/2024	Au	tomatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	

Completed By: Rajan Phadnis/Tino Robles

Applicable South Document Applicable South Document Application Document Application Document Application Application Document Application Appli	
Statuto Event 1/20/24 11-10 1/20/24 11-20 1/20/24 11	on Standard(s) Exceeded
Composent A-17 Fave 1/23/24 11:50 1/23/24 12:20 0.10 1/23/	
Mailuridion Event Concount A:12 Part Substantial Event Concount A:12 Part Substantial Event Concount A:12 Part Mailuridion Event Concount A:12 Part Concount A:12	
Year Control Section 17	
X Stratip Event Shutdown Event Shutdown Event Multinuction Event Component A-12 Filter Shutdown Event Shutdow	-
Startup Event Maffunction Event Component A.12 Flaire Startup Event Maffunction Event Component A.12 Flaire Startup Event Star	
Mailunction Event	
Mature M	
X Shutdown Event 20224 12:26 20224 12:32 0.10 1 to 3 No (Stop) X No (Stop)	
X Startup Event Shutdown Event Shu	
Startup Event Shutdown Event Malfunction Event Component: A-12 Faire Shutdown Event Malfunction Event Shutdown Event Shu	
Malfunction Event Component: A-12 Faire Safutup Event	
Mailuncition Event	-
2/02/24 12:36 2/02/24 12:40 0.07	
X Startup Event 2/02/24 12:42 2/02/24 12:48 0.10 resistation 11/2 view Reasing 2/2/2024 Procedure No. 1 resistation 11/2 resistant of the Startup Event 2/02/24 12:42 2/02/24 12:48 0.10	
Shutdown Event Automatic (Go to Section 11) 1 to 4 X No (Stop) No (Stop) Malfunction Event X No (Stop) No (Stop)	
Component: A-12 Flare Slartup Event 2/02/24 13:26 2/02/24 13:26 0.07 Flare was shut down to switch back to Flare	
Statistical Content of the Content	
Component: A-12 Flare Startup Event 2/04/24 05:44 2/04/24 05:48 0.07 116: MegRasing 2/4/2024 Manual (Go to Section 9) Procedure No. Yes (Go to Section 11) Yes (Go to Section 12) 116: MegRasing 2/4/2024 116: MegRasing 2/4/2024	
Maturicition Event O.6 alarm during high wind condition. Flare Value Reasing Value R	
Component: A-12 Flare X 113: Inspection and Maintenance X 113: Inspection and Maintenance	
Malfunction Event 3.1 Malfunction Even	

Completed By: Rajan Phadnis/Tino Robles

SSMP REPORT - Fror Identify Flare & Check Applicable Event Component: A-12 Flare	(1) Start of Event														
		(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form Completed		(8) Type of Event artup and Shutdown Events Only)	(9) Procedures Used	(10) Did Steps Taken Vary From Section 9?		Did Event Cause Any hission Limit Exceedance	(12) Describe Emission Standard(s) Exceeded
x Shutdown Event	2/08/24 07:22	2/08/24 07:26	0.07			X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	2/8/2024	х	Manual (Go to Section 8)	Procedure 1 to 3		Yes (Go to Section 10)		Yes (Go to Section 11)	
Malfunction Event				0.2	lare was shut down to switch back to utility power. Flare was inspected and	118: Construction Activities X 113: Inspection and Maintenance			Automatic (Go to Section 10)	1 10 3	×	No (Stop)		No (Stop)	
x Startup Event Shutdown Event	2/08/24 07:32	2/08/24 07:38	0.10		restarted.	116: Well Raising 117: Gas Collection	2/8/2024	*	Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 4	×	Yes (Go to Section 10) No (Stop)	Н	Yes (Go to Section 11) No (Stop)	
Malfunction Event Component: A-12 Flare Startup Event						118: Construction Activities X 113: Inspection and Maintenance 116: Well Raising			Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Н	Yes (Go to Section 12)	
x Shutdown Event Malfunction Event	3/06/24 15:12	3/06/24 15:16	0.07	1.5	Flare shutdown during unplanned power surge event. RCA was filed. RCA	117: Gas Collection 118: Construction Activities	3/6/2024	X A	Automatic (Go to Section 11)	1 to 3		No (Stop)	х	No (Stop)	
x Startup Event	3/06/24 16:42	3/06/24 16:48	0.10	1.5	number 200227 was assigned. Flare was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	3/6/2024	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event Malfunction Event Component: A-12 Flare						118: Construction Activities X 113: Inspection and Maintenance		1 ,	Automatic (Go to Section 11) Manual (Go to Section 8)	1 to 4	Х	No (Stop) Yes (Go to Section 10)		No (Stop) Yes (Go to Section 11)	
Startup Event x Shutdown Event	3/07/24 07:22	3/07/24 07:26	0.07		Flare was shut down during	116: Well Raising 117: Gas Collection	3/7/2024	+	Automatic (Go to Section 10)	Procedure 1 to 3	х	No (Stop)		No (Stop)	
Malfunction Event Component: A-12 Flare x Startup Event	3/07/24 09:04	3/07/24 09:10	0.10	1.7	maintenance on KOP. Demister pad was replaced. Flare was inspected and restarted.	116: Well Raising	3/7/2024	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	
Shutdown Event Malfunction Event	3/07/24 09:04	3/07/24 09:10	0.10			117: Gas Collection 118: Construction Activities	3///2024	П	Automatic (Go to Section 10)	1 to 4	х	No (Stop)		No (Stop)	
Startup Event X Shutdown Event	3/30/24 17:14	3/30/24 17:18	0.07		Flare shutdown during unplanned	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	3/30/2024	v	Manual (Go to Section 9) Automatic (Go to Section 11)	Procedure No. 1 to 3		Yes (Go to Section 11) No (Stop)	x	Yes (Go to Section 12) No (Stop)	
Malfunction Event Component: A-12 Flare				1.5	power surge event. RCA was filed. RCA number 200259 was assigned. Flare			X	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	^	Yes (Go to Section 12)	
x Startup Event Shutdown Event Malfunction Event	3/30/24 18:46	3/30/24 18:52	0.10		was inspected and restarted.	117: Gas Collection 118: Construction Activities	3/30/2024	1	Automatic (Go to Section 11)	1 to 4	х	No (Stop)	П	No (Stop)	
Startup Event	4/07/24 20:30	4/07/24 20:34	0.07		Elece obuildeum during unplenned	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	4/7/2024	П	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
X Shutdown Event Malfunction Event Component: A-12 Flare				1.3	Flare shutdown during unplanned power surge event. RCA was filed. RCA number 200267 was assigned. Flare	118: Construction Activities		X	Automatic (Go to Section 11) Manual (Go to Section 9)	1 to 3		No (Stop) Yes (Go to Section 11)	Х	No (Stop) Yes (Go to Section 12)	
x Startup Event Shutdown Event Malfunction Event	4/07/24 21:46	4/07/24 21:52	0.10		was inspected and restarted.	116: Well Raising 117: Gas Collection 118: Construction Activities	4/7/2024	Ĥ	Automatic (Go to Section 11)	Procedure No. 1 to 4	х	No (Stop)	Н	No (Stop)	
Component: A-12 Flare Startup Event	4/09/24 09:14	4/09/24 09:18	0.07			X 113: Inspection and Maintenance 116: Well Raising	4/9/2024	×	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	П	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event Component: A-12 Flare	4/09/24 09.14	4/09/24 09:10	0.07	0.3	Flare was shut down during PG&E planned power outage. Generator was	117: Gas Collection 118: Construction Activities	4/5/2024		Automatic (Go to Section 10)	1 to 3	х	No (Stop)		No (Stop)	
x Startup Event Shutdown Event	4/09/24 09:32	4/09/24 09:38	0.10		started. Flare was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	4/9/2024	×	Manual (Go to Section 8)	Procedure 1 to 4		Yes (Go to Section 10)		Yes (Go to Section 11)	
Malfunction Event Component: A-12 Flare						118: Construction Activities X 113: Inspection and Maintenance		×	Automatic (Go to Section 10) Manual (Go to Section 8)		*	No (Stop) Yes (Go to Section 10)	Н	No (Stop) Yes (Go to Section 11)	
Startup Event x Shutdown Event Malfunction Event	4/09/24 15:42	4/09/24 15:46	0.07		Flare was shut down to switched back	116: Well Raising 117: Gas Collection 118: Construction Activities	4/9/2024		Automatic (Go to Section 10)	Procedure 1 to 3	х	No (Stop)		No (Stop)	
component: A-12 Flare x Startup Event	4/09/24 15:54	4/09/24 16:00	0.10	0.2	flare to utility power. Flare was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	4/9/2024	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	
Shutdown Event Malfunction Event Component: A-12 Flare						117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance			Automatic (Go to Section 10)	1 to 4	х	No (Stop)		No (Stop)	
Startup Event x Shutdown Event	4/11/24 09:44	4/11/24 09:48	0.07		Flare was shut down for planned site	116: Well Raising 117: Gas Collection	4/11/2024	×	Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 3	Y	Yes (Go to Section 10) No (Stop)	Н	Yes (Go to Section 11) No (Stop)	
Malfunction Event Component: A-12 Flare x Startup Event				0.5	electrical work. Generator was started. Flare was inspected and restarted.	118: Construction Activities X 113: Inspection and Maintenance 116: Well Raising		x	Manual (Go to Section 8)	Procedure	-	Yes (Go to Section 10)	Н	Yes (Go to Section 11)	
Shutdown Event Malfunction Event	4/11/24 10:14	4/11/24 10:20	0.10			117: Gas Collection 118: Construction Activities	4/11/2024		Automatic (Go to Section 10)	1 to 4	х	No (Stop)		No (Stop)	
Startup Event	4/11/24 11:42	4/11/24 11:46	0.07			X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	4/11/2024	х	Manual (Go to Section 8)	Procedure 1 to 3		Yes (Go to Section 10)		Yes (Go to Section 11)	
X Shutdown Event Malfunction Event Component: A-12 Flare				0.2	Flare was shutdown to switch back flare to utility power. Flare was	117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance			Automatic (Go to Section 10)		Х	No (Stop)	Н	No (Stop)	
x Startup Event Shutdown Event Malfunction Event	4/11/24 11:56	4/11/24 12:02	0.10		inspected and restarted.	116: Well Raising 117: Gas Collection 118: Construction Activities	4/11/2024	<u> * </u>	Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 4	x	Yes (Go to Section 10) No (Stop)	Н	Yes (Go to Section 11) No (Stop)	

								_							
KIRBY CANYON RES	om January 1 throu														
Identify Flare & Check Applicable Event	(1) Start of Event	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form Completed		(8) Type of Event Startup and Shutdown Events Only)	(9) Procedures Used	(10) Did Steps Taken Vary From Section 9?		I) Did Event Cause Any ission Limit Exceedance	(12) Describe Emission Standard(s) Exceeded
Component: A-12 Flare Startup Event	5/31/24 11:46	5/31/24 11:50	0.07			X 113: Inspection and Maintenance 116: Well Raising	5/31/2024		Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
x Shutdown Event Malfunction Event				2.2	Flare shutdown due to low temperature alarm. Flare restarted. Flare was	117: Gas Collection 118: Construction Activities		×	Automatic (Go to Section 11)	1 to 3		No (Stop)	x	No (Stop)	
Component: A-12 Flare x Startup Event	5/31/24 13:58	5/31/24 14:04	0.10		inspected on next business day.	X 113: Inspection and Maintenance 116: Well Raising	5/31/2024	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event Malfunction Event	2.22710.00					117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)	1 to 4	x	No (Stop)		No (Stop)	
Component: A-12 Flare Startup Event	6/03/24 16:28	6/03/24 16:32	0.07			X 113: Inspection and Maintenance 116: Well Raising	6/3/2024		Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
x Shutdown Event Malfunction Event				1.7	Flare shutdown due to low temperature alarm. Adjusted louvers. Flare was	117: Gas Collection 118: Construction Activities		x	Automatic (Go to Section 11)	1 to 3		No (Stop)	х	No (Stop)	
Component: A-12 Flare x Startup Event	6/03/24 18:10	6/03/24 18:16	0.10		inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	6/3/2024	×	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	
Component: A-12 Flare Startup Event	6/18/24 15:14	6/18/24 15:18	0.07			X 113: Inspection and Maintenance 116: Well Raising	6/18/2024		Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
x Shutdown Event Malfunction Event	0.10.14	0/10/24 10:10		1.2	Flare shutdown due to low temperature alarm. Adjusted louvers. Flare was	117: Gas Collection 118: Construction Activities		×	Automatic (Go to Section 11)	1 to 3		No (Stop)	х	No (Stop)	
Component: A-12 Flare x Startup Event	6/18/24 16:28	6/18/24 16:34	0.10		inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	6/18/2024	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)	1 to 4	х	No (Stop)		No (Stop)	
Component: A-12 Flare Startup Event	6/26/24 08:26	6/26/24 08:30	0.07			X 113: Inspection and Maintenance 116: Well Raising	6/26/2024	×	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	
x Shutdown Event Malfunction Event				8.6	Flare was shut down during installation of ATS unit by third party. Power was	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 3	х	No (Stop)		No (Stop)	
Component: A-12 Flare x Startup Event	6/26/24 17:00	6/26/24 17:06	0.10		shut down. Flare was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	6/26/2024	×	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	х	No (Stop)		No (Stop)	

TOTAL DOWNTIME Partial 2024 (HOURS):	
TOTAL DOWNTIME From January 1 2024 through June 30, 2024 (HOURS):	
TOTAL PERMITTED GCCS DOWNTIME FOR 1 YEAR (HOURS):	240.0
TOTAL AVAILABLE RUNTIME From January 1 2024 through June 30, 2024	4367.0
TOTAL RUNTIME From January 1 2024 through June 30, 2024 (HOURS):	4336.0
RUNTIME PERCENTAGE From January 1 2024 through June 30, 2024(HOURS) :	99.3%
SSM Counts :	30

^{*}There were 743 hours in March 2024, due to Daylight Saving Time.

(a) STANDARD OPERATING PROCEDURES

Shutdown

Procedure No. Procedure

Ensure that there are no unsafe conditions present, contact manager immediately Initiate shutdown sequence below by one or more of the following (Note date and time in Section 1 of form above)

Press Emergency Stop if necessary Close On/Off switch(es) or Push On/Off button(s) Close adjacent valves if necessary

3 Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note date and time in Section 2 of form

above)

Startup Procedure No.

<u>Procedure</u>
Ensure that there are no unsafe conditions present
Ensure that the system is ready to start by one of the following:

Valves are in correct position

Levels, pressures, and temperatures are within normal starting range

Alarms are cleared

Power is on and available to control panel and ready to energize equipment.

Emergency stop is de-energized

Emergency step accession and date in section 1 of form above)

Observe that system achieves normal startup ranges for levels, pressures, and temperatures (Note time and date in Section 2 of form

Malfunction

3

EQUIPMENT	PURPOSE	MALFUNCTION	COMMON CALIEFE	PROCEDURE NOTYPICAL RESPONSE ACTIONS
EQUIPMENT	PURPOSE	EVENT	COMMON CAUSES	PROCEDURE NO1 YPICAL RESPONSE ACTIONS
LFG Collection and Control Sys	tem	LVENI		
Blower or Other Gas Mover	Applies vacuum to wellfield	Loss of LFG Flow/Blower	-Flame arrestor	Repair breakages in extraction piping
Equipment	to extract LFG and transport to control device	Malfunction	fouling/deterioration -Automatic valve problems -Blower failure (e.g., belt, motor, impeller, coupling, seizing, etc.) -Loss of power -Extraction piping failure -Condensate knock-out problems -Extraction piping blockages	2. Clean flame arrestor 3. Repair blockages in extraction piping 4. Verify automatic valve operation, compressed air/nitrogen supply 5. Notify power utility, if appropriate 6. Provide/utilize auxiliary power source, if necessary 7. Repair Settlement in Collection Piping 8. Repair Blower
				9. Activate back-up blower, if available 10. Clean knock-up pot/demister 11. Drain knock-out pot
Extraction Wells and Collection Piping	Conduits for extractions and movement of LFG flow	Collection well and pipe failures	-Break/crack in header or lateral -Leaks at wellheads, valves, -Collection piping blockages -Problems due to settlement (e.g. pipe separation, deformation, development of low points)	Repair leaks or breaks in lines or wellheads Follow procedures for loss of LFG flowblower Repair blockages in collection piping Repair settlement in collection piping
				16. Re-install, repair, or replace piping
Blower or Other Gas Mover Equipment And Control Device	Collection and control of LFG	Loss of electrical power	- Force majeure/Act of God (e.g., lightning, flood, carthquake, etc.) - Area-wide or local blackout or brown-out - Interruption in service (e.g. blown service fuse) - Electrical line failure - Breaker trip - Transformer failure - Motor starter failure/trip - Overdraw of power - Problems in electrical panel - Damage to electrical equipment from on-site operations	17. Check/reset breaker 18. Check/repair electrical panel components 19. Check/repair transformer 20. Check/repair motor starter 21. Check/repair electrical line 22. Test amperage to various equipment 23. Contact electricity supplier 24. Contact/contract electrician 25. Provide auxiliary power (if necessary)
LFG Control Device	Combusts LFG	Low temperature conditions at control device	-Problems with temperature - monitoring equipment -Problems/failure of - thermocouple and/or -Change of LFG flow -Change of LFG quality -Problems with air louvers -Problems with air/fuel controls -Change in atmospheric	26. Check/repair temperature monitoring equipment 27. Check/repair thermocouple and/or wiring 28. Follow procedures for loss of flow/blower malfunction 29. Check/adjust louvers 30. Check/adjust air/fuel controls
LFG Control Device	Combusts LFG	Loss of Flame	Problems/failure of thermocouple Loss/change of LFG flow Loss/change of LFG quality Problems with air/fuel controls Problems/failure of flame sensor Problems with temperature monitoring equipment	Check/repair temperature monitoring equipment Check/repair thermocouple Repair thermocouple Check/repair thermocouple Check/adjust air/fuel controls Check/adjust/repair flame sensor Check/adjust LFG collectors
Flow Monitoring/ Recording Device	Measures and records gas flow from collection system to control	Malfunctions of Flow Monitoring/Recording Device	-Problems with orifice plate, pitot tube, or other in-line flow measuring device -Problems with device controls and/or wiring -Problems with chart recorder	37. Check/adjust/repair flow measuring device and/or wiring 38. Check/repair chart recorder 39. Replace paper in chart recorder
Temperature Monitoring/	Monitors and records	Malfunctions of Temperature	-Problems with chart recorder -Problems with thermocouple	Replace paper in chart recorder 40. Check/adjust/repair thermocouple

KCRDF Facility A1812 KCRDF Jan 1-June 30- 2024 SAR

EQUIPMENT	PURPOSE	MALFUNCTION EVENT	COMMON CAUSES	PROCEDURE NOTYPICAL RESPONSE ACTIONS
LFG Collection and Control Sy	stem			
Recording Device	combustion temperature of enclosed combustion device	Monitoring/Recording Device	-Problems with device controls and/or wiring -Problems with chart recorder	41. Check/adjust/repair controller and/or wiring 42. Check/adjust/repair electrical panel components 43. Check/repair chart recorder 44. Replace paper in chart recorder
Control Device	Combusts LFG	Other Control Device Malfunctions	-Control device smoking (i.e. visible emissions) -Problems with flare insulation -Problems with pilot light system -Problems with air louvers -Problems with air/fuel controllers -Problems with thermocouple -Problems with burners -Problems with flame arrester -Alarmed malfunction conditions not covered above -Unalarmed conditions discovered during inspection not covered above	50. Refill propane supply 51. Check/repair pilot sparking system

⁽b) For each permit limit exceedance complete an "SSM Plan Departure Form". Notify BAAQMD verbally or by fax within 2 working days after commencing the actions that an event inconsistent with the SSM Plan and which resulted in an exceedance of an applicable emission permit has occured. Follow up in writing to the agency within 7 working days after the end of the event.

KCRDF Facility A1812 KCRDF Jan 1-June 30- 2024 SAR

APPENDIX C WELLFIELD SSM LOG

AFFECTED EQUIPMENT: Wellfield

Completed By: Rajan Phadnis/Tino Robles

Kirby Canyon Recyc												
	(1) Start of Event	(2) End of Event	(3) Duration	(4) Duration	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date	(8) Type of Event	(9) Procedures Used	(10) Did Steps Taken Vary	(11) Did Event Cause Any	(12) Describe Emission Standard(s) Exceeded
Applicable Event Well ID Number:94	Date and Time	Date and Time	of Event (Hours)	Shutdown (Hours)		113: Inspection and Maintenance	Completed	(Startup and Shutdown Events Only) X Manual (Go to Section 9)		From Section 9? Yes (Go to Section 11)	Emission Limit Exceedance Yes (Go to Section 12)	
Startup Event X Shutdown Event	1/09/24 08:15	1/09/24 08:17	0.03			X 116: Well Raising 117: Gas Collection	1/9/2024	Automatic (Go to Section 11)	Procedure No. 1 to 3	X No (Stop)	No (Stop)	
Malfunction Event Well ID Number:94				1,873.5	Well Located in Active Filling Area. Well Raised.	118: Construction Activities 113: Inspection and Maintenance		X Manual (Go to Section 9)		Yes (Go to Section 11)	Yes (Go to Section 12)	
X Startup Event Shutdown Event	3/27/24 09:45	3/27/24 09:47	0.03			X 116: Well Raising 117: Gas Collection	3/27/2024	Automatic (Go to Section 11)	Procedure No. 1 to 4	<u> </u>	No (Stop)	
Malfunction Event Well ID Number:98						118: Construction Activities 113: Inspection and Maintenance		` ` `		X No (Stop)	· · · · · ·	
Startup Event X Shutdown Event	1/05/24 08:00	1/05/24 08:02	0.03			X 116: Well Raising	1/5/2024	X Manual (Go to Section 9)	Procedure No. 1 to 3	Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number:98				3,123.0	Well Located in Active Filling Area. Well Raised.	118: Construction Activities 113: Inspection and Maintenance		Automatic (Go to Section 11)		X No (Stop)	No (Stop)	
X Startup Event Shutdown Event	5/14/24 12:00	5/14/24 12:02	0.03			X 116: Well Raising 117: Gas Collection	5/14/2024	X Manual (Go to Section 9)	Procedure No. 1 to 4	Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number:93						118: Construction Activities 113: Inspection and Maintenance		Automatic (Go to Section 11)		X No (Stop)	No (Stop)	
Startup Event X Shutdown Event	5/14/24 10:30	5/14/24 10:32	0.03			X 116: Well Raising	5/14/2024	X Manual (Go to Section 9)	Procedure No. 1 to 3	Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number:93				356.5	Well Located in Active Filling Area. Well Raised	118: Construction Activities 113: Inspection and Maintenance		Automatic (Go to Section 11)	1 10 3	X No (Stop)	No (Stop)	
X Startup Event	5/29/24 08:00	5/29/24 08:02	0.03		Well Naiseu.	X 116: Well Raising 117: Gas Collection	5/29/2024	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event						118: Construction Activities		Automatic (Go to Section 11)	1 to 4	X No (Stop)	No (Stop)	
Well ID Number:95 Startup Event	12/21/23 07:00	12/21/23 07:02	0.03			113: Inspection and Maintenance X 116: Well Raising	12/21/2023	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event				4,228.0	Well Located in Active Filling Area.	117: Gas Collection 118: Construction Activities		Automatic (Go to Section 11)	1 to 3	X No (Stop)	No (Stop)	
Well ID Number:95 X Startup Event	6/14/24 12:00	6/14/24 12:02	0.03	,	Well Raised.	X 113: Inspection and Maintenance X 116: Well Raising 117: Gas Collection	6/14/2024	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event						118: Construction Activities		Automatic (Go to Section 11)	1 to 4	X No (Stop)	No (Stop)	
Well ID Number:74 Startup Event	5/14/24 11:00	5/14/24 11:02	0.03			113: Inspection and Maintenance X 116: Well Raising	5/14/2024	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	3/14/24 11:00	0/14/24 11:02	0.00	525.7	Well Located in Active Filling Area	117: Gas Collection 118: Construction Activities	0/1//2021	Automatic (Go to Section 11)	1 to 3	X No (Stop)	No (Stop)	
Well ID Number:74 X Startup Event	6/05/24 09:45	6/05/24 09:47	0.03	323.7	Well Raised.	X 113: Inspection and Maintenance	6/5/2024	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	0/03/24 09.43	0/03/24 09.47	0.00			117: Gas Collection 118: Construction Activities	0/0/2024	Automatic (Go to Section 11)	1 to 4	X No (Stop)	No (Stop)	
Well ID Number:125 Startup Event	6/05/24 07:10	6/05/24 07:12	0.03			X 116: Well Raising	6/5/2024	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	6/05/24 07.10	6/05/24 07.12	0.03	192.8	Well Located in Active Filling Area.	117: Gas Collection 118: Construction Activities	0/3/2024	Automatic (Go to Section 11)	1 to 3	X No (Stop)	No (Stop)	
Well ID Number:125 X Startup Event	0/40/04 00 00	0/40/04 00 00	0.03	192.8	Well Raised.	113: Inspection and Maintenance X 116: Well Raising	6/13/2024	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	6/13/24 09:00	6/13/24 09:02	0.03			117: Gas Collection 118: Construction Activities	6/13/2024	Automatic (Go to Section 11)	1 to 4	X No (Stop)	No (Stop)	
Well ID Number:126 Startup Event						113: Inspection and Maintenance X 116: Well Raising		X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	6/05/24 08:25	6/05/24 08:27	0.03		Well Located in Active Filling Area.	117: Gas Collection 118: Construction Activities	6/5/2024	Automatic (Go to Section 11)	1 to 3	X No (Stop)	No (Stop)	
Well ID Number:126 X Startup Event				120.9	Well Raised.	113: Inspection and Maintenance X 116: Well Raising		X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	6/10/24 10:20	6/10/24 10:22	0.03			117: Gas Collection 118: Construction Activities	6/10/2024	Automatic (Go to Section 11)	1 to 4	X No (Stop)	No (Stop)	
Well ID Number:92 Startup Event						113: Inspection and Maintenance X 116: Well Raising		X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	5/24/24 09:00	5/24/24 09:02	0.03		Well Located in Active Filling Area.	117: Gas Collection 118: Construction Activities	5/24/2024	Automatic (Go to Section 11)	1 to 3	X No (Stop)	No (Stop)	
Well ID Number:92 X Startup Event				240.5	Well Raised.	118: Construction Activities 113: Inspection and Maintenance X 116: Well Raising		X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event	6/03/24 10:30	6/03/24 10:32	0.03			117: Gas Collection	6/3/2024	Automatic (Go to Section 11)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event Well ID Number:133						118: Construction Activities 113: Inspection and Maintenance		X Manual (Go to Section 9)	Dragoduro N-	Yes (Go to Section 11)	Yes (Go to Section 12)	
Startup Event X Shutdown Event	6/03/24 12:25	6/03/24 12:27	0.03		Well I conted to A	X 116: Well Raising 117: Gas Collection	6/3/2024	Automatic (Go to Section 11)	Procedure No. 1 to 3	X No (Stop)	No (Stop)	
Malfunction Event Well ID Number:133				658.6	Well Located in Active Filling Area. Well Raised.	118: Construction Activities 113: Inspection and Maintenance		X Manual (Go to Section 9)	Donas dans N	Yes (Go to Section 11)	Yes (Go to Section 12)	
Startup Event Shutdown Event	6/30/24 23:59	7/01/24 00:01	0.03			X 116: Well Raising 117: Gas Collection	6/30/2024	Automatic (Go to Section 11)	Procedure No. 1 to 4	X No (Stop)	No (Stop)	
Malfunction Event					<u> </u>	118: Construction Activities		i stomato (es te essión 11)		1.0 (0.00)	110 (010p)	

From January 1 2024 through June 30, 2024 SSM Counts : 9

KCRDF Facility A1812

KCRDF Facility A1812

(a) STANDARD OPERATING PROCEDURES

<u>Shutdown</u>	
Procedure No.	<u>Procedure</u>
1	Ensure that there are no unsafe conditions present, contact manager immediately
2	Initiate shutdown sequence below by one or more of the following (Note date and time in Section 1 of form above)
	Press Emergency Stop if necessary
	Close On/Off switch(es) or Push On/Off button(s)
	Close adjacent valves if necessary
3	Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note date and time in Section 2 of form
	above)
Startup	
Procedure No.	<u>Procedure</u>
1	Ensure that there are no unsafe conditions present
2	Ensure that the system is ready to start by one of the following:
	Valves are in correct position
	Levels, pressures, and temperatures are within normal starting range
	Alarms are cleared
	Power is on and available to control panel and ready to energize equipment.
	Emergency stop is de-energized
3	Initiate start sequence (Note time and date in section 1 of form above)
4	Observe that system achieves normal startup ranges for levels, pressures, and temperatures (Note time and date in Section 2 of form above)
	Observe that system achieves normal startup ranges for levels, pressures, and temperatures (note time and date in Section 2 or form above)

Malfunction

EQUIPMENT	PURPOSE	MALFUNCTION	COMMON CAUSES	PROCEDURE NOTYPICAL RESPONSE ACTIONS
		EVENT		
LFG Collection and Control Syst		Ir arnoni (ni		
Blower or Other Gas Mover Equipment	Applies vacuum to wellfield to extract LFG and transport to control device	Loss of LFG Flow/Blower Malfunction	-Flame arrestor fouling/deterioration -Automatic valve problems -Blower failure (e.g., belt, motor, impeller, coupling, seizing, etc.) -Loss of power -Extraction piping failure -Condensate knock-out problems -Extraction piping blockages	1. Repair breakages in extraction piping 2. Clean flame arrestor 3. Repair blockages in extraction piping 4. Verify automatic valve operation, compressed air/nitrogen supply 5. Notify power utility, if appropriate 6. Provide/utilize auxiliary power source, if necessary 7. Repair Settlement in Collection Piping 8. Repair Blower
				Activate back-up blower, if available Clean knock-up pot/demister The pot
Extraction Wells and Collection Piping	Conduits for extractions and movement of LFG flow	Collection well and pipe failures	-Break/crack in header or lateral -Leaks at wellheads, valves, -Collection piping blockages -Problems due to settlement (e.g. pipe separation, deformation,	Repair leaks or breaks in lines or wellheads Follow procedures for loss of LFG flow/blower malfunction Repair blockages in collection piping Repair settlement in collection piping
Blower or Other Gas Mover	Collection and control of	Loss of electrical power	development of low points) - Force majeure/Act of God (e.g.,	16. Re-install, repair, or replace piping 17. Check/reset breaker
Equipment And	LFG	Eoss of electrical power	lightning, flood, earthquake, etc.) -Area-wide or local blackout or brown-out	18. Check/repair electrical panel components
Control Device			-Interruption in service (e.g. blown service fuse) -Electrical line failure	Check/repair transformer Check/repair motor starter
			-Breaker trip	21. Check/repair electrical line
			-Transformer failure	22. Test amperage to various equipment
			-Motor starter failure/trip	23. Contact electricity supplier
			-Overdraw of power	24. Contact/contract electrician
			-Problems in electrical panel	25.Provide auxiliary power (if necessary)
			-Damage to electrical equipment from on-site operations	
LFG Control Device	Combusts LFG	Low temperature conditions at control device	-Problems with temperature - monitoring equipment -Problems/failure of -thermocouple and/or thermocouple wiring -Change of LFG flow	26. Check/repair temperature monitoring equipment 27. Check/repair thermocouple and/or wiring 28. Follow procedures for loss of flow/blower malfunction
			-Change of LFG flow -Change of LFG quality -Problems with air louvers -Problems with air/fuel controls -Change in atmospheric conditions	29. Check/adjust louvers 30. Check/adjust air/fuel controls

KCRDF Facility A1812 KCRDF Jan 1-June 30- 2024 SAR

EQUIPMENT	PURPOSE	MALFUNCTION EVENT	COMMON CAUSES	PROCEDURE NOTYPICAL RESPONSE ACTIONS
LFG Collection and Control Sy	ystem			
LFG Control Device	Combusts LFG	Loss of Flame	-Problems/failure of thermocouple -Loss/change of LFG flow -Loss/change of LFG quality -Problems with air/fuel controls -Problems/failure of flame sensor -Problems with temperature monitoring equipment	31. Check/repair temperature monitoring equipment 32. Check/repair thermocouple 33. Follow procedures for loss of flow/blower malfunction 34. Check/adjust air/fuel controls 35. Check/adjust/repair flame sensor 36. Check/adjust LFG collectors
Flow Monitoring/ Recording Device	Measures and records gas flow from collection system to control	Malfunctions of Flow Monitoring/Recording Device	-Problems with orifice plate, pitot tube, or other in-line flow measuring device -Problems with device controls and/or wiring -Problems with chart recorder	37. Check/adjust/repair flow measuring device and/or wiring 38. Check/repair chart recorder 39. Replace paper in chart recorder
Temperature Monitoring/ Recording Device	Monitors and records combustion temperature of enclosed combustion device	Malfunctions of Temperature Monitoring/Recording Device	-Problems with thermocouple -Problems with device controls and/or wiring -Problems with chart recorder	40. Check/adjust/repair thermocouple 41. Check/adjust/repair controller and/or wiring 42. Check/adjust/repair electrical panel components 43. Check/repair chart recorder 44. Replace paper in chart recorder
Control Device	Combusts LFG	Other Control Device Malfunctions	-Control device smoking (i.e. visible emissions) -Problems with flare insulation -Problems with pilot light system -Problems with air louvers -Problems with air/fuel controllers -Problems with thermocouple -Problems with burners -Problems with flame arrester -Alarmed malfunction conditions not covered above -Unalarmed conditions discovered during inspection not covered above	45. Site-specific diagnosis procedures 46. Site-specific responses actions based on diagnosis 47. Open manual louvers 48. Clean pitot orifice 49. Clean/drain flame arrestor 50. Refill propane supply 51. Check/repair pilot sparking system

⁽b) For each permit limit exceedance complete an "SSM Plan Departure Form". Notify BAAQMD verbally or by fax within 2 working days after commencing the actions that an event inconsistent with the SSM Plan and which resulted in an exceedance of an applicable emission permit has occured. Follow up in writing to the agency within 7 working days after the end of the event.

KCRDF Facility A1812 KCRDF Jan 1-June 30- 2024 SAR

APPENDIX D

FLARE TEMPERATURE DEVIATION/ INOPERATIVE MONITOR REPORTS

KIRBY CANYON REC	YCLING & DISPOS	SAL FACILIT	Y, San Jose, CA			BAAQMD Rule 34, Section 501						
TEMPERATURE DEV	FEMPERATURE DEVIATION/ INOPERATIVE MONITOR REPORT From January 1 2024 through June 30, 2024											
AFFECTED EQUIPME	NT: A-12 Flare											
REPORT PREPARED			Rajan Phadnis Thermocouple	DATE: MODEL:	July 1, 2024 Thermo-Electric							
START DATE & TIME	END DATE & TIME	DURATION (hours)	TEMP (°F) / FLOW (SCFM)	CAUSE	EXPLANATION	ACTION TAKEN						
1/19/24 10:36 PM	1/22/24 8:06 AM	57.50	Recorded out of range values	RCA was filed for inoperative flowmeter that recorded out of range flow data readings for more than a 24-hour period. RCA200121 was assigned.	Potential accumulation of condensate in the inlet pipe caused flowmeter probe to accumulate liquid and debris.	Flare was shutdown to release accumulated liquids in the header and the flowmeter probe was cleaned. Flare was restarted.						
				tions during February 2024								
				ations during March 2024								
				viations during April 2024								
				viations during May 2024								
				iations during June 2024								
Note:	·											
	scfm= standard cubic	feet per minu	te									

KCRDF Plant No. 1812

KCRDF Jan 1-June 30- 2024 SAR

APPENDIX E COVER INTEGRITY MONITORING REPORTS

LOCATION: Kirby Canyon Recycling and Disposal Facility

INSPECTION DATE:January 25, 2024REPORT DATE:January 25, 2024TECHNICIAN:Tino Robles

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes	Х		Near wells 58 and 66
Ponding of water on cap		Х	
Surface cracking		Х	
Acceptable vegetation	Х		
Exposed waste		Х	

REPAIR AREAS:

Location Description Note cell and near-by wells	Date of Repair	Description of Repair (add soil, water)
Erosion near well 58 and well 66	3.7.2024	Ops scheduling repairs when area has dried out and safe to access with heavy equipment.
Note: Monthly cover integrity monitoring is performed pursuar	t to BAAQMD Regulation	8-34-501.4

KCRDF Facility A1812 KCRDF Jan 1-June 30- 2024 SAR

LOCATION: Kirby Canyon Recycling and Disposal Facility **INSPECTION DATE:** February 8 and 26, 2024 REPORT DATE: February 26, 2024 TECHNICIAN: Tino Robles

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes	Х		Near wells 58 and 66
Ponding of water on cap	Х		Near well 123
Surface cracking		Х	
Acceptable vegetation	Х		
Exposed waste		Х	

REPAIR AREAS:

Location Description Note cell and near-by wells	Date of Repair	Description of Repair (add soil, water)
Erosion near well 58 and well 66	3.7.2024	Ops scheduling repairs when area has dried out and safe to access with heavy equipment.
Ponding near well 123	3.7.2024	Ops scheduling repairs when area has dried out and safe to access with heavy equipment.
Note: Monthly cover integrity monitoring is performed pursuant	to BAAQMD Regulation	8-34-501.4

KCRDF Facility A1812 KCRDF Jan 1-June 30- 2024 SAR

LOCATION: Kirby Canyon Recycling and Disposal Facility

INSPECTION DATE: March 7, 11, and 26, 2024

March 26, 2024 **REPORT DATE: TECHNICIAN:** Tino Robles

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes	Х		Near Cell 7 pump station
Ponding of water on cap	Х		Near Well 171
Surface cracking		Х	
Acceptable vegetation	Х		
Exposed waste		Х	

REPAIR AREAS:

Location Description	Date of Repair	Description of Repair (add soil, water)	
Note cell and near-by wells			
Erosion near well 58 and well 66	3.7.2024	Added soil	
Ponding near well 123	3.7.2024	Drained liquid and added soil	
Ponding near well 171	4.24.2024	Added soil	
Erosion near Cell 7 pump station	4.25.2024	Added soil	

LOCATION: Kirby Canyon Recycling and Disposal Facility

INSPECTION DATE: April 10, 19, and 26, 2024

REPORT DATE: April 26, 2024
TECHNICIAN: Tino Robles

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		X	
Dead vegetation		X	
Erosion on cap system		Х	
Erosion on side slopes	Х		Near Cell 7 pump station
Ponding of water on cap	Х		Near well 171
Surface cracking	Х		Near wells 105 and 151
Acceptable vegetation	Х		
Exposed waste		Х	

REPAIR AREAS:

Location Description	Date of Repair	Description of Repair (add soil, water)
Note cell and near-by wells	Date of Repair	Description of Repair (add son, water)
Ponding near well 171	4.24.2024	Added soil
Erosion near Cell 7 pump station	4.25.2024	Added soil
Surface crack near well 105	5.22.2024	Added soil
Surface crack near well 151	5.22.2024	Added soil

Note: Monthly cover integrity monitoring is performed pursuant to BAAQMD Regulation 8-34-501.4

KCRDF Facility A1812 KCRDF Jan 1-June 30- 2024 SAR

LOCATION: Kirby Canyon Recycling and Disposal Facility

INSPECTION DATE: May 16, 22 and 28, 2024

REPORT DATE: May 28, 2024 **TECHNICIAN:** Tino Robles

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap		Х	
Surface cracking	Х		Cell 6
Acceptable vegetation	Х		
Exposed waste		Х	

REPAIR AREAS:

Location Description	Date of Repair	Description of Repair (add soil, water)		
Note cell and near-by wells	Date of Repair	Description of Repair (add son, water)		
Surface crack near well 105	5.22.2024	Added soil		
Surface crack near well 151	5.22.2024	Added soil		
Surface cracks on slopes at cell 6	In progress	Corrective action initiated by adding soil.		
te: Monthly cover integrity monitoring is performed				

KCRDF Facility A1812 KCRDF Jan 1-June 30- 2024 SAR

LOCATION: Kirby Canyon Recycling and Disposal Facility

INSPECTION DATE: June 25, 2024
REPORT DATE: June 25, 2024
TECHNICIAN: Tino Robles

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap		Х	
Surface cracking	Х		Cell 6 slopes
Acceptable vegetation	Х		
Exposed waste		Х	

REPAIR AREAS:

Location Description Note cell and near-by wells	Date of Repair	Description of Repair (add soil, water)			
Surface cracks on slopes at cell 6	In progress	Corrective action initiated by adding soil.			
ote: Monthly cover integrity monitoring is performed pursuant to BAAQMD Regulation 8-34-501.4					

KCRDF Facility A1812 KCRDF Jan 1-June 30- 2024 SAR

APPENDIX F SURFACE EMISSIONS MONITORING REPORTS

Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037 T: 408.779.2206

February 26, 2024

Ms. Becky Azevedo Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive San Jose, CA 95037

Re: First Quarter 2024 Surface Emissions and Component Leak Monitoring Report for the Kirby Canyon Recycling and Disposal Facility

Dear Ms. Azevedo:

This monitoring report for the "Kirby Canyon Recycling and Disposal Facility (KCRDF) Landfill" contains the results of the First Quarter 2024 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by RES Environmental, Inc. (RES). Re-monitoring of surface emissions was conducted by KCRDF personnel.

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection procedures).
- United States Environmental Protection Agency's (USEPA) *Standards of Performance for Municipal Solid Waste Landfills*; 40 Code of Federal Regulations (CFR) Part 63, Subpart AAAA-National Emission Standards for Hazardous Air Pollutants (NESHAP).

Component Leak Monitoring

- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 301 (Landfill Gas Collection and Emission Control System Requirements) and Section 602 (Collection and Control System Leak Inspection procedures).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95464, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

KCRDF Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 16, 2011. After receipt of comments, this ACO was amended, restated, and submitted to BAAQMD on July 1, 2016. SEM and Component Leak monitoring was conducted per the methods outlined in the July 1, 2016, ACO.

PROCEDURES

General

The surface of the KCRDF disposal area has been divided into one-hundred-and-fifty (150), approximately 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the 25-foot interval walking pattern as depicted the 2011 KCRDF AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

Instantaneous Surface Emissions Monitoring

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume (ppm_v) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a) and NSPS. The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d) and CCR Title 17 §95471(c)(2).

RES personnel walked the surface of the landfill on a grid-by-grid basis with the wand tip held at 2 inches from the landfill surface. While sampling the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppm_v (areas of concern) or 500 ppm_v (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Appendices of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
 - o If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
 - o If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed, and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month remonitoring event shows the area is still corrected, monitoring requirements have been completed.

If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Integrated Surface Emissions Monitoring

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppm_v for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held within 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(3).

Grids with results greater than 25 ppm_v were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppm_v are subject to the following re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.
- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed, and a second re-monitoring event shall be conducted within 10 days of the second exceedance.

- If the second 10-day re-monitoring event shows the second exceedance is corrected, all remonitoring requirements have been completed.
- The second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the third exceedance.

Component Leak Monitoring Procedures

RES personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppm_v. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppm_v per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) and 1,000 ppm_v per requirements outlined in BAAQMD 8-34-303 were recorded. Applicable corrective action and remonitoring timelines are listed below:

- Leaks between 500 and 999 ppm_v must be corrected and re-monitored within 10 days of the initial exceedance.
- Leaks at or above 1000 ppm_v must be corrected and re-monitored within 7 days of the initial exceedance.

FIRST QUARTER 2024 SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and component leak monitoring results completed for the First Quarter 2024.

Instantaneous Surface Emissions Monitoring Results

The Instantaneous surface monitoring was performed on January 16, 2024, in accordance with the NSPS, BAAQMD 8-34, NESHAP, and CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

*Initial Monitoring Event Exceedances of 500 ppm*_v

There were 6 exceedances of 500 ppm_v as methane detected on January 16, 2024. Corrective actions to initiate repairs of the exceedances were completed within five days for all locations (on January 17, 2024).

Ten-Day Re-Monitoring Results

The 10-day re-monitoring event was completed on January 23, 2024. All locations were observed at less than 500 ppm_v.

One-Month Re-Monitoring Results

The 1-month re-monitoring event was completed on February 12, 2024. All locations were observed at less than 500 ppm_v.

Readings between 200 ppm_v and 499 ppm_v (Initial and Re-monitored)

There were no readings between 200 ppm_v and 499 ppm_v as methane detected during the initial monitoring event on January 16, 2024. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppm_v but below 500 ppm_v are required to be recorded.

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on January 9 and 10, 2024, in accordance with the ACO and requirements outlined in CCR Title 17 §95469.

Initial Monitoring Event Exceedances of 25 ppm_v

There were no grids with exceedances of 25 ppm_v as methane detected during the initial monitoring event on January 9 and 10, 2024.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B, Integrated SEM 25 ppm_v Exceedances and Monitoring Log, and SEM Map included in Attachment B, for details.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on January 10, 2024. No leaks greater than 500 ppm_v were identified. Please see Attachment C, for details.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

Precipitation Requirements

Per the KCRDF's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within 24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25

Ms. Becky Azevedo Page 6

 ppm_v in air for integrated sample analyses and 500 ppm_v in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at rphadnis@wm.com.

Thank you, Waste Management

Rajan Phadnis

Environmental Protection Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map

Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment D - Weather Station Data

• Strip Chart Data

Attachment E - Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

Table A.1 Instantaneous Landfill Surface Emissions Monitoring Initial Monitoring Event Areas of Concern

2024 QUARTER: 1

PERFORMED BY: RES

LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Flag Number	Grid Number	Date of Monitoring	Concentration of Emission (ppmv)	Comments-Wells
01	112	1/16/2024	1,072	65
O21	75	1/16/2024	895	142
O22	111	1/16/2024	822	134
O23	47	1/16/2024	1,480	112
O24	52	1/16/2024	9,200	111
O25	58	1/16/2024	10,565	131
			·	

Table A.2 Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2024 QUARTER: 1

INITIAL MONITORING PERFORMED BY RES

FOLLOW-UP MONITORING PERFORMED BY: KCRDF-Tino Robles LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Initi	al Monitoring	Event	Corre	ective action within 5 days	1st 10	-day Follow	r-Up	1st 3	0-day Follov	/-Up	Comments-Well
Grid	Monitoring	Field	Repair	Action taken to repair	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	locations
Number	Date	Reading	Date	Exceedance	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	locations
112	1/16/2024	1,072	1/17/2024	Becs fully open, added & compact dirt	1/23/2024	88		2/12/2024	90		65
75	1/16/2024	895	1/17/2024	Becs fully open, added & compact dirt	1/23/2024	91		2/12/2024	103		142
111	1/16/2024	822	1/17/2024	Becs fully open, added & compact dirt	1/23/2024	35		2/12/2024	52		134
47	1/16/2024	1,480	1/17/2024	Becs fully open, added & compact dirt	1/23/2024	74		2/12/2024	86		112
52	1/16/2024	9,200	1/17/2024	Becs fully open, added & compact dirt	1/23/2024	95		2/12/2024	97		111
58	1/16/2024	10,565	1/17/2024	Becs fully open, added & compact dirt	1/23/2024	101		2/12/2024	132		131

Table A.3

Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (AB-32)

2024 QUARTER: 1

INITIAL MONITORING PERFORMED BY: RES

FOLLOW-UP MONITORING PERFORMED BY: KCRDF-Tino Robles

LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Initial M	onitoring Even	t	1st Re-m	non Event -	10 Days	2nd Re-r	non Event	- 10 Days	Comments-Well
Exceedance	Monitoring	Field	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	locations
Grid ID No.	Date	Reading	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	locations
112	1/16/2024	1,072	1/23/2024	88					65
75	1/16/2024	895	1/23/2024	91					142
111	1/16/2024	822	1/23/2024	35					134
47	1/16/2024	1,480	1/23/2024	74					112
52	1/16/2024	9,200	1/23/2024	95					111
58	1/16/2024	10,565	1/23/2024	101					131

Table A.4 Instantaneous Landfill Surface Emissions Monitoring Areas of Concern Greater than 200 ppmv

2024 QUARTER: 1

INITIAL MONITORING PERFORMED BY RES

FOLLOW-UP MONITORING PERFORMED BY: NA

LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Initial	Monitoring	Event	Re-mo	n Event	
Exceedance	Monitoring Field		Monitoring Reading		Comments
Grid ID No.	Date	Reading	Date	ppm	
None					

Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2024 QUARTER: Q1

INITIAL MONITORING PERFORMED BY: RES

FOLLOW-UP MONITORING PERFORMED BY: Tino Robles

LANDFILL NAME: Kirby Canyon Wind Direction: NW Wind Direction: SW Wind Speed: 7 Wind Speed: 3

Initia	al Monitoring Event Corrective action within 5 days		1st 1	0-day Follow	1st 30	-day Follo	w-Up	Comments			
Flag	Monitoring	Field	Repair	Action taken to repair	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	Exceedance	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	WELL
01	1/16/2024	1,072	1/17/2024	Becs fully open, added & compact dirt	1/23/2024	88		2/12/2024	90		65
O21	1/16/2024	895	1/17/2024	Becs fully open, added & compact dirt	1/23/2024	91		2/12/2024	103		142
O22	1/16/2024	822	1/17/2024	Becs fully open, added & compact dirt	1/23/2024	35		2/12/2024	52		134
O23	1/16/2024	1,480	1/17/2024	Becs fully open, added & compact dirt	1/23/2024	74		2/12/2024	86		112
O24	1/16/2024	9,200	1/17/2024	Becs fully open, added & compact dirt	1/23/2024	95		2/12/2024	97		111
O25	1/16/2024	10,565	1/17/2024	Becs fully open, added & compact dirt	1/23/2024	101		2/12/2024	132		131

Personnel LaistuADE MISLAL ESTAGO 4 JERRY MELUZ	ERDIC DELING	Cal. Gas Exp. Date: //-/6-24
Date 1-16-24 Instrument Us	ed: 40 \$ 1000 G	rid Spacing: 25'
Temperature; 48 Precip:	D Upwind BG: 2:2	Pownwind BG: 218

GRID ID	STAFF	START	STOP	TOC	WIN	ND INFORM	NOITAN	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
36	1w	1030	1045	113		2	8	
37	NE	1030	1045	85		2	Š	
38	DA	1000	104	140		2	G	
41	50	1030	1065	92	i	2	6	
42	66	6030	1865	154	i	2	G.	
43	LW	1045	1100	88		2	Ç.	
44	NE	2045	1100	35	1	2	G	
47	20	1045	1100	1480		2	Ç	W811112
48	10	1045	1100	97		2		
45	66	1145	1/10	124		2	G	
52	LW	1100	1115	9,200		3	7	We1/11/
5.3	45	1100	1115	75		3	7	
54	TH	1100	1115	110	(3	7	
55	.80	1100	1115	40		3	7	
57	66	1100	IIN	18		3	7	
58	6W	1115	1130	10,565	0	0	Ь	WE11131
59	Mr	111-5	1170	39	0	0	6	
60	Ja,	1111	1130	65	U	0	6	
61	80	1115	1130	32	0	0	ما	
64	66	1115	1130	14	0	Ò	6	
65	LW	1130	1145	57	1	2	6	
66	34	1130	1145	102	ì	2	6	
67	53	1130	1145	170		2	Š	
68	40	1170	1145	34	1	2	ç	
>0	66	1130	1145	18		2	g	
7/	LW	1145	1200	49	i	3	Ġ	
72	ME	1145	1200	96	i	3	6	
73	7-3	1145	1200	51		3	g	
74	40	1145	1200	39		3	Ç	
>5	66	1145	1200	895		3	Ó	WE11/42

Attach Calibration Sheet

Attach site map showing grid ID

Page / of /

Personnel: Leigh WADE FODIL DELING

MISCHEESTREAD GREG LOPEL

TENNY MUNDE Cal. Gas Exp. Date: 1/-10-24

Date: 1-16-24 Instrument Used: +UA 1000 Grid Spacing: 25/

Temperature: 48 Precip: D Upwind BG: 2.2 Downwind BG: 2.8

GRID ID	STAFF	START	STOP	TOC	WIN	INFORM	NOTTAN	DEMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
76	LW	1200	1215	140	0		6	
כל	ME	1200	1245	129	D	i	6	
79	53	1200	1215	72	0	i	6	
80	CA	1200	1215	48	0		6	
8/	6L	1200	1215	69	0		6	
82	lw	1215	1230	114		2	6.	
83	ME	1215	1270	52		2	8	
84	54	1215	1230	95		2	6	
85	az	1211	1230	72	1	2	8	
86	62	1215	1230	40	1	2	8	
8>	LW	1230	1245	91	D		6	
88	kr	1230	1245	177	0		ç	
89	73	1230	1245	41	0		G	
90	E1	1230	1245	26	0	1	g	
91	66	1230	1245	74	0		Ğ	
92	LW	1245	1300	111	(2	1	
93	NE	1245	1300	97		2	8	
94	37	1245	1300	54		2	8	
95	500	1245	1300	69		2	6	
96	64	1245	1310	32		2	þ	
9>		1300	1315	41		3	14	
		1300	134	128	i	3	14	
79	Ja	1300	131	114		3	14	
00	02	1300	1315	62		3	14	
101	66	1308	134	94	1	3	14	
102	LW	1315	1370	7/	0	1	14	
	40	1315	1330	58	0		14	
104	0-3	1315	1330	30	0		14	
105		1315	1330	28	0	1	14	
106	60	1715	1330	74	Ò		14	

Attach Calibration Sheet

Attach site map showing grid ID

Page 2 of 4

Personnel	LEISHNANE MISHELESTANDA JUNEY MUTOR	6236 10p 52	Cal. Gas Ex	кр. Date: <u>//-/0-2</u> у
Date /-	16-24 Instrument	Used LVA/000	Grid Spacing	
Temperat	ure: 50 Precip: _	Upwind BG: _	Z.Z Downwin	d BG: Z·8

GRID ID	STAFF	START	STOP	тос	WII	ND INFOR	MATION	DEMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
107	LW	1330	1345	65	D	1	10	
109	NE	1330	1345	52	D		10	AT THE RESERVE OF THE PERSON NAMED IN COLUMN TO THE PERSON NAMED I
112	In	1370	1341	1072	0		10	WE1165
113	EO	1330	134	74	0		10	
116	66	1330	1345	59	U)		10	
119	Lw	1345	1400	31	ĭ	2	9	
120	ME	1345	1400	26		2	5	
121	73	1345	1400	42		2	6	
124	20	1345	1800	57		2	5	
127	64	1345	1400	31		2	9	
128	LW	1400	1415	20		2	10	
125	NE	1400	1465	40		2	10	
132	Di	1400	1415	36		2	10	
133	EN	1400	1415	45	1	2	10	
134	66	1400	1415	39		2	10	
135	CW	1415	1430	27		2	10	
136	-	1412	1470	34	1	2	10	
137		1415	1430	29	i	2	10	
138		1415	1430	40		2	10	
139	4	1415	1430	26	1	2	10	
140		1470	1485	38	4	1	6	
141		1430	1445	3/	4	7	ما	
142		1430	1445	15	4	1	(
143		1430	1485	42			6	
144		1430	1265	37	4	7	6	
-	LW	144	1500	20		4	1	
		1445	1500	18			G	
47		1445	1500	25		4	8	
148		144	1500	3>		4	8	
145	66.	1465	1505	44	1	4	6	

Attach Calibration Sheet

Attach site map showing grid ID

Page of 4

Personnel LEISHWADE MISHEL ES LASOA	GREE LOPER	
Date: /-/b-24 Instrument U	sed LVA1000 Gri	Cal. Gas Exp. Date: 1/-10-24 id Spacing: 25
Temperature: 🗾 Precip:	O Upwind BG: Z.Z	Downwind BG: Z \ 8

GRID ID	STAFF	START	STOP	TOC	WIN	ID INFORM	NOTTAN	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLMAKKS
150	KW	1500	1515	2/	1	4	9	
		-						
							4	
							3 - 1	
		1						
				-				
1								
			<u> </u>					
					-			

Attach Calibration Sheet Attach site map showing grid ID

Page 4 of 4

	LEISHWI	108					-	
								s Exp. Date
ate <u>/-</u>	-16-24	_ Instruc	nent Used	i		Gri	d Spacing	-
								wind BG:
GRID ID	STAFF	START	STOP	TOC	WIN	ID INFORM	TATION	DEMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 15 POINT	REMARKS
110								Active-face ?
111								
17								
25						1		
26							÷,	•
/								NOWASTO & N P/SC
2								1
4								
5								
5								
7	, +							
2 3 4 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7		-						
0								
/				4				
2								
3								
5								
6								
6 7 8								
8								
5								
0								
2							y	
- 1				- C				13

Attach Calibration Sheet Attach site map showing grid ID

Page / of Z

'sonnel	Lousda	ADE					-	
							Cal. Gas	Exp. Date:
ate: /-	-16-24	Instrur	ment Usec	: t		Gri	d Spacing:	
								vind BG:
GRID ID	STAFF	START	STOP			ND INFORM		
	INITIALS	TIME	TIME	TOC PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
25						0.111	10101111	1
26								
27	12							
28								
1-9	1							
70								
3/								
2								
3								
29 30 31 2 2 3 4 5 9			1					
5			. 1					
9			F - 1	Y - = 11				
D								
5	-			E = 17				
6				1, 11				
0								
1								
6							V	
Z								
3								
5								
8								
808								
14								
15								
22	1			1				
23								
30								
31								1
								-

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 2

Orange Flag Landfill Surface Emissions Monitoring Exceedances and Monitoring Log

Site: KIRBY

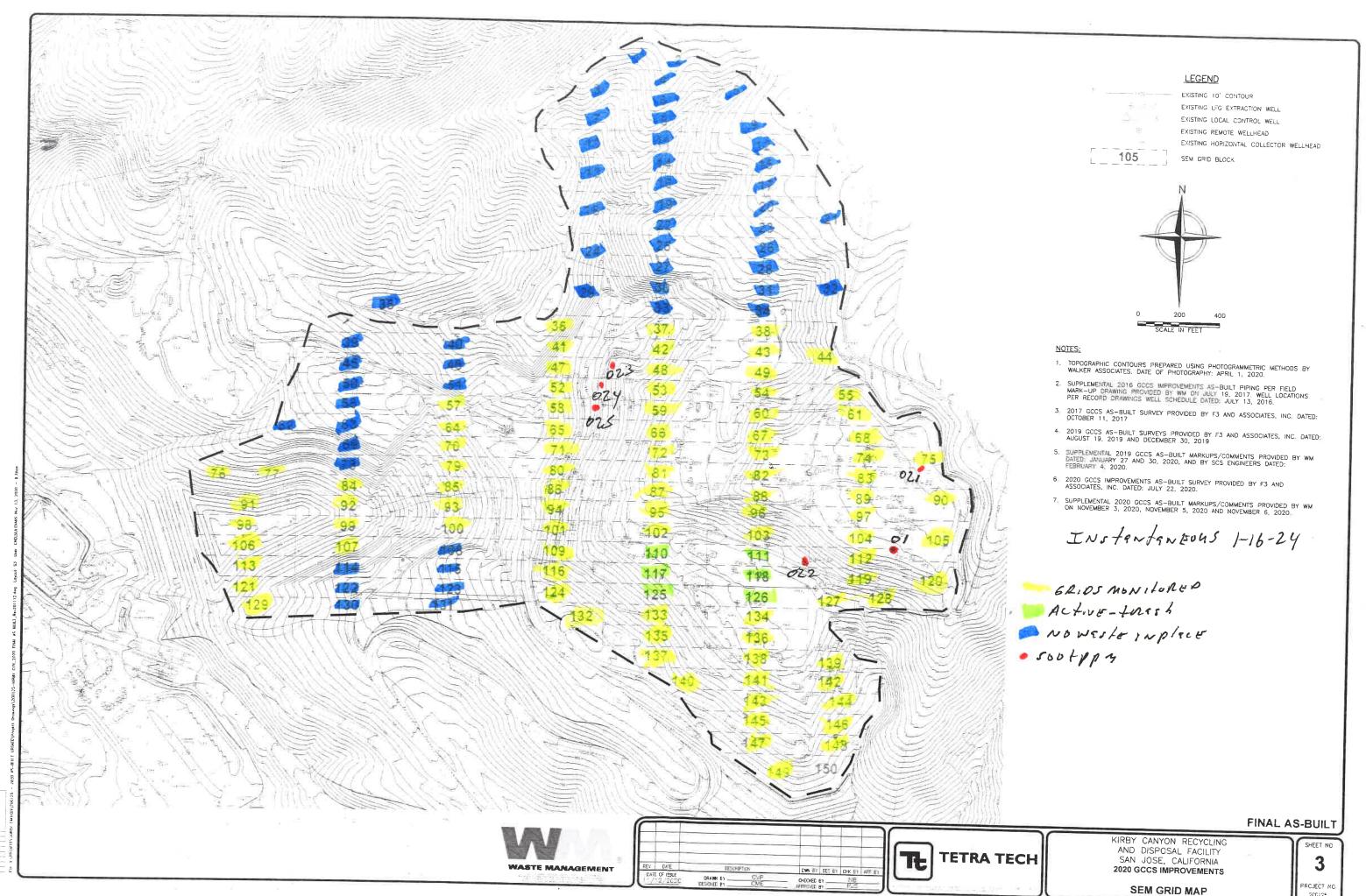
Fig.	Quarter / Year:	rear:	1542.24	5-2										2000	١	
First file-Action First Re-Actioning Event - (1) Days Second Re-Monitoring Eve	Technicia	-	Leishun	100										гаде	TO	Pages
Fig. Continued Continued	Instrumen	יי														
Fig. Tritial Monthering Event Date Park Re-Profession (2004) Park Residue (200	Calibration	Standard.		*												
Fig. 5 Field Reading Date We Erect. Exect. Date No Erect. Exect. E		Initial	Monitoring Event		First Re-M	onitoring Event	- 10 Days	Second Re-	Monitoring Even	it - 10 Dave	30-Day	Follow-tip Mor	potionic	Č	phomen	
1 1/2	Flag	Grid	Field Reading	Date	Date	No Excd.	Excd.	Date	No Excd.	Excd.	Date	No Excd.	Excd	3	SILIE	
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	Number	Number	(mdd)	Monitored	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	Monitored	~500 ррт	>500 ppm			
22 75 895 22 47 822 23 4700 25 52 9200 25 58 10,565 W		115	1072	1-16-24										WE1/63	h	
22 111 822 23 47 1480 24 52 9200 25 58 10,565 V		75	568											WE1/14	77	
25 47 1480 25 920 25 58 10,565 W	N	111	278											51 114 M	2	
25 58 10,565 W	623	47	0841											1/ //4/1	12	I
25 58 /o,565 V	8-24	6	9200											1///261		
	8-25	2	10,565	>										6///Jr		
	0		,											51/10		
	ó															
	0															
	ó															
	0														h	
	0															
	0															
	ó															
	0															
	0															
	ó															
	0															
	0															
	0															
	0															
0.0	0								8							
	0															
.O	0												1			
	ó															

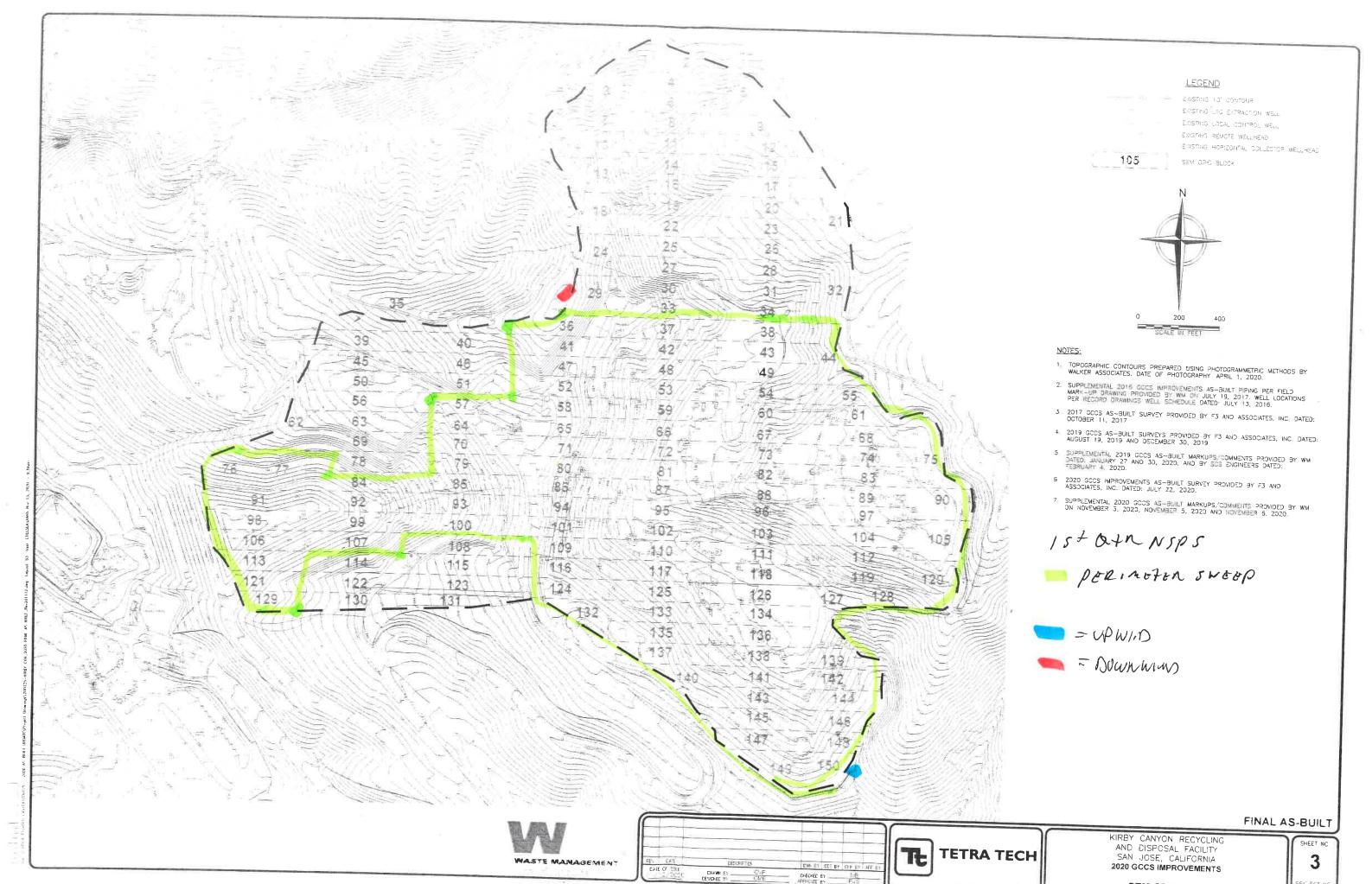
KIRBY LANDFILL PENETRATION SCAN RESULTS, EXCEEDANCES, AND CORRECTIVE ACTIONS

Year: 2024 Quarter: 157

	ite TIME	IME Location ID	IME Concentration (ppm)
1-16-24	0940	KCLC0108	27
	0934	KCLC0109	54
	10930	KCLC0110	31
	0940	KCLC0111	9,200
	0847	KCLC0112	1,480
	0537	KCLC0139	75
	0558	KCLC0140	58
	0982	KCLC0141	69
	0930	KCLC0142	895
	0940	KCLC0143	106
	0950	KCLC0145	45
	0945	KCLC0147	38
	1000	KCLC0149	60
	0934	KCLC0151	27
	1009	KCLC0152	49
	1007	KCLC0153	55
	1004	KCLC0154	30
	0959	KCLC0155	28
	1001	KCLC0156	34
	1008	KCLC0157	61
	0545	KCYN0014	28
	0530	KCYN0027	31
	0930	KCYN0048	22
	1022	KCYN0051	27
	0250	KCYN0054	48
	1021	KCYN0056	34
	1018	KCYN0057	
	0938	KCYN0058	77 31
	0854	KCYN0062	25
	1024	KCYN0063	38
	1000	KCYN0065	1,072
	0957	KCYN0066	51
	0950	KCYN0070	>>
	1010	KCYN0071	34
	0525	KCYN0072	40
	0540	KCYN0074	29
	1000	KCYN0075	5/
	0958	KCYN0076	38
	1004	KCYN0078	
V	1010	KCYN0082	32 40

KIRBY LANDFILL PENETRATION SCAN RESULTS, EXCEEDANCES, AND CORRECTIVE ACTIONS


Year:	2024	
Quarter:	157	


IME Date	TIME	IME Location ID	IME Concentration (ppm)
1-16-24	0931	KCYN0084	3 0
/ / /	0937	KCYN0086	24
	1000	KCYN0087	37
	0947	KCYN0088	18
	0939	KCYN0089	24
	0945	KCYN0090	35
	0957	KCYN0091	6/
	1006	KCYN0092	40
	0935	KCYN0093	27
	1015	KCYN0094	33
	0954	KCYN0095	16
	1004	KCYN0097	40
	0938	KCYN0098	21
	1007	KCYN0099	14
	0950	KCYN0101	25
	0926	KCYN0102	
	1015	KCYN0103	37 78
	1020	KCYN0105	54
	1686	KCYN0118	
	0945	KCYN0119	20
	0958	KCYN0121	36
	0940	KCYN0122	4/
	0951	KCYN0123	20
	0946	KCYN0124	24
	0937	KCYN0125	43
	1010	KCYN0126	17
	1804	KCYN0127	26
	0931	KCYN0128	18
	100/	KCYN0129	21
	1024	KCYN0130	35
	1007	KCYN0131	10,565
	1065	KCYN0133	17
	1038	KCYN0134	822
	10/6	KCYN0135	14
	0240	KCYNLR04	18
	1000	KCYNLR08	47
	1021	KCYNLR11	1-6
	0945	KCYN0162	5/
	1018	KCYN0163	74
P	0931	KCYN0164	106

KIRBY LANDFILL PENETRATION SCAN RESULTS, EXCEEDANCES, AND CORRECTIVE ACTIONS

Year: 2024
Quarter: 154

IME Date	TIME	IME Location ID	IME Concentration (ppm)
1-16-24	0937	KCYN0165	91
	0940	KCYN0166	59
	1004	KCYN0167	
	1006	KCYN0168	103 28
		KCYN 0/30	already IN 1,5+
		KCYN 0163 KCYN 0169 KCYN 0170 KCYN 0171	already IN list already IN list 81
	0937	KCVA, 0169	8/
	0950	KCYA, 0170	114
	1009	Keya 0171	75
	1000	KCVA, UIL	50
	0934	FICYAL ER12	66
	1003	kc/c0158	39
	1006	KC1COIS9	66 39 >8 37 40
	1025	KCLC0160	37
V	1025	KUCD 161	40
			No. of the last of

SEM GRID MAP

Attachment B

Integrated Surface Emission Monitoring Event Records

Table B.1 Integrated Landfill Surface Monitoring Exceedances and Monitoring Log

2024 QUARTER: 1

INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: N/A

LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Initial Mor	nitoring Eve	ent	1st Re-mo	n Event - 1	0 Days	
Exceedance	Monitoring	Field	Monitoring	No Exced.	No Exced.	
Grid ID No.	Date	Reading	Date	<25 ppm	>25 ppm	Comments
None						

KIRBY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel LEIS AWADE GARG LOPEZ

MIGHRESTARDO EDDIE DELING

JENNY MINOR

Cal Gas Exp Date: /1-10-24

Date: 1-9-24 Instrument Used LVA 1000 Grid Spacing 251

Temperature: 54 Precip: 0 Upwind BG: 2.0 Downwind BG: 2.8

GRID	STAFF	START	STOP	TOC	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKKS
36	LW	1300	1325	12.40	4	6	14	
37	ME	1300	1325	16.38	4	6	14	
38	153	1300	1325	12.45	4	6	14	
41	64	1300	1325	10.70		وأ	14	
42	60	1300	1325	12.10	4	6	14	
43	Lu	1325	1350	13.71	3	5	13	
44	ME	1325	1350	9.60	3	5	13	
47	03	1325	1350	10.13	3	5	13	
48	66	1325	1350	15.54	3	5	13	
48	E0	1325	1350	13.61	3	5 5 5	13	
52	LW	1350	1415	9.67	3	4	14	
53	ME	1350	1415	16.54	3	4	14	
54	70	1350	140	14.22	3	4	14	
55	66	1350	1815	8.7/	3	4	14	
57	EO	1350	146	6.45	3	4	14	
58	LW	1415	1440	8.12	4	5	14	
59	ME	145	1440	11.13	4	5	14	
60	54	1415	1440	18.71	4	5 5	14	
61	66	145	1440	9.30		9	14	
64	60	1415	1440	7.1/	4	5	14	
65	LW	1840	1575	9.21	2	3	14	
66	ME	1440	1505	11.14	2	3	14	
6>	54	1440	150	20.38	2	3	14	
68	66	1440	1505	8.>/	2	3	14	
70	60	1440	150	6.45	2	3	14	
71	LW	1505	1830	10.15	3	3 3 5	13	A 2
72	ME	1505	1530	13.92	3	5	13	
ンろ	500	150	1550	17-98	3	5	13	
74	66	1505	1530	9.12	3	5	13	
75	20	1500	1530	8.44	3	5	13	

Attach Calibration Sheet

Attach site map showing grid ID

Page _____ of ______

KIRBY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personner	LEIGHWAOK	6246/spez	
	MICHAL ESTACOA	EDDIC OTIM	
	JERRY MUROL		Cai Gas Exp Date //-/2-24
Date /	1-9-24 Instrument Us	ed tualooo	Grid Spacing 2.5
Temper	ature: <u>54</u> Precip:	O Upwind BG:	2.0 Downwind BG: 2.8

GRID	STAFF	START	STOP	TOC	MI	ND INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	7(1) ((((())))
76	LW	1530	1555	10.30	2	4	10	
フと	ME	1530	1555	9.77	2	4	10	
79	JM	1870	1555	6.92	2	4	10	
80	66	1530	1555	7.45	2	4	10	
8/	80	1520	1855	7.27	2	4	10	
							-	

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 2

							Cal Gas Ex	op Date:
ate <u>/</u>	-9-24	Instrume	nt Used			_ Grid S	ipacing _	
emperat	ure:	Precip		Upwind	BG:		Downwin	d BG:
GRID	STAFF	START	STOP	ТОС	WI	ND INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	-
/10 ///								Action-tras
117								
125								
128								Y
7							i.e.	Nowasteinp
3								
4								
5								
6								
5								
9								
11								
17								
14								
15								
15								
15	-							
19								
20								
21								
22								
23								1

Attach Calibration Sheet Attach site map showing grid ID

Page 1 of 2

-			— ÷				Cai Gas Exp	Date:
ate /	-9-24	_ Instrume	nt Used			_ Grid S	Spacing	
							Downwind (
GRID	STAFF	START	STOP	тос	WI!	ND INFOR	RMATION	REMARKS
ID		TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
25								
26								
27								
28								
29								
76						-		
3/						-		
37.								7
3 3								
34					1			
35								
33								
40								
45								
45								
50								
5)								
56								
62	5							
53								
69								
78								
108								
114								
115								
122								
					-			

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 2

Personnel: LETS & VADE LOPEZ

MISUEL ESTACOR ENDICOS /INA

TETRAS ALLEY

Cal. Gas Exp. Date: 1/-/0-24

Date: 1-10-24 Instrument Used: LVAIOID Grid Spacing Z 1

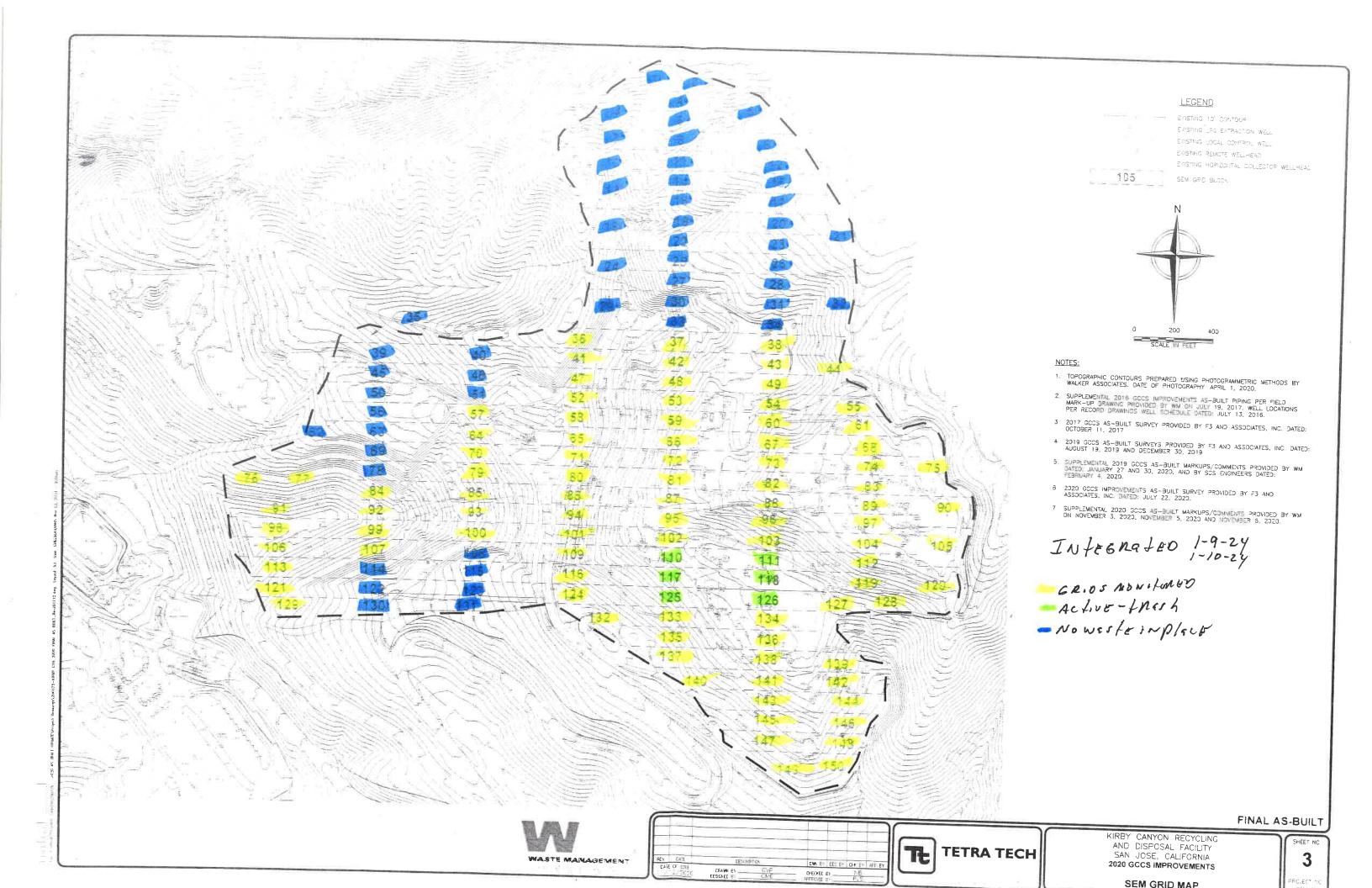
Temperature: 38 Precip: D Upwind BG: 2.0 Downwind BG: 2.8

GRID	STAFF	START	STOP	тос	NIW	ND INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLIIAKKS
82	LW	0615	0640	7,18	1	1	2	
83	ME	0615	6640	7.10			2	
84	23	0615	0640	21.67			2	
85	66	0615	0640	9.71				
86	EP	0615	0640	9.30			2	
87	LW	0640	6705	14.67	2	2	9	
88	16	6640	2070	11.20	2	2	.5	
89	64	0640	2010	8.13	2	2	5 5	
90	Jan	0640	0705	7.21	2		5	
9/	E10	0640	0705	19.77	2	2	5	
92	12	0705	0730	22.46	2	2	5	
93	ME	0705	0770	11-47	2	2	5	
94	53	2010	0730	16.28	2	2	5	
95	66	0705	0770	13.25	2	2	5	
96	20	0705	0730	9.50	2	2	5	
97	1	0730	0755	7.12	2	2	5	
98	24	0)30	0755	23.4/	2	2		
99	0	0730	0755	17.62	2	2	5	
100	66	0730	0755	11.69	2	2	5	
101	20	0730	2250	14.57	2	2	5	
102	W	0755	0820	12.34		3	6	
103	148	0755	0820	8.60	3	3	6	
104	200	0755	0820	6.81	3	3	6	
125	GC	0755	0820	5-47	3	3	6	
106	END	0755	0820	12.21	3	3	6	
107	LV	0820	0845	16-91	3		5	
109	20	0820	2480	10.54	3	3	5	
112	200	0820	480	6.82	3	3	5	
113	66	0820	0885	16.40	3	3	5	
116	20	0820	0845	12.17	3	3	5	

Attach Calibration Sheet

Attach site map showing grid ID

Page ____ of _____


Personner	LEISH WHOK MICHEL ESTICOR	GREG TOPER				
	MISGUE ESTACOL JENNY MUNOT			Cal Gas E	xp Date: 11-10.	-24
Date: _	/-/b-24 Instrument (Used TVA1000	Grid	Spacing _	281	
Temper	ature: 55 Precip:	O Upwind BG:	2.0	Downwii	nd BG: - 2. 8	

GRID	STAFF	START	STOP	тос	WIN	ND INFOR	NOITAM	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KENAKKO
119	LW	0845	0910	6.51	3	4	10	
120	ME	0845	0917	6.38	3	4	10	
121	50	0845	0910	9.27	3	4	10	
124	66	0845	0910	10.66	3	4	10	
127	ED	0842	0910	6.45	3	4	10	
128	LW	0910	0935	7.02	3	4	I)	
129	ME	0910	0935	8.14	3		11	
132	04	0917	0935	8.31	3	4	11	
133	66	09/0	0935	7.25	3	4	11	
134	En	0910	0925	8.71	3	4	U	
135	14	0935	1000	7.61	3	4	11	
136	Mr	0935	1000	6.94	3	4	11	
137	200	0935	1000	7.08	3	4	10	
138	th	0935	1000	6.84	3	4	II I	
139	66	0935	1083	7.21	3	4	II	
140	LV	1000	1025	6.45	3	5	U	
141	ME	1000	1025	6.77	3	5	11	
142	50	1000	1021	5.84	3	5	11	
143	66	1000	1025	6.30	3	5	* 1	
184	FN	1000	1025	5.27	3	5	- In	
145	Lu	1025	1050	6.66	2	3	10	
146	no	1025	1050	5.43	2	3	lo	
147	200	1025	1050	5.51	2	3	10	
148	66	1025	1050	5.30	2	3	10	
149	E10	1025	1000	5.91	2	3	10	
150	LW	1050	1115	5.70	-	2	6	

Attach Calibration Sheet

Attach site map showing grid ID

Page ____ of ____

Table C.1

AB-32 Component Leak Monitoring

Summary of Component Leaks Greater than 500 ppmv

2024 QUARTER:

INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: NA

LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Location	I	nitial Monitorin	ng	Correc	tive Action	10-Day Remonitoring		
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
Flare Station	01/10/24	ND	Leigh wade	=	=	-	-	-

ND= No Exceedances

Table C.2

BAAQMD Component Leak Monitoring Summary of Component Leaks Greater than 1,000 ppmv

2024 QUARTER:

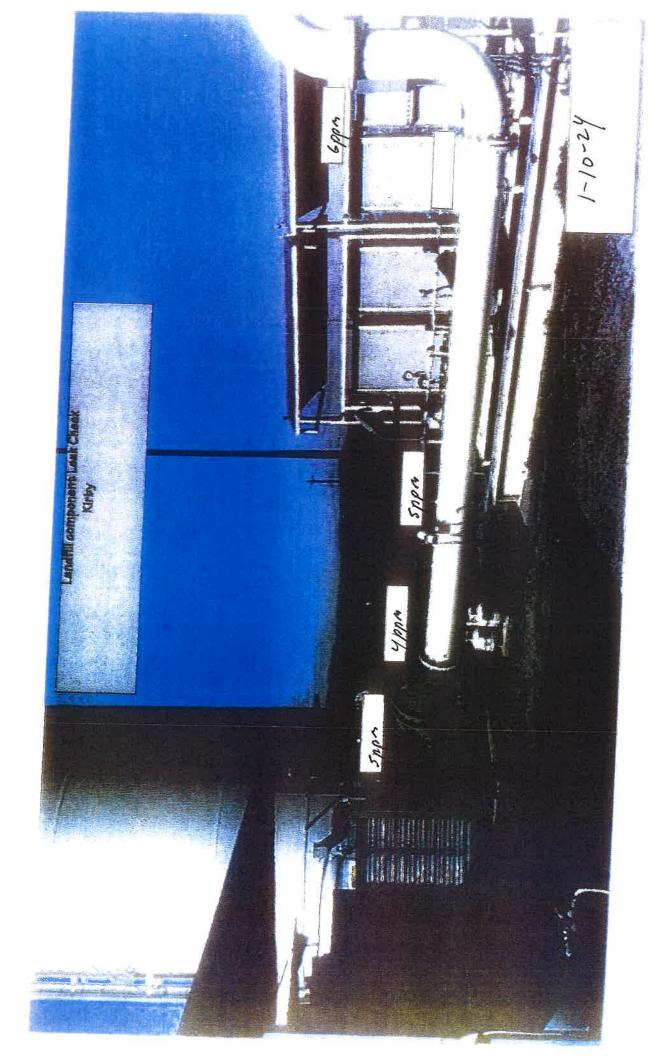
INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: NA

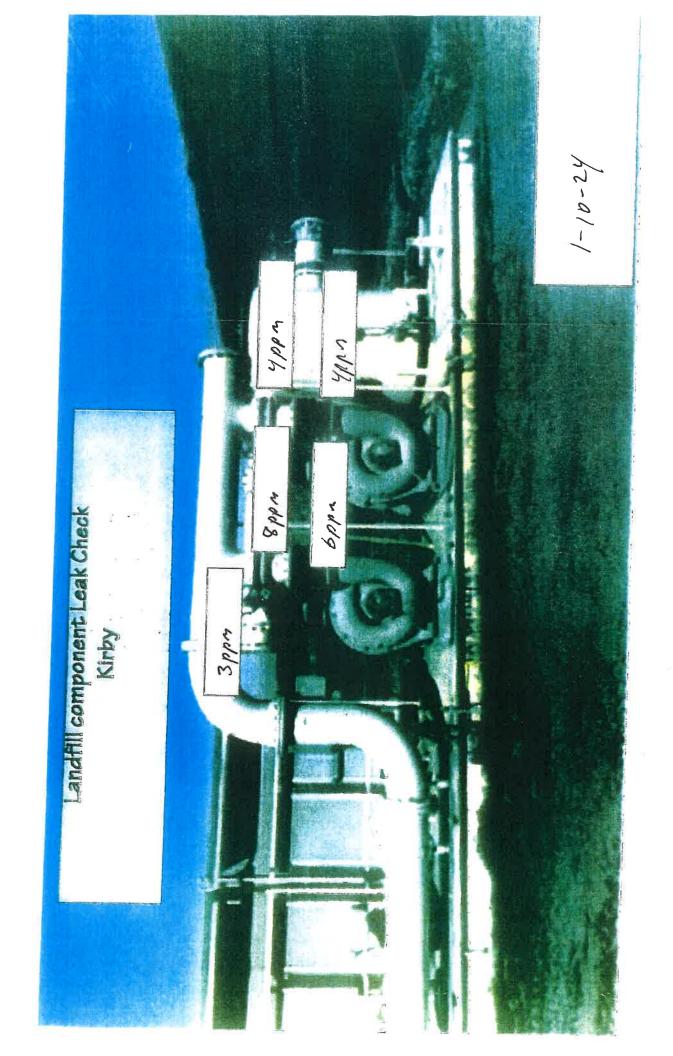
LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Location	In	itial Monitoring	3	Correct	7-Day Remonitoring			
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
Flare Station	01/10/24	ND	Leigh wade	=	=	-	-	-

ND= No Exceedances

LANDFILL NAME: 16,1284 QUARTERLY LFG COMPONENT LEAK MONITORING

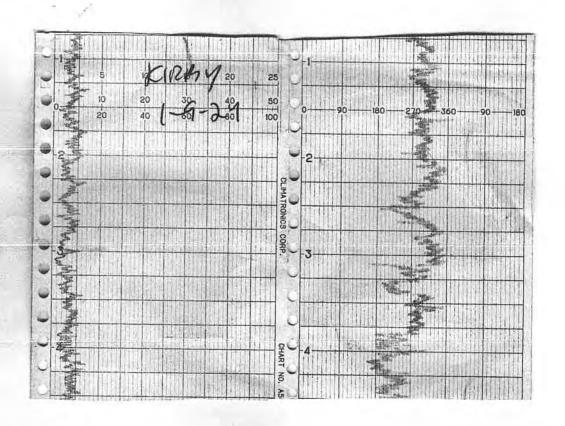

S/N:/436346223 MAKE: Thermo Environr MODEL: TVA 1000 INSTRUMENT

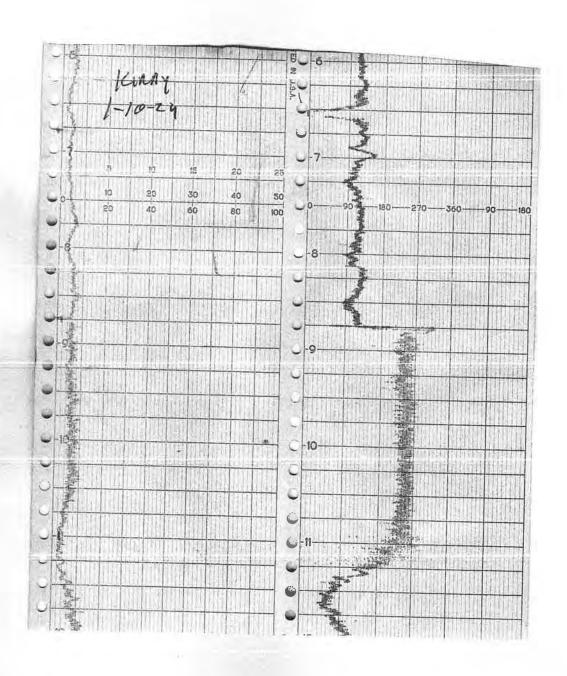

DATE OF SAMPLING: /-/0-2 4 TECHNICIAN: LEIS 4 WADE

LOCATION OF LEAK	LEAK CONCENTRATION (ppmv)	DATE OF DISCOVERY	TECHNICIAN	ACTION TAKEN TO REPAIR LEAK	DATE OF REPAIR	DATE OF ANY REQUIRED RE- MONITORING	RE-MONITORED CONCENTRATION (PPmv)
NO Exceptances							
In the event that an exceu	In the event that an exceedance is detected, please intiate corrective action and re-monitor the exceedance location within 7 days of the initial exceedance.	intiate corrective act	lion and re-monitor	the exceedance location	within 7 days of th	ne initial exceedance.	

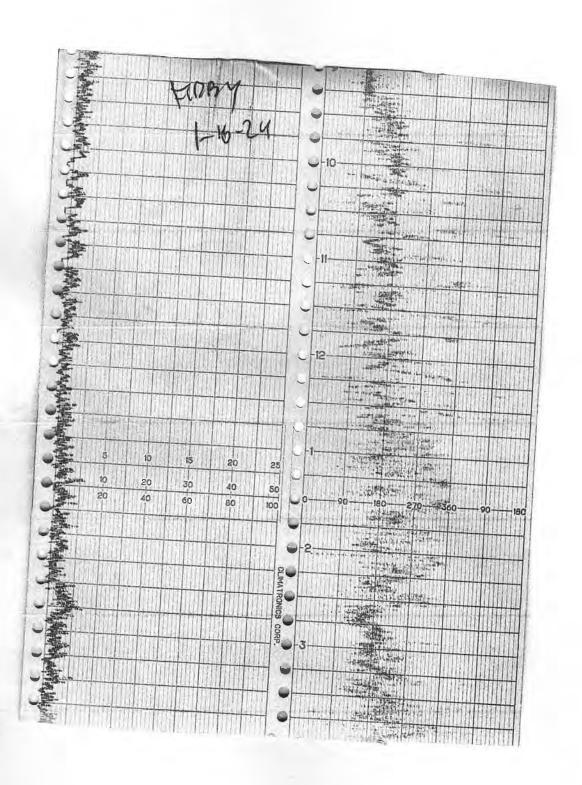
NOTE: Leaks over 500 ppmv methane are exceedances at any component containing landfill gas, pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

NOTE: Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas, pursuant to BAAQMD Regulation 8-34-301.2.




Attachment D

Weather Station Data


WIND SPEED & DIRECTION CHART ROLL

WIND SPEED & DIRECTION CHART ROLL

WIND SPEED & DIRECTION CHART ROLL

	16-POINT V	VIND DIRECTION	INDEX	
NO	DIRECTION		DEGREES	
		FROM	CENTER	<u>T0</u>
16	NORTH (N)	348.8	369.0	trata
ţ	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033,8	045.0	056.3
5	EAST-NORTHEAST (ENE)	056,3	067.5	078.8
r l	EAST (E)	078.8	090.0	101.3
5	EAST-SOUTHEAST (ESE)	101,3	112.5	123.8
	SOUTHEAST (SE)	123.8	135.0	146.3
	SOUTH-SOUTHEAST (SSE)	146.3	<u>157.5</u>	168.8
	SOUTH (S)	168.8	180.0	191.3
1	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213,8
ů.	SOUTHWEST (SW)	213.8	225.0	430.3
1	WEST-SOUTHWEST (WSW)	236.3	<u>247.</u> 5	258.8
2	WEST (W)	258.8	<u>270.0</u>	281.3
3	WEST-NORTHWEST (WNW)	281.3	292.5	303.8
4	NORTHWEST (NW)	30.2.8	315.0	326.3
5	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8

Attachment E

Calibration Records

LANDFILL NAME: /C, RBY	INSTRUMENT MAKE + HER NO
MODEL: 40 4 1000 EQUIPMENT #:	
MONITORING DATE: 1-16-29	TIME:0930

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 500
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2.2 ppm	Z. 8 ppm	2.5 ppm

Background Value = 2.5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabil Reading	ized	Time to Reach 9 Stabilized Readi switching from a Calibration Gas	ng after
#1	506	ppm	456	ppm	5	
#2	567	ppm	451	ppm	5-	
#3	500	ppm	450	ppm	5	
	Calculate Response Ti	me (<u>1-</u> 3	+2+3)		5	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Ga		Calculate Precision	[STD - (B)]
#1	0.14	ppm	506	ppm	6	
#2	0.09	ppm	5.1	ppm	1	
#3	0.0>	ppm	500	ppm	D	
Calculate Precisio	n [STD-B1] + [S	TD-B2] + [\$ 3	STD-B3] X <u>1</u> X 500	100 1	0-46 Must be less th	#DIV/0! an 10%

Performed By:	LEWINDE	Date/Time: /-/6-24	0930

LANDFILL NAME /C	NBY	INSTRUMENT MAKE	= +Henro
MODEL: TUA 1000	EQUIPMENT #://	SE	RIAL #: 1036346772
MONITORING DATE:/	-16-24	TIME:09	70

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading =
- 3 Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 sec		Downwind Bac Reading: (Highest in 30 se		Background Va	
212	ppm	2-8	ppm	2.5	ppm

Background Value = 2.5 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	g Using	90% of the Stabil Reading	ized	Time to Reach Stabilized Read switching from Calibration Gas	ing after Zero Air to
#1	507	ppm	457	ppm	5	
#2	500	ppm	450	ppm	5	
#3	211	ppm	450	ppm	5	
	Calculate Response	Гіте (<u>1-</u> 3	<u>+2+3</u>)		Must be less that	#DIV/0!

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Ga	-	Calculate Precision	[STD – (B)]
#1	0.89	ppm	507	ppm	>	
#2	0-06	ppm	500	ppm	ð	
#3	0.04	ppm	513	ppm	0	
Calculate Precision	on [STD-B1] + [ST	TD-B2] + [\$ 3	STD-B3] X <u>1</u> > 500	K <u>100</u> 1	O·44 Must be less that	#DIV/0!

Performed By:	MUSER ESTABLA	Date/Time:	1-16-24, -	0930

LANDFILL NAME KIRDY	INSTRUMENT MAKE: + Hon 20
MODELEQUIPMEI	NT# 12 SERIAL #: 183624674/
MONITORING DATE: 1-16-24	TIME: 0977

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- Allow institution to zero lise if write introducing air.
 Introduce calibration gas into the probe. Stabilized reading = ________ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
Z.Z ppm	2-8 pp	m 2.5 ppm

Background Value = 2-1 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	y Using	90% of the Stabi Reading	ized	Time to Reach Stabilized Rea switching from Calibration Ga	ding after Zero Air to
#1	485	ppm	439	ppm	6	
#2	510	ppm	450	ppm	ъ	
#3	500	ppm	450	ppm	6	
	Calculate Response 1	Time (<u>1-</u> 3	<u>+2+3</u>)		4	#DIV/0!
					Must be less tha	an 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Ga		Calculate Precision	[STD – (B)]
#1	0-11	ppm	489	ppm	11	
#2	0 - 85	ppm	500	ppm	0	
#3	0-83	ppm	500	ppm	٥	
Calculate Precision	on [STD-B1] + [S	TD-B2] + [S	STD-B3] X <u>1</u> X 500	100 1	O+>3 Must be less tha	#DIV/0!

Date/Time: 1-16-24- 0930

LANDFILL NAME /CIRBY	INSTRUMENT MAKE + HEN NO
MODEL LUA 1000 EQUIPMENT #: /	4 - 4
MONITORING DATE: /-/14-2 4	TIME 0970

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- Introduce calibration gas into the probe. Stabilized reading = _______ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec		Downwind Back Reading: (Highest in 30 sec		Background Val (Upwind + Down 2	
2.2	ppm	2.8	ppm	2-5	ppm

Background Value = 25 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readir Calibration Gas	90% of the Stabi Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	506	ppm	456	ppm	>	
#2	50/	ppm	451	ppm	7	
#3	500	ppm	450	ppm	7	
	Calculate Response	Time (<u>1</u> -	+2+3)		Must be less th	#DIV/0!

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calculate Precision Calibration Gas (B)				Calculate Precision	[STD – (B)]
#1	0.10	ppm	508	ppm	6	
#2	0-07	ppm	50/	ppm	1	
#3	0.04	ppm	500	ppm	0	
Calculate Precision	STD-B1] + [STD-B1]	TD-B2] + [8 3	STD-B3] X <u>1</u> X 500	(<u>100</u> 1	0.46	#DIV/0!
1000					Must be less that	an 10%

Performed By: <u>#PD12 DF11A5</u> Date/Time: 1-16-24-0930

LANDFILL NAME: KIRRY	ISTRUMENT MAKE + HON NO
MODEL & VALOGO EQUIPMENT #: 16	SERIAL # //62746776
MONITORING DATE: /-/6-24	TIME 0930

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 500 ppm
- Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backo Reading: (Highest in 30 s		Downwind Background Reading: (Highest in 30 seconds)		Background Va (Upwind + Do 2	
2.2	ppm	2-8	ppm	2.5	ppm

Background Value = 2 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabi Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	4.50	ppm	440	ppm	6	
#2	500	ppm	450	ppm	6	
#3	500	ppm	450	ppm	6	
-	Calculate Response	Time (<u>1</u> - 3	<u>+2+3</u>)		ح Must be less tha	#DIV/0! n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]
#1	0.12	ppm	490	ppm	10	
#2	6.06	ppm	500	ppm	0	
#3	0.04	ppm	500	ppm	Ò	
Calculate Precision	[STD-B1] + [S	TD-B2] + [S	STD-B3] X <u>1</u> X 500	100 1	○·3.3 Must be less that	#DIV/0!

Performed By: 6105 lopor

Date/Time: 1-16-29-0935

CALIBRATION	PROCEDURE AL	ND BACKGROUND	REPORT -	INTEGRATED

LANDFILL NAME /CIR	ny	INSTRL	JMENT MAKE #	Hono
MODEL JUA1000	EQUIPMENT #			1036346773
MONITORING DATE /-9	-24	TIM	E 1250	

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2 Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3 Adjust meter settings to read 25 ppm

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 seco		Background Val (Upwind + Dow 2	
200	ppm	2.8	ppm	2.4	ppm

Background Value = 2 4 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement # Stabilized Reading Using 90% of the Stabil Calibration Gas Reading		ized	Time to Reach 9 Stabilized Read switching from a Calibration Gas	ing after Zero Air to		
#1	24	ppm	21.6	ppm	5	
#2	25	ppm	22.5	ppm	5	
#3	21	ppm	225	ppm	5	
	Calculate Response Ti	me (<u>1</u> -	+2+3)		-	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Z	Meter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		n [STD – (B)]
#1	611/	ppm	24	ppm	/	
#2	80.0	ppm	25	ppm	0	
#3	0.06	ppm	20	ppm	0	
Calculate Precision	on [STD-B1] + [S	3 3 STD-B2] + [S	STD-B3] X <u>1</u>) 25	(<u>100</u> 1	/-3 Must be less th	#DIV/0

.)		
Performed By LEYLW106	Date/Time	1250

LANDFILL NAME KYRY		INSTRUMENT	$_{\text{MAKE}}$	Hono
MODEL TUA LOUD	EQUIPMENT# //		SERIAL#	1036346772
MONITORING DATE /-9-	-24	TIME	1250	

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- Introduce calibration gas into the probe Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Background Reading: (Highest in 30 seconds)		Background Valu (Upwind + Dow 2	
2.0	ppm	2.8	ppm	2.4	ppm

Background Value = 24 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	23	ppm	20-7	ppm	6	
#2	25	ppm	225	ppm	6	
#3	25	ppm	22.5	ppm	6	
	Calculate Response T	ime (<u>1</u> -	+2+3)		6	#DIV/0!
					Must be less than	n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

0,10	ppm	23	ppm	2	-
0186	ppm	25	ppm	0	
0.03	ppm	25	ppm	0	
[STD-B1] + [S	TD-B2] + [S	STD-B3] X <u>1</u> X 25	(<u>100</u> 1	216	#DIV/0!
	0.03	0.86 ppm 0.03 ppm	0.86 ppm 25 0.03 ppm 25 [STD-B1] + [STD-B2] + [STD-B3] X 1)	0:86 ppm 25 ppm 0:03 ppm 25 ppm [STD-B1] + [STD-B2] + [STD-B3] X 1 X 100	0:86 ppm 25 ppm 0 0:03 ppm 25 ppm 0 [STD-B1] + [STD-B2] + [STD-B3] X 1 X 100 2:6

Performed By	MISERC ESTRABA
Performed By	MISERC ESTRABA

__Date/Time 1-9-24 -/250

LANDFILL NAME /CIRBY		INSTRUMENT MAKE + Hon 1-			
MODEL TVA 1000 E	QUIPMENT#			1036246741	
MONITORING DATE/~5-Z	24	TIME	1250		

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Reading:		Background Val		
200	ppm	2-8	ppm	2-4	ppm	

Background Value = 204 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 9 Stabilized Read switching from Calibration Gas	ing after Zero Air to
#1	23	ppm	20.7	ppm	6	
#2	24	ppm	21.6	ppm	6	
#3	75	ppm	22.5	ppm	6	
	Calculate Response T	ime (<u>1</u> - 3	+2+3)		6	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	leter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]	
#1	0111	ppm	23	ppm	2		
#2	0.06	ppm	24	ppm	1		
#3	0.04	ppm	25	ppm	۵		
Calculate Precision	STD-B1 + [ST	TD-B2] + [S	STD-B3] X <u>1</u> X 25	100	4.8	#DIV/0!	
					Must be less th	an 10%	

Performed By _

JERRY MUNOZ

Date/Time 1-9-24- 1250

LANDFILL NAME KI	rry	INSTRUMENT MAKE + HONN			
MODEL LUPIOUS	EQUIPMENT # /		1102746725		
MONITORING DATE	1-9-24	TIME: /250			

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2 Introduce calibration gas into the probe Stabilized reading = 25 ppm
- 3 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Background Reading: (Highest in 30 seconds)		Background Val	
200	ppm	2.8	ppm	2.4	ppm

Background Value = 2-4 ppm

INSTRUMENT RESPONSE TIME RECORD

Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 9 Stabilized Readi switching from a Calibration Gas	ng after Zero Air to
24	ppm	21.6	ppm	4	
25	ppm	22.5	ppm	4	
25	ppm	22.5	ppm	4	
ulate Response	e Time (<u>1</u> -	+2+3)		4	#DIV/0
	25	25 ppm	25 ppm 22.5	25 ppm Z2.5 ppm 25 ppm Z2.5 ppm	25 ppm 22.5 ppm 4 25 ppm 22.5 ppm 4

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B			
#1	0.15	ppm	24	ppm	/	
#2	0.89	ppm	25	ppm	0	
#3	0 :07	ppm	20	ppm	6	
Calculate Precision		3 + [S	STD-B3] X <u>1</u> X 25	(<u>100</u> 1	// J	#DIV/0!

Performed	Ву	6 KO6	10	549	
					•

Date/Time 1-9-24-1250

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATE	DURE AND BACKGROUND REPORT - INTEGRATE	FF
---	--	----

LANDFILL NAME /CIRBY	INSTRUMENT MAKE +HORM			
MODEL LUATOR EQUIPMENT #	16 SERIAL# 1102746776			
MONITORING DATE: /-9-24	TIME /250			

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
 2 Introduce calibration gas into the probe Stabilized reading = 25 ppm
- 3 Adjust meter settings to read 25 ppm

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)		Downwind Background Reading: (Highest in 30 seconds)		Background Value: (Upwind + Downwind) 2		
20	ppm	2-8	ppm	2-4	ppm	

Background Value = $2 \cdot 4$ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	Stabilized Reading Using 90% of the Stabilized Reading		Time to Reach S Stabilized Read switching from Calibration Gas	ing after Zero Air to	
#1	24	ppm	21.6	ppm	5	
#2	24	ppm	21-6	ppm	5	
#3	25	ppm	22.5	ppm	5	
	Calculate Response	Time (<u>1</u> -	+2+3)		, 5	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	ng for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision	[STD - (B)]	
#1	0113	ppm	24	ppm	/	
#2	0.09	ppm	74	ppm	1	
#3	0.07	ppm	20	ppm	D	
Calculate Precision	[STD-B1] + [S	TD-B2] + [5	STD-B3] X 1 25	X <u>100</u> 1	2,6	#DIV/0!
					Must be less th	an 10%

Performed By	EDD.	C	08	1ins
--------------	------	---	----	------

Date/Time 1-9-24 - 1250

LANDFILL NAME KINDY			INSTRUMENT MAKE + HERRE			
MODEL FUATOUR	EQUIPMENT#	10	SERIAL#	1036346773		
MONITORING DATE	1-10-24	TIME	0600			

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Reading:		Background Value: (Upwind + Downwind) 2		
20	ppm	2.8	ppm	2.4	ppm	

Background Value = 2.4 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using 90% of the Stabilized Reading		Calibration Gas Reading			Stabilized I		each 90% of Reading after from Zero Air to n Gas	
#1	24	ppm	21.6	ppm	7				
#2	25	ppm	22.5	ppm	7				
#3	25	ppm	77.5	ppm	7				
Calculate Response Time (1+2+3)					7	#D(V/0!			
					Must be less th	nan 30 seconds			

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze			Air (A) Meter Reading for Calibration Gas (B)		D – (B)]
#1	0.15	ppm	24	ppm		
#2	0-10	ppm	21	ppm	0	
#3	0.86	ppm	25	ppm	0	
Calculate Precisio	n [STD-B1] + [S	3 + [S	STD-B3] X <u>1</u> 25	K <u>100</u> 1	/\3 Must be less than 10	#DIV/0!

Performed By	LOISLWADE	Date/Time /~10-24-	0600
_		Dator line _1	000

LANDFILL NAME /C	inny	INSTRUME	NT MAKE	fleno
MODEL FUA 1000	EQUIPMENT#	1/		L# 1036346772
MONITORING DATE	1-10-24	TIME:	0600	

Calibration Procedure:

1 Allow instrument to zero itself while introducing air

2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 se		Downwind Background Reading: (Highest in 30 seconds)		Background Value (Upwind + Dow 2	
20	ppm	2.8	ppm	2.4	ppm

Background Value = 24 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readir Calibration Gas	90% of the Stabilized Reading		Time to Reach Stabilized Reac switching from Calibration Gas	ling after Zero Air to	
#1	23	ppm	20.7	ppm	6	
#2	21	ppm	225	ppm	6	
#3	25	ppm	22.5	ppm	6	
	Calculate Response	Time (<u>1</u> -	+2+3)		6	#DIV/0!
					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision	[STD - (B)]		
#1	0.10	ppm	23	ppm	2	
#2	0.08	ppm	21	ppm	0	
#3	0-83	ppm	25	ppm	8	
Calculate Precision	[STD-B1] + [STD-B2] + [5	STD-B3] X 1)	100	2.6	#DIV/0
					Must be less tha	an 10%

Performed By MUSGER ESPANDA

Date/Time: 1-10-24-0608

LANDFILL NAME /CIR.	By	INSTRUMEN	NT MAKE	onn
MODEL LUA 1000	EQUIPMENT#	0.002		103624674/
MONITORING DATE	1-10-24	TIME	0600	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe Stabilized reading = 15 ppm
- 3. Adjust meter settings to read 25 ppm

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 se		Reading:		Background Va	
200	ppm	2.8	ppm	2.4	ppm

Background Value = 2.4 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	90% of the Stabilized Reading		Time to Reach Stabilized Reac switching from Calibration Gas	ling after Zero Air to	
#1	24	ppm	21.6	ppm	6	
#2	24	ppm	21.6	ppm	6	
#3	25	ppm	22.5	ppm	6	
	Calculate Response	Time (<u>1</u> -	+2+3)		۷.	#DIV/0!
					Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Meter Reading for Zero Air (A)		Calculate Precision	n [STD – (B)]
#1	0.14	ppm	24	ppm	,	
#2	0-09	ppm	24	ppm	1	
#3	0.06	ppm	25	ppm	2	
Calculate Precision	on [STD-B1] + [STD-B2] + [5 3	STD-B3] X <u>1</u> X 25	1 100 1	2.8	#DIV/0!
					Must be less th	nan 10%

Performed By JUNKY MELLOT

Date/Time: 1-18-24-0660

LANDFILL NAME /C	INSTRUMENT MAKE +Herr			
MODEL LUAIDUS	EQUIPMENT #	1 -		1102746775
MONITORING DATE	1-10-24	TIME	0600	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Bac Reading: (Highest in 30 se		Background Va	
20	ppm	2-8	ppm	2.4	ppm

Background Value = 2.4 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	abilized Reading Using 90% of the Stabilized Reading Reading Post Post Reading Post Pos		lized	Time to Reach Stabilized Rea switching from Calibration Ga	ding after Zero Air to
#1	23	ppm	20.7	ppm	4	
#2	24	ppm	21.6	ppm	4	
#3	25	ppm	22.5	ppm	4	
	Calculate Response	Time (<u>1</u> -	+2+3)		Must be less that	#DIV/0

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Z	ter Reading for Zero Air (A)		ig for ias (B)	Calculate Precision [STD – (B)	
#1	0.14	ppm	23	ppm	2	
#2	0109	ppm	24	ppm	/	
#3	0.05	ppm	25	ppm	D	
Calculate Precisio	n [STD-B1] + [S	TD-B2] + [S	STD-B3] X <u>1</u> 25	X <u>100</u> 1	ې، ک Must be less th	#DIV/0!

Performed	Ву	6R66	10	201	

Date/Time 1-10-24-0600

LANDFILL NAME /	NRY		INSTRUMENT MAKE + Hon 10
MODEL FUATOUS	EQUIPMENT #	16	SERIAL # //62746776
MONITORING DATE	1-10-24		TIME 0600

Calibration Procedure:

1. Allow instrument to zero itself while introducing air

2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm

3. Adjust meter settings to read 25 ppm

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Bac Reading: (Highest in 30 sec		Background Val	
7-0	ppm	2.8	ppm	2.4	ppm

Background Value = 2-4 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas	ng Using	90% of the Stabilized Reading		Time to Reach Stabilized Read switching from Calibration Gas	ding after Zero Air to
#1	24	ppm	21.6	ppm	.5	
#2	25	ppm	225	ppm	.5	
#3	25	ppm	22.5	ppm		
	Calculate Response	Time (<u>1-</u> 3	+2+3)			#DIV/0!
					Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for 2	eter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		1 [STD – (B)]
#1	0.10	ppm	24	ppm	,	
#2	0.07	ppm	25	ppm	D	
#3	0-04	ppm	21	ppm	0	
Calculate Precision	[STD-B1] + [STD-B2] + [S	STD-B3] X <u>1</u> X 25	100	1.3	#DIV/0!
					Must be less th	ian 10%

Performed By BDD. Q DE 1-19

Date/Time 1-10-24- 0600

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

	105AM PM ment Make: Model:
Calib	ration Procedure
1.	Allow instrument to internally zero itself while introducing zero air.
2.	Introduce the calibration gas into the probe. Stable Reading = 503 ppm
3.	Adjust meter to read 500 ppm.
Backs	round Determination Procedure
	Upwind Reading (highest in 30 seconds):ppm (a)
1,	Upwind Reading (highest in 30 seconds): ppm (a) Downwind Reading (highest in 30 seconds): ppm (b)
1, 2.	그래도 가지 않는데 가게 되었다면서 하면 없고 하게 되었다.

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name: Kir by Can fou Date: 2/12/24 Time: 545 AM PM
Time: 545 AMPM
Time: 545 AM PM Instrument Make: Therms Model: TuAlub S/N: 0928538411
Calibration Procedure
1. Allow instrument to internally zero itself while introducing zero air.
2. Introduce the calibration gas into the probe.
Stable Reading = $\frac{502}{\text{ppm}}$
3. Adjust meter to read 500 ppm.
Background Determination Procedure
1. Upwind Reading (highest in 30 seconds): 2 ppm (a)
2. Downwind Reading (highest in 30 seconds): ppm (b)
5
Calculate Background Value:
$\frac{(a) + (b)}{2} \text{Background} = \frac{1.5}{2} \text{ppm}$
Performed By: Rhl8

CALIBRATION PRECISION TEST RECORD

Date: <u>1/4/2024</u>
Expiration Date (3 months): 4/4/2024
Time: <u>5:30</u> AM PM
Instrument Make: Thermo Scientific Model: TVA 1000 S/N: 0928538411
Measurement #1:
Meter Reading for Zero Air:0 ppm (a)
Meter Reading for Calibration Gas: 498 ppm (b)
Measurement #2:
Meter Reading for Zero Air: ppm (c)
Meter Reading for Calibration Gas: 496 ppm (d)
Measurement #3:
Meter Reading for Zero Air: ppm (e)
Meter Reading for Calibration Gas: 498 ppm (f)
Calculate Precision:
$\frac{\{ (496) - (500) + (500) - (498) + (500) - (496) \}}{3} \times \frac{1}{500} \times 100$
1.0 % (must be < than 10%)
Performed by: T. Robles

RESPONSE TIME TEST RECORD

Date: <u>1/4/24</u>		
Expiration Date (3 months): 4/4/24		
Time: _5:30 AM PM		
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u>	S/N:	0928538411
Measurement #1:		
Stabilized Reading Using Calibration Gas:	498 470	_ ppm
90% of the Stabilized Reading: Time to Reach 90% of Stabilized Reading after	470	_ ppm
switching from Zero Air to Calibration Gas:	10	_seconds (a)
Measurement #2:		
Stabilized Reading Using Calibration Gas:	496	_ ppm
90% of the Stabilized Reading:	480	ppm
Time to Reach 90% of Stabilized Reading after	-	1 715
switching from Zero Air to Calibration Gas:	5	_ seconds (b)
Measurement #3:		
Stabilized Reading Using Calibration Gas:	498	_ ppm
90% of the Stabilized Reading:	460	_ ppm
Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:	5	_ seconds (c)
Calculate Response Time:		
$\frac{(a) + (b) + (c)}{3} = \frac{8}{3}$ seconds (must be less than 30)	seconds)	
Performed by: <u>T.Robles</u>		

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

Date:	1	Time:	0815	
Model #	<u>346.7</u> 73			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	RUMENT CALIBRA	TION
Battery test	Fass / Fail	CA Calibration Gas (ppm)	ALIBRATION CHEC Actual (ppm)	K % Accuracy
Reading following ignition eak test	Pass / Fail / NA	500	500	100 X
Clean system check check valve chatter)	Fast / Fail / NA	Calibration Gas, p	RESPONSE TIME	300
d ₂ supply pressure gauge acceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration		as ppm
Pate of last factory calibration	1-5-24	2.	5	
actory calibration record //instrument within 3 months	Fass / Fail	Equal to or less th	an 30 seconds?	Ø N gas.

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

Site:				
Purpose:				
Operator:	Ma M			
Date: 1-5-24		Time:	0830	
Model#	00			
Serial # # // (0363	346779			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	UMENT CALIBRA	ATION
Battery test	Pass / Fail	Calibration	LIBRATION CHE	CK %
Reading following ignition	216 ppm	Gas (ppm)	(ppm)	Accuracy
Leak test	Pass / Fail / NA	Soo	500	100%.
Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas, p		500
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Time required to a 1.		Gas ppm
Date of last factory calibration	1-5-29	2. <u>6</u> 3.		
Factory calibration record w/instrument within 3 months	Pass / Fail	Average	an 30 seconds?	(y) N _ gas.
Comments:				
Comments:				

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

Serial # # # # # # # # # #	Date:/->	Time:	0845		
Battery test Reading following ignition Leak test Clean system check (check valve chatter) H2 supply pressure gauge (acceptable range 9.5 - 12) Date of last factory calibration Factory calibration record winstrument within 3 months Calibration Actual (ppm) Accuracy Calibration Gas (ppm) Calibration Gas, ppm 90% of Calibration Gas, ppm 90% of Calibration Gas, ppm 1. 2. 3. Average 5.6 Equal to or less than 30 seconds?		16741			
Reading following ignition Leak test Pass / Fail / NA Clean system check check valve chatter) Pass / Fail / NA Clean system check check valve chatter) Pass / Fail / NA Clean system check check valve chatter) Pass / Fail / NA Calibration Gas, ppm 90% of Calibration Gas, ppm 90% of Calibration Gas, ppm 100	INSTRUMENT INTEGRITY CHE	CKLIST IN	ISTRUMENT CALIBR	ATION	
Reading following ignition Leak test Clean system check (check valve chatter) Pass / Fail / NA Clean system check (check valve chatter) Pass / Fail / NA Calibration Gas, ppm 90% of Calibration Gas, ppm 90% of Calibration Gas, ppm 10% of Calibration	Battany toot	2			
Reading following ignition Leak test Pass / Fail / NA Clean system check check valve chatter) Pass / Fail / NA Clean system check check valve chatter) Pass / Fail / NA Calibration Gas, ppm 90% of Calibration Gas, ppm Time required to attain 90% of Cal Gas ppm 1. 2. 3. Average Factory calibration record vinstrument within 3 months Factory calibration amonths		Gas (ppm)			
RESPONSE TIME Clean system check check valve chatter) Response Time Calibration Gas, ppm 90% of Calibration Gas, ppm 90% of Calibration Gas, ppm 1. Pass / Fail / NA Response Time Calibration Gas, ppm 90% of Calibration Gas, ppm 1. Pass / Fail / NA Response Time 2. Time required to attain 90% of Cal Gas ppm 1. 2. 3. Average Sub Equal to or less than 30 seconds? NA Response Time Average Sub Equal to or less than 30 seconds? NA Response Time Average Sub Equal to or less than 30 seconds?	leading following ignition	2, 2 ppm	4 1/22	0	
Clean system check check valve chatter) RESPONSE TIME Calibration Gas, ppm 90% of Calibration Gas, ppm 10% of Ca	eak test	SS / Fail / NA	500	100%	
Calibration Gas, ppm 90% of Calibration Gas, ppm 90% of Calibration Gas, ppm 1. Pass / Fail / NA Pass / Fail / NA Pass / Fail Calibration Gas, ppm 90% of Calibration Gas, ppm 1. 2. 3. Average Fass / Fail Equal to or less than 30 seconds?			RESPONSE TIME		
Pass / Fail / NA Pass / Fail	check valve chatter)		as nom	Spo	
Pass / Fail / NA Time required to attain 90% of Cal Gas ppm 1. 2. 3. Average Side Side Side Side Side Side Side Sid	E	90% of Calibr			
Pate of last factory calibration 1-5-2-7	to supply pressure gauge Page 12)	ss / Fail / NA Time required		Sas ppm	
Factory calibration Fast / Fail Average Figure 1 ast factory calibration Fast / Fail	2000 ptable range 9.5 - 12)		6		
actory calibration record //instrument within 3 months Average Sub Equal to or less than 30 seconds?	Pate of last factory calibration 1) N- /			
//instrument within 3 months Equal to or less than 30 seconds?	actory calibration record	_	5,6		
Instrument calibrated toCtrygas.	//instrument within 3 months	Equal to or le		Ø N	
		Instrument ca	llibrated toCLF9	_gas.	

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

Date:		Time:	0900	
Model # 1000 Serial # # 13 1102	<u>)46775</u>			
INSTRUMENT INTEGRITY	CHECKLIST	INSTR	UMENT CALIBRA	ATION
Battery test	Fass / Fail	Calibration	LIBRATION CHE Actual	%
Reading following ignition	_2,1ppm	Gas (ppm)	(ppm)	Accuracy
_eak test	Pass / Fail / NA	500	500	100%
Clean system check			RESPONSE TIME	
check valve chatter)	Pass / Fail / NA	Calibration Gas, p	pm	500
H ₂ supply pressure gauge	Fass / Fail / NA	90% of Calibration		440
acceptable range 9.5 - 12)	Pass / Fall / NA	Time required to a	ttain 90% of Cal C	as ppm
Date of last factory calibration	1-5-29	2. 0)	
	100	3.		
Factory calibration record v/instrument within 3 months	Pass / Fail	Average <u>So</u> Equal to or less th	6 an 30 seconds?	(Y) N
		Instrument calibra		_gas.

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

Operator:	M M			
Date:		Time:	0945	
Model #				
Serial # #16 11027	146776			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	UMENT CALIBRA	TION
Battery test	Pass Fail	CA Calibration Gas (ppm)	LIBRATION CHEC Actual (ppm)	K % Accuracy
Reading following ignition	ppm	500	500	(OU);
eak test	Pass / Fail / NA		RESPONSE TIME	(007,
llean system check check valve chatter)	Pass / Fail / NA	Calibration Gas, p	pm S	00
d ₂ supply pressure gauge acceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Time required to a	i Gas, ppm attain 90% of Cal Ga	as ppm
Pate of last factory calibration	1-5-24	(-
actory calibration record //instrument within 3 months	Pass/ Fail	Average 5. Equal to or less the Instrument calibra	an 30 seconds?	Ø N gas.

CUSTOMER: 10 # 10

SERIAL NUMBER: 1036346773

TECHNICIAN: DATE: 1-5-24

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,004	+/- 2500
< 1	ZERO GAS	0.69	< 3
	PII		
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

CUSTOMER:	Te	les va	it # 1	
SERIAL NUMBER:		103630	16774	
TECHNICIAN:	Mu	M	DATE: _	1-5-24

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,001	+/- 2500
<1	ZERO GAS	0.64	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

CUSTOMER:	RES U	wit #12	-
SERIAL NUMBER:	103624	6741	
TECHNICIAN:	4 M	_ DATE:	1-5-24

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	Fi	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1 ZERO GAS 0.59		< 3	
	Pli	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

CUSTOMER:	1295 Vait # 13
SERIAL NUMBER:	1102746775

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	99	+/- 25
500	500	903	+/- 125
10000	10000	10,200	+/- 2500
< 1	ZERO GAS	(0,6)	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS	/	< 3

CUSTOMER:	DF.	S Vait	# 16	
SERIAL NUMBER:		1027467	76	
TECHNICIAN:	Mh	M	DATE: _	1-5-24

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID						
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm) +/- 25			
100	100	99				
500	500	500	+/- 125			
10000	10000	(0,000	+/- 2500 < 3			
<1	ZERO GAS					
	PII	0				
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)			
50	50	1	+/- 12.5			
100 100			+/- 25			
500	500		+/- 125			
< 1 ZERO			< 3			

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition Certification Analytical Accuracy (+/-)

Oxygen

20.9 %

2%

Nitrogen

Balance UHP

Lot#

20-7421

Mfg. Date:

5/20/2020

Expiration Date:

Transfill Date:

see cylinder

Parent Cylinder ID NY02268

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Tony Janquart

Title:

Quality Assurance Manager

Certificate Date:

5/20/2020

in Supply Service INC Concentration (Mole%)

-20.9% Oxygen Bal Nitrogen

3.68 @ 70°F and 1,000 PSIG

Lot#: 20-7421

P/N:01-100

103 L

Maiser Avenue, Irvine, CA 92614 37-053 or (800) 201-8150 Fax (949) 757-0363

103-01-100

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Certification

Analytical Accuracy

Methane

25 ppm

± 5%

Air

Balance

Lot#

17-6074

Mfg. Date:

10/16/2017

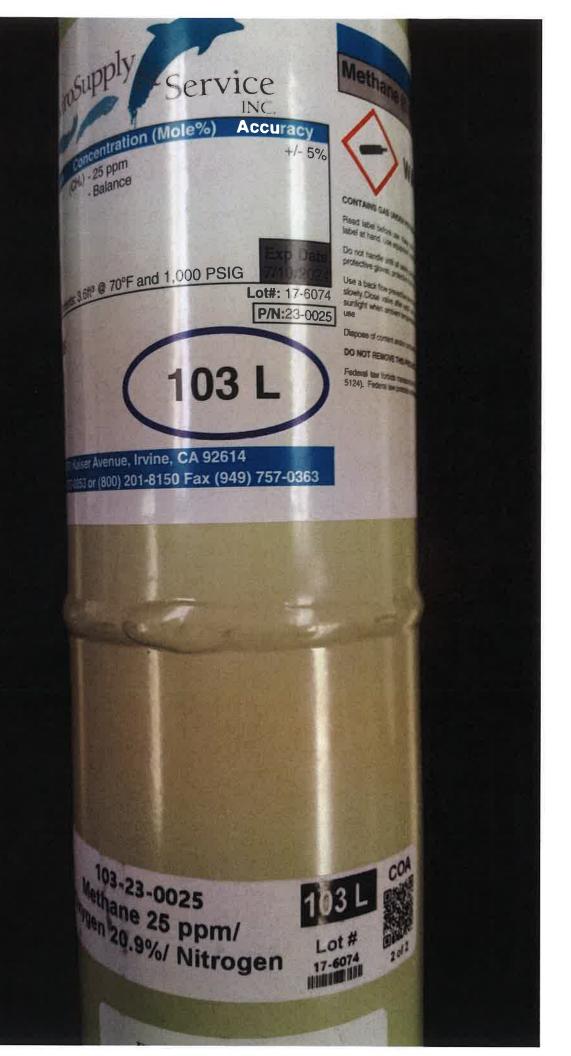
Parent Cylinder ID

17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Certification

Analytical Accuracy

Methane

25 ppm

 $\pm 5\%$

Air

Balance

Lot#

17-6074

Mfg. Date:

10/16/2017

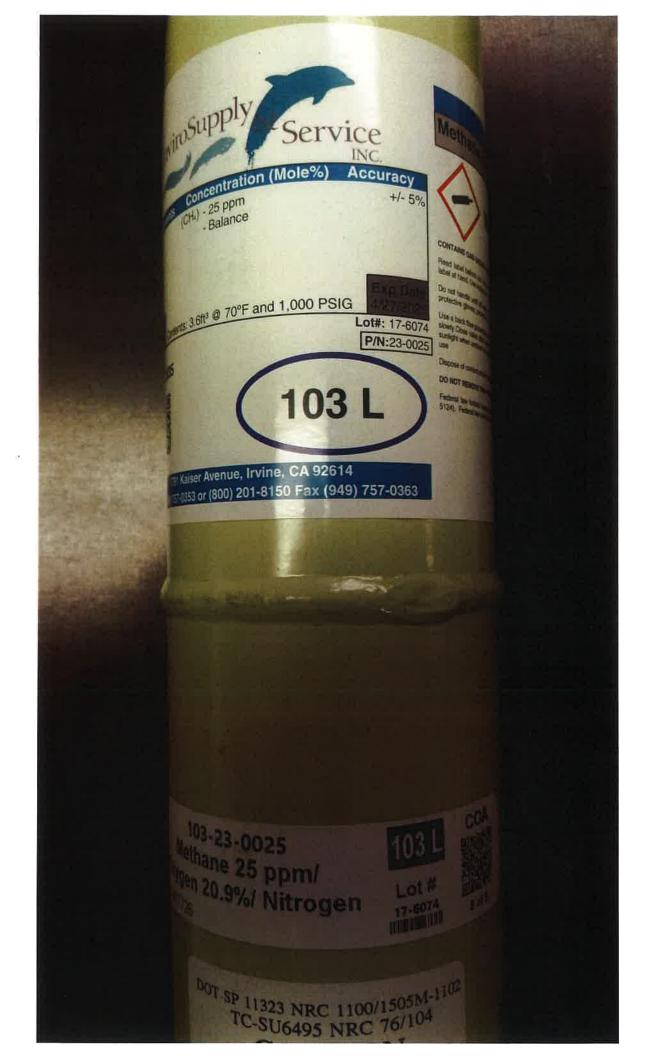
Parent Cylinder ID

17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition	Certification	Analytical Accuracy (+/-)
Methane	500 ppm	2%
Oxygen Nitrogen	20.9 % Balance UHP	2%

Lot# 20-7497

Mfg. Date: 7/10/2020

Expiration Date:

Transfill Date: see cylinder

Parent Cylinder ID TWC001763

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Title:

Tony Janquart

Certificate Date:

Quality Assurance Manager 7/10/2020

Methane (0.0) Service nimition (Mole%) Accuracy +/- 2% so ppm suance CONTAINS GAS UNDER PRESE Read label before use xing as table at hand. Use \$220 min Do not handle und at sales in protective gloves, protective gloves, protective gloves. 1,000 PSIG Use a back flow previous areas slowly. Close value after 102 at a sumlight when ampiers to present Lot#: 20-7497 P/N:23-0500 Dispose of content and con DO NOT REMOVE THE MOS Foderal law forbids the 103 5124). Federal law production Menue, Irvine, CA 92614 (00) 201-8150 Fax (949) 757-0363 103 L Lot # 20-2497 Nitrogen

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 69671309 PO Number 08361523

Lot Number Norlab Part#

2-108-80 J1971500PA

Cylinder Size

103 Liter

Number of Cyl 1

Date on Manufacture 6/10/2022

Expires

06/2025

Analytical Accuracy

+/- 2 %

Customer Part# N/A

Component Methane

Air

Reported

Concentration 500 ppm

Balance

Requested

Concentration 500 ppm

Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Diekus David Reed Lab Technician

Date Signed:

6/10/2022

800.962.7837 son.premiers afety.com 33596 Sterling Persons Sterling Height u

Components

Methane

Concentration (Mole

500 ppm Balance

Lott: 2-108-80

Accuracy: +/- 2 %

J1971500PA

Contents: 103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

5/5/2022

Exp. Date:

05/2025

CALIBRATION GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Norco, Inc Twin Falls Warehouse 203 S. Park Ave. West Twin Falls, ID 83301 Cust Number WH012 Order Number 71846398 PO Number 04A35563

Lot Number Norlab Part#

3-088-88 J1971500PA

Cylinder Size 103 Liter

Number of Cyl

tuniour or oyr

Customer Part# N/A

Date on Manufacture 4/7/2023

Expires 04/2027

Analytical Accuracy +/- 2 %

Component Methane Air Reported
Concentration
500 ppm
Balance

Requested
Concentration
500 ppm
Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Jeff Korn/

Date Signed:

4/7/2023

800.962.7837 www.promiers.afety.com

33596 Sterling Pergham

components

Methane

Concentration (Male

500 ppm Balance

3-088-88

Muney: #-2%

J1971500PA

Contents: 103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

4/7/2023

04/2027

CALIBRATION GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312 Cust Number 07152 Order Number 69679439 PO Number 04906817

Lot Number

2-154-85

Norlab Part#

J1002

Cylinder Size Number of Cyl 103 Liter

Date on Manufacture

6/13/2022

Expires

06/2025

Analytical Accuracy

Certified

Customer Part# N/A

Component

Air

Oxygen T.H.C. (as Methane)

Nitrogen

Reported

Concentration

Zero Grade 20.9 %

< 1.0 ppm

Balance

Requested

Concentration

Zero Grade

20.9 %

< 1.0 ppm

Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and

when empty. Never allow cylinder temperature to exceed 125 degrees F.

Minor constituents tested with standards traceable to NIST by mass or comparison to SRM's (Standard Reference Materials).

NIST Traceable Numbers are available upon request.

Approved:

David Reed

Lab Technician

Date Signed:

6/13/2022

\$10.962.7837 premiersafety.com

33596 Starting Property

components

ongen TH.C. (as Methane)

Concentration (Mr.

Zero Grade 20.9 % < 1.0 ppm Balance

2-154-85

many: Certified

J1002

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

6/13/2022

06/2025

CALIBRATION GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number

3-340-61

Norlab Part#

J1971500PA

Cylinder Size

103 Liter

5

Component

Methane

Air

Number of Cyl

Cust Number 07152 Order Number 73732858

PO Number 04B70733

Date on Manufacture

12/7/2023

Expires

12/2027

Analytical Accuracy

+/- 2 %

Customer Part# N/A

Reported

Concentration

500 ppm Balance

Requested

Concentration

500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken

Lab Manager

Date Signed:

12/7/2023

PKEMI S00.962.7837

Components

Concentration

500 ppm Balance

CALIBRATION GAS

Contents: 103Liters-3.6Cu.Ft.,-1000psig

Par 31971500PA

3-340-61

Acouracy: +/- 2 %

MFG Date: Exp. Date:

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number 3-340-62

Norlab Part# J197125PA

Cylinder Size 103 Liter

Number of Cyl 5

Customer Part# N/A

Cust Number 07152 Order Number 73732858 PO Number 04B70733

Date on Manufacture 12/7/2023

Expires 12/2027 Analytical Accuracy +/- 5 %

Reported
Concentration

Requested
Concentration
25 ppm
Balance

Methane Air

Component

Concentratio
25 ppm
Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager Date Signed:

12/7/2023

800.962.7837 out. premiers afety.com 33596 Sterling Parks. Sterling Height, Min

Components

Methane

Concentration (Mole)

25 ppm Balance

3-340-62

learney: +1-5%

J197125PA

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

12/7/2023

Exp. Date:

12/2027

CALIBRATION GAS

Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037 T: 408.779.2206

June 14, 2024

Ms. Becky Azevedo Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive San Jose, CA 95037

Re: Second Quarter 2024 Surface Emissions and Component Leak Monitoring Report for the Kirby Canyon Recycling and Disposal Facility

Dear Ms. Azevedo:

This monitoring report for the "Kirby Canyon Recycling and Disposal Facility (KCRDF) Landfill" contains the results of the Second Quarter 2024 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by RES Environmental, Inc. (RES). Re-monitoring of surface emissions was conducted by KCRDF personnel.

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection procedures).
- United States Environmental Protection Agency's (USEPA) *Standards of Performance for Municipal Solid Waste Landfills*; 40 Code of Federal Regulations (CFR) Part 63, Subpart AAAA-National Emission Standards for Hazardous Air Pollutants (NESHAP).

Component Leak Monitoring

- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 301 (Landfill Gas Collection and Emission Control System Requirements) and Section 602 (Collection and Control System Leak Inspection procedures).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95464, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

KCRDF Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 16, 2011. After receipt of comments, this ACO was amended, restated, and submitted to BAAQMD on July 1, 2016. SEM and Component Leak monitoring was conducted per the methods outlined in the July 1, 2016, ACO.

PROCEDURES

General

The surface of the KCRDF disposal area has been divided into one-hundred-and-fifty (150), approximately 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the 25-foot interval walking pattern as depicted the 2011 KCRDF AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

Instantaneous Surface Emissions Monitoring

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume (ppm_v) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a) and NSPS. The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d) and CCR Title 17 §95471(c)(2).

RES personnel walked the surface of the landfill on a grid-by-grid basis with the wand tip held at 2 inches from the landfill surface. While sampling the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppm_v (areas of concern) or 500 ppm_v (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Appendices of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
 - o If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
 - o If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed, and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month remonitoring event shows the area is still corrected, monitoring requirements have been completed.

If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Integrated Surface Emissions Monitoring

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppm_v for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held within 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(3).

Grids with results greater than 25 ppm_v were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppm_v are subject to the following re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.
- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed, and a second re-monitoring event shall be conducted within 10 days of the second exceedance.

- If the second 10-day re-monitoring event shows the second exceedance is corrected, all remonitoring requirements have been completed.
- The second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the third exceedance.

Component Leak Monitoring Procedures

RES personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppm_v. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppm_v per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) and 1,000 ppm_v per requirements outlined in BAAQMD 8-34-303 were recorded. Applicable corrective action and remonitoring timelines are listed below:

- Leaks between 500 and 999 ppm_v must be corrected and re-monitored within 10 days of the initial exceedance.
- Leaks at or above 1000 ppm_v must be corrected and re-monitored within 7 days of the initial exceedance.

SECOND QUARTER 2024 SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and component leak monitoring results completed for the Second Quarter 2024.

Instantaneous Surface Emissions Monitoring Results

The Instantaneous surface monitoring was performed on April 24, 2024, in accordance with the NSPS, BAAQMD 8-34, NESHAP, and CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

*Initial Monitoring Event Exceedances of 500 ppm*_v

There were 7 exceedances of 500 ppm_v as methane detected on April 24, 2024. Corrective actions to initiate repairs of the exceedances were completed within five days for all locations (on April 24, 2024).

Ten-Day Re-Monitoring Results

The 10-day re-monitoring event was completed on April 24, 2024. All locations were observed at less than 500 ppm_v.

One-Month Re-Monitoring Results

The 1-month re-monitoring event was completed on May 17, 2024. All locations were observed at less than 500 ppm_v.

Readings between 200 ppm_v and 499 ppm_v (Initial and Re-monitored)

There were no readings between 200 ppm_v and 499 ppm_v as methane detected during the initial monitoring event on April 24, 2024. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppm_v but below 500 ppm_v are required to be recorded.

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on April 23 and 24, 2024, in accordance with the ACO and requirements outlined in CCR Title 17 §95469.

Initial Monitoring Event Exceedances of 25 ppm_y

There were no grids with exceedances of 25 ppm_v as methane detected during the initial monitoring event on April 23 and 24, 2024.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B, Integrated SEM 25 ppm_v Exceedances and Monitoring Log, and SEM Map included in Attachment B, for details.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on April 24, 2024. No leaks greater than 500 ppm_v were identified. Please see Attachment C, for details.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

Precipitation Requirements

Per the KCRDF's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within 24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25

Ms. Becky Azevedo Page 6

 ppm_v in air for integrated sample analyses and 500 ppm_v in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at rphadnis@wm.com.

Thank you, Waste Management

Rajan Phadnis

Environmental Protection Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map

Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment D - Weather Station Data

• Strip Chart Data

Attachment E – Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

Table A.1 Instantaneous Landfill Surface Emissions Monitoring Initial Monitoring Event Areas of Concern

2024 QUARTER:

PERFORMED BY: RES

LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Flag Number	Grid Number	Date of Monitoring	Concentration of Emission (ppmv)	Comments-Wells
01	89	4/24/2024	850	75
O2	81	4/24/2024	650	151
O3	72	4/24/2024	850	147
O4	53	4/24/2024	905	121
O5	75	4/24/2024	1,002	142
O6	89	4/24/2024	910	82
07	99	4/24/2024	5,813	169

Table A.2 Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2024 QUARTER: 2

INITIAL MONITORING PERFORMED BY RES

FOLLOW-UP MONITORING PERFORMED BY: KCRDF-Tino Robles LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Initi	al Monitoring	Event	Co	rrective action within 5 days	1st 10	-day Follow	r-Up	1st 3	0-day Follow	/-Up	Comments-Well
Grid	Monitoring	Field	Repair	Action taken to repair	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	locations
Number	Date	Reading	Date	Exceedance	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	locations
01	4/24/2024	850	4/24/2024	Added soil, water and compacted, tuned	4/24/2024	17		5/17/2024	26		75
02	4/24/2024	650	4/24/2024	Added soil, water and compacted, tuned	4/24/2024	24		5/17/2024	33		151
O3	4/24/2024	850	4/24/2024	Added soil, water and compacted, tuned	4/24/2024	112		5/17/2024	41		147
04	4/24/2024	905	4/24/2024	Added soil, water and compacted, tuned	4/24/2024	5		5/17/2024	18		121
O5	4/24/2024	1,002	4/24/2024	Added soil, water and compacted, tuned	4/24/2024	10		5/17/2024	23		142
O6	4/24/2024	910	4/24/2024	Added soil, water and compacted, tuned	4/24/2024	21		5/17/2024	30		82
07	4/24/2024	5,813	4/24/2024	Added soil, water and compacted, tuned	4/24/2024	18		5/17/2024	27		169

Table A.3

Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (AB-32)

2024 QUARTER: 2

INITIAL MONITORING PERFORMED BY: RES

FOLLOW-UP MONITORING PERFORMED BY: KCRDF-Tino Robles

LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Initial M	lonitoring Even	t	1st Re-m	non Event -	10 Days	2nd Re-r	non Event	- 10 Days	Comments-Well
Exceedance	Monitoring	Field	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	locations
Grid ID No.	Date	Reading	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	locations
01	4/24/2024	850	4/24/2024	17					75
02	4/24/2024	650	4/24/2024	24					151
O3	4/24/2024	850	4/24/2024	112					147
04	4/24/2024	905	4/24/2024	5					121
O5	4/24/2024	1,002	4/24/2024	10					142
O6	4/24/2024	910	4/24/2024	21					82
07	4/24/2024	5,813	4/24/2024	18					169

Table A.4 Instantaneous Landfill Surface Emissions Monitoring Areas of Concern Greater than 200 ppmv

2024 QUARTER: 2

INITIAL MONITORING PERFORMED BY RES

FOLLOW-UP MONITORING PERFORMED BY: NA

LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Initial	Monitoring	Event	Re-mo	n Event	
Exceedance	Monitoring	Field	Monitoring	Reading	Comments
Grid ID No.	Date	Reading	Date	ppm	
None					

Orange Flag Landfill Surface Emissions Monitoring Exceedances and Monitoring Log

ite: KIRBY

I echnician: Instrument: Calibration Standard: Initial N Flag Grid Number Number		LEIS LWADE	200										ם מכני	
trument: ibration { lag rlag mber														L ages
ibration (Signate)		ナンターンの												
1-1-	Standard:	500 1000	•											
	Initial M	Initial Monitoring Event		First Re-M	First Re-Monitoring Event - 10 Days	- 10 Davs	Second Re-	Second Re-Monitoring Event - 10 Days	of - 10 Dave	30.05	30. Day Enllower Median	- Charles	ć	
	Grid	Field Reading	Date	Date	No Excd.	Excd.	Date	No Excd.	Excd.	Date	No Excd.	Excd	Comments	ents
t	Number	(mdd)	Monitored	Monitored	<500 ppm	>500 ppm	Monitored	~200 ррт	>500 ppm	Monitored	<500 ppm	>500 ppm		
1	6%	828	h2-h2-h										2 6 119 W	
1	18	659											10/1/19/1	
	75	258											101 113M	
	53	505											121 /130	
<u>۲</u> -0	25	2007											771 1130	
	50	016											7 h 1 112 M	
٧	66	2185	>										78 1700	
													6911120	

Personnel Leishwage Lylan queenson

Mistat Estreon Anthony conelos

Janny humor Cal. Gas Exp. Date: 11-10-29

Date 4-24-24 Instrument Used: +vA1000 Grid Spacing: 251

Temperature: 49 Precip: 0 Upwind BG: 2.0 Downwind BG: 2.2

GRID ID	STAFF	START	STOP	тос	MII	ND INFOR	NOITAN	DEMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
36	cw	107051	0720	108	3	5	16	
37	ME	6705%	0720	82	3	5	16	
38	50	6701	.0720	94	3	5	16	
41	TA	0705	0720	57	3	5	16	
47	AC	0705	0720	128	3	5	16	
43	LW	0720	0735	65	3	4	12.	
44	ME	0720	25.60	39	3	4	12	
47	50	0720	2510	57	3	4	12	
48	+B	0720	0735	86			12	
49	AC	0120	VC(0	77	3	4	12	
57	LW	6735	0750	45	4	b	14	
53	ME	2550	0)50	64	4	b	14	
54	20	2510	0250	79	4	i	14	
55	+A	6721	0250	40	4	6	14	
57	AC	25(0	0750	18	4	L	14	
28	LV	osco	0805	47	2	4	14	
55	ME	0750	0805	61	2		14	
60	5-1	0750	0801	89	2	4	14	
61	TA	0250	2480	44	2	-	14	
54	Ac	0750	0845	12	2	4	14	
	2	0805	0820	51	4	6	14	
66	12	2886	0820	78	4	6	14	
67	2-3	2880	0820	115	4	6	14	
68	+1	2882	0820	34	4	6	14	
70	AC	0805	0820	1>	4	6	14	
77		0820	0835	40	4	6	14	
72 .	ME	0820	0821	66	4	6	14	
73	To	0820	288	89	4	11/11	14	
74	+-1	0820	0825	37	4	4	14	
>5	AC	0820	0825	28	4	6	14	

Attach Calibration Sheet

Attach site map showing grid ID

Page / of 3

Personnel: Longh WAOE MIGHER BIFTON A FRANKY MELLIN	ANTHONY CANOLES	
Date: 4-24-24 Instrum	/ ***	Cal. Gas Exp. Date: //-/0-29
Temperature: 59 Preci	p: 0 Upwind BG: 2-0	Downwind BG: 2. 2

GRID ID	STAFF	START	STOP	TOC	WII	ND INFOR	MATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKKS
75	LW	0835	0850	19	3	4	14	
80	ME	0835	0880	72	3	4	14	
8/	TA	0822	0850	95	3	4	14	
85	TA	0831	0850	134	3	-	14	
82	AL	0835	0850	47	3	4	14	
82	W	0850	0905	39	4	ما	1,4	
86	MY	0850	0900	64	4	-	14	
8>	Jn	0850	050	99	4	6	14	
88	TA	0850	095	37		6	14	
89	AC	0850	0905	42	4	6	14	
90	Lw	0905	0970	9 5	5	7	16	
93	ME	0905	0920	65	5	1	طا	
94	Jan	0945	0927	7/	5	7	طا	
9>	TA	0505	0927	38		1	16	
100	AC	0985	0520	62	5	1	16	
101	2	0970	0935	94	5	7	14	
104	ME	0520	0935	51	5	7	14	
155	70	1920	0525	26	5	1	14	
109	+1	0927	0935	45	5	1	14	
112	AC	0510	0935	32	5	1	14	
116	LV	0935	0950	54	4	6	14	
119	ME	0975	0960	2>	4	b	14	
120	73	0935	0880	34	4	6	14	
124	TA	0931	0950	45	-	6	14	
127	AC	0835	0550	31	4	6	14	
28	LW	0850	1005	26	2	3	12	
32	ME	0950	1005	4.5	2	3	12	
33	TA	9520	2003	フフ	2	3	12	
34	70	0950	1005	60	2	3	12	
35	AC	0850	1005	51	2	3	12	

Attach Calibration Sheet

Attach site map showing grid ID

Page Z of 3

GRID ID	STAFF	START	STOP	тос	WI	ND INFOR	MATION	DEMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
136	LW	1005	1020	35	3	5	14	
137	ME	1005	1020	42	3	5	14	
138	54	1005	1020	26	3	5	14	
139	+4	1005	1620	41	3	5	14	
140	AC	1005	1020	68	3	5	14	
141	LW	1020	1075	32	4	6	14.	
142	ME	1020	1035	21	4	4	14	
143	J4	1020	1035	27	4	L	14	
144	+A	1020	1035	58	4	6	14	
145	AE	1020	1035	7/	4	6	14	
146	Lw	1035	1050	60	4	5	14	
147	ME	1025	1050	53	4	5	14	
148	Th	1035	1650	45	4	5	14	
149	TA	1035	1050	67	4	5	14	
150	AC	1035	1050	42	4	5	14	
76	LW	1050	1105	70	3	5	14	
77	ME	1050	1105	51	3	5	14	
84	Jy	1050	1105	89	3	5	14	
91	TA	1000	1105	106	3	5	14	
92	Ac	1000	1125	140	3	5	الل	
78		1105	1120	120	5	1	14	
99	ME	1105	1/20	9>	5	7	14	
26	J-7	1105	1/20	85	5	7	14	
07	+13	1105	1120	170	5	7	14	
13	AC	1105	1/20	65	5	1	14	
21	LW	1120	1135	42	4	6	14	
29	ME	1120	1135	58	4	6	14	
		5 41						

Attach Calibration Sheet

Attach site map showing grid ID

Page 3 of 3

	Leishw							
V								Exp. Date:
Date: 4	-24-24	Instrur	ment Used	d,		Gri	d Spacing	
								vind BG:
GRID ID	STAFF	START	STOP	TOC	WIN	ND INFORM	MATION	
	INITIALS	TIME	TIME	TOC PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
95				AT	OI EED	SIEED	10 POINT	Actor-frest
								1
102								
103				<u> </u>				
110								
111							,	
217								
118								
125								
1							<u> </u>	V
						-		Novaste imple
2								
4	9							
5								
6								
7					-			
8								
9								
10								
11		-						
12		-						
14						- 11		
10								
11								
12								
18					-			
15								
ZU								L

Attach Calibration Sheet Attach site map showing grid ID

Page 1 of 3

							Cal, Gas Ex	
ate L	1-24-24	Instru	ment Used			Gri	d Spacing: _	
							Downwin	
GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	MATION	
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
21					SILLE	SILLD	TOPOINT	
22								
23								
24								
25								
25							7	
27	1							
28								
29								
30								
3/								
37 31 32 33								
33		- (- 1	7			
34	4							
30								
39							===1115	
40								
45								
46								
50								
5)								
56								
62								
63								
62 63 69 78								
78								
108								
114								
115								
127								

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 3

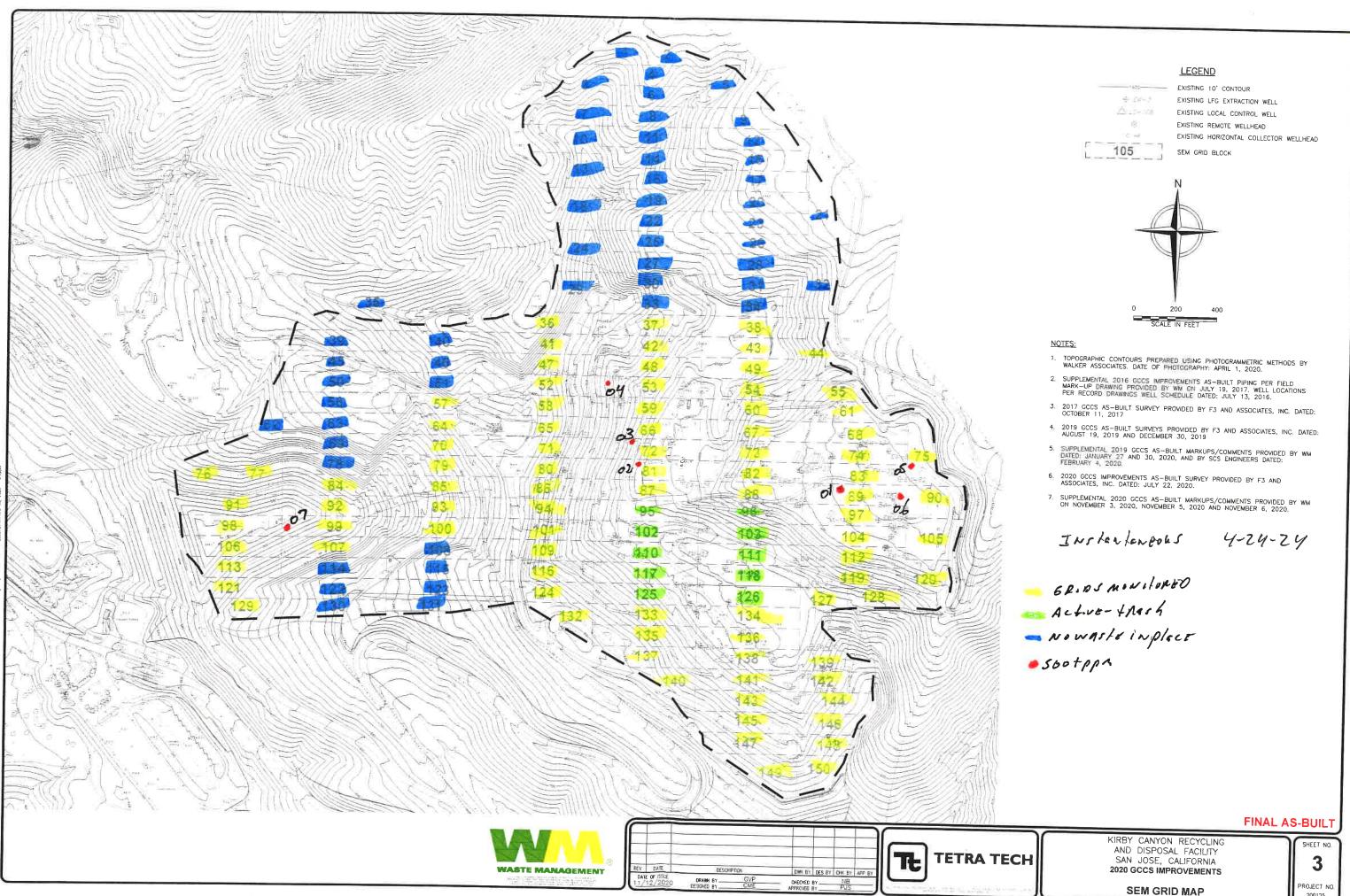
KIRBY LANDFILL PENETRATION SCAN RESULTS, EXCEEDANCES, AND CORRECTIVE ACTIONS

Year: 2024

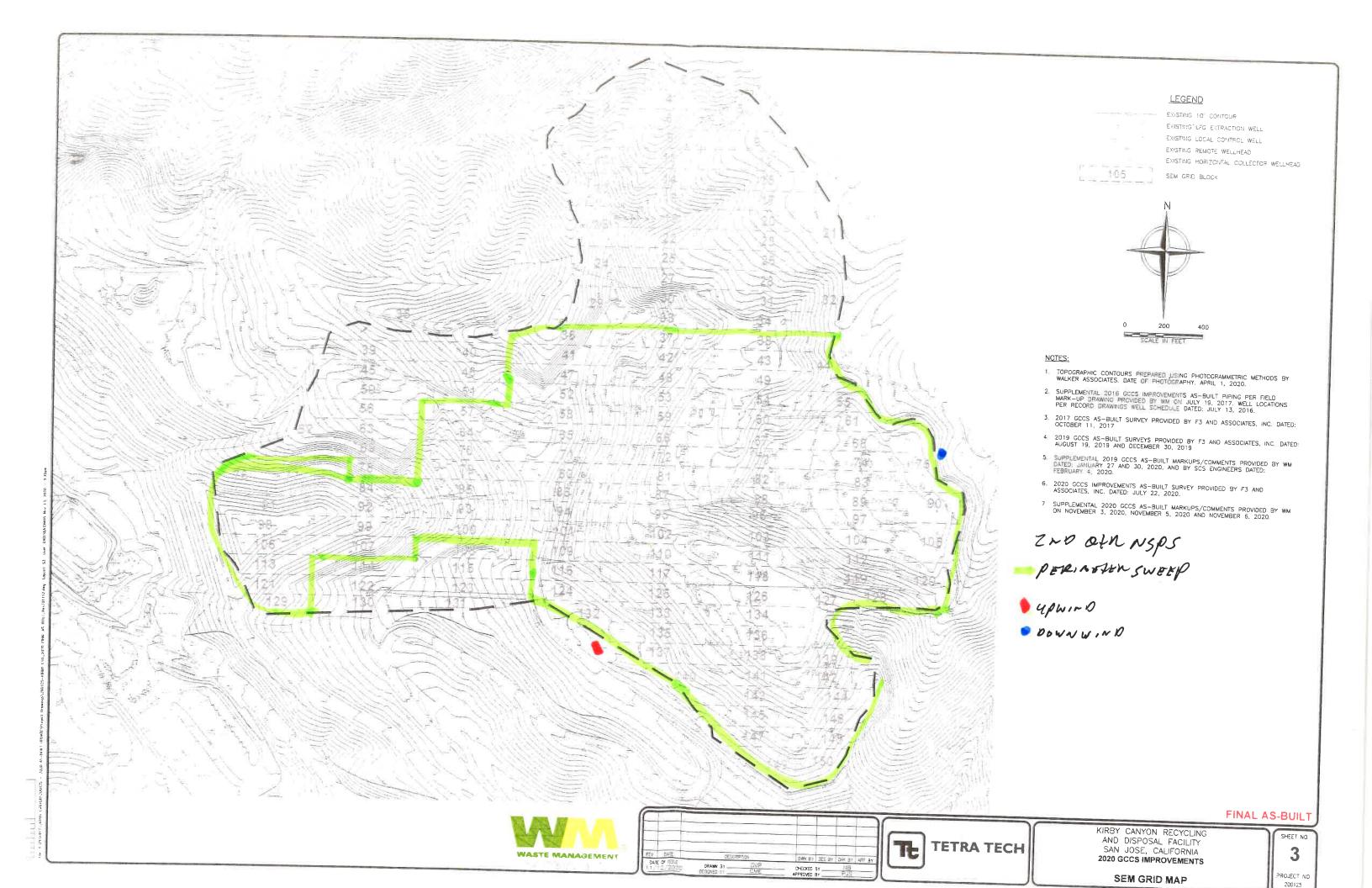
Quarter: 2~P

IME Date	Time	IME Location ID	IME Concentration (ppm)
4-24-24	0601	KCLC0108	39
1	0630	KCLC0109	20
	0640	KCLC0110	\$1
	0621	KCLC0111	24
	0610	KCLC0112	4 L
	0635	KCLC0139	
	0614	KCLC0140	3 > 16
	0678	KCLC0141	7/
	0631	KCLC0142	1,562
	0607	KCLC0143	3-0
	0631	KCLC0145	47
	0640	KCLC0147	880
	0620	KCLC0149	3.5
	0618	KCLC0151	650
		KCLC0152	21
	0612	KCLC0153	74
	0609	KCLC0154	b5
	6637	KCLC0155	29
	0620	KCLC0156	1/3
	0650	KCLC0157	31
-AC-74	0618	KCYN0014	47
	0622	KCYN0027	45
	0614	KCYN0048	26
	0655	KCYN0051	57
	0647	KCYN0054	22
	0620	KCYN0056	18
	0610	KCYN0057	78
	0636	KCYN0058	46
	0620	KCYN0062	75
	0603	KCYN0063	
	0638	KCYN0065	37
	0647	KCYN0066	26
	0611	KCYN0070	4 5
	0510	KCYN0071	26
	0636	KCYN0072	26
	0605	KCYN0074	8/
	6847	KCYN0075	850
	0613	KCYN0076	29
/,	0627	KCYN0078	8/
	0645	KCYN0082	910

KIRBY LANDFILL PENETRATION SCAN RESULTS, EXCEEDANCES, AND CORRECTIVE ACTIONS


Year: 2024
Quarter: 2 NO

IME	Date	Time	IME Location ID	IME Concentration (ppm)
		0630	KCYN0084	3/
		0607	KCYN0086	54
		0645	KCYN0087	8)
		0632	KCYN0088	27
		0614	KCYN0089	36
		0627	KCYN0090	85
		0603	KCYN0091	UÞ
		0620	KCYN0092	25
		0637	KCYN0093	34
		0634	KCYN0094	34
		0615	KCYN0095	38
		0631	KCYN0097	27
		0620	KCYN0098	26
		0636	KCYN0099	35
		0609	KCYN0101	
		0627	KCYN0102	18
		0655	KCYN0103	20
		0631	KCYN0105	26
		0687	KCYN0118	51
		0610	KCYN0119	39
		0618	KCYN0121	905
		0647	KCYN0122	25
		0627	KCYN0123	77
		0624	KCYN0124	40
		0650	KCYN0125	60
		0630	KCYN0126	28
		0624	KCYN0127	70
		0641	KCYN0128	51
		0651	KCYN0129	6-6
		0605	KCYN0130	27
		06/8	KCYN0131	75
		0647	KCYN0133	18
		0639	KCYN0134	28
		0650	KCYN0135	6/
		0607	KCYNLR04	32
		0637	KCYNLR08	2/
		0631	KCYNLR11	64
		0610	KCYN0162	45
	1	0605	KCYN0163	20
Y		0645	KCYN0164	54


KIRBY LANDFILL PENETRATION SCAN RESULTS, EXCEEDANCES, AND CORRECTIVE ACTIONS

Year: 2*624*Quarter: 2 ~ 0

IME Date	Time	IME Location ID	IME Concentration (ppm)
1	0625	KCYN0165	40
	0640	KCYN0166	27
	0615	KCYN0167	81
	0627	KCYN0168	70
	0640	KCYN0169	5,813
	0644	KCYN0170	166
	0647	KCYN0171	87
	0650	KCYN0172	124
	0655	KCYNLR12	7/
	0605	KCLC0158	36
	0607	KCLC0159	55
	0610	KCLC0160	42
Y	0604	KCLC0161	39

PROJECT NO. 200125

Attachment B

Integrated Surface Emission Monitoring Event Records

Table B.1 Integrated Landfill Surface Monitoring Exceedances and Monitoring Log

2024 QUARTER: 2

INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: N/A

LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Initial Monitoring Event			1st Re-mo			
Exceedance	Monitoring	Field	Monitoring	No Exced.	No Exced.	_
Grid ID No.	Date	Reading	Date	<25 ppm	>25 ppm	Comments
None						

Temperature: 65 Precip: 0 Upwind BG: 2-0 Downwind BG: 2-2

GRID	STAFF	START	STOP	тос	VII	ND INFOR	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLMAKKS
36	LW	1245	1310	20.71	2	3	16	
37	ME	1245	1310	18.55	2	3	16	
38	70	1245	1310	16.39	2	3	16	
41	+A	1245	13/0	12.36	2	3	ط ا	
42	AC	1245	1310	21.24	2	3	16	
43	LW	1310	1335	13.75	2	3	4	
44	ME	1310	1331	9.84	2	3	-4	
47	71	1310	1335	11.62	2	3	4	
48	TA	1310	1335	17.50	2	3		
49	AC	1310	1335	15.47	2	3	4	
52	Lw	1335	1400	10.20		2	12	
53	ME	1335	14.0	13-60	1	2	12	
54	J-3	1335	1400	12.98		2	12	
ت	YA	1331	1400	8.64		2	12	
57	Ac	1375	1400	5.32	1	2	12	
28	Ln	1400	1425	9.71	2	2	ا ط	
59	ME	1400	1425	11.40	2	2	6	
80	74	1400	1425	13-49		2		
61	78	1400	1425	8.70	2	2	6	
64	AC	1400	1425	5.32	2	2	6	
65	14	1425	1450	8.40	1	2	6	
62	ME	1425	1450	9.6/		2	6	
6>	7-13	142	1450	12.52		2	6	
68	TA	1425	1450	9.68		2	6	
70	AC	1425	1450	6.10	i	2	ط	
71	Lu	1450	1515	8-46	2	3	4	
7Z	ME	1450	1515	7.92	2	3	4	
72 73	03	1450	1515	8.50	2		4	
74	+1	1450	1515	6.47	2	3	4	
75	AC	1450	1515	5.81	2	3	4	

Attach Calibration Sheet Attach site map showing grid ID

Page $\frac{1}{1}$ of $\frac{2}{1}$

Personnel: Confluin	frem Annon	
Jeney ALLA	Anthry under	Cal. Gas Exp. Date: 11-10-14
Date: 4-23-24 Instrument U	sed: #VA/000 Gr	Id Spacing: 25'
Temperature: 67 Precip:	b Unwind BG: 21	Downwind BG: 7-2

GRID	STAFF	START	STOP	тос	WIN	ND INFOR	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
79	Lw	1513	1540	5.88	1	1	4	
80	ME	1515	1540		1		4	
81	71	1515	1540	7.24	i i		4	
82	TA	1515	1540	6.31	1		4	
83	+A Ac	1515	1540	6.10	(4	
85	LW	1540	1605	7.13	1	2	4	
86	ME	1540	1805	7.45	1	2	-4	
8>	74	1540	1625	9.12	1	2	4	
88	TA	1540	1825	7.31	1	2	4	
88	TA +A AC	1540	1605	6.52	l l	2	4	
90	LW	1605	1630	5.40	L	3	2	
93	ME	1605	1630	6.52	1	3	2	
94	J1	1605	1630	7.95	1	3	2	
97	+A	1605	1630	6.10	1	3	2.	
105	AL	1665	1637	5.41	T.	3	2	
					J			
				-				

Attach Calibration Sheet Attach site map showing grid ID

Page Z of Z

							Cal. Gas Ex	p. Date:
Pate: 4	-23-24	Instrume	nt Used _			Grid S	Spacing: _	
emperat	ure:	Precip	v	Upwind	BG:		Downwin	d BG:
GRID	STAFF	START	STOP	тос	IIW	ND INFOR	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKKS
95								Active-tras }
96								1
03								
110								
111								
117								
118						-		
125				-				1
1								No waste in place
2								100 100 100 100 100
3								
9								
5				-	-			
7 8 9								
9								
10								
11								
12								
14								
15								
16								
17								
18					1			
17				1	1			1 1

Attach Calibration Sheet Attach site map showing grid ID

-							Cal. Gas Exp.	Date:	
ate: 4	-23-24	Instrume	nt Used:			_ Grid S	pacing;		
emperat	ure:	Precip	1	_ Upwind	BG:		Downwind	BG;	
GRID	STAFF	START	STOP	ТОС	WII	ND INFOR	RMATION	REMARKS	
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMARKS	
21								1	
22									
23									
24									
21									
76									
27							L.		
28									
29									
30									
3/									
32									
33									
32 33 34 35									
32									
39									
40									
45									
46				-	1				
50				-	-				
-1				-	-	-	-		
56					-				
63					-				
71					-				
75					+	-			
100				-	-				
114					+				
75 78 108 114 115					-				
177					-			L	

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 3

							Cal. Gas Exp.	
4	23-24	Instrume	nt Used _			Grid S	pacing:	
rati	ıre:	Precip	-	Upwind	BG;		Downwind	BG:
D	STAFF	START	STOP	тос	1IW	ND INFOR	RMATION	REMARK
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KELIAKI
		*						V
			4					
							,	
							-	
					1			
_					_			

Attach Calibration Sheet Attach site map showing grid ID

Page 3 of 3

Personnel LEIS LUMBE FULL AND FULL CANCLES

MISCHEL ETTRICON ANTI-LY CANCLES

TORRY MUNICE

Date: 4-24-24 Instrument Used: 4VA 1000 Grid Spacing: 251

Temperature: 70 Precip: 0 Upwind BG; 2.0 Downwind BG: 2.2

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLIMAKKS
100	Lw	1145	1210	7.45	4	5	14	
101	NE	1145	1210	9.12	4	5	14	
104	50	1145	1210	6.30	4	5	14	
109	+4	1145	1210	6.07	4		14	
112	AC	1145	1210	9.35	u	5	14	
116	LW	1210	1235	7.5/	2	3	14	
119	14 2	1210	1235	6.94	2	3	14	
120	TA	1210	1235	8.56	2	3	14	
124	+4	1210	1235	7-98	2	3	14	
127	Ac	1210	1235	6-13	2			
128	Lw	1201	1310	5.42	4	3 5	14	
132	ME	1235	1300	9.67	4	5	14	
133	70	1235	1300	8.12	4	5	14	
134	+A	1231	1700	9.27	4	9	14	
175	AL	1235	1300	7.16	4	5	ांचे ।	
136	LW	1700	1325	6.84	4	5	14	
137	12	1300	1325	7.95	4	5	14	
138	アつ	1300	1325	6-88	4	5	14	
139	+A	1300	1325	6.50	4	5	14	
140	AL	1300	1321	7.13	4	5	14	
141	Lw	1325	1750	6.97	3	5	14	
142	ME	1325	1350	6.10	3	5	14	
143	300	1325	1350	5.47	3	5	14	
144	+4	1325	1350	6.79	3	5	14	
145	AC	132	1350	6.81	3	5	14	
146	LW	1310	1415	7-13	4	5	14	
147	ME	1350	1415	6.25	4	5	14	
148	0-	1350	1415	2-54	4	5	14	
149	TA	1350	1425	5.47	4	5	14	
150	Ac	1350	1415	6.03	4	5	14	

Attach Calibration Sheet


Attach site map showing grid ID

Personnel:	Leishwart	tulenanousor	
	MISHELESKARDA JERRY MARON	tylenanouson Anthony canalos	Cal. Gas Exp. Date: //-/0-29
Date:	4-24-24 Instrument t	Jsed: +VAIVVO Gri	d Spacing: 25'
Tempera	iture: 70 Precip:	O Upwind BG: 2.0	Downwind BG: 2-2

GRID	STAFF	START	STOP	тос	WII	ND INFOR	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLITAKKS
76 77	LW	1415	1440	9.71	3	4	14	
フフ	ME	1415	1440	10.45	3	4	14	
84	5M +A	1415	1440	17.62	3	4	14	
91	TA	1415	1440	14.55	3	4	14	
92	AC	145	1440	12.70	3	4	14	
98	LW	1440	1505	22.38	3	5	14	
99	ME	1440	1505	19.57	3	5	-14	
106	Ja.	1840	1505	20.38	3		14	
107	+A	1440	1505	16.51	3	5 5 5	14	
113	AC	1440	1505	9.27	3		14	
121	LW	1505	1505	10.45	2	3	13	
129	ME	1800	1530	8.66	2	2	13	

Attach Calibration Sheet Attach site map showing grid ID

Page ______ of ______

SEM GRID MAP

PROJECT NO 200125

Attachment C

Component Leak Monitoring Event Records

Table C.1

AB-32 Component Leak Monitoring Summary of Component Leaks Greater than 500 ppmv

2024 QUARTER:

INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: NA

LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Location	Initial Monitoring			Correc	10-Day Remonitoring			
	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
Flare Station	04/24/24	ND	Leigh wade	=	=	-	-	-

ND= No Exceedances

Table C.2

BAAQMD Component Leak Monitoring Summary of Component Leaks Greater than 1,000 ppmv

2024 QUARTER: 2

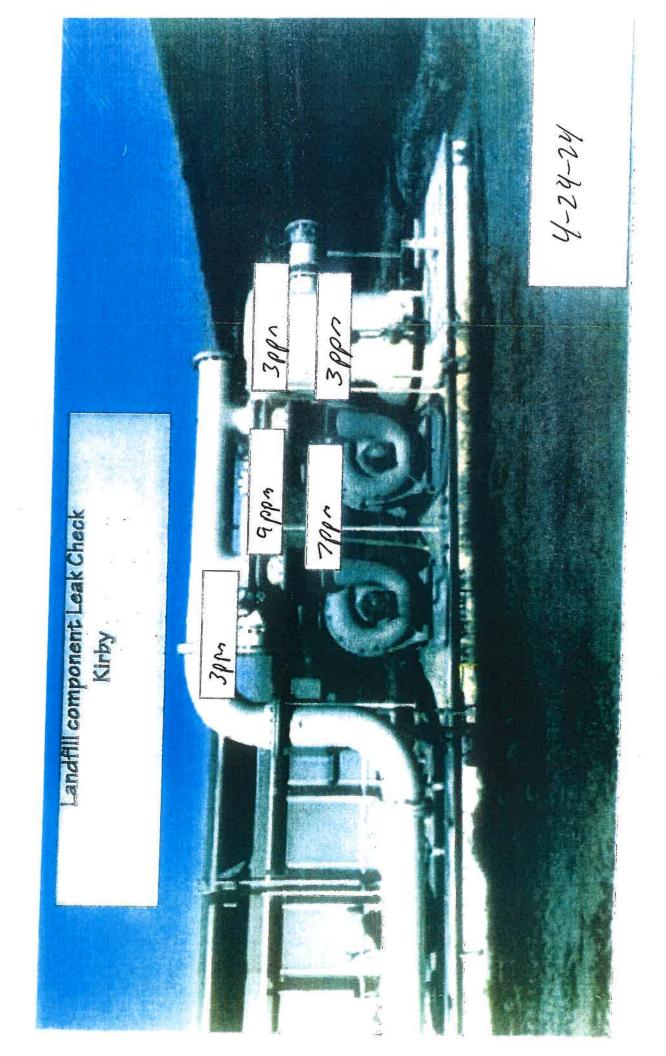
INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: NA

LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Location	Initial Monitoring			Corrective Action		7-Day Remonitoring		
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
Flare Station	04/24/24	ND	Leigh wade	=	=	-	-	-

ND= No Exceedances

BAAQMD Component Leak Field Data Sheet Template 06052014

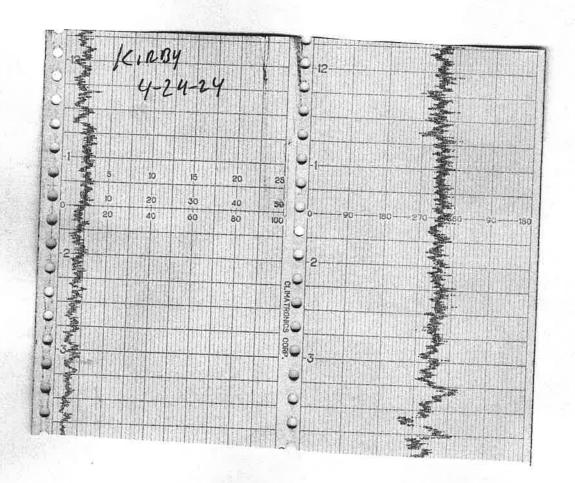

LANDFILL NAME: \mathcal{K}_{ℓ} \mathcal{K}_{ℓ} \mathcal{H}_{ℓ} QUARTERLY LFG COMPONENT LEAK MONITORING

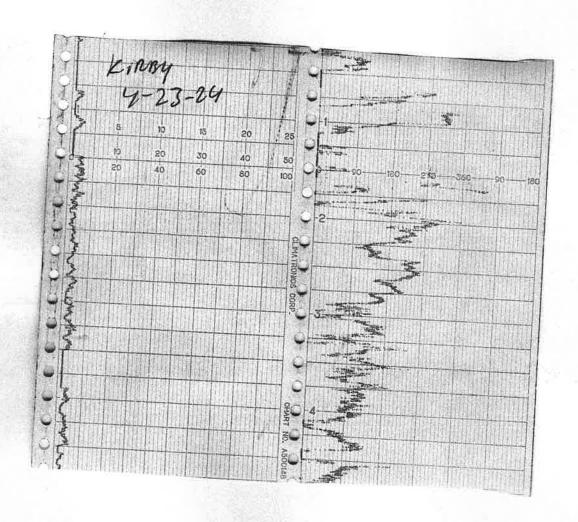
INSTRUMENT
MAKE: Thermo Environr
MODEL: TVA 1000
S/N: / > 36346>>3

DATE OF SAMPLING: ψ -2 ψ -7 ψ

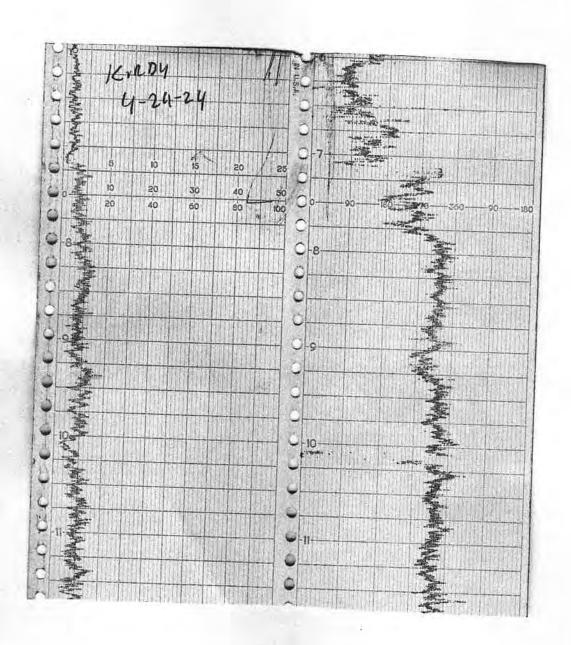
LOCATION OF LEAK	LEAK CONCENTRATION (ppmv)	DATE OF DISCOVERY	TECHNICIAN	ACTION TAKEN TO REPAIR LEAK	DATE OF REPAIR	DATE OF ANY REQUIRED RE- MONITORING	RE-MONITORED CONCENTRATION (ppmv)
NORKCHEBOTCH							
In the event that an exce	in the event that an exceedance is detected, please intiate corrective action and re-monitor the exceedance location within 7 days of the initial exceedance.	se intiate corrective act	ion and re-monitor	r the exceedance location	within 7 days of the	ne initial exceedance.	
NOTE: Leaks over 500 ppmv methane 4, Subarticle 6, Section 95464(b)(1)(B)	NOTE: Leaks over 500 ppmv methane are exceedances at any component containing landfill gas, pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).	dances at any compon	ent containing lan	dfill gas, pursuant to CAR	RB Title 17 of Calif	omia Code of Regulation	s Subchapter 10, Article

NOTE: Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas, pursuant to BAAQMD Regulation 8-34-301.2.




Attachment D

Weather Station Data


WIND SPEED & DIRECTION CHART ROLL

WIND SPEED & DIRECTION CHART ROLL

WIND SPEED & DIRECTION CHART ROLL

	16-POINT V	VIND DIRECTION	INDEX	
NO	DIRECTION		DEGREES	
		FROM	CENTER	<u>T0</u>
16	NORTH (N)	348.8	369.0	6.13
ţ	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
E.	NORTHEAST (NE)	033.8	045.0	056.3
E.	EAST-NORTHEAST (ENE)	056,3	067.5	078.8
2	EAST (E)	078.8	090.0	101.3
	EAST-SOUTHEAST (ESE)	101,3	112.5	123.8
2	SOUTHEAST (SE)	123.8	135.0	146.3
	SOUTH-SOUTHEAST (SSE)	146.3	<u>157.5</u>	168.8
	SOUTH (S)	168.8	180.0	191,3
	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213,8
ü	SOUTHWEST (SW)	213.8	225.0	436.3
1	WEST-SOUTHWEST (WSW)	236.3	247.5	258.8
2	WEST (W)	258.8	270.0	281.3
3	WEST-NORTHWEST (WNW)	281.3	292.5	303.8
4	NORTHWEST (NW)	30.2.8	315.0	326.3
5	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8

Attachment E

Calibration Records

LANDFILL NAME KIRDY	INSTRUMENT MAKE: + HEARS
MODEL TUA 1000 EQUIPMENT	#: /D SERIAL # 1036346773
MONITORING DATE: 4-24-24	TIME: 65.50

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2 Introduce calibration gas into the probe. Stabilized reading = ________ppm
- 3. Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 se	1	Downwind Backg Reading: (Highest in 30 seco		Background Valu (Upwind + Dow 2	
210	ppm	2.2	ppm	2.1	ppm

Background Value = 2ν ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	ment # Stabilized Reading Using 90% of the Stabilized Reading		9 9		n Gas Reading S		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	490	ppm	440	ppm	6			
#2	501	ppm	451	ppm	6			
#3	500	ppm	450	ppm	-6			
	Calculate Response T	ime (<u>1</u> . 3	+2+3)		8	#DIV/0!		
					Must be less that	an 30 seconds		

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B	
#1	G - //	ppm	450	ppm	10	
#2	0.07	ppm	501	ppm	/	
#3	6.04	ppm	500	ppm	১	
Calculate Precision	[STD-B1] + [ST	TD-B2] + [S 3	5TD-B3] X <u>1</u> X 500	1 <u>00</u> 1	O· >3 Must be less tha	#DIV/0! an 10%

Performed By: _	LUISLWADE	Date/Time: 4-24-24-0550
enormed by.		Butter Hillion 1 2 7 7 2 2 2 2

CALIBRATION PRO	OFFICE AND	DANKODOLINO I	OCDODE IN	OTANTANDOLLO
	CELLINGE VALLE	RAI K (-RIII INII I	KERUKI — INC	SIDNIDNEDIS
CALIDINATION	CLDOIL AND	DUCKOKORIADI		JIMIIMILOGO

LANDFILL NAME KURY	INSTRUMENT MAKE + Hen ro
MODEL: +V BIOVO EQUIPMENT #: //	SERIAL # 1036346772
MONITORING DATE 4-74-24	TIME: OSSD

- Allow instrument to zero itself while introducing air
 Introduce calibration gas into the probe. Stabilized reading = ppm
- 3 Adjust meter settings to read 500 ppm

Background Determination Procedure

Reading:	Upwind Background Reading: (Highest in 30 seconds) Downwind Background Reading: (Highest in 30 seconds)		Background Value: (Upwind + Downwind) 2		
2.0	ppm	2-2	ppm	2./	ppm

Background Value = 2.1 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement # Stabilized Reading Calibration Gas					3 3		% of the Stabilized ading		00% of ing after Zero Air to
#1	507	ppm	457	ppm	5				
#2	500	ppm	450	ppm	2				
#3	500	ppm	450	ppm	5				
	Calculate Response 1	ime (<u>1</u> 3	+2+3)		5	#DIV/0!			
					Must be less than	30 seconds			

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B	
#1	0113	ppm	507	ppm	>	
#2	6.10	ppm	500	ppm	0	
#3	0.08	ppm	545	ppm	0	
Calculate Precision	on [STD-B1] + [S	TD-B2] + [3 3	STD-B3] X <u>1</u> X 500	<u>100</u> 1	0.46 Must be less than	#DIV/0!

5622	BSFRC	DR	,
1	15622	156FC BOFAC	15642 ESTREDR

Date/Time: 4-14-24-0 550

LANDFILL NAME KINBY		INSTRUMENT MAKE + HEAR NO		
MODEL FUALO	eQUIPMENT#	1 4	SERIAL #:	1036246741
MONITORING DATE	4-24-24	TIME	0550	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading = **fob** ppm
- 3 Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 sec		Background Va (Upwind + Do 2	
2.0	ppm	2-2	ppm	2-1	ppm

Background Value = 2/ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	490	ppm	440	ppm	6		
#2	503	ppm	453	ppm	6		
#3	500	ppm	450	ppm	6		
	Calculate Response Ti	me (<u>1-</u> 3	+2+3)		6	#DIV/0!	
					Must be less than	30 seconds	

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]	
#1	0.24	ppm	490	ppm	10	
#2	0.16	ppm	SUZ	ppm	3	
#3	0.11	ppm	500	ppm	0	
Calculate Precision	STD-B1] + [S	TD-B2] + [S	STD-B3] X <u>1</u> X 500	100	O. 8-6 Must be less tha	#DIV/0!

Domínios ed Deu	TERRY	NULLOZ
Performed By:	11 6161-9	10.41-0

Date/Time: 4-24-24-0550

CALIBRATION PROCEDURE A	AND BACKGROUND	REPORT - INST	ANTANEOUS
-------------------------	----------------	---------------	------------------

LANDFILL NAME	, KBY	INSTRUMENT MAKE + HONTO		
MODEL: FUALOR	EQUIPMENT #	13	SERIAL #: //0274677	75
MONITORING DATE:	4-24-24	TIME:	6550	

- 1 Allow instrument to zero itself while introducing air
- Introduce calibration gas into the probe. Stabilized reading = ______ppm
- 3. Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 sec		Downwind Background Reading: (Highest in 30 seconds)		Background Value: (Upwind + Downwind) 2	
2-30	ppm	22	ppm	2-/	ppm

Background Value = Zu/ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	495	ppm	445	ppm	4		
#2	500	ppm	450	ppm	Y		
#3	505	ppm	450	ppm	y		
Calculate Response Time (1+2+3) 3					4	#DIV/0!	
					Must be less than	30 seconds	

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]	
#1	0:13	ppm	425	ppm	5	
#2	0.09	ppm	500	ppm	0	
#3	0.04	ppm	500	ppm	0	
Calculate Precisio	n [STD-B1] + [S	TD-B2] + [\$ 3	STD-B3] X <u>1</u> X 500	100	0:37	#DIV/0!
					Must be less than	า 10%

Performed By:	ty/th	LANGRSUR
Performed By:	ty/th	2 MB BR SUN

Date/Time: 4-74-74-0550

CALIBRATION	PROCEDURE	AND BACKGROUND I	REPORT - INST	ANTANEOUS

LANDFILL N	NAME KIN	By	INSTRUMENT M	IAKE +	HENN
MODEL	fusious	EQUIPMENT#	16	SERIAL#	1102746776
MONITORII	NG DATE 4-	24-24	TIME	055	(0

- 1. Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading = ______ppm
- 3 Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 sec		Background Val (Upwind + Dov	
2.0	ppm	2.2	ppm	2-1	ppm

Background Value = 21/ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	t# Stabilized Reading Using 90% of the Stabi						Time to Reach 90% of Stabilized Reading after switching from Zero Air Calibration Gas	
#1	458	ppm	448	ppm	6			
#2	502	ppm	452	ppm	6			
#3	500	ppm	450	ppm	6			
	Calculate Response T	ime (<u>1-</u> 3	+2+3)	1	6	#DIV/0!		
					Must be less that	n 30 seconds		

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #) Meter Reading for Calibration Gas (B)		7.1		Calculate Precision [STD – (B)	
#1	01/2	ppm	498	ppm	2			
#2	0.08	ppm	502	ppm	Z			
#3	0.86	ppm	500	ppm	0			
Calculate Precision	[STD-B1] + [S	TD-B2] + [3 3	STD-B3] X <u>1</u> X 500	100 1	O-26 Must be less the	#DIV/0!		

Performed By: Anthony Canoles

Date/Time: 4-24-24-0550

CALIBRATION	PROCEDURE	AND	BACKGROUND	REPORT -	INTEGRATED

LANDFILL NAME KIND	Y	INS	STRUMENT	MAKE /	-Hun ro
MODEL: FUA 1000	EQUIPMENT #:	1 -		SERIAL#	1036346773
MONITORING DATE: 4.	-23-24		TIME:	124	0

1. Allow instrument to zero itself while introducing air.

Anow institution to zero itself while infloationing all.
 Introduce calibration gas into the probe. Stabilized reading = 25 ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Reading:			lue; vnwind)
2.0	ppm	2.2	ppm	2.1	ppm

Background Value = 24

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas Reading		Time to Reach 90% of Stabilized Reading afte switching from Zero Air Calibration Gas			
#1	24	ppm	21.6	ppm	4	
#2	71	ppm	22.5	ppm	Ч	
#3	25	ppm	22.5	ppm	4	
	Calculate Response	Γime (<u>1</u> - 3	-2+3)		4	#DIV/0!
					Must be less than	n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Z	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision	[STD - (B)]	
#1	0.15	ppm	74	ppm	,	
#2	80.0	ppm	25	ppm	0	
#3	0.05	ppm	25	ppm	D	
Calculate Precision	on [STD-B1] + [S	3 3 STD-B2	STD-B3] X <u>1</u> X 25	100	1.3	#DIV/0!
					Must be less that	an 10%

Performed By:	LE154	W	AD	سے

Date/Time: 4-23-24 /240

LANDFILL NAME: KINBY		INSTRUMENT	MAKE +#	for ho
MODEL: 4VA/DOO EQUIPMENT#:	11			1036346772
MONITORING DATE: 4-23-24		TIME	1240	

Calibration Procedure:

Allow instrument to zero itself while introducing air.

2. Introduce calibration gas into the probe. Stabilized reading = _______ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Background Reading: (Highest in 30 seconds)		Background Va	
7-0	ppm	2.2	ppm	2-1	ppm

Background Value = 21/ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	ement # Stabilized Reading Using 90% of the Stabilized Reading Reading		Time to Reach Stabilized Read switching from Calibration Gas	ing after Zero Air to		
#1	23	ppm	70.7	ppm	5	
#2	25	ppm	225	ppm	5	
#3	25	ppm	22.5	ppm	~	
	Calculate Response	Time (<u>1-</u> 3	+2+3)		5	#DIV/0!
					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze			Meter Reading for Calibration Gas (B)		[STD - (B)]
#1	0.19	ppm	23	ppm	2	
#2	0.1/	ppm	25	ppm	0	
#3	0.07	ppm	20	ppm	6	
Calculate Precisio	n [STD-B1] + [S	TD-B2] + [5	STD-B3] X 1 > 25	(<u>100</u> 1	2.6	#DIV/0!
					Must be less that	an 10%

Performed By: MISULU ESTINEDA Date/Time: 4-27-24-1747

LANDFILL NAME	KIRBY		IN	ISTRUMENT	MAKE: +	12/ NO
MODEL LUA	1000	EQUIPMENT #:_	12		SERIAL #:	103624674/
MONITORING DATE:	4-2	3-24		TIME	1240	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec		Downwind Back Reading: (Highest in 30 seco		Background Val (Upwind + Dov 2	
2.2 ppm 2.0			ppm	2.1	ppm

Background Value = 2./

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabilized Reading		Time to Reach Stabilized Read switching from Calibration Gas	ding after Zero Air to	
#1	24	ppm	21.6	ppm	>	
#2	25	ppm	225	ppm	フ	
#3	25	ppm	22.5	ppm	7	
	Calculate Response 1	Time (<u>1</u> - 3	+2+3)		7	#DIV/0!
					Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	• • • • • • • • • • • • • • • • • • •		Meter Reading for Calibration Gas (B)		-		[STD - (B)]
#1	0.17	ppm	24	ppm	/			
#2	0-10	ppm	25	ppm	D			
#3	0.03	ppm	25	ppm	0			
Calculate Precisio	n [STD-B1] + [S	TD-B2] + [9 3	STD-B3] X <u>1</u> 25	K <u>100</u> 1	/ 、3 Must be less th	#DIV/0!		

Performed By:	TERRY	MGLOZ	Date/Time	4	1-23	-24	-12	40
chomica by.	1		Date/Time		00			

LANDFILL NAME KIND	'y	INSTRUMEN	TMAKE Honno
MODEL: FUA 1000	EQUIPMENT #:	13	SERIAL #: //02746775
MONITORING DATE: 4-2	3-24	TIME	1240

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 sec		Background Va (Upwind + Do 2	
2.0	ppm	2-2	ppm	2.1	ppm

Background Value = 2./

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Usir Calibration Gas	ng	90% of the Stabilized Reading		Time to Reach Stabilized Reac switching from Calibration Gas	ing after Zero Air to
#1	24	pm	21.6	ppm	5	
#2	21 F	pm	22.5	ppm	5	
#3	25 F	pm	22,5	ppm	5	
	Calculate Response Time	(<u>1</u> -	+2+3)		5	#DIV/0!
					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ero Air (A)	A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)		
#1	0111	ppm	24	ppm	1		
#2	0.07	ppm	25	ppm	8		
#3	0.04	ppm	25	ppm	0		
Calculate Precision	on [STD-B1] + [S	3 3 TD-B2] + [S	STD-B3] X <u>1</u> X 25	1 <u>100</u> 1	/, J	#DIV/0!	

erformed By:	tylen andensin	Date/Time: 4-23-24 - 1240	

LANDFILL NAME: K	LKBY		INSTRUMEN	tmake μ	formo
MODEL: WALVUS	EQUIPMENT#:_	16		SERIAL #:	1102746776
MONITORING DATE:	4-23-24		TIME:	124	O

Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

Anow institution to zero itself write introducing all.
 Introduce calibration gas into the probe. Stabilized reading = ______ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 sec		Downwind Backg Reading: (Highest in 30 seco		Background Va	
200	ppm	2-2	ppm	2-1	ppm

Background Value = 2/ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabilized Reading		Time to Reach Stabilized Read switching from Calibration Gas	ing after Zero Air to	
#1	24	ppm	21-6	ppm	6	
#2	24	ppm	216	ppm	6	
#3	25	ppm	22.5	ppm	6	
Calculate Response Time (1+2+3) 3					6	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	eter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		[STD - (B)]
#1	0.20	ppm	24	ppm	/	
#2	0.14	ppm	24	ppm	1	
#3	0.09	ppm	w	ppm	2	
Calculate Precision	on [STD-B1] + [S	TD-B2] + [9 3	STD-B3] X <u>1</u> 25	X <u>100</u> 1	Z, 6 Must be less th	#DIV/0!

Performed By:	Anthony	carales	Date/Time:	4-23-24-1240

CALIBRATION PROCEDURE AND BACKGROUND	D REPORT - INTEGRATED
--------------------------------------	-----------------------

LANDFILL NAME: KINNY	VI		INSTRUMENT	MAKE	41	1) by ro
MODEL TURIOUS E	QUIPMENT #:	10		_ SERIA	L#:_	1036346777
MONITORING DATE: 4-24-	24		TIME:	114	D	

- 1. Allow instrument to zero itself while introducing air.
- Introduce calibration gas into the probe. Stabilized reading = 2 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec		Downwind Back Reading: (Highest in 30 sec		Background Va	2.7
200	ppm	2.2	ppm	2.1	ppm

Background Value = 211 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas Reading		lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	24	ppm	21.6	ppm	5	
#2	24	ppm	21.6	ppm	5	
#3	25	ppm	225	ppm	5	
	Calculate Response	Time (1-	+2+3)		5	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	eter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		n [STD – (B)]
#1	0.21	ppm	Zy	ppm	/	
#2	6.15	ppm	24	ppm	/	
#3	0.08	ppm	75	ppm	D	
Calculate Precision	on [STD-B1] + [S	TD-B2] + [5	STD-B3] X <u>1</u>) 25	(<u>100</u> 1	Z - 6 Must be less th	#DIV/0

Performed By:	LUSZVADE	Date/Time:	4-24-24	1140

CALIBRATION	PROCEDURE	AND	BACKGROUND	REPORT -	INTEGRATED
-------------	-----------	-----	------------	----------	------------

LANDFILL NAME /C.	KRY	INSTRUMEN	TMAKE: 4	HORIL
MODEL FUALOUD	EQUIPMENT #:	11	SERIAL #:	1036346774
MONITORING DATE:	4-24-24	TIME	1140	

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Reading:		Background Val	
2.0	ppm	2-2	ppm	2.1	ppm

Background Value = 21/ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabi Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	24	ppm	21.6	ppm	6	
#2	71	ppm	22.5	ppm	6	
#3	75	ppm	225	ppm	6	
	Calculate Response	Time (<u>1</u> - 3	+2+3)		6	#DIV/0!
					Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z			g for as (B)	Calculate Precision	i [STD – (B)]
#1	0.15	ppm	24	ppm	1	
#2	0.09	ppm	21	ppm	0	
#3	0.04	ppm	25	ppm	6	
Calculate Precision	on [STD-B1] + [S	3 3	STD-B3] X <u>1</u> 25	X <u>100</u> 1	/ - J Must be less th	#DIV/0!

Performed By:	Misher Estricoa	Date/Time: 4-24-24-1/40	
---------------	-----------------	-------------------------	--

CALIBRATION PROCEDURE AND BACKGROUND	REPORT	INTEGRATED
--------------------------------------	--------	------------

LANDFILL NAME /	INSTRUMENT MAKE _ + HUNTO				
MODEL: LVA 1063	EQUIPMENT#	12		SERIAL #:	1036246741
MONITORING DATE	4-24-24	T	TIME:	1140	

- Allow instrument to zero itself while introducing air
 Introduce calibration gas into the probe. Stabilized reading = ______ppm
- 3. Adjust meter settings to read 25 ppm

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Background Reading: (Highest in 30 seconds)		Background Va	
2.0	ppm	2.2	ppm	2.1	ppm

Background Value = 7/ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement # Stabilized Reading Using 90% of the Stabilized Reading Reading		Calibration Gas Reading		Time to Reach 90% of Stabilized Reading af switching from Zero A Calibration Gas	ter	
#1	23	ppm	20-7	ppm	7	
#2	25	ppm	77.5	ppm	7	
#3	75	ppm	22.5	ppm	7	
	Calculate Response	Time (<u>1-</u> 3	+2+3)		Must be less than 30 sec	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z			Meter Reading for Calibration Gas (B)		n [STD – (B)]
#1	0.18	ppm	2)	ppm	2	
#2	0.11	ppm	21	ppm	0	
#3	0=07	ppm	25	ppm	0	
Calculate Precision	STD-B1] + [S	STD-B2] + [S	STD-B3] X <u>1</u> 25	X <u>100</u> 1	2,6	#DIV/0!
					Must be less th	an 10%

4-24-24-1	140	
0	1-24-24-1	4-24-24-1140

LANDFILL NAME: /CWBY	INSTRUMENT MAKE LHERN			
MODEL: LUA 1000 EQUIPMENT #: /				
MONITORING DATE: 4-24-24	TIME: 11 40			

Calibration Procedure:

1. Allow instrument to zero itself while introducing air. Introduce calibration gas into the probe. Stabilized reading = 25
 Adjust motor cattle = 107

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec		Downwind Background Reading: (Highest in 30 seconds)		Background Va (Upwind + Do	
2.0	ppm	2.2	ppm	21	ppm

Background Value = 21/

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabil Reading	ized	Time to Reach Stabilized Read switching from Calibration Gas	ding after Zero Air to
#1	74	ppm	21.6	ppm	6	
#2	25	ppm	22.5	ppm	6	
#3	25	ppm	27.5	ppm	6	
	Calculate Response T	ime (<u>1</u> - 3	+2+3)		4	#DIV/0!
					Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zo	ero Air (A)	Meter Readin Calibration G	_	Calculate Precision	[STD – (B)]
#1	0.10	ppm	24	ppm	1	
#2	0.05	ppm	25	ppm	0	
#3	0-04	ppm	75	ppm	D	
Calculate Precisio	on [STD-B1] + [S	3 + [S	STD-B3] X <u>1</u> 25	X <u>100</u> 1	1.3	#DIV/0!
					Must be less th	an 10%

Performed By: _	tylonanounsun	
	L	_

Date/Time: 4-24-24 - 44 b

LANDFILL NAME: KIRBY	INSTRUME	NT MAKE: +HERNO
MODEL A 1000 EQUIPMENT#_	16	SERIAL #: //02746776
MONITORING DATE _ 2-24-24	TIME:	1140

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air. Introduce calibration gas into the probe. Stabilized reading =
 Adjust materials the control of the probe.
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backs Reading: (Highest in 30 s		Downwind Back Reading: (Highest in 30 seco		Background Va	
2.0	ppm	2.2	ppm	2./	ppm

Background Value = 2-/

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas	ng Using	90% of the Stabi Reading	lized	Time to Reach Stabilized Read switching from Calibration Gas	ling after Zero Air to
#1	24	ppm	21.6	ppm	5	
#2	24	ppm	21.6	ppm	5	
#3	25	ppm	225	ppm	~	
	Calculate Response	Time (<u>1-</u>	+2+3)		5	#DIV/0!
					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading Calibration Ga		Calculate Precision	i [STD – (B)]
#1	0.26	ppm	24	ppm	1	
#2	0.10	ppm	24	ppm	1	
#3	0.08	ppm	25	ppm	0	
Calculate Precision	[STD-B1] + [S	TD-B2] + [9	STD-B3] X <u>1</u> X 25	1 <u>00</u> 1	2.6	#DIV/0!
					Must be less th	an 10%

Performed By:	Anthony	carelys

Date/Time: 4-24-24 - 1/40

TECHNICIAN: My DATE: 46-29

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,006	+/- 2500
< 1	ZERO GAS	0:071	< 3
	PIL)	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

CUSTOMER: RES VAN # 11

SERIAL NUMBER: 1036386779

TECHNICIAN: MM M DATE: 4-6-79

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,001	+/- 2500
< 1	ZERO GAS	0.069	< 3
	PII		
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS ₋ (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
< 1	ZERO GAS	/	< 3

CUSTOMER: MAS CLAUT # 1	2
SERIAL NUMBER:	
TECHNICIAN: DATE	=:_4-6-24

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	99	+/- 25
500	500	499	+/- 125
10000	10000	(0,003	+/- 2500
< 1	ZERO GAS	0.63	< 3
	PIL)	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

CUSTOMER:	is Ung	# 13	P1 :
SERIAL NUMBER:	110774	5225	
TECHNICIAN:	M	DATE: _	4-6-29

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	800	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0.68	< 3
	PI)	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

CUSTOMER:	PIES Vait #16
SERIAL NUMBER:	1102746776
TECHNICIAN:	Mr My DATE: 4-6-29

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,111	+/- 2500
< 1	ZERO GAS	0,73	< 3
	PIL)	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	0	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

Site:				
Purpose:				
Operator:	1 0/	M		
Date: 4-6-24	1	Time:	0845	
Model #				
Serial # #10 1036	346,773			
INSTRUMENT INTEGRITY	CHECKLIST	INSTR	RUMENT CALIBRA	ATION
Pottonitont	Die		LIBRATION CHE	
Battery test	Pass / Fail	Calibration Gas (ppm)	Actual (ppm)	% Accuracy
Reading following ignition	21 ppm			
Leak test	Pass / Fail / NA	500	500	1001.
Clean system check	Pass / Fail / NA	j.	RESPONSE TIME	
(check valve chatter)	Pass / Fall / NA	Calibration Gas, p	opm Ç	00
H. m. mal	<u></u>	90% of Calibration	Gas, ppm $\overline{\underline{\mathcal{U}}}$	150
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA		nttain 90% of Cal G	as ppm
	4-6-24	1	[2	
Date of last factory calibration	79071	3.	5	
Factory calibration record	Pass / Fail	Average 5	.6	A
w/instrument within 3 months	0	Equal to or less the Instrument calibra		_ (Ŷ) N _gas.
Comments:				

Site:	T)		
Purpose:			
Operator:	My		
Date: 46-24	Time:	0900	
Model #			
Serial # # 11 (036346)	179		
INSTRUMENT INTEGRITY CHECK	(LIST	INSTRUMENT CALIBRA	ATION
Battery test	: / Fail Calibratio		CK % Accuracy
Reading following ignition 2	500 Soo		/ OO %
Leak test Pass	/Fail / NA	_	
Clean system check (check valve chatter)	/ Fail / NA Calibration		.00
H ₂ supply pressure gauge (acceptable range 9.5 - 12)		ibration Gas, ppm 4 red to attain 90% of Cal G	as ppm
Date of last factory calibration 4.	6-29 2.		
Factory calibration record w/instrument within 3 months	1	less than 30 seconds? calibrated to	gas. N
Comments:			4

465

Purpose: Operator:	()h			
Date: 4-6-20	1	Time:	0915	
Model #				
Serial # # 12 103	624674			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	RUMENT CALIBRA	ATION
D=M==+4	0		LIBRATION CHEC	
Battery test	Pass / Fail	Calibration Gas (ppm)	Actual	%
Reading following ignition	_2,3 ppm	Gas (ppiii)	(ppm)	Accuracy
! .	^	500	500	100%
eak test	eass / Fail / NA		RESPONSE TIME	
Clean system check	Pass / Fail / NA		_	
check valve chatter)		Calibration Gas, p		00
12 supply pressure gauge	Pass / Fail / NA	90% of Calibration		150
acceptable range 9.5 - 12)	Pass / Pall / IVA	1 ime required to a	ttain 90% of Cal G	as ppm
,	4-629	2.	9	
ate of last factory calibration	1-00-7		2	
actory calibration record	Pass / Fail	Average 6	0	<i>α</i> 2
v/instrument within 3 months		Equal to or less th		(Ý) N
		Instrument calibra	ted to CL47	gas.
Comments:				

Purpose: Operator:	Mr.
Date:	Time:
Model #	
Serial # # 13 077467)	
INSTRUMENT INTEGRITY CHECKLI	ST INSTRUMENT CALIBRATION
	CALIBRATION CHECK
Battery test Pass / F	fail Calibration Actual %
eading following ignition 2, (Gas (ppm) (ppm) Accuracy
eduling following lighthorn	500 500 100%
eak test (Pass / F	ail / NA
lean system check Pass / F	RESPONSE TIME
check valve chatter)	Calibration Gas, ppm
	90% of Calibration Gas, ppm 450
2 supply pressure gauge Pass / F	ail / NA Time required to attain 90% of Cal Gas ppm
acceptable range 9.5 - 12)	1
ate of last factory calibration	J4 2
0	3. 6 Average 6,0
actory calibration record //ass / F /instrument within 3 months	Equal to or less than 30 seconds?
WHO CHICK WILLIAM STRONG	Instrument calibrated to CU gas.
comments:	

Site:				
Purpose:				
Operator:	u M			
Date: 4-6-20	1	Time:	1015	
Model# ten 1000				
Serial # #16 /102	746716			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	UMENT CALIBR	ATION
	an		LIBRATION CHE	
Battery test	Pass / Fail	Calibration Gas (ppm)	Actual (ppm)	% Accuracy
Reading following ignition	2(1_ppm			Accuracy
Leak test	A IT III	Scoo	500	(00 %
Leak lest	Pass / Fail / NA		RESPONSE TIME	=
Clean system check	Gass / Fail / NA			S00
(check valve chatter)		Calibration Gas, p	pm	
H ₂ supply pressure gauge	Pass / Fail / NA	90% of Calibration	i Gas, ppm httain 90% of Cal (USO CORRECTION
(acceptable range 9.5 - 12)		1.	Can Can	sas phili
Data of look for the second liberation	4-6-24	2.	6	
Date of last factory calibration	_ 0001	3.	6	
Factory calibration record	Pass / Fail	Average	ib	
w/instrument within 3 months		Equal to or less th		W N
		Instrument calibra	ted to	_gas.
Comments:				

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition Certification Analytical Accuracy (+/-)

Oxygen

20.9 %

2%

Nitrogen

Balance UHP

Lot# 20-7421

Mfg. Date:

5/20/2020

Expiration Date:

Transfill Date:

see cylinder

Parent Cylinder ID NY02268

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Tony Janquart

Title:

Quality Assurance Manager

Certificate Date:

5/20/2020

(%eloM) notisatines Aldduson

Accuracy

negonin Jea -196/xO %6'02

MAJ THESE

DIS9 000,1 bns 7007 @ off 8 2mg

Lot#: 20-7421

103 [

24053 or (800) 201-8150 Fax (949) 757-0363 Mikaiser Avenue, Irvine, CA 92614

103-01-100

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road

Nampa

Idaho

83687

800-552-5003

www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Methane

Air

Certification

25 ppm

Balance

Analytical Accuracy

± 5%

Lot#

17-6074

Mfg. Date:

10/16/2017

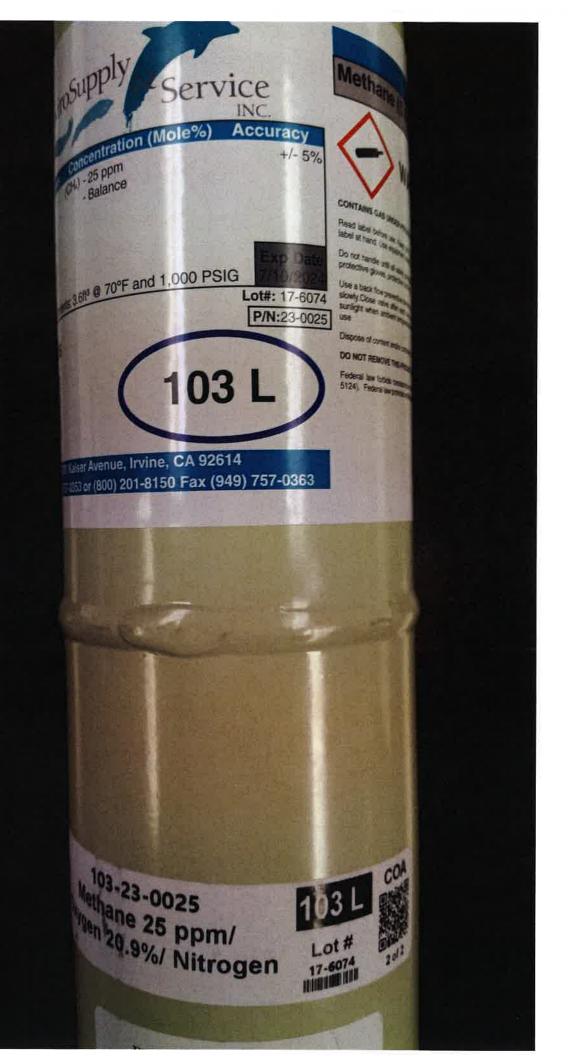
Parent Cylinder ID

17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Certification

Analytical Accuracy

Methane

25 ppm

 $\pm 5\%$

Air

Balance

Lot#

17-6074

Mfg. Date:

10/16/2017

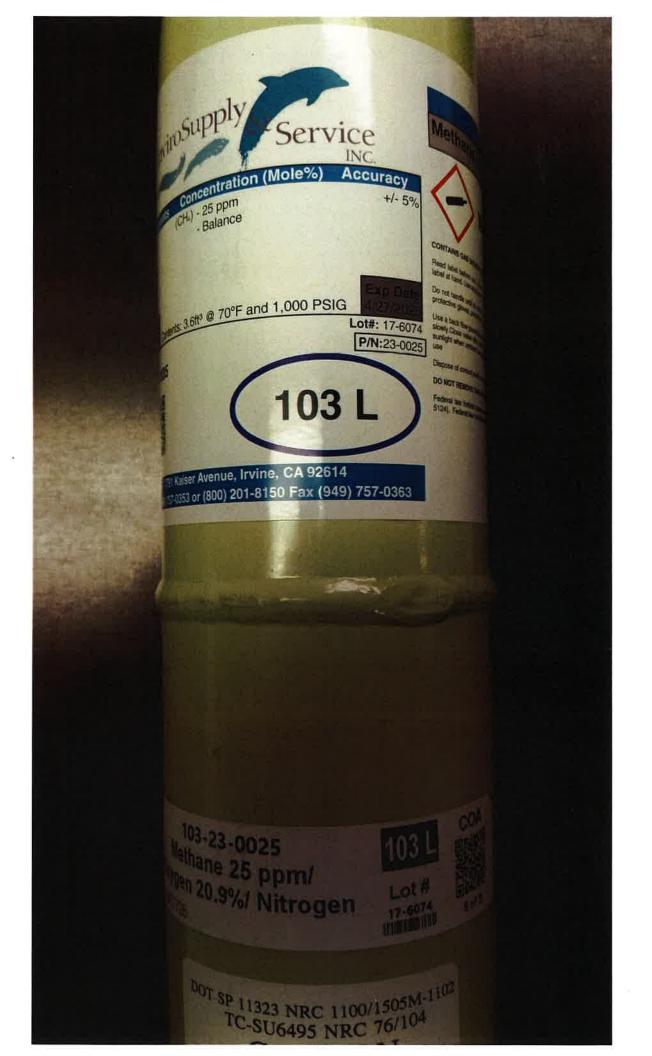
Parent Cylinder ID

17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition	Certification	Analytical Accuracy (+/-)
Methane	500 ppm	2%
Oxygen	20.9 %	2%
Oxygen Nitrogen	Balance UHP	

Lot# 20-7497

Mfg. Date: 7/10/2020

Expiration Date:

Transfill Date: see cylinder

Parent Cylinder ID TWC001763

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Tony Janquart

Title:

Quality Assurance Manager

Certificate Date:

7/10/2020

Methane (0) Service INC. niration (Mole%) Accuracy +/- 2% Sto ppm Blance CONTAINS GAS UNDER PROM Read label before use King street label at hand. Use streets Do not handle until all sales and protective gloves, protective gloves, protective sales 10 70°F and 1,000 PSIG Use a back flow prevents are slowly. Close valve after some surlight when antiers around Lot#: 20-7497 P/N:23-0500 Dispose of content ardy on DO NOT REMOVE THE PROD Federal law forbids 103 5124). Federal lawpoores as Minue, Irvine, CA 92614 (949) 201-8150 Fax (949) 757-0363

No ppm/
Nitrogen Lot#

100

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number Norlab Part#

2-108-80 J1971500PA 103 Liter

Cylinder Size

Number of Cyl

Customer Part# N/A

Cust Number 07152

Order Number 69671309 PO Number 08361523

Date on Manufacture

6/10/2022

Expires

06/2025

Analytical Accuracy

+/- 2 %

Component Methane Air

Reported Concentration

500 ppm Balance

Requested Concentration

500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

David Reed

Date Signed:

6/10/2022

Lab Technician

800.962.7837 800.962.7837 compreniers afety.com 33596 Sterling Posts Sterling Height 9

Components

Methane Air

Concentration (Mole)

500 ppm Balance

Latt: 2-108-80

Accuracy: +/- 2 %

J1971500PA

Comtents: 103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

5/5/2022

Exp. Date:

05/2025

CALIBRATION GAS

NON-FLAMMABLE GAS

2

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Norco, Inc Twin Falls Warehouse 203 S. Park Ave. West Twin Falls, ID 83301 Cust Number WH012 Order Number 71846398 PO Number 04A35563

Lot Number

3-088-88

Norlab Part#

J1971500PA

Cylinder Size

103 Liter

5

Component

Methane

Air

Number of Cyl

Customer Part# N/A

Date on Manufacture

4/7/2023

Expires

04/2027

Analytical Accuracy

+/- 2 %

Reported

Concentration

500 ppm Balance Requested

Concentration

500 ppm

Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Jeff Korn/

Date Signed:

4/7/2023

898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

800.962.7837 www.premiers afety.com

33596 Sterling Posterling Height

Components

Methane

Concentration (Mole

500 ppm Balance

lutt: 3-088-88

MOUNTY 4-2%

J1971500PA

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

4/7/2023

04/2027

CALIBRATION GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 69679439 PO Number 04906817

Lot Number

2-154-85

Norlab Part#

J1002

1

Cylinder Size

103 Liter

Number of Cyl

Date on Manufacture

6/13/2022

Expires

06/2025

Analytical Accuracy

Certified

Customer Part# N/A

Component

Air

Oxygen T.H.C. (as Methane)

Nitrogen

Reported

Concentration Zero Grade

20.9 %

< 1.0 ppm

Balance

Requested

Concentration

Zero Grade

20.9 %

< 1.0 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

Minor constituents tested with standards traceable to NIST by mass or comparison to SRM's (Standard Reference Materials).

NIST Traceable Numbers are available upon request.

Approved:

Date Signed:

6/13/2022

Lab Technician

\$00.962.7837 premiersafety.com

Sterling Harris

components

orygen TH.C. (as Methane)

Concentration (Mg

Zer 20.	9 %	rade
< 1 Ba		

2-154-85

Amuscy: Certified

J1002

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

8/13/2022

08/2025

CALIBRATION GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 73732858

PO Number 04B70733

Lot Number Norlab Part# 3-340-61 J1971500PA

Cylinder Size

Number of Cyl

103 Liter

Date on Manufacture **Expires** 12/7/2023

12/2027

Analytical Accuracy

+/- 2 %

Customer Part# N/A

Reported

Concentration

Requested

Concentration

500 ppm Balance

Component Methane Air

500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager

Date Signed:

12/7/2023

800.962.7837 angremiers afely, com

Concentration

500 ppm Balance

CALIBRATION GAS Exp. Date: Contents: 103Liters-3.6Cu.Ft.,-1000psig

Part J1971500PA

Accuracy: +/- 2 %

3-340-61

MFG Date:

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 73732858

PO Number 04B70733

Lot Number Norlab Part# 3-340-62 J197125PA

Cylinder Size

Number of Cyl 5

103 Liter

Customer Part# N/A

Date on Manufacture

12/7/2023

Expires

12/2027

Analytical Accuracy

+/- 5 %

Component Methane

Air

Reported Concentration

25 ppm Balance Requested

Concentration

25 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager

Date Signed:

12/7/2023

800.962.7837 www.premiersafety.com 33596 Sterling Pends Sterling Heights line

Components

Methane

Concentration (Mole)

25 ppm Balance

3-340-62

cy: +1-5%

J197125PA

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

12/7/2023

12/2027

CALIBRATION GAS

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name: Kirby Canyon Date: 4/24/24
Landfill Name: Kirby Canyon Date: 9/29/29
Time:AM 1210 PM
Instrument Make: Thermo Scientific Model: TVA 1000B S/N: 0928538411
Calibration Procedure
1. Allow instrument to internally zero itself while introducing zero air.
2. Introduce the calibration gas into the probe. Stable Reading = 504
3. Adjust meter to read 500 ppm.
Background Determination Procedure
1. Upwind Reading (highest in 30 seconds):ppm (a)
2. Downwind Reading (highest in 30 seconds): ppm (b)
Calculate Background Value: (a) + (b) Background = ppm 2
Performed by:

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name: <u>Kirby Canyon</u> Date: <u>_5/17/24</u>
Time:5:00AM PM
Instrument Make: Thermo Scientific Model: TVA 1000B S/N: 0928538411
<u>Calibration Procedure</u>
1. Allow instrument to internally zero itself while introducing zero air.
2. Introduce the calibration gas into the probe.
Stable Reading = 506 ppm
3. Adjust meter to read 500 ppm.
Background Determination Procedure
1. Upwind Reading (highest in 30 seconds):1ppm (a)
2. Downwind Reading (highest in 30 seconds): ppm (b)
Calculate Background Value:
$\underbrace{(a) + (b)}_{2} \qquad \text{Background} = \underbrace{1.5}_{ppm}$
Performed by:T.Robles

RESPONSE TIME TEST RECORD

Date: 4/1/24					
Expiration Date (3 m	onths): <u>7/1/24</u>				
Time: <u>5:50</u> AM	PM				
Instrument Make:	Thermo Scientific	Model:	TVA 1000	_ S/N:	0928538411
Measurement #1:					
	Stabilized Reading U			500	_ ppm
		e Stabilized		480	ppm
Tir	ne to Reach 90% of Sta switching from Zero A		The state of the s	10	_ seconds (a)
Measurement #2:					
	Stabilized Reading U	sing Calibr	ation Gas:	499	ppm
	90% of the	e Stabilized	l Reading:	495	ppm
Tir	ne to Reach 90% of Sta switching from Zero A			10	_ seconds (b)
Measurement #3:					
	Stabilized Reading U	sing Calibr	ation Gas:	501	ppm
		e Stabilized		485	_ ppm
Tir	ne to Reach 90% of Sta		The state of the s		
	switching from Zero A			10	_ seconds (c)
Calculate Response T	ime:				
$\frac{(a) + (b) + (c)}{3}$	= <u>10</u> second	ls (must be	less than 30 se	conds)	
Performed by: T.Ro	bles				

CALIBRATION PRECISION TEST RECORD

	5:50 AM	PM			136161006
		Thermo Scientific Model:	_TVA 1	000_ S/N:	092853841
Measui	rement #1:				
		Meter Reading for Zero Air:		ppm (a)	
	Meter	Reading for Calibration Gas:	50	<u>o1</u> ppm (b)	
Measui	rement #2:				
		Meter Reading for Zero Air:	0	ppm (c)	
	Meter	Reading for Calibration Gas:	50	<u>ppm (d)</u>	
Measu	rement #3:				
		Meter Reading for Zero Air:	0	ppm (e)	
	Meter	Reading for Calibration Gas:	50	<u>1</u> ppm (f)	
Calcula	ate Precision:				
{ (496)	-(500) + (5	$\frac{(00) - (498) + (500) - (496) }{2}$	x <u>1</u> x	100	

Performed by: <u>T. Robles</u>

APPENDIX G COMPONENT LEAK CHECK REPORTS

KIRBY CANYON RECYCLING & DISPOSAL FACILITY, San Jose, CA FIRST QUARTER 2024 LFG COMPONENT LEAK MONITORING

INSTRUMENT	FID	
MAKE:	Photo Scientific	DATES OF SAMPLING: January 10, 202
MODEL:	TVA 1000	FIELD TECHNICIANS: Leigh Wade
S/N:	10363/6773	

LOCATION OF LEAK	LEAK CONCENTRATION (ppmv)	DATE OF DISCOVERY	TECHNICIAN	ACTION TAKEN TO REPAIR LEAK	DATE OF REPAIR	DATE OF ANY REQUIRED RE- MONITORING	RE-MONITORED CONCENTRATION (ppmv)					
NO EXCEEDANCES WERE DETECTED DURING THE FIRST QUARTER 2024 MONITORING EVENT												

In the event that an exceedance is detected, please intiate corrective action and re-monitor the exceedance location within 7 days of the initial exceedance.

NOTE: Leaks over 500 ppmv methane are exceedances at any component containing landfill gas, pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

NOTE: Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas, pursuant to BAAQMD Regulation 8-34-301.2.

ND = Not Detected

KIRBY CANYON RECYCLING & DISPOSAL FACILITY, San Jose, CA SECOND QUARTER 2024 LFG COMPONENT LEAK MONITORING

NSTRUMENT	FID	
MAKE:	Photo Scientific	DATES OF SAMPLING: April 24, 2024
MODEL:	TVA 1000	FIELD TECHNICIANS: Leigh Wade
S/N:	1036346773	

LOCATION OF LEAK	LEAK CONCENTRATION (ppmv)	DATE OF DISCOVERY	TECHNICIAN	ACTION TAKEN TO REPAIR LEAK	DATE OF REPAIR	DATE OF ANY REQUIRED RE- MONITORING	RE-MONITORED CONCENTRATION (ppmv)						
	NO EXCEEDANCES WERE DETECTED DURING THE SECOND QUARTER 2024 MONITORING EVENT												

In the event that an exceedance is detected, please intiate corrective action and re-monitor the exceedance location within 7 days of the initial exceedance.

NOTE: Leaks over 500 ppmv methane are exceedances at any component containing landfill gas, pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

NOTE: Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas, pursuant to BAAQMD Regulation 8-34-301.2.

ND = Not Detected

APPENDIX H MONTHLY SOLID WASTE PLACEMENT TOTALS

Solid Waste Placement Totals

January 1, 2024 through June 30, 2024

July	Disposed	August	Disposed	September	Disposed	October	Disposed	November	Disposed	December	Disposed
Total in Tons	18,222		16,760		13,764		16,803		18,139		16,899

Total Disposed January 1, 2024 through June 30, 2024

100,588

APPENDIX I WELLFIELD MONITORING LOGS

Wellfield Monitoring Report - January 5, 8, 10, 23, and 25, 2024

		CH₄	CO2	O ₂	Balance	Initial	Adjusted	Initial	Adjusted
Device Name	Date Time	% by	% by	% by	% by	Temperature	Temperature	Pressure	Pressure
		Volume	Volume	Volume	Volume	(degrees F)	(degrees F)	(in. w.c.)	(in. w.c.)
KCLC0108	1/10/2024 13:49	49.5	36.1	0.0	14.4	78.1	78.1	-26.6	-26.6
KCLC0109	1/10/2024 13:55	58.6	41.4	0.0	0.0	89.9	90.1	-34.2	-34.1
KCLC0110	1/10/2024 13:58	56.5	43.5	0.0	0.0	104.2	104.3	-38.2	-38.6
KCLC0111	1/10/2024 14:08	55.1	42.0	0.0	2.9	51.8	51.8	-37.6	-37.2
KCLC0112	1/10/2024 14:10	57.2	42.1	0.7	0.0	89.6	89.6	-30.4	-31.1
KCLC0139	1/10/2024 7:26	57.2	42.7	0.0	0.1	118.5	118.0	-23.9	-23.8
KCLC0140	1/8/2024 14:02	46.3	38.3	0.0	15.4	112.0	108.7	-14.2	-4.6
KCLC0141	1/8/2024 13:36	34.7	30.7	0.0	34.6	94.7	94.5	-2.5	-1.3
KCLC0142	1/8/2024 13:33	24.7	26.4	0.0	48.9	100.5	100.7	-0.6	-0.2
KCLC0143	1/10/2024 8:15	33.0	32.9	0.0	34.1	103.9	103.7	-1.6	-1.0
KCLC0145	1/8/2024 9:53	51.0	37.8	2.2	9.0	56.7	53.3	-33.2	-32.8
KCLC0147	1/8/2024 9:38	57.2	40.2	0.4	2.2	54.7	52.0	-34.4	-34.2
KCLC0149	1/8/2024 10:02	58.1	41.6	0.0	0.3	58.5	61.2	-1.2	-5.6
KCLC0151	1/8/2024 9:33	57.3	41.9	0.0	0.8	117.9	117.9	-28.6	-28.6
KCLC0152	1/8/2024 9:30	54.2	40.1	0.0	5.7	108.8	111.3	-6.0	-7.6
KCLC0153	1/8/2024 10:04	54.6	41.1	0.0	4.3	97.8	98.2	-4.9	-7.4
KCLC0154	1/8/2024 9:58	53.3	39.5	0.0	7.2	97.2	98.6	-1.7	-3.2
KCLC0155	1/8/2024 9:48	57.3	41.7	0.0	1.0	110.1	110.9	-9.6	-12.1
KCLC0156	1/8/2024 9:45	57.6	42.4	0.0	0.0	98.2	98.7	-24.9	-28.5
KCLC0157	1/10/2024 8:23	26.6	30.0	1.8	41.6	41.3	41.2	-18.8	-17.3
KCLC0158	1/10/2024 7:20	42.6	35.9	0.0	21.5	110.0	107.6	-8.1	-4.0
KCLC0159	1/10/2024 8:44	53.9	40.0	0.0	6.1	106.7	106.9	-8.6	-15.9
KCLC0160	1/10/2024 9:01	44.1	36.9	3.6	15.4	39.7	39.6	-35.1	-36.0
KCLC0161	1/10/2024 9:12	50.9	40.3	0.0	8.8	111.3	113.2	-16.6	-22.3
KCLC0161	1/10/2024 9:12	50.9	40.3	0.0	8.8	111.3	113.2	-16.6	-22.3
KCYN0014 KCYN0027	1/10/2024 13:46 1/8/2024 8:49	52.2 57.9	33.4 42.1	0.0	14.4 0.0	100.3 79.9	100.3 89.7	-2.5 -9.3	-2.5 -26.6
KCYN0048	1/10/2024 13:34	48.5	39.9	0.0	11.6	120.7	122.2	-1.1	-2.1
KCYN0051 KCYN0054	1/10/2024 8:06 1/8/2024 13:50	57.2 47.8	42.0 35.5	0.0 2.7	0.8 14.0	94.0 106.0	94.1 107.7	-21.4 -18.1	-21.8 -18.1
KCYN0054 KCYN0056	1/10/2024 7:40	56.9	43.1	0.0	0.0	121.0	121.3	-10.1	-10.1
KCYN0050 KCYN0057	1/10/2024 7:40	52.2	41.6	0.0	6.2	84.5	89.8	-28.8	-27.8
KCYN0057 KCYN0058	1/10/2024 7:52	42.4	37.3	0.0	20.3	126.5	125.4	-16.8	-13.3
KCYN0062	1/5/2024 13:10	56.3	41.5	0.0	2.2	126.2	127.3	-10.8	-19.3
KCYN0063	1/5/2024 13:10	54.6	39.1	0.0	6.3	116.8	117.0	-2.1	-3.4
KCYN0065	1/8/2024 13:58	56.9	41.1	0.0	2.0	81.0	81.1	-26.1	-26.1
KCYN0066	1/5/2024 13:01	57.8	42.2	0.0	-0.1	125.9	126.5	-42.8	-46.5
KCYN0070	1/8/2024 7:27	53.9	37.1	0.0	9.0	111.1	111.1	-13.8	-14.3
KCYN0071	1/5/2024 13:27	54.8	40.7	0.0	4.5	129.1	129.1	-43.6	-43.4
KCYN0071	1/5/2024 13:14	46.5	37.3	0.0	16.2	110.5	110.3	-7.4	-5.5
KCYN0074	1/8/2024 8:26	57.9	42.1	0.0	0.0	126.2	126.5	-41.8	-42.5
KCYN0075	1/10/2024 7:31	56.2	43.8	0.0	0.0	121.7	121.9	-25.5	-25.5
KCYN0076	1/8/2024 8:08	57.4	42.6	0.0	0.0	129.6	129.6	-31.4	-31.4
KCYN0078	1/8/2024 8:37	56.7	43.3	0.0	0.0	130.8	130.5	-28.6	-28.6
KCYN0082	1/10/2024 7:14	57.3	40.2	0.3	2.2	114.4	115.1	-3.6	-4.8
KCYN0084	1/10/2024 8:10	39.4	35.6	0.0	25.0	122.2	122.0	-3.7	-2.1
KCYN0086	1/10/2024 8:30	56.8	42.8	0.0	0.4	130.8	130.5	-19.7	-19.3
KCYN0087	1/10/2024 8:37	46.6	39.5	0.0	13.9	124.7	123.9	-19.5	-17.2
KCYN0088	1/8/2024 7:37	53.7	36.9	0.0	9.4	108.4	108.5	-24.0	-25.1
KCYN0089	1/8/2024 8:04	57.4	42.6	0.0	0.0	129.1	130.7	-2.9	-4.5
KCYN0090	1/8/2024 7:32	53.4	38.6	0.0	8.0	97.2	104.1	-31.7	-44.2
KCYN0091	1/8/2024 7:56	57.6	42.4	0.0	0.0	128.5	129.1	-22.4	-23.5
KCYN0092	1/8/2024 9:06	58.1	40.1	0.0	1.8	124.9	124.9	-34.6	-34.6
KCYN0093	1/8/2024 8:29	56.2	41.8	0.0	2.0	123.5	123.6	-9.9	-10.4
KCYN0094	1/8/2024 7:43	59.3	40.6	0.0	0.1	127.2	126.2	-30.2	-30.0
KCYN0095	· · ·					for filling			
KCYN0097	1/8/2024 7:47	57.2	42.8	0.0	0.0	118.2	118.3	-37.9	-37.5
KCYN0098	1/5/2024 8:23	55.7	44.2	0.1	0.0	128.9	129.1	-17.2	-30.0
KCYN0099	1/5/2024 13:30	53.5	40.7	0.0	5.8	129.5	130.3	-7.2	-8.1
KCYN0101	1/8/2024 8:54	43.9	34.3	0.0	21.8	89.5	91.5	-2.6	-3.0
KCYN0102	1/5/2024 13:19	52.3	38.5	0.0	9.2	97.3	101.1	-1.1	-2.0
KCYN0103	1/5/2024 13:22	50.8	38.5	0.0	10.7	114.8	116.1	-4.1	-5.1
KCYN0105	1/10/2024 14:05	57.3	42.7	0.0	0.0	62.8	63.7	-37.5	-37.6
KCYN0118	1/10/2024 9:08	56.9	42.2	0.0	0.9	112.6	112.3	-30.0	-34.9
KCYN0119	1/8/2024 10:24	56.5	42.4	0.0	1.1	129.7	129.9	-5.8	-6.2

Wellfield Monitoring Report - January 5, 8, 10, 23, and 25, 2024

Device Name	Date Time	CH₄ % by Volume	CO ₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCYN0121	1/10/2024 9:05	56.7	43.3	0.0	0.0	98.2	98.3	-32.6	-32.5
KCYN0122	1/10/2024 9:14	57.1	42.9	0.0	0.0	99.4	99.4	-29.4	-29.4
KCYN0123	1/10/2024 7:48	58.0	41.7	0.0	0.3	120.3	125.3	-17.9	-19.1
KCYN0124	1/10/2024 7:36	46.1	38.2	0.0	15.7	111.4	111.4	-4.9	-4.8
KCYN0125	1/8/2024 13:52	57.7	40.6	0.0	1.7	125.4	127.7	-19.1	-19.5
KCYN0126	1/10/2024 7:23	51.7	39.9	0.0	8.4	127.3	127.3	-17.5	-17.4
KCYN0127	1/10/2024 13:13	43.2	37.0	0.0	19.8	126.3	126.6	-14.3	-14.4
KCYN0128	1/10/2024 8:26	51.9	42.0	0.1	6.0	121.9	121.6	-24.9	-24.9
KCYN0129	1/8/2024 9:18	58.4	41.6	0.0	0.0	95.5	98.3	-34.4	-35.0
KCYN0130	1/10/2024 13:39	50.4	36.6	0.0	13.0	109.9	110.0	-3.2	-3.1
KCYN0131	1/10/2024 14:01	56.9	43.1	0.0	0.0	109.6	109.8	-39.5	-38.3
KCYN0133	1/8/2024 8:33	56.1	42.0	0.4	1.5	101.8	109.3	-25.8	-25.8
KCYN0134	1/8/2024 8:40	57.0	43.0	0.0	0.0	87.3	87.7	-24.0	-24.0
KCYN0135	1/8/2024 8:44	55.7	42.3	0.0	2.0	126.8	126.8	-27.0	-26.9
KCYN0162	1/10/2024 8:55	51.9	38.3	2.0	7.8	42.6	42.6	-35.9	-35.9
KCYN0163	1/23/2024 9:02	64.2	35.7	0.1	0.0	66.0	67.2	-1.1	-4.5
KCYN0164	1/10/2024 8:51	57.7	42.3	0.0	0.0	52.0	52.1	-35.8	-35.6
KCYN0165	1/10/2024 8:47	56.4	41.3	0.0	2.3	118.7	117.6	-16.8	-18.7
KCYN0166	1/10/2024 13:30	53.0	40.4	0.0	6.6	128.2	128.6	-3.3	-3.9
KCYN0167	1/10/2024 13:27	58.5	41.5	0.0	0.0	117.4	117.4	-33.5	-33.4
KCYN0168	1/10/2024 13:23	52.8	40.8	0.0	6.4	121.6	122.2	-14.8	-15.3
KCYN0169	1/3/2024 7:31	57.0	43.0	0.0	0.0	107.9	108.0	-1.7	-1.7
KCYN0169	1/25/2024 8:33	55.9	42.0	0.0	2.1	108.7	108.7	-2.1	-2.3
KCYN0170	1/3/2024 7:35	54.7	43.4	0.0	1.9	104.5	104.4	-3.6	-3.7
KCYN0170	1/25/2024 8:36	54.7	42.7	0.0	2.6	104.5	104.5	-4.4	-4.9
KCYN0171	1/3/2024 7:41	55.6	44.3	0.0	0.1	111.1	111.0	-8.2	-8.7
KCYN0171	1/25/2024 8:44	55.9	44.1	0.0	0.0	111.5	111.5	-10.1	-12.5
KCYN0172	1/3/2024 7:45	55.4	44.4	0.0	0.2	115.4	115.5	-5.1	-5.3
KCYN0172	1/25/2024 8:49	54.3	43.9	0.0	1.8	115.6	115.7	-7.1	-7.0
KCYNLR04	1/5/2024 8:00	57.9	37.9	0.4	3.8	97.5	97.5	-16.3	-16.6
KCYNLR08	1/5/2024 7:50	59.3	38.6	0.8	1.3	66.4	69.9	-27.4	-31.3
KCYNLR11	1/10/2024 13:52	48.1	34.4	3.4	14.1	57.6	57.7	-0.9	-0.6
KCYNLR12	1/3/2024 7:22	52.0	40.8	0.2	7.0	84.9	84.8	-5.2	-5.5
KCYNLR12	1/25/2024 8:25	50.6	39.9	0.2	9.3	84.2	84.4	-7.1	-8.0

^{*}The following wells are approved to operate at a temperature HOV of 145°F: 51, 57, 58, 65, 66, 71, 74, 78, 86, 91, 92, 95, 98, 99, 119, 127, 128, 133, and 135. Wells 56, 75, 76, 87, and 89 are approved to operate at a temperature HOV of 156°F.

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

HOV = Higher Operating Value

As of January 31, 2024, there are 89 vertical wells, 0 horizontal collector, and 4 LCR at KCRDF.

^{%=} percent

Wellfield Monitoring Report - February 6, 9, 12, and 13, 2024

Device Name	Date Time	CH₄ % by Volume	CO ₂ % by Volume	O₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCLC0108	2/6/2024 9:52	53.0	37.6	0.0	9.4	71.2	73.6	-26.7	-37.1
KCLC0109	2/6/2024 10:01	57.6	42.4	0.0	0.0	85.9	85.8	-34.6	-34.6
KCLC0110	2/6/2024 10:04	57.2	42.8	0.0	0.0	102.4	102.5	-38.5	-39.0
KCLC0111	2/6/2024 10:16	55.5	42.3	0.6	1.6	52.3	52.5	-37.5	-37.6
KCLC0112	2/6/2024 10:12	57.1	42.9	0.0	0.0	71.0	72.0	-35.3	-35.3
KCLC0139	2/12/2024 9:39	56.2	43.8	0.0	0.0	114.9	114.7	-19.4	-19.4
KCLC0140 KCLC0141	2/12/2024 9:35	56.8	43.2	0.0	0.0	94.1	104.9 84.2	-3.0	-20.5
KCLC0141 KCLC0142	2/12/2024 9:16 2/12/2024 9:08	48.7 42.2	37.6 34.5	0.0	13.7 23.3	84.2 79.3	79.3	-0.7 0.0	-0.7 0.0
KCLC0142 KCLC0143	2/12/2024 9:00	45.4	37.4	0.0	17.2	101.7	101.1	-0.7	-0.5
KCLC0145	2/12/2024 8:01	39.9	30.0	3.2	26.9	42.8	42.5	-27.6	-26.9
KCLC0147	2/12/2024 7:47	58.2	41.8	0.0	0.0	42.8	42.8	-30.1	-30.1
KCLC0149	2/12/2024 8:08	55.2	41.8	0.0	3.0	83.3	83.4	-5.5	-8.0
KCLC0151	2/12/2024 7:44	57.2	42.8	0.0	0.0	117.7	117.7	-24.0	-24.0
KCLC0152	2/12/2024 7:40	51.4	40.2	0.0	8.4	110.6	110.9	-12.1	-12.8
KCLC0153	2/12/2024 8:12	47.6	39.0	0.0	13.4	98.3	96.1	-7.9	-1.8
KCLC0154	2/12/2024 8:05	39.8	35.3	0.0	24.9	100.4	94.1	-3.7	-1.4
KCLC0155	2/12/2024 7:56	55.0	42.3	0.0	2.7	110.9	111.0	-11.7	-14.1
KCLC0156	2/12/2024 7:53	57.7	42.3	0.0	0.0	95.4	95.4	-24.0	-25.1
KCLC0157	2/12/2024 8:22	44.4	35.9	3.1	16.6	43.7	43.8	-27.4	-25.4
KCLC0158	2/12/2024 10:40	51.5	40.8	0.0	7.7	104.2	106.4	-5.9	-9.2
KCLC0159	2/6/2024 12:07	50.4	39.0	0.0	10.6	108.0	108.2	-14.3	-17.2
KCLC0160	2/6/2024 10:52	45.3	36.6	3.9	14.2	53.4	53.8	-35.7	-35.8
KCLC0161	2/6/2024 11:00	47.4	39.5	0.0	13.1	113.8	113.3	-27.7	-23.9
KCYN0014	2/6/2024 9:48	54.4	33.8	0.0	11.8	96.5	98.3	-2.9	-3.9
KCYN0027	2/9/2024 9:02	53.9	37.6	1.8	6.7	61.3	61.3	-45.8	-45.9
KCYN0048	2/6/2024 10:31	49.4 56.7	40.6 42.2	0.0	10.0	117.4	116.6	-2.5	-2.5
KCYN0051 KCYN0054	2/12/2024 10:52	48.9	34.0	3.8	1.1	88.6 51.9	88.6 52.0	-27.2 -2.0	-27.1 -8.6
KCYN0054 KCYN0056	2/12/2024 9:23 2/12/2024 9:50	56.4	43.5	0.0	0.1	122.4	121.8	-22.2	-0.0
KC1N0056 KCYN0057	2/12/2024 9.50	55.9	44.1	0.0	0.0	91.8	92.3	-22.2	-22.2
KCYN0058	2/12/2024 11:05	50.9	40.2	0.0	8.9	125.8	128.5	-6.9	-7.5
KCYN0062	2/9/2024 7:34	53.7	40.4	0.1	5.8	118.4	118.3	-29.5	-30.2
KCYN0063	2/9/2024 7:27	42.7	36.6	0.0	20.7	113.7	113.8	-2.6	-2.8
KCYN0065	2/12/2024 9:31	56.8	43.2	0.0	0.0	70.6	71.0	-21.9	-22.0
KCYN0066	2/9/2024 7:08	57.7	42.0	0.3	0.0	115.8	116.5	-45.4	-45.4
KCYN0070	2/9/2024 8:44	51.3	39.3	0.0	9.4	111.2	111.1	-15.3	-15.9
KCYN0071	2/9/2024 7:58	53.7	41.7	0.1	4.5	128.7	128.7	-44.7	-44.8
KCYN0072	2/9/2024 7:37	58.1	41.9	0.0	0.0	106.3	106.8	-3.8	-4.4
KCYN0074	2/6/2024 11:48	56.7	43.3	0.0	0.0	129.1	129.1	-45.2	-42.6
KCYN0075	2/12/2024 9:46	56.0	44.0	0.0	0.0	117.5	118.0	-31.2	-31.2
KCYN0076	2/6/2024 11:14	56.3	43.7	0.0	0.0	128.8	124.8	-28.9	-28.8
KCYN0078	2/6/2024 11:55	56.7	43.3	0.0	0.0	128.4	128.2	-24.7	-25.3
KCYN0082	2/12/2024 10:37	48.1	38.9	0.0	13.0	116.0	114.2	-6.5	-3.5
KCYN0084	2/12/2024 10:49	51.5	39.8	0.0	8.7	119.4	120.3	-1.1	-1.6
KCYN0086	2/12/2024 8:30	56.2	43.8	0.0	0.0	129.9	130.4	-24.2	-24.2
KCYN0087	2/12/2024 8:47	50.7	41.8	0.0	7.5	130.0	130.0	-12.0	-11.9
KCYN0088	2/9/2024 9:17	46.2	31.9	2.6	19.3	107.6	97.3	-24.9	-16.9
KCYN0089 KCYN0090	2/6/2024 11:18 2/9/2024 8:48	56.9 55.7	43.1 41.3	0.0	3.0	129.8 102.0	129.4 102.4	-7.1 -46.2	-7.7 -46.7
KCYN0090 KCYN0091	2/6/2024 11:27	56.2	41.3	0.0	0.0	102.0	102.4	-46.2 -28.0	-46.7 -28.0
KCYN0091 KCYN0092	2/6/2024 11:27	57.4	43.6	0.0	0.0	127.7	123.9	-26.0	-36.4
KCYN0092 KCYN0093	2/6/2024 11:34	56.6	43.1	0.0	0.1	113.5	114.1	-26.1	-29.0
KCYN0093	_,0,202-11.04	55.5	70.1	0.0	offline for filling		117.1	20.1	20.0
KCYN0095					offline for filling	-			
KCYN0097	2/9/2024 8:52	57.5	42.5	0.0	0.0	119.2	119.2	-38.3	-38.3
KCYN0098					offline for filling				
KCYN0099	2/9/2024 8:01	53.1	41.7	0.0	5.2	127.8	127.9	-24.7	-25.3
KCYN0101	2/9/2024 9:08	52.8	23.1	3.9	20.2	54.7	54.2	-43.8	-44.9
KCYN0102	2/9/2024 7:44	37.3	33.7	0.0	29.0	96.1	93.6	-3.0	-2.3
KCYN0103	2/9/2024 7:53	39.6	33.2	0.4	26.8	116.6	115.6	-10.6	-8.9
KCYN0105	2/6/2024 10:09	57.4	42.5	0.0	0.1	60.4	60.2	-38.6	-37.9
KCYN0118	2/6/2024 10:56	56.1	42.7	0.1	1.1	109.9	109.7	-35.5	-33.9
KCYN0119	2/6/2024 11:08	55.7	43.0	0.0	1.3	129.1	129.5	-6.8	-9.2
KCYN0121	2/6/2024 10:45	56.3	43.7	0.0	0.0	84.1	84.0	-32.7	-32.2
KCYN0122	2/6/2024 11:03	56.7	42.9	0.0	0.4	102.5	102.9	-30.4	-30.3
KCYN0123	2/13/2024 12:37	57.3	41.9	0.0	0.8	88.6	88.6	-29.0	-29.0
KCYN0124	2/13/2024 12:32	55.9	40.0	0.0	4.1	110.2	110.1	-1.3	-1.3
KCYN0125	2/12/2024 9:28	56.2	43.3	0.0	0.5	129.8	129.9	-16.5	-16.9
KCYN0126	2/12/2024 9:41	54.2	42.3	0.0	3.5	127.2	127.2	-14.5	-14.4
KCYN0127	2/12/2024 10:57	49.7	40.3	0.0	10.0	127.5	127.3	-16.6	-18.2

Wellfield Monitoring Report - February 6, 9, 12, and 13, 2024

Device Name	Date Time	CH₄ % by Volume	CO ₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCYN0128	2/12/2024 8:27	54.1	43.3	0.0	2.6	129.2	127.1	-29.3	-29.3
KCYN0129	2/12/2024 7:36	58.9	41.0	0.1	0.0	81.1	81.2	-30.0	-29.5
KCYN0130	2/6/2024 10:25	53.0	37.1	0.0	9.9	109.9	110.5	-4.5	-4.7
KCYN0131	2/6/2024 10:19	56.8	43.1	0.1	0.0	74.4	74.5	-39.3	-39.0
KCYN0133	2/6/2024 11:59	58.1	41.9	0.0	0.0	78.4	78.3	-25.6	-25.1
KCYN0134	2/12/2024 8:55	57.4	42.6	0.0	0.0	61.9	62.3	-23.0	-22.5
KCYN0135	2/12/2024 8:59	56.7	43.3	0.0	0.0	125.8	125.7	-21.8	-21.7
KCYN0162	2/6/2024 12:19	46.3	34.6	3.4	15.7	58.3	58.0	-35.3	-34.3
KCYN0163	2/6/2024 12:27	46.2	36.9	0.3	16.6	78.4	74.3	-19.0	-12.3
KCYN0164	2/6/2024 12:15	56.6	41.4	0.3	1.7	56.8	58.0	-35.0	-35.0
KCYN0165	2/6/2024 12:11	53.1	40.1	0.0	6.8	118.4	118.6	-23.2	-23.6
KCYN0166	2/6/2024 10:34	49.9	40.4	0.0	9.7	128.3	128.3	-5.6	-5.6
KCYN0167	2/6/2024 10:38	57.1	42.1	0.0	0.8	116.8	116.8	-34.5	-34.5
KCYN0168	2/6/2024 10:41	54.1	41.3	0.0	4.6	120.7	121.4	-22.9	-23.7
KCYN0169	2/6/2024 9:15	52.3	41.6	0.0	6.1	109.1	109.1	-3.0	-3.2
KCYN0170	2/6/2024 9:20	53.7	43.0	0.0	3.3	104.3	104.3	-5.4	-5.4
KCYN0171	2/6/2024 9:23	55.2	44.8	0.0	0.0	112.2	112.1	-12.2	-12.2
KCYN0172	2/6/2024 9:29	53.7	43.0	0.0	3.3	115.5	115.5	-7.5	-7.4
KCYNLR04	2/12/2024 9:02	56.7	39.7	0.3	3.3	94.4	94.4	-19.8	-20.5
KCYNLR08	2/9/2024 7:16	54.6	37.1	1.8	6.5	68.4	69.3	-17.3	-17.9
KCYNLR11	2/6/2024 9:55	59.5	40.5	0.0	0.0	54.9	55.3	-0.8	-1.4
KCYNLR12	2/6/2024 9:08	49.6	39.3	0.4	10.7	84.1	84.1	-10.3	-11.3

^{*}The following wells are approved to operate at a temperature HOV of 145°F: 51, 57, 58, 65, 66, 71, 74, 78, 86, 91, 92, 95, 98, 99, 119, 127, 128, 133, and 135. Wells 56, 75, 76, 87, and 89 are approved to operate at a temperature HOV of 156°F.

As of February 29, 2024, there are 89 vertical wells, 0 horizontal collector, and 4 LCR at KCRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

HOV = Higher Operating Value

Wellfield Monitoring Report - March 5, 6, 11, 12, and 27, 2024

Device Name	Date Time	CH₄	CO ₂	O ₂	Balance	Initial	Adjusted Temperature	Initial	Adjusted
Device Name	Date Time	% by Volume	% by Volume	% by Volume	% by Volume	Temperature (degrees F)	Temperature (degrees F)	Pressure (in. w.c.)	Pressure (in. w.c.)
KCLC0108	3/6/2024 7:28	47.70	38.00	0.00	14.30	82.80	78.30	-39.47	-23.11
KCLC0109	3/6/2024 7:20	57.70	42.30	0.00	0.00	85.60	84.60	-36.90	-37.36
KCLC0110	3/6/2024 7:15	59.90	40.00	0.10	0.00	96.70	96.10	-40.71	-40.90
KCLC0111	3/6/2024 7:53	54.50	41.20	1.00	3.30	50.60	50.60	-40.85	-40.97
KCLC0112	3/6/2024 7:56	56.80	43.20	0.00	0.00	82.00	82.70	-39.40	-39.35
KCLC0139	3/12/2024 12:11	56.90	43.10	0.00	0.00	117.40	117.40	-24.36	-24.35
KCLC0140 KCLC0141	3/12/2024 11:56 3/12/2024 9:05	56.70 57.70	43.30 40.30	0.00	0.00 2.00	66.10 81.50	65.90 89.90	-27.93 -0.76	-28.06 -3.38
KCLC0141 KCLC0142	3/12/2024 9:00	58.70	41.30	0.00	0.00	87.40	84.20	-0.76	-0.22
KCLC0143	3/12/2024 9:36	58.40	41.60	0.00	0.00	94.50	98.40	-0.03	-0.43
KCLC0145	3/6/2024 9:32	49.60	36.60	2.80	11.00	57.20	57.50	-31.53	-33.35
KCLC0147	3/6/2024 9:40	58.80	41.20	0.00	0.00	57.90	58.00	-33.44	-33.44
KCLC0149	3/6/2024 9:28	56.50	43.50	0.00	0.00	75.50	76.40	-1.54	-5.55
KCLC0151	3/6/2024 9:07	57.60	42.40	0.00	0.00	117.80	117.80	-30.40	-30.32
KCLC0152	3/6/2024 8:59	48.40	39.40	0.00	12.20	112.40	112.10	-19.09	-18.22
KCLC0153	3/6/2024 9:24	56.80	43.20	0.00	0.00	94.10	95.90	-1.00	-2.10
KCLC0154 KCLC0155	3/6/2024 9:19 3/6/2024 9:15	57.90 57.80	42.10 42.20	0.00	0.00	80.90 112.30	92.90 112.60	-0.37 -14.01	-1.52 -16.95
KCLC0155 KCLC0156	3/6/2024 9:11	57.20	42.20	0.00	0.00	97.30	97.50	-34.07	-34.10
KCLC0157	3/12/2024 12:52	44.40	35.00	3.90	16.70	60.80	60.90	-28.92	-27.52
KCLC0158	3/12/2024 9:28	55.90	40.40	0.00	3.70	109.70	110.50	-9.81	-14.01
KCLC0159	3/6/2024 9:46	44.70	36.10	0.00	19.20	109.60	108.80	-23.77	-14.03
KCLC0160	3/6/2024 8:05	46.10	34.00	3.30	16.60	51.60	51.60	-39.81	-39.41
KCLC0161	3/6/2024 8:14	49.00	39.50	0.00	11.50	114.50	114.60	-21.94	-21.92
KCYN0014	3/6/2024 7:37	45.50	32.90	0.00	21.60	99.80	91.00	-7.60	-4.32
KCYN0027	3/12/2024 8:34	57.90	42.10	0.00	0.00	48.00	48.50	-46.92	-43.76
KCYN0048 KCYN0051	3/6/2024 8:38 3/12/2024 9:43	47.60 56.80	39.50 43.20	0.00	12.90 0.00	70.40 86.20	61.50 86.30	-2.07 -25.92	-1.98 -26.83
KCYN0054	3/12/2024 9:43	51.40	38.90	0.50	9.20	50.90	51.40	-0.04	-0.07
KCYN0056	3/12/2024 12:30	56.60	43.40	0.00	0.00	117.10	120.70	-28.28	-28.43
KCYN0057	3/12/2024 12:19	54.60	42.80	0.00	2.60	73.50	74.70	-29.75	-29.71
KCYN0058	3/12/2024 12:16	46.10	39.60	0.00	14.30	129.40	127.90	-10.82	-8.53
KCYN0062	3/5/2024 15:30	57.20	42.80	0.00	0.00	97.50	107.10	-20.83	-47.11
KCYN0063	3/5/2024 15:25	57.50	42.50	0.00	0.00	105.10	107.80	-36.90	-46.53
KCYN0065	3/12/2024 12:01	56.80	42.00	0.50	0.70	73.10	73.10	-28.00	-27.71
KCYN0066 KCYN0070	3/6/2024 7:01 3/12/2024 7:37	59.00 57.30	40.90 39.60	0.00	0.10 3.00	125.60 110.60	125.70 110.70	-47.77 -14.99	-47.69 -15.01
KCYN0070 KCYN0071	3/5/2024 15:53	57.80	42.20	0.10	0.00	128.00	128.00	-47.01	-48.47
KCYN0071	3/5/2024 15:34	48.90	39.10	0.00	12.00	110.10	109.10	-11.77	-9.16
KCYN0074	3/11/2024 8:25	57.60	42.40	0.00	0.00	127.80	128.40	-45.65	-44.78
KCYN0075	3/12/2024 11:47	56.70	43.20	0.10	0.00	114.30	114.90	-29.62	-29.66
KCYN0076	3/12/2024 8:06	57.30	42.70	0.00	0.00	127.50	127.00	-31.95	-31.95
KCYN0078	3/12/2024 8:45	56.80	43.20	0.00	0.00	129.80	129.30	-29.80	-29.81
KCYN0082	3/12/2024 9:24	56.30	43.70	0.00	0.00	110.50	111.40	-0.77	-0.72
KCYN0084	3/12/2024 9:40	53.00	40.00	0.00	7.00	121.00	121.60	-2.14	-2.81
KCYN0086	3/12/2024 13:04	55.30	41.70	0.00	3.00	130.30	130.20	-24.47	-24.31
KCYN0087 KCYN0088	3/12/2024 13:11 3/12/2024 7:50	53.00 60.40	40.90 39.60	0.00	6.10 0.00	129.40 97.60	129.60 99.40	-13.25 -1.37	-16.99 -3.69
KCYN0089	3/12/2024 7:30	57.20	42.80	0.00	0.00	129.40	129.80	-10.04	-13.93
KCYN0090	3/12/2024 7:43	59.00	40.80	0.20	0.00	98.90	99.60	-47.72	-48.31
KCYN0091	3/12/2024 8:12	57.50	42.50	0.00	0.00	126.20	126.30	-29.48	-31.51
KCYN0092	3/11/2024 8:28	58.20	41.80	0.00	0.00	124.00	124.00	-40.87	-40.88
KCYN0093	3/11/2024 8:22	59.20	40.80	0.00	0.00	108.20	108.10	-44.68	-47.04
KCYN0094	3/27/2024 10:04	59.40	40.50	0.00	0.10	111.10	111.20	-3.91	-3.90
KCYN0095	2/12/2024 7:52	F0.00	44.40	0.00	Offline fo		147.00	20.40	20.45
KCYN0097 KCYN0098	3/12/2024 7:56	58.60	41.40	0.00	0.00 Offline fo	117.90	117.30	-38.42	-38.45
KCYN0098 KCYN0099	3/5/2024 15:19	51.50	39.40	0.00	9.10	128.10	128.20	-30.47	-32.54
KCYN0101	3/5/2024 15:46	64.10	23.80	2.30	9.80	53.10	52.90	-47.88	-48.72
KCYN0102	3/5/2024 15:39	58.80	39.60	0.00	1.60	90.00	93.80	-1.10	-1.79
KCYN0103	3/5/2024 15:50	61.50	37.70	0.00	0.80	103.90	106.70	-0.04	-0.33
KCYN0105	3/6/2024 7:49	57.50	42.50	0.00	0.00	64.30	64.80	-40.74	-41.75
KCYN0118	3/6/2024 8:11	57.30	42.60	0.00	0.10	110.70	110.20	-34.98	-36.77
KCYN0119	3/6/2024 8:52	44.20	37.10	0.30	18.40	129.30	125.50	-13.64	-6.13
KCYN0121	3/6/2024 8:00	56.70	43.30	0.00	0.00	92.20	92.60	-36.62	-36.68
KCYN0122	3/6/2024 8:23	57.40	42.60	0.00	0.00	105.30	105.70	-35.03	-35.03
KCYN0123	3/12/2024 12:26	55.70	42.50	0.00	1.80	128.50	128.60	-20.72	-20.72
KCYN0124	3/12/2024 9:31	57.60 57.30	42.40 42.70	0.00	0.00	109.50	110.10	-1.28 -22.27	-1.89 -22.26
KCYN0125 KCYN0126	3/12/2024 12:04 3/12/2024 12:07	57.30 56.90	42.70	0.00	1.20	129.80 127.10	129.60 127.10	-22.27 -18.15	-22.26 -18.13
1.01110120	UI 1212024 12.01	50.50	40.30	0.00	10.20	127.10	127.10	-16.13	-16.13

Wellfield Monitoring Report - March 5, 6, 11, 12, and 27, 2024

Device Name	Date Time	CH₄	CO ₂	O ₂	Balance % by	Initial Temperature	Adjusted Temperature	Initial Pressure	Adjusted Pressure
Device Name	Date Tille	% by Volume	% by Volume	% by Volume	Volume	(degrees F)	(degrees F)	(in. w.c.)	(in. w.c.)
KCYN0128	3/12/2024 13:00	53.60	42.30	0.00	4.10	127.30	126.80	-28.84	-28.83
KCYN0129	3/6/2024 9:03	57.90	42.10	0.00	0.00	89.00	89.20	-37.00	-37.02
KCYN0130	3/6/2024 7:40	48.20	36.30	0.00	15.50	111.30	111.20	-6.21	-5.53
KCYN0131	3/6/2024 7:44	57.30	42.70	0.00	0.00	102.30	102.50	-41.14	-42.27
KCYN0133	3/12/2024 8:41	58.20	41.80	0.00	0.00	63.90	63.90	-30.42	-30.42
KCYN0134	3/12/2024 8:49	57.40	42.50	0.00	0.10	53.50	53.50	-29.86	-29.84
KCYN0135	3/12/2024 8:53	56.60	43.40	0.00	0.00	124.70	124.90	-27.28	-27.30
KCYN0162	3/6/2024 10:02	56.40	40.20	0.70	2.70	64.40	64.80	-38.22	-38.96
KCYN0163	3/6/2024 10:05	53.20	38.50	0.00	8.30	68.60	70.80	-5.92	-17.29
KCYN0164	3/6/2024 9:56	54.20	38.80	1.20	5.80	61.00	61.80	-39.65	-39.65
KCYN0165	3/6/2024 9:49	51.00	39.90	0.00	9.10	119.10	119.20	-28.46	-28.40
KCYN0166	3/6/2024 8:43	45.10	38.00	0.00	16.90	128.60	127.30	-5.91	-3.53
KCYN0167	3/6/2024 8:30	57.30	42.70	0.00	0.00	117.40	117.40	-36.36	-36.33
KCYN0168	3/6/2024 8:27	51.80	40.90	0.00	7.30	121.70	121.80	-30.30	-31.29
KCYN0169	3/5/2024 14:55	47.30	40.30	0.00	12.40	109.70	109.40	-3.55	-1.34
KCYN0169	3/22/2024 10:54	57.40	42.00	0.00	0.60	107.30	108.70	-0.05	-0.59
KCYN0170	3/5/2024 14:47	53.60	42.60	0.00	3.80	104.90	104.90	-5.82	-5.80
KCYN0170	3/22/2024 11:19	52.70	40.90	0.50	5.90	104.10	104.50	-1.08	-1.34
KCYN0171	3/5/2024 14:36	57.10	42.90	0.00	0.00	113.30	113.30	-12.87	-12.85
KCYN0171	3/22/2024 11:42	56.20	43.80	0.00	0.00	104.60	108.40	-1.98	-3.73
KCYN0172	3/5/2024 14:59	54.00	43.10	0.00	2.90	116.40	116.40	-7.67	-7.64
KCYN0172	3/22/2024 10:22	53.60	39.40	0.40	6.60	114.10	116.20	-1.47	-3.28
KCYNLR04	3/11/2024 7:44	60.00	36.70	0.60	2.70	96.10	96.10	-23.93	-24.07
KCYNLR08	3/5/2024 15:13	57.90	41.60	0.30	0.20	74.50	76.70	-39.23	-42.17
KCYNLR11	3/6/2024 7:24	59.30	40.70	0.00	0.00	52.90	52.80	-0.41	-1.41
KCYNLR12	3/5/2024 14:26	46.80	38.30	0.60	14.30	85.10	84.90	-14.17	-9.03

*The following wells are approved to operate at a temperature HOV of 145°F: 51, 57, 58, 65, 66, 71, 74, 78, 86, 91, 92, 95, 98, 99, 119, 127, 128, 133, and 135. Wells 56, 75, 76, 87, and 89 are approved to operate at a temperature HOV of 156°F:

As of March 31, 2024, there are 89 vertical wells, 0 horizontal collector, and 4 LCR at KCRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

HOV = Higher Operating Value

Wellfield Monitoring Report - April 9, 10, 11, 12, 15, 16, and 24, 2024

Device Name	Date Time	CH₄ % by Volume	CO ₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.
KCLC0108	4/12/2024 7:14	57.1	38.8	0.0	4.1	72.1	74.1	-20.2	-34.0
KCLC0109	4/12/2024 7:04	57.9	42.1	0.0	0.0	82.1	83.8	-38.9	-38.7
KCLC0110	4/12/2024 7:00	58.3	41.6	0.0	0.1	105.0	105.0	-41.8	-41.8
KCLC0111	4/12/2024 7:33	52.9	40.0	1.4	5.7	48.6	48.6	-41.2	-40.3
KCLC0112	4/12/2024 7:39	57.9	42.1	0.0	0.0	74.9	74.9	-38.6	-38.6
KCLC0139	4/15/2024 12:16	50.2	38.3	1.4	10.1	118.7	118.7	-24.2	-24.2
KCLC0140	4/15/2024 12:05	43.5	32.4	3.9	20.2	65.1	64.6	-27.0	-21.5
KCLC0141	4/12/2024 9:04	48.4	37.6	0.0	14.0	97.2	97.2	-4.1	-4.1
KCLC0142	4/12/2024 9:32	42.9	34.5	0.0	22.6	100.8	98.8	-0.7	-0.4
KCLC0142	4/24/2024 13:39	54.3	38.8	0.0	6.9	97.9	98.9	-0.1	-0.2
KCLC0143	4/15/2024 13:01	43.4	35.5	0.6	20.5	105.0	104.8	-1.3	-0.8
KCLC0145	4/15/2024 11:20	47.4	34.2	2.8	15.6	59.2	59.2	-42.0	-41.9
KCLC0147	4/15/2024 11:04	58.4	38.8	0.3	2.5	58.4	58.3	-38.4	-38.6
KCLC0149	4/15/2024 11:29	57.5	41.4	0.0	1.1	81.7	82.8	-1.5	-7.5
KCLC0151	4/15/2024 11:00	43.7	32.1	3.7	20.5	118.3	115.3	-28.3	-6.8
KCLC0151	4/24/2024 13:04	56.7	43.3	0.0	0.0	118.5	118.8	-0.4	-1.5
KCLC0152	4/15/2024 11:38	47.1	37.4	0.3	15.2	112.3	110.7	-17.4	-14.9
KCLC0153	4/15/2024 10:49	55.9	38.7	0.7	4.7	97.2	97.3	-1.9	-2.5
KCLC0154 KCLC0155	4/15/2024 11:25 4/15/2024 11:16	49.8	38.4	0.0	11.8	101.1	101.0	-2.8	-2.8
KCLC0155 KCLC0156	4/15/2024 11:16 4/15/2024 11:11	42.1 45.2	32.5 32.2	3.4	22.0 18.9	112.6 93.8	110.4	-18.2 -34.2	-6.9
KCLC0156 KCLC0157	4/15/2024 11:11 4/16/2024 10:00	45.2 50.1	36.2	2.5	18.9	70.9	91.0 70.2	-34.2 -25.1	-5.3 -23.7
KCLC0157 KCLC0158	4/16/2024 10:00	48.5	38.2	0.0	13.3	94.8	70.2 96.4	-25.1	-23.7 -9.5
KCLC0150	4/12/2024 9:20	53.7	39.3	0.0	6.1	106.2	108.2	-5.0	-8.8
KCLC0160	4/12/2024 8:03	47.3	37.9	0.7	14.1	54.0	54.2	-39.2	-38.3
KCLC0161	4/12/2024 8:19	47.0	39.4	0.0	13.6	113.9	114.0	-20.8	-22.1
KCYN0014	4/12/2024 7:19	59.7	33.3	0.0	7.0	87.5	90.8	-1.5	-2.2
KCYN0027	4/10/2024 10:51	47.8	37.2	2.1	12.9	83.6	83.7	-45.1	-45.1
KCYN0048	4/12/2024 12:16	48.3	39.4	0.0	12.3	121.8	121.1	-2.0	-1.3
KCYN0051	4/15/2024 12:57	56.9	41.1	0.0	2.0	86.7	86.7	-22.2	-22.0
KCYN0054	4/12/2024 9:16	17.6	16.7	11.2	54.5	77.5	77.6	-8.2	-7.7
KCYN0054	4/12/2024 9:20	16.9	15.8	12.2	55.1	79.6	80.0	-4.3	-4.1
KCYN0054	4/22/2024 7:02	14.9	13.3	13.2	58.6	75.3	75.2	-4.3	-4.3
KCYN0056	4/15/2024 12:44	50.3	37.8	1.7	10.2	119.9	119.7	-26.6	-26.5
KCYN0057	4/16/2024 9:42	48.3	37.9	2.1	11.7	71.5	65.7	-27.9	-12.5
KCYN0058	4/15/2024 12:31	48.9	38.3	0.0	12.8	72.9	66.1	-5.4	-5.4
KCYN0062	4/10/2024 8:17	54.9	42.4	0.0	2.7	104.9	105.2	-47.2	-47.5
KCYN0063	4/10/2024 8:24	16.0	16.1	9.9	58.0	70.1	69.4	-49.9	-50.3
KCYN0063	4/10/2024 8:28	15.9	16.0	9.7	58.4	68.9	69.0	-22.4	-50.0
KCYN0063	4/16/2024 12:34	19.2	15.7	12.0	53.1	71.8	71.5	-49.9	-49.9
KCYN0065	4/15/2024 11:59	54.7	39.7	0.3	5.3	69.0	68.9	-26.9	-26.9
KCYN0066	4/12/2024 6:46	60.1	39.5	0.4	0.0	125.5	125.6	-47.8	-47.8
KCYN0070	4/10/2024 8:55	50.3	39.7	0.0	10.0	111.1	111.6	-16.5	-13.6
KCYN0071	4/10/2024 9:09	52.9	40.5	0.0	6.6	127.1	127.2	-44.7	-45.3
KCYN0072	4/10/2024 8:32	55.7	39.0	0.2	5.1	108.6	111.5	-7.1	-10.2
KCYN0074	4/10/2024 10:10	54.9 56.0	42.3	0.0	2.8	127.4	126.8	-46.1 26.0	-46.2
KCYN0075 KCYN0076	4/15/2024 12:25 4/12/2024 8:40	56.0 54.8	41.5 42.5	0.0	2.5	118.0 127.2	117.9 127.1	-26.0 -28.3	-25.8 -28.4
KCYN0078	4/16/2024 9:19	58.6	42.5	0.0	0.0	107.4	107.1	-26.3 -28.7	-28.7
KCYN0078 KCYN0082	4/12/2024 9:19	60.6	38.8	0.0	0.0	114.4	114.9	-3.4	-4.5
KCYN0082	4/24/2024 13:33	56.7	40.8	0.0	2.5	113.0	113.1	-4.5	-4.5
KCYN0084	4/15/2024 13:07	49.8	37.4	0.0	12.8	119.7	115.3	-3.8	-2.4
KCYN0086	4/16/2024 10:11	54.6	41.8	0.0	3.6	126.8	127.0	-22.1	-22.1
KCYN0087	4/15/2024 11:50	49.2	39.7	0.0	11.1	128.9	125.6	-18.4	-18.9
KCYN0088	4/10/2024 9:04	53.6	39.1	0.0	7.3	108.7	108.9	-16.2	-17.5
KCYN0089	4/12/2024 9:45	56.0	40.7	0.0	3.3	128.5	128.4	-14.2	-14.3
KCYN0090	4/10/2024 8:57	55.5	40.8	0.0	3.7	101.0	102.9	-46.8	-46.9
KCYN0091	4/10/2024 10:01	55.4	41.8	0.0	2.8	129.0	127.8	-33.8	-34.8
KCYN0092	4/10/2024 10:18	55.7	41.6	0.0	2.7	122.4	124.6	-40.5	-41.8
KCYN0093	4/10/2024 10:27	55.5	41.8	0.0	2.7	111.6	111.6	-45.8	-45.7
KCYN0094	4/25/2024 9:36	58.8	41.1	0.1	0.0	126.2	126.1	-45.3	-45.3
KCYN0095					Offline fo	or filling			
KCYN0097	4/10/2024 9:35	55.7	41.1	0.0	3.2	119.3	119.3	-38.5	-39.2
KCYN0098	<u> </u>				Offline fo	or filling			
KCYN0099	4/10/2024 8:42	47.5	39.9	0.0	12.6	128.1	128.1	-33.3	-29.9
KCYN0101	4/10/2024 9:27	48.3	27.8	3.6	20.3	68.9	68.8	-45.9	-40.6
KCYN0102	4/10/2024 9:21	48.2	38.8	0.0	13.0	99.6	101.1	-2.5	-2.4
	4/40/0004 0 45	EAE	40.5	0.0	8.0	115.3	115.9	-4.6	-5.2
KCYN0103	4/10/2024 9:15	51.5							
KCYN0103 KCYN0105 KCYN0118	4/10/2024 9:15 4/12/2024 6:56 4/12/2024 8:14	51.5 58.4 55.8	40.2	0.3	1.1	65.0 114.1	65.3 113.4	-41.1 -38.0	-41.7 -33.6

Wellfield Monitoring Report - April 9, 10, 11, 12, 15, 16, and 24, 2024

Device Name	Date Time	CH₄ % by Volume	CO ₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCYN0121	4/12/2024 8:07	56.5	42.9	0.0	0.6	93.8	94.7	-37.3	-37.3
KCYN0122	4/12/2024 8:26	56.9	43.1	0.0	0.0	98.8	105.5	-35.3	-34.9
KCYN0123	4/16/2024 9:30	55.4	41.3	0.0	3.3	110.0	110.1	-19.9	-19.9
KCYN0124	4/15/2024 12:51	54.0	40.0	0.0	6.0	111.1	111.2	-3.5	-5.0
KCYN0125	4/15/2024 12:11	45.7	33.6	2.7	18.0	129.9	128.5	-22.3	-19.6
KCYN0126	4/15/2024 12:20	53.9	39.8	0.0	6.3	124.0	124.1	-18.3	-18.2
KCYN0127	4/16/2024 9:47	53.2	38.3	0.0	8.5	122.5	122.8	-8.4	-11.4
KCYN0128	4/16/2024 10:07	53.7	40.7	0.1	5.5	126.0	126.1	-24.9	-24.9
KCYN0129	4/15/2024 11:42	55.6	39.1	0.0	5.3	90.9	89.2	-40.4	-42.1
KCYN0130	4/12/2024 7:25	58.6	36.2	0.0	5.2	109.3	109.8	-3.4	-3.7
KCYN0131	4/12/2024 7:30	58.3	41.7	0.0	0.0	106.8	107.1	-42.3	-42.3
KCYN0133	4/10/2024 10:31	54.7	41.5	0.0	3.8	93.9	94.0	-28.8	-28.0
KCYN0134	4/10/2024 10:43	55.1	42.2	0.0	2.7	79.3	80.5	-27.6	-27.9
KCYN0135	4/10/2024 10:47	53.4	43.3	0.0	3.3	126.9	126.9	-25.1	-25.1
KCYN0162	4/12/2024 7:56	47.3	34.0	3.0	15.7	53.5	53.6	-39.6	-39.6
KCYN0163	4/12/2024 7:55	50.4	34.9	3.3	11.4	56.1	56.0	-38.8	-39.7
KCYN0164	4/12/2024 10:16	54.1	39.2	0.9	5.8	61.8	63.5	-40.6	-39.8
KCYN0165	4/12/2024 10:10	47.2	37.0	0.0	15.8	118.8	118.5	-27.8	-21.1
KCYN0166	4/12/2024 12:12	53.8	39.9	0.6	5.7	126.4	127.2	-2.4	-3.0
KCYN0167	4/12/2024 12:08	53.0	38.0	1.2	7.8	117.7	117.6	-37.0	-36.6
KCYN0168	4/12/2024 12:02	48.2	38.2	0.0	13.6	121.9	119.5	-34.7	-30.4
KCYN0169	4/10/2024 12:24	54.2	42.5	0.0	3.3	111.3	111.5	-1.2	-1.8
KCYN0169	4/11/2024 13:22	55.6	42.5	0.0	1.9	111.4	111.4	-2.0	-2.0
KCYN0169	4/24/2024 12:43	47.2	39.6	0.0	13.2	111.7	111.7	-2.5	-2.5
KCYN0170	4/10/2024 12:32	52.9	43.4	0.0	3.7	106.9	107.0	-2.8	-3.6
KCYN0170	4/11/2024 13:26	54.5	42.5	0.0	3.0	107.1	107.1	-4.1	-4.1
KCYN0171	4/10/2024 12:37	53.6	43.4	0.0	3.0	115.4	115.6	-8.3	-10.1
KCYN0171	4/11/2024 13:33	55.7	43.7	0.0	0.6	116.0	116.1	-12.9	-13.2
KCYN0172	4/10/2024 12:16	55.2	40.6	0.2	4.0	118.3	118.5	-4.2	-5.6
KCYN0172	4/11/2024 13:18	56.2	42.4	0.3	1.1	118.4	118.5	-6.0	-6.2
KCYNLR04	4/12/2024 8:47	55.4	38.8	0.4	5.4	97.7	97.6	-23.0	-23.9
KCYNLR08	4/9/2024 8:23	54.9	35.9	1.8	7.4	75.4	75.8	-49.9	-51.1
KCYNLR11	4/12/2024 12:37	34.1	33.2	3.1	29.6	76.9	83.5	-0.6	-0.5
KCYNLR12	4/9/2024 11:09	55.6	41.1	0.1	3.2	83.0	83.1	-2.3	-3.9

The following wells are approved to operate at a temperature HOV of 145°F: 51, 57, 58, 65, 66, 71, 74, 78, 86, 91, 92, 95, 98, 99, 119, 127, 128, 133, and 135. Wells 56, 75, 76, 87, and 89 are approved to operate at a temperature HOV of 156°F.

As of April 30, 2024, there are 89 vertical wells, 0 horizontal collector, and 4 LCR at KCRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

HOV = Higher Operating Value

Wellfield Monitoring Report - May 6, 7, 8, 9, 10, and 14, 2024

Device Name	Date Time	CH₄ % by Volume	CO ₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCLC0108	5/9/2024 6:40	48.3	37.6	0.0	14.1	82.3	82.3	-38.6	-38.6
KCLC0109	5/9/2024 6:33	58.8	40.9	0.0	0.3	83.7	84.2	-40.9	-41.9
KCLC0110	5/9/2024 6:30	58.1	41.8	0.0	0.1	100.3	100.3	-44.4	-44.1
KCLC0111	5/8/2024 9:24	52.2	40.2	1.1	6.5	65.0	65.0	-44.5	-44.1
KCLC0112 KCLC0139	5/8/2024 9:18 5/8/2024 9:27	55.5 53.6	41.9 42.2	0.0	2.6 4.2	82.4 117.7	82.5 117.9	-43.0 -22.1	-43.0 -22.1
KCLC0139 KCLC0140	5/8/2024 9:27	51.1	42.2	0.0	7.9	70.3	72.5	-12.2	-25.3
KCLC0140 KCLC0141	5/8/2024 9:10	51.0	38.8	0.0	10.2	96.3	96.8	-3.5	-8.1
KCLC0142	5/8/2024 9:16	37.1	34.0	0.0	28.9	101.4	101.4	-0.7	-0.7
KCLC0143	5/8/2024 8:03	47.9	38.6	0.0	13.5	102.2	102.2	-1.1	-1.0
KCLC0145	5/9/2024 7:17	57.5	41.7	0.0	0.8	60.7	60.3	-36.1	-37.1
KCLC0147	5/9/2024 7:28	49.8	34.9	2.9	12.4	59.8	59.9	-39.2	-38.7
KCLC0149	5/9/2024 7:11	57.6	42.4	0.0	0.0	95.6	96.0	-7.0	-9.8
KCLC0151	5/9/2024 7:31	57.2	42.2	0.0	0.6	119.0	119.1	-5.3	-7.1
KCLC0152	5/9/2024 7:40	57.3	42.1	0.0	0.6	109.7	110.9	-6.9	-8.7
KCLC0153	5/9/2024 7:04	57.7	41.0	0.0	1.3	98.0	98.2	-4.3	-5.0
KCLC0154 KCLC0155	5/9/2024 7:08 5/9/2024 7:15	56.9 57.9	41.1 42.1	0.0	2.0 0.0	101.1 109.0	101.6 111.1	-2.6 -1.8	-3.8 -4.2
KCLC0155 KCLC0156	5/9/2024 7:13	58.2	41.4	0.0	0.4	84.1	88.7	-4.5	-15.4
KCLC0157	5/9/2024 7:49	28.2	22.8	10.2	38.8	56.6	56.6	-20.4	-13.4
KCLC0157	5/9/2024 8:01	21.0	16.9	12.9	49.2	61.8	61.8	-23.0	-21.2
KCLC0157	5/9/2024 10:14	45.0	33.4	3.9	17.7	80.7	80.9	-19.6	-20.5
KCLC0158	5/8/2024 8:44	51.1	40.2	0.0	8.7	109.7	110.0	-8.0	-11.1
KCLC0159	5/8/2024 8:35	46.7	36.8	0.0	16.5	108.2	105.0	-1.2	0.0
KCLC0160	5/8/2024 8:13	55.0	41.1	0.7	3.2	65.0	65.1	-42.6	-42.6
KCLC0161	5/8/2024 8:08	48.9	39.5	0.0	11.6	113.2	113.5	-21.7	-18.5
KCYN0014	5/9/2024 6:44	52.0	32.8	0.0	15.2	99.5	98.3	-4.7	-4.4
KCYN0027	5/9/2024 11:05	53.4	39.3	0.9	6.4	84.6	85.2	-44.0	-45.5
KCYN0048	5/8/2024 9:05	51.3	40.2	0.0	8.5	87.5	86.4	-1.0	-1.1
KCYN0051	5/8/2024 7:53	55.8	41.6	0.0	2.6	85.1	85.1	-25.0	-25.0
KCYN0054 KCYN0056	5/8/2024 9:02 5/8/2024 8:08	13.8 54.7	12.1 42.9	13.7 0.0	60.4 2.4	78.7 122.3	78.9 122.1	-6.2 -26.1	-6.2 -26.0
KCYN0057	5/8/2024 8:25	53.5	41.6	0.0	4.7	59.2	66.3	-6.3	-21.3
KCYN0058	5/8/2024 8:29	49.6	40.3	0.0	10.1	129.3	129.9	-4.1	-4.7
KCYN0062	5/7/2024 7:16	57.3	42.3	0.4	0.0	99.5	103.8	-47.7	-48.5
KCYN0063	5/7/2024 7:23	7.0	6.2	17.2	69.6	66.5	65.8	-50.7	-50.7
KCYN0065	5/8/2024 9:20	52.6	39.4	0.6	7.4	72.1	72.2	-25.2	-25.2
KCYN0066	5/7/2024 6:57	58.4	41.5	0.0	0.1	123.8	123.7	-48.6	-48.6
KCYN0070	5/7/2024 8:00	59.0	41.0	0.0	0.0	108.9	109.1	-8.9	-10.7
KCYN0071	5/7/2024 7:40	57.6	42.4	0.0	0.0	126.8	126.8	-47.6	-46.5
KCYN0072	5/7/2024 7:12	47.3	38.3	0.0	14.4	108.3	107.6	-15.5	-13.2
KCYN0074	5/6/2024 10:17	55.2	41.0	0.0	3.8	124.8	121.4	-43.6	-42.5
KCYN0075 KCYN0076	5/8/2024 8:34 5/8/2024 7:50	54.8 57.3	41.8 42.6	0.0	3.4 0.0	103.8 96.7	105.2 93.9	-23.0 -28.4	-23.1 -28.4
KCYN0078	5/9/2024 7:29	57.0	42.6	0.0	0.4	129.8	129.4	-26.0	-26.0
KCYN0082	5/8/2024 8:48	55.1	41.9	0.0	3.0	113.1	114.3	-6.5	-7.8
KCYN0084	5/8/2024 7:49	56.0	38.5	0.1	5.4	118.4	119.5	-1.9	-2.6
KCYN0086	5/9/2024 7:57	55.1	43.0	0.0	1.9	129.2	129.5	-18.4	-18.5
KCYN0087	5/9/2024 7:52	52.4	41.1	0.0	6.5	127.8	129.7	-18.3	-23.0
KCYN0088	5/7/2024 7:48	56.7	38.9	0.0	4.4	107.6	107.8	-21.6	-24.3
KCYN0089	5/8/2024 7:21	58.3	41.4	0.4	-0.1	124.6	127.3	-15.6	-16.3
KCYN0089	5/9/2024 7:18	56.6	42.0	0.0	1.4	129.4	129.1	-19.0	-19.8
KCYN0090	5/7/2024 7:54	59.4	40.6	0.0	0.0	101.4	101.4	-47.8	-47.8
KCYN0091 KCYN0092	5/8/2024 7:27 5/6/2024 10:19	55.5 57.7	39.8 40.5	0.2	4.5 1.8	127.3 122.2	128.4 122.3	-37.2 -43.5	-36.8 -43.6
KCYN0092 KCYN0093	5/6/2024 10:19	57.7	40.5	0.0	0.0	122.2	122.3	-43.5 -46.1	-43.6 -45.4
KCYN0093	5/7/2024 7:53	59.2	39.3	1.6	-0.1	117.1	117.4	-44.9	-40.1
KCYN0095		1 00.2	55.5		Offline for filling				
KCYN0097	5/7/2024 7:55	57.9	42.0	0.0	0.1	117.6	117.6	-40.0	-40.0
KCYN0098	5/14/2024 12:11	57.1	42.8	0.0	0.1	128.8	128.8	-34.4	-34.4
KCYN0099	5/7/2024 7:33	54.1	41.7	0.0	4.2	124.4	125.3	-15.2	-17.7
KCYN0101	5/7/2024 7:42	39.5	34.9	0.3	25.3	53.9	53.7	-47.0	-46.9
KCYN0102	5/7/2024 7:38	51.6	38.5	0.0	9.9	97.2	98.7	-2.1	-2.7
KCYN0103	5/7/2024 7:44	55.2	39.6	0.0	5.2	115.7	115.8	-7.3	-7.3
KCYN0105	5/8/2024 9:27	55.0	40.7	0.3	4.0	72.3	72.5	-44.3	-44.3
KCYN0118	5/8/2024 8:10	55.3	41.7	0.0	3.0	113.0	112.8	-40.0	-35.6
KCYN0119 KCYN0121	5/8/2024 7:56 5/8/2024 8:42	56.9 55.6	43.1 41.8	0.0	0.0 2.1	128.9	129.3 94.4	-1.2 -42.0	-1.3 -/1.5
KCYN0121 KCYN0122	5/8/2024 8:42	55.6	41.8 42.8	0.5	0.0	94.0 106.7	94.4 106.8	-42.0 -39.8	-41.5 -39.1
KCYN0122 KCYN0123	5/8/2024 8:03	56.9	42.8	0.3	4.8	106.7	106.8	-39.8	-39.1
KCYN0123 KCYN0124	5/8/2024 7:58	46.1	38.3	0.2	15.6	110.1	110.1	-7.3	-6.1
KCYN0124 KCYN0125	5/8/2024 9:06	55.6	40.7	0.0	3.7	127.4	127.3	-9.2	-9.3
KCYN0126	5/8/2024 8:39	47.4	38.8	1.7	12.1	126.2	126.2	-16.7	-15.4
KCYN0127	5/8/2024 8:19	52.3	41.3	0.0	6.4	86.7	80.3	-13.7	-15.8
KCYN0128	5/9/2024 7:53	55.0	43.5	0.0	1.5	127.9	127.2	-22.9	-22.9

Wellfield Monitoring Report - May 6, 7, 8, 9, 10, and 14, 2024

Device Name	Date Time	CH₄ % by Volume	CO ₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCYN0129	5/9/2024 7:46	56.7	41.4	0.0	1.9	92.2	92.4	-38.6	-37.6
KCYN0130	5/8/2024 9:38	50.2	36.2	0.0	13.6	110.9	110.9	-5.5	-5.4
KCYN0131	5/8/2024 9:30	55.4	41.4	0.6	2.6	110.2	110.7	-44.1	-44.5
KCYN0133	5/9/2024 7:22	54.4	41.0	0.6	4.0	80.9	81.5	-25.7	-26.2
KCYN0134	5/9/2024 7:32	54.2	39.7	0.6	5.5	65.7	65.9	-26.1	-26.5
KCYN0135	5/9/2024 7:36	55.6	44.0	0.0	0.4	124.5	124.4	-24.5	-24.5
KCYN0162	5/8/2024 8:17	54.5	39.5	1.0	5.0	68.2	68.3	-42.2	-43.3
KCYN0163	5/8/2024 8:21	54.0	37.4	1.4	7.2	66.8	66.9	-3.1	-3.1
KCYN0164	5/8/2024 8:26	55.3	39.4	1.0	4.3	65.6	65.9	-43.5	-44.7
KCYN0165	5/8/2024 8:29	56.9	41.0	0.0	2.1	119.4	119.3	-13.6	-14.9
KCYN0166	5/8/2024 9:09	52.2	40.6	0.0	7.2	127.5	127.6	-4.1	-4.7
KCYN0167	5/8/2024 8:56	57.4	40.0	0.2	2.4	117.6	117.6	-39.2	-39.7
KCYN0168	5/8/2024 8:46	53.9	41.5	0.1	4.5	116.2	119.8	-10.6	-11.2
KCYN0169	5/6/2024 13:16	45.4	38.0	0.0	16.6	111.7	111.5	-2.7	-1.6
KCYN0170	5/6/2024 13:35	50.8	40.7	0.0	8.5	107.1	107.1	-4.6	-4.8
KCYN0170	5/10/2024 12:33	51.3	42.2	0.0	6.5	107.7	107.6	-5.3	-5.8
KCYN0171	5/6/2024 13:41	55.7	42.9	0.0	1.4	116.4	116.5	-14.9	-15.4
KCYN0171	5/10/2024 12:37	53.6	42.8	0.0	3.6	116.9	116.9	-16.4	-17.1
KCYN0172	5/6/2024 13:09	53.4	41.5	0.0	5.1	118.5	118.5	-7.8	-8.0
KCYN0172	5/10/2024 12:27	51.5	41.7	0.0	6.8	119.0	118.9	-9.1	-9.7
KCYNLR04	5/9/2024 7:40	53.5	38.1	0.5	7.9	95.6	95.6	-24.3	-25.6
KCYNLR08	5/7/2024 7:04	60.1	39.6	0.2	0.1	73.4	73.4	-51.8	-52.0
KCYNLR11	5/9/2024 12:02	46.5	30.9	3.8	18.8	79.2	79.6	-1.6	-0.3
KCYNLR12	5/6/2024 13:02	49.3	38.8	0.4	11.5	85.0	85.1	-5.7	-5.1
KCYNLR12	5/10/2024 12:21	50.8	39.9	0.5	8.8	86.8	86.2	-3.9	-5.0

The following wells are approved to operate at a temperature HOV of 145°F: 51, 57, 58, 65, 66, 71, 74, 78, 86, 91, 92, 95, 98, 99, 119, 127, 128, 133, and 135. Wells 56, 75, 76, 87, and 89 are approved to operate at a temperature HOV of 156°F.

As of May 31, 2024, there are 89 vertical wells, 0 horizontal collector, and 4 LCR at KCRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

HOV = Higher Operating Value

		СН₄	co,	02	Balance	Initial	Adjusted	Initial	Adjusted
Device Name	Date Time	% by	% by	% by	% by	Temperature	Temperature	Pressure	Pressure
		Volume	Volume	Volume	Volume	(degrees F)	(degrees F)	(in. w.c.)	(in. w.c.
KCLC0108	6/5/2024 6:04	47.8	36.8	0.0	15.4	93.5	93.4	-37.8	-35.6
KCLC0109	6/5/2024 5:53	59.0	40.7	0.0	0.3	92.1	92.1	-39.9	-40.0
KCLC0110	6/5/2024 5:50	58.8	41.2	0.0	0.0	107.4	107.4	-42.2	-42.7
KCLC0111	6/5/2024 6:25	52.8	40.2	1.1	5.9	64.5	64.5	-43.1	-43.1
KCLC0112	6/5/2024 6:33	57.4	42.4	0.0	0.2	87.3	87.4	-39.6	-38.9
KCLC0139	6/4/2024 7:35	57.2	42.6	0.0	0.2	116.1	116.9	-21.0	-21.5
KCLC0140	6/4/2024 7:43	56.5	43.4	0.0	0.1	65.9	67.8	-22.5	-24.3
KCLC0141	6/4/2024 6:28	43.2	33.3	0.0	23.5	98.6	98.7	-8.8	-8.8
KCLC0142	6/4/2024 6:31	28.5	28.6	0.0	42.9	100.5	100.5	-0.9	-0.3
KCLC0143	6/4/2024 7:01	52.1	38.5	0.0	9.4	105.0	105.4	-1.0	-1.5
KCLC0145	6/6/2024 10:02	55.0 55.9	42.3	0.0	2.7	82.2	82.1	-36.2	-36.1
KCLC0147 KCLC0149	6/6/2024 10:24 6/6/2024 10:51	51.4	42.1 38.1	0.0	10.5	78.1 111.7	78.2 111.7	-36.2 -8.9	-35.8 -8.8
KCLC0149 KCLC0151	6/6/2024 10:31	54.9	41.3	0.0	3.8	120.6	120.6	-9.6	-12.1
KCLC0151 KCLC0152	6/6/2024 10:22	53.7	40.0	0.0	6.3	113.5	113.7	-12.8	-13.8
KCLC0152 KCLC0153	6/6/2024 9:52	53.8	40.6	0.0	5.6	99.4	99.5	-5.0	-6.0
KCLC0153 KCLC0154	6/6/2024 9:56	46.6	39.1	0.0	14.3	103.2	102.6	-4.5	-0.0
KCLC0154 KCLC0155	6/6/2024 10:00	55.8	41.9	0.0	2.3	112.6	113.2	-4.9	-Z.1 -7.2
KCLC0156	6/6/2024 10:06	56.4	41.1	0.0	2.5	95.4	95.9	-17.1	-23.3
KCLC0156 KCLC0157	6/6/2024 7:37	18.5	15.3	13.3	52.9	61.2	61.2	-17.1	-23.3
KCLC0157 KCLC0157	6/6/2024 7:40	38.2	28.0	6.5	27.3	62.9	62.9	-24.4	-24.4
KCLC0157 KCLC0158	6/4/2024 6:50	50.3	39.7	0.0	10.0	113.3	113.2	-9.6	-9.6
KCLC0150	6/5/2024 11:42	54.3	39.6	0.0	6.1	108.2	108.5	-0.9	-1.8
KCLC0160	6/5/2024 6:45	51.6	36.2	1.7	10.5	66.2	66.2	-37.9	-39.7
KCLC0161	6/5/2024 11:28	46.5	38.9	0.0	14.6	116.8	116.4	-16.1	-14.5
KCYN0014	6/5/2024 6:08	53.1	32.8	0.0	14.1	99.7	99.7	-3.0	-3.0
KCYN0027	6/5/2024 10:29	57.7	38.2	0.0	4.1	98.1	98.6	-46.1	-46.1
KCYN0048	6/5/2024 12:02	43.4	37.5	0.0	19.1	125.8	125.1	-2.1	-1.8
KCYN0051	6/4/2024 6:58	60.5	38.1	0.4	1.0	91.0	91.0	-23.9	-24.2
KCYN0054	6/4/2024 6:40	9.8	14.5	14.1	61.6	71.9	71.9	-12.3	-12.3
KCYN0056	6/4/2024 7:28	55.7	43.1	0.0	1.2	123.2	123.2	-23.8	-23.7
KCYN0057	6/4/2024 7:16	56.4	42.3	0.1	1.2	74.2	82.3	-22.6	-24.0
KCYN0058	6/4/2024 7:20	51.7	40.2	0.0	8.1	128.6	128.7	-6.1	-6.0
KCYN0062	6/6/2024 9:15	54.3	40.9	0.0	4.8	110.1	110.4	-47.7	-47.7
KCYN0063	6/6/2024 9:19	0.8	9.2	17.1	72.9	70.3	70.3	-50.4	-50.4
KCYN0065	6/4/2024 7:46	52.6	40.4	0.5	6.5	67.2	67.5	-22.9	-22.9
KCYN0066	6/3/2024 8:21	52.5	40.4	0.0	7.1	124.0	123.9	-47.8	-47.8
KCYN0070	6/6/2024 8:55	53.4	39.3	0.5	6.8	111.4	111.3	-11.5	-13.6
KCYN0071	6/6/2024 8:26	51.4	42.2	0.0	6.4	127.8	127.7	-47.1	-47.1
KCYN0072	6/6/2024 9:23	58.1	39.1	0.0	2.8	107.4	106.1	-4.1	-6.6
KCYN0074	6/5/2024 9:51	59.4	37.5	0.4	2.7	103.9	104.1	-44.7	-46.2
KCYN0075	6/4/2024 7:32	56.6	43.0	0.0	0.4	101.0	101.4	-22.6	-22.6
KCYN0076	6/5/2024 11:01	54.5	42.4	0.0	3.1	127.3	127.2	-26.9	-27.0
KCYN0078	6/3/2024 8:57	52.4	39.3	0.2	8.1	129.3	129.4	-22.3	-22.0
KCYN0078	6/6/2024 8:06	49.3	38.5	0.0	12.2	127.8	126.8	-19.9	-18.7
KCYN0082	6/4/2024 6:36	55.8	40.7	0.0	3.5	116.9	116.9	-9.9	-10.6
KCYN0084	6/4/2024 7:05	53.4	40.2	0.0	6.4	122.8	123.2	-2.9	-4.1
KCYN0086	6/6/2024 7:47	55.5	42.2	0.0	2.3	126.3	126.5	-24.2	-24.2
KCYN0087	6/10/2024 10:03	47.5	40.5	0.0	12.0	128.5	127.8	-16.6	-16.6
KCYN0088	6/5/2024 10:37	52.8	38.7	0.0	8.5	109.9	109.9	-29.2	-29.6
KCYN0089	6/5/2024 11:06	52.9	42.1	0.0	5.0	129.9	130.4	-20.4	-23.2
KCYN0090	6/6/2024 8:49	56.3	42.4	0.0	1.3	104.2	104.1	-47.4	-47.3
KCYN0091	6/5/2024 10:57	56.0	39.3	0.0	4.7	128.7	128.2	-37.8	-38.2
KCYN0092	6/10/2024 11:43	60.6	39.4	0.0	0.0	116.9	116.9	-14.3	-14.3
KCYN0093	6/5/2024 10:54	56.4	42.0	0.0	1.6	106.0	105.9	-46.0	-46.0
KCYN0094	6/5/2024 10:40	55.6	39.9	0.0	4.5	126.0	126.0	-38.9	-38.3
KCYN0095	6/14/2024 12:34	59.4	39.3	0.0	1.3	108.7	108.7	-32.5	-32.5
KCYN0097	6/6/2024 8:46	56.8	41.8	0.0	1.4	119.0	119.0	-38.6	-38.6
KCYN0098	6/5/2024 10:44	56.4	41.7	0.0	1.9	129.9	129.9	-35.2	-35.2
KCYN0099	6/6/2024 9:00	49.1	40.1	0.0	10.8	121.0	120.0	-19.3	-19.3
KCYN0101	6/6/2024 9:06	36.7	33.7	1.1	28.5	100.8	100.4	-1.5	-1.4
KCYN0102	6/6/2024 9:04	39.1	35.0	0.0	25.9	102.7	102.9	-3.1	-2.5
	6/6/2024 8:22	45.0	37.6	0.0	17.4	118.4	117.7	-11.1	-9.5
KCYN0103	6/5/2024 6:31	55.9	40.7	0.4	3.0	75.1	75.3	-43.0	-43.0
KCYN0105	0/5/000 : : : 05	52.4	43.3	0.0	4.3	118.2	117.9	-38.2	-37.8
KCYN0105 KCYN0118	6/5/2024 11:25	1	00.				120 2	2 6	-3.8
KCYN0105 KCYN0118 KCYN0119	6/5/2024 11:17	55.9	39.4	0.0	4.7	130.2	130.3	-3.6	
KCYN0105 KCYN0118 KCYN0119 KCYN0121	6/5/2024 11:17 6/5/2024 11:47	55.9 54.6	39.8	0.0	5.6	105.2	105.2	-38.1	-38.0
KCYN0105 KCYN0118 KCYN0119 KCYN0121 KCYN0122	6/5/2024 11:17 6/5/2024 11:47 6/5/2024 11:20	55.9 54.6 53.3	39.8 44.5	0.0	5.6 2.2	105.2 110.8	105.2 110.7	-38.1 -37.2	-38.0 -37.3
KCYN0105 KCYN0118 KCYN0119 KCYN0121	6/5/2024 11:17 6/5/2024 11:47	55.9 54.6	39.8	0.0	5.6	105.2	105.2	-38.1	-38.0

Wellfield Monitoring Report - June 3, 4, 5, 6, 10, and 14, 2024

Device Name	Date Time	CH ₄ % by Volume	CO ₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCYN0126	6/4/2024 6:45	59.7	37.7	0.4	2.2	127.5	127.5	-16.2	-15.6
KCYN0127	6/4/2024 7:12	53.3	40.7	0.0	6.0	118.3	122.2	-16.0	-16.0
KCYN0128	6/6/2024 7:43	55.7	41.4	0.0	2.9	129.8	129.5	-25.5	-25.5
KCYN0129	6/6/2024 10:12	54.8	41.2	0.0	4.0	97.3	98.2	-36.1	-36.4
KCYN0130	6/5/2024 6:15	51.3	36.0	0.0	12.7	111.7	111.5	-5.5	-5.2
KCYN0131	6/5/2024 6:21	56.8	39.5	0.0	3.7	114.2	114.1	-43.1	-42.8
KCYN0133	6/3/2024 8:53	52.3	38.1	0.0	9.6	77.1	77.2	-22.1	-22.5
KCYN0134	6/3/2024 9:02	53.3	40.2	0.0	6.5	76.9	76.8	-21.2	-21.2
KCYN0135	6/10/2024 11:48	55.9	42.9	0.0	1.2	123.7	124.0	-14.2	-14.7
KCYN0162	6/5/2024 6:41	56.1	41.5	0.0	2.4	70.1	70.4	-41.1	-41.1
KCYN0163	6/5/2024 6:37	42.0	35.9	0.0	22.1	70.4	70.4	-11.0	-11.0
KCYN0164	6/6/2024 9:45	54.1	38.0	0.7	7.2	82.6	82.6	-41.4	-41.6
KCYN0165	6/5/2024 11:36	51.0	39.5	0.0	9.5	120.8	120.8	-19.3	-19.3
KCYN0166	6/5/2024 11:58	49.0	38.9	0.0	12.1	129.9	129.9	-4.7	-4.2
KCYN0167	6/5/2024 11:55	53.9	41.4	0.0	4.7	118.1	118.1	-37.6	-37.6
KCYN0168	6/5/2024 11:52	48.7	39.0	0.3	12.0	124.0	123.6	-16.2	-15.0
KCYN0169	6/3/2024 7:54	58.1	36.3	0.1	5.5	111.3	111.3	-0.8	-0.7
KCYN0170	6/3/2024 7:57	50.6	38.2	0.0	11.2	107.4	107.4	-6.5	-6.5
KCYN0171	6/3/2024 8:03	51.3	39.4	0.0	9.3	116.9	116.9	-19.4	-19.4
KCYN0172	6/10/2024 9:40	50.3	39.7	0.2	9.8	114.1	114.1	-10.8	-10.8
KCYNLR04	6/3/2024 10:19	50.4	34.7	0.0	14.9	98.2	98.3	-28.5	-26.6
KCYNLR08	6/3/2024 8:27	53.4	39.9	0.0	6.7	81.1	81.2	-47.9	-48.4
KCYNLR11	6/5/2024 6:02	52.8	28.7	0.9	17.6	65.3	65.3	-0.1	-0.1
KCYNLR12	6/3/2024 7:30	46.3	36.9	0.2	16.6	87.1	87.1	-6.4	-5.6

"The following wells are approved to operate at a temperature HOV of 156°F.

Wells 56, 75, 76, 87, and 89 are approved to operate at a temperature HOV of 156°F.

As of June 30, 2024, there are 89 vertical wells, 0 horizontal collector, and 4 LCR at KCRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

HOV = Higher Operating Value

APPENDIX J BAAQMD CORRESPONDENCE

Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037 T: 408.779.2206

March 7, 2024 (via email: compliance@baaqmd.gov)

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 Attn: RCA 30-Day Report

Re: Kirby Canyon Recycling & Disposal Facility, San Jose, CA. Facility Number A1812, Request for Breakdown Relief RCA Number 200227 30-Day Written Follow-up Report (Per Regulation 1, Section 432)

Dear Sir or Madam:

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting this 30-Day follow-up report to the Bay Area Air Quality Management District (BAAQMD) for the PG&E unplanned power surge event on March 6, 2024.

A breakdown report (Per Regulation 1, Section 431) was submitted on March 6, 2024, at ~5:00 PM by KCRDF because the landfill gas collection and control system (GCCS) was temporarily shut down on March 6, 2024, at ~3:12 PM during PG&E unplanned power surge. The flare was back online on March 6, 2024, at around ~4:44 PM (see Attachment A for flare data). Although KCRDF disagrees that Breakdown Relief is the appropriate methodology for compliance with Rule 8-34 during an unplanned power surge, due to direction from BAAQMD staff, KCRDF submitted the request for Breakdown Relief from BAAQMD for the March 6, 2024, PG&E power surge event via BAAQMD's Reportable Compliance Activity (RCA) notification form submitted on March 6, 2024, and was assigned RCA number 200227 (see Attachment B for copy of RCA submittal).

The unplanned power surge shutdown noted in RCA 200227 did not result in emissions and do not qualify as non-compliance. KCRDF believes that it complied with the Title V permit conditions and safety protocols. KCRDF followed all measures to ensure gas movers and valves were closed during the shutdown events. KCRDF's downtime events were not the result of equipment malfunction, knowing, willful, intentional, chronic nor committed by a recalcitrant, and did not benefit KCRDF economically nor result in a nuisance. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control.

KCRDF is committed to operating its landfill in compliance with applicable regulations and will ensure that compliance is achieved. However, KCRDF disagrees with the BAAQMD that

temporary shutdowns resulting from unplanned power outages are violations of any BAAQMD regulation.

If you have any questions or need any additional information, please do not hesitate to contact me at (510) 778-0607

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Jessica K Jones

Area General Manager

Northern California / Nevada

cc: Erin Phillips, BAAQMD

Attachments:

Attachment A- KCRDF flare data

Attachment B- Copy of KCRDF RCA Form Number 200227

Attachment A KCRDF flare data

Kirby Canyon Recycling and Disposal Facility

			are =	Fla SC	
Date	Time	MIN .	MAX	MIN	MAX
2024/03/06	14:00:00	1539	1559	1912	1965
2024/03/06	14:02:00	1539	1562	1915	1963
2024/03/06	14:04:00	1543	1562	1912	1963
2024/03/06	14:06:00	1543	1558	1914	1958
2024/03/06	14:08:00	1537	1569	1910	1960
2024/03/06	14:10:00	1540	1565	1917	1959
2024/03/06	14:12:00	1543	1570	1912	1956
2024/03/06	14:14:00	1542	1557	1902	1954
2024/03/06	14:16:00	1541	1566	1910	1954
2024/03/06	14:18:00	1541	1562	1909	1959
2024/03/06	14:20:00	1543	1557	1898	1947
2024/03/06	14:22:00	1540	1564	1909	1954
2024/03/06	14:24:00	1541	1557	1896	1947
2024/03/06	14:26:00	1546	1562	1899	1942
2024/03/06	14:28:00	1539	1562	1898	1952
2024/03/06	14:30:00	1539	1563	1906	1955
2024/03/06	14:32:00	1539	1562	1906	1946
2024/03/06	14:34:00	1539	1560	1895	1934
2024/03/06	14:36:00	1540	1558	1871	1937
2024/03/06	14:38:00	1543	1561	1873	1926
2024/03/06	14:40:00	1538	1565	1877	1915
2024/03/06	14:42:00	1544	1565	1872	1916
2024/03/06	14:44:00	1543	1565	1874	1917
2024/03/06	14:46:00	1546	1558	1870	1914
2024/03/06	14:48:00	1540	1555	1863	1931
2024/03/06	14:50:00	1543	1567	1873	1920
2024/03/06	14:52:00	1540	1562	1869	1923
2024/03/06	14:54:00	1544	1566	1869	1927
2024/03/06	14:56:00	1546	1554	1885	1933
2024/03/06	14:58:00	1543	1565	1881	1924
2024/03/06	15:00:00	1542	1562	1888	1929
2024/03/06	15:02:00	1543	1554	1870	1923
2024/03/06	15:04:00	1544	1560	1871	1928
2024/03/06	15:06:00	1539	1565	1877	1921
2024/03/06	15:08:00	1544	1565	1868	1926
2024/03/06	15:10:00	1539	1558	1878	1929
2024/03/06	15:12:00				
2024/03/06	15:14:00	1041	1409	-404	77
2024/03/06	15:16:00	835	1041	-4	24
2024/03/06	15:18:00	699	835	-4	23
2024/03/06	15:20:00	596	699	-4	18
2024/03/06	15:22:00	516	596	-4	18
2024/03/06	15:24:00	450	516	-3	17
2024/03/06	15:26:00	396	450	-3	22
2024/03/06	15:28:00	354	396	-3	-3
2024/03/06	15:30:00	320	354	-3	-3
2024/03/06	15:32:00	287	320	-3	-3

2024/03/06	15:34:00	255	287	-3	-3
2024/03/06	15:36:00	222	255	-3	-3
2024/03/06	15:38:00	197	222	-3	-3
2024/03/06	15:40:00	175	197	-3	-3
2024/03/06	15:42:00	157	175	-3	-3
2024/03/06	15:44:00	139	157	-3	-1
2024/03/06	15:46:00	121	139	-3	-3
2024/03/06	15:48:00	103	121	-3	-3
2024/03/06	15:50:00	88	103	-3	-3
2024/03/06	15:52:00	77	88	-3	-3
2024/03/06	15:54:00	70	77	-3	-3
2024/03/06	15:56:00	64	70	-3	-3
2024/03/06	15:58:00	61	64	-3	-3
2024/03/06	16:00:00	58	61	-3	-3
2024/03/06	16:02:00	57	58	-3	-3
2024/03/06	16:04:00	56	57	-3	-3
2024/03/06	16:06:00	55	56	-3	-3
2024/03/06	16:08:00	55	55	-3	-3
2024/03/06	16:10:00	54	55	-3	-3
2024/03/06	16:12:00	54	55	-3	-3
2024/03/06	16:14:00	54	54	-3	-1
2024/03/06	16:16:00	54	54	-3	-3
2024/03/06	16:18:00	53	54	-3	-3
2024/03/06	16:20:00	53	54	-3	-3
2024/03/06	16:22:00	53	53	-3	-3
2024/03/06	16:24:00	53	53	-3	-3
2024/03/06	16:26:00	53	53	-3	-3
2024/03/06	16:28:00	51	53	-3	-3
2024/03/06	16:30:00	51	53	-3	-3
2024/03/06	16:32:00	51	52	-3	-3
2024/03/06	16:34:00	51	52	-3	-3
2024/03/06	16:36:00	51	52	-3	-3
2024/03/06	16:38:00	51	52	-3	-3
2024/03/06	16:40:00	51	53	-3	-3
2024/03/06	16:42:00	53	649	-3	4097
2024/03/06	16:44:00	649	1597	2275	2997
2024/03/06	16:46:00	1558	1602	2235	2333
2024/03/06	16:48:00	1544	1566	2258	2333
2024/03/06	16:50:00	1537	1554	2205	2281
2024/03/06	16:52:00	1541	1561	2179	2230
2024/03/06	16:54:00	1541	1559	2165	2222
2024/03/06	16:56:00	1541	1566	2128	2193
2024/03/06	16:58:00	1541	1561	2124	2174
2024/03/06	17:00:00	1539	1561	2097	2156
2024/03/06	17:02:00	1542	1563	2091	2137
2024/03/06	17:04:00	1541	1563	2078	2133
2024/03/06	17:06:00	1542	1559	2080	2115
2024/03/06	17:08:00	1544	1556	2078	2126
2024/03/06	17:10:00	1546	1556	2073	2110
2024/03/06	17:12:00	1546	1556	2051	2103
2024/03/06	17:14:00	1544	1559	2060	2103
2024/03/06	17:16:00	1544	1559	2055	2091

2024/03/06	17:18:00	1544	1563	2042	2096	
2024/03/06	17:20:00	1541	1558	2047	2081	
2024/03/06	17:22:00	1541	1561	2033	2083	
2024/03/06	17:24:00	1547	1554	2041	2078	
2024/03/06	17:26:00	1546	1556	2037	2078	
2024/03/06	17:28:00	1542	1566	2042	2072	
2024/03/06	17:30:00	1542	1558	2030	2065	
2024/03/06	17:32:00	1544	1554	2023	2069	
2024/03/06	17:34:00	1547	1554	2020	2063	
2024/03/06	17:36:00	1547	1556	2023	2056	
2024/03/06	17:38:00	1544	1561	2020	2063	
2024/03/06	17:40:00	1544	1566	2017	2067	
2024/03/06	17:42:00	1544	1559	2017	2055	
2024/03/06	17:44:00	1542	1570	2017	2060	
2024/03/06	17:46:00	1546	1558	2005	2056	
2024/03/06	17:48:00	1546	1556	2010	2050	
2024/03/06	17:50:00	1544	1556	2012	2046	
2024/03/06	17:52:00	1541	1565	2006	2046	
2024/03/06	17:54:00	1541	1561	2003	2051	
2024/03/06	17:56:00	1544	1559	2002	2041	
2024/03/06	17:58:00	1548	1554	2004	2035	
2024/03/06	18:00:00	1544	1566	2000	2043	

Attachment B Copy of KCRDF RCA Form -Number 200227

From: RCA Notification
To: Phadnis, Rajan

Cc: Azevedo, Becky; Colline, Christian; Erin Phillips

Subject: [EXTERNAL] RE: KCRDF A1812-RCA for PG&E power surge on 3.6.2024

Date: Wednesday, March 6, 2024 5:07:15 PM

ID# 200227

From: Phadnis, Rajan <rphadnis@wm.com> **Sent:** Wednesday, March 6, 2024 4:57 PM **To:** RCA Notification <rca@baaqmd.gov>

Cc: Azevedo, Becky <Razevedo@wm.com>; Colline, Christian <CColline@wm.com>; Erin Phillips

<ephillips@baaqmd.gov>; Phadnis, Rajan <rphadnis@wm.com>
Subject: KCRDF A1812-RCA for PG&E power surge on 3.6.2024

CAUTION: This email originated from outside of the BAAQMD network. Do not click links or open attachments unless you recognize the sender and know the content is safe.

I am attaching the RCA notification form for PG&E power surge event on 3.6.2024, at Kirby Canyon Recycling and Disposal Facility- A1812.

Thank you,

Rajan Phadnis EP Specialist For Kirby Canyon Recycling and Disposal Facility

Kirby Canyon Recycling & Disposal Facility

910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037

March 6, 2024 (via email rca@baaqmd.gov)

Compliance & Enforcement Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Re: Reportable Compliance Activity (RCA) Notification Kirby Canyon Recycling & Disposal Facility, San Jose, CA, Facility Number A1812

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting the attached Reportable Compliance Activity (RCA) Form for temporary flare shutdown event caused by unplanned utility power surge/interruption on March 6, 2024, \sim 3:00 PM. A breakdown report about the PG&E's power surge is being submitted via this letter to Bay Area Air Quality Management District (BAAQMD) on March 6, 2024, around \sim 5:00 PM.

Although KCRDF disagrees that Breakdown Relief is the appropriate methodology for compliance with Rule 8-34 during an unplanned power surge, due to direction from BAAQMD staff, this letter is to request Breakdown Relief from BAAQMD for the PG&E power surge. BAAQMD's RCA notification form, as modified, is enclosed. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control and KCRDF asserts that it did not violate any applicable regulations and limits.

Breakdown Relief should be granted as KCRDF complied with administrative requirements despite its objections to the re-interpretation of Rule 8-34 and:

- 1. The breakdown is not the result of intent, negligence or disregard of air pollution control regulations;
- 2. The breakdown is not the result of improper maintenance;
- 3. The breakdown does not create a public nuisance;
- 4. The breakdown was not caused by an excessively recurrent breakdown of the same equipment; and
- 5. The breakdown did not occur, and any emissions did not interfere with attainment or maintenance of any National or California air quality standard.

On March 6, 2024, the GCCS was back online at \sim 4:30 PM. The shutdown event was unforeseeable & unpreventable at KCRDF. The flare was temporarily shut down and did not result in emission nor nuisance.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Rajan Phadnis EP Specialist

cc: Erin Phillips, BAAQMD

Attachment: RCA Form KCRDF Facility A1812

COMPLIANCE & ENFORCEMENT DIVISION

Notification Form

Reportable Compliance Activity (RCA)

		See back of form	for instructions →		
1. X BREAKDO	WN RELIEF: <i>District Use Only</i> BREAKD	OOWN REFERENC	SE #:		
2. NA MONITOR E	EXCESS EMISSION or EXCURSION: Dis	strict Use Only RE	FERENCE#:		
3. NA MONITOR IS	S INOPERATIVE: District Use Only REI	FERENCE#:			
4. NA PRESSURE	RELIEF DEVICE (PRD): District Use (Only PRD REFERE	NCE#:		
SITE INF	ORMATION AND DESCRIPTION INFOR	RMATION (REQUIF	RED)		
Company	Kirby Canyon Recycling & Disposal Facility	Site #	A1812		
Address	910 Coyote Creek Golf Drive, San Jose 95037	Source #	S-1		
Reported by	R Phadnis	Phone #	510-875-9338		
Indicated Excess	-NA	Fax #	-		
Allowable Limit	-NA	Averaging Time	-		
Start Time/Date	3/6/2024 at~3:00 PM	Clear Time	3/6/2024 at~4:30 PM		
Monitor/device type(s)	►CEM ►GLM ►Param	etric ►PRD	► Non-monitor		
Monitor description(s)					
 NO_x NO₂ NO₂ NO₂ 	Parameter(s) exceeded or not functioning due to inoperation NO _x SO ₂ CO CO ₂ H ₂ S MTRS NH ₃ O ₂ H ₂ O Opacity Lead Gauge Pressure Flow Hydrocarbon Breakthrough (VOC) Temperature Wind Speed				
Unit(s) of Measurement		PT P CHICI (desc	inse, i ewer earge		
▶ppm ▶ppb ▶psig ▶pH		inches H₂OOther (describe)	►mmHg		
Event Description: This breakdown report is being submitted on 3/6/2024 at ~ 5:00 PM by Kirby Canyon Recycling & Disposal Facility (KCRDF) ecause the GCCS was temporarily shut down due to the potential PG&E power surge. During the PG&E power surge, the GCCS was potentially out of compliance with BAAQMD regulation 8-34-301.1. Please also see objections and discussion in the attached over letter dated 3/6/2024. **District Use Only**					
Received by		Date	Time		
I I COOLIVOU DY		J410	1 11 110		

- ✓ Check the Box numbers 1- 4 that apply to the RCA you are trying to report or request and read the detailed instructions.
- You will receive an ID # for each RCA you submit. In the case of a request for Breakdown Relief where multiple monitors are affected, you do not need to submit multiple forms, as long as all necessary information is given on one form. RCA reported during other than core business hours will be assigned an ID # the following working day. If you do not receive an ID #, it is your responsibility to contact the BAAQMD to get one.
- ✓ You may submit only one request for breakdown relief per form. However, you may submit multiple indicated excess, inoperative monitors and PRD reports on one form, provided that the start and end times given for the events in the required information section is inclusive of all events. Information on parameters exceeded, units of measurement and allowable limits can be provided in the event description box or when contacted by District staff with questions.
- ✓ Fill out the "Site Information and Description Information Required" areas of this form and email to <u>rca@baagmd.gov</u>
- ✓ A 30-day written follow-up report is required for Breakdown Requests and PRD Releases. Reports for these types of RCA must contain a quantification of emissions, the calculations used to derive the emissions, and their duration. Reference Breakdown Admissions Advisory dated 12/3/04. Send 30-day report letters to: BAAQMD Compliance and Enforcement Division, MAILSTOP: RCA 30-DAY REPORT, 375 Beale Street, Ste. 600 San Francisco, CA 94105. NOTE: You may have additional report requirements under Title V.

Detailed Instructions

Box 1: To Request Breakdown Relief (Regulations 1-112, 1-113, 1-208, 1-431, 1-432)

If you have an equipment malfunction (e.g.; breakdown) that leads to the release of air pollutants above the regulatory or your permitted levels, you may request relief from BAAQMD enforcement action.

Check	

- □ NOTE: Start and end times given for these events in the required information section must be inclusive of all events.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Requests for breakdown relief may not be withdrawn and must be called in or faxed to the BAAQMD <u>immediately upon</u> discovery of an equipment malfunction.
- Receipt of an RCA ID# for a breakdown does not mean relief has been granted. An Inspector will visit your facility to determine compliance.

Box 2: Monitor Indicates Excess Emission or Excursion (Regulation 1-522.7, 1-523.3, 1-542)

When a BAAQMD-required monitor indicates an excess or excursion, you must report it to the BAAQMD.

- Check Box #2.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Any excess emission indicated by a CEM or excursion of a parametric monitor, shall be reported to the BAAQMD within 96 hours
- Area concentration excesses over the limits prescribed in District regulations shall be reported to the BAAQMD within the next normal working day following the examination of data.

Box 3: Monitor Is Inoperative (Regulations 1-522, 1-523, 1-530)

When a BAAQMD-required monitor is inoperative for greater than 24 hours, you must report it to the BAAQMD.

- ☐ Check Box #3 only if inoperative for greater than 24hours.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All reports of inoperative monitors must be reported by the following BAAQMD working day and additionally be cleared by a notification of resumption of monitoring. To notify the BAAQMD regarding the resumption of monitoring, do not send in a separate RCA form; call (415) 749-4979 and give the RCA ID #, date, and the time of resumption.
- Inoperative monitors (except parametric monitors) with downtime greater than 15 days must furnish proof of expedited repair in a follow-up report.

Box 4: Pressure Relief Device (PRD) Is Released (Regulation 8-28-401)

When a PRD at your refinery/chemical plant vents to the atmosphere, you must report it to the BAAQMD.

- ☐ Check Box #4 only if a pressure relief device is released.
- Separate RCA ID #'s can be applied to monitor(s) affected by a PRD by also checking Box #2 if other monitors record an
 excess or excursion.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- □ All PRD release reports must be reported by the following BAAQMD working day.

Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037 T: 408.779.2206

March 7, 2024 (via email: compliance@baaqmd.gov)

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Attn: Title V Reports

Re: Kirby Canyon Recycling & Disposal Facility, San Jose, CA. Facility Number A1812,

Section I.F Title V, 10 and 30-Day written report

Dear Sir or Madam:

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting this 10 and 30-day Title V written report to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F for KCRDF.

A breakdown report was submitted on March 6, 2024, at ~5:00 PM by KCRDF because the landfill gas collection and control system (GCCS) temporarily shut down on March 6, 2024, at ~3:12 PM during PG&E unplanned power surge event. The flare was online on March 6, 2024, at ~4:44 PM (see Attachment A for flare data). Although KCRDF disagrees that Breakdown Relief is the appropriate methodology for compliance with Rule 8-34 during an unplanned power outage, due to direction from BAAQMD staff, KCRDF submitted the request for Breakdown Relief from BAAQMD for the March 6, 2024, PG&E power surge via BAAQMD's Reportable Compliance Activity (RCA) notification form submitted on March 6, 2024, and was assigned RCA number 200227 (see Attachment B for copy of RCA submittal).

The unplanned power outage shutdown noted in RCA number 200227 did not result in emissions and do not qualify as non-compliance. KCRDF believes that it complied with the Title V permit conditions and safety protocols. KCRDF followed all measures to ensure gas movers and valves were closed during the shutdown events. KCRDF's downtime events were not the result of equipment malfunction, knowing, willful, intentional, chronic nor committed by a recalcitrant, and did not benefit KCRDF economically nor result in a nuisance. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control.

KCRDF is committed to operating its landfill in compliance with applicable regulations and will ensure that compliance is achieved. However, KCRDF disagrees with the BAAQMD that

temporary shutdowns resulting from unplanned power outages are violations of any BAAQMD regulation.

If you have any questions or need any additional information, please do not hesitate to contact me at (510) 778-0607

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Jessica K Jones

Area General Manager

Northern California / Nevada

cc: Erin Phillips, BAAQMD

Attachments:

Attachment A- KCRDF flare data

Attachment B- Copy of KCRDF RCA Form -Number 200227

Attachment A KCRDF flare data

Kirby Canyon Recycling and Disposal Facility

			are =	Fla SC	
Date	Time	MIN .	MAX	MIN	MAX
2024/03/06	14:00:00	1539	1559	1912	1965
2024/03/06	14:02:00	1539	1562	1915	1963
2024/03/06	14:04:00	1543	1562	1912	1963
2024/03/06	14:06:00	1543	1558	1914	1958
2024/03/06	14:08:00	1537	1569	1910	1960
2024/03/06	14:10:00	1540	1565	1917	1959
2024/03/06	14:12:00	1543	1570	1912	1956
2024/03/06	14:14:00	1542	1557	1902	1954
2024/03/06	14:16:00	1541	1566	1910	1954
2024/03/06	14:18:00	1541	1562	1909	1959
2024/03/06	14:20:00	1543	1557	1898	1947
2024/03/06	14:22:00	1540	1564	1909	1954
2024/03/06	14:24:00	1541	1557	1896	1947
2024/03/06	14:26:00	1546	1562	1899	1942
2024/03/06	14:28:00	1539	1562	1898	1952
2024/03/06	14:30:00	1539	1563	1906	1955
2024/03/06	14:32:00	1539	1562	1906	1946
2024/03/06	14:34:00	1539	1560	1895	1934
2024/03/06	14:36:00	1540	1558	1871	1937
2024/03/06	14:38:00	1543	1561	1873	1926
2024/03/06	14:40:00	1538	1565	1877	1915
2024/03/06	14:42:00	1544	1565	1872	1916
2024/03/06	14:44:00	1543	1565	1874	1917
2024/03/06	14:46:00	1546	1558	1870	1914
2024/03/06	14:48:00	1540	1555	1863	1931
2024/03/06	14:50:00	1543	1567	1873	1920
2024/03/06	14:52:00	1540	1562	1869	1923
2024/03/06	14:54:00	1544	1566	1869	1927
2024/03/06	14:56:00	1546	1554	1885	1933
2024/03/06	14:58:00	1543	1565	1881	1924
2024/03/06	15:00:00	1542	1562	1888	1929
2024/03/06	15:02:00	1543	1554	1870	1923
2024/03/06	15:04:00	1544	1560	1871	1928
2024/03/06	15:06:00	1539	1565	1877	1921
2024/03/06	15:08:00	1544	1565	1868	1926
2024/03/06	15:10:00	1539	1558	1878	1929
2024/03/06	15:12:00				
2024/03/06	15:14:00	1041	1409	-404	77
2024/03/06	15:16:00	835	1041	-4	24
2024/03/06	15:18:00	699	835	-4	23
2024/03/06	15:20:00	596	699	-4	18
2024/03/06	15:22:00	516	596	-4	18
2024/03/06	15:24:00	450	516	-3	17
2024/03/06	15:26:00	396	450	-3	22
2024/03/06	15:28:00	354	396	-3	-3
2024/03/06	15:30:00	320	354	-3	-3
2024/03/06	15:32:00	287	320	-3	-3

2024/03/06	15:34:00	255	287	-3	-3
2024/03/06	15:36:00	222	255	-3	-3
2024/03/06	15:38:00	197	222	-3	-3
2024/03/06	15:40:00	175	197	-3	-3
2024/03/06	15:42:00	157	175	-3	-3
2024/03/06	15:44:00	139	157	-3	-1
2024/03/06	15:46:00	121	139	-3	-3
2024/03/06	15:48:00	103	121	-3	-3
2024/03/06	15:50:00	88	103	-3	-3
2024/03/06	15:52:00	77	88	-3	-3
2024/03/06	15:54:00	70	77	-3	-3
2024/03/06	15:56:00	64	70	-3	-3
2024/03/06	15:58:00	61	64	-3	-3
2024/03/06	16:00:00	58	61	-3	-3
2024/03/06	16:02:00	57	58	-3	-3
2024/03/06	16:04:00	56	57	-3	-3
2024/03/06	16:06:00	55	56	-3	-3
2024/03/06	16:08:00	55	55	-3	-3
2024/03/06	16:10:00	54	55	-3	-3
2024/03/06	16:12:00	54	55	-3	-3
2024/03/06	16:14:00	54	54	-3	-1
2024/03/06	16:16:00	54	54	-3	-3
2024/03/06	16:18:00	53	54	-3	-3
2024/03/06	16:20:00	53	54	-3	-3
2024/03/06	16:22:00	53	53	-3	-3
2024/03/06	16:24:00	53	53	-3	-3
2024/03/06	16:26:00	53	53	-3	-3
2024/03/06	16:28:00	51	53	-3	-3
2024/03/06	16:30:00	51	53	-3	-3
2024/03/06	16:32:00	51	52	-3	-3
2024/03/06	16:34:00	51	52	-3	-3
2024/03/06	16:36:00	51	52	-3	-3
2024/03/06	16:38:00	51	52	-3	-3
2024/03/06	16:40:00	51	53	-3	-3
2024/03/06	16:42:00	53	649	-3	4097
2024/03/06	16:44:00	649	1597	2275	2997
2024/03/06	16:46:00	1558	1602	2235	2333
2024/03/06	16:48:00	1544	1566	2258	2333
2024/03/06	16:50:00	1537	1554	2205	2281
2024/03/06	16:52:00	1541	1561	2179	2230
2024/03/06	16:54:00	1541	1559	2165	2222
2024/03/06	16:56:00	1541	1566	2128	2193
2024/03/06	16:58:00	1541	1561	2124	2174
2024/03/06	17:00:00	1539	1561	2097	2156
2024/03/06	17:02:00	1542	1563	2091	2137
2024/03/06	17:04:00	1541	1563	2078	2133
2024/03/06	17:06:00	1542	1559	2080	2115
2024/03/06	17:08:00	1544	1556	2078	2126
2024/03/06	17:10:00	1546	1556	2073	2110
2024/03/06	17:12:00	1546	1556	2051	2103
2024/03/06	17:14:00	1544	1559	2060	2103
2024/03/06	17:16:00	1544	1559	2055	2091

2024/03/06	17:18:00	1544	1563	2042	2096	
2024/03/06	17:20:00	1541	1558	2047	2081	
2024/03/06	17:22:00	1541	1561	2033	2083	
2024/03/06	17:24:00	1547	1554	2041	2078	
2024/03/06	17:26:00	1546	1556	2037	2078	
2024/03/06	17:28:00	1542	1566	2042	2072	
2024/03/06	17:30:00	1542	1558	2030	2065	
2024/03/06	17:32:00	1544	1554	2023	2069	
2024/03/06	17:34:00	1547	1554	2020	2063	
2024/03/06	17:36:00	1547	1556	2023	2056	
2024/03/06	17:38:00	1544	1561	2020	2063	
2024/03/06	17:40:00	1544	1566	2017	2067	
2024/03/06	17:42:00	1544	1559	2017	2055	
2024/03/06	17:44:00	1542	1570	2017	2060	
2024/03/06	17:46:00	1546	1558	2005	2056	
2024/03/06	17:48:00	1546	1556	2010	2050	
2024/03/06	17:50:00	1544	1556	2012	2046	
2024/03/06	17:52:00	1541	1565	2006	2046	
2024/03/06	17:54:00	1541	1561	2003	2051	
2024/03/06	17:56:00	1544	1559	2002	2041	
2024/03/06	17:58:00	1548	1554	2004	2035	
2024/03/06	18:00:00	1544	1566	2000	2043	

Attachment B Copy of KCRDF RCA Form -Number 200227

From: RCA Notification
To: Phadnis, Rajan

Cc: Azevedo, Becky; Colline, Christian; Erin Phillips

Subject: [EXTERNAL] RE: KCRDF A1812-RCA for PG&E power surge on 3.6.2024

Date: Wednesday, March 6, 2024 5:07:15 PM

ID# 200227

From: Phadnis, Rajan <rphadnis@wm.com> **Sent:** Wednesday, March 6, 2024 4:57 PM **To:** RCA Notification <rca@baaqmd.gov>

Cc: Azevedo, Becky <Razevedo@wm.com>; Colline, Christian <CColline@wm.com>; Erin Phillips

<ephillips@baaqmd.gov>; Phadnis, Rajan <rphadnis@wm.com>
Subject: KCRDF A1812-RCA for PG&E power surge on 3.6.2024

CAUTION: This email originated from outside of the BAAQMD network. Do not click links or open attachments unless you recognize the sender and know the content is safe.

I am attaching the RCA notification form for PG&E power surge event on 3.6.2024, at Kirby Canyon Recycling and Disposal Facility- A1812.

Thank you,

Rajan Phadnis EP Specialist For Kirby Canyon Recycling and Disposal Facility

Kirby Canyon Recycling & Disposal Facility

910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037

March 6, 2024 (via email rca@baaqmd.gov)

Compliance & Enforcement Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Re: Reportable Compliance Activity (RCA) Notification
Kirby Canyon Recycling & Disposal Facility, San Jose, CA, Facility Number A1812

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting the attached Reportable Compliance Activity (RCA) Form for temporary flare shutdown event caused by unplanned utility power surge/interruption on March 6, 2024, \sim 3:00 PM. A breakdown report about the PG&E's power surge is being submitted via this letter to Bay Area Air Quality Management District (BAAQMD) on March 6, 2024, around \sim 5:00 PM.

Although KCRDF disagrees that Breakdown Relief is the appropriate methodology for compliance with Rule 8-34 during an unplanned power surge, due to direction from BAAQMD staff, this letter is to request Breakdown Relief from BAAQMD for the PG&E power surge. BAAQMD's RCA notification form, as modified, is enclosed. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control and KCRDF asserts that it did not violate any applicable regulations and limits.

Breakdown Relief should be granted as KCRDF complied with administrative requirements despite its objections to the re-interpretation of Rule 8-34 and:

- 1. The breakdown is not the result of intent, negligence or disregard of air pollution control regulations;
- 2. The breakdown is not the result of improper maintenance;
- 3. The breakdown does not create a public nuisance;
- 4. The breakdown was not caused by an excessively recurrent breakdown of the same equipment; and
- 5. The breakdown did not occur, and any emissions did not interfere with attainment or maintenance of any National or California air quality standard.

On March 6, 2024, the GCCS was back online at \sim 4:30 PM. The shutdown event was unforeseeable & unpreventable at KCRDF. The flare was temporarily shut down and did not result in emission nor nuisance.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Rajan Phadnis EP Specialist

cc: Erin Phillips, BAAQMD

Attachment: RCA Form KCRDF Facility A1812

COMPLIANCE & ENFORCEMENT DIVISION

Notification Form

Reportable Compliance Activity (RCA)

		See back of form	for instructions →	
1. X BREAKDO	WN RELIEF: District Use OnlyBREAKD	OWN REFERENC	E#:	
2. NA MONITOR E	EXCESS EMISSION or EXCURSION: <i>Dis</i>	trict Use Only RE	FERENCE#:	
3. NA MONITOR I	S INOPERATIVE: District Use Only REF	ERENCE#:		
4. NA PRESSURE	RELIEF DEVICE (PRD): District Use O	nly PRD REFERE	NCE#:	
SITE INF	ORMATION AND DESCRIPTION INFOR	MATION (REQUIR	RED)	
Company	Kirby Canyon Recycling & Disposal Facility	Site #	A1812	
Address	910 Coyote Creek Golf Drive, San Jose 95037	Source #	S-1	
Reported by	R Phadnis	Phone #	510-875-9338	
Indicated Excess	-NA	Fax #	-	
Allowable Limit	-NA	Averaging Time	-	
Start Time/Date	3/6/2024 at~3:00 PM	Clear Time	3/6/2024 at~4:30 PM	
Monitor/device type(s)	▶ CEM ▶ GLM ▶ Parame	etric PRD	► Non-monitor	
Monitor description(s)				
Parameter(s) exceeded or not functioning due to inoperation NO _x SO ₂ CO CO H ₂ S MH ₂ S MTRS NH ₃ O ₂ H ₂ O Opacity Lead Gauge Pressure Flow Hydrocarbon Breakthrough (VOC) Temperature Wind Direction Steam Voltage Office (describe) Power surge				
Unit(s) of Measurement		`	,	
▶ppm ▶ppb ▶psig ▶pH	 min/hr > 20% Fahrenheit 	inches H₂OOther (describe)	►mmHg	
Event Description: This breakdown report is being submitted on 3/6/2024 at ~ 5:00 PM by Kirby Canyon Recycling & Disposal Facility (KCRDF) recause the GCCS was temporarily shut down due to the potential PG&E power surge. During the PG&E power surge, the GCCS was potentially out of compliance with BAAQMD regulation 8-34-301.1. Please also see objections and discussion in the attached over letter dated 3/6/2024. **District Use Only**				
Received by		Pate	Time	

- ✓ Check the Box numbers 1- 4 that apply to the RCA you are trying to report or request and read the detailed instructions.
- You will receive an ID # for each RCA you submit. In the case of a request for Breakdown Relief where multiple monitors are affected, you do not need to submit multiple forms, as long as all necessary information is given on one form. RCA reported during other than core business hours will be assigned an ID # the following working day. If you do not receive an ID #, it is your responsibility to contact the BAAQMD to get one.
- ✓ You may submit only one request for breakdown relief per form. However, you may submit multiple indicated excess, inoperative monitors and PRD reports on one form, provided that the start and end times given for the events in the required information section is inclusive of all events. Information on parameters exceeded, units of measurement and allowable limits can be provided in the event description box or when contacted by District staff with questions.
- ✓ Fill out the "Site Information and Description Information Required" areas of this form and email to <u>rca@baagmd.gov</u>
- ✓ A 30-day written follow-up report is required for Breakdown Requests and PRD Releases. Reports for these types of RCA must contain a quantification of emissions, the calculations used to derive the emissions, and their duration. Reference Breakdown Admissions Advisory dated 12/3/04. Send 30-day report letters to: BAAQMD Compliance and Enforcement Division, MAILSTOP: RCA 30-DAY REPORT, 375 Beale Street, Ste. 600 San Francisco, CA 94105. NOTE: You may have additional report requirements under Title V.

Detailed Instructions

Box 1: To Request Breakdown Relief (Regulations 1-112, 1-113, 1-208, 1-431, 1-432)

If you have an equipment malfunction (e.g.; breakdown) that leads to the release of air pollutants above the regulatory or your permitted levels, you may request relief from BAAQMD enforcement action.

Check	

- □ NOTE: Start and end times given for these events in the required information section must be inclusive of all events.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Requests for breakdown relief may not be withdrawn and must be called in or faxed to the BAAQMD <u>immediately upon</u> discovery of an equipment malfunction.
- Receipt of an RCA ID# for a breakdown does not mean relief has been granted. An Inspector will visit your facility to determine compliance.

Box 2: Monitor Indicates Excess Emission or Excursion (Regulation 1-522.7, 1-523.3, 1-542)

When a BAAQMD-required monitor indicates an excess or excursion, you must report it to the BAAQMD.

- Check Box #2.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Any excess emission indicated by a CEM or excursion of a parametric monitor, shall be reported to the BAAQMD within 96 hours
- Area concentration excesses over the limits prescribed in District regulations shall be reported to the BAAQMD within the next normal working day following the examination of data.

Box 3: Monitor Is Inoperative (Regulations 1-522, 1-523, 1-530)

When a BAAQMD-required monitor is inoperative for greater than 24 hours, you must report it to the BAAQMD.

- ☐ Check Box #3 only if inoperative for greater than 24hours.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All reports of inoperative monitors must be reported by the following BAAQMD working day and additionally be cleared by a notification of resumption of monitoring. To notify the BAAQMD regarding the resumption of monitoring, do not send in a separate RCA form; call (415) 749-4979 and give the RCA ID #, date, and the time of resumption.
- Inoperative monitors (except parametric monitors) with downtime greater than 15 days must furnish proof of expedited repair in a follow-up report.

Box 4: Pressure Relief Device (PRD) Is Released (Regulation 8-28-401)

When a PRD at your refinery/chemical plant vents to the atmosphere, you must report it to the BAAQMD.

- ☐ Check Box #4 only if a pressure relief device is released.
- Separate RCA ID #'s can be applied to monitor(s) affected by a PRD by also checking Box #2 if other monitors record an
 excess or excursion.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- □ All PRD release reports must be reported by the following BAAQMD working day.

Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037 T: 408.779.2206

April 3, 2024 (via email: compliance@baaqmd.gov)

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Attn: Title V Reports

Re: Kirby Canyon Recycling & Disposal Facility, San Jose, CA. Facility Number A1812,

Section I.F Title V, 10 and 30-Day written report

Dear Sir or Madam:

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting this 10 and 30-day Title V written report to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F for KCRDF.

A breakdown report was submitted on March 31, 2024, at ~8:00 AM by KCRDF because the landfill gas collection and control system (GCCS) temporarily shut down on March 30, 2024, at ~5:14 PM during PG&E unplanned power surge event. The flare was online on March 30, 2024, at ~6:48 PM. Although KCRDF disagrees that Breakdown Relief is the appropriate methodology for compliance with Rule 8-34 during an unplanned power outage, due to direction from BAAQMD staff, KCRDF submitted the request for Breakdown Relief from BAAQMD for the March 30, 2024, PG&E power surge via BAAQMD's Reportable Compliance Activity (RCA) notification form submitted on March 31, 2024, and was assigned RCA number 200259 (see Attachment A for copy of RCA submittal).

The unplanned power outage shutdown noted in RCA number 200259 did not result in emissions and do not qualify as non-compliance. KCRDF believes that it complied with the Title V permit conditions and safety protocols. KCRDF followed all measures to ensure gas movers and valves were closed during the shutdown events. KCRDF's downtime events were not the result of equipment malfunction, knowing, willful, intentional, chronic nor committed by a recalcitrant, and did not benefit KCRDF economically nor result in a nuisance. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control.

KCRDF is committed to operating its landfill in compliance with applicable regulations and will ensure that compliance is achieved. However, KCRDF disagrees with the BAAQMD that

temporary shutdowns resulting from unplanned power outages are violations of any BAAQMD regulation.

If you have any questions or need any additional information, please do not hesitate to contact me at (510) 778-0607

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Jessica K Jones

Area General Manager

Northern California / Nevada

cc: Erin Phillips, BAAQMD

Attachments:

Attachment A- Copy of KCRDF RCA Form -Number 200259

Attachment A Copy of KCRDF RCA Form -Number 200259

Kirby Canyon Recycling & Disposal Facility

910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037

March 31, 2024 (via email rca@baaqmd.gov)

Compliance & Enforcement Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Re: Reportable Compliance Activity (RCA) Notification
Kirby Canyon Recycling & Disposal Facility, San Jose, CA, Facility Number A1812

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting the attached Reportable Compliance Activity (RCA) Form for temporary flare shutdown event caused by unplanned utility power surge/interruption on March 30, 2024, ~ 5:00 PM. A breakdown report about the PG&E's power surge is being submitted via this letter to Bay Area Air Quality Management District (BAAQMD) on March 31, 2024, around ~8:00 AM.

Although KCRDF disagrees that Breakdown Relief is the appropriate methodology for compliance with Rule 8-34 during an unplanned power surge, due to direction from BAAQMD staff, this letter is to request Breakdown Relief from BAAQMD for the PG&E power surge. BAAQMD's RCA notification form, as modified, is enclosed. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control and KCRDF asserts that it did not violate any applicable regulations and limits.

Breakdown Relief should be granted as KCRDF complied with administrative requirements despite its objections to the re-interpretation of Rule 8-34 and:

- 1. The breakdown is not the result of intent, negligence or disregard of air pollution control regulations;
- 2. The breakdown is not the result of improper maintenance;
- 3. The breakdown does not create a public nuisance;
- 4. The breakdown was not caused by an excessively recurrent breakdown of the same equipment; and
- 5. The breakdown did not occur, and any emissions did not interfere with attainment or maintenance of any National or California air quality standard.

On March 30, 2024, the GCCS was back online at \sim 5:50 PM. The shutdown event was unforeseeable & unpreventable at KCRDF. The flare was temporarily shut down and did not result in emission nor nuisance.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Rajan Phadnis EP Specialist

cc: Erin Phillips, BAAQMD

Attachment: RCA Form KCRDF Facility A1812

COMPLIANCE & ENFORCEMENT DIVISION

Notification Form

Reportable Compliance Activity (RCA)

	S	ee back of form t	for instructions →
1. X BREAKDOWN F	RELIEF: District Use OnlyBREAKD	OWN REFERENC	E#:
2. NA MONITOR EXCE	SS EMISSION or EXCURSION: <i>Dis</i>	trict Use Only RE	FERENCE#:
3. NA MONITOR IS INC	OPERATIVE: District Use Only REF	ERENCE#:	
4. NA PRESSURE REL	LIEF DEVICE (PRD): District Use O	nly PRD REFERE	NCE#:
	IATION AND DESCRIPTION INFOR	MATION (REQUIR	RED)
1 7	Canyon Recycling & Disposal Facility	Site #	A1812
	Coyote Creek Golf Drive, San Jose 95037	Source #	S-1
. topontou by	nadnis	Phone #	510-875-9338
Indicated Excess -NA		Fax #	-
Allowable Limit -NA		Averaging Time	-
Ctart Time, Date	/2024 at~5:00 PM	Clear Time	3/30/2024 at~5:50 PM
71 \ /	►CEM ►GLM ►Parame	etric PRD	► Non-monitor
Monitor description(s)			
Parameter(s) exceeded or not functioning due to inoperation NO _x SO ₂ CO CO H ₂ S MH ₂ S MTRS NH ₃ O ₂ H ₂ O Opacity Lead Gauge Pressure Flow Hydrocarbon Breakthrough (VOC) Temperature Wind Direction Steam Voltage Office (describe) Power surge			
Unit(s) of Measurement			, ,
▶ppm ▶ppb ▶psig ▶pH	min/hr > 20%PahrenheitX	inches H₂OOther (describe)	<u> </u>
This breakdown report is being submitted on 3/31/2024 at ~ 8:00 AM by Kirby Canyon Recycling & Disposal Facility (KCRDF) because the GCCS was temporarily shut down due to the potential PG&E power surge. During the PG&E power surge, the GCCS was potentially out of compliance with BAAQMD regulation 8-34-301.1. Please also see objections and discussion in the attached over letter dated 3/31/2024. **District Use Only**			
Received by		ate	Time

- ✓ Check the Box numbers 1- 4 that apply to the RCA you are trying to report or request and read the detailed instructions.
- You will receive an ID # for each RCA you submit. In the case of a request for Breakdown Relief where multiple monitors are affected, you do not need to submit multiple forms, as long as all necessary information is given on one form. RCA reported during other than core business hours will be assigned an ID # the following working day. If you do not receive an ID #, it is your responsibility to contact the BAAQMD to get one.
- ✓ You may submit only one request for breakdown relief per form. However, you may submit multiple indicated excess, inoperative monitors and PRD reports on one form, provided that the start and end times given for the events in the required information section is inclusive of all events. Information on parameters exceeded, units of measurement and allowable limits can be provided in the event description box or when contacted by District staff with questions.
- ✓ Fill out the "Site Information and Description Information Required" areas of this form and email to <u>rca@baagmd.gov</u>
- ✓ A 30-day written follow-up report is required for Breakdown Requests and PRD Releases. Reports for these types of RCA must contain a quantification of emissions, the calculations used to derive the emissions, and their duration. Reference Breakdown Admissions Advisory dated 12/3/04. Send 30-day report letters to: BAAQMD Compliance and Enforcement Division, MAILSTOP: RCA 30-DAY REPORT, 375 Beale Street, Ste. 600 San Francisco, CA 94105. NOTE: You may have additional report requirements under Title V.

Detailed Instructions

Box 1: To Request Breakdown Relief (Regulations 1-112, 1-113, 1-208, 1-431, 1-432)

If you have an equipment malfunction (e.g.; breakdown) that leads to the release of air pollutants above the regulatory or your permitted levels, you may request relief from BAAQMD enforcement action.

Check	

- □ NOTE: Start and end times given for these events in the required information section must be inclusive of all events.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Requests for breakdown relief may not be withdrawn and must be called in or faxed to the BAAQMD <u>immediately upon</u> discovery of an equipment malfunction.
- □ Receipt of an RCA ID# for a breakdown does not mean relief has been granted. An Inspector will visit your facility to determine compliance.

Box 2: Monitor Indicates Excess Emission or Excursion (Regulation 1-522.7, 1-523.3, 1-542)

When a BAAQMD-required monitor indicates an excess or excursion, you must report it to the BAAQMD.

- Check Box #2.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Any excess emission indicated by a CEM or excursion of a parametric monitor, shall be reported to the BAAQMD within 96 hours.
- Area concentration excesses over the limits prescribed in District regulations shall be reported to the BAAQMD within the next normal working day following the examination of data.

Box 3: Monitor Is Inoperative (Regulations 1-522, 1-523, 1-530)

When a BAAQMD-required monitor is inoperative for greater than 24 hours, you must report it to the BAAQMD.

- ☐ Check Box #3 only if inoperative for greater than 24 hours.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All reports of inoperative monitors must be reported by the following BAAQMD working day and additionally be cleared by a notification of resumption of monitoring. To notify the BAAQMD regarding the resumption of monitoring, do not send in a separate RCA form; call (415) 749-4979 and give the RCA ID #, date, and the time of resumption.
- Inoperative monitors (except parametric monitors) with downtime greater than 15 days must furnish proof of expedited repair in a follow-up report.

Box 4: Pressure Relief Device (PRD) Is Released (Regulation 8-28-401)

When a PRD at your refinery/chemical plant vents to the atmosphere, you must report it to the BAAQMD.

- ☐ Check Box #4 only if a pressure relief device is released.
- Separate RCA ID #'s can be applied to monitor(s) affected by a PRD by also checking Box #2 if other monitors record an
 excess or excursion.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All PRD release reports must be reported by the following BAAQMD working day.

From: My Air Online To: Phadnis, Rajan

[EXTERNAL] Acknowledgement of Receipt of Breakdown Report: RCA ID# RCA200259 Subject:

Monday, April 1, 2024 11:41:16 AM Date:

Please do not reply to this message. This is an automatically generated notification.

Kirby Canyon Recycling and Disposal Facility

Facility #: 1812

910 Coyote Creek Drive Morgan Hill CA 95037-5037

Attention: Rebecca Azevedo

Technical Manager

The Bay Area Air Quality Management District acknowledges Receipt of your Reportable Compliance Activity (RCA) Episode Report as described below:

RCA Type: Breakdown Location: 910 Coyote Creek Drive

Morgan Hill CA 95037-5037

Source: Kirby Canyon MSW Landfill/Waste Decomposition Process S # 1

Started: 3/30/2024 5:00:00 PM Cleared: 3/30/2024 5:50:00 PM

Reported: 3/31/2024 7:56:00 AM

By: Rajan Phadnis Phone: (510) 875-9338 Email: rphadnis@wm.com

Problem: GCCS shutdown due to PG&E power surge

Monitor: Type: Parameter:

Breakdown or Excess RCA ID#:

Ind Excess: Minutes avg

Allow Limit:

Once reported, a breakdown may not be canceled or withdrawn under any circumstances. If the information shown above does not agree with the information originally reported, please call

(415) 749-4979 with the corrections or submit corrections to rca@baaqmd.gov.

Reference the RCA ID# shown above.

Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037 T: 408.779.2206

April 3, 2024 (via email: compliance@baaqmd.gov)

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 Attn: RCA 30-Day Report

Re: Kirby Canyon Recycling & Disposal Facility, San Jose, CA. Facility Number A1812, Request for Breakdown Relief RCA Number 200259 30-Day Written Follow-up Report (Per Regulation 1, Section 432)

Dear Sir or Madam:

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting this 30-Day follow-up report to the Bay Area Air Quality Management District (BAAQMD) for the PG&E unplanned power surge event on March 30, 2024.

A breakdown report (Per Regulation 1, Section 431) was submitted on March 31, 2024, at ~8:00 AM by KCRDF because the landfill gas collection and control system (GCCS) was temporarily shut down on March 30, 2024, at ~5:14 PM during PG&E unplanned power surge. The flare was back online on March 30, 2024, at around ~6:48 PM. Although KCRDF disagrees that Breakdown Relief is the appropriate methodology for compliance with Rule 8-34 during an unplanned power surge, due to direction from BAAQMD staff, KCRDF submitted the request for Breakdown Relief from BAAQMD for the March 30, 2024, PG&E power surge event via BAAQMD's Reportable Compliance Activity (RCA) notification form submitted on March 31, 2024, and was assigned RCA number 200259 (see Attachment A for copy of RCA submittal).

The unplanned power surge shutdown noted in RCA 200259 did not result in emissions and do not qualify as non-compliance. KCRDF believes that it complied with the Title V permit conditions and safety protocols. KCRDF followed all measures to ensure gas movers and valves were closed during the shutdown events. KCRDF's downtime events were not the result of equipment malfunction, knowing, willful, intentional, chronic nor committed by a recalcitrant, and did not benefit KCRDF economically nor result in a nuisance. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control.

KCRDF is committed to operating its landfill in compliance with applicable regulations and will ensure that compliance is achieved. However, KCRDF disagrees with the BAAQMD that

temporary shutdowns resulting from unplanned power outages are violations of any BAAQMD regulation.

If you have any questions or need any additional information, please do not hesitate to contact me at (510) 778-0607

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Jessica K Jones

Area General Manager

Northern California / Nevada

cc: Erin Phillips, BAAQMD

Attachments:

Attachment A- Copy of KCRDF RCA Form Number 200259

Attachment A Copy of KCRDF RCA Form Number 200259

Kirby Canyon Recycling & Disposal Facility

910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037

March 31, 2024 (via email rca@baaqmd.gov)

Compliance & Enforcement Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Re: Reportable Compliance Activity (RCA) Notification
Kirby Canyon Recycling & Disposal Facility, San Jose, CA, Facility Number A1812

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting the attached Reportable Compliance Activity (RCA) Form for temporary flare shutdown event caused by unplanned utility power surge/interruption on March 30, 2024, ~ 5:00 PM. A breakdown report about the PG&E's power surge is being submitted via this letter to Bay Area Air Quality Management District (BAAQMD) on March 31, 2024, around ~8:00 AM.

Although KCRDF disagrees that Breakdown Relief is the appropriate methodology for compliance with Rule 8-34 during an unplanned power surge, due to direction from BAAQMD staff, this letter is to request Breakdown Relief from BAAQMD for the PG&E power surge. BAAQMD's RCA notification form, as modified, is enclosed. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control and KCRDF asserts that it did not violate any applicable regulations and limits.

Breakdown Relief should be granted as KCRDF complied with administrative requirements despite its objections to the re-interpretation of Rule 8-34 and:

- 1. The breakdown is not the result of intent, negligence or disregard of air pollution control regulations;
- 2. The breakdown is not the result of improper maintenance;
- 3. The breakdown does not create a public nuisance;
- 4. The breakdown was not caused by an excessively recurrent breakdown of the same equipment; and
- 5. The breakdown did not occur, and any emissions did not interfere with attainment or maintenance of any National or California air quality standard.

On March 30, 2024, the GCCS was back online at \sim 5:50 PM. The shutdown event was unforeseeable & unpreventable at KCRDF. The flare was temporarily shut down and did not result in emission nor nuisance.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Rajan Phadnis EP Specialist

cc: Erin Phillips, BAAQMD

Attachment: RCA Form KCRDF Facility A1812

COMPLIANCE & ENFORCEMENT DIVISION

Notification Form

Reportable Compliance Activity (RCA)

	S	ee back of form t	for instructions →
1. X BREAKDOWN F	RELIEF: District Use OnlyBREAKD	OWN REFERENC	E#:
2. NA MONITOR EXCE	SS EMISSION or EXCURSION: <i>Dis</i>	trict Use Only RE	FERENCE#:
3. NA MONITOR IS INC	OPERATIVE: District Use Only REF	ERENCE#:	
4. NA PRESSURE REL	LIEF DEVICE (PRD): District Use O	nly PRD REFERE	NCE#:
	IATION AND DESCRIPTION INFOR	MATION (REQUIR	RED)
1 7	Canyon Recycling & Disposal Facility	Site #	A1812
	Coyote Creek Golf Drive, San Jose 95037	Source #	S-1
. topontou by	nadnis	Phone #	510-875-9338
Indicated Excess -NA		Fax #	-
Allowable Limit -NA		Averaging Time	-
Ctart Time, Date	/2024 at~5:00 PM	Clear Time	3/30/2024 at~5:50 PM
71 \ /	►CEM ►GLM ►Parame	etric PRD	► Non-monitor
Monitor description(s)			
Parameter(s) exceeded or not functioning due to inoperation NO _x SO ₂ CO CO H ₂ S MH ₂ S MTRS NH ₃ O ₂ H ₂ O Opacity Lead Gauge Pressure Flow Hydrocarbon Breakthrough (VOC) Temperature Wind Direction Steam Voltage Office (describe) Power surge			
Unit(s) of Measurement			, ,
▶ppm ▶ppb ▶psig ▶pH	min/hr > 20%PahrenheitX	inches H₂OOther (describe)	<u> </u> ►mmHg
This breakdown report is being submitted on 3/31/2024 at ~ 8:00 AM by Kirby Canyon Recycling & Disposal Facility (KCRDF) because the GCCS was temporarily shut down due to the potential PG&E power surge. During the PG&E power surge, the GCCS was potentially out of compliance with BAAQMD regulation 8-34-301.1. Please also see objections and discussion in the attached over letter dated 3/31/2024. **District Use Only**			
Received by		ate	Time

- ✓ Check the Box numbers 1- 4 that apply to the RCA you are trying to report or request and read the detailed instructions.
- You will receive an ID # for each RCA you submit. In the case of a request for Breakdown Relief where multiple monitors are affected, you do not need to submit multiple forms, as long as all necessary information is given on one form. RCA reported during other than core business hours will be assigned an ID # the following working day. If you do not receive an ID #, it is your responsibility to contact the BAAQMD to get one.
- ✓ You may submit only one request for breakdown relief per form. However, you may submit multiple indicated excess, inoperative monitors and PRD reports on one form, provided that the start and end times given for the events in the required information section is inclusive of all events. Information on parameters exceeded, units of measurement and allowable limits can be provided in the event description box or when contacted by District staff with questions.
- ✓ Fill out the "Site Information and Description Information Required" areas of this form and email to <u>rca@baagmd.gov</u>
- ✓ A 30-day written follow-up report is required for Breakdown Requests and PRD Releases. Reports for these types of RCA must contain a quantification of emissions, the calculations used to derive the emissions, and their duration. Reference Breakdown Admissions Advisory dated 12/3/04. Send 30-day report letters to: BAAQMD Compliance and Enforcement Division, MAILSTOP: RCA 30-DAY REPORT, 375 Beale Street, Ste. 600 San Francisco, CA 94105. NOTE: You may have additional report requirements under Title V.

Detailed Instructions

Box 1: To Request Breakdown Relief (Regulations 1-112, 1-113, 1-208, 1-431, 1-432)

If you have an equipment malfunction (e.g.; breakdown) that leads to the release of air pollutants above the regulatory or your permitted levels, you may request relief from BAAQMD enforcement action.

Check	

- □ NOTE: Start and end times given for these events in the required information section must be inclusive of all events.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Requests for breakdown relief may not be withdrawn and must be called in or faxed to the BAAQMD <u>immediately upon</u> discovery of an equipment malfunction.
- □ Receipt of an RCA ID# for a breakdown does not mean relief has been granted. An Inspector will visit your facility to determine compliance.

Box 2: Monitor Indicates Excess Emission or Excursion (Regulation 1-522.7, 1-523.3, 1-542)

When a BAAQMD-required monitor indicates an excess or excursion, you must report it to the BAAQMD.

- Check Box #2.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Any excess emission indicated by a CEM or excursion of a parametric monitor, shall be reported to the BAAQMD within 96 hours.
- Area concentration excesses over the limits prescribed in District regulations shall be reported to the BAAQMD within the next normal working day following the examination of data.

Box 3: Monitor Is Inoperative (Regulations 1-522, 1-523, 1-530)

When a BAAQMD-required monitor is inoperative for greater than 24 hours, you must report it to the BAAQMD.

- ☐ Check Box #3 only if inoperative for greater than 24 hours.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All reports of inoperative monitors must be reported by the following BAAQMD working day and additionally be cleared by a notification of resumption of monitoring. To notify the BAAQMD regarding the resumption of monitoring, do not send in a separate RCA form; call (415) 749-4979 and give the RCA ID #, date, and the time of resumption.
- Inoperative monitors (except parametric monitors) with downtime greater than 15 days must furnish proof of expedited repair in a follow-up report.

Box 4: Pressure Relief Device (PRD) Is Released (Regulation 8-28-401)

When a PRD at your refinery/chemical plant vents to the atmosphere, you must report it to the BAAQMD.

- ☐ Check Box #4 only if a pressure relief device is released.
- Separate RCA ID #'s can be applied to monitor(s) affected by a PRD by also checking Box #2 if other monitors record an
 excess or excursion.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All PRD release reports must be reported by the following BAAQMD working day.

From: My Air Online To: Phadnis, Rajan

Subject: [EXTERNAL] Acknowledgement of Receipt of Breakdown Report: RCA ID# RCA200259

Monday, April 1, 2024 11:41:16 AM Date:

Please do not reply to this message. This is an automatically generated notification.

Kirby Canyon Recycling and Disposal Facility

Facility #: 1812

910 Coyote Creek Drive Morgan Hill CA 95037-5037

Attention: Rebecca Azevedo

Technical Manager

The Bay Area Air Quality Management District acknowledges Receipt of your Reportable Compliance Activity (RCA) Episode Report as described below:

RCA Type: Breakdown Location: 910 Coyote Creek Drive

Morgan Hill CA 95037-5037

Source: Kirby Canyon MSW Landfill/Waste Decomposition Process S # 1

Started: 3/30/2024 5:00:00 PM Cleared: 3/30/2024 5:50:00 PM

Reported: 3/31/2024 7:56:00 AM

By: Rajan Phadnis Phone: (510) 875-9338 Email: rphadnis@wm.com

Problem: GCCS shutdown due to PG&E power surge

Monitor: Type: Parameter:

Breakdown or Excess RCA ID#:

Ind Excess: Minutes avg

Allow Limit:

Once reported, a breakdown may not be canceled or withdrawn under any circumstances. If the information shown above does not agree with the information originally reported, please call

(415) 749-4979 with the corrections or submit corrections to rca@baaqmd.gov.

Reference the RCA ID# shown above.

Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037 T: 408.779.2206

April 11, 2024 (via email: compliance@baaqmd.gov)

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Attn: Title V Reports

Re: Kirby Canyon Recycling & Disposal Facility, San Jose, CA. Facility Number A1812,

Section I.F Title V, 10 and 30-Day written report

Dear Sir or Madam:

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting this 10 and 30-day Title V written report to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F for KCRDF.

A breakdown report was submitted on April 8, at ~7:10 AM by KCRDF because the landfill gas collection and control system (GCCS) temporarily shut down on April 7, 2024, at ~8:30 PM during PG&E unplanned power surge event. The flare was online on April 7, 2024, at ~9:50 PM. Although KCRDF disagrees that Breakdown Relief is the appropriate methodology for compliance with Rule 8-34 during an unplanned power outage, due to direction from BAAQMD staff, KCRDF submitted the request for Breakdown Relief from BAAQMD for the April 7, 2024, PG&E power surge via BAAQMD's Reportable Compliance Activity (RCA) notification form submitted on April 8, 2024 and was assigned RCA number 200267 (see Attachment A for copy of RCA submittal).

The unplanned power outage shutdown noted in RCA number 200267 did not result in emissions and do not qualify as non-compliance. KCRDF believes that it complied with the Title V permit conditions and safety protocols. KCRDF followed all measures to ensure gas movers and valves were closed during the shutdown events. KCRDF's downtime events were not the result of equipment malfunction, knowing, willful, intentional, chronic nor committed by a recalcitrant, and did not benefit KCRDF economically nor result in a nuisance. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control.

KCRDF is committed to operating its landfill in compliance with applicable regulations and will ensure that compliance is achieved. However, KCRDF disagrees with the BAAQMD that

temporary shutdowns resulting from unplanned power outages are violations of any BAAQMD regulation.

If you have any questions or need any additional information, please do not hesitate to contact me at (510) 225-5209.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Michael Tejero District Manager

cc: Erin Phillips, BAAQMD

Attachments:

Attachment A- Copy of KCRDF RCA Form -Number 200267

Attachment A

Copy of KCRDF RCA Form -Number 200267

Kirby Canyon Recycling & Disposal Facility

910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037

April 8, 2024 (via email rca@baaqmd.gov)

Compliance & Enforcement Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Re: Reportable Compliance Activity (RCA) Notification Kirby Canyon Recycling & Disposal Facility, San Jose, CA, Facility Number A1812

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting the attached Reportable Compliance Activity (RCA) Form for temporary flare shutdown event caused by unplanned utility power surge/interruption on April 7, 2024, \sim 8:30 PM. A breakdown report about the PG&E's power surge is being submitted via this letter to Bay Area Air Quality Management District (BAAQMD) on April 8, 2024, around \sim 7:10 AM.

Although KCRDF disagrees that Breakdown Relief is the appropriate methodology for compliance with Rule 8-34 during an unplanned power surge, due to direction from BAAQMD staff, this letter is to request Breakdown Relief from BAAQMD for the PG&E power surge. BAAQMD's RCA notification form, as modified, is enclosed. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control and KCRDF asserts that it did not violate any applicable regulations and limits.

Breakdown Relief should be granted as KCRDF complied with administrative requirements despite its objections to the re-interpretation of Rule 8-34 and:

- 1. The breakdown is not the result of intent, negligence or disregard of air pollution control regulations;
- 2. The breakdown is not the result of improper maintenance;
- 3. The breakdown does not create a public nuisance;
- 4. The breakdown was not caused by an excessively recurrent breakdown of the same equipment; and
- 5. The breakdown did not occur, and any emissions did not interfere with attainment or maintenance of any National or California air quality standard.

On April 7, 2024, the GCCS was back online at \sim 9:50 PM. The shutdown event was unforeseeable & unpreventable at KCRDF. The flare was temporarily shut down and did not result in emission nor nuisance.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Rajan Phadnis EP Specialist

cc: Erin Phillips, BAAQMD

Attachment: RCA Form KCRDF Facility A1812

COMPLIANCE & ENFORCEMENT DIVISION

Notification Form

Reportable Compliance Activity (RCA)

	S	ee back of form t	for instructions →
1. X BREAKDO	WN RELIEF: <i>District Use Only</i> BREAKD	OWN REFERENC	E#:
2. NA MONITOR E	EXCESS EMISSION or EXCURSION: <i>Dis</i>	trict Use Only RE	FERENCE#:
3. NA MONITOR IS	S INOPERATIVE: <i>District Use Only</i> REF	ERENCE#:	
4. NA PRESSURE	RELIEF DEVICE (PRD): District Use O	nly PRD REFERE	NCE#:
SITE INF	ORMATION AND DESCRIPTION INFOR	MATION (REQUIR	RED)
Company	Kirby Canyon Recycling & Disposal Facility	Site #	A1812
Address	910 Coyote Creek Golf Drive, San Jose 95037	Source #	S-1
Reported by	R Phadnis	Phone #	510-875-9338
Indicated Excess	-NA	Fax #	-
Allowable Limit	-NA	Averaging Time	-
Start Time/Date	4/7/2024 at~8:30 PM	Clear Time	4/7/2024 at~9:50 PM
Monitor/device type(s)	►CEM ►GLM ►Parame	etric PRD	► Non-monitor
Monitor description(s)			
Parameter(s) exceeded NO _x SO NO ₂ Hydrocarbon Brea Wind Direction	O D ►Opacity ► Lead ►	H ₂ S	►Flow
Unit(s) of Measurement ▶ppm ▶ppb	▶min/hr > 20%	▶inches H ₂ O	►mmHg
pecause the GCCS was tempora	submitted on 4/8/2024 at ~ 7:10 AM by Kirby Carily shut down due to the potential PG&E power suce with BAAQMD regulation 8-34-301.1. Please a	irge. During the PG&	E power surge, the GCCS
	District Use Only		- ·
Received by	D	ate	Time

- ✓ Check the Box numbers 1-4 that apply to the RCA you are trying to report or request and read the detailed instructions.
- You will receive an ID # for each RCA you submit. In the case of a request for Breakdown Relief where multiple monitors are affected, you do not need to submit multiple forms, as long as all necessary information is given on one form. RCA reported during other than core business hours will be assigned an ID # the following working day. If you do not receive an ID #, it is your responsibility to contact the BAAQMD to get one.
- ✓ You may submit only one request for breakdown relief per form. However, you may submit multiple indicated excess, inoperative monitors and PRD reports on one form, provided that the start and end times given for the events in the required information section is inclusive of all events. Information on parameters exceeded, units of measurement and allowable limits can be provided in the event description box or when contacted by District staff with questions.
- ✓ Fill out the "Site Information and Description Information Required" areas of this form and email to <u>rca@baagmd.gov</u>
- ✓ A 30-day written follow-up report is required for Breakdown Requests and PRD Releases. Reports for these types of RCA must contain a quantification of emissions, the calculations used to derive the emissions, and their duration. Reference Breakdown Admissions Advisory dated 12/3/04. Send 30-day report letters to: BAAQMD Compliance and Enforcement Division, MAILSTOP: RCA 30-DAY REPORT, 375 Beale Street, Ste. 600 San Francisco, CA 94105. NOTE: You may have additional report requirements under Title V.

Detailed Instructions

Box 1: To Request Breakdown Relief (Regulations 1-112, 1-113, 1-208, 1-431, 1-432)

If you have an equipment malfunction (e.g.; breakdown) that leads to the release of air pollutants above the regulatory or your permitted levels, you may request relief from BAAQMD enforcement action.

1	\sim L	 	x #1

- □ NOTE: Start and end times given for these events in the required information section must be inclusive of all events.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Requests for breakdown relief may not be withdrawn and must be called in or faxed to the BAAQMD <u>immediately upon</u> discovery of an equipment malfunction.
- Receipt of an RCA ID# for a breakdown does not mean relief has been granted. An Inspector will visit your facility to determine compliance.

Box 2: Monitor Indicates Excess Emission or Excursion (Regulation 1-522.7, 1-523.3, 1-542)

When a BAAQMD-required monitor indicates an excess or excursion, you must report it to the BAAQMD.

- Check Box #2.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Any excess emission indicated by a CEM or excursion of a parametric monitor, shall be reported to the BAAQMD within 96 hours.
- Area concentration excesses over the limits prescribed in District regulations shall be reported to the BAAQMD within the next normal working day following the examination of data.

Box 3: Monitor Is Inoperative (Regulations 1-522, 1-523, 1-530)

When a BAAQMD-required monitor is inoperative for greater than 24 hours, you must report it to the BAAQMD.

- ☐ Check Box #3 only if inoperative for greater than 24hours.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All reports of inoperative monitors must be reported by the following BAAQMD working day and additionally be cleared by a notification of resumption of monitoring. To notify the BAAQMD regarding the resumption of monitoring, do not send in a separate RCA form; call (415) 749-4979 and give the RCA ID #, date, and the time of resumption.
- Inoperative monitors (except parametric monitors) with downtime greater than 15 days must furnish proof of expedited repair in a follow-up report.

Box 4: Pressure Relief Device (PRD) Is Released (Regulation 8-28-401)

When a PRD at your refinery/chemical plant vents to the atmosphere, you must report it to the BAAQMD.

- ☐ Check Box #4 only if a pressure relief device is released.
- Separate RCA ID #'s can be applied to monitor(s) affected by a PRD by also checking Box #2 if other monitors record an
 excess or excursion.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All PRD release reports must be reported by the following BAAQMD working day.

From: RCA Notification
To: Phadnis, Rajan

Cc: <u>Colline, Christian; Tejero, Michael; Erin Phillips; Azevedo, Becky</u>

Subject: [EXTERNAL] RE: KCRDF A1812-RCA for PG&E power surge on 3.30.2024

Date: Monday, April 8, 2024 10:19:41 AM

I am confirming receipt, the RCA for your notification is 200267

From: Phadnis, Rajan <rphadnis@wm.com>

Sent: Monday, April 8, 2024 7:09

To: RCA Notification <rca@baaqmd.gov>

Cc: Phadnis, Rajan <rphadnis@wm.com>; Colline, Christian <CColline@wm.com>; Tejero, Michael <mtejero@wm.com>; Erin Phillips <ephillips@baaqmd.gov>; Azevedo, Becky <Razevedo@wm.com>

Subject: KCRDF A1812-RCA for PG&E power surge on 3.30.2024

CAUTION: This email originated from outside of the BAAQMD network. Do not click links or open attachments unless you recognize the sender and know the content is safe.

I am attaching the RCA notification form for PG&E power surge event on 4.7.2024 at ~8:30 PM, at Kirby Canyon Recycling and Disposal Facility- A1812.

Thank you,

Rajan Phadnis EP Specialist For Kirby Canyon Recycling and Disposal Facility

Recycling is a good thing. Please recycle any printed emails.

Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037 T: 408.779.2206

April 11, 2024 (via email: compliance@baaqmd.gov)

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 Attn: RCA 30-Day Report

Re: Kirby Canyon Recycling & Disposal Facility, San Jose, CA. Facility Number A1812, Request for Breakdown Relief RCA Number 200267 30-Day Written Follow-up Report (Per Regulation 1, Section 432)

Dear Sir or Madam:

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting this 30-Day follow-up report to the Bay Area Air Quality Management District (BAAQMD) for the PG&E unplanned power surge event on April 7, 2024.

A breakdown report (Per Regulation 1, Section 431) was submitted on April 8, 2024, at ~7:10 AM by KCRDF because the landfill gas collection and control system (GCCS) was temporarily shut down on April 7, 2024, at ~8:30 PM during PG&E unplanned power surge. The flare was back online on April 7, 2024, at around ~9:50 PM. Although KCRDF disagrees that Breakdown Relief is the appropriate methodology for compliance with Rule 8-34 during an unplanned power surge, due to direction from BAAQMD staff, KCRDF submitted the request for Breakdown Relief from BAAQMD for the April 8, 2024, PG&E power surge event via BAAQMD's Reportable Compliance Activity (RCA) notification form submitted on April 8, 2024, and was assigned RCA number 200267 (see Attachment A for copy of RCA submittal).

The unplanned power surge shutdown noted in RCA 200267 did not result in emissions and do not qualify as non-compliance. KCRDF believes that it complied with the Title V permit conditions and safety protocols. KCRDF followed all measures to ensure gas movers and valves were closed during the shutdown events. KCRDF's downtime events were not the result of equipment malfunction, knowing, willful, intentional, chronic nor committed by a recalcitrant, and did not benefit KCRDF economically nor result in a nuisance. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control.

KCRDF is committed to operating its landfill in compliance with applicable regulations and will ensure that compliance is achieved. However, KCRDF disagrees with the BAAQMD that

temporary shutdowns resulting from unplanned power outages are violations of any BAAQMD regulation.

If you have any questions or need any additional information, please do not hesitate to contact me at (510) 225-5209.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Michael Tejero District Manager

cc: Erin Phillips, BAAQMD

Attachments:

Attachment A- Copy of KCRDF RCA Form Number 200267

Attachment A Copy of KCRDF RCA Form Number 200267

Kirby Canyon Recycling & Disposal Facility

910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037

April 8, 2024 (via email rca@baaqmd.gov)

Compliance & Enforcement Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Re: Reportable Compliance Activity (RCA) Notification Kirby Canyon Recycling & Disposal Facility, San Jose, CA, Facility Number A1812

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting the attached Reportable Compliance Activity (RCA) Form for temporary flare shutdown event caused by unplanned utility power surge/interruption on April 7, 2024, \sim 8:30 PM. A breakdown report about the PG&E's power surge is being submitted via this letter to Bay Area Air Quality Management District (BAAQMD) on April 8, 2024, around \sim 7:10 AM.

Although KCRDF disagrees that Breakdown Relief is the appropriate methodology for compliance with Rule 8-34 during an unplanned power surge, due to direction from BAAQMD staff, this letter is to request Breakdown Relief from BAAQMD for the PG&E power surge. BAAQMD's RCA notification form, as modified, is enclosed. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control and KCRDF asserts that it did not violate any applicable regulations and limits.

Breakdown Relief should be granted as KCRDF complied with administrative requirements despite its objections to the re-interpretation of Rule 8-34 and:

- 1. The breakdown is not the result of intent, negligence or disregard of air pollution control regulations;
- 2. The breakdown is not the result of improper maintenance;
- 3. The breakdown does not create a public nuisance;
- 4. The breakdown was not caused by an excessively recurrent breakdown of the same equipment; and
- 5. The breakdown did not occur, and any emissions did not interfere with attainment or maintenance of any National or California air quality standard.

On April 7, 2024, the GCCS was back online at \sim 9:50 PM. The shutdown event was unforeseeable & unpreventable at KCRDF. The flare was temporarily shut down and did not result in emission nor nuisance.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Rajan Phadnis EP Specialist

cc: Erin Phillips, BAAQMD

Attachment: RCA Form KCRDF Facility A1812

COMPLIANCE & ENFORCEMENT DIVISION

Notification Form

Reportable Compliance Activity (RCA)

	S	ee back of form t	for instructions →
1. X BREAKDO	WN RELIEF: <i>District Use Only</i> BREAKD	OWN REFERENC	E#:
2. NA MONITOR E	EXCESS EMISSION or EXCURSION: <i>Dis</i>	trict Use Only RE	FERENCE#:
3. NA MONITOR IS	S INOPERATIVE: <i>District Use Only</i> REF	ERENCE#:	
4. NA PRESSURE	RELIEF DEVICE (PRD): District Use O	nly PRD REFERE	NCE#:
SITE INF	ORMATION AND DESCRIPTION INFOR	MATION (REQUIR	RED)
Company	Kirby Canyon Recycling & Disposal Facility	Site #	A1812
Address	910 Coyote Creek Golf Drive, San Jose 95037	Source #	S-1
Reported by	R Phadnis	Phone #	510-875-9338
Indicated Excess	-NA	Fax #	-
Allowable Limit	-NA	Averaging Time	-
Start Time/Date	4/7/2024 at~8:30 PM	Clear Time	4/7/2024 at~9:50 PM
Monitor/device type(s)	►CEM ►GLM ►Parame	etric PRD	► Non-monitor
Monitor description(s)			
Parameter(s) exceeded NO _x SO NO ₂ Hydrocarbon Brea Wind Direction	O D ►Opacity ► Lead ►	H ₂ S	►Flow
Unit(s) of Measurement ▶ppm ▶ppb	▶min/hr > 20%	▶inches H ₂ O	►mmHg
pecause the GCCS was tempora	submitted on 4/8/2024 at ~ 7:10 AM by Kirby Carily shut down due to the potential PG&E power suce with BAAQMD regulation 8-34-301.1. Please a	irge. During the PG&	E power surge, the GCCS
	District Use Only		- ·
Received by	D	ate	Time

- ✓ Check the Box numbers 1-4 that apply to the RCA you are trying to report or request and read the detailed instructions.
- You will receive an ID # for each RCA you submit. In the case of a request for Breakdown Relief where multiple monitors are affected, you do not need to submit multiple forms, as long as all necessary information is given on one form. RCA reported during other than core business hours will be assigned an ID # the following working day. If you do not receive an ID #, it is your responsibility to contact the BAAQMD to get one.
- ✓ You may submit only one request for breakdown relief per form. However, you may submit multiple indicated excess, inoperative monitors and PRD reports on one form, provided that the start and end times given for the events in the required information section is inclusive of all events. Information on parameters exceeded, units of measurement and allowable limits can be provided in the event description box or when contacted by District staff with questions.
- ✓ Fill out the "Site Information and Description Information Required" areas of this form and email to <u>rca@baagmd.gov</u>
- ✓ A 30-day written follow-up report is required for Breakdown Requests and PRD Releases. Reports for these types of RCA must contain a quantification of emissions, the calculations used to derive the emissions, and their duration. Reference Breakdown Admissions Advisory dated 12/3/04. Send 30-day report letters to: BAAQMD Compliance and Enforcement Division, MAILSTOP: RCA 30-DAY REPORT, 375 Beale Street, Ste. 600 San Francisco, CA 94105. NOTE: You may have additional report requirements under Title V.

Detailed Instructions

Box 1: To Request Breakdown Relief (Regulations 1-112, 1-113, 1-208, 1-431, 1-432)

If you have an equipment malfunction (e.g.; breakdown) that leads to the release of air pollutants above the regulatory or your permitted levels, you may request relief from BAAQMD enforcement action.

1	\sim L	 	x #1

- □ NOTE: Start and end times given for these events in the required information section must be inclusive of all events.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Requests for breakdown relief may not be withdrawn and must be called in or faxed to the BAAQMD <u>immediately upon</u> discovery of an equipment malfunction.
- Receipt of an RCA ID# for a breakdown does not mean relief has been granted. An Inspector will visit your facility to determine compliance.

Box 2: Monitor Indicates Excess Emission or Excursion (Regulation 1-522.7, 1-523.3, 1-542)

When a BAAQMD-required monitor indicates an excess or excursion, you must report it to the BAAQMD.

- Check Box #2.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Any excess emission indicated by a CEM or excursion of a parametric monitor, shall be reported to the BAAQMD within 96 hours.
- Area concentration excesses over the limits prescribed in District regulations shall be reported to the BAAQMD within the next normal working day following the examination of data.

Box 3: Monitor Is Inoperative (Regulations 1-522, 1-523, 1-530)

When a BAAQMD-required monitor is inoperative for greater than 24 hours, you must report it to the BAAQMD.

- ☐ Check Box #3 only if inoperative for greater than 24hours.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All reports of inoperative monitors must be reported by the following BAAQMD working day and additionally be cleared by a notification of resumption of monitoring. To notify the BAAQMD regarding the resumption of monitoring, do not send in a separate RCA form; call (415) 749-4979 and give the RCA ID #, date, and the time of resumption.
- Inoperative monitors (except parametric monitors) with downtime greater than 15 days must furnish proof of expedited repair in a follow-up report.

Box 4: Pressure Relief Device (PRD) Is Released (Regulation 8-28-401)

When a PRD at your refinery/chemical plant vents to the atmosphere, you must report it to the BAAQMD.

- ☐ Check Box #4 only if a pressure relief device is released.
- Separate RCA ID #'s can be applied to monitor(s) affected by a PRD by also checking Box #2 if other monitors record an
 excess or excursion.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All PRD release reports must be reported by the following BAAQMD working day.

From: RCA Notification
To: Phadnis, Rajan

Cc: <u>Colline, Christian; Tejero, Michael; Erin Phillips; Azevedo, Becky</u>

Subject: [EXTERNAL] RE: KCRDF A1812-RCA for PG&E power surge on 3.30.2024

Date: Monday, April 8, 2024 10:19:41 AM

I am confirming receipt, the RCA for your notification is 200267

From: Phadnis, Rajan <rphadnis@wm.com>

Sent: Monday, April 8, 2024 7:09

To: RCA Notification <rca@baaqmd.gov>

Cc: Phadnis, Rajan <rphadnis@wm.com>; Colline, Christian <CColline@wm.com>; Tejero, Michael <mtejero@wm.com>; Erin Phillips <ephillips@baaqmd.gov>; Azevedo, Becky <Razevedo@wm.com>

Subject: KCRDF A1812-RCA for PG&E power surge on 3.30.2024

CAUTION: This email originated from outside of the BAAQMD network. Do not click links or open attachments unless you recognize the sender and know the content is safe.

I am attaching the RCA notification form for PG&E power surge event on 4.7.2024 at ~8:30 PM, at Kirby Canyon Recycling and Disposal Facility- A1812.

Thank you,

Rajan Phadnis EP Specialist For Kirby Canyon Recycling and Disposal Facility

Recycling is a good thing. Please recycle any printed emails.

Kirby Canyon Recycling & Disposal Facility

910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037

January 22, 2024 (via email rca@baaqmd.gov)

Compliance & Enforcement Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Re: Reportable Compliance Activity (RCA) Notification Kirby Canyon Recycling & Disposal Facility, San Jose, CA, Facility Number A1812

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting the attached Reportable Compliance Activity (RCA) Form for inoperative flowmeter that recorded out of range flow data readings for more than a 24-hour period. The flare was operating normally during this period with steady temperature and vacuum readings. Maintenance was performed on the flowmeter and it returned to normal operation.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Rajan Phadnis EP Specialist

cc: Erin Phillips, BAAQMD

Attachment: RCA Form KCRDF Facility A1812

COMPLIANCE & ENFORCEMENT DIVISION

Notification Form

Reportable Compliance Activity (RCA)

	S	ee back of form f	or instructions →
1. NA BREAKDO	DWN RELIEF: District Use OnlyBREAKD	OOWN REFEREN	CE #:
2. NA MONITOR E	EXCESS EMISSION or EXCURSION: Dist	trict Use Only RE	FERENCE#:
3. NA X MONITOR I	IS INOPERATIVE: District Use Only REF	ERENCE#:	
4. NA PRESSURE	RELIEF DEVICE (PRD): District Use Or	nly PRD REFERE	NCE#:
SITE INF	ORMATION AND DESCRIPTION INFORM	MATION (REQUIR	RED)
Company	Kirby Canyon Recycling & Disposal Facility	Site #	A1812
Address	910 Coyote Creek Golf Drive, San Jose 95037	Source #	S-1
Reported by	R Phadnis	Phone #	510-875-9338
Indicated Excess	-NA	Fax #	-
Allowable Limit	-NA	Averaging Time N	
Start Time/Date	1/19/24 ~22:36	Clear Time	1/22/24 at ~8:30 AM
Monitor/device type(s)	▶ CEM ▶ GLM X ▶ Parame	tric ►PRD	► Non-monitor
Monitor description(s)	Gas flowmeter		
Parameter(s) exceeded NO _x SO ₂ Hydrocarbon Brea Wind Direction	D	H ₂ S	X ► Flow
Unit(s) of Measurement			,
▶ppm ▶psig ▶pH	• min/hr > 20%	►inches H ₂ O ►Other (describe) So	►mmHg cfm
out of range flow data readi	ed by Kirby Canyon Recycling & Disposal Facings for more than a 24-hour period. The flare of vacuum readings. Maintenance was perfor	was operating norn	nally during this period
Received by	District Use Only	ate	Time
I LOOGIVOU Dy	D.	alo	1 11110

- ✓ Check the Box numbers 1- 4 that apply to the RCA you are trying to report or request and read the detailed instructions.
- ✓ You will receive an ID # for each RCA you submit. In the case of a request for Breakdown Relief where multiple monitors are affected, you do not need to submit multiple forms, as long as all necessary information is given on one form. RCA reported during other than core business hours will be assigned an ID # the following working day. If you do not receive an ID #, it is your responsibility to contact the BAAQMD to get one.
- ✓ You may submit only one request for breakdown relief per form. However, you may submit multiple indicated excess, inoperative monitors and PRD reports on one form, provided that the start and end times given for the events in the required information section is inclusive of all events. Information on parameters exceeded, units of measurement and allowable limits can be provided in the event description box or when contacted by District staff with questions.
- ✓ Fill out the "Site Information and Description Information Required" areas of this form and email to <u>rca@baagmd.gov</u>
- ✓ A 30-day written follow-up report is required for Breakdown Requests and PRD Releases. Reports for these types of RCA must contain a quantification of emissions, the calculations used to derive the emissions, and their duration. Reference Breakdown Admissions Advisory dated 12/3/04. Send 30-day report letters to: BAAQMD Compliance and Enforcement Division, MAILSTOP: RCA 30-DAY REPORT, 375 Beale Street, Ste. 600 San Francisco, CA 94105. NOTE: You may have additional report requirements under Title V.

Detailed Instructions

Box 1: To Request Breakdown Relief (Regulations 1-112, 1-113, 1-208, 1-431, 1-432)

If you have an equipment malfunction (e.g.; breakdown) that leads to the release of air pollutants above the regulatory or your permitted levels, you may request relief from BAAQMD enforcement action.

1	\sim L	 	x #1

- □ NOTE: Start and end times given for these events in the required information section must be inclusive of all events.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Requests for breakdown relief may not be withdrawn and must be called in or faxed to the BAAQMD <u>immediately upon</u> discovery of an equipment malfunction.
- Receipt of an RCA ID# for a breakdown does not mean relief has been granted. An Inspector will visit your facility to determine compliance.

Box 2: Monitor Indicates Excess Emission or Excursion (Regulation 1-522.7, 1-523.3, 1-542)

When a BAAQMD-required monitor indicates an excess or excursion, you must report it to the BAAQMD.

- Check Box #2.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- Any excess emission indicated by a CEM or excursion of a parametric monitor, shall be reported to the BAAQMD within 96 hours.
- Area concentration excesses over the limits prescribed in District regulations shall be reported to the BAAQMD within the next normal working day following the examination of data.

Box 3: Monitor Is Inoperative (Regulations 1-522, 1-523, 1-530)

When a BAAQMD-required monitor is inoperative for greater than 24 hours, you must report it to the BAAQMD.

- Check Box #3 only if inoperative for greater than 24hours.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All reports of inoperative monitors must be reported by the following BAAQMD working day and additionally be cleared by a notification of resumption of monitoring. To notify the BAAQMD regarding the resumption of monitoring, do not send in a separate RCA form; call (415) 749-4979 and give the RCA ID #, date, and the time of resumption.
- Inoperative monitors (except parametric monitors) with downtime greater than 15 days must furnish proof of expedited repair in a follow-up report.

Box 4: Pressure Relief Device (PRD) Is Released (Regulation 8-28-401)

When a PRD at your refinery/chemical plant vents to the atmosphere, you must report it to the BAAQMD.

- ☐ Check Box #4 only if a pressure relief device is released.
- Separate RCA ID #'s can be applied to monitor(s) affected by a PRD by also checking Box #2 if other monitors record an
 excess or excursion.
- Fill out all the information in the "Site Information and Description Information (Required)" area of the form.
- All PRD release reports must be reported by the following BAAQMD working day.

From: RCA Notification
To: Phadnis, Rajan

Cc:Colline, Christian; Azevedo, Becky; Erin PhillipsSubject:[EXTERNAL] RE: KCRDF A1812-RCA -1.22.2024Date:Monday, January 22, 2024 5:32:57 PM

Good Afternoon,

Confirming receipt, the RCA# for this notification is RCA200121.

Cheers, Joe Dobosz

From: Phadnis, Rajan <rphadnis@wm.com> **Sent:** Monday, January 22, 2024 5:15 PM **To:** RCA Notification <rca@baaqmd.gov>

Cc: Colline, Christian <CColline@wm.com>; Azevedo, Becky <Razevedo@wm.com>; Phadnis, Rajan

<rphadnis@wm.com>; Erin Phillips <ephillips@baaqmd.gov>

Subject: KCRDF A1812-RCA -1.22.2024

CAUTION: This email originated from outside of the BAAQMD network. Do not click links or open attachments unless you recognize the sender and know the content is safe.

I am attaching the RCA notification form for Kirby Canyon Recycling and Disposal Facility-A1812.

Thank you,

Rajan Phadnis EP Specialist For Kirby Canyon Recycling and Disposal Facility

Recycling is a good thing. Please recycle any printed emails.

APPENDIX K WELLFIELD DEVIATION LOG

KIRBY CANYON RECYCLING & DISPOSAL FACILITY WELLFIELD DEVIATION REPORT

Reporting Period: From January 1 2024 through June 30, 2024

REPORT PREPARED BY: Rajan Phadnis

UPDATED DATE: July 1, 2024 LFG MONITORING DEVICE: GEM MODEL: 2000

DATE LAST CALIBRATED: DAILY

Well ID	Date and Time	CH₄	CO ₂	O ₂	Balance	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)	Comments	Duration of Exceedance As of the End of Reporting Period
KCYN0054	4/12/2024 9:20	16.9	15.8	12.2	55.1	79.6	80.0	-4.3	-4.1	NSPS/EG CAI;Barely Open;No Adj. Made;Watered In	
KCYN0054	4/22/2024 7:02	14.9	13.3	13.2	58.6	75.3	75.2	-4.3	-4.3	NSPS/EG CAI;Barely Open;No Adj. Made;Watered In	
KCYN0054	5/8/2024 9:02	13.8	12.1	13.7	60.4	78.7	78.9	-6.2	-6.2	NSPS/EG CAI;Barely Open;No Adj. Made;Watered In	
KCYN0054	6/4/2024 6:40	9.8	14.5	14.1	61.6	71.9	71.9	-12.3	-12.3	NSPS/EG CAI;Barely Open;No Adj. Made;Watered In	>70
Well KCYN0054 has an existing oxygen exceedance.											
KCYN0063	4/10/2024 8:28	15.9	16.0	9.7	58.4	68.9	69.0	-22.4	-50.0	NSPS/EG CAI;Barely Open;Watered In	
KCYN0063	4/16/2024 12:34	19.2	15.7	12.0	53.1	71.8	71.5	-49.9	-49.9	Barely Open;No Adj. Made;Watered In	
KCYN0063	5/7/2024 7:23	7.0	6.2	17.2	69.6	66.5	65.8	-50.7	-50.7	NSPS/EG CAI;Barely Open;No Adj. Made;Watered In	
KCYN0063	6/6/2024 9:19	0.8	9.2	17.1	72.9	70.3	70.3	-50.4	-50.4	NSPS/EG CAI;Barely Open;No Adj. Made;Watered In	>73
Well KCYN0063 has	s an existing oxygen excee	dance.			•		•				•
KCLC0157	5/9/2024 7:49	28.2	22.8	10.2	38.8	56.6	56.6	-20.4	-21.2	NSPS/EG CAI;Fully Closed;No Adj. Made;Surging	
KCLC0157	5/9/2024 8:01	21.0	16.9	12.9	49.2	61.8	61.8	-23.0	-22.3	NSPS/EG CAI;Barely Open;Watered In	
KCLC0157	5/9/2024 10:14	45.0	33.4	3.9	17.7	80.7	80.9	-19.6	-20.5	NSPS/EG CAI;Barely Open;No Adj. Made	<1
Well KCLC0157 had	d oxygen exceedance durin	g May mon	itoring.								
KCLC0157	6/6/2024 7:37	18.5	15.3	13.3	52.9	61.2	61.2	-24.4	-24.4	NSPS/EG CAI;Barely Open;No Adj. Made;Watered In	
KCLC0157	6/6/2024 7:40	38.2	28.0	6.5	27.3	62.9	62.9	-23.9	-24.4	NSPS/EG CAI;Barely Open;No Adj. Made;Watered In	>24
Well KCLC0157 has	an existing oxygen exceed	dance.									

EG CAI= Emissions Guidelines Corrective Action Initiated

KCRDF Plant No. 1812

KCRDF Jan 1-June 30- 2024 SAR

APPENDIX L MONTHLY LANDFILL GAS FLOW RATES

MONTHLY LFG Input to Flare (A-12)

January 1, 2024-June 30, 2024

KIRBY CANYON RECYCLING & DISPOSAL FACILITY, San Jose, CA

Month	Total Available Runtime (hours)	Total Downtime (hours)	Total Runtime (hours)	Average Flow (scfm)	CH ₄ (%)*	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Total Heat Input (MMBTU)
January-24	744.0	5.0	739.03	2,190	46.6	97,115,694	45,270,481	45,859
February-24	696.0	5.1	690.93	2,119	46.6	87,812,369	40,933,736	41,466
March 2024 ¹	743.0	4.7	738.27	1,960	46.6	86,830,892	40,476,220	41,002
April-24	720.0	2.5	717.50	1,997	48.1	85,963,495	41,358,922	41,897
May-24	744.0	2.2	741.80	2,053	48.8	91,347,126	44,607,999	45,188
June-24	720.0	11.5	708.50	2,032	48.8	86,357,446	42,171,363	42,720
January 1-June 30, 2024, Totals/Avg	4,367.0	31.0	4,336.0	2,058	47.6	535,427,022	254,818,721	258,131

NOTES:

The annual heat input rate for the A-12 Flare shall not exceed 1,087,700 MMBTU and 2,980 MMBTU per day (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

KCRDF Plant No. 1812 KCRDF Jan 1-June 30- 2024 SAR

^{**}Methane content determined from March 3, 2023 and February 14, 2024 source test events.

¹There were 743 hours in March 2024, due to Daylight Saving Time.

MONTHLY LFG Input to F								
KIRBY CANYON RECYCL	KIRBY CANYON RECYCLING & DISPOSAL FACILITY, San Jose,							
MONTHLY LFG Heat Inpu	MONTHLY LFG Heat Input: Partial 2024							
Month Monthly Total Heat Heat Input (MMBTU) Month Input (MMBTU)								
January-24	45,859	454,012						
February-24	41,466	463,174						
March-24	41,002	469,838						
April-24	41,897	474,955						
May-24	480,022							
June-24	42,720	483,172						
MMBTU= million British the	ermal units							

Heat Input Rate A-12 Flare

MONTH: January-24

1/18/2024 1/19/2024	24.00 23.53	46.6 46.6	2,131 2,219	3,068,695 3,133,074	1,430,472 1,460,482	1,013.0 1,013.0	1,449 1,479
1/18/2024	24.00	46.6	2,131	3,068,695	1,430,472	1,013.0	1,449
1/18/2024 1/19/2024	24.00 23.53	46.6 46.6	2,131 2,219	3,068,695 3,133,074	1,430,472 1,460,482	1,013.0 1,013.0	1,449 1,479
			·				
1/14/2024 1/15/2024 1/16/2024	24.00 24.00 24.00	46.6 46.6 46.6	2,134 2,132 2,133	3,073,003 3,070,017 3,071,666	1,432,480 1,431,088 1,431,857	1,013.0 1,013.0 1,013.0	1,451 1,450 1,450
1/11/2024 1/12/2024 1/13/2024 1/14/2024	23.97 24.00 24.00 24.00	46.6 46.6 46.6 46.6	2,162 2,131 2,131 2.134	3,108,466 3,068,472 3,068,012 3,073,003	1,449,011 1,430,368 1,430,154	1,013.0 1,013.0 1,013.0 1,013.0	1,468 1,449 1,449 1,451
1/7/2024 1/8/2024 1/9/2024 1/10/2024	24.00 24.00 24.00 23.57	46.6 46.6 46.6 46.6	2,089 2,135 2,138 2,129	3,008,341 3,074,056 3,079,182 3,011,026	1,402,338 1,432,971 1,435,361 1,403,590	1,013.0 1,013.0 1,013.0 1,013.0	1,421 1,452 1,454 1,422
1/2/2024 1/3/2024 1/4/2024 1/5/2024 1/6/2024	24.00 24.00 24.00 24.00 24.00 24.00	46.6 46.6 46.6 46.6 46.6	2,115 2,123 2,143 2,130 2,109	3,045,282 3,057,715 3,086,378 3,067,894 3,036,321	1,419,558 1,425,354 1,438,715 1,430,099 1,415,381	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,438 1,444 1,457 1,449 1,434
Date 1/1/2024	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm) 2,133	Total LFG Volume (scf) 3,071,501	Total CH₄ Volume (scf) 1,431,780	Heating Value of CH ₄ (BTU/scf) 1,013.0	Heat Input (MMBTU)/Day 1,450

NOTES:

*Starting April 20, 2023, Methane content determined from the March 3, 2023, A-12 Source Test is used.

The daily heat input rate for the A-12 Flare shall not exceed 3,576 MMBTU (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

Heat Input Rate A-12 Flare

MONTH:

February-24

						Maximum	1,485
Totals/ Average:	690.93	46.6	2,119	87,812,369	40,933,736	1,013.0	41,466
2/29/2024	24.00	46.6	2,068	2,977,507	1,387,965	1,013.0	1,406
2/28/2024	24.00	46.6	2,099	3,022,141	1,408,771	1,013.0	1,427
2/27/2024	24.00	46.6	2,084	3,001,537	1,399,166	1,013.0	1,417
2/26/2024	24.00	46.6	2,112	3,040,917	1,417,523	1,013.0	1,436
2/25/2024	24.00	46.6	2,149	3,094,448	1,442,477	1,013.0	1,461
2/24/2024	24.00	46.6	2,169	3,123,593	1,456,063	1,013.0	1,475
2/23/2024	24.00	46.6	2,165	3,116,982	1,452,981	1,013.0	1,472
2/22/2024	24.00	46.6	2,157	3,105,640	1,447,694	1,013.0	1,467
2/21/2024	24.00	46.6	2,110	3,038,154	1,416,235	1,013.0	1,435
2/20/2024	24.00	46.6	2,077	2,990,242	1,393,901	1,013.0	1,412
2/19/2024	24.00	46.6	2,061	2,967,153	1,383,138	1,013.0	1,401
2/18/2024	24.00	46.6	2,067	2,976,654	1,387,567	1,013.0	1,406
2/17/2024	24.00	46.6	2,057	2,962,170	1,380,816	1,013.0	1,399
2/16/2024	24.00	46.6	2,070	2,980,666	1,389,437	1,013.0	1,408
2/15/2024	24.00	46.6	2,067	2,976,835	1,387,652	1,013.0	1,406
2/14/2024	24.00	46.6	2,064	2,972,078	1,385,434	1,013.0	1,403
2/13/2024	24.00	46.6	2,061	2,967,584	1,383,339	1,013.0	1,401
2/12/2024	24.00	46.6	2,093	3,013,921	1,404,939	1,013.0	1,423
2/11/2024	24.00	46.6	2,116	3,047,067	1,420,390	1,013.0	1,439
2/10/2024	24.00	46.6	2,107	3,033,621	1,414,122	1,013.0	1,433
2/9/2024	24.00	46.6	2,146	3,090,670	1,440,716	1,013.0	1,459
2/8/2024	23.83	46.6	2,199	3,143,891	1,465,525	1,013.0	1,485
2/7/2024	24.00	46.6	2,168	3,121,931	1,455,288	1,013.0	1,474
2/6/2024	24.00	46.6	2,166	3,119,450	1,454,132	1,013.0	1,473
2/5/2024	24.00	46.6	2,126	3,061,924	1,427,316	1,013.0	1,446
2/4/2024	20.27	46.6	2,183	2,655,090	1,237,670	1,013.0	1,254
2/3/2024	24.00	46.6	2,167	3,121,183	1,454,939	1,013.0	1,474
2/2/2024	22.83	46.6	2,184	2,992,723	1,395,058	1,013.0	1,413
2/1/2024	24.00	46.6	2,150	3,096,597	1,443,479	1,013.0	1,462
Date	Runtime (hours)	CH ₄ (%)*	(scfm)	Volume (scf)	Volume (scf)	Value of CH₄ (BTU/scf)	(MMBTU)/Day
		(0/)	Average Flow	Total LFG	Total CH₄	Heating	Heat Input

NOTES:

*Starting April 20, 2023, Methane content determined from the March 3, 2023, A-12 Source Test is used.

The daily heat input rate for the A-12 Flare shall not exceed 3,576 MMBTU (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

Heat Input Rate A-12 Flare

MONTH: March-24

3/2/2024 24.00 46.6 2,047 2,947,508 1,373,981 1,013.0 3/3/2024 24.00 46.6 2,049 2,950,082 1,375,181 1,013.0 3/4/2024 24.00 46.6 2,058 2,963,797 1,381,574 1,013.0 3/5/2024 24.00 46.6 2,008 2,891,091 1,347,682 1,013.0 3/6/2024 22.50 46.6 1,941 2,620,872 1,221,719 1,013.0 3/7/2024 22.30 46.6 1,957 2,618,822 1,220,764 1,013.0 3/8/2024 24.00 46.6 1,936 2,787,780 1,299,524 1,013.0 3/8/2024 24.00 46.6 1,936 2,787,780 1,299,524 1,013.0 3/9/2024 24.00 46.6 1,916 2,643,675 1,232,349 1,013.0 3/11/2024 24.00 46.6 1,916 2,643,675 1,232,349 1,013.0 3/11/2024 24.00 46.6 1,911 2,752,540 1,283,097 1,013.0 3/13/2024 24.00 46.6 1,943 2,797,730 1,304,162 1,013.0 3/13/2024 24.00 46.6 1,943 2,797,730 1,304,162 1,013.0 3/14/2024 24.00 46.6 1,970 2,836,547 1,322,256 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,967 2,831,831 1,320,628 1,013.0 3/16/2024 24.00 46.6 1,967 2,831,831 1,320,628 1,013.0 3/19/2024 24.00 46.6 1,967 2,833,633 1,320,628 1,013.0 3/19/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,967 2,833,633 1,320,628 1,013.0 3/19/2024 24.00 46.6 1,967 2,833,633 1,320,628 1,013.0 3/19/2024 24.00 46.6 1,967 2,833,633 1,320,628 1,013.0 3/19/2024 24.00 46.6 1,967 2,833,633 1,320,628 1,013.0 3/19/2024 24.00 46.6 1,969 2,822,370 1,315,648 1,013.0 3/29/2024 24.00 46.6 1,969 2,822,370 1,315,648 1,013.0 3/29/2024 24.00 46.6 1,939 2,792,030 1,301,505 1,013.0 3/29/2024 24.00 46.6 1,939 2,792,630 1,301,697 1,013.0 3/26/2024 24.00 46.6 1,939 2,792,632 1,301	1,399
3/4/2024 24.00 46.6 2,058 2,963,797 1,381,574 1,013.0 3/5/2024 24.00 46.6 2,008 2,891,091 1,347,682 1,013.0 3/6/2024 22.50 46.6 1,941 2,620,872 1,221,719 1,013.0 3/7/2024 22.30 46.6 1,957 2,618,822 1,220,764 1,013.0 3/8/2024 24.00 46.6 1,936 2,787,780 1,299,524 1,013.0 3/9/2024 24.00 46.6 1,936 2,787,780 1,299,524 1,013.0 3/9/2024 24.00 46.6 1,916 2,643,675 1,232,349 1,013.0 3/10/2024 23.00 46.6 1,916 2,643,675 1,232,349 1,013.0 3/11/2024 24.00 46.6 1,911 2,752,540 1,283,097 1,013.0 3/11/2024 24.00 46.6 1,911 2,752,540 1,283,097 1,013.0 3/11/2024 24.00 46.6 1,913 2,797,730 1,304,162 1,013.0 3/13/2024 24.00 46.6 1,970 2,836,547 1,322,256 1,013.0 3/14/2024 24.00 46.6 1,970 2,836,547 1,322,256 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,31 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,967 2,831,053 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,967 2,833,053 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/19/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,963 2,822,370 1,315,648 1,013.0 3/20/2024 24.00 46.6 1,963 2,822,370 1,315,648 1,013.0 3/20/2024 24.00 46.6 1,963 2,822,370 1,315,648 1,013.0 3/20/2024 24.00 46.6 1,963 2,822,370 1,315,648 1,013.0 3/22/2024 24.00 46.6 1,964 2,822,370 1,315,648 1,013.0 3/22/2024 24.00 46.6 1,964 2,822,370 1,315,648 1,013.0 3/22/2024 24.00 46.6 1,964 2,822,370 1,315,648 1,013.0 3/22/2024 24.00 46.6 1,914 2,755,936 1,284,680 1,013.0 3/22/2024 24.00 46.6 1,938 2,790,990 1,301,020 1,013.0 3/23/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/26/2024 24.00 46.6 1,934 2,799,491 1,304,983 1,013.0 3/28/2024 24.00 46.6 1,934 2,799,491 1,304,983 1,013.0 3/28/2024 24.00 46.	1,392
3/5/2024 24.00 46.6 1,941 2,620,872 1,221,719 1,013.0 3/6/2024 22.50 46.6 1,941 2,620,872 1,221,719 1,013.0 3/7/2024 22.30 46.6 1,957 2,618,822 1,220,764 1,013.0 3/8/2024 24.00 46.6 1,936 2,787,780 1,299,524 1,013.0 3/8/2024 24.00 46.6 1,936 2,787,780 1,299,524 1,013.0 3/9/2024 24.00 46.6 1,921 2,766,607 1,289,654 1,013.0 3/10/2024 23.00 46.6 1,916 2,643,675 1,232,349 1,013.0 3/11/2024 24.00 46.6 1,911 2,752,540 1,283,097 1,013.0 3/11/2024 24.00 46.6 1,943 2,797,730 1,304,162 1,013.0 3/11/2024 24.00 46.6 1,943 2,797,730 1,304,162 1,013.0 3/13/2024 24.00 46.6 1,970 2,836,547 1,322,256 1,013.0 3/14/2024 24.00 46.6 1,972 2,840,118 1,323,921 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/17/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/17/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/19/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/19/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/19/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/19/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/20/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/20/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/20/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/20/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/20/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/20/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/20/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/20/2024 24.00 46.6 1,960 2,822,370 1,315,648 1,013.0 3/20/2024 24.00 46.6 1,960 2,822,370 1,315,648 1,013.0 3/20/2024 24.00 46.6 1,960 2,822,370 1,315,648 1,013.0 3/22/2024 24.00 46.6 1,939 2,792,832 1,297,679 1,013.0 3/22/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/22/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/26/2024 24.00 46.6 1,930 2,778,971 1,295,417 1,013.0 3/29/2024 24.00 4	1,393
3/6/2024 22.50 46.6 1,941 2,620,872 1,221,719 1,013.0 3/7/2024 22.30 46.6 1,957 2,618,822 1,220,764 1,013.0 3/8/2024 24.00 46.6 1,936 2,787,780 1,299,524 1,013.0 3/9/2024 24.00 46.6 1,921 2,766,607 1,289,654 1,013.0 3/10/2024 23.00 46.6 1,916 2,643,675 1,232,349 1,013.0 3/11/2024 24.00 46.6 1,911 2,752,540 1,283,097 1,013.0 3/13/2024 24.00 46.6 1,943 2,797,730 1,304,162 1,013.0 3/13/2024 24.00 46.6 1,970 2,836,547 1,322,256 1,013.0 3/14/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,963 2,826,749 1,317,689 1,013.0 3/18/2024 24.00 46.6 1,967 2,	1,400
3/7/2024 22.30 46.6 1,957 2,618,822 1,220,764 1,013.0 3/8/2024 24.00 46.6 1,936 2,787,780 1,299,524 1,013.0 3/9/2024 24.00 46.6 1,921 2,766,607 1,289,654 1,013.0 3/10/2024 23.00 46.6 1,916 2,643,675 1,232,349 1,013.0 3/11/2024 24.00 46.6 1,911 2,752,540 1,283,097 1,013.0 3/12/2024 24.00 46.6 1,943 2,797,730 1,304,162 1,013.0 3/13/2024 24.00 46.6 1,970 2,836,547 1,322,256 1,013.0 3/14/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,967 2,833,053 1,317,738 1,013.0 3/18/2024 24.00 46.6 1,963 2	1,365
3/8/2024 24.00 46.6 1,936 2,787,780 1,299,524 1,013.0 3/9/2024 24.00 46.6 1,921 2,766,607 1,289,654 1,013.0 3/10/2024 23.00 46.6 1,916 2,643,675 1,232,349 1,013.0 3/11/2024 24.00 46.6 1,911 2,752,540 1,283,097 1,013.0 3/12/2024 24.00 46.6 1,943 2,797,730 1,304,162 1,013.0 3/13/2024 24.00 46.6 1,970 2,836,547 1,322,256 1,013.0 3/14/2024 24.00 46.6 1,972 2,840,118 1,323,921 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/17/2024 24.00 46.6 1,963 2,826,749 1,317,689 1,013.0 3/18/2024 24.00 46.6 1,967	1,238
3/9/2024 24.00 46.6 1,921 2,766,607 1,289,654 1,013.0 3/10/2024 23.00 46.6 1,916 2,643,675 1,232,349 1,013.0 3/11/2024 24.00 46.6 1,911 2,752,540 1,283,097 1,013.0 3/12/2024 24.00 46.6 1,943 2,797,730 1,304,162 1,013.0 3/13/2024 24.00 46.6 1,970 2,836,547 1,322,256 1,013.0 3/14/2024 24.00 46.6 1,972 2,840,118 1,323,921 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,963 2,826,749 1,317,689 1,013.0 3/18/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/19/2024 24.00 46.6 1,967 2,833,053 1,301,535 1,013.0 3/19/2024 24.00 46.6 1,963 <td< td=""><td>1,237</td></td<>	1,237
3/10/2024 23.00 46.6 1,916 2,643,675 1,232,349 1,013.0 3/11/2024 24.00 46.6 1,911 2,752,540 1,283,097 1,013.0 3/12/2024 24.00 46.6 1,943 2,797,730 1,304,162 1,013.0 3/13/2024 24.00 46.6 1,970 2,836,547 1,322,256 1,013.0 3/14/2024 24.00 46.6 1,972 2,840,118 1,323,921 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,967 2,831,831 1,320,628 1,013.0 3/17/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/21/2024 24.00 46.6 1,939 <t< td=""><td>1,316</td></t<>	1,316
3/11/2024 24.00 46.6 1,911 2,752,540 1,283,097 1,013.0 3/12/2024 24.00 46.6 1,943 2,797,730 1,304,162 1,013.0 3/13/2024 24.00 46.6 1,970 2,836,547 1,322,256 1,013.0 3/14/2024 24.00 46.6 1,972 2,840,118 1,323,921 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,963 2,826,749 1,317,689 1,013.0 3/16/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/20/2024 24.00 46.6 1,939 2,792,030 1,301,505 1,013.0 3/21/2024 24.00 46.6 1,952 <t< td=""><td>1,306</td></t<>	1,306
3/12/2024 24.00 46.6 1,943 2,797,730 1,304,162 1,013.0 3/13/2024 24.00 46.6 1,970 2,836,547 1,322,256 1,013.0 3/14/2024 24.00 46.6 1,972 2,840,118 1,323,921 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,963 2,826,749 1,317,689 1,013.0 3/17/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/20/2024 24.00 46.6 1,939 2,792,030 1,301,505 1,013.0 3/21/2024 24.00 46.6 1,952 2,810,541 1,310,134 1,013.0 3/22/2024 24.00 46.6 1,938 <t< td=""><td>1,248</td></t<>	1,248
3/13/2024 24.00 46.6 1,970 2,836,547 1,322,256 1,013.0 3/14/2024 24.00 46.6 1,972 2,840,118 1,323,921 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,963 2,826,749 1,317,689 1,013.0 3/17/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,939 2,792,030 1,301,505 1,013.0 3/20/2024 24.00 46.6 1,952 2,810,541 1,310,134 1,013.0 3/21/2024 24.00 46.6 1,952 2,810,541 1,310,134 1,013.0 3/22/2024 24.00 46.6 1,938 2,790,990 1,301,020 1,013.0 3/23/2024 24.00 46.6 1,919 <t< td=""><td>1,300</td></t<>	1,300
3/14/2024 24.00 46.6 1,972 2,840,118 1,323,921 1,013.0 3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,963 2,826,749 1,317,689 1,013.0 3/17/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,939 2,792,030 1,301,505 1,013.0 3/20/2024 24.00 46.6 1,952 2,810,541 1,310,134 1,013.0 3/21/2024 24.00 46.6 1,960 2,822,370 1,315,648 1,013.0 3/22/2024 24.00 46.6 1,938 2,790,990 1,301,020 1,013.0 3/23/2024 24.00 46.6 1,919 2,763,593 1,284,680 1,013.0 3/25/2024 24.00 46.6 1,933 <t< td=""><td>1,321</td></t<>	1,321
3/15/2024 24.00 46.6 1,967 2,831,831 1,320,058 1,013.0 3/16/2024 24.00 46.6 1,963 2,826,749 1,317,689 1,013.0 3/17/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,939 2,792,030 1,301,505 1,013.0 3/20/2024 24.00 46.6 1,952 2,810,541 1,310,134 1,013.0 3/21/2024 24.00 46.6 1,960 2,822,370 1,315,648 1,013.0 3/22/2024 24.00 46.6 1,938 2,790,990 1,301,020 1,013.0 3/23/2024 24.00 46.6 1,919 2,763,593 1,288,249 1,013.0 3/24/2024 24.00 46.6 1,914 2,755,936 1,284,680 1,013.0 3/26/2024 24.00 46.6 1,933 <t< td=""><td>1,339</td></t<>	1,339
3/16/2024 24.00 46.6 1,963 2,826,749 1,317,689 1,013.0 3/17/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,939 2,792,030 1,301,505 1,013.0 3/20/2024 24.00 46.6 1,952 2,810,541 1,310,134 1,013.0 3/21/2024 24.00 46.6 1,960 2,822,370 1,315,648 1,013.0 3/22/2024 24.00 46.6 1,938 2,790,990 1,301,020 1,013.0 3/23/2024 24.00 46.6 1,919 2,763,593 1,288,249 1,013.0 3/24/2024 24.00 46.6 1,914 2,755,936 1,284,680 1,013.0 3/25/2024 24.00 46.6 1,933 2,783,822 1,297,679 1,013.0 3/26/2024 24.00 46.6 1,939 <t< td=""><td>1,341</td></t<>	1,341
3/17/2024 24.00 46.6 1,967 2,833,053 1,320,628 1,013.0 3/18/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,939 2,792,030 1,301,505 1,013.0 3/20/2024 24.00 46.6 1,952 2,810,541 1,310,134 1,013.0 3/21/2024 24.00 46.6 1,960 2,822,370 1,315,648 1,013.0 3/23/2024 24.00 46.6 1,938 2,790,990 1,301,020 1,013.0 3/23/2024 24.00 46.6 1,919 2,763,593 1,288,249 1,013.0 3/24/2024 24.00 46.6 1,914 2,755,936 1,284,680 1,013.0 3/25/2024 24.00 46.6 1,933 2,783,822 1,297,679 1,013.0 3/26/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/28/2024 24.00 46.6 1,944 <t< td=""><td>1,337</td></t<>	1,337
3/18/2024 24.00 46.6 1,963 2,826,854 1,317,738 1,013.0 3/19/2024 24.00 46.6 1,939 2,792,030 1,301,505 1,013.0 3/20/2024 24.00 46.6 1,952 2,810,541 1,310,134 1,013.0 3/21/2024 24.00 46.6 1,960 2,822,370 1,315,648 1,013.0 3/22/2024 24.00 46.6 1,938 2,790,990 1,301,020 1,013.0 3/23/2024 24.00 46.6 1,919 2,763,593 1,288,249 1,013.0 3/24/2024 24.00 46.6 1,914 2,755,936 1,284,680 1,013.0 3/25/2024 24.00 46.6 1,933 2,783,822 1,297,679 1,013.0 3/26/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/28/2024 24.00 46.6 1,944 2,799,491 1,304,983 1,013.0 3/29/2024 24.00 46.6 1,952 <t< td=""><td>1,335</td></t<>	1,335
3/19/2024 24.00 46.6 1,939 2,792,030 1,301,505 1,013.0 3/20/2024 24.00 46.6 1,952 2,810,541 1,310,134 1,013.0 3/21/2024 24.00 46.6 1,960 2,822,370 1,315,648 1,013.0 3/22/2024 24.00 46.6 1,938 2,790,990 1,301,020 1,013.0 3/23/2024 24.00 46.6 1,919 2,763,593 1,288,249 1,013.0 3/24/2024 24.00 46.6 1,914 2,755,936 1,284,680 1,013.0 3/25/2024 24.00 46.6 1,933 2,783,822 1,297,679 1,013.0 3/26/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/27/2024 24.00 46.6 1,944 2,799,491 1,304,983 1,013.0 3/28/2024 24.00 46.6 1,952 2,810,201 1,309,975 1,013.0 3/29/2024 24.00 46.6 1,930 <t< td=""><td>1,338</td></t<>	1,338
3/20/2024 24.00 46.6 1,952 2,810,541 1,310,134 1,013.0 3/21/2024 24.00 46.6 1,960 2,822,370 1,315,648 1,013.0 3/22/2024 24.00 46.6 1,938 2,790,990 1,301,020 1,013.0 3/23/2024 24.00 46.6 1,919 2,763,593 1,288,249 1,013.0 3/24/2024 24.00 46.6 1,914 2,755,936 1,284,680 1,013.0 3/25/2024 24.00 46.6 1,933 2,783,822 1,297,679 1,013.0 3/26/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/27/2024 24.00 46.6 1,944 2,799,491 1,304,983 1,013.0 3/28/2024 24.00 46.6 1,952 2,810,201 1,309,975 1,013.0 3/29/2024 24.00 46.6 1,930 2,778,971 1,295,417 1,013.0 3/30/2024 22.47 46.6 1,943 <t< td=""><td>1,335</td></t<>	1,335
3/21/2024 24.00 46.6 1,960 2,822,370 1,315,648 1,013.0 3/22/2024 24.00 46.6 1,938 2,790,990 1,301,020 1,013.0 3/23/2024 24.00 46.6 1,919 2,763,593 1,288,249 1,013.0 3/24/2024 24.00 46.6 1,914 2,755,936 1,284,680 1,013.0 3/25/2024 24.00 46.6 1,933 2,783,822 1,297,679 1,013.0 3/26/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/27/2024 24.00 46.6 1,944 2,799,491 1,304,983 1,013.0 3/28/2024 24.00 46.6 1,952 2,810,201 1,309,975 1,013.0 3/29/2024 24.00 46.6 1,930 2,778,971 1,295,417 1,013.0 3/30/2024 22.47 46.6 1,943 2,619,092 1,220,890 1,013.0 3/31/2024 24.00 46.6 1,943 <t< td=""><td>1,318</td></t<>	1,318
3/22/2024 24.00 46.6 1,938 2,790,990 1,301,020 1,013.0 3/23/2024 24.00 46.6 1,919 2,763,593 1,288,249 1,013.0 3/24/2024 24.00 46.6 1,914 2,755,936 1,284,680 1,013.0 3/25/2024 24.00 46.6 1,933 2,783,822 1,297,679 1,013.0 3/26/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/27/2024 24.00 46.6 1,944 2,799,491 1,304,983 1,013.0 3/28/2024 24.00 46.6 1,952 2,810,201 1,309,975 1,013.0 3/29/2024 24.00 46.6 1,930 2,778,971 1,295,417 1,013.0 3/30/2024 22.47 46.6 1,943 2,619,092 1,220,890 1,013.0 3/31/2024 24.00 46.6 1,954 2,813,502 1,311,514 1,013.0	1,327
3/23/2024 24.00 46.6 1,919 2,763,593 1,288,249 1,013.0 3/24/2024 24.00 46.6 1,914 2,755,936 1,284,680 1,013.0 3/25/2024 24.00 46.6 1,933 2,783,822 1,297,679 1,013.0 3/26/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/27/2024 24.00 46.6 1,944 2,799,491 1,304,983 1,013.0 3/28/2024 24.00 46.6 1,952 2,810,201 1,309,975 1,013.0 3/29/2024 24.00 46.6 1,930 2,778,971 1,295,417 1,013.0 3/30/2024 22.47 46.6 1,943 2,619,092 1,220,890 1,013.0 3/31/2024 24.00 46.6 1,954 2,813,502 1,311,514 1,013.0	1,333
3/24/2024 24.00 46.6 1,914 2,755,936 1,284,680 1,013.0 3/25/2024 24.00 46.6 1,933 2,783,822 1,297,679 1,013.0 3/26/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/27/2024 24.00 46.6 1,944 2,799,491 1,304,983 1,013.0 3/28/2024 24.00 46.6 1,952 2,810,201 1,309,975 1,013.0 3/29/2024 24.00 46.6 1,930 2,778,971 1,295,417 1,013.0 3/30/2024 22.47 46.6 1,943 2,619,092 1,220,890 1,013.0 3/31/2024 24.00 46.6 1,954 2,813,502 1,311,514 1,013.0	1,318
3/25/2024 24.00 46.6 1,933 2,783,822 1,297,679 1,013.0 3/26/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/27/2024 24.00 46.6 1,944 2,799,491 1,304,983 1,013.0 3/28/2024 24.00 46.6 1,952 2,810,201 1,309,975 1,013.0 3/29/2024 24.00 46.6 1,930 2,778,971 1,295,417 1,013.0 3/30/2024 22.47 46.6 1,943 2,619,092 1,220,890 1,013.0 3/31/2024 24.00 46.6 1,954 2,813,502 1,311,514 1,013.0	1,305
3/26/2024 24.00 46.6 1,939 2,792,832 1,301,879 1,013.0 3/27/2024 24.00 46.6 1,944 2,799,491 1,304,983 1,013.0 3/28/2024 24.00 46.6 1,952 2,810,201 1,309,975 1,013.0 3/29/2024 24.00 46.6 1,930 2,778,971 1,295,417 1,013.0 3/30/2024 22.47 46.6 1,943 2,619,092 1,220,890 1,013.0 3/31/2024 24.00 46.6 1,954 2,813,502 1,311,514 1,013.0	1,301
3/27/2024 24.00 46.6 1,944 2,799,491 1,304,983 1,013.0 3/28/2024 24.00 46.6 1,952 2,810,201 1,309,975 1,013.0 3/29/2024 24.00 46.6 1,930 2,778,971 1,295,417 1,013.0 3/30/2024 22.47 46.6 1,943 2,619,092 1,220,890 1,013.0 3/31/2024 24.00 46.6 1,954 2,813,502 1,311,514 1,013.0	1,315
3/28/2024 24.00 46.6 1,952 2,810,201 1,309,975 1,013.0 3/29/2024 24.00 46.6 1,930 2,778,971 1,295,417 1,013.0 3/30/2024 22.47 46.6 1,943 2,619,092 1,220,890 1,013.0 3/31/2024 24.00 46.6 1,954 2,813,502 1,311,514 1,013.0	1,319
3/29/2024 24.00 46.6 1,930 2,778,971 1,295,417 1,013.0 3/30/2024 22.47 46.6 1,943 2,619,092 1,220,890 1,013.0 3/31/2024 24.00 46.6 1,954 2,813,502 1,311,514 1,013.0	1,322
3/30/2024 22.47 46.6 1,943 2,619,092 1,220,890 1,013.0 3/31/2024 24.00 46.6 1,954 2,813,502 1,311,514 1,013.0	1,327
3/31/2024 24.00 46.6 1,954 2,813,502 1,311,514 1,013.0	1,312
	1,237
	1,329
Totals/ Average: 738.27 46.6 1,960 86,830,892 40,476,220 1,013.0	41,002

NOTES:

The daily heat input rate for the A-12 Flare shall not exceed 3,576 MMBTU (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

^{*}Starting April 20, 2023, Methane content determined from the March 3, 2023, A-12 Source Test is used.

Heat Input Rate A-12 Flare

MONTH: April-24

	1		,			Maximum	1,456
Totals/ Average:	717.50	48.1	1,997	85,963,495	41,358,922	1,013.0	41,897
4/30/2024	24.00	48.8	2,001	2,881,810	1,407,289	1,013.0	1,426
4/29/2024	24.00	48.8	2,000	2,880,171	1,406,488	1,013.0	1,425
4/28/2024	24.00	48.8	2,024	2,915,019	1,423,506	1,013.0	1,442
4/27/2024	24.00	48.8	2,027	2,919,470	1,425,679	1,013.0	1,444
4/26/2024	24.00	48.8	2,021	2,909,967	1,421,039	1,013.0	1,440
4/25/2024	24.00	48.8	2,026	2,917,801	1,424,864	1,013.0	1,443
4/24/2024	24.00	48.8	2,014	2,900,194	1,416,266	1,013.0	1,435
4/23/2024	24.00	48.8	1,987	2,861,595	1,397,417	1,013.0	1,416
4/22/2024	24.00	48.8	1,998	2,877,071	1,404,974	1,013.0	1,423
4/21/2024	24.00	48.8	2,024	2,914,564	1,423,284	1,013.0	1,442
4/20/2024	24.00	48.8	1,999	2,878,559	1,405,701	1,013.0	1,424
4/19/2024	24.00	48.8	1,992	2,868,209	1,400,647	1,013.0	1,419
4/18/2024	24.00	48.8	2,003	2,884,921	1,408,808	1,013.0	1,427
4/17/2024	24.00	48.8	2,036	2,931,399	1,431,505	1,013.0	1,450
4/16/2024	24.00	48.8	2,008	2,890,930	1,411,742	1,013.0	1,430
4/15/2024	24.00	48.8	2,016	2,902,365	1,417,326	1,013.0	1,436
4/14/2024	24.00	48.8	2,026	2,917,925	1,424,925	1,013.0	1,443
4/13/2024	24.00	48.8	2,007	2,889,661	1,411,123	1,013.0	1,429
4/12/2024	24.00	48.8	2,043	2,942,342	1,436,849	1,013.0	1,456
4/11/2024	23.27	48.8	2,099	2,929,925	1,430,785	1,013.0	1,449
4/10/2024	24.00	46.6	2,038	2,934,693	1,368,007	1,013.0	1,386
4/9/2024	23.50	46.6	2,005	2,826,842	1,317,732	1,013.0	1,335
4/8/2024	24.00	46.6	1,965	2,830,259	1,319,325	1,013.0	1,336
4/7/2024	22.73	46.6	1,952	2,661,936	1,240,861	1,013.0	1,257
4/6/2024	24.00	46.6	1,927	2,775,494	1,293,797	1,013.0	1,311
4/5/2024	24.00	46.6	1,905	2,743,092	1,278,692	1,013.0	1,295
4/4/2024	24.00	46.6	1,916	2,759,150	1,286,178	1,013.0	1,303
4/3/2024	24.00	46.6	1,951	2,809,720	1,309,751	1,013.0	1,327
4/2/2024	24.00	46.6	1,955	2,814,523	1,311,990	1,013.0	1,329
4/1/2024	24.00	46.6	1,940	2,793,888	1,302,371	1,013.0	1,319
Date	Runtime (hours)	CH ₄ (%)*	(scfm)	Volume (scf)	Volume (scf)	Value of CH ₄ (BTU/scf)	(MMBTU)/Da
		011 (0()+	Average Flow	Total LFG	Total CH₄	Heating	Heat Input

NOTES:

*Starting April 11, 2024, Methane content determined from the February 14, 2024, A-12 Source Test is used.

The daily heat input rate for the A-12 Flare shall not exceed 3,576 MMBTU (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas CH₄= methane

Heat Input Rate A-12 Flare

MONTH: May-24

Date	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Day
5/1/2024	24.00	48.8	2,021	2,910,549	1,421,323	1,013.0	1,440
5/2/2024	24.00	48.8	2,029	2,921,478	1,426,660	1,013.0	1,445
5/3/2024	24.00	48.8	2,029	2,922,260	1,427,042	1,013.0	1,446
5/4/2024	24.00	48.8	1,987	2,861,692	1,397,464	1,013.0	1,416
5/5/2024	24.00	48.8	2,002	2,883,458	1,408,093	1,013.0	1,426
5/6/2024	24.00	48.8	1,992	2,868,538	1,400,808	1,013.0	1,419
5/7/2024	24.00	48.8	1,975	2,844,055	1,388,852	1,013.0	1,407
5/8/2024	24.00	48.8	2,007	2,890,713	1,411,636	1,013.0	1,430
5/9/2024	24.00	48.8	2,039	2,936,069	1,433,785	1,013.0	1,452
5/10/2024	24.00	48.8	2,042	2,940,408	1,435,904	1,013.0	1,455
5/11/2024	24.00	48.8	2,067	2,976,863	1,453,706	1,013.0	1,473
5/12/2024	24.00	48.8	2,052	2,954,553	1,442,812	1,013.0	1,462
5/13/2024	24.00	48.8	2,051	2,953,169	1,442,136	1,013.0	1,461
5/14/2024	24.00	48.8	2,070	2,980,789	1,455,624	1,013.0	1,475
5/15/2024	24.00	48.8	2,083	2,998,850	1,464,443	1,013.0	1,483
5/16/2024	24.00	48.8	2,071	2,981,698	1,456,067	1,013.0	1,475
5/17/2024	24.00	48.8	2,074	2,986,704	1,458,512	1,013.0	1,477
5/18/2024	24.00	48.8	2,056	2,961,100	1,446,009	1,013.0	1,465
5/19/2024	24.00	48.8	2,078	2,992,217	1,461,204	1,013.0	1,480
5/20/2024	24.00	48.8	2,080	2,995,215	1,462,668	1,013.0	1,482
5/21/2024	24.00	48.8	2,085	3,002,060	1,466,011	1,013.0	1,485
5/22/2024	24.00	48.8	2,083	2,999,964	1,464,987	1,013.0	1,484
5/23/2024	24.00	48.8	2,070	2,980,960	1,455,707	1,013.0	1,475
5/24/2024	24.00	48.8	2,053	2,956,113	1,443,573	1,013.0	1,462
5/25/2024	24.00	48.8	2,052	2,954,344	1,442,710	1,013.0	1,461
5/26/2024	24.00	48.8	2,063	2,971,155	1,450,919	1,013.0	1,470
5/27/2024	24.00	48.8	2,054	2,957,461	1,444,232	1,013.0	1,463
5/28/2024	24.00	48.8	2,062	2,969,810	1,450,262	1,013.0	1,469
5/29/2024	24.00	48.8	2,073	2,985,039	1,457,699	1,013.0	1,477
5/30/2024	24.00	48.8	2,089	3,007,718	1,468,774	1,013.0	1,488
5/31/2024	21.80	48.8	2,142	2,802,124	1,368,375	1,013.0	1,386
Totals/ Average:	741.80	48.8	2,053	91,347,126	44,607,999	1,013.0	45,188
						Maximum	1,488

NOTES:

*Starting April 11, 2024, Methane content determined from the February 14, 2024, A-12 Source Test is used.

The daily heat input rate for the A-12 Flare shall not exceed 3,576 MMBTU (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

Heat Input Rate A-12 Flare

MONTH: June-24

	1		,	, , ,		Maximum	1,503
Totals/ Average:	708.50	48.8	2,032	86,357,446	42,171,363	1,013.0	42,720
6/30/2024	24.00	48.8	1,945	2,801,367	1,368,006	1,013.0	1,386
6/29/2024	24.00	48.8	1,940	2,794,167	1,364,490	1,013.0	1,382
6/28/2024	24.00	48.8	1,952	2,811,015	1,372,717	1,013.0	1,391
6/27/2024	24.00	48.8	2,024	2,914,042	1,423,029	1,013.0	1,442
6/26/2024	15.43	48.8	2,073	1,919,734	937,473	1,013.0	950
6/25/2024	24.00	48.8	2,033	2.927.514	1,429,608	1.013.0	1.448
6/24/2024	24.00	48.8	2,032	2,925,452	1,428,601	1,013.0	1.447
6/23/2024	24.00	48.8	2,041	2,938,814	1,435,126	1,013.0	1,454
6/22/2024	24.00	48.8	2,045	2,944,953	1,438,124	1,013.0	1.457
6/21/2024	24.00	48.8	2,027	2,918,979	1,425,440	1,013.0	1,444
6/20/2024	24.00	48.8	2,050	2,951,939	1,441,535	1.013.0	1,460
6/19/2024	24.00	48.8	2,078	2,992,597	1,461,390	1,013.0	1,480
6/18/2024	22.77	48.8	2,079	2,840,050	1,386,896	1,013.0	1,405
6/17/2024	24.00	48.8	2,016	2,902,434	1,417,360	1,013.0	1,436
6/16/2024	24.00	48.8	2,022	2,912,232	1,422,145	1,013.0	1,441
6/15/2024	24.00	48.8	2,024	2,914,566	1,423,285	1,013.0	1,442
6/14/2024	24.00	48.8	2,020	2,909,233	1,420,680	1,013.0	1,439
6/13/2024	24.00	48.8	1,991	2,866,458	1,399,792	1.013.0	1,418
6/12/2024	24.00	48.8	1,989	2,864,436	1,398,804	1,013.0	1,417
6/11/2024	24.00	48.8	2,044	2,943,858	1,437,589	1,013.0	1,456
6/10/2024	24.00	48.8	2,037	2,933,839	1,432,696	1,013.0	1,451
6/9/2024	24.00	48.8	2,013	2,898,929	1,415,648	1,013.0	1,434
6/8/2024	24.00	48.8	2,010	2,894,998	1,413,729	1.013.0	1,432
6/7/2024	24.00	48.8	2,005	2,887,905	1,410,265	1,013.0	1,429
6/6/2024	24.00	48.8	2,041	2,938,601	1,435,022	1,013.0	1,454
6/5/2024	24.00	48.8	2,090	3,010,129	1,469,951	1,013.0	1,489
6/4/2024	24.00	48.8	2,111	3,039,252	1,484,173	1,013.0	1,503
6/3/2024	22.30	48.8	2,080	2.783.266	1,359,166	1.013.0	1.377
6/2/2024	24.00	48.8	2.065	2,972,964	1,451,802	1,013.0	1,471
6/1/2024	24.00	48.8	2,086	3,003,723	1,466,823	1,013.0	1,486
Date	Runtime (hours)	CH ₄ (%)*	(scfm)	Volume (scf)	Volume (scf)	Value of CH ₄ (BTU/scf)	(MMBTU)/Da
_			Average Flow	Total LFG	Total CH₄	Heating	Heat Input

NOTES:

*Starting April 11, 2024, Methane content determined from the February 14, 2024, A-12 Source Test is used.

The daily heat input rate for the A-12 Flare shall not exceed 3,576 MMBTU (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas CH₄= methane

KCRDF Plant No. 1812 KCRDF Jan 1-June 30- 2024 SAR

APPENDIX M MONTHLY CONDENSATE INJECTION LOGS

CONDENSATE INJECTION TOTALS:2024 Partial

Title V Permit A1812, Condition Number 1437 Part 14

Month	Average Condensate Injection Rate (gpm)	Monthly Condensate Injection Throughput (gallons)	Condensate Injection Throughput 12- Month Total (gallons)
January-24	2.6	80,846	802,017
February-24	2.3	65,252	796,111
March-24	2.4	64,364	784,028
April-24	2.6	60,932	771,643
May-24	1.8	57,774	756,516
June-24	2.0	48,981	736,625

NOTES:

gpm= gallons per minute

Pursuant to Title V Permit A1812, Condition Number 1437 Part 14, the landfill gas condensate injection rate shall not exceed 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 1437 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

CONDENSATE INJECTION (A-12 Flare)

January-24

Start Date	Start Time	End Date	End Time	Total Injection Time (min.)	Average GPM	Total Gallons
2024/01/01	00:00:00	2024/01/01	07:20:00	440.0	2.6	1,135
2024/01/01	11:08:00	2024/01/01	21:32:00	624.0	2.6	1,613
2024/01/02	01:16:00	2024/01/02	13:08:00	712.0	2.6	1,848
2024/01/02	17:12:00	2024/01/02	23:58:00	408.0	2.6	1,069
2024/01/03	00:00:00	2024/01/03	06:00:00	360.0	2.6	923
2024/01/03	09:48:00	2024/01/03	20:42:00	654.0	2.6	1,688
2024/01/04	00:20:00	2024/01/04	12:50:00	750.0	2.6	1,937
2024/01/04	16:46:00	2024/01/04	23:58:00	434.0	2.6	1,128
2024/01/05	00:00:00	2024/01/05	04:14:00	254.0	2.6	649
2024/01/05	08:04:00	2024/01/05	18:06:00	602.0	2.6	1,539
2024/01/05	22:04:00	2024/01/05	23:58:00	116.0	2.6	300
2024/01/06	00:00:00	2024/01/06	10:24:00	624.0	2.5	1,579
2024/01/06	14:20:00	2024/01/06	23:58:00	580.0	2.5	1,471
2024/01/07	00:00:00	2024/01/07	02:40:00	160.0	2.5	397
2024/01/07	06:18:00	2024/01/07	17:06:00	648.0	2.5	1,622
2024/01/07	20:50:00	2024/01/07	23:58:00	190.0	2.6	489
2024/01/08	00:00:00	2024/01/08	08:36:00	516.0	2.5	1,299
2024/01/08	12:12:00	2024/01/08	23:58:00	708.0	2.5	1,764
2024/01/09	04:00:00	2024/01/09	15:50:00	710.0	2.5	1,753
2024/01/09	19:38:00	2024/01/09	23:58:00	262.0	2.5	654
2024/01/10	00:00:00	2024/01/10	08:58:00	538.0	2.5	1,318
2024/01/10	12:48:00	2024/01/10	23:34:00	646.0	2.5	1,606
2024/01/11	04:46:00	2024/01/11	16:58:00	732.0	2.9	2,152
2024/01/11	20:48:00	2024/01/11	23:58:00	192.0	3.1	600
2024/01/12	00:00:00	2024/01/12	03:44:00	224.0	3.1	690
2024/01/12	07:22:00	2024/01/12	19:34:00	732.0	2.5	1,794
2024/01/12	23:16:00	2024/01/12	23:58:00	44.0	2.5	109
2024/01/13	00:00:00	2024/01/13	14:00:00	840.0	2.4	2,034
2024/01/13	17:58:00	2024/01/13	23:58:00	362.0	2.5	891
2024/01/14	00:00:00	2024/01/14	08:24:00	504.0	2.4	1,223
2024/01/14	12:22:00	2024/01/14	23:58:00	698.0	2.5	1,714
2024/01/15	00:00:00	2024/01/15	01:40:00	100.0	2.4	241
2024/01/15	05:24:00	2024/01/15	18:20:00	776.0	2.5	1,908
2024/01/16	00:00:00	2024/01/16	12:24:00	744.0	2.5	1,829
2024/01/16	16:30:00	2024/01/16	23:58:00	450.0	2.5	1,127
2024/01/17	00:00:00	2024/01/17	05:10:00	310.0	2.5	766
2024/01/17	09:02:00	2024/01/17	20:26:00	684.0	2.5	1,704
2024/01/18	00:08:00	2024/01/18	12:48:00	760.0	2.5	1,909
2024/01/18	16:40:00	2024/01/18	23:58:00	440.0	2.5	1,114
2024/01/19	00:00:00	2024/01/19	05:14:00	314.0	2.5	785
2024/01/19	09:50:00	2024/01/19	13:50:00	240.0	2.5	601
2024/01/20	03:32:00	2024/01/20	08:08:00	276.0	2.5	693
2024/01/20	15:32:00	2024/01/20	20:14:00	282.0	2.5	717
2024/01/21	04:18:00	2024/01/21	08:52:00	274.0	2.5	691
2024/01/21	16:36:00	2024/01/21	21:20:00	284.0	2.5	723
2024/01/22	05:02:00	2024/01/22	08:08:00	186.0	2.6	491
2024/01/22	09:00:00	2024/01/22	16:14:00	434.0	3.1	1,366
2024/01/22	16:34:00	2024/01/22	16:54:00	20.0	3.0	60
2024/01/22	17:22:00	2024/01/22	23:58:00	398.0	3.1	1,247

CONDENSATE INJECTION (A-12 Flare)

January-24

2024/04/22	00.00.00	2024/04/22	05.20.00	220.0	2.4	1 024
2024/01/23	00:00:00	2024/01/23	05:30:00	330.0	3.1	1,034
2024/01/23	09:20:00	2024/01/23	11:10:00	110.0	3.2	348
2024/01/23	12:06:00	2024/01/23	17:54:00	348.0	3.1	1,089
2024/01/23	22:02:00	2024/01/23	23:58:00	118.0	3.2	378
2024/01/24	00:00:00	2024/01/24	04:22:00	262.0	3.2	833
2024/01/24	08:16:00	2024/01/24	14:10:00	354.0	3.2	1,120
2024/01/24	18:18:00	2024/01/24	23:58:00	340.0	3.2	1,082
2024/01/25	04:02:00	2024/01/25	10:06:00	364.0	3.2	1,165
2024/01/25	14:08:00	2024/01/25	19:20:00	312.0	3.2	987
2024/01/25	23:22:00	2024/01/25	23:58:00	38.0	3.2	122
2024/01/26	00:00:00	2024/01/26	05:32:00	332.0	3.2	1,062
2024/01/26	09:36:00	2024/01/26	15:10:00	334.0	3.2	1,064
2024/01/26	19:26:00	2024/01/26	23:58:00	274.0	3.2	883
2024/01/27	00:00:00	2024/01/27	00:52:00	52.0	3.1	164
2024/01/27	04:46:00	2024/01/27	10:40:00	354.0	3.2	1,136
2024/01/27	14:40:00	2024/01/27	19:50:00	310.0	3.2	982
2024/01/28	00:02:00	2024/01/28	05:48:00	346.0	3.2	1,107
2024/01/28	09:38:00	2024/01/28	15:30:00	352.0	3.2	1,123
2024/01/28	20:32:00	2024/01/28	23:58:00	208.0	3.2	671
2024/01/29	00:00:00	2024/01/29	01:44:00	104.0	3.2	328
2024/01/29	05:48:00	2024/01/29	16:40:00	652.0	2.5	1,638
2024/01/29	19:58:00	2024/01/29	23:58:00	242.0	2.0	477
2024/01/30	00:00:00	2024/01/30	16:02:00	962.0	1.9	1,864
2024/01/30	20:40:00	2024/01/30	23:58:00	200.0	2.0	402
2024/01/31	00:00:00	2024/01/31	23:58:00	1,440.0	2.0	2,828
Totals				30,974	2.6	80,846
				Maximum GPM	3.2	

gpm= gallons per minute

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the landfill gas condensate injection rate shall not exceed 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

CONDENSATE INJECTION (A-12 Flare)

February-24

Start Date	Start Time	End Date	End Time	Total Injection Time (min.)	Average GPM	Total Gallons
2024/02/01	00:00:00	2024/02/01	23:38:00	1,418.0	1.9	2,749
2024/02/02	03:36:00	2024/02/02	08:52:00	316.0	2.0	626
2024/02/02	09:16:00	2024/02/02	12:08:00	172.0	2.0	338
2024/02/02	13:54:00	2024/02/02	20:52:00	418.0	3.0	1,235
2024/02/03	00:50:00	2024/02/03	07:46:00	416.0	3.1	1,273
2024/02/03	11:58:00	2024/02/03	18:14:00	376.0	3.1	1,157
2024/02/03	22:04:00	2024/02/03	23:58:00	116.0	3.1	363
2024/02/04	00:00:00	2024/02/04	04:34:00	274.0	3.1	852
2024/02/04	09:50:00	2024/02/04	13:28:00	218.0	3.1	679
2024/02/04	17:50:00	2024/02/04	23:58:00	370.0	3.1	1,148
2024/02/05	04:20:00	2024/02/05	10:38:00	378.0	3.1	1,158
2024/02/05	14:54:00	2024/02/05	20:34:00	340.0	3.1	1,062
2024/02/06	00:40:00	2024/02/06	06:34:00	354.0	3.1	1,098
2024/02/06	10:42:00	2024/02/06	16:30:00	348.0	3.1	1,077
2024/02/06	20:40:00	2024/02/06	23:58:00	200.0	3.1	626
2024/02/07	00:00:00	2024/02/07	02:58:00	178.0	3.1	548
2024/02/07	07:08:00	2024/02/07	13:22:00	374.0	3.1	1,163
2024/02/07	17:26:00	2024/02/07	23:50:00	384.0	3.1	1,187
2024/02/08	03:42:00	2024/02/08	07:22:00	220.0	3.1	679
2024/02/08	07:38:00	2024/02/08	20:54:00	796.0	2.0	1,631
2024/02/09	00:50:00	2024/02/09	23:58:00	1,390.0	2.0	2,829
2024/02/10	00:00:00	2024/02/10	01:36:00	96.0	2.0	190
2024/02/10	05:42:00	2024/02/10	23:58:00	1,098.0	2.0	2,234
2024/02/11	00:00:00	2024/02/11	03:56:00	236.0	2.0	472
2024/02/11	07:58:00	2024/02/11	23:58:00	962.0	2.0	1,964
2024/02/12	00:00:00	2024/02/12	05:14:00	314.0	2.0	629
2024/02/13	05:12:00	2024/02/13	11:06:00	354.0	1.7	604
2024/02/13	11:38:00	2024/02/13	23:58:00	742.0	0.8	617
2024/02/14	00:00:00	2024/02/14	12:46:00	766.0	0.8	628
2024/02/14	15:54:00	2024/02/14	23:58:00	486.0	3.0	1,465
2024/02/15	00:00:00	2024/02/15	04:36:00	276.0	3.0	832
2024/02/15	08:48:00	2024/02/15	15:34:00	406.0	2.5	998
2024/02/15	20:22:00	2024/02/15	23:58:00	218.0	2.6	566
2024/02/16	00:00:00	2024/02/16	02:32:00	152.0	2.6	389
2024/02/16	06:40:00	2024/02/16	12:34:00	354.0	2.6	919
2024/02/16	16:50:00	2024/02/16	22:28:00	338.0	2.6	881
2024/02/17	02:32:00	2024/02/17	08:46:00	374.0	2.6	979
2024/02/17	12:48:00	2024/02/17	19:04:00	376.0	2.6	974
2024/02/17	23:06:00	2024/02/17	23:58:00	54.0	2.6	143
2024/02/18	00:00:00	2024/02/18	05:24:00	324.0	2.6	843
2024/02/18	09:26:00	2024/02/18	15:12:00	346.0	2.6	897
2024/02/18	19:24:00	2024/02/18	23:58:00	276.0	2.6	720
2024/02/19	00:00:00	2024/02/19	01:16:00	76.0	2.6	195
2024/02/19	05:14:00	2024/02/19	12:32:00	438.0	2.4	1,056
2024/02/19	16:44:00	2024/02/19	23:58:00	436.0	2.3	1,000
2024/02/20	00:00:00	2024/02/20	00:46:00	46.0	2.2	103
2024/02/20	04:44:00	2024/02/20	12:50:00	486.0	2.3	1,122
2024/02/20	17:04:00	2024/02/20	23:58:00	416.0	2.3	977
2024/02/21	00:00:00	2024/02/21	01:42:00	102.0	2.3	236
2024/02/21	05:40:00	2024/02/21	14:50:00	550.0	2.3	1,269
· ·· · ·		·			2.3	618

KCRDF Plant No. 1812 KCRDF Jan 1-June 30- 2024 SAR

CONDENSATE INJECTION (A-12 Flare)

February-24

				Maximum GPM	3.1	
Totals				27,788	2.3	65,252
2024/02/29	22:30:00	2024/02/29	23:58:00	90.0	2.4	217
2024/02/29	11:40:00	2024/02/29	18:34:00	414.0	2.4	975
2024/02/29	00:00:00	2024/02/29	07:32:00	452.0	2.4	1,073
2024/02/28	23:16:00	2024/02/28	23:58:00	44.0	2.4	107
2024/02/28	12:02:00	2024/02/28	18:54:00	412.0	2.4	970
2024/02/28	00:00:00	2024/02/28	07:54:00	474.0	2.4	1,133
2024/02/27	23:34:00	2024/02/27	23:58:00	26.0	2.5	64
2024/02/27	12:22:00	2024/02/27	19:34:00	432.0	2.3	1,011
2024/02/27	00:00:00	2024/02/27	08:00:00	480.0	2.4	1,137
2024/02/26	23:04:00	2024/02/26	23:58:00	56.0	2.4	134
2024/02/26	11:36:00	2024/02/26	18:42:00	426.0	2.3	995
2024/02/26	00:00:00	2024/02/26	07:08:00	428.0	2.4	1,007
2024/02/25	23:10:00	2024/02/25	23:58:00	50.0	2.4	120
2024/02/25	11:24:00	2024/02/25	18:36:00	432.0	2.3	1,001
2024/02/25	00:00:00	2024/02/25	07:10:00	430.0	2.3	999
2024/02/24	22:46:00	2024/02/24	23:58:00	74.0	2.4	174
2024/02/24	09:58:00	2024/02/24	17:44:00	466.0	2.3	1,072
2024/02/24	00:00:00	2024/02/24	05:56:00	356.0	2.3	825
2024/02/23	21:30:00	2024/02/23	23:58:00	150.0	2.4	353
2024/02/23	08:34:00	2024/02/23	16:46:00	492.0	2.3	1,136
2024/02/23	00:00:00	2024/02/23	04:36:00	276.0	2.3	639
2024/02/22	20:32:00	2024/02/22	23:58:00	208.0	2.4	489
2024/02/22	07:30:00	2024/02/22	15:38:00	488.0	2.3	1,126
2024/02/22	00:00:00	2024/02/22	03:34:00	214.0	2.3	495

gpm= gallons per minute

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the landfill gas condensate injection rate shall not exceed 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

KCRDF Plant No. 1812 KCRDF Jan 1-June 30- 2024 SAR

CONDENSATE INJECTION (A-12 Flare)

March-24

Start Date	Start Time	End Date	End Time	Total Injection Time (min.)	Average GPM	Total Gallons
2024/03/01	00:00:00	2024/03/01	06:54:00	414.0	2.4	986
2024/03/01	10:54:00	2024/03/01	19:12:00	498.0	2.4	1,184
2024/03/01	23:04:00	2024/03/01	23:58:00	56.0	2.4	135
2024/03/02	00:00:00	2024/03/02	07:44:00	464.0	2.4	1,106
2024/03/02	11:46:00	2024/03/02	20:06:00	500.0	2.4	1,188
2024/03/02	23:58:00	2024/03/02	23:58:00	2.0	2.2	4
2024/03/03	00:00:00	2024/03/03	08:46:00	526.0	2.4	1,263
2024/03/03	12:58:00	2024/03/03	20:26:00	448.0	2.4	1,073
2024/03/04	00:08:00	2024/03/04	08:34:00	506.0	2.4	1,208
2024/03/04	12:50:00	2024/03/04	20:04:00	434.0	2.4	1,026
2024/03/05	00:00:00	2024/03/05	08:32:00	512.0	2.4	1,230
2024/03/05	12:48:00	2024/03/05	20:10:00	442.0	2.4	1,051
2024/03/06	00:16:00	2024/03/06	08:20:00	484.0	2.4	1,159
2024/03/06	12:38:00	2024/03/06	15:12:00	154.0	2.4	366
2024/03/06	16:50:00	2024/03/06	22:26:00	336.0	2.4	800
2024/03/07	02:40:00	2024/03/07	07:20:00	280.0	2.4	669
2024/03/07	09:12:00	2024/03/07	13:16:00	244.0	2.4	576
2024/03/07	17:50:00	2024/03/07	23:58:00	370.0	2.4	881
2024/03/08	00:00:00	2024/03/08	00:50:00	50.0	2.3	116
2024/03/08	04:56:00	2024/03/08	11:44:00	408.0	2.4	974
2024/03/08	15:52:00	2024/03/08	21:14:00	322.0	2.4	773
2024/03/09	01:32:00	2024/03/09	08:36:00	424.0	2.4	1,024
2024/03/09	13:08:00	2024/03/09	19:14:00	366.0	2.4	877
2024/03/09	23:50:00	2024/03/09	23:58:00	10.0	2.5	25
2024/03/10	00:00:00	2024/03/10	01:58:00	120.0	2.5	295
2024/03/10	12:12:00	2024/03/10	18:50:00	398.0	2.4	939
2024/03/10	23:10:00	2024/03/10	23:58:00	50.0	2.5	123
2024/03/11	00:00:00	2024/03/11	06:10:00	370.0	2.4	892
2024/03/11	10:24:00	2024/03/11	17:12:00	408.0	2.4	975
2024/03/11	22:08:00	2024/03/11	23:58:00	112.0	2.5	276
2024/03/12	00:00:00	2024/03/12	05:22:00	322.0	2.4	784
2024/03/12	09:18:00	2024/03/12	16:44:00	446.0	2.4	1,090
2024/03/12	21:22:00	2024/03/12	23:58:00	158.0	2.5	389
2024/03/13	00:00:00	2024/03/13	05:00:00	300.0	2.4	730
2024/03/13	09:02:00	2024/03/13	15:42:00	400.0	2.4	972
2024/03/13	20:24:00	2024/03/13	23:58:00	216.0	2.5	529
2024/03/14	00:00:00	2024/03/14	03:10:00	190.0	2.4	461
2024/03/14	07:18:00	2024/03/14	14:24:00	426.0	2.4	1,037
2024/03/14	19:02:00	2024/03/14	23:58:00	298.0	2.5	732
2024/03/15	00:00:00	2024/03/15	00:18:00	18.0	2.3	41
2024/03/15	04:24:00	2024/03/15	11:40:00	436.0	2.4	1,051
2024/03/15	15:50:00	2024/03/15	21:02:00	312.0	2.5	765
2024/03/16	01:50:00	2024/03/16	08:48:00	418.0	2.4	1,016
2024/03/16	13:12:00	2024/03/16	19:22:00	370.0	2.4	892
2024/03/17	00:26:00	2024/03/17	07:16:00	410.0	2.4	990
2024/03/17	11:36:00	2024/03/17	18:16:00	400.0	2.4	950
2024/03/17	23:46:00	2024/03/17	23:58:00	14.0	2.5	34
2024/03/17	00:00:00	2024/03/17	06:48:00	408.0	2.4	980
2024/03/18	10:58:00	2024/03/18	17:40:00	402.0	2.4	954

CONDENSATE INJECTION (A-12 Flare)

March-24

2024/03/30 2024/03/30 2024/03/31 2024/03/31 Totals	12:54:00 18:50:00 02:08:00 13:26:00	2024/03/30 2024/03/31 2024/03/31	22:12:00 09:14:00 19:16:00	202.0 426.0 350.0 26,602 Maximum GPM	2.5 2.5 2.6 2.4	1,068 893 64,364
2024/03/30 2024/03/31	18:50:00 02:08:00	2024/03/31	09:14:00	426.0 350.0	2.5 2.6	1,068 893
2024/03/30	18:50:00			426.0	2.5	-
		2024/03/30	22:12:00			309
					0.5	509
	40 = 4 00	2024/03/30	17:14:00	260.0	2.5	656
2024/03/30	01:40:00	2024/03/30	08:30:00	410.0	2.6	1,046
2024/03/29	14:12:00	2024/03/29	21:30:00	438.0	2.5	1,109
2024/03/29	03:02:00	2024/03/29	09:52:00	410.0	2.5	1,031
2024/03/28	17:40:00	2024/03/28	23:02:00	322.0	2.5	811
2024/03/28	06:56:00	2024/03/28	13:30:00	394.0	2.4	962
2024/03/28	00:00:00	2024/03/28	02:44:00	164.0	2.4	399
2024/03/27	20:02:00	2024/03/27	23:58:00	238.0	2.5	587
2024/03/27	08:32:00	2024/03/27	15:10:00	398.0	2.4	960
2024/03/27	00:00:00	2024/03/27	04:22:00	262.0	2.4	630
2024/03/26	21:48:00	2024/03/26	23:58:00	132.0	2.5	327
2024/03/26	10:08:00	2024/03/26	16:32:00	384.0	2.4	934
2024/03/26	00:00:00	2024/03/26	05:48:00	348.0	2.4	848
2024/03/25	23:22:00	2024/03/25	23:58:00	38.0	2.5	95
2024/03/25	11:24:00	2024/03/25	18:14:00	410.0	2.4	979
2024/03/25	00:06:00	2024/03/25	06:56:00	410.0	2.4	995
2024/03/24	13:34:00	2024/03/24	19:38:00	364.0	2.4	867
2024/03/24	02:18:00	2024/03/24	09:10:00	412.0	2.4	994
2024/03/23	16:10:00	2024/03/23	22:08:00	358.0	2.4	871
2024/03/23	05:12:00	2024/03/23	11:42:00	390.0	2.4	941
2024/03/23	00:00:00	2024/03/23	01:02:00	62.0	2.4	147
2024/03/22	19:02:00	2024/03/22	23:58:00	298.0	2.4	727
2024/03/22	07:18:00	2024/03/22	13:58:00	400.0	2.4	964
2024/03/22	00:00:00	2024/03/22	02:52:00	172.0	2.4	416
2024/03/21	21:12:00	2024/03/21	23:58:00	168.0	2.5	417
2024/03/21	08:46:00	2024/03/21	15:22:00	396.0	2.4	943
2024/03/21	00:00:00	2024/03/21	04:34:00	274.0	2.4	659
2024/03/20	22:20:00	2024/03/20	23:58:00	100.0	2.5	247
2024/03/20	09:34:00	2024/03/20	16:22:00	408.0	2.4	981
2024/03/20	00:00:00	2024/03/20	05:08:00	308.0	2.4	739
2024/03/19	22:44:00	2024/03/19	23:58:00	76.0	2.5	187
2024/03/19	10:34:00	2024/03/19	17:02:00	388.0	2.4	924
2024/03/19	00:00:00	2024/03/19	06:02:00	362.0	2.4	864

gpm= gallons per minute

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the landfill gas condensate injection rate shall not exceed 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

CONDENSATE INJECTION (A-12 Flare)

April-24

2024/04/01 2024/04/01 2024/04/01 2024/04/02	00:10:00			Time (min.)	GPM	Total Gallons
2024/04/01		2024/04/01	06:38:00	388.0	2.6	994
	10:58:00	2024/04/01	17:46:00	408.0	2.5	1,021
2024/04/02	23:16:00	2024/04/01	23:58:00	44.0	2.6	115
2024/04/02	00:00:00	2024/04/02	05:56:00	356.0	2.5	900
2024/04/02	10:20:00	2024/04/02	17:04:00	404.0	2.5	1,023
2024/04/02	22:56:00	2024/04/02	23:58:00	64.0	2.6	169
2024/04/03	00:00:00	2024/04/03	05:18:00	318.0	2.5	805
2024/04/03	09:34:00	2024/04/03	16:10:00	396.0	2.5	997
2024/04/03	21:32:00	2024/04/03	23:58:00	148.0	2.6	388
2024/04/04	00:00:00	2024/04/04	03:44:00	224.0	2.5	566
2024/04/04	07:46:00	2024/04/04	14:34:00	408.0	2.5	1,029
2024/04/04	19:10:00	2024/04/04	23:58:00	290.0	2.5	735
2024/04/05	00:00:00	2024/04/05	02:44:00	164.0	2.5	408
2024/04/05	06:54:00	2024/04/05	13:02:00	368.0	2.5	929
2024/04/05	17:20:00	2024/04/05	23:20:00	360.0	2.6	921
2024/04/06	03:28:00	2024/04/06	10:00:00	392.0	2.5	997
2024/04/06	14:18:00	2024/04/06	19:54:00	336.0	2.6	874
2024/04/07	00:28:00	2024/04/07	07:14:00	406.0	2.6	1,051
2024/04/07	11:32:00	2024/04/07	17:50:00	378.0	2.6	968
2024/04/07	21:52:00	2024/04/07	23:58:00	128.0	2.6	330
2024/04/08	00:00:00	2024/04/08	03:00:00	180.0	2.5	454
2024/04/08	07:08:00	2024/04/08	13:44:00	396.0	2.5	996
2024/04/08	18:00:00	2024/04/08	22:42:00	282.0	2.6	743
2024/04/09	03:06:00	2024/04/09	09:14:00	368.0	2.6	954
2024/04/09	09:40:00	2024/04/09	11:18:00	98.0	2.5	248
2024/04/09	15:22:00	2024/04/09	15:42:00	20.0	2.7	53
2024/04/09	15:58:00	2024/04/09	20:44:00	286.0	2.6	743
2024/04/10	01:48:00	2024/04/10	08:32:00	404.0	2.6	1,033
2024/04/10	12:38:00	2024/04/10	18:14:00	336.0	2.6	878
2024/04/11	00:26:00	2024/04/11	06:30:00	364.0	2.6	947
2024/04/11	10:22:00	2024/04/11	11:42:00	80.0	2.6	207
2024/04/11	11:58:00	2024/04/11	16:50:00	292.0	2.6	759
2024/04/11	23:16:00	2024/04/11	23:58:00	44.0	2.6	116
2024/04/12	00:00:00	2024/04/12	05:38:00	338.0	2.6	864
2024/04/12	09:46:00	2024/04/12	15:48:00	362.0	2.6	933
2024/04/12	21:14:00	2024/04/12	23:58:00	166.0	2.6	435
2024/04/12	00:00:00	2024/04/12	03:20:00	200.0	2.6	512
2024/04/13	07:28:00	2024/04/13	14:20:00	412.0	2.5	1.049
2024/04/13	18:36:00	2024/04/13	23:58:00	324.0	2.6	837
2024/04/13	00:00:00	2024/04/13	01:36:00	96.0	2.5	243
2024/04/14		2024/04/14	12:04:00	382.0	2.6	978
2024/04/14	05:42:00 16:14:00	2024/04/14	21:20:00	306.0	2.6	810
2024/04/14	01:46:00	2024/04/14	08:22:00	396.0	2.6	1,033
2024/04/15	12:56:00	2024/04/15	18:32:00	336.0		876
					2.6	
2024/04/16	00:06:00	2024/04/16	06:14:00	368.0	2.6	952
2024/04/16	10:54:00	2024/04/16	17:54:00	420.0	2.6	1,093
2024/04/17	00:04:00	2024/04/17	05:46:00	342.0	2.6	895
2024/04/17 2024/04/17	10:08:00 22:54:00	2024/04/17 2024/04/17	16:22:00 23:58:00	374.0 66.0	2.6	969 176

CONDENSATE INJECTION (A-12 Flare)

April-24

				Maximum GPM	2.7	
Totals				23,574	2.6	60,932
2024/04/30	23:02:00	2024/04/30	23:58:00	58.0	2.7	156
2024/04/30	10:38:00	2024/04/30	16:22:00	344.0	2.6	904
2024/04/30	00:02:00	2024/04/30	06:06:00	364.0	2.6	949
2024/04/29	12:00:00	2024/04/29	17:30:00	330.0	2.6	873
2024/04/29	01:26:00	2024/04/29	07:16:00	350.0	2.6	910
2024/04/28	15:32:00	2024/04/28	19:48:00	256.0	2.7	685
2024/04/28	04:58:00	2024/04/28	10:54:00	356.0	2.6	917
2024/04/28	00:00:00	2024/04/28	00:32:00	32.0	2.5	81
2024/04/27	20:02:00	2024/04/27	23:58:00	238.0	2.7	633
2024/04/27	07:20:00	2024/04/27	13:56:00	396.0	2.6	1,020
2024/04/27	00:00:00	2024/04/27	02:44:00	164.0	2.6	420
2024/04/26	21:02:00	2024/04/26	23:58:00	178.0	2.6	471
2024/04/26	09:50:00	2024/04/26	15:48:00	358.0	2.6	922
2024/04/26	00:00:00	2024/04/26	05:08:00	308.0	2.6	793
2024/04/25	23:00:00	2024/04/25	23:58:00	60.0	2.7	159
2024/04/25	12:08:00	2024/04/25	17:20:00	312.0	2.6	821
2024/04/25	01:12:00	2024/04/25	07:22:00	370.0	2.6	952
2024/04/24	15:12:00	2024/04/24	20:00:00	288.0	2.6	761
2024/04/24	04:40:00	2024/04/24	10:36:00	356.0	2.6	918
2024/04/23	19:18:00	2024/04/23	23:54:00	276.0	2.6	724
2024/04/23	08:38:00	2024/04/23	14:16:00	338.0	2.6	863
2024/04/23	00:00:00	2024/04/23	04:00:00	240.0	2.6	627
2024/04/22	22:36:00	2024/04/22	23:58:00	84.0	2.7	228
2024/04/22	10:18:00	2024/04/22	15:58:00	340.0	2.6	891
2024/04/22	00:20:00	2024/04/22	05:40:00	320.0	2.6	844
2024/04/21	11:46:00	2024/04/21	17:22:00	336.0	2.6	873
2024/04/21	01:08:00	2024/04/21	07:10:00	362.0	2.6	931
2024/04/20	14:30:00	2024/04/20	19:02:00	272.0	2.7	737
2024/04/20	03:40:00	2024/04/20	09:42:00	362.0	2.6	931
2024/04/19	18:58:00	2024/04/19	22:44:00	226.0	2.7	608
2024/04/19	08:06:00	2024/04/19	13:58:00	352.0	2.5	892
2024/04/19	00:00:00	2024/04/19	03:28:00	208.0	2.6	541
2024/04/18	22:08:00	2024/04/18	23:58:00	112.0	2.7	300
2024/04/18	08:52:00	2024/04/18	14:56:00	364.0	2.6	950
2024/04/18			04:06:00	 		

gpm= gallons per minute

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the landfill gas condensate injection rate shall not exceed 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

CONDENSATE INJECTION (A-12 Flare)

April-24

Start Date	Start Time	End Date	End Time	Total Injection Time (min.)	Average GPM	Total Gallons
2024/05/01	00:00:00	2024/05/01	04:46:00	286.0	2.6	743
2024/05/01	09:22:00	2024/05/01	15:32:00	370.0	2.6	959
2024/05/01	22:20:00	2024/05/01	23:58:00	100.0	2.7	268
2024/05/02	00:00:00	2024/05/02	03:52:00	232.0	2.6	607
2024/05/02	08:40:00	2024/05/02	14:52:00	372.0	2.6	962
2024/05/02	21:38:00	2024/05/02	23:58:00	142.0	2.7	385
2024/05/03	00:00:00	2024/05/03	02:26:00	146.0	2.7	387
2024/05/03	07:02:00	2024/05/03	13:04:00	362.0	2.6	935
2024/05/03	18:38:00	2024/05/03	22:20:00	222.0	2.7	597
2024/05/04	03:28:00	2024/05/04	09:08:00	340.0	2.6	890
2024/05/04	13:52:00	2024/05/04	19:42:00	350.0	2.6	920
2024/05/05	00:26:00	2024/05/05	06:42:00	376.0	2.6	990
2024/05/05	11:22:00	2024/05/05	17:32:00	370.0	2.6	954
2024/05/05	23:20:00	2024/05/05	23:58:00	40.0	2.7	108
2024/05/06	00:00:00	2024/05/06	05:42:00	342.0	2.6	890
2024/05/06	10:06:00	2024/05/06	16:32:00	386.0	2.6	1,005
2024/05/06	22:56:00	2024/05/06	23:58:00	64.0	2.7	173
2024/05/07	00:00:00	2024/05/07	04:36:00	276.0	2.6	722
2024/05/07	09:22:00	2024/05/07	15:36:00	374.0	2.6	977
2024/05/07	21:38:00	2024/05/07	23:58:00	142.0	2.7	384
2024/05/08	00:00:00	2024/05/08	02:34:00	154.0	2.6	407
		2024/05/08				
2024/05/08	06:58:00		13:34:00	396.0	2.6	1,039 643
2024/05/08	18:42:00	2024/05/08	22:42:00	240.0	2.7	
2024/05/09	03:28:00	2024/05/09	10:20:00	412.0	2.6	1,063
2024/05/09	13:54:00	2024/05/09	17:58:00	244.0	2.7	664
2024/05/10	01:36:00	2024/05/10	07:30:00	354.0	2.6	935
2024/05/10	11:56:00	2024/05/10	17:02:00	306.0	2.7	819
2024/05/11	00:32:00	2024/05/11	06:22:00	350.0	2.7	928
2024/05/11	10:56:00	2024/05/11	16:36:00	340.0	2.7	904
2024/05/12	00:24:00	2024/05/12	06:04:00	340.0	2.6	900
2024/05/12	10:30:00	2024/05/12	16:14:00	344.0	2.6	903
2024/05/12	23:34:00	2024/05/12	23:58:00	26.0	2.7	71
2024/05/13	00:00:00	2024/05/13	05:04:00	304.0	2.6	805
2024/05/13	09:26:00	2024/05/13	16:04:00	398.0	2.6	1,034
2024/05/14	00:04:00	2024/05/14	05:58:00	354.0	2.6	933
2024/05/14	10:16:00	2024/05/14	23:46:00	810.0	1.4	1,171
2024/05/15	04:20:00	2024/05/15	23:58:00	1,180.0	1.4	1,677
2024/05/16	00:00:00	2024/05/16	17:50:00	1,070.0	1.5	1,561
2024/05/17	00:14:00	2024/05/17	23:58:00	1,426.0	1.5	2,102
2024/05/18	00:00:00	2024/05/18	19:24:00	1,164.0	1.5	1,717
2024/05/19	00:54:00	2024/05/19	23:58:00	1,386.0	1.5	2,028
2024/05/20	00:00:00	2024/05/20	19:08:00	1,148.0	1.5	1,665
2024/05/21	01:12:00	2024/05/21	23:58:00	1,368.0	1.5	1,987
2024/05/22	00:00:00	2024/05/22	18:02:00	1,082.0	1.5	1,582
2024/05/23	00:50:00	2024/05/23	23:58:00	1,390.0	1.5	2,041
2024/05/24	00:00:00	2024/05/24	19:04:00	1,144.0	1.5	1,678
2024/05/25	00:44:00	2024/05/25	23:58:00	1,396.0	1.5	2,134
2024/05/26	00:00:00	2024/05/26	18:54:00	1,134.0	1.5	1,664
2024/05/27	01:28:00	2024/05/27	23:58:00	1,352.0	1.5	2,054
2024/05/28	00:00:00	2024/05/28	17:06:00	1,026.0	1.5	1,522
2024/05/29	00:18:00	2024/05/29	23:58:00	1,422.0	1.5	2,160

CONDENSATE INJECTION (A-12 Flare)

April-24

				Maximum GPM	2.7	
Totals				31,506	1.8	57,774
2024/05/31	14:06:00	2024/05/31	23:58:00	594.0	1.5	914
2024/05/31	04:00:00	2024/05/31	11:46:00	466.0	1.5	700
2024/05/30	07:04:00	2024/05/30	22:38:00	934.0	1.4	1,272
2024/05/30	00:00:00	2024/05/30	02:40:00	160.0	1.5	238

gpm= gallons per minute

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the landfill gas condensate injection rate shall not exceed 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

CONDENSATE INJECTION (A-12 Flare) June-24

Start Date	Start Time	End Date	End Time	Total Injection Time (min.)	Average GPM	Total Gallons
2024/06/01	00:00:00	2024/06/01	16:46:00	1,006.0	1.5	1,508
2024/06/02	00:08:00	2024/06/02	23:58:00	1,432.0	1.5	2,154
2024/06/03	00:00:00	2024/06/03	05:18:00	318.0	1.5	476
2024/06/03	09:44:00	2024/06/03	16:28:00	404.0	1.5	611
2024/06/03	18:14:00	2024/06/03	23:58:00	346.0	2.1	725
2024/06/04	00:00:00	2024/06/04	05:36:00	336.0	2.1	697
2024/06/04	09:48:00	2024/06/04	18:34:00	526.0	2.1	1,118
2024/06/05	01:30:00	2024/06/05	13:10:00	700.0	2.1	1,467
2024/06/05	23:30:00	2024/06/05	23:58:00	30.0	2.3	68
2024/06/06	00:00:00	2024/06/06	06:08:00	368.0	2.2	795
2024/06/06	11:10:00	2024/06/06	18:04:00	414.0	2.2	921
2024/06/07	02:22:00	2024/06/07	12:38:00	616.0	2.1	1,317
2024/06/07	18:44:00	2024/06/07	23:58:00	316.0	2.2	705
2024/06/08	00:00:00	2024/06/08	00:40:00	40.0	2.1	85
2024/06/08	05:20:00	2024/06/08	15:22:00	602.0	2.1	1,283
2024/06/08	23:04:00	2024/06/08	23:58:00	56.0	2.2	123
2024/06/09	00:00:00	2024/06/09	09:14:00	554.0	2.1	1,165
2024/06/09	13:58:00	2024/06/09	19:36:00	338.0	2.2	741
2024/06/10	02:14:00	2024/06/10	13:50:00	696.0	2.1	1,454
2024/06/10	22:26:00	2024/06/10	23:58:00	94.0	2.2	206
2024/06/11	00:00:00	2024/06/11	07:26:00	446.0	2.1	939
2024/06/11	12:02:00	2024/06/11	18:10:00	368.0	2.1	769
2024/06/12	03:18:00	2024/06/12	13:08:00	590.0	2.0	1,188
2024/06/12	19:26:00	2024/06/12	23:58:00	274.0	2.0	560
2024/06/13	00:00:00	2024/06/13	03:14:00	194.0	2.0	383
2024/06/13	07:50:00	2024/06/13	17:50:00	600.0	2.0	1,183
2024/06/14	00:54:00	2024/06/14	14:44:00	830.0	1.9	1,614
2024/06/14	23:20:00	2024/06/14	23:58:00	40.0	2.1	83
2024/06/15	00:00:00	2024/06/15	11:00:00	660.0	2.0	1,293
2024/06/15	16:10:00	2024/06/15	21:48:00	338.0	2.0	680
2024/06/16	03:20:00	2024/06/16	16:46:00	806.0	1.9	1,515
2024/06/17	00:22:00	2024/06/17	15:42:00	920.0	1.9	1,710
2024/06/17	23:28:00	2024/06/17	23:58:00	32.0	2.0	62
2024/06/18	00:00:00	2024/06/18	14:50:00	890.0	1.8	1,634
2024/06/18	22:18:00	2024/06/18	23:58:00	102.0	1.9	190
2024/06/19	00:00:00	2024/06/19	16:30:00	990.0	1.8	1,762
2024/06/20	00:18:00	2024/06/20	17:24:00	1,026.0	1.8	1,867
2024/06/21	01:18:00	2024/06/21	09:46:00	508.0	2.3	1,149
2024/06/21	14:22:00	2024/06/21	19:14:00	292.0	2.3	666
2024/06/22	02:54:00	2024/06/22	11:42:00	528.0	2.2	1,171
2024/06/22	19:18:00	2024/06/22	22:20:00	182.0	2.7	486
2024/06/23	04:52:00	2024/06/23	10:58:00	366.0	2.6	939
2024/06/23	17:38:00	2024/06/23	20:48:00	190.0	2.7	504
2024/06/24	04:44:00	2024/06/24	14:34:00	590.0	2.0	1,189
2024/06/25	01:00:00	2024/06/25	11:06:00	606.0	1.9	1,141
2024/06/25	19:00:00	2024/06/25	23:38:00	278.0	2.1	589
2024/06/26	05:16:00	2024/06/26	08:26:00	190.0	2.0	387
2024/06/26	17:06:00	2024/06/26	22:02:00	296.0	2.6	756
2024/06/27	05:00:00	2024/06/27	06:54:00	114.0	2.5	282
2024/06/27	06:56:00	2024/06/27	14:02:00	426.0	1.8	785

CONDENSATE INJECTION (A-12 Flare)

June-24

				Maximum GPM	2.7	
Totals				24,924	2.0	48,981
2024/06/30	14:38:00	2024/06/30	19:24:00	286.0	1.9	555
2024/06/30	01:24:00	2024/06/30	08:56:00	452.0	1.9	841
2024/06/29	05:02:00	2024/06/29	14:22:00	560.0	1.8	1,034
2024/06/28	14:00:00	2024/06/28	19:08:00	308.0	2.0	603
2024/06/28	00:50:00	2024/06/28	08:24:00	454.0	1.9	854
ound 21						

gpm= gallons per minute

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the landfill gas condensate injection rate shall not exceed 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

APPENDIX N GAS MIGRATION MONITORING REPORTS

Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037 T: 408.779.2206

April 4, 2024

Ms. Becky Azevedo Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive San Jose, CA 95037

Re: First Quarter 2024 Perimeter gas and Methane in Structure Monitoring Report Kirby Canyon Recycling & Disposal Facility

Dear Ms. Azevedo:

This report for the "Kirby Canyon Recycling and Disposal Facility (KCRDF) Landfill" contains the results of the First Quarter 2024 Perimeter Gas and Methane in Structure Monitoring conducted at the KCRDF. All monitoring was conducted by KCRDF personnel.

REGULATORY REQUIREMENTS

Requirements for monitoring are outlined in 40 CFR 258.23, Title 27 California Code of Regulations (CCR), Article 6, Gas Monitoring at Active and Closed Disposal Sites. These regulations require periodic monitoring to ensure that methane concentrations are less than 5 percent at the property boundary and less than 1.25 percent in on-site buildings and structures. Reporting requirements are presented in Title 27 §20934.

MONITORING RESULTS AND MAP [TITLE 27 §20934(a)(1), (2), (3) AND (5)]

Monitoring was conducted in accordance with 40 CFR 258.23 and Title 27, Article 6 at the locations shown in the attached map (Attachment A) and Standard Operating Procedure (SOP) for probe monitoring as detailed in (Attachment B). Results for both probes and structures are summarized in Table 1. Field data and Calibration data are presented in Attachment C.

No exceedances of Subtitle D (40 CFR 258.23) and California Code of Regulations (CCR) Title 27, Division 2, Section 20919.5 were detected during any of the monitoring events.

Results for probes and are summarized in Table 1. All other Field data sheets are presented in Attachment B.

Kirby Canyon Recycling and Disposal Facility Perimeter Gas Monitoring Probe Results

Analyst: Tino Robles Date: 2/27/24
Instrument: Gem 5000 Serial #: G502468
Atmospheric Temperature (Deg F): 51
Barometric Pressure: 30.07 Inch of HG

Wind Speed: 7 MPH Wind Direction: NW

Weather Condition: Sunny

D 1 ID	Tr.	CH ₄	Probe		lition (clean, locked)	6 1
Probe ID	Time	(%)	Pressure (in-H ₂ 0)	Arrival	Departure	Comments
KIRBP01A	8:04am	0	-0.05	Ok	Ok	
KIRBP01B	8:06am	0	-0.05	Ok	Ok	
KIRBP02A	8:09am	0	-0.03	Ok	Ok	
KIRBP02B	8:12am	0	-0.04	Ok	Ok	
KIRBP03A	8:17am	0	-0.06	Ok	Ok	
KIRBP03B	8:20am	0	-0.09	Ok	Ok	
KIRBP04A	8:25am	0	-0.06	Ok	Ok	
KIRBP04B	8:28am	0	0.05	Ok	Ok	
KIRBP05A	8:32am	0	-0.06	Ok	Ok	
KIRBP05B	8:35am	0	-0.09	Ok	Ok	
KIRBP06A	8:39am	0	-0.08	Ok	Ok	
KIRBP06B	8:42am	0	-0.09	Ok	Ok	
KIRBP07A	8:46am	0	0.03	Ok	Ok	
KIRBP07B	8:49am	0	-0.06	Ok	Ok	
KIRBP08A	8:53am	0	-0.03	Ok	Ok	
KIRBP08B	8:56am	0	0.01	Ok	Ok	

D 1 10	m.	CH ₄	Probe		lition (clean, , locked)	6
Probe ID	Time	(%)	Pressure (in-H ₂ 0)	Arrival	Departure	Comments
KIRBP09A	9:04am	0	-0.09	Ok	Ok	
KIRBP09B	9:07am	0	-0.10	Ok	Ok	
KIRBP10A	9:14am	0	-0.05	Ok	Ok	
KIRBP10B	9:17am	0	-0.04	Ok	Ok	
KIRBP011A	9:21am	0	-0.09	Ok	Ok	
KIRBP011B	9:23am	0	-0.10	Ok	Ok	
KIRBP12A	7:57am	0	-0.04	Ok	Ok	
KIRBP12B	7:59am	0	-0.04	Ok	Ok	
KIRBP14A	7:51am	0	-0.07	Ok	Ok	
KIRBP14B	7:53am	0	-0.07	Ok	Ok	
KIRBP15	7:45am	0	0.00	Ok	Ok	

ND = No detection

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

- (1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.
- (2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Note: The reading should not exceed 25% LEL = 1.25% CH₄ = 12,500 ppm CH₄

Immediately notify compliance personnel of any readings in excess of 5 percent methane.

STRUCTURE FID MONITORING DATA

Analyst: Tino Robles Date: 1-17-24
Instrument: TVA Serial #:0928538411

Monitored Location	Time	PPM	Comments
Scale House	8:15 AM	0	
Admin Building	7:45 AM	0	
Operations Break Trailer	8:00 AM	0	

ND = No detection

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane

MONITORING EQUIPMENT AND METHODOLOGY [TITLE 27 §20934(a)(4)]

Perimeter Gas Monitoring

The facility conducted the required monitoring using a CES-Landtec GEM-5000 gas analyzer (GEM). The monitoring was conducted by Tino Robles on February 27, 2024. The static pressure of each probe was monitored using the GEM's internal pressure transducers and the probes were monitored to determine methane concentration.

Facility Structures

Tino Robles used a TVA 1000 to monitor buildings and structures to check for the presence of methane on January 17, 2024. The instrument was calibrated on January 17, 2024, using 500 ppm methane standard.

Combustible Methane Gas Monitor Calibration

Some facility structures are monitored continuously using Sierra Monitors. The monitor is calibrated at a frequency determined by the manufacturer. The most recent calibration was conducted by Tino Robles on January 17, 2024.

GENERAL WEATHER CONDITIONS [TITLE 27 §20934(a)(3)]

General weather conditions are the time of monitoring are presented in Table 3.

Table 3 General Weather Conditions

TUBLE C STREET IT	entite continuous
Description	February 27, 2024
General conditions	Overcast
Avg Wind Speed (mph)	1.2
Wind Direction	SSE
Barometric Pressure, (Inches of Hg)	30.0
Ambient Low/High (Temperature Deg F)	57/66

If you have any questions regarding this notification, please do not hesitate to contact me at rphadnis@wm.com

Thank you,

Waste Management,

Rajan Phadnis

EP Air Specialist- Northern California-Nevada Attachments: Perimeter Gas Probe Location Map

KCRDF Field Data

ATTACHMENT A SITE MAP

ATTACHMENT B STANDARD OPERATING PROCEDURE FOR PROBE MONITORING

Kirby Recycling and Disposal Facility

Standard Operating Procedures Landfill Gas Migration Monitoring

This standard operating procedure details the process that is follow for migration monitoring at landfill gas (LFG) probes for Kirby Recycling and Disposal Facility (KCRDF). In accordance with the current KCRDF LFG Migration Monitoring Plan, there are 15 LFG probes that are required to be monitored each quarter. Monitoring procedures are detailed below:

- 1. Dedicated equipment that is used for the monitoring event is calibrated with current calibration gases and documented. The equipment is now operational.
- 2. LFG technician documents general daily weather conditions for the monitoring event including barometric pressure, windspeed, wind direction, atmospheric temperature, and ambient temperature.
- 3. LFG technician arrives at the first monitoring location and unlocks the probe cover. The LFG technician then removes the quick connect/valve or similar fitting from probe assembly to gain access to the probe sampling location.
- 4. Next the LFG technician attaches the monitoring device hose (GEM 2000/5000) to the LFG probe sampling location.
- 5. First step of sample collection is to open the valve on the LFG probe sampling location.
- 6. Next step of sample collection is to check the probe pressure and record.
- 7. The following step is to turn on GEM 2000/5000 pump.
- 8. Wait for the reading to stabilize (typically 1-4 minutes).
- 9. Record gas composition reading that includes methane, carbon dioxide, oxygen, and balance gases on the GEM 2000/5000.
- 10. LFG technician then removes sample equipment from the LFG probe and closes the valve.
- 11. If the current probe location includes an additional depth for monitoring, then follow procedures 1-10 above.
- 12. To complete the monitoring at this location, the LFG Technician closes cap and secures the lock.
- 13. LFG technician follows above procedure # 1-12 at each LFG probe location.
- 14. At the completion of the daily LFG probe monitoring, the LFG technician uploads monitoring data to WM's Landfill Gas Management System (LGMS).

ATTACHMENT C FIELD DATA

KCRDF Field Data February 2024

Device Name	Date Time	CH4 (Methane)(%)	CO2 (Carbon Dioxide)(%)	O2 (Oxygen)(%)	Balance Gas(%)	Relative Pressure("H2O)	Ambient Temperature(oF)	Barometric Pressure("Hg)	Wind Direction	Wind Speed(mph)	Instrument ID	Field Technician
KIRBP015	2/27/2024 7:45	0	0.1	21.5	78.4		51		N	7	G502468	FROBLES
KIRBP01A	2/27/2024 8:04	0	0.2	21.9	77.9	-0.05	51	29.22	N	7	G502468	FROBLES
KIRBP01B	2/27/2024 8:06	0	0.2	21.9	77.9	-0.05	51	29.22	N	7	G502468	FROBLES
KIRBP02A	2/27/2024 8:09	0	0.2	21.5	78.3	-0.03	51	29.03	N	7	G502468	FROBLES
KIRBP02B	2/27/2024 8:12	0	0.1	21.4	78.5	-0.04	51	29.03	N	7	G502468	FROBLES
KIRBP03A	2/27/2024 8:17	0	0.2	21.4	78.4	-0.06	51	28.9	N	7	G502468	FROBLES
KIRBP03B	2/27/2024 8:20	0	0.2	21.6	78.2	-0.09	51	28.89	N	7	G502468	FROBLES
KIRBP04A	2/27/2024 8:25	0	0.2	22	77.8	-0.06	51	28.77	N	7	G502468	FROBLES
KIRBP04B	2/27/2024 8:28	0	0.2	21.9	77.9	0.05	51	28.76	N	7	G502468	FROBLES
KIRBP05A	2/27/2024 8:32	0	0.2	21.3	78.5	-0.06	51	28.76	N	7	G502468	FROBLES
KIRBP05B	2/27/2024 8:35	0	0.2	21.3	78.5	-0.09	51	28.76	N	7	G502468	FROBLES
KIRBP06A	2/27/2024 8:39	0	0.2	21.6	78.2	-0.08	51	28.81	N	7	G502468	FROBLES
KIRBP06B	2/27/2024 8:42	0	0.2	21.7	78.1	-0.09	51	28.81	N	7	G502468	FROBLES
KIRBP07A	2/27/2024 8:46	0	0.2	21.8	78	0.03	51	28.72	N	7	G502468	FROBLES
KIRBP07B	2/27/2024 8:49	0	0.2	21.8	78	-0.06	51	28.72	N	7	G502468	FROBLES
KIRBP08A	2/27/2024 8:53	0	0.2	21.8	78	-0.03	51	28.83	N	7	G502468	FROBLES
KIRBP08B	2/27/2024 8:56	0	0.2	18	81.8	0.01	51	28.84	N	7	G502468	FROBLES
KIRBP09A	2/27/2024 9:04	0	0.3	17.9	81.8	-0.09	51	29.15	N	7	G502468	FROBLES
KIRBP09B	2/27/2024 9:07	0	0.3	20.1	79.6	-0.1	51	29.15	N	7	G502468	FROBLES
KIRBP10A	2/27/2024 9:14	0	0.3	20.4	79.3	-0.05	51	29.16	N	7	G502468	FROBLES
KIRBP10B	2/27/2024 9:17	0	0.3	20.1	79.6	-0.04	51	29.17	N	7	G502468	FROBLES
KIRBP11A	2/27/2024 9:21	0	0.3	20.8	78.9	-0.09	51	29.24	N	7	G502468	FROBLES
KIRBP11B	2/27/2024 9:23	0	0.3	20.8	78.9	-0.1	51	29.23	N	7	G502468	FROBLES
KIRBP12A	2/27/2024 7:57	0	0.2	21.8	78	-0.04	51	29.24	N	7	G502468	FROBLES
KIRBP12B	2/27/2024 7:59	0	0.2	21.9	77.9	-0.04	51	29.24	N	7	G502468	FROBLES
KIRBP14A	2/27/2024 7:51	0	0.1	21.6	78.3	-0.07	51	29.4	N	7	G502468	FROBLES
KIRBP14B	2/27/2024 7:53	0	0.1	21.8	78.1	-0.07	51	29.4	N	7	G502468	FROBLES

Kirby Canyon Recycling and Disposal Facility Perimeter Gas Monitoring Probe Results

Analyst: Tino Robles Date: 2/27/24
Instrument: Gem 5000 Serial #: G502468
Atmospheric Temperature (Deg F): 51
Barometric Pressure: 30.07 Inch of HG

Wind Speed: 7 MPH Wind Direction: NW

Weather Condition: Sunny

n 1 10		CH ₄	Probe		Condition ped, locked)	Comments
Probe ID	Time	(%)	Pressure (in-H ₂ 0)	Arrival	Departure	
KIRBP01A	8:04am	0	-0.05	Ok	Ok	
KIRBP01B	8:06am	0	-0.05	Ok	Ok	
KIRBP02A	8:09am	0	-0.03	Ok	Ok	
KIRBP02B	8:12am	0	-0.04	Ok	Ok	
KIRBP03A	8:17am	0	-0.06	Ok	Ok	
KIRBP03B	8:20am	0	-0.09	Ok	Ok	
KIRBP04A	8:25am	0	-0.06	Ok	Ok	
KIRBP04B	8:28am	0	0.05	Ok	Ok	
KIRBP05A	8:32am	0	-0.06	Ok	Ok	
KIRBP05B	8:35am	0	-0.09	Ok	Ok	
KIRBP06A	8:39am	0	-0.08	Ok	Ok	
KIRBP06B	8:42am	0	-0.09	Ok	Ok	
KIRBP07A	8:46am	0	0.03	Ok	Ok	
KIRBP07B	8:49am	0	-0.06	Ok	Ok	
KIRBP08A	8:53am	0	-0.03	Ok	Ok	
KIRBP08B	8:56am	0	0.01	Ok	Ok	
KIRBP09A	9:04am	0	-0.09	Ok	Ok	
KIRBP09B	9:07am	0	-0.10	Ok	Ok	
KIRBP10A	9:14am	0	-0.05	Ok	Ok	

B 1 10	m·	CH ₄	Probe		Condition ped, locked)	Comments
Probe ID	Time	(%)	Pressure (in-H ₂ 0)	Arrival	Departure	
KIRBP10B	9:17am	0	-0.04	Ok	Ok	
KIRBP011A	9:21am	0	-0.09	Ok	Ok	
KIRBP011B	9:23am	0	-0.10	Ok	Ok	
KIRBP12A	7:57am	0	-0.04	Ok	Ok	
KIRBP12B	7:59am	0	-0.04	Ok	Ok	
KIRBP14A	7:51am	0	-0.07	Ok	Ok	
KIRBP14B	7:53am	0	-0.07	Ok	Ok	
KIRBP15	7:45am	0	0.00	Ok	Ok	

ND = No detection

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

- (1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.
- (2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Note: The reading should not exceed 25% LEL = 1.25% CH₄ = 12,500 ppm CH₄

Immediately notify compliance personnel of any readings in excess of 5 percent methane.

STRUCTURE FID MONITORING DATA

Analyst:Tino Robles	Date: _	1-17-24
Instrument: TVA	Serial #:	0928538411

Monitored Location	Time	PPM	Comments
Scale House	8:15 AM	0	
Admin Building	7:45 AM	0	
Operations Break Trailer	8:00 AM	0	

ND = No detection

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane.

GAS DETECTOR CALIBRATION RECORD

LOCATION: KIRBY CANYON RECYCLING AND DISPOSAL FACILITY

Sierra Monitor Corporation Model #2001 MANUFACTURER & MODEL NUMBER:

CALIBRATED BY / INSTRUMENT USED: Cal System Model# 26

CALIBRATION GAS EXPIRATION DATE: July 12, 2025

Location	DATE CALIBRATED	SERIAL NUMBER	Methane LEL* SENSOR alarm 10,000 ppm	MAINTENANCE PERFORMED / COMMENTS ON MONITOR CONDITION
Main Office	1-17-24	1500700086GAM	YES	Good Condition
Scale House	1-17-24	1819303476GCN	YES	Good Condition
Break Trailer	1-17-24	1819303478GCN	YES	Good Condition

This form must be retained for 12 months after completion.

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name: Kirby Canyon Time: 645 AM PM S/N: 0928538411 Instrument Make: Thermo Scientific Model: TVA 1000B Calibration Procedure 1. Allow instrument to internally zero itself while introducing zero air. 2. Introduce the calibration gas into the probe. Stable Reading = 502 3. Adjust meter to read 500 ppm. **Background Determination Procedure** ppm (a) 1. Upwind Reading (highest in 30 seconds): 2. Downwind Reading (highest in 30 seconds): ppm (b) Calculate Background Value: Background = ____ (a) + (b)

Performed by:

CALIBRATION PRECISION TEST RECORD

Date: <u>1/4/2024</u>
Expiration Date (3 months): 4/4/2024
Time: <u>5:30</u> AM PM
Instrument Make: Thermo Scientific Model: TVA 1000 S/N: 0928538411
Measurement #1:
Meter Reading for Zero Air:0 ppm (a)
Meter Reading for Calibration Gas: 498 ppm (b)
Measurement #2:
Meter Reading for Zero Air: ppm (c)
Meter Reading for Calibration Gas: 496 ppm (d)
Measurement #3:
Meter Reading for Zero Air: ppm (e)
Meter Reading for Calibration Gas: 498 ppm (f)
Calculate Precision:
$\frac{\{ (496) - (500) + (500) - (498) + (500) - (496) \}}{3} \times \frac{1}{500} \times 100$
1.0 % (must be < than 10%)
Performed by: T. Robles

RESPONSE TIME TEST RECORD

Date: <u>1/4/24</u>		
Expiration Date (3 months): 4/4/24		
Time: _5:30 AM PM		
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u>	S/N:	0928538411
Measurement #1:		
Stabilized Reading Using Calibration Gas:	498 470	_ ppm
90% of the Stabilized Reading: Time to Reach 90% of Stabilized Reading after	470	_ ppm
switching from Zero Air to Calibration Gas:	10	_seconds (a)
Measurement #2:		
Stabilized Reading Using Calibration Gas:	496	_ ppm
90% of the Stabilized Reading:	480	ppm
Time to Reach 90% of Stabilized Reading after	-	1 715
switching from Zero Air to Calibration Gas:	5	_ seconds (b)
Measurement #3:		
Stabilized Reading Using Calibration Gas:	498	_ ppm
90% of the Stabilized Reading:	460	_ ppm
Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:	5	_ seconds (c)
Calculate Response Time:		
$\frac{(a) + (b) + (c)}{3} = \frac{8}{3}$ seconds (must be less than 30)	seconds)	
Performed by: <u>T.Robles</u>		

Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive PO Box 1870 Morgan Hill, California 95037 T: 408.779.2206

July 2, 2024

Ms. Becky Azevedo Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive San Jose, CA 95037

Re: Second Quarter 2024 Perimeter gas and Methane in Structure Monitoring Report Kirby Canyon Recycling & Disposal Facility

Dear Ms. Azevedo:

This report for the "Kirby Canyon Recycling and Disposal Facility (KCRDF) Landfill" contains the results of the Second Quarter 2024 Perimeter Gas and Methane in Structure Monitoring conducted at the KCRDF. All monitoring was conducted by KCRDF personnel.

REGULATORY REQUIREMENTS

Requirements for monitoring are outlined in 40 CFR 258.23, Title 27 California Code of Regulations (CCR), Article 6, Gas Monitoring at Active and Closed Disposal Sites. These regulations require periodic monitoring to ensure that methane concentrations are less than 5 percent at the property boundary and less than 1.25 percent in on-site buildings and structures. Reporting requirements are presented in Title 27 §20934.

MONITORING RESULTS AND MAP [TITLE 27 §20934(a)(1), (2), (3) AND (5)]

Monitoring was conducted in accordance with 40 CFR 258.23 and Title 27, Article 6 at the locations shown in the attached map (Attachment A) and Standard Operating Procedure (SOP) for probe monitoring as detailed in (Attachment B). Results for both probes and structures are summarized in Table 1. Field data and Calibration data are presented in Attachment C.

No exceedances of Subtitle D (40 CFR 258.23) and California Code of Regulations (CCR) Title 27, Division 2, Section 20919.5 were detected during any of the monitoring events.

Results for probes and are summarized in Table 1. All other Field data sheets are presented in Attachment B.

Kirby Canyon Recycling and Disposal Facility Perimeter Gas Monitoring Probe Results

Analyst: Tino Robles Date: 4/17/24
Instrument: Gem 5000 Serial #: G502468
Atmospheric Temperature (Deg F): 51

Barometric Pressure: 30.03 Inch of HG

Wind Speed: 3 MPH Wind Direction: W

Weather Condition: Overcast

Probe ID	Time	CH ₄ Probe Pressure		Probe Cond	Comments	
Probe ID	Time	(%)	(in-H ₂ 0)	Arrival	Departure	Comments
KIRBP01A	7:43am	0	-0.02	Ok	Ok	
KIRBP01B	7:46am	0	-0.05	Ok	Ok	
KIRBP02A	7:50am	0	0.02	Ok	Ok	
KIRBP02B	7:52am	0	0.02	Ok	Ok	
KIRBP03A	7:58am	0	-0.04	NO	Ok	Lock was replaced with new one.
KIRBP03B	8:02am	0	-0.02	NO	Ok	Lock was replaced with new one.
KIRBP04A	8:13am	0	0.01	NO	Ok	Cattle fencing was down on ground sent pictures to Becky.
KIRBP04B	8:16am	0	-0.02	NO	Ok	Rebuild fence before leaving adding protection around fencing later ok by DM
KIRBP05A	8:49am	0	0.00	Ok	Ok	
KIRBP05B	8:52am	0	-0.02	Ok	Ok	
KIRBP06A	8:57am	0	-0.04	Ok	Ok	
KIRBP06B	9:01am	0	-0.05	Ok	Ok	

Dooley ID		CH ₄	Probe	Probe Cond	Comments	
Probe ID		(%)	Pressure (in-H ₂ 0)	Arrival	Departure	Comments
KIRBP07A	9:06am	0	0.01	NO	Ok	Lock was replaced with new one.
KIRBP07B	9:09am	0	0.05	NO	Ok	Lock was replaced with new one.
KIRBP08A	9:16am	0	0.07	Ok	Ok	
KIRBP08B	9:18am	0	0.03	Ok	Ok	
KIRBP09A	9:29am	0	-0.04	Ok	Ok	
KIRBP09B	9:07am	0	-0.00	Ok	Ok	
KIRBP10A	9:44am	0	0.01	Ok	Ok	
KIRBP10B	9:47am	0	0.00	Ok	Ok	
KIRBP011A	9:51am	0	0.03	Ok	Ok	
KIRBP011B	9:54am	0	-0.00	Ok	Ok	
KIRBP12A	1:02pm	0	-0.00	Ok	Ok	Prob reading taken on 4/11/2024
KIRBP12B	1:04pm	0	0.02	Ok	Ok	Prob reading taken on 4/11/2024
KIRBP14A	7:36am	0	-0.02	Ok	Ok	
KIRBP14B	7:39am	0	0.00	Ok	Ok	
KIRBP15	10:22am	0	-0.08	Ok	Ok	

ND = No detection

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

Note: The reading should not exceed 25% LEL = 1.25% CH₄ = 12,500 ppm CH₄

Immediately notify compliance personnel of any readings in excess of 5 percent methane.

⁽¹⁾ The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.

⁽²⁾ The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

STRUCTURE FID MONITORING DATA

Analyst: Tino Robles Date: 4-17-24
Instrument: TVA Serial #:0928538411

Monitored Location	Time	PPM	Comments
Scale House	6:20 AM	0	
Admin Building	6:00 AM	0	
Operations Break Trailer	6:30 AM	0	

ND = No detection

Immediately notify compliance personnel of any readings in excess of 1,25 percent methane

MONITORING EQUIPMENT AND METHODOLOGY [TITLE 27 §20934(a)(4)]

Perimeter Gas Monitoring

The facility conducted the required monitoring using a CES-Landtec GEM-5000 gas analyzer (GEM). The monitoring was conducted by Tino Robles on April 17, 2024. The static pressure of each probe was monitored using the GEM's internal pressure transducers and the probes were monitored to determine methane concentration.

Facility Structures

Tino Robles used a TVA 1000 to monitor buildings and structures to check for the presence of methane on April 17, 2024. The instrument was calibrated on April 17, 2024, using 500 ppm methane standard.

Combustible Methane Gas Monitor Calibration

Some facility structures are monitored continuously using Sierra Monitors. The monitor is calibrated at a frequency determined by the manufacturer. The most recent calibration was conducted by Tino Robles on April 17, 2024.

GENERAL WEATHER CONDITIONS [TITLE 27 §20934(a)(3)]

General weather conditions are the time of monitoring are presented in Table 3.

Table 3 General Weather Conditions

Description	April 11, 2024	April 17, 2024
General conditions	Scattered clouds	Broken clouds
Avg Wind Speed (mph)	0.6	0.6
Wind Direction	N	NW
Barometric Pressure, (Inches of Hg)	29.95	30.04
Ambient Low/High (Temperature Deg F)	55/75	55/73

If you have any questions regarding this notification, please do not hesitate to contact me at rphadnis@wm.com

Thank you,

Waste Management,

Rajan Phadnis

EP Air Specialist- Northern California-Nevada Attachments: Perimeter Gas Probe Location Map

KCRDF Field Data

ATTACHMENT A SITE MAP

ATTACHMENT B STANDARD OPERATING PROCEDURE FOR PROBE MONITORING

Kirby Recycling and Disposal Facility

Standard Operating Procedures Landfill Gas Migration Monitoring

This standard operating procedure details the process that is follow for migration monitoring at landfill gas (LFG) probes for Kirby Recycling and Disposal Facility (KCRDF). In accordance with the current KCRDF LFG Migration Monitoring Plan, there are 15 LFG probes that are required to be monitored each quarter. Monitoring procedures are detailed below:

- 1. Dedicated equipment that is used for the monitoring event is calibrated with current calibration gases and documented. The equipment is now operational.
- 2. LFG technician documents general daily weather conditions for the monitoring event including barometric pressure, windspeed, wind direction, atmospheric temperature, and ambient temperature.
- 3. LFG technician arrives at the first monitoring location and unlocks the probe cover. The LFG technician then removes the quick connect/valve or similar fitting from probe assembly to gain access to the probe sampling location.
- 4. Next the LFG technician attaches the monitoring device hose (GEM 2000/5000) to the LFG probe sampling location.
- 5. First step of sample collection is to open the valve on the LFG probe sampling location.
- 6. Next step of sample collection is to check the probe pressure and record.
- 7. The following step is to turn on GEM 2000/5000 pump.
- 8. Wait for the reading to stabilize (typically 1-4 minutes).
- 9. Record gas composition reading that includes methane, carbon dioxide, oxygen, and balance gases on the GEM 2000/5000.
- 10. LFG technician then removes sample equipment from the LFG probe and closes the valve.
- 11. If the current probe location includes an additional depth for monitoring, then follow procedures 1-10 above.
- 12. To complete the monitoring at this location, the LFG Technician closes cap and secures the lock.
- 13. LFG technician follows above procedure # 1-12 at each LFG probe location.
- 14. At the completion of the daily LFG probe monitoring, the LFG technician uploads monitoring data to WM's Landfill Gas Management System (LGMS).

ATTACHMENT C FIELD DATA

Kirby Canyon Recycling and Disposal Facility Perimeter Gas Monitoring Probe Results

Analyst: Tino Robles Date: 4/17/24
Instrument: Gem 5000 Serial #: G502468
Atmospheric Temperature (Deg F): 51
Barometric Pressure: 30.03 Inch of HG

Wind Speed: <u>3 MPH</u> Wind Direction: <u>W</u>

Weather Condition: Overcast

Probe ID	Time	CH ₄ (%)	Probe Pressure (in-H ₂ 0)	Probe Condition (clean, capped, locked)		Comments
				Arrival	Departure	
KIRBP01A	7:43am	0	-0.02	Ok	Ok	
KIRBP01B	7:46am	0	-0.05	Ok	Ok	
KIRBP02A	7:50am	0	0.02	Ok	Ok	
KIRBP02B	7:52am	0	0.02	Ok	Ok	
KIRBP03A	7:58am	0	-0.04	NO	Ok	Lock was replaced with new one.
KIRBP03B	8:02am	0	-0.02	NO	Ok	Lock was replaced with new one.
KIRBP04A	8:13am	0	0.01	NO	Ok	Cattle fencing was down on ground sent pictures to Becky.
KIRBP04B	8:16am	0	-0.02	NO	Ok	Rebuild fence before leaving adding protection around fencing later ok by DM
KIRBP05A	8:49am	0	0.00	Ok	Ok	
KIRBP05B	8:52am	0	-0.02	Ok	Ok	
KIRBP06A	8:57am	0	-0.04	Ok	Ok	
KIRBP06B	9:01am	0	-0.05	Ok	Ok	
KIRBP07A	9:06am	0	0.01	NO	Ok	Lock was replaced with new one.
KIRBP07B	9:09am	0	0.05	NO	Ok	Lock was replaced with new one.
KIRBP08A	9:16am	0	0.07	Ok	Ok	
KIRBP08B	9:18am	0	0.03	Ok	Ok	
KIRBP09A	9:29am	0	-0.04	Ok	Ok	
KIRBP09B	9:07am	0	-0.00	Ok	Ok	
KIRBP10A	9:44am	0	0.01	Ok	Ok	

Post to ID	T:	CH ₄	Probe (clea	(Clean, Cabbeu, lockeu)		Comments
Probe ID	Time	(%)	Pressure (in-H ₂ 0)	Arrival	Departure	
KIRBP10B	9:47am	0	0.00	Ok	Ok	
KIRBP011A	9:51am	0	0.03	Ok	Ok	
KIRBP011B	9:54am	0	-0.00	Ok	Ok	
KIRBP12A	1:02pm	0	-0.00	Ok	Ok	Prob reading taken on 4/11/2024
KIRBP12B	1:04pm	0	0.02	Ok	Ok	Prob reading taken on 4/11/2024
KIRBP14A	7:36am	0	-0.02	Ok	Ok	
KIRBP14B	7:39am	0	0.00	Ok	Ok	
KIRBP15	10:22am	0	-0.08	Ok	Ok	

ND = No detection

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

- (1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.
- (2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Note: The reading should not exceed 25% LEL = 1.25% CH₄ = 12,500 ppm CH₄

Immediately notify compliance personnel of any readings in excess of 5 percent methane.

STRUCTURE FID MONITORING DATA

Analyst: Tino Robles Date: 4-17-24

Instrument: TVA Serial #: 0928538411

Monitored Location	Time	PPM	Comments
Scale House	6:20 AM	0	
Admin Building	6:00 AM	0	
Operations Break Trailer	6:30 AM	0	

ND = No detection

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane.

GAS DETECTOR CALIBRATION RECORD

LOCATION: KIRBY CANYON RECYCLING AND DISPOSAL FACILITY

MANUFACTURER & MODEL NUMBER: Sierra Monitor Corporation Model #2001

CALIBRATED BY / INSTRUMENT USED: Cal System Model# 26

CALIBRATION GAS EXPIRATION DATE: July 12, 2025

Location	DATE CALIBRATED	SERIAL NUMBER	Methane LEL* SENSOR alarm 10,000 ppm	MAINTENANCE PERFORMED / COMMENTS ON MONITOR CONDITION
Main Office	4-17-24	1500700086GAM	YES	Good Condition
Scale House	4-17-24	1819303476GCN	YES	Good Condition
Break Trailer	4-17-24	1819303478GCN	YES	Good Condition

This form must be retained for 12 months after completion.

	Fill Name: Kirby Canyon Date: 91717
Instru	ment Make: Thermo Scientific Model: TVA 1000B S/N: 092853841
Calib	ration Procedure
1.	Allow instrument to internally zero itself while introducing zero air.
	Introduce the calibration gas into the probe. Stable Reading =
3.	Adjust meter to read 500 ppm.
Back	ground Determination Procedure
1.	Upwind Reading (highest in 30 seconds):ppm (a)
	Downwind Reading (highest in 30 seconds): 2 ppm (b)
2.	
	alculate Background Value
	alculate Background Value: (a) + (b) Background = ppm

RESPONSE TIME TEST RECORD

Date: 4/1/24					
Expiration Date (3 m	onths): <u>7/1/24</u>				
Time: <u>5:50</u> AM	PM				
Instrument Make:	Thermo Scientific	Model:	TVA 1000	_ S/N:	0928538411
Measurement #1:					
	Stabilized Reading U			500	_ ppm
		e Stabilized		480	ppm
Tir	ne to Reach 90% of Sta switching from Zero A		The state of the s	10	_ seconds (a)
Measurement #2:					
	Stabilized Reading U	sing Calibr	ation Gas:	499	ppm
	90% of the	e Stabilized	l Reading:	495	ppm
Tir	ne to Reach 90% of Sta switching from Zero A			10	_ seconds (b)
Measurement #3:					
	Stabilized Reading U	sing Calibr	ation Gas:	501	ppm
		e Stabilized		485	_ ppm
Tir	ne to Reach 90% of Sta		The state of the s		
	switching from Zero A			10	_ seconds (c)
Calculate Response T	ime:				
$\frac{(a) + (b) + (c)}{3}$	= <u>10</u> second	ls (must be	less than 30 se	conds)	
Performed by: T.Ro	bles				

CALIBRATION PRECISION TEST RECORD

	5:50 AM	PM			120162004
		Thermo Scientific Model:	_TVA 1	000_ S/N:	092853841
Measui	rement #1:				
		Meter Reading for Zero Air:		ppm (a)	
	Meter	Reading for Calibration Gas:	50	<u>o1</u> ppm (b)	
Measui	rement #2:				
		Meter Reading for Zero Air:	0	ppm (c)	
	Meter	Reading for Calibration Gas:	50	<u>ppm (d)</u>	
Measu	rement #3:				
		Meter Reading for Zero Air:	0	ppm (e)	
	Meter	Reading for Calibration Gas:	50	<u>1</u> ppm (f)	
Calcula	ate Precision:				
{ (496)	-(500) + (5	$\frac{(00) - (498) + (500) - (496) }{2}$	x <u>1</u> x	100	

Performed by: <u>T. Robles</u>

APPENDIX O

A-12 FLARE PERFORMANCE TEST SUMMARY OF RESULTS

Kirby Canyon Recycling and Disposal Facility BAAQMD Facility # 1812

Compliance Test Report #24065 Landfill Gas Flare A-12

Located at: **Kirby Canyon Recycling and Disposal Facility**910 Coyote Creek Drive
Morgan Hill, CA 95037

Prepared for:
SCS Engineers
3117 Fite Circle, Suite 108
Sacramento, CA 95827
Attn: Maria Bowen
mbowen@scsengineers.com

For Submittal to:

Bay Area Air Quality Management District

375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Gloria Espena/Marco Hernandez

gespena@baaqmd.gov/mhernandez@baaqmd.gov sourcetest@baaqmd.gov

Testing Performed on: **February 14, 2024**

Final Report Submitted on: **April 11, 2024**

Performed and Reported by:

Blue Sky Environmental, Inc.
2273 Lobert Street
Castro Valley, CA 94546

Office (510) 508-3469/Mobile (810) 923-3181
bluesky@blueskyenvironmental.com

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report are authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for compliance purposes, it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (810) 923-3181.

Jeramie Richardson

President

Blue Sky Environmental, Inc.

TABLE OF CONTENTS

SECTIO	N 1. INTRODUCTION	4
1.1.	SUMMARY	4
SECTIO	N 2. SOURCE TEST PROGRAM	6
2.1.	Overview	6
2.2.	POLLUTANTS TESTED	6
2.3.	TEST DATE	6
2.4.	SAMPLING AND OBSERVING PERSONNEL	6
2.5.	SOURCE/PROCESS DESCRIPTION	6
2.6.	SOURCE OPERATING CONDITIONS	7
SECTIO	N 3. SAMPLING AND ANALYSIS PROCEDUI	RES8
3.1.	PORT LOCATION	8
3.2.	POINT DESCRIPTION/LABELING - PORTS/STACK	8
3.3.		8
3.4.	SAMPLING PROCEDURE DESCRIPTION	8
3.5.	INSTRUMENTATION AND ANALYTICAL PROCEDURES	12
3.6.	SYSTEM PERFORMANCE CRITERIA	12
3.7.	COMMENTS: LIMITATIONS AND DATA QUALIFICATION	NS
SECTIO	N 4. APPENDICES	14
A.	Tabulated Results	
B.	Calculations	
C.	Laboratory Reports	
D.	Field Data Sheets	
E.	Strip Charts	
F.	Process Information	
G.	QC Calibration Certificates and Quality Assurance Records	
Н.	Sample Train Configuration and Stack Diagrams	
Ι.	Related Correspondence (Source Test Plan and Email)	
J.	BAAQMD Permit Conditions	
K.	Flare Flow Meter Calibration Records	

SECTION 1. INTRODUCTION

1.1. Summary

Blue Sky Environmental, Inc. was contracted by SCS Engineers to perform emissions testing for Waste Management of California, Inc. at the Kirby Canyon Recycling and Disposal Facility in Morgan Hill, California. Testing was conducted to demonstrate that Landfill Gas Flare A-12 is operating in compliance with Condition 1437 of the Bay Area Air Quality Management District (BAAQMD) Permit to Operate for Facility 1812.

The results of the test program are presented in this report. The source test information is summarized in Table 1-1. Test results derived from the source test are summarized in Table 1-2. Results for individual test runs are provided in Appendix A. The flare met all compliance emission criteria.

Table 1-1 Source Test Information

Test Location:	Kirby Canyon Recycling and Disposal Facility (KCRDF) 910 Coyote Creek Drive, Morgan Hill, CA 95037
Source Contact:	Maria Bowen, SCS Engineers (619) 455-9518
Source Tested: Flare A-12 – 129 MMBtu/hr LFG Specialties, Inc. enc	
Source Test Date:	February 14, 2024
Test Objective:	Determine compliance with condition 1437 of the Bay Area Air Quality Management District (BAAQMD) permit to operate for Plant 1812; BAAQMD Regulation 8, Rule 34; and the State Landfill Methane Gas Rule under AB32 for Flare performance.
Test Performed by:	Blue Sky Environmental, Inc. 2273 Lobert Street, Castro Valley, CA 94546 Jaime Rios (925) 482-4504 bluesky@blueskyenvironmental.com
Test Parameters:	Landfill Gas O ₂ , N ₂ , CO ₂ , BTU, THC, CH ₄ , NMOC, HHV, F-Factor, sulfur and VOC species, volumetric flow rate Flare Emissions THC, CH ₄ , NMOC, NO _x , CO, O ₂ , SO ₂ , moisture, volumetric flow rate.

Table 1-2 Compliance Summary

Condensate ON

Emission Parameter	Average Results (Flare A-12)	Permit Limit	Compliance Status
NO _x , lb/MMBtu	0.0439	0.06	In Compliance
CO, lb/MMBtu	0.0704	0.3	In Compliance
SO ₂ , ppmvd	53.8	300	In Compliance
NMOC, ppmvd @ 3% O ₂	<2.5	30	In Compliance
NMOC Destruction Efficiency, %	>98.72%	>98%	In Compliance
CH ₄ Destruction Efficiency, %	>99.97%	>99%	In Compliance

Condensate OFF

Emission Parameter	Average Results (Flare A-12)	Permit Limit	Compliance Status
NO _x , lb/MMBtu	0.0383	0.06	In Compliance
CO, lb/MMBtu	0.0619	0.3	In Compliance
SO ₂ , ppmvd	67.0	300	In Compliance
NMOC, ppmvd @ 3% O ₂	<2.5	30	In Compliance
NMOC Destruction Efficiency, %	>98.68%	>98%	In Compliance
CH ₄ Destruction Efficiency, %	>99.97%	>99%	In Compliance

SECTION 2. SOURCE TEST PROGRAM

2.1. Overview

This annual source test was performed to demonstrate that Landfill Gas Flare A-12 is operating in accordance with Condition 1437 of the Bay Area Air Quality Management District (BAAQMD) Permit to Operate for Facility #1812 and BAAQMD Regulation 8, Rule 34. This testing also satisfies the compliance requirements outlined in the State Landfill Methane Gas Rule under AB32 for Flare performance.

2.2. Pollutants Tested

The following U.S. Environmental Protection Agency (EPA) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample and Traverse Point Determination
EPA Method 3A	O ₂ and CO ₂ , Stack Gas Molecular Weight

EPA Method 10 CO

EPA Method 7E NO_X and NO₂ Converter Check

EPA Method 4 Moisture Calculation

EPA Method 19 Flow Rate Calculation DSCFM

EPA Method 25A VOC Emissions

EPA Method 25C TNMHC (NMOC) in fuel

ASTM D-1945/3588 BTU, F-Factor and Fixed Gases in Fuel

ASTM D-5504 Sulfur Species, Hydrogen Sulfide (H₂S) and TRS

EPA Method TO-15 Toxic Organic Compounds

2.3. Test Date

Testing was conducted on February 14, 2024.

2.4. Sampling and Observing Personnel

Testing was conducted by Jaime Rios and Vince Gigli, representing Blue Sky Environmental, Inc.

Ben Traver of SCS Engineers was present to operate the flare and assist in coordinating testing and the collection of process data during testing.

BAAQMD was notified of the scheduled testing in a source test plan submitted by SCS Engineers on behalf of Waste Management on January 10, 2024 (NST-9007). No agency observers from the district were present during the test program. A copy of the source test protocol is provided in Appendix I.

2.5. Source/Process Description

Kirby Canyon Recycling and Disposal Facility, located in Morgan Hill, California, is a multi-material landfill with a gas collection system that is abated by an industrial landfill gas flare. Flare A-12 has a 129 MMBtu/hr multiple nozzle burner. The flare shell is 50 feet high and 12.5 feet in diameter. The inside diameter (ID) is approximately 138 inches.

The flare temperature set-point is established at 1,490 °F. Methane quality typically ranges from 46 - 52%, with an oxygen content of \leq 1.5%. Landfill gas condensate that is collected is periodically injected into the flare via one vertical nozzle positioned near the burner.

2.6. Source Operating Conditions

The flare was operated on landfill gas under normal operating conditions during testing with the condensate injection both on and off. The condensate injection rate averaged 0.82 gallons per minute (gpm) while in the "on" position.

The average exhaust temperature at normal operating condition was 1,462 °F. The LFG flow rate ranged from 2,056 to 2,075 SCFM. The operating exhaust temperature, and LFG flow rate records are provided in Appendix F.

Landfill gas samples collected at the head of the flare had an average methane content of 48.8% and an oxygen content of 2.1%.

SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

3.1. Port Location

Sampling was conducted at the 50-foot exhaust stack of the flare through ports that were accessed with a 60-foot boom lift. The four 4-inch flange ports were located 45 feet above grade, approximately four stack diameters downstream from the burners and one stack diameter upstream from the exhaust.

3.2. Point Description/Labeling – Ports/Stack

Blue Sky Environmental, Inc. conducted two perpendicular 8-point traverses of the stack to check for the presence of stratification. The traverse points for the 138-inch diameter stack with 4-inch ports were 8.4, 18.5, 30.8, 48.6, 97.4, 115.2, 127.5 and 137.6 inches. O₂ stratification was greater than 10%; therefore, subsequent CEM sampling was conducted using all traverse points.

3.3. Sample Train Description

Sampling system diagrams are provided in Appendix H. Additional descriptive information is included in the following section.

3.4. Sampling Procedure Description

Six consecutive 30-minute gaseous emissions tests were conducted for oxides of nitrogen (NO_X), nitric oxide (NO), carbon monoxide (CO), carbon dioxide (CO₂), oxygen (O₂), methane (CH₄) and non-methane organic compounds (NMOC) at the flare exhaust stack. Three tests were performed with the condensate injection on and three tests were performed with the condensate injection off.

The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. A NOx analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky collected a total of six integrated fuel samples (three samples with the condensate injection on and three samples with the condensate injection off) for off-site analysis by Atmospheric Analysis & Consulting, Inc. (AAC), in Ventura, CA. The samples were collected in 6-liter SUMMA canisters and analyzed for hydrocarbons by EPA Method 25, sulfur species (including H₂S and TRS) by ASTM D-5504, toxic organic compounds by EPA Method TO-15 (AP-42 2.4-1), and HHV, F-factor, fixed gases, volatile organic compounds (VOCs), nonmethane organic compounds (NMOCs) and C¹-C⁶⁺ hydrocarbons by EPA Method 25C and ASTM D-1945.

The sampling and analysis procedures are summarized below:

EPA Method 1 – Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. A small portion of the sample is passed through a fuel cell type paramagnetic oxygen analyzer which measures the electrical current generated by the oxidation reaction at the gas/fuel cell interface. Carbon dioxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon dioxide absorbs infrared radiation.

EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Nitric oxide is determined by passing the sample through a chemiluminescent analyzer. The chemiluminescent process is based on the light given off when nitric oxide and ozone react. Nitrogen dioxide (NO₂) concentrations are determined by passing the sample through a catalyst which reduces the NO₂ to NO. The total oxides of nitrogen concentration (NO₂ + NO) is then determined by chemiluminescence.

Section 16.2.2 of the method is used to determine the NO_x analyzer NO₂ to NO conversion efficiency.

EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Carbon monoxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon monoxide absorbs infrared radiation.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

EPA Method 4 – Determination of Moisture Content in Stack Gas

This method is used to determine the moisture content of stack gas. The sample is extracted and condensed in Greenburg-Smith impingers immersed in an ice bath and in a final impinger silica gel trap. The moisture is condensed in a solution of de-ionized water, or solutions of another type of sampling train if the moisture is being determined as part of another sampling method, such as EPA Method 5, SCAQMD Method 201.7 or BAAQMD ST-32. The moisture gain in the impinger solutions and silica gel is determined volumetrically and gravimetrically respectively.

QA/QC procedures require that a minimum of 21 cubic feet of sample is pulled using a leak tight pump. The sample volume is measured with a calibrated dry gas meter. The impingers are immersed in an ice bath to maintain a gas outlet temperature of less than 68°F. Pre-test leak checks are performed for each run using a minimum of 15 inches of mercury vacuum. Post-test leak checks are performed at the highest sample vacuum or greater. The leak test is acceptable if the leak rate is less than 0.02 cubic feet per minute or 4% of the average sampling rate, whichever is less. If the final leak check exceeds the criteria, either the volume is corrected based on the leak rate or the run is voided and repeated.

EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates. 301.

EPA Method 25A – Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This method is used to measure total hydrocarbons, methane, and non-methane hydrocarbons in stationary source emissions using a gas chromatograph with a flame ionization detector (GC/FID). Heated Teflon sample gas transfer lines are used to provide a continuous sample to the heated GC/FID hydrocarbon analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test.

EPA Method 25C - Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. Gases are collected in a pre-evacuated 6-Liter SUMMA canister with pre-set flow controller set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consists of capillary orifice tubing designed to sample for a pre-set duration of 0.5 hrs. The sample is injected into a GC column where the methane and CO₂ are flushed through and removed then the NMOC (ROC) fraction is oxidized to form CO₂ then reduced to methane and analyzed.

ASTM D1945 – Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed within 7 days.

EPA Compendium Method TO-15 - Determination of Toxic Organic Compounds in Ambient Air

This method is used to measure volatile organic compounds that are included in the hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990 by GC/MS (gas chromatography/mass spectroscopy). Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75hrs.

3.5. Instrumentation and Analytical procedures

The following continuous emissions analyzers were used:

Instrumentation	Parameter	Principle
TECO Model 42C	NO _X /NO/NO ₂	Chemiluminescence
TECO Model 48C	CO	Gas Filter Correlation/IR
TECO Model 55C	NMOC/CH ₄	Flame Ionization (FID)
Servomex Model 1400	CO ₂	Infrared (IR)
Servomex Model 1400	O_2	Paramagnetic

3.6. System Performance Criteria

The analyzer data recording system consists of a data acquisition system (DAS). The instrument response was recorded on DAS. The averages were corrected for drift using BAAQMD and EPA Method 7E equations. All system performance criteria were met.

 Instrument Linearity
 ≤2% Full Scale

 Instrument Bias
 ≤5% Full Scale

 System Response Time
 ≤± 2 minutes

NO_X Converter Efficiency (EPA Method 7E) $\geq 90\%$

Instrument Zero Drift ≤± 3% Full Scale
Instrument Span Drift ≤± 3% Full Scale

3.7. Comments: Limitations and Data Qualifications

This source test was performed in accordance with the protocol submitted to BAAQMD. No deviations from the protocol or anomalies were observed during testing. The measured emissions from the flare comply with the permit limits.

Blue Sky Environmental, Inc. has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text

Review of calculations

Review of CEMS data

Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to this, and do not warranty the accuracy of information supplied by others.

SECTION 4. APPENDICES

A.	Tabulated Results
В.	Calculations
C.	Laboratory Reports
D.	Field Data Sheets
E.	Strip Charts
F.	Process Information
G.	QC Calibration Certificates and Quality Assurance Record
H.	Sample Train Configuration and Stack Diagrams
I.	Related Correspondence (Source Test Plan and Email)
J.	BAAQMD Permit Conditions

Flare Flow Meter Calibration Records

K.

A Tabulated Results

Table #1

Kirby Canyon Recycling & Disposal Facility Flare A-12

Condensate - ON

Parameter Run		Run 2	Run 3	Average Results	Permit Limits
Test Date	2/14/24	2/14/24	2/14/24		
Test Time	0859-0936	1014-1052	1132-1209		
Standard Temperature, °F	70	70	70		
Flare Temperature, °F Average	1,462	1,462	1,462	1,462	>1,400
Fuel:					
Condensate Injection, gpm	0.83	0.82	0.82	0.82	
Fuel Flow Rate, SCFM	2,056	2,060	2,062	2,059	
Fuel Heat Input, MMBtu/hr	55.7	59.1	61.0	58.6	
Stack Gas:	•	•	•	•	
Exhaust Flow Rate, DSCFM (EPA Method 19)	24,885	25,131	24,593	24,869	
Oxygen (O ₂), % volume dry	13.5	13.1	12.7	13.1	
Carbon Dioxide (CO ₂), % volume dry	6.47	6.87	7.31	6.88	
Water Vapor (H ₂ O), % volume (EPA Method 4)	6.95	6.52	6.17	6.55	
NO _X Emissions (calculated as NO ₂):	•	-	•	•	
NOx, ppmvd	12.6	14.7	16.4	14.6	
NOx, ppmvd @ 15% O ₂	10.0	11.1	11.8	11.0	
NOx, lb/hr	2.23	2.64	2.88	2.58	
NOx, lb/MMBtu	0.0401	0.0446	0.0472	0.0439	0.06
CO Emissions:	•		•	•	
CO, ppmvd	31.1	47.5	36.2	38.2	
CO, ppmvd @ 15% O ₂	24.7	36.0	26.0	28.9	
CO, lb/hr	3.36	5.18	3.86	4.13	
CO, lb/MMBtu	0.0603	0.0877	0.0633	0.0704	0.3
SO ₂ Emissions:	•		•	•	
Total Reduced Sulfurs as H ₂ S, ppmvd in Fuel	288	781	879	649	
SO ₂ , ppmvd (calculated)	23.8	64.0	73.7	53.8	300
Methane (CH ₄) Emissions:	•		•	•	
CH ₄ , ppmvd wet (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd dry	<10.7	<10.7	<10.7	<10.7	
CH ₄ , lb/hr	< 0.664	< 0.670	< 0.656	< 0.663	
NMOC Emissions (calculated as CH ₄):	•		•	•	
NMOC, ppmv wet (EPA Method 25A)	<1.0	<1.0	<1.0	<1.0	
NMOC, ppmvd	<1.1	<1.1	<1.1	<1.1	
NMOC, ppmvd @ 3% O ₂	<2.6	<2.5	<2.3	<2.5	30 [*]
NMOC, lb/hr	< 0.066	< 0.067	< 0.066	< 0.066	
THC Emissions (reported as CH ₄):	•			•	
THC, ppmvd (Sum NMOC + CH4)	<11.8	<11.8	<11.8	<11.8	
THC, lb/hr	< 0.730	< 0.737	< 0.722	< 0.730	
Inlet Hydrocarbons (calculated as CH ₄):	•		•	•	
Inlet CH ₄ , ppmvd	454,000	481,000	496,000	477,000	
Inlet CH ₄ , lb/hr	2,317	2,460	2,539	2,439	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>99%
Inlet NMOC (EPA Method 25C)	960	1,012	1,085	1,019	
Inlet NMOC, lb/hr	4.90	5.18	5.55	5.21	
NMOC Destruction Efficiency, %	>98.65%	>98.70%	>98.82%	>98.72%	>98%*
Inlet THC, ppmvd	454,960	482,012	497,085	478,019	
Inlet THC, lb/hr	2,322	2,465	2,544	2,444	
THC Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	

^{*} NMOC emission limits are 30 ppmvd @ 3% O_2 or destruction efficiency >98%

DEFINITIONS:

ppmvd = parts per million concentration by volume expressed on a dry gas basis

lb/hr = pound per hour emission rate

Tstd. = standard temperature (${}^{\circ}R = {}^{\circ}F+460$)

MW = molecular weight

DSCFM = dry standard cubic foot per minute

 $\mathrm{NO_{X}}$ = oxides of nitrogen, reported as $\mathrm{NO_{2}}\left(\mathrm{MW}$ = 46)

CO = carbon monoxide (MW = 28)

 CH_4 = methane (MW = 16)

THC = total hydrocarbons reported as CH $_4$ (MW = 16)

NMOC = non-methane organic compounds reported as CH₄ (MW = 16)

CALCULATIONS:

 $\begin{array}{l} ppm \ @\ 15\% \ O_2 = ppm \cdot 5.9\ /\ (20.9 - \% O_2) \\ ppm \ @\ 3\% \ O_2 = ppm \cdot 17.9\ /\ (20.9 - \% O_2) \\ lb/hr = ppm \cdot 8.223 \ E-05 \cdot DSCFM \cdot MW\ /\ Tstd.\ ^\circ R \\ lb/MMBtu = Fd \cdot MW \cdot ppm \cdot 2.59E-9 \cdot 20.9/(20.9 - \% O_2) \\ Destruction \ Efficiency = (inlet, lb/hr-outlet, lb/hr)\ /\ inlet, lb/hr \end{array}$

< Value = 2% of Analyzer Range

TRS = total reduced sulfurs, reported as sulfur dioxide (SO₂)

Table #2 Landfill Gas Characterization

Kirby Canyon Recycling & Disposal Facility Flare A-12 Condensate - ON

Parameter	Units	Run 1	Run 2	Run 3	Average Results
Test Date		2/14/24	2/14/24	2/14/24	-
Acrylonitrile	ppb	<46.8	<48.9	<47.0	<47.6
Bromodichloromethane	ppb	<46.8	<48.9	<47.0	<47.6
Carbon Tetrachloride	ppb	<46.8	<48.9	<47.0	<47.6
Chlorobenzene	ppb	150	163	172	162
Chlorodifluoromethane	ppb	189	186	202	192
Chloromethane	ppb	<46.8	<48.9	<47.0	<47.6
Chloroethane	ppb	184	199	211	198
Chloroform	ppb	<46.8	<48.9	<47.0	<47.6
1,1 Dichloroethane (Ethylidene Dichloride)	ppb	<46.8	<48.9	<47.0	<47.6
1,1 Dichloroethene (Vinylidene Chloride)	ppb	<46.8	<48.9	<47.0	<47.6
1,2 Dichloroethane (Ethylene Dichloride)	ppb	<46.8	<48.9	<47.0	<47.6
1,2 Dichloropropane	ppb	<46.8	<48.9	<47.0	<47.6
1,4 Dichlorobenzene	ppb	757	818	865	813
Dichlorodifluoromethane	ppb	89.9	92.9	<47.0	76.6
Dichlorofluoromethane	ppb	160	172	193	175
1,4 Dioxane	ppb	<93.7	<98	<94.0	<95.1
Ethanol	ppb	13,600	12,500	14,900	13,667
Ethylbenzene	ppb	4,300	4,580	4,750	4,543
Ethlyene Dibromide (1,2 Dibromoethane)	ppb	<46.8	<48.9	<47.0	<47.6
Fluorotrichloromethane (Trichlorofluoromethane)	ppb	143	150	160	151
Hexane	ppb	651	696	767	705
Isopropyl Alcohol (IPA)	ppb	9,500	10,200	5,500	8,400
Methyl Ethyl Ketone (MEK) (2-Butanone)	ppb	10,400	9,770	10,500	10,223
Methylene Chloride	ppb	<93.7	<98	<94.0	<95.1
Methyl isobutyl ketone (MiBK)	ppb	1,090	1,140	1,300	1,177
Perchloroethylene (Tetrachloroethylene)	ppb	131	137	158	142
1,1,1 Trichlororethane	ppb	<46.8	<48.9	<47.0	<47.6
1,1,2,2 Tetrachloroethane	ppb	<46.8	<48.9	<47.0	<47.6
trans-1,2-Dichloroethane	ppb	<46.8	<48.9	<47.0	<47.6
Trichloroethylene (Trichloroethene)	ppb	<108.0	<111.0	<121.0	<113.3
Vinyl Chloride	ppb	<46.8	<48.9	<47.0	<47.6
Xylenes	ppb	9,410	9,960	10,430	9,933
Ethane	ppm	5.99	6.17	3.20	5.12
Propane	ppm	15.1	15.2	3.7	11.3
Butane	ppm	6.20	5.72	5.28	5.73
Pentane	ppm	12.2	12.4	7.3	10.6
Carbon Disulfide	ppm	< 0.094	< 0.098	0.246	< 0.146
Carbonyl Sulfide (COS/SO ₂)	ppm	< 0.094	< 0.098	< 0.094	< 0.095
Dimethyl Sulfide	ppm	2.38	2.23	2.38	2.33
Ethyl Mercaptan	ppm	< 0.094	< 0.098	0.480	< 0.224
Methyl Mercaptan	ppm	4.11	4.660	5.38	4.72
Hydrogen Sulfide (H ₂ S)	ppm	276	766	863	635
Total Reduced Sulfurs as H ₂ S	ppm	288	781	879	649

Table #3

Kirby Canyon Recycling & Disposal Facility Flare A-12

Condensate - OFF

Parameter	Run 1 Run 2		Run 3	Average Results	Permit Limits
Test Date	2/14/24	2/14/24	2/14/24		
Test Time	1236-1313	1339-1418	1441-1516		
Standard Temperature, °F	70	70	70		
Flare Temperature, °F Average	1,462	1,462	1,462	1,462	>1,400
Fuel:	•		•	•	
Condensate Injection, gpm	0.00	0.00	0.00	0.00	
Fuel Flow Rate, SCFM	2,069	2,075	2,073	2,072	
Fuel Heat Input, MMBtu/hr	62.0	61.9	61.5	61.8	
Stack Gas:					
Exhaust Flow Rate, DSCFM (EPA Method 19)	25,036	25,494	25,184	25,238	
Oxygen (O2), % volume dry	12.7	12.9	12.8	12.8	
Carbon Dioxide (CO ₂), % volume dry	7.26	7.19	7.22	7.22	
Water Vapor (H2O), % volume (EPA Method 4)	6.81	6.19	5.75	6.25	
NO _X Emissions (calculated as NO ₂):					
NOx, ppmvd	13.3	13.0	13.2	13.1	
NOx, ppmvd @ 15% O_2	9.6	9.5	9.6	9.6	
NOx, lb/hr	2.4	2.4	2.4	2.4	
NOx, lb/MMBtu	0.0383	0.0382	0.0385	0.0383	0.06
CO Emissions:					
CO, ppmvd	31.7	42.1	30.7	34.8	
CO, ppmvd @ 15% O ₂	22.8	31.0	22.4	25.4	
CO, lb/hr	3.45	4.67	3.35	3.82	
CO, lb/MMBtu	0.0556	0.0754	0.0546	0.0619	0.3
SO ₂ Emissions:					
Total Reduced Sulfurs as H ₂ S, ppmvd in Fuel	978	660	809	816	
SO ₂ , ppmvd (calculated)	80.8	53.7	66.6	67.0	300
Methane (CH ₄) Emissions:					
CH ₄ , ppmvd wet (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd dry	<10.7	<10.7	<10.7	<10.7	
CH ₄ , lb/hr	< 0.667	< 0.679	< 0.671	< 0.672	
NMOC Emissions (calculated as CH ₄):					
NMOC, ppmv wet (EPA Method 25A)	<1.0	1.2	<1.0	<1.1	
NMOC, ppmvd	<1.1	1.2	<1.1	<1.1	
NMOC, ppmvd @ 3% O ₂	<2.3	2.8	<2.4	<2.5	30*
NMOC, lb/hr	< 0.067	0.079	< 0.067	< 0.071	
THC Emissions (reported as CH ₄):					
THC, ppmvd (Sum NMOC + CH4)	<11.8	<12.0	<11.8	<11.9	
THC, lb/hr	< 0.734	< 0.758	< 0.738	< 0.743	
Inlet Hydrocarbons (calculated as CH ₄):					
Inlet CH ₄ , ppmvd	502,000	500,000	497,000	499,667	
Inlet CH ₄ , lb/hr	2,578	2,576	2,558	2,570	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>99%
Inlet NMOC (EPA Method 25C)	780	1,157	1,332	1,090	
Inlet NMOC, lb/hr	4.01	5.96	6.85	5.61	
NMOC Destruction Efficiency, %	>98.34%	>98.68%	>99.02%	>98.68%	>98%*
Inlet THC, ppmvd	502,780	501,157	498,332	500,756	
Inlet THC, lb/hr	2,582	2,581	2,564	2,576	
THC Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	

^{*} NMOC emission limits are 30 ppmvd @ 3% O₂ or destruction efficiency >98%

DEFINITIONS:

ppmvd = parts per million concentration by volume expressed on a dry gas basis

lb/hr = pound per hour emission rate

Tstd. = standard temperature (${}^{\circ}R = {}^{\circ}F+460$)

MW = molecular weight

DSCFM = dry standard cubic foot per minute

 $\mathrm{NO_X}$ = oxides of nitrogen, reported as $\mathrm{NO_2}$ (MW = 46)

CO = carbon monoxide (MW = 28)

 CH_4 = methane (MW = 16)

THC = total hydrocarbons reported as CH₄ (MW = 16)

NMOC = non-methane organic compounds reported as CH₄ (MW = 16)

CALCULATIONS:

ppm @ 15% $O_2 = ppm \cdot 5.9 / (20.9 - \%O_2)$

ppm @ $3\% O_2 = ppm \cdot 17.9 / (20.9 - \%O_2)$

 $lb/hr = ppm \cdot 8.223 E-05 \cdot DSCFM \cdot MW / Tstd. °R$

 $\label{eq:beta} $$lb/MMBtu = Fd \cdot MW \cdot ppm \cdot 2.59E-9 \cdot 20.9/(20.9 - \%O_2)$$ Destruction Efficiency = (inlet, lb/hr- outlet, lb/hr) / inlet, lb/hr$

< Value = 2% of Analyzer Range

TRS = total reduced sulfurs, reported as sulfur dioxide (SO₂)

Table #4 Landfill Gas Characterization

Kirby Canyon Recycling & Disposal Facility Flare A-12 Condensate - OFF

Parameter	Units	Run 1	Run 2	Run 3	Average Results
Test Date		2/14/24	2/14/24	2/14/24	-
Acrylonitrile	ppb	<44.7	<46.0	<40.2	<43.6
Bromodichloromethane	ppb	<44.7	<46.0	<40.2	<43.6
Carbon Tetrachloride	ppb	<44.7	<46.0	<40.2	<43.6
Chlorobenzene	ppb	188	183	184	185
Chlorodifluoromethane	ppb	217	222	220	220
Chloromethane	ppb	<44.7	<46.0	<40.2	<43.6
Chloroethane	ppb	246	223	204	224
Chloroform	ppb	<44.7	<46.0	<40.2	<43.6
1,1 Dichloroethane (Ethylidene Dichloride)	ppb	<44.7	<46.0	<40.2	<43.6
1,1 Dichloroethene (Vinylidene Chloride)	ppb	<44.7	<46.0	<40.2	<43.6
1,2 Dichloroethane (Ethylene Dichloride)	ppb	<44.7	<46.0	<40.2	<43.6
1,2 Dichloropropane	ppb	48.3	<46.0	49.9	48.1
1,4 Dichlorobenzene	ppb	944	866	785	865
Dichlorodifluoromethane	ppb	<44.7	104	105	85
Dichlorofluoromethane	ppb	207	195	194	199
1,4 Dioxane	ppb	<89.4	<91.9	<80.5	<87.3
Ethanol	ppb	15,000	24,100	16,600	18,567
Ethylbenzene	ppb	5,020	4,840	4,690	4,850
Ethlyene Dibromide (1,2 Dibromoethane)	ppb	<44.7	<46.0	<40.2	<43.6
Fluorotrichloromethane (Trichlorofluoromethane)	ppb	178	169	163	170
Hexane	ppb	824	794	793	804
Isopropyl Alcohol (IPA)	ppb	5,840	5,990	6,130	5,987
Methyl Ethyl Ketone (MEK) (2-Butanone)	ppb	10,100	11,200	11,300	10,867
Methylene Chloride	ppb	<89.4	<91.9	<80.5	<87.3
Methyl isobutyl ketone (MiBK)	ppb	1,310	1,260	1,260	1,277
Perchloroethylene (Tetrachloroethylene)	ppb	162	158	161	160
1,1,1 Trichlororethane	ppb	<44.7	<46.0	<40.2	<43.6
1,1,2,2 Tetrachloroethane	ppb	<44.7	<46.0	<40.2	<43.6
trans-1,2-Dichloroethane	ppb	<44.7	<46.0	<40.2	<43.6
Trichloroethylene (Trichloroethene)	ppb	124	123	113	120
Vinyl Chloride	ppb	69.8	<46.0	62.0	59.3
Xylenes	ppb	11,020	10,670	10,230	10,640
Ethane	ppm	6.41	5.98	6.20	6.20
Propane	ppm	17.8	17.6	17.8	17.7
Butane	ppm	7.51	7.97	8.12	7.87
Pentane	ppm	15.1	14.0	13.5	14.2
Carbon Disulfide	ppm	0.258	< 0.092	< 0.080	< 0.143
Carbonyl Sulfide (COS/SO ₂)	ppm	< 0.089	< 0.092	< 0.080	< 0.087
Dimethyl Sulfide	ppm	3.19	2.34	2.64	2.72
Ethyl Mercaptan	ppm	0.584	< 0.092	< 0.080	< 0.252
Methyl Mercaptan	ppm	6.39	4.77	5.30	18 5.49
Hydrogen Sulfide (H ₂ S)	ppm	959	646	794	800

APPENDIX P

A-12 FLARE 12-MONTH SULFUR DIOXIDE EMISSIONS LOG

12-MONTH CONSECUTIVE SOx Emission Rate (Tons/Year) :2023-2024 Kirby Canyon Recycling & Disposal Facility

Plant #1812, Condition 1437 Item 20

Month	SO ₂ (Tons/Month)	SO ₂ (12- Months Tons)
January-24	4.5	40.2
February-24	4.4	42.7
March-24	4.0	45.0
April-24	5.9	49.0
May-24	6.1	51.2
June-24	6.0	53.2

Pursuant to Title V Permit A1812, Condition Number 25301 Part 20, the Sulfur dioxide emissions from Flare A-12 shall not exceed 300 ppmv of SO2 and sulfur dioxide emissions from A-12 shall not exceed 94.9 tons per year.

To demonstrate compliance with above limits, the site will conduct annual testing of total TRS at the landfill gas main header. The most recent TRS value will be used to calculate the monthly SO2 emissions in tons.

Appendix P includes table with SO_2 12-month tons during the reporting period. The sulfur dioxide emissions from A-12 did not exceed 94.9 tons per year.