Kirby Canyon Recycling & Disposal Facility A Waste Management Company

> P.O. Box 1870 Morgan hill, CA 95038 (408) 779-2206

Fax (408) 779-5165

TV Tracking #: 33 1. D RECEIVED IN 07/30/2020 ENFORCEMENT:

July 24, 2020

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street. Suite 600 San Francisco, CA 94105 Attn: Title V Reports Director of Enforcement Division USEPA, Region IX 75 Hawthorne Street San Francisco, CA 94105 Attn: TRI and Air Section (ENF-2-1)

SUBJECT: Combined Title V Semi-Annual and Partial 8-34 Annual Report 40 CFR 63 Subpart AAAA Semi-Annual Report The Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive, San Jose, CA 95037 Facility Number A1812

Dear Sir or Madam:

The Kirby Canyon Recycling & Disposal Facility (KCRDF) is pleased to submit the attached Combined Title V Semi-Annual and Partial 8-34 Annual Report for the period of January 1, 2020 through June 30, 2020 to the Bay Area Air Quality Management District (BAAQMD) and the United States Environmental Protection Agency (USEPA), Region IX. As required by 40 Code of Federal Regulations (CFR) Part 63 Subpart AAAA, the Semi-Annual Startup, Shutdown and Malfunction (SSM) Report is also enclosed. The Combined Title V Semi-Annual and Partial 8-34 Annual Report satisfies the requirements of the Title V Permit listed in Condition Number 1437 Part 16 and Standard Condition I.F.

Based on information and belief formed after reasonable inquiry, I certify under penalty of law that the statements included in this report are true, accurate, and complete.

Sincerely, The Kirby Canyon Recycling & Disposal Facility

Enrique Perez Responsible Official

Attachments: Combined Title V Semi-Annual and Partial 8-34 Annual Report

Combined Title V Semi-Annual and Partial 8-34 Annual Report

For the Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive San Jose, California 95037 Facility Number A1812 January 1, 2020 through June 30, 2020

> Submitted on: July 29, 2020

Prepared for: The Kirby Canyon Recycling & Disposal Facility

For Submittal to: The Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V Reports

and

USEPA, Region 9 75 Hawthorne Street San Francisco, CA 94105 Attn: Director Enforcement Division, TRI & Air Section (ENF-2-1)

Prepared by:

Kirby Canyon Recycling & Disposal Facility

TABLE OF CONTENTS

1	INTRODUCTION	3
1.1	Purpose	3 3 3 3
1.2	Record Keeping and Reporting	3
1.3	Report Preparation	3
2	SEMI-ANNUAL MONITORING REPORT	4
2.1	Collection System operation (BAAQMD 8-34-501.1 & §60.757(f)(4))	5
	1.1 Collection System Downtime	5
	1.2 Well Start-Up and Disconnection Log	5
2.2	Emission Control Device Downtime (BAAQMD 8-34-501.2 & §60.757)	(f) (3))
		5
2.2	2.1 LFG Bypass Operations (§60.757(f)(2))	6
2.2	2.2 Key Emission Control Operating Parameters (BAAQMD 8-34-501.11 &	& 8-
	34-509)	6
2.3	Temperature Monitoring Results (BAAQMD 8-34-501.3, 8-34-507, &	
	§60.757(f)(1))	6
2.4	Monthly Cover Integrity Monitoring (BAAQMD 8-34-510)	6
2.5	Less than Continuous Operation (BAAQMD 8-34-501.5)	7
2.6	Surface Emissions Monitoring (BAAQMD 8-34-501.6, 8-34-506, &	
	§60.757(f)(5))	7
2.7	Component Leak Testing (BAAQMD 8-34-501.6 & 8-34-503)	8
2.8	Solid Waste Placement Records (BAAQMD 8-34-501.7)	8
2.9	Non-degradable Waste Acceptance Records (BAAQMD 8-34-501.8)	9 9 9
2.10	Wellhead Monitoring Data (BAAQMD 8-34-501.4 & 8-34-505)	9
	10.1 Wellhead Deviations (BAAQMD 8-34-501.9 & §60.757(f)(1))	
	10.2 Higher Operating Value (HOV) Wells	9
2.11	Gas Flow Monitoring Results (BAAQMD 8-34-501.10, 8-34-508, &	
0.40	§60.757(f)(1)	10
2.12	Compliance with Title V Permit Cond. No. 1437, Part 14	10
2.13	Compliance with §60.757(f)(6)	11
2.14	Compliance with Title V Permit Cond. No. 1437, Parts 2 and 3	11
2.15	Compliance with Title V Permit Cond. No. 23022, Part 2	11
2.16	Compliance with Title V Permit Cond. No. 1437, Part 20	11 12
2.17	Compliance with Title V Permit Cond. No. 25872	12

3 PERFORMANCE TEST REPORT

3.1	A-12 Flare Performance Test Results (BAAQMD 8-34-412)	13
3.2	Compliance with §60.757(g)(1)	14
3.3	Compliance with §60.757(g)(2)	14
3.4	Compliance with §60.757(g)(3)	15
3.5	Compliance with §60.757(g)(4)	15
3.6	Compliance with §60.757(g)(5)	15
3.7	Compliance with §60.757(g)(6)	16

4	START-UP, SHUTDOWN, MALFUNCTION REPORT	17
4.1	SSM Report for the Collection and Control Systems at the KCRDF	17

LIST OF TABLES

- Table 2-1 Semi-Annual Report Requirements
- Table 2-2 Solid Waste Placement
- Table 2-3 Total LFG Flow A-12 Flare January 1, 2020 through June 30, 2020
- Table 2-4 Condensate Injection Rates
- Table 3-1 Performance Test Requirements
- Table 3-2 A-12 Flare Performance Test Results March 4, 2020

LIST OF APPENDICES

- APPENDIX A Landfill Gas Collection System Site Map
- APPENDIX B Flare SSM Log and GCCS Downtime Report
- APPENDIX C Wellfield SSM Log
- APPENDIX D Flare Temperature Deviation/ Inoperative Monitor/ Missing Data Reports
- APPENDIX E Cover Integrity Monitoring Reports
- APPENDIX F Surface Emissions Monitoring Reports
- APPENDIX G Component Leak Check Reports
- APPENDIX H Monthly Solid Waste Placement Totals
- APPENDIX I Wellfield Monitoring Logs
- APPENDIX J BAAQMD Correspondence
- APPENDIX K Wellfield Deviation Log
- APPENDIX L Monthly Landfill Gas Flow Rates
- APPENDIX M Monthly Condensate Injection Logs
- APPENDIX N Gas Migration Monitoring Reports
- APPENDIX O A-12 Flare March 4, 2020 Performance (Source) Test Results

Summary

APPENDIX P – A-12 Flare 12- Month Sulfur Dioxide Emissions Log

1 INTRODUCTION

1.1 Purpose

This document is a Combined Semi-Annual Title V Report and Partial 8-34 Annual Report for the Kirby Canyon Recycling & Disposal Facility (KCRDF), pursuant to Title V Permit Standard Condition 1.F and Condition Number 1437 Part 16. This Combined Report satisfies the requirements of Regulation 8, Rule 34, Section 411 of the Bay Area Air Quality Management District (BAAQMD) and Title 40 Code of Federal Regulations (CFR) Part 60 Subpart CC, Emission Guidelines (EG) for municipal solid waste (MSW) landfills. This Combined Report meets the requirements of Title V Standard Condition 1.F, BAAQMD Regulation 8-34-411, and 40 CFR §60.757(f) and covers compliance activities conducted from January 1, 2020 through June 30, 2020. This Combined Report also includes the Semi-Annual Report of Start-up, Shutdown and Malfunction (SSM) Plan activities pursuant to National Emission Standards for Hazardous Air Pollutants (NESHAP), 40 CFR Part 63, Subpart AAAA for Landfills.

Section 2 of this Combined Report contains the elements required to satisfy both BAAQMD Regulation 8-34-411 and 40 CFR §60.757(f). A Performance Test Report for the A-12 Flare that meets the requirements of both BAAQMD Regulation 8-34-413 and 40 CFR §60.758(g) was conducted on March 4, 2020. Section 3 of this Combined Report includes performance test data collected during the reporting period as well as a discussion of the data from the Performance Test for the A-12 Flare, in compliance with BAAQMD Regulation 8-34-412, and Title V Permit Condition Number 1437 Parts 12 and 13. The March 4, 2020, Performance Test Report results for the A-12 Flare are included in Appendix O of the Combined Report.

Section 4 contains the Semi-Annual Report of SSM Plan activities.

1.2 Record Keeping and Reporting

Records are maintained and available for inspection in accordance with BAAQMD Regulation 8-34-501.12 and 40 CFR §60.758. The primary location for records storage is at the KCRDF. Records are maintained at this location for a minimum of five years.

1.3 Report Preparation

This Combined Report has been prepared by the KCRDF.

2 SEMI-ANNUAL MONITORING REPORT

In accordance with the KCRDF Title V Permit Standard Condition 1.F; Condition 1437, Part 16; BAAQMD Regulation 8-34-411 and 40 CFR §60.757(f), this report is a Combined Semi-Annual Title V Report and Partial 8-34 Annual Report that is required to be submitted by the KCRDF. The report contains monitoring data for the operation of the landfill gas collection and control system (GCCS). The operational records have been reviewed and summarized. The timeframe included in this report is January 1, 2020 through June 30, 2020. The following table lists the rules and regulations that are required to be included in this Combined Report.

RULE	REQUIREMENT	LOCATION IN REPORT
8-34-501.1 §60.757(f)(4)	All collection system downtime, including individual well shutdown times and the reason for the shutdown.	Section 2.1, Appendices B & C
8-34-501.2 §60.757(f)(3)	All emission control system downtime and the reason for the shutdown.	Section 2.2, Appendix B
8-34-501.3, 8-34-507, §60.757(f)(1)	Continuous temperature for all operating flares and any enclosed combustor subject to Section 8-34-507.	Section 2.3, Appendix D
8-34-501.4, 8-34-510	Testing performed to satisfy any of the requirements of this Rule.	Sections 2.4 & 2.10, Appendix E
8-34-501.5, 8-34-505	Monthly landfill gas (LFG) flow rates and well concentration readings for facilities subject to 8-34-404.	Sections 2.5, 2.10 & 2.11, Appendices I & L
8-34-501.6, 8-34-503, 8-34-506, §60.757(f)(5)	For operations subject to Section 8-34-503 and 8-34-506, records of all monitoring dates, leaks in excess of the limits in Section 8-34-301.2 or 8-34-303 that are discovered by the operator, including the location of the leak, leak concentration in parts per million by volume (ppmv), date of discovery, the action taken to repair the leak, date of the repair, date of any required remonitoring, and the re-monitored concentration in ppmv.	Section 2.6 & 2.7, Appendices F & G
8-34-501.7	Annual waste acceptance rate and current amount of waste in place.	Section 2.8
8-34-501.8	Records of the nature, location, amount, and date of deposition of non- degradable wastes, for any landfill areas excluded from the collection system requirement as documented in the Collection and Control Design Plan.	Section 2.9
8-34-501.9, 8-34-505, §60.757(f)(1)	For operations subject to Section 8-34-505, records of all monitoring dates and any excesses of the limits stated in Section 8-34-305 that are discovered by the operator, including well identification number, the measured excess, the action taken to repair the excess, and the date of repair.	Section 2.10, Appendices I & K
8-34-501.10, 8-34-508, §60.757(f)(1)	Continuous gas flow rate records for any site subject to Section 8-34-508.	Section 2.11, Appendix L
8-34-501.11, 8-34-509	For operations subject to Section 8-34-509, records or key emission control system operating parameters.	Section 2.2.2

Table 2-1 Semi-Annual Report Requirements

RULE	REQUIREMENT	LOCATION IN REPORT
8-34-501.12	The records required above shall be made available and retained for a period of five years.	Section 1.2
§60.757(f)(2)	Description and duration of all periods when the gas stream is diverted from the control device through a bypass line or the indication of bypass flow as specified under §60.756.	
§60.757(f)(6)	The date of installation and the location of each well or collection system expansion added pursuant to paragraphs (a)(3), (b), (c)(4) of §60.755.	Section 2.13
§60.10 (d)(5)(i	Start-up, Shutdown, and Malfunction Events	Section 4, Appendices B & C

2.1 Collection System operation (BAAQMD 8-34-501.1 & §60.757(f)(4))

Appendix A contains a map of the KCRDF's existing landfill GCCS. Section 2.1.1 summarizes the collection system downtime. Section 2.1.2 includes the individual well shutdown times and the reason for each shutdown.

2.1.1 Collection System Downtime

During the period covered in this report, the landfill GCCS was not shutdown for more than five days on any one occasion. The downtime for the 2020 partial calendar year (January 1, 2020 through June 30, 2020) is 44.3 hours out of an allowable 240 hours per year pursuant to BAAQMD Regulation 8-34-113.2 (Limited Exemption, Inspection and Maintenance). The Flare SSM Log that list dates, times, and lengths of shutdowns for the reporting period is included in Appendix B.

2.1.2 Well Start-Up and Disconnection Log

There were thirteen (13) Well SSM events during the reporting period. Wellfield construction activity is discussed in Section 2.13.

The Wellfield SSM Log that list dates, times, and lengths of shutdowns for the reporting period is included in Appendix C.

2.2 Emission Control Device Downtime (BAAQMD 8-34-501.2 & §60.757(f) (3))

No bypassing of the control system or other emissions of raw LFG occurred during the reporting period. The SSM Log that includes all downtimes and reasons for each shutdown for the A-12 Flare is presented in Appendix B. As indicated in Section 2.1.1, the collection system downtime for the 2020 partial calendar year (January 1, 2020 through June 30, 2020) is 44.3 hours.

During the reporting period, BAAQMD issued KCRDF Notice of Violation ("NOV") Number A-57372 dated June 18, 2020, for temporary flare shutdown events caused by

unplanned utility power outages on February 28, June 10, July 24, July 26, August 1, August 6, September 8, November 11, November 12, November 26, and December 29, 2019 ("NOV Dates"). KCRDF submitted via email the 10-day NOV response and Title V 10-day letters on June 28, 2020, and Title V 30-day letter on July 17, 2020. Copies of submitted letters are included in Appendix J.

2.2.1 LFG Bypass Operations (§60.757(f)(2))

Title 40 CFR §60.757(f)(2) is not applicable at the KCRDF because a bypass line has not been installed. LFG cannot be diverted from the control equipment.

2.2.2 Key Emission Control Operating Parameters (BAAQMD 8-34-501.11 & 8-34-509)

The A-12 Flare is subject to continuous temperature monitoring as required in BAAQMD Regulation 8-34-507 and 60.757(f)(1). See Section 2.3 for flare temperature monitoring results.

2.3 Temperature Monitoring Results (BAAQMD 8-34-501.3, 8-34-507, & §60.757(f)(1))

The combustion zone temperature of the A-12 Flare is monitored with Type K Thermocouples. The temperature is displayed and digitally recorded with a General Electric (GE) data panel and Yokogawa FX112 continuous digital recorder. The temperature readings are downloaded and archived each working day.

Flare operating records indicate that the A-12 Flare three-hour average combustion zone temperature did not drop below the 1,400 degrees Fahrenheit (°F) limit, as required by Title V Permit A1812 Condition 1437 Part 10, during the reporting period when the A-12 Flare was in operation.

The flare operating records also indicate that the A-12 Flare combustion zone temperature did not drop below 1,545°F and 1,549°F on a three-hour average basis, while in operation during the reporting period (January 1, 2020 through June 30, 2020), pursuant to the limits established during the March 13, 2019 and March 4, 2020 Performance Tests.

Appendix D contains flare temperature deviation/ inoperative monitor reports for the reporting period while the A-12 Flare was in operation.

2.4 Monthly Cover Integrity Monitoring (BAAQMD 8-34-510)

The Monthly Cover Integrity Monitoring Reports are included in Appendix E. The cover integrity monitoring was performed on the following dates:

- January 23, 2020
- February 14 and 28, 2020
- March 27, 2020

- April 30, 2020
- May 29, 2020
- June 29, 2020

During February 2020 monthly monitoring event, it was noted that additional soil coverage was needed near wells 82, 123, 75, 141, 90, 134, 109, and 48. Operations added soil to cover these well locations in February 2020. In May 2020 one area in the cover was identified with moisture on the surface. The site immediately addressed the area in May by adding soil and compacting the area and the moisture did not reappear. The site also submitted a construction notification to review the area in more detail and perform additional repairs as needed to prevent a re-occurrence. No other breaches of cover integrity (e.g. cover cracks or exposed garbage) were found during the reporting period. See Appendix E, Cover Integrity Monitoring Reports, for more detail.

2.5 Less than Continuous Operation (BAAQMD 8-34-501.5)

The KCRDF does not operate under BAAQMD Regulation 8-34-404 (Less Than Continuous Operation) and therefore is not required to submit monthly LFG flow rates.

2.6 Surface Emissions Monitoring (BAAQMD 8-34-501.6, 8-34-506, & §60.757(f)(5))

Quarterly Surface Emissions Monitoring (SEM), pursuant to BAAQMD Regulation 8-34-506, occurred during the reporting period on the following dates:

- First Quarter 2020 February 12, 2020
- Second Quarter 2020- June 2, 2020

A Thermo Scientific Toxic Vapor Analyzer 1000 (TVA1000) flame ionization detector (FID) was used to perform the SEM during the Third and Fourth Quarter 2019 event. The landfill surface was monitored along the path delineated on the SEM walking path map. Any areas suspected of having emission problems by visible observations were also monitored. Immediately prior to the First and Second Quarter 2020 monitoring events, the monitoring equipment was calibrated using zero air and a 500 parts per million by volume (ppmv) methane (CH₄) calibration gas.

The First Quarter 2020 SEM was performed on February 12, 2020 and nine (9) exceedances (FID readings greater than 500 ppm CH₄ above background measurements) were detected. Corrective actions were completed. The ten-day remonitoring event was conducted on February 19, 2020, and no further exceedances were detected. The thirty-day follow-up monitoring event was conducted on March 10 and 11, 2020 and no exceedances were detected.

The Second Quarter 2020 SEM was performed on June 2, 2020 and eight (8) exceedances (FID readings greater than 500 ppm CH₄ above background measurements) were detected. Corrective actions were completed. The ten-day remonitoring event was conducted on June 8, 2020, and no further exceedances were detected. The thirty-day follow-up monitoring event was conducted on July 2, 2020 and no exceedances were detected.

The First and Second Quarter 2020 SEM Reports are included in Appendix F.

2.7 Component Leak Testing (BAAQMD 8-34-501.6 & 8-34-503)

Quarterly component leak testing, pursuant to BAAQMD Regulation 8-34-503, occurred during the reporting period on the following dates:

- First Quarter 2020 February 12, 2020
- Second Quarter 2020- June 2, 2020

A Thermo Scientific TVA1000 FID was used to perform both the First and Second Quarter 2020 component leak testing events. No exceedances of 1,000 ppm were identified during the First and Second Quarter 2020 monitoring events.

Appendix G contains the Quarterly Component Leak Check Monitoring Reports.

2.8 Solid Waste Placement Records (BAAQMD 8-34-501.7)

The solid waste placement records were reviewed for the timeframe of January 1, 2020 through June 30, 2020. The current waste-in-place figure includes solid waste placed in the landfill through June 30, 2020. A table of monthly totals for the reporting period is provided in Appendix H. The total waste accepted and placed at the KCRDF landfill did not exceed the 2,600 ton-per-day limit during the reporting period, pursuant to Title V Permit Condition Number 1437, Part 1a. The current waste-in-place tonnage listed below did not exceed the 19.84 million tons limit as required in the Title V Permit Condition Number 1437, Part 1b. Table 2-2 summarizes the solid waste placement records for the reporting period.

Waste Placement	Total Waste Landfilled Excluding Cover	
January 1 through June 30, 2020, Waste Placement	109,182 tons	
Current Waste-In-Place as of June 30, 2020	Approximately 7.72 Million tons	

Table 2-2 Solid Waste Placement

2.9 Non-degradable Waste Acceptance Records (BAAQMD 8-34-501.8)

The GCCS Design Plan for the KCRDF does not include non-degradable waste areas that are excluded from the collection system. Therefore, BAAQMD Regulation 8-34-501.8 is not applicable.

2.10 Wellhead Monitoring Data (BAAQMD 8-34-501.4 & 8-34-505)

Wellhead monitoring was performed on a monthly basis pursuant to BAAQMD Regulation 8-34-505. The well readings for January 1, 2020 through June 30, 2020 are included in Appendix I. Each well was monitored in accordance with the following requirements:

- 8-34-305.1 Each wellhead shall operate under a vacuum.
- 8-34-305.2 The LFG temperature in each wellhead shall be less than 55 degrees Celsius (131°F).
- 8-34-305.4 The oxygen (O₂) concentration in each wellhead shall be less than 5 percent (%) by volume.

The wellhead monitoring was performed on the following dates:

- January 10, 14, 17, 20, and 28, 2020
- February 1, 4, 5, 8, 26 and 27, 2020
- March 4, 18, 20, 23 and 25, 2020
- April 1, 8, 14, 15, and 16, 2020
- May 11, 12, 13, 20, and 22, 2020
- June 14, 15, 16, and 24, 2020

2.10.1 Wellhead Deviations (BAAQMD 8-34-501.9 & §60.757(f)(1))

There were fourteen wellfield exceedances during this reporting period. Please refer to the Wellfield Deviation Log, included in Appendix K, for exceedance records for the reporting period of January 1, 2020 through June 30, 2020.

2.10.2 Higher Operating Value (HOV) Wells

During the reporting period, the following wells were approved to operate at a temperature higher operating value (HOV) of 145°F: 37, 51, 57, 58, 65, 66, 71, 74, 78, 86, 91, 92, 95, 98, 99, 119, 127, 128, 133, and 135. Wells 56, 75, 76, 87, 89, and 120, are approved to operate at a temperature HOV of 156°F.

Copies of all BAAQMD correspondence are located in Appendix J.

2.11 Gas Flow Monitoring Results (BAAQMD 8-34-501.10, 8-34-508, & §60.757(f)(1)

The A-12 Flare LFG flow rate is measured continuously with a Kurz flowmeter. The LFG flow is displayed and digitally recorded with a General Electric data panel and Yokogawa FX112 continuous digital recorder. The flow meter is maintained and calibrated pursuant to the manufacturer's recommendations. The flare flow meter meets the requirements of BAAQMD Regulation 8-34-508 by recording fuel flow at least every fifteen (15) minutes. Appendix D contains the specific details. The flow data for the flare are available for review at the KCRDF. Appendix L contains a summary of the monthly LFG flow rates and heat input for the flare.

Table 2-3 below is a summary of the LFG flow from January 1, 2020 through June 30, 2020, for the A-12 Flare. The A-12 Flare did not exceed the annual heat input rate of 1,087,700 million British Thermal Units (MMBTU), pursuant to Title V Permit A1812 Condition Number 1437, Part 8. The A-12 Flare did not exceed the permitted daily limit of 2,980 million British Thermal Units (BTU) for the duration of this event.

	Emission Control Device	Average Flow (scfm)	Methane (%)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heat Input (MMBTU)
	A-12 Flare	2,207	50.0	572,704,360	283,624,224	286,926

 Table 2-3 Total LFG Flow A-12 Flare – January 1, 2020 through June 30, 2020

scfm = standard cubic feet per minute CH_4 = methane % = percent scf = standard cubic feet *Methane concentration from March 13, 2019 and March 4, 2020, Source Test for the A-12 Flare.

2.12 Compliance with Title V Permit Cond. No. 1437, Part 14

The condensate injection rate did not exceed five (5) gallons per minute (gpm) during injection events (excluding startup times).

Table 2-4 summarizes the condensate injection rate and 12-month (consecutive) throughput in gallons for January 1, 2020 through June 30, 2020. Per Title V Permit A1812 Condition Number 1437 Part 14, the 12-month rolling average is below the permitted condensate injection limit of 2.0 million gallons per year. The monthly condensate injection logs are included in Appendix M.

Table 2-4 Condensate Injection Nates					
Month	Average Condensate Injection Rate (gpm)	Monthly Condensate Injection Throughput (gallons)	Condensate Injection Throughput 12-Month Total (gallons)		
January 2020	2.1	77,427	860,372		
February 2020	2.5	90,691	868,280		
March 2020	2.3	96,514	863,047		
April 2020	2.3	88,798	861,053		
May 2020	2.2	80,028	848,299		

 Table 2-4 Condensate Injection Rates

Month		Monthly Condensate Injection Throughput (gallons)	
June 2020	1.2	46,650	819,919

gpm= gallons per minute

2.13 Compliance with §60.757(f)(6)

"The date of installation and the location of each well or collection system expansion added pursuant to (a)(3), (b), (c)(4) of 60.755."

The GCCS was modified pursuant to Title V Permit Number A1812 during the reporting period. During the reporting period, one vertical well was decommissioned and two new vertical wells were started pursuant to Title V Permit Condition 1437 Part 6.

As of June 30, 2020, the GCCS system consists of 76 vertical wells, 0 horizontal collectors, and 3 leachate collection risers (LCRS).

2.14 Compliance with Title V Permit Cond. No. 1437, Parts 2 and 3

A total of 10,191.5 tons of contaminated soil containing volatile organic compounds (VOCs) greater than 50 parts per million (ppm) was received during the reporting period. Low-VOC soil (containing less than 50 ppm of VOCs) was received during the reporting period. Required records of soil acceptance are available for review at the KCRDF.

2.15 Compliance with Title V Permit Cond. No. 23022, Part 2

Diesel Engine S-8 (the diesel engine for the portable compressor) is required to be operated less than 1,290 hours during any consecutive 12-month period. S-8 operated a total of 130 hours during the 12-month period, July 1, 2019 through June 30, 2020. S-8 operated a total of 50 hours during the 6-month reporting period, January 1, 2020 through June 30, 2020. S-8 used a total of approximately 189 gallons of diesel fuel during the 6-month reporting period.

2.16 Compliance with Title V Permit Cond. No. 1437, Part 20

Effective July 2012, the A-12 Flare Sulfur dioxide emissions shall not exceed 300 ppmv and SO₂ (dry) emissions shall not exceed 94.9 tons per year. The total reduced sulfur (TRS) shall not exceed 860 ppmv (dry) expressed as hydrogen sulfide.

To demonstrate compliance with above limits, the site will conduct annual testing of total TRS at the landfill gas main header. The source test data for (source test conducted on conducted March 13, 2019 and March 4, 2020) TRS value was used to calculate the monthly SO₂ emissions in tons. The SO₂ emission did not exceed limit during the reporting period. The SO₂ tons 12-month rolling logs are included in Appendix P.

2.17 Compliance with Title V Permit Cond. No. 25872

To demonstrate compliance with permit limits for Source S-24, Construction & Demolition Debris Stockpile, the total construction and demolition debris accepted at S-24 in any consecutive 12-month period is limited to 104,000 tons and 500 tons for each day. To demonstrate compliance with Source S-25 Green and Wood Waste Stockpile the total combined green waste and wood waste debris accepted at S-25 in any consecutive 12-month period is limited to 250,000 and 4,500 tons each day. During the reporting period, the site did not exceed the permitted annual and daily limits. Required records are available for review at the KCRDF.

3 PERFORMANCE TEST REPORT

In accordance with BAAQMD Regulation 8-34-413 and 40 CFR §60.757(g) in the New Source Performance Standard (NSPS), a Performance Test Report is required to be submitted from subject facilities containing performance and monitoring data for the operation of the GCCS. The operational records listed in Table 3-1 have been reviewed, summarized, and are included in this Performance Test Report.

RULE	REQUIREMENT	LOCATION IN REPORT
8-34-412, §60.8, §60.752(b)(2)(iii)(B), §60.754(d)	Compliance Demonstration Test	Section 3.1, Appendix O
§60.757(g)(1)	A diagram of the collection system showing collection system positioning including all wells, horizontal collectors, surface collectors, or other gas extraction devices, including the locations of any areas excluded from collection and the proposed sites for future collection system expansion.	Section 3.2, Appendix A
§60.757(g)(2)	The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based.	Section 3.3
§60.757(g)(3)	The documentation of the presence of asbestos or non-degradable material for each area from which collection wells have been excluded based on the presence of asbestos or non-degradable material.	Section 3.4
§60.757(g)(4)	The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on non-productivity and the calculations of gas generation flow rate for each excluded area.	Section 3.5
§60.757(g)(5)	The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is inadequate to move the maximum flow rate expected over the life of the landfill.	Section 3.6
§60.757(g)(6)	The provisions for the control of off-site migration.	Section 3.7 Appendix N

Table 3-1 Performance Test Requirements

3.1 A-12 Flare Performance Test Results (BAAQMD 8-34-412)

The most recent A-12 Flare Compliance Demonstration Test (Performance Test) was performed on the A-12 Flare by Blue Sky Environmental, LLC on March 4, 2020, pursuant to Title V Permit A1812 Condition Number 1437 Part 12. The Performance Test Report for the A-12 Flare indicates that the flare is in compliance with BAAQMD Regulation 8-34-301.3. As required by BAAQMD Regulation 8-34-301.3, the flare meets the non-methane organic compound (NMOC) emission rate of less than 30 ppmv. Pursuant to Title V Permit A1812 Condition Number 1437 Part 10, the A-12 Flare meets the oxides of nitrogen (NO_x) emission concentration limit of less than 0.06 pounds (Ibs)/MMBTU. The A-12 Flare meets the carbon monoxide (CO) emission concentration

limit of less than 0.3 lbs/MMBTU, pursuant to Title V Permit A1812 Condition Number 1437 Part 11. Table 3-2 shows the results of the A-12 Flare Performance Test, averaged from six test runs - three with condensate on, and three with condensate off.

The A-12 2020 Source Test Report was submitted to the BAAQMD on April 28, 2020, within 60 days of the test date. The source test results for the above control device is included in Appendix O.

Condition		(A-12) Results Condensate OFF	8-34-301.3 limit	Compliance Status
NMOC (ppmv @ 3% O ₂ , as CH ₄)	1.0	1.0	30 ppmv	In Compliance
NO _x , lbs/MMBTU	0.045	0.037	0.06	In Compliance
CO, lbs/MMBTU	0.003	0.004	0.30	In Compliance

3.2 Compliance with §60.757(g)(1)

"A diagram of the collection system showing collection system positioning including wells, horizontal collectors..."

A map dated January 29, 2020 of the landfill GCCS showing the positioning of all vertical wells, horizontal collectors, and other LFG extraction devices is included in Appendix A.

3.3 Compliance with §60.757(g)(2)

"The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based."

The KCRDF GCCS has historically provided LFG wells and collectors spaced in accordance with standard industry practices. The A-12 flare, LFG extraction wells, and piping are more than adequate to move the current LFG flow rate. KCRDF will continue to add additional LFG control capacity as necessary with the approval of BAAQMD. The installed collector density appears more than adequate for controlling surface emissions, based on continuous compliance and operational experience.

The total capacity of the LFG mover equipment was designed and will be designed to meet the current United States Environmental Protection Agency (USEPA) Model AP-42 projections of LFG generation and the historic LFG extraction rates determined to be continuously available from the facility.

Demonstrating Compliance with §60.757(g)(2)

"The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based."

Compliance with 40 CFR §60.757(g)(2) is maintained by performing quarterly SEM. Refer to Section 2.6, Surface Emissions Monitoring for information pertaining to the SEM results. These results show that the GCCS has sufficient coverage over the waste footprint. Combined LFG recovery for the reporting period was 2,207 scfm. The current A-12 flare system has the capacity to destroy ~ twice the actual recovery. Well monitoring data shows that adequate vacuum is available at all points in the wellfield, demonstrating that the piping network is sufficient to handle all extracted LFG.

3.4 Compliance with §60.757(g)(3)

"The documentation of the presence of asbestos or non-degradable material for each area from which collection wells have been excluded based on the presence of asbestos or non-degradable material."

There are no segregated areas or accumulations of asbestos material documented for the site in the GCCS Design Plan. Therefore, 40 CFR §60.757(g)(3) is not applicable.

3.5 Compliance with §60.757(g)(4)

"The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on non-productivity and the calculations of gas generation flow rate for each excluded area."

Non-productive areas have not been excluded from the coverage of the GCCS. Therefore, 40 CFR 60.757(g)(4) is not applicable.

3.6 Compliance with §60.757(g)(5)

"The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is inadequate to move the maximum flow rate expected over the life of the landfill."

The A-12 Flare and blower system were installed in October and November 2007 and started up on December 3, 2007. The A-12 Flare and blower system is anticipated to be able to accommodate the expected LFG flow rate over the life of the landfill.

3.7 Compliance with §60.757(g)(6)

"The provisions for the control of off-site migration."

Quarterly LFG migration monitoring, including all on-site buildings, occurred on the following dates:

- First Quarter 2020 January 29 and 30, 2020
- Second Quarter 2020- May 14 and 20, 2020 and June 12, 2020

All probes were in compliance with no detections above the 5.0 percent methane limit during the First and Second Quarter 2020 monitoring events. There were no LFG migration occurrences at the KCRDF, and no areas of concern were identified during the First and Second Quarter 2020 monitoring events. The LFG migration monitoring and building monitoring results for both quarterly events are included in Appendix N.

Demonstrating Compliance with §60.757(g)(6)

"The provisions for the control of off-site migration."

The landfill operator will continue surface and perimeter monitoring in accordance with the approved monitoring plans. If the GCCS at the KCRDF does not meet the measures of performance set forth in the NSPS/EG, the GCCS will be adjusted or modified in accordance with the NSPS/EG requirements.

4 START-UP, SHUTDOWN, MALFUNCTION REPORT

4.1 SSM Report for the Collection and Control Systems at the KCRDF

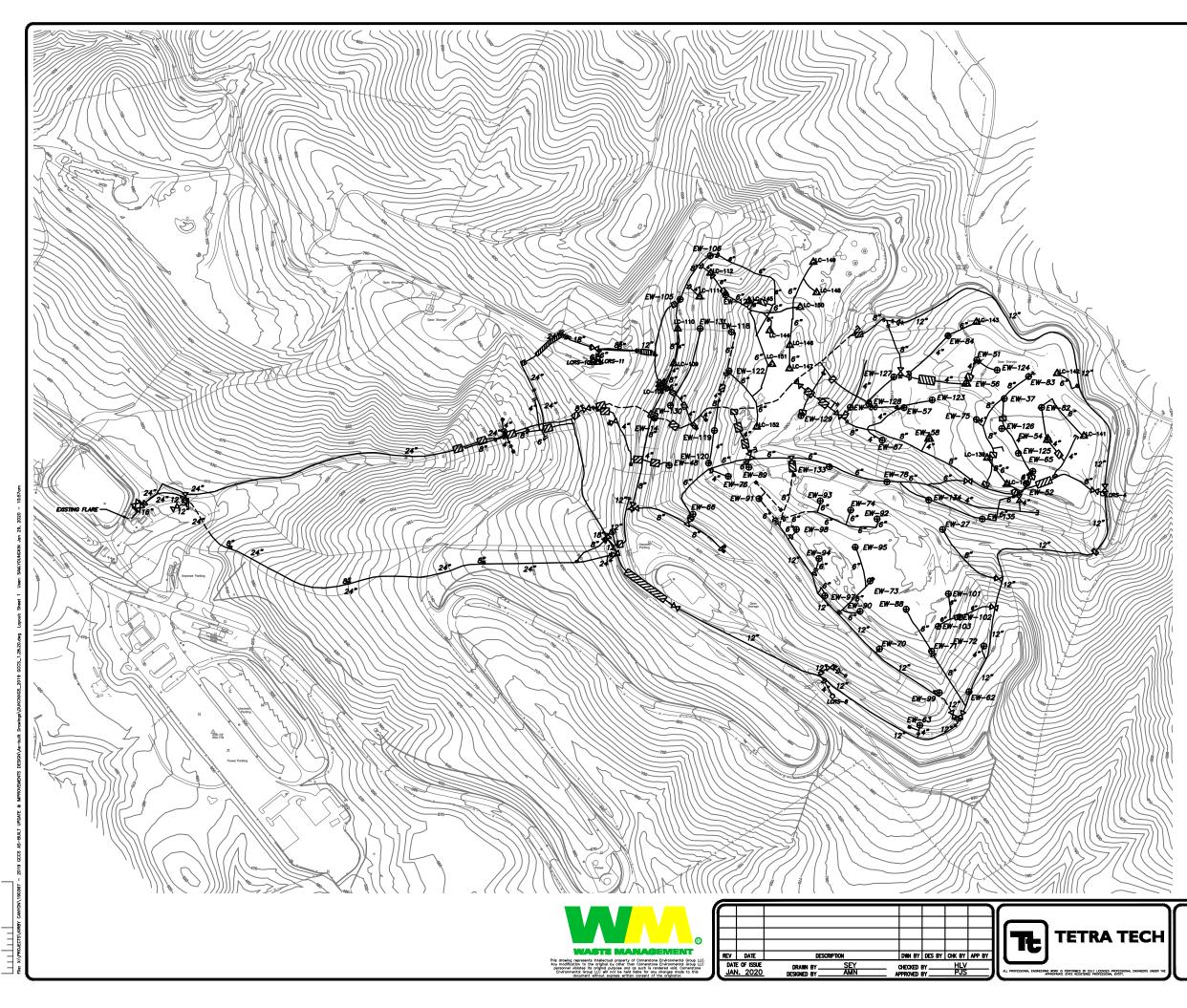
The NESHAPS contained in 40 CFR Part 63, AAAA for MSW landfills to control hazardous air pollutants include the regulatory requirements for submittal of a Semi-Annual Report (under 40 CFR §63.10(d)(5) of the general provisions) if an SSM event occurred during the reporting period. The reports required by §63.1980(a) of the NESHAP and §60.757(f) of the NSPS summarize the GCCS exceedances. These two Semi-Annual Reports contain similar information and have been combined as allowed by §63.10(d)(5)(i) of the General Provisions.

NESHAP 40 CFR Part 63, AAAA became effective on January 16, 2004. Those SSM events that occurred during the semi-annual reporting period are reported in this section (January 1, 2020 through June 30, 2020). The following information is included as required:

- During the reporting period, twenty-five (25) A-12 Flare SSM events occurred. The A-12 Flare shut down and restarted during the reporting period due to the reasons noted in the Flare SSM Log, located in Appendix B.
- During the reporting period, thirteen (13) wellfield SSM events occurred. Details are included in the Wellfield SSM Log, located in Appendix C.
- During the reporting period, no monitoring/recorder equipment SSM events occurred.
- In all thirty-eight (38) events, automatic systems and operator actions were consistent with the standard operating procedures contained in the SSM Plan.
- No exceedances of any applicable emission limitation in the landfills NESHAP (63.10(d)(5)(i)) occurred.
- Revisions of the SSM Plan to correct deficiencies in the landfill operations or procedures were neither required, nor prepared (§63.6(e)(3)(viii)).

I certify the following:

Based on information and belief formed after reasonable inquiry, information on the startup, shutdown, malfunction forms, all accompanying reports, and other required certifications are true, accurate, and complete.


<u>7 - 29 - 20 20</u> Date

Signature of Responsible Official

Enrique Perez Name of Responsible Official

APPENDIX A

LANDFILL GAS COLLECTION SYSTEM SITE MAP

LEGEND

1400	EXISTING 10' CONTOUR
	EXISTING ABOVEGROUND PIPING
<u> <u> </u></u>	EXISTING BELOWGROUND PIPING
_ · _ · _ · _	EXISTING HORIZONTAL COLLECTOR
⊕ <i>EW−3</i>	EXISTING LFG EXTRACTION WELL
🛕 LC-108	EXISTING LOCAL CONTROL WELL
•	EXISTING REMOTE WELLHEAD
@LGP-04 @P-18	EXISTING PROBE
онв ⊕Е₩—Н15	EXISTING HORIZONTAL COLLECTOR WELLHEAD
-54-	EXISTING CONTROL VALVE
-11	EXISTING BLIND FLANGE
-11-	EXISTING FLANGE CONNECTION
 D	EXISTING REDUCER FITTING
	EXISTING ROAD CROSSING
♦ cs-	EXISTING CONDENSATE SUMP
O RISER	EXISTING RISER
	EXISTING CAP ON EXISTING PIPE

NOTES:

- 1. TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY WALKER ASSOCIATES. DATE OF PHOTOGRAPHY: MARCH 29, 2019.
- 2. SUPPLEMENTAL 2016 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD MARK-UP DRAWING PROVIDED BY WM ON JULY 19, 2017. WELL LOCATIONS PER RECORD DRAWINGS WELL SCHEDULE DATED: JULY 13, 2016.
- 3. 2017 GCCS AS-BUILT SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: OCTOBER 11, 2017
- 4. 2019 GCCS AS-BUILT SURVEYS PROVIDED BY F3 AND ASSOCIATES, INC. DATED: AUGUST 19, 2019 AND DECEMBER 30, 2019
- 5. SUPPLEMENTAL 2019 GCCS AS-BUILT MARKUPS/COMMENTS PROVIDED BY WM DATED: JANUARY 27, 2020.

PRELIMINARY AS-BUILT

KIRBY CANYON RECYCLING AND DISPOSAL FACILITY SAN JOSE, CALIFORNIA 2019 GCCS IMPROVEMENTS AS-BUILT SITE PLAN

APPENDIX B

FLARE SSM LOG AND GCCS DOWNTIME REPORT

CONTROL DEVICE AND GAS COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: A-12 Flare

Completed By: Markus Bernard/Rajan Phadnis

KIRBY CANYON RECYCLING & DISPOSAL FACILITY, San Jose, CA

		SAL FACILITY, San J												
Identify Flare & Check	(1) Start of Event	(2) End of Event	(3) Duration	(4) Duration			(7) Date Form	(8) Type of Event		(10)	Did Steps Taken Vary	(1	1) Did Event Cause Any	
Applicable Event	(i) Start of Event	Date and Time		Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	Completed	(Startup and Shutdown Events Only)	(9) Procedures Used	(10)	From Section 9?		ission Limit Exceedance	(12) Describe Emission Standard(s) Exceeded
Component: A-12 Flare Startup Event						X 113: Inspection and Maintenance 116: Well Raising		Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
x Shutdown Event	1/02/20 23:52	1/02/20 23:56	0.07		Flare was shutdown due to power	116: Well Raising 117: Gas Collection	1/2/2020	X Automatic (Go to Section 11)	1 to 3		No (Stop)	~	No (Stop)	-
Malfunction Event				9.37	outage. Flare was inspected and	118: Construction Activities		Automatic (Go to Section 11)			No (Slop)	^	NO (SIDP)	
Component: A-12 Flare x Startup Event					restarted.	X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event	1/03/20 09:14	1/03/20 09:20	0.10			117: Gas Collection	1/3/2020	Automatic (Go to Section 11)	1 to 4	x	No (Stop)		No (Stop)	
Malfunction Event Component: A-12 Flare						118: Construction Activities X 113: Inspection and Maintenance		, ,						
Startup Event	1/03/20 09:24	1/03/20 09:28	0.07			116: Well Raising	1/3/2020	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
x Shutdown Event Malfunction Event					Flare was shutdown during startup	117: Gas Collection 118: Construction Activities		X Automatic (Go to Section 11)	1 to 3		No (Stop)	x	No (Stop)	
Component: A-12 Flare				0.20	sequence. Flare was inspected and restarted.	X 113: Inspection and Maintenance	+ +	X Manual (Go to Section 9)			Yes (Go to Section 11)		Yes (Go to Section 12)	
x Startup Event Shutdown Event	1/03/20 09:36	1/03/20 09:42	0.10		restaneu.	116: Well Raising 117: Gas Collection	1/3/2020	 Manual (Go to Section 9) 	Procedure No. 1 to 4		Tes (Go to Sectori TT)		Tes (Go to Section 12)	-
Malfunction Event						118: Construction Activities		Automatic (Go to Section 11)	1 10 4	х	No (Stop)		No (Stop)	
Component: A-12 Flare						X 113: Inspection and Maintenance		Manual (Go to Section 9)			Yes (Go to Section 11)		Yes (Go to Section 12)	
Startup Event x Shutdown Event	1/03/20 09:46	1/03/20 09:50	0.07			116: Well Raising 117: Gas Collection	1/3/2020		Procedure No. 1 to 3					-
Malfunction Event				0.37	Flare was shutdown during startup sequence. Flare was inspected and	118: Construction Activities		X Automatic (Go to Section 11)			No (Stop)	x	No (Stop)	
Component: A-12 Flare x Startup Event					restarted.	X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event	1/03/20 10:08	1/03/20 10:14	0.10			117: Gas Collection	1/3/2020	Automatic (Go to Section 11)	1 to 4	x	No (Stop)		No (Stop)	
Malfunction Event Component: A-12 Flare						118: Construction Activities X 113: Inspection and Maintenance	-					-		
Startup Event	1/09/20 06:44	1/09/20 06:48	0.07		Flare was shutdown due to power outage. Third party electrician visited	116: Well Raising	1/9/2020	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
x Shutdown Event	1/03/20 00.44	1/09/20 00.46	0.07		the site and hard wired flare and	117: Gas Collection 118: Construction Activities	1/9/2020	X Automatic (Go to Section 11)	1 to 3		No (Stop)	х	No (Stop)	
Malfunction Event Component: A-12 Flare				7.73	electrical panel and started generator	X 113: Inspection and Maintenance					Yes (Go to Section 11)		Yes (Go to Section 12)	
x Startup Event	1/09/20 14:28	1/09/20 14:34	0.10		power. Flare power source was moved to generator power from utility power.	116: Well Raising	1/9/2020	X Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	- 1
Shutdown Event Malfunction Event					Flare was inspected and restarted.	117: Gas Collection 118: Construction Activities		Automatic (Go to Section 11)	1 to 4	x	No (Stop)		No (Stop)	
Component: A-12 Flare						X 113: Inspection and Maintenance		X Manual (Go to Section 8)			Yes (Go to Section 10)		Yes (Go to Section 11)	
Startup Event x Shutdown Event	1/10/20 14:54	1/10/20 14:58	0.07			116: Well Raising 117: Gas Collection	1/10/2020		Procedure 1 to 3					-
Malfunction Event				0.77	Flare was shutdown to switch from generator power to utility power. Flare	118: Construction Activities		Automatic (Go to Section 10)		x	No (Stop)		No (Stop)	
Component: A-12 Flare x Startup Event				0.77	generator power to utility power. Flare was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	
Shutdown Event	1/10/20 15:40	1/10/20 15:46	0.10			117: Gas Collection	1/10/2020	Automatic (Go to Section 10)	1 to 4	×	No (Stop)		No (Stop)	
Malfunction Event						118: Construction Activities X 113: Inspection and Maintenance		Automatic (Go to Section 10)		^	No (Stop)		NO (SIDP)	
Component: A-12 Flare Startup Event						116: Well Raising		X Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	
x Shutdown Event	2/06/20 09:52	2/06/20 09:56	0.07		Flare was shutdown during annual	117: Gas Collection	2/6/2020	Automatic (Go to Section 10)	1 to 3	х	No (Stop)		No (Stop)	
Malfunction Event Component: A-12 Flare				1.93	inspection. Flare was inspected and	118: Construction Activities X 113: Inspection and Maintenance	+							
x Startup Event	2/06/20 11:48	2/06/20 11:54	0.10		restarted.	116: Well Raising	2/6/2020	X Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	х	No (Stop)		No (Stop)	
Component: A-12 Flare						X 113: Inspection and Maintenance		X Manual (Go to Section 8)			Yes (Go to Section 10)	1	Yes (Go to Section 11)	
x Shutdown Event	2/06/20 14:32	2/06/20 14:36	0.07			116: Well Raising 117: Gas Collection	2/6/2020		Procedure 1 to 3					-
Malfunction Event				0.97	Flare was shutdown during annual inspection. Flare was inspected and	118: Construction Activities		Automatic (Go to Section 10)	1 10 0	х	No (Stop)		No (Stop)	
Component: A-12 Flare x Startup Event				0.07	restarted.	X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	
Shutdown Event	2/06/20 15:30	2/06/20 15:36	0.10			117: Gas Collection	2/6/2020	Automatic (Go to Section 10)	1 to 4	×	No (Stop)		No (Stop)	
Malfunction Event						118: Construction Activities X 113: Inspection and Maintenance	+ +	Automatic (Go to Section 10)		^			NO (SIDP)	
Component: A-12 Flare Startup Event	2/07/20 15:08	2/07/20 15:12	0.07			116: Well Raising	2/7/2020	X Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	
x Shutdown Event Malfunction Event	2/07/20 13:06	2/07/20 15:12	0.07		Flare was shutdown during inspection	117: Gas Collection 118: Construction Activities	2/1/2020	Automatic (Go to Section 10)	1 to 3	х	No (Stop)		No (Stop)	
Component: A-12 Flare				2.27	and maintenance . Flare was inspected and restarted	X 113: Inspection and Maintenance					Yes (Go to Section 10)		Yes (Go to Section 11)	
x Startup Event	2/07/20 17:24	2/07/20 17:30	0.10		and restarted.	116: Well Raising	2/7/2020	X Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	- 1
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	х	No (Stop)		No (Stop)	
Component: A-12 Flare						X 113: Inspection and Maintenance		Manual (Go to Section 9)			Yes (Go to Section 11)		Yes (Go to Section 12)	
x Shutdown Event	2/09/20 12:56	2/09/20 13:00	0.07		Flare was shutdown due to power	116: Well Raising 117: Gas Collection	2/9/2020		Procedure No. 1 to 3					-
Malfunction Event				2.00	outage. Generator was started to	118: Construction Activities		X Automatic (Go to Section 11)	1 10 3		No (Stop)	х	No (Stop)	
Component: A-12 Flare x Startup Event				3.23	power the flare and other devices.	X 113: Inspection and Maintenance 116: Well Raising	$ $ \top	X Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)		Yes (Go to Section 12)	
Shutdown Event	2/09/20 16:10	2/09/20 16:16	0.10		Flare was inspected and restarted.	116: Well Raising 117: Gas Collection	2/9/2020		1 to 4			1		1
Malfunction Event						118: Construction Activities		Automatic (Go to Section 11)		x	No (Stop)		No (Stop)	
Component: A-12 Flare Startup Event						X 113: Inspection and Maintenance 116: Well Raising	T	X Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	
x Shutdown Event	2/10/20 11:06	2/10/20 11:10	0.07		Flare was shutdown to install new	117: Gas Collection	2/10/2020	Automatic (Go to Section 10)	1 to 3	~	No (Stop)	1	No (Stop)	1
Malfunction Event Component: A-12 Flare				3.50	firmware/card on flowmeter. Flare was	118: Construction Activities X 113: Inspection and Maintenance				^		-		
x Startup Event	2/10/20 14:36	2/10/20 14:42	0.10		inspected and restarted.	113: Inspection and Maintenance 116: Well Raising	2/10/2020	X Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)		Yes (Go to Section 11)	
Shutdown Event	2/10/20 14:30	2/10/20 14:42	0.10			117: Gas Collection	2/10/2020	Automatic (Go to Section 10)	1 to 4	х	No (Stop)		No (Stop)] [
Malfunction Event			1			118: Construction Activities	1	(22122200110)	1			1		

CONTROL DEVICE AND GAS COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: A-12 Flare

Completed By: Markus Bernard/Rajan Phadnis

KIRBY CANYON RECYCLING & DISPOSAL FACILITY, San Jose, CA

		POSAL FACILITY, San Jo 20 through June 30, 2020													
Identify Flare & Check	(1) Start of Event	(2) End of Event	(3) Duration	(4) Duration	(5) Cause or Reason	0	6) Applicable 8-34 Exemption	(7) Date Form		(8) Type of Event	(9) Procedures Used	(10	Did Steps Taken Vary	(11) Did Event Cause Any	(12) Describe Emission Standard(s) Exceeded
Applicable Event Component: A-12 Flare		Date and Time	of Event (Hours)	Shutdown (Hours)			113: Inspection and Maintenance	Completed	(5	Startup and Shutdown Events Only)	(0) 1 100000100 0000		From Section 9?	Emission Limit Exceedance	
Startup Event x Shutdown Event	2/11/20 09:24	2/11/20 09:28	0.07		Flare was shutdown to switch back to utility power. Utility power had single		116: Well Raising	2/11/2020	х	Manual (Go to Section 8)	Procedure 1 to 3		Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event				2.57	phasing issues. Generator was		118: Construction Activities			Automatic (Go to Section 10)	1 10 3	х	No (Stop)	No (Stop)	
Component: A-12 Flare x Startup Event				2.07	restarted to power the flare and other devices. Flare was inspected and	Х	113: Inspection and Maintenance 116: Well Raising		х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event	2/11/20 11:58	2/11/20 12:04	0.10		restarted.		117: Gas Collection 118: Construction Activities	2/11/2020		Automatic (Go to Section 10)	1 to 4	x	No (Stop)	No (Stop)	
Component: A-12 Flare						х	113: Inspection and Maintenance		х	Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	2/12/20 15:12	2/12/20 15:16	0.07		Flare was shutdown to switch from		116: Well Raising 117: Gas Collection	2/12/2020		Automatic (Go to Section 10)	Procedure 1 to 3	~	No (Stop)	No (Stop)	
Malfunction Event Component: A-12 Flare				0.30	generator power to utility power. Flare was inspected and restarted.	x	118: Construction Activities 113: Inspection and Maintenance								
x Startup Event Shutdown Event	2/12/20 15:30	2/12/20 15:36	0.10		was inspected and restarted.		116: Well Raising 117: Gas Collection	2/12/2020	х	Manual (Go to Section 8)	Procedure	_	Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event							118: Construction Activities			Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	
Component: A-12 Flare Startup Event	0004/00 44-00	0040044-04	0.07			Х	113: Inspection and Maintenance 116: Well Raising	0/04/00000	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event Malfunction Event	2/24/20 11:30	2/24/20 11:34	0.07		Flare was shutdown during inspection and maintenance on condensate		117: Gas Collection 118: Construction Activities	2/24/2020		Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	
Component: A-12 Flare	-			0.30	injection system. Flare was inspected and restarted.	х				Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
x Startup Event Shutdown Event	2/24/20 11:48	2/24/20 11:54	0.10		and restarted.		117: Gas Collection	2/24/2020	x	Automatic (Go to Section 11)	1 to 4	×	No (Stop)	No (Stop)	
Malfunction Event Component: A-12 Flare						х	118: Construction Activities 113: Inspection and Maintenance		^	, ,					
Startup Event x Shutdown Event	3/17/20 16:02	3/17/20 16:06	0.07				116: Well Raising 117: Gas Collection	3/17/2020		Manual (Go to Section 9)	Procedure No. 1 to 3		Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event				0.43	Flare was shutdown during power surge. Flare was inspected and		118: Construction Activities		х	Automatic (Go to Section 11)	1 10 3		No (Stop)	X No (Stop)	
Component: A-12 Flare x Startup Event	3/17/20 16:28	3/17/20 16:34	0.10		restarted.	х	113: Inspection and Maintenance 116: Well Raising	3/17/2020	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	3/1//20 10:20	3/17/20 10.34	0.10				117: Gas Collection 118: Construction Activities	3/11/2020		Automatic (Go to Section 11)	1 to 4	x	No (Stop)	No (Stop)	
Component: A-12 Flare Startup Event						Х	113: Inspection and Maintenance 116: Well Raising		х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	3/17/20 17:40	3/17/20 17:44	0.07		Flare power source was moved to		117: Gas Collection	3/17/2020		Automatic (Go to Section 10)	1 to 3	x	No (Stop)	No (Stop)	
Malfunction Event Component: A-12 Flare				1.00	generator power from utility. Flare was inspected and restarted.	x	118: Construction Activities 113: Inspection and Maintenance		v	Manual (Go to Section 8)		_	Yes (Go to Section 10)	Yes (Go to Section 11)	
x Startup Event Shutdown Event	3/17/20 18:40	3/17/20 18:46	0.10		inspected and restanced.		116: Well Raising 117: Gas Collection	3/17/2020	^		Procedure 1 to 4				
Malfunction Event						X	118: Construction Activities			Automatic (Go to Section 10)	1.0.4	×	No (Stop)	No (Stop)	
Component: A-12 Flare Startup Event	3/18/20 08:44	3/18/20 08:48	0.07			X	X 113: Inspection and Maintenance 116: Well Raising	3/18/2020	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event Malfunction Event	0102000.11	0/10/20 00:10	0.07		Flare was shutdown to switch from		117: Gas Collection 118: Construction Activities	0/10/2020		Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	
Component: A-12 Flare x Startup Event	-			0.23	generator power to utility power. Flare was inspected and restarted.	Х	113: Inspection and Maintenance 116: Well Raising		х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	3/18/20 08:58	3/18/20 09:04	0.10				117: Gas Collection	3/18/2020		Automatic (Go to Section 10)	1 to 4	x	No (Stop)	No (Stop)	
Malfunction Event Component: A-12 Flare						х	118: Construction Activities 113: Inspection and Maintenance			Manual (Go to Section 9)			Yes (Go to Section 11)	Yes (Go to Section 12)	
Startup Event x Shutdown Event	3/18/20 09:10	3/18/20 09:14	0.07		-		116: Well Raising 117: Gas Collection	3/18/2020			Procedure No. 1 to 3				
Malfunction Event Component: A-12 Flare				0.17	Flare was shutdown during startup sequence. Flare was inspected and	v	118: Construction Activities 113: Inspection and Maintenance		^	Automatic (Go to Section 11)		_	No (Stop)	X No (Stop)	
x Startup Event	3/18/20 09:20	3/18/20 09:26	0.10		restarted.	~	116: Well Raising 117: Gas Collection	3/18/2020	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event							118: Construction Activities			Automatic (Go to Section 11)	1 to 4	х	No (Stop)	No (Stop)	
Component: A-12 Flare Startup Event						Х	113: Inspection and Maintenance 116: Well Raising			Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
x Shutdown Event Malfunction Event	4/03/20 09:04	4/03/20 09:08	0.07		Flare was shutdown during power		117: Gas Collection 118: Construction Activities	4/3/2020	х	Automatic (Go to Section 11)	1 to 3		No (Stop)	X No (Stop)	
Component: A-12 Flare				1.60	surge. Flare was restarted. Flare was inspected.	х	113: Inspection and Maintenance		х	Manual (Go to Section 9)			Yes (Go to Section 11)	Yes (Go to Section 12)	
x Startup Event Shutdown Event	4/03/20 10:40	4/03/20 10:46	0.10				116: Well Raising 117: Gas Collection	4/3/2020		Automatic (Go to Section 11)	Procedure No. 1 to 4	~	No (Stop)	No (Stop)	
Malfunction Event Component: A-12 Flare						x	118: Construction Activities 113: Inspection and Maintenance			, ,		<u>^</u>			
Startup Event	5/08/20 18:00	5/08/20 18:04	0.07				116: Well Raising	5/8/2020		Manual (Go to Section 9)	Procedure No.	_	Yes (Go to Section 11)	Yes (Go to Section 12)	
x Shutdown Event Malfunction Event				1.23	Flare was shutdown due to power outage. Flare was restarted. Flare was		117: Gas Collection 118: Construction Activities		х	Automatic (Go to Section 11)	1 to 3		No (Stop)	X No (Stop)	
Component: A-12 Flare x Startup Event	5/08/20 19:14	5/08/20 19:20	0.10		inspected.	Х	113: Inspection and Maintenance 116: Well Raising	5/8/2020	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	JU0/20 19.14	3/06/20 19.20	0.10			-	117: Gas Collection 118: Construction Activities	3/0/2020		Automatic (Go to Section 11)	1 to 4	х	No (Stop)	No (Stop)	
Component: A-12 Flare	1			İ	X 113:		113: Inspection and Maintenance 116: Well Raising			Manual (Go to Section 9)	Procedure No.	1	Yes (Go to Section 11)	Yes (Go to Section 12)	
Startup Event x Shutdown Event	5/09/20 05:50	5/09/20 05:54	0.07		Flare was shutdown during power		117: Gas Collection	5/9/2020	×	Automatic (Go to Section 11)	1 to 3	-	No (Stop)	X No (Stop)	
Malfunction Event Component: A-12 Flare				0.40	outage. Flare was restarted. Flare was inspected during the next business	х	118: Construction Activities 113: Inspection and Maintenance		Â						
x Startup Event Shutdown Event	5/09/20 06:14	5/09/20 06:20	0.10		day.	-	116: Well Raising 117: Gas Collection	5/9/2020	\vdash	Manual (Go to Section 9)	Procedure No. 1 to 4	-	Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event							118: Construction Activities		х	Automatic (Go to Section 11)	1 10 4	х	No (Stop)	No (Stop)	

CONTROL DEVICE AND GAS COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: A-12 Flare

Completed By: Markus Bernard/Rajan Phadnis

KIRBY CANYON RECYCLING & DISPOSAL FACILITY, San Jose, CA

		OSAL FACILITY, San													
Identify Flare & Check Applicable Event	(1) Start of Event	(2) End of Event Date and Time	(3) Duration of Event (Hours) S	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form Completed		(8) Type of Event Startup and Shutdown Events Only)	(9) Procedures Used	(10) Did Steps Taken Vary From Section 9?) Did Event Cause Any ission Limit Exceedance	(12) Describe Emission Standard(s) Exceeded
Component: A-12 Flare Startup Event x Shutdown Event	5/27/20 18:20	5/27/20 18:24	0.07		Flare was shutdown during power	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	5/27/2020	x	Manual (Go to Section 9) Automatic (Go to Section 11)	Procedure No. 1 to 3		Yes (Go to Section 11) No (Stop)	x	Yes (Go to Section 12) No (Stop)	
Malfunction Event Component: A-12 Flare x Startup Event Shutdown Event Malfunction Event	5/27/20 18:44	5/27/20 18:50	0.10	0.40	outage. Flare was restarted. Flare was inspected.	118: Construction Activities X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection 118: Construction Activities	5/27/2020	x	Manual (Go to Section 11) Automatic (Go to Section 11)	Procedure No. 1 to 4	x	Yes (Go to Section 11) No (Stop)		Yes (Go to Section 12) No (Stop)	
Component: A-12 Flare Startup Event x Shutdown Event	6/09/20 18:02	6/09/20 18:06	0.07		Flare was shutdown during power	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	6/9/2020	x	Manual (Go to Section 9) Automatic (Go to Section 11)	Procedure No. 1 to 3		Yes (Go to Section 11) No (Stop)	x	Yes (Go to Section 12) No (Stop)	
Malfunction Event Component: A-12 Flare x Startup Event Shutdown Event	6/09/20 20:30	6/09/20 20:36	0.10	2.47	outage. Flare was switched to generator power. Flare was inspected and restarted.	116: Well Raising 117: Gas Collection	6/9/2020	x	Manual (Go to Section 9) Automatic (Go to Section 11)	Procedure No. 1 to 4	x	Yes (Go to Section 11) No (Stop)		Yes (Go to Section 12) No (Stop)	
Malfunction Event Component: A-12 Flare Startup Event X Shutdown Event Malfunction Event	6/10/20 09:06	6/10/20 09:10	0.07		Flare was shutdown during switch	118: Construction Activities X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection 118: Construction Activities	6/10/2020	x	Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 3	x	Yes (Go to Section 10) No (Stop)		Yes (Go to Section 11) No (Stop)	
Component: A-12 Flare x Startup Event Shutdown Event Malfunction Event	6/10/20 10:20	6/10/20 10:26	0.10	1.23	over to utility power. Flare was inspected and restarted.	113: Construction Activities 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection 118: Construction Activities	6/10/2020	x	Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 4	x	Yes (Go to Section 10) No (Stop)		Yes (Go to Section 11) No (Stop)	
Component: A-12 Flare Startup Event x Shutdown Event Malfunction Event	6/11/20 09:12	6/11/20 09:16	0.07		Flare was shutdown during blower	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection 118: Construction Activities	6/11/2020	x	Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 3	x	Yes (Go to Section 10) No (Stop)		Yes (Go to Section 11) No (Stop)	
Component: A-12 Flare x Startup Event Shutdown Event Malfunction Event	6/11/20 10:38	6/11/20 10:44	0.10	1.43	inspection. Flare was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection 118: Construction Activities	6/11/2020	x	Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 4	x	Yes (Go to Section 10) No (Stop)		Yes (Go to Section 11) No (Stop)	
Component: A-12 Flare Startup Event x Shutdown Event Malfunction Event	6/30/20 12:16	6/30/20 12:20	0.07		Flare was shutdown due to power	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection 118: Construction Activities	6/30/2020	x	Manual (Go to Section 9) Automatic (Go to Section 11)	Procedure No. 1 to 3		Yes (Go to Section 11) No (Stop)	x	Yes (Go to Section 12) No (Stop)	
Component: A-12 Flare x Startup Event Shutdown Event Malfunction Event	6/30/20 12:28	6/30/20 12:34	0.10	0.20	surge. Flare was restarted. Flare was inspected.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection 118: Construction Activities	6/30/2020	x	Manual (Go to Section 9) Automatic (Go to Section 11)	Procedure No. 1 to 4	x	Yes (Go to Section 11) No (Stop)		Yes (Go to Section 12) No (Stop)	

TOTAL DOWNTIME January 1 through June 30, 2020 (HOURS):	44.3
TOTAL PERMITTED GCCS DOWNTIME FOR 1 YEAR (HOURS):	240.0
TOTAL AVAILABLE RUNTIME January 1 through June 30, 2020 (HOURS):	4367.0
TOTAL RUNTIME January 1 through June 30, 2020 (HOURS):	4322.7
RUNTIME PERCENTAGE January 1 through June 30, 2020 :	99.0%

(a) STANDARD OPERATING PROCEDURES

Procedure No.

2

3

2

3

4

- Procedure
- Ensure that there are no unsafe conditions present, contact manager immediately Initiate shutdown sequence below by one or more of the following (Note date and time in Section 1 of form above)
- a.
- Press Emergency Stop if necessary Close On/Off switch(es) or Push On/Off button(s) Close adjacent valves if necessary b. c.
 - Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note date and time in Section 2 of form above)

Startup Procedure No.

- Procedure Ensure that there are no unsafe conditions present
- Ensure that the system is ready to start by one of the following:
- Valves are in correct position a.
- Levels, pressures, and temperatures are within normal starting range b.
- c. Alarms are cleared
- d. Power is on and available to control panel and ready to energize equipment.
- e.
- Emergency stop is de-energized Initiate start sequence (Note time and date in section 1 of form above)
- Observe that system achieves normal startup ranges for levels, pressures, and temperatures (Note time and date in Section 2 of form above)

Malfunction

EQUIPMENT	PURPOSE	MALFUNCTION EVENT	COMMON CAUSES	PROCEDURE NO TYPICAL RESPONSE ACTIONS
LFG Collection and Control Sys	tem			
Blower or Other Gas Mover		Loss of LFG Flow/Blower	-Flame arrestor	1. Repair breakages in extraction piping
Equipment	transport to control device	Malfunction	Inding/deterioration -Automatic valve problems -Blower failure (e.g., belt, motor, impeller, coupling, seizing, etc.) -Loss of power -Extraction piping failure -Condensate knock-out problems -Extraction piping blockages	2. Clean flame arrestor 3. Repair blockages in extraction piping 4. Verify automatic valve operation, compressed air/nitrogesupply 5. Notify power utility, if appropriate 6. Provide/utilize auxiliary power source, if necessary 7. Repair Settlement in Collection Piping 8. Repair Blower 9. Activate back-up pt/demister
Extraction Wells and Collection Piping	Conduits for extractions and movement of LFG flow	Collection well and pipe failures	-Break/crack in header or lateral -Leaks at wellheads, valves, flanges, -Collection piping blockages -Problems due to settlement (e.g.	 Drain knock-out pot Repair leaks or breaks in lines or wellheads Follow procedures for loss of LFG flow/blower malfunction Repair blockages in collection piping Repair settlement in collection piping
			pipe separation, deformation, development of low points)	 Re-install, repair, or replace piping
Blower or Other Gas Mover Equipment And	Collection and control of LFG	Loss of electrical power	 Force majeure/Act of God (e.g., lightning, flood, earthquake, etc.) Area-wide or local blackout or brown-out 	17. Check/reset breaker 18. Check/repair electrical panel components
Control Device			-Interruption in service (e.g. blown service fuse) -Electrical line failure -Breaker trip -Transformer failure -Motor starter failure/trip -Overdraw of power -Problems in electrical panel -Damage to electrical equipment from on-site operations	 Check/repair transformer Check/repair notor starter Check/repair electrical line Test amperage to various equipment Contact electricity supplier Contact/contract electrician Provide auxiliary power (if necessary)
LFG Control Device	Combusts LFG	Low temperature conditions at control device	-Problems with temperature - monitoring equipment -Problems/failure of -thermocouple and/or thermocouple wiring -Change of LFG flow -Change of LFG quality -Problems with air louvers	 26. Check/repair temperature monitoring equipment 27. Check/repair thermocouple and/or wiring 28. Follow procedures for loss of flow/blower malfunction 29. Check/adjust louvers 30. Check/adjust air/fuel controls
LEC Control During	Combusto LEC	Loss of Flows	-Problems with air/fuel controls -Change in atmospheric conditions	21 Charlonnia (manadure maritaria a animata
LFG Control Device	Combusts LFG	Loss of Flame	-Problems/failure of thermocouple -Loss/change of LPG flow -Loss/change of LPG quality -Problems/failure of flame sensor -Problems/failure of flame sensor -Problems with temperature monitoring equipment	 Check/repair temperature monitoring equipment Check/repair thermocouple Follow procedures for loss of flow/blower malfunction Check/adjust air/fuel controls Check/adjust/repair flame sensor Check/adjust LFG collectors
Flow Monitoring/ Recording Device	Measures and records gas flow from collection system to control	Malfunctions of Flow Monitoring/Recording Device	Problems with orifice plate, pitot tube, or other in-line flow measuring device -Problems with device controls and/or wiring -Problems with chart recorder	37. Check/adjust/repair flow measuring device and/or wiring38. Check/repair chart recorder39. Replace paper in chart recorder

EQUIPMENT	PURPOSE	MALFUNCTION EVENT	COMMON CAUSES	PROCEDURE NO TYPICAL RESPONSE ACTIONS
LFG Collection and Control S	ystem	• •		
Temperature Monitoring/ Recording Device	Monitors and records combustion temperature of enclosed combustion device	Malfunctions of Temperature Monitoring/Recording Device	-Problems with thermocouple -Problems with device controls and/or wiring -Problems with chart recorder	 40. Check/adjust/repair thermocouple 41. Check/adjust/repair controller and/or wiring 42. Check/adjust/repair electrical panel components 43. Check/repair chart recorder 44. Replace paper in chart recorder
Control Device	Combusts LFG	Other Control Device Malfunctions	-Control device smoking (i.e. visible emissions) -Problems with flare insulation -Problems with air louvers -Problems with air/fuel controllers -Problems with diar/fuel controllers -Problems with thermocouple -Problems with thermocouple -Problems with flame arrester -Alarmed malfunction conditions not covered above -Unalarmed conditions discovered during inspection not covered above	 45. Site-specific diagnosis procedures 46. Site-specific responses actions based on diagnosis 47. Open manual louvers 48. Clean pitot orifice 49. Clean/drain flame arrestor 50. Refil propane supply 51. Check/repair pilot sparking system

(b) For each permit limit exceedance complete an "SSM Plan Departure Form". Notify BAAQMD verbally or by fax within 2 working days after commencing the actions that an event inconsistent with the SSM Plan and which resulted in an exceedance of an applicable emission permit has occured. Follow up in writing to the agency within 7 working days after the end of the event.

APPENDIX C

WELLFIELD SSM LOG

AFFECTED EQUIPMENT: Wellfield

Kirby Canyon Recyc	ling & Disposa	l Facility. San J	ose. CA											
SSMP REPORT - Fro														
Identify Well & Check Applicable Event	(1) Start of Event Date and Time		(3) Durationof Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form Completed		(8) Type of Event (Startup and Shutdown Events Only)	(9) Procedures Used	(10) Did Steps Taken Vary From Section 9?	(11) Did Event Cause Any Emission Limit Exceedance	(12) Describe Emission Standard(s) Exceeded
Well ID Number:152 Startup Event	1/06/20 14:12	1/06/20 14:14	0.03			113: Inspection and Maintenance X 116: Well Raising	1/6/2020	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event				336.3	Well offline for filling	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)	1 to 3	х	No (Stop)	No (Stop)	
Well ID Number:152 X Startup Event	1/20/20 14:32	1/20/20 14:34	0.03			113: Inspection and Maintenance X 116: Well Raising 117: Gas Collection	1/20/2020	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event Well ID Number:88						118: Construction Activities 113: Inspection and Maintenance			Automatic (Go to Section 11)	1 to 4	х	No (Stop)	No (Stop)	
Startup Event X Shutdown Event	1/24/20 11:05	1/24/20 11:07	0.03			X 116: Well Raising 117: Gas Collection	1/24/2020	х	Manual (Go to Section 9)	Procedure No. 1 to 3		Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number:88				125.3	Well offline for filling	118: Construction Activities 113: Inspection and Maintenance		~	Automatic (Go to Section 11) Manual (Go to Section 9)		х	No (Stop) Yes (Go to Section 11)	No (Stop) Yes (Go to Section 12)	
X Startup Event Shutdown Event	1/29/20 16:25	1/29/20 16:27	0.03			X 116: Well Raising 117: Gas Collection	1/29/2020	<u> </u>	Automatic (Go to Section 1)	Procedure No. 1 to 4	×	No (Stop)	No (Stop)	
Malfunction Event Well ID Number:147						118: Construction Activities 113: Inspection and Maintenance		x	Manual (Go to Section 9)		^	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Startup Event Shutdown Event	1/10/20 10:16	1/10/20 10:18	0.03		Startup per PTO Condition Number	116: Well Raising 117: Gas Collection	1/10/2020		Automatic (Go to Section 11)	Procedure No. 1 to 3	х	No (Stop)	No (Stop)	
Malfunction Event Well ID Number:147				NA	1437 Part 6, as modified by Application Number 27673	118: Construction Activities 113: Inspection and Maintenance			Manual (Go to Section 9)			Yes (Go to Section 11)	Yes (Go to Section 12)	
Startup Event Shutdown Event						116: Well Raising 117: Gas Collection	1/0/1900		Automatic (Go to Section 11)	-	-	No (Stop)	No (Stop)	
Malfunction Event Well ID Number:151 X Startup Event						118: Construction Activities 113: Inspection and Maintenance 116: Well Raising		x	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	1/10/20 09:45	1/10/20 09:47	0.03		Startup per PTO Condition Number	117: Gas Collection 118: Construction Activities	1/10/2020		Automatic (Go to Section 11)	1 to 3	х	No (Stop)	No (Stop)	
Well ID Number:151 Startup Event				NA	1437 Part 6, as modified by Application Number 27673	113: Inspection and Maintenance 116: Well Raising			Manual (Go to Section 9)			Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities	1/0/1900		Automatic (Go to Section 11)			No (Stop)	No (Stop)	
Well ID Number:152 Startup Event	1/20/20 14:35	1/20/20 14:37	0.03			113: Inspection and Maintenance X 116: Well Raising	1/20/2020	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	1/20/20 14:35	1/20/20 14.3/	0.03	360.8	Well offline for filling	117: Gas Collection 118: Construction Activities	1/20/2020		Automatic (Go to Section 11)	1 to 3	х	No (Stop)	No (Stop)	
Well ID Number:152 X Startup Event	2/04/20 15:20	2/04/20 15:22	0.03	000.0	Weil entitle for finning	113: Inspection and Maintenance X 116: Well Raising	2/4/2020	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event Well ID Number:144						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)	1 to 4	х	No (Stop)	No (Stop)	
Startup Event X Shutdown Event	1/31/20 14:30	1/31/20 14:32	0.03			113: Inspection and Maintenance X 116: Well Raising 117: Gas Collection	1/31/2020	х	Manual (Go to Section 9)	Procedure No. 1 to 3		Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number:144				169.1	Well offline for filling	118: Construction Activities 113: Inspection and Maintenance			Automatic (Go to Section 11)	1 10 3	х	No (Stop)	No (Stop)	
X Startup Event Shutdown Event	2/07/20 15:37	2/07/20 15:39	0.03			X 116: Well Raising 117: Gas Collection	2/7/2020	x	Manual (Go to Section 9)	Procedure No. 1 to 4		Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number:146						118: Construction Activities 113: Inspection and Maintenance		~	Automatic (Go to Section 11)		х	No (Stop)	No (Stop)	
Startup Event X Shutdown Event	1/27/20 09:25	1/27/20 09:27	0.03			X 116: Well Raising 117: Gas Collection	1/27/2020	~	Manual (Go to Section 9) Automatic (Go to Section 11)	Procedure No. 1 to 3	~	Yes (Go to Section 11) No (Stop)	Yes (Go to Section 12) No (Stop)	
Malfunction Event Well ID Number:146				1,753.2	Well offline for filling	118: Construction Activities 113: Inspection and Maintenance		x	Manual (Go to Section 9)		<u> </u>	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Startup Event Shutdown Event	4/09/20 10:35	4/09/20 10:37	0.03			X 116: Well Raising 117: Gas Collection	4/9/2020		Automatic (Go to Section 11)	Procedure No. 1 to 4	x	No (Stop)	No (Stop)	
Malfunction Event Well ID Number:150						118: Construction Activities 113: Inspection and Maintenance		х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Startup Event X Shutdown Event Malfunction Event	2/10/20 14:30	2/10/20 14:32	0.03			X 116: Well Raising 117: Gas Collection 118: Construction Activities	2/10/2020		Automatic (Go to Section 11)	Procedure No. 1 to 3	х	No (Stop)	No (Stop)	
Well ID Number:150 X Startup Event				1,411.8	Well offline for filling	118: Construction Activities 113: Inspection and Maintenance X 116: Well Raising		х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	4/09/20 10:20	4/09/20 10:22	0.03			117: Gas Collection 118: Construction Activities	4/9/2020		Automatic (Go to Section 11)	1 to 4	х	No (Stop)	No (Stop)	
Well ID Number:145 Startup Event	3/04/20 16:15	3/04/20 16:17	0.03			113: Inspection and Maintenance X 116: Well Raising	3/4/2020	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	3/04/20 10:13	3/04/20 10:17	0.03	978.0	Well offline for filling	117: Gas Collection 118: Construction Activities	3/4/2020		Automatic (Go to Section 11)	1 to 3	х	No (Stop)	No (Stop)	
Well ID Number:145 X Startup Event	4/14/20 10:15	4/14/20 10:17	0.03	570.0	wen on no ning	113: Inspection and Maintenance X 116: Well Raising	4/14/2020	х	Manual (Go to Section 9)	Procedure No.		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)	1 to 4	х	No (Stop)	No (Stop)	

AFFECTED EQUIPMENT: Wellfield

Completed By: Markus Bernard/Rajan Phadnis

Kirby Canyon Recyc	ling & Disposa	Facility. San J	ose. CA									
SSMP REPORT - Fro												
Identify Well & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form Completed	(8) Type of Event (Startup and Shutdown Events Only)	(9) Procedures Used	(10) Did Steps Taken Vary From Section 9?	(11) Did Event Cause Any Emission Limit Exceedance	(12) Describe Emission Standard(s) Exceeded
Well ID Number:LR08 Startup Event	3/25/20 14:30	3/25/20 14:32	0.03			113: Inspection and Maintenance X 116: Well Raising	3/25/2020	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	3/25/20 14:30	3/23/20 14:32	0.03	330.5	Well offline for filling	117: Gas Collection 118: Construction Activities	3/25/2020	Automatic (Go to Section 11)	1 to 3	X No (Stop)	No (Stop)	
Well ID Number:LR08 X Startup Event	4/08/20 09:00	4/08/20 09:02	0.03	330.5	weil online for hilling	113: Inspection and Maintenance X 116: Well Raising	4/8/2020	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	4/08/20 09:00	4/08/20 09:02	0.03			117: Gas Collection 118: Construction Activities	4/6/2020	Automatic (Go to Section 11)	1 to 4	X No (Stop)	No (Stop)	
Well ID Number:106 X Startup Event	4/01/20 13:46	4/01/20 13:48	0.03			113: Inspection and Maintenance 116: Well Raising	4/1/2020	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	4/01/20 13:40	4/01/20 13:46	0.03	NA	Well decommissioning per PTO Condition Number 1437 Part 6, as	117: Gas Collection 118: Construction Activities	4/1/2020	Automatic (Go to Section 11)	1 to 3	X No (Stop)	No (Stop)	
Well ID Number:106 Startup Event				NA	modified by Application Number 27673	113: Inspection and Maintenance 116: Well Raising	1/0/1900	Manual (Go to Section 9)		Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities	1/0/1900	Automatic (Go to Section 11)		No (Stop)	No (Stop)	
Well ID Number:148 Startup Event	6/24/20 14:00	6/24/20 14:02	0.03			113: Inspection and Maintenance X 116: Well Raising	6/24/2020	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	0/24/20 14:00	0/24/20 14.02	0.03	140.2	Well offline for filling	117: Gas Collection 118: Construction Activities	0/24/2020	Automatic (Go to Section 11)	1 to 3	X No (Stop)	No (Stop)	
Well ID Number:148 X Startup Event	6/30/20 10:10	6/30/20 10:12	0.03	140.2	wen omme for minig	113: Inspection and Maintenance X 116: Well Raising	6/30/2020	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	0/30/20 10.10	0/30/20 10.12	0.03			117: Gas Collection 118: Construction Activities	0/30/2020	Automatic (Go to Section 11)	1 to 4	X No (Stop)	No (Stop)	
Well ID Number:149 Startup Event	6/26/20 12:15	6/26/20 12:17	0.03			113: Inspection and Maintenance X 116: Well Raising	6/26/2020	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	0/20/20 12:15	0/20/20 12:17	0.03	107.7	Well offline for filling	117: Gas Collection 118: Construction Activities	0/20/2020	Automatic (Go to Section 11)	1 to 3	X No (Stop)	No (Stop)	
Well ID Number:149 Startup Event	Pending			107.7	wen onnne for filling	113: Inspection and Maintenance X 116: Well Raising	Deading	X Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	rending					117: Gas Collection 118: Construction Activities	Pending	Automatic (Go to Section 11)	1 to 4	X No (Stop)	No (Stop)	

N/A = Not Applicable

(a) STANDARD OPERATING PROCEDURES

Shutdown		
Procedure No.		Procedure
1		Ensure that there are no unsafe conditions present, contact manager immediately
2		Initiate shutdown sequence below by one or more of the following (Note date and time in Section 1 of form above)
	a.	Press Emergency Stop if necessary
	b.	Close On/Off switch(es) or Push On/Off button(s)
	c.	Close adjacent valves if necessary
3		Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note date and time in Section 2 of form above)
Startup		
Procedure No.		Procedure
1		Ensure that there are no unsafe conditions present
2		Ensure that the system is ready to start by one of the following:
	a.	Valves are in correct position

a. b. Valves are in correct position Levels, pressures, and temperatures are within normal starting range c. d. Alarms are cleared Power is on and available to control panel and ready to energize equipment. e. Emergency stop is de-energized Initiate start sequence (Note time and date in section 1 of form above)

3 4

Observe that system achieves normal startup ranges for levels, pressures, and temperatures (Note time and date in Section 2 of form above)

Malfunction

EQUIPMENT	PURPOSE	MALFUNCTION	COMMON CAUSES	PROCEDURE NOTYPICAL RESPONSE ACTIONS
		EVENT		
LFG Collection and Control Syste		-		
Blower or Other Gas Mover Equipment	Applies vacuum to wellfield to extract LFG and transport to control device	Loss of LFG Flow/Blower Malfunction	-Flame arrestor fouling/deterioration -Automatic valve problems -Blower failure (e.g., belt, motor, impeller, coupling, seizing, etc.) -Loss of power -Extraction piping failure -Condensate knock-out problems -Extraction piping blockages	 Repair breakages in extraction piping Clean flame arrestor Repair blockages in extraction piping Verify automatic valve operation, compressed air/nitrogen supply Notify power utility, if appropriate Provide/utilize auxiliary power source, if necessary Repair Settlement in Collection Piping Repair Blower Activate back-up blower, if available Clean knock-up pot/demister Drain knock-out pot
Extraction Wells and Collection Piping	Conduits for extractions and movement of LFG flow	Collection well and pipe failures	-Break/crack in header or lateral -Leaks at wellheads, valves, flanges, -Collection piping blockages -Problems due to settlement (e.g. pipe separation, deformation, development of low points)	 Repair leaks or breaks in lines or wellheads Follow procedures for loss of LFG flow/blower malfunction Repair blockages in collection piping Repair settlement in collection piping Re-install, repair, or replace piping
Blower or Other Gas Mover Equipment And Control Device	Collection and control of LFG	Loss of electrical power	Force majeure/Act of God (e.g., lightning, flood, earthquake, etc.) -Area-wide or local blackout or brown- out -Interruption in service (e.g. blown service fuse) -Electrical line failure -Breaker trip -Transformer failure -Motor starter failure/trip -Overdraw of power -Problems in electrical panel -Damage to electrical equipment from on-site operations	 Check/reset breaker Check/repair electrical panel components Check/repair transformer Check/repair motor starter Check/repair electrical line Test amperage to various equipment Contact electricity supplier Contact/contract electrician Provide auxiliary power (if necessary)
LFG Control Device	Combusts LFG	Low temperature conditions at control device	Problems with temperature - monitoring equipment Problems/failure of -thermocouple and/or thermocouple wiring -Change of LFG flow -Change of LFG quality -Problems with air louvers -Problems with air/fuel controls -Change in atmospheric conditions	 Check/repair temperature monitoring equipment Check/repair thermocouple and/or wiring Follow procedures for loss of flow/blower malfunction Check/adjust louvers Check/adjust air/fuel controls

EQUIPMENT	PURPOSE	MALFUNCTION EVENT	COMMON CAUSES	PROCEDURE NOTYPICAL RESPONSE ACTIONS	
LFG Collection and Control S	ystem				
LFG Control Device	Combusts LFG	Loss of Flame	-Problems/failure of thermocouple -Loss/change of LFG flow -Loss/change of LFG quality -Problems with air/fuel controls -Problems/failure of flame sensor -Problems with temperature monitoring equipment	 Check/repair temperature monitoring equipment Check/repair thermocouple Follow procedures for loss of flow/blower malfunction Check/adjust air/fuel controls Check/adjust/repair flame sensor Check/adjust LFG collectors 	
Flow Monitoring/ Recording Device	Measures and records gas flow from collection system to control	Malfunctions of Flow Monitoring/Recording Device	-Problems with orifice plate, pitot tube, or other in-line flow measuring device -Problems with device controls and/or wiring -Problems with chart recorder	37. Check/adjust/repair flow measuring device and/or wiring38. Check/repair chart recorder39. Replace paper in chart recorder	
Temperature Monitoring/ Recording Device	Monitors and records combustion temperature of enclosed combustion device	Malfunctions of Temperature Monitoring/Recording Device	-Problems with thermocouple -Problems with device controls and/or wiring -Problems with chart recorder	 40. Check/adjust/repair thermocouple 41. Check/adjust/repair controller and/or wiring 42. Check/adjust/repair electrical panel components 43. Check/repair chart recorder 44. Replace paper in chart recorder 	
Control Device	Combusts LFG	Other Control Device Malfunctions	-Control device smoking (i.e. visible emissions) -Problems with flare insulation -Problems with pilot light system -Problems with air/fuel controllers -Problems with air/fuel controllers -Problems with thermocouple -Problems with thermocouple -Problems with flame arrester -Alarmed malfunction conditions not covered above -Unalarmed conditions discovered during inspection not covered above	 45. Site-specific diagnosis procedures 46. Site-specific responses actions based on diagnosis 47. Open manual louvers 48. Clean pitot orifice 49. Clean/drain flame arrestor 50. Refill propane supply 51. Check/repair pilot sparking system 	

(b) For each permit limit exceedance complete an "SSM Plan Departure Form". Notify BAAQMD verbally or by fax within 2 working days after commencing the actions that an event inconsistent with the SSM Plan and which resulted in an exceedance of an applicable emission permit has occured. Follow up in writing to the agency within 7 working days after the end of the event.

APPENDIX D

FLARE TEMPERATURE DEVIATION/ INOPERATIVE MONITOR REPORTS

KIRBY CANYON F	BAAQMD Rule 34, Section 501					
EMPERATURE D	EVIATION/ INOP	ERATIVE MC	NITOR REPORT From Jan	nuary 1 2020 through Jur	ne 30, 2020	
FFECTED EQUIF	MENT: A-12 Fla	re				
REPORT PREPARED BY: TEMPERATURE SENSING DEVICE:			Rajan Phadnis	DATE:	July 1, 2020	
		:	Thermocouple	MODEL:	Thermo-Electric	
START DATE & TIME	END DATE & TIME	DURATION (hours)	TEMP (°F) / FLOW (SCFM)	CAUSE	EXPLANATION	ACTION TAKEN
	•		No deviations, inoperative mo	onitors, or missing data occur	red in January 2020	
			No deviations, inoperative mo	nitors, or missing data occur	red in February 2020	
			No deviations, inoperative m	nonitors, or missing data occu	rred in March 2020	
			No deviations, inoperative r	monitors, or missing data occ	urred in April 2020	
			No deviations, inoperative r	monitors, or missing data occ	urred in May 2020	
			No deviations, inoperative n	nonitors, or missing data occ	urred in June 2020	
					9°F limit established in the March 4, 2 Condition 1437 Part 9, during the rep	
	°F= degrees Fahre scfm= standard cu		ute			

APPENDIX E

COVER INTEGRITY MONITORING REPORTS

LOCATION:	Kirby Landfill
INSPECTION DATE:	January 23, 2020
TECHNICIAN:	Markus Bernard

COVER & VEGETATION		YES	NO	COMMENTS
Settling of cap			Х	
Dead vegetation			Х	
Erosion on cap system			Х	
Erosion on side slopes			Х	
Ponding of water on cap			Х	
Surface cracking			Х	
Acceptable vegetation		Х		
Exposed waste			Х	
REPAIR AREAS:				
Location Description	<u> </u>			
Note cell and near-by wells	Date o	of Repair	[Description of Repair (add soil, water)
Note cell and hear-by wells				

LOCATION:	Kirby Landfill
INSPECTION DATE:	February 28, 2020
TECHNICIAN:	Markus Bernard

COVER & VEGETATION	OVER & VEGETATION			COMMENTS		
Settling of cap			Х			
Dead vegetation			Х			
Erosion on cap system	on on cap system		Х			
Erosion on side slopes			Х			
Ponding of water on cap			Х			
Surface cracking				Wells need soil to be added		
Acceptable vegetation		Х				
Exposed waste			Х			
REPAIR AREAS:						
Location Description						
Note cell and near-by wells	Date of	of Repair	Description of Repair (add soil, water)			
Wells 82, 123, 75, 141, 90, 134, 109 and 48	2/14	4/2020	Soil and w	ater was added near these wells		
Weii3 62, 120, 73, 141, 30, 104, 103 and 40	2/1-	1/2020	Con and we			
			-			
			1			
			1			
Note: Monthly cover integrity monitoring is performed pursuant t			1			

LOCATION: Kirby Canyon Recycling and Disposal Facility INSPECTION DATE: March 27, 2020 TECHNICIAN: Markus Bernard

COVER & VEGETATION		YES	NO	COMMENTS
Settling of cap			Х	
Dead vegetation			Х	
Erosion on cap system			Х	
Erosion on side slopes			Х	
Ponding of water on cap			Х	
Surface cracking			Х	
Acceptable vegetation		Х		
Exposed waste			Х	
REPAIR AREAS:				
Location Description Note cell and near-by wells		Date of Repair		escription of Repair (add soil, water)

LOCATION: Kirby Canyon Recycling and Disposal Facility INSPECTION DATE: April 30, 2020 TECHNICIAN: Markus Bernard

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap		Х	
Surface cracking		Х	
Acceptable vegetation	Х		
Exposed waste		Х	

REPAIR AREAS:

Location Description	Date of Repair	Description of Repair (add soil, water)			
Note cell and near-by wells	Date of Repair				

LOCATION: Kirby Canyon Recycling and Disposal Facility INSPECTION DATE: May 29, 2020 TECHNICIAN: Markus Bernard

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap	Х		Leachate breakout was observed on slope
Surface cracking		Х	
Acceptable vegetation	Х		
Exposed waste		Х	
REPAIR AREAS:			
REPAIR AREAS: Location Description	Date of Penair	Dr	scription of Ponair (add soil, water)
	Date of Repair	De	escription of Repair (add soil, water)

06/19/20

Construction and required notification was proposed to implement permanent solution at this location.

repair at leachate breakout area.

Submitted construction notification to implement permanent

Note: Monthly cover integrity monitoring is performed pursuant to BAAQMD Regulation 8-34-501.4

LOCATION:Kirby Canyon Recycling and Disposal FacilityINSPECTION DATE:June 29, 2020TECHNICIAN:Markus Bernard

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		Х	
Erosion on side slopes		Х	
Ponding of water on cap		Х	
Surface cracking		Х	
Acceptable vegetation	Х		
Exposed waste		Х	

REPAIR AREAS:

Location Description	Date of Repair/	Description of Repair (add soil, water)				
Note cell and near-by wells	Notification					
	06/19/20	Submitted construction notification to implement permanent repair at leachate breakout area. Construction project was initiated in June and repairs occuring between June and September 30, 2020.				

APPENDIX F

SURFACE EMISSIONS MONITORING REPORTS

July 6, 2020

Ms. Becky Azevedo Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive San Jose, CA 95037.

Re: Second Quarter 2020 Surface Emissions and Component Leak Monitoring Report for the Kirby Canyon Recycling and Disposal Facility

Dear Ms. Azevedo:

This monitoring report for the "Kirby Canyon Recycling and Disposal Facility (KCRDF) Landfill" contains the results of the Second Quarter 2020 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by RES Environmental, Inc.(RES). Re-monitoring of surface emissions was conducted by KCRDF personnel.

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection procedures).

Component Leak Monitoring

- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 301 (Landfill Gas Collection and Emission Control System Requirements) and Section 602 (Collection and Control System Leak Inspection procedures).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95464, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

KCRDF Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 16, 2011. After receipt of comments, this ACO was amended, restated, and submitted to BAAQMD on July 1, 2016. SEM and Component Leak monitoring was conducted per the methods outlined in the July 1, 2016 ACO.

PROCEDURES

General

The surface of the KCRDF disposal area has been divided into one-hundred-and-fifty (150), approximately 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the walking pattern as depicted the 2011 KCRDF AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

Instantaneous Surface Emissions Monitoring

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume (ppm_v) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a) and NSPS. The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d) and CCR Title 17 §95471(c)(2).

RES personnel walked the surface of the landfill on a grid by grid basis with the wand tip held at 2 inches from the landfill surface. While sampling the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppm_v (areas of concern) or 500 ppm_v (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Appendices of this report. Applicable corrective action and re-monitoring timelines are listed below:

• Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.

- If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
- If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.

If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Integrated Surface Emissions Monitoring

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppm_v for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held within 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(2).

Grids with results greater than 25 ppm_v were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppm_v are subject to the following re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.
- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, all re-monitoring requirements have been completed.
- The second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the third exceedance.

Component Leak Monitoring Procedures

RES personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppm_v. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppm_v per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) and 1,000 ppm_v per requirements outlined in BAAQMD 8-34-303 were recorded. Applicable corrective action and re-monitoring timelines are listed below:

- Leaks between 500 and 999 ppm_v must be corrected and re-monitored within 10 days of the initial exceedance.
- Leaks at or above 1000 ppm_v must be corrected and re-monitored within 7 days of the initial exceedance.

SECOND QUARTER 2020 SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and component leak monitoring results completed for the Second Quarter 2020.

Instantaneous Surface Emissions Monitoring Results

The Instantaneous surface monitoring was performed on June 2, 2020 in accordance with the NSPS, BAAQMD 8-34, and CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

Initial Monitoring Event Exceedances of 500 ppmy

There were 8 exceedances of 500 ppm_v as methane detected on June 2, 2020. Corrective actions to initiate repairs of the exceedances were completed within five days for all locations (June 4, 2020, 2020).

Ten-Day Re-Monitoring Results

The 10-day re-monitoring event was completed on June 8, 2020. All locations were observed at less than 500 ppm_v .

One-Month Re-Monitoring Results

The 1-month re-monitoring event was completed on July 2, 2020. All locations were observed at less than 500 ppm_v .

Readings between 200 ppmy and 499 ppmy (Initial and Re-monitored)

There were no readings between 200 ppm_v and 499 ppm_v as methane detected during the initial monitoring event on June 2, 2020. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppm_v but below 500 ppm_v are required to be recorded.

Ms. Becky Azevedo Page 5

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on June 3, 2020, in accordance with the ACO and requirements outlined in CCR Title 17 §95469.

Initial Monitoring Event Exceedances of 25 ppm_v

There were no grids with exceedances of 25 ppm_v as methane detected during the initial monitoring event on June 3, 2020.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B, Integrated SEM 25 ppm_v Exceedances and Monitoring Log, and SEM Map included in Attachment B, for details.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on June 2, 2020. No leaks greater than 500 ppm_v were identified. Please see Attachment C, for details.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

Precipitation Requirements

Per the KCRDF's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within 24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25 ppm_v in air for integrated sample analyses and 500 ppm_v in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be

Ms. Becky Azevedo Page 6

performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at (510) 875-9338.

Thank you, Waste Management

Rajan Phadnis Environmental Protection Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map

Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment D – Weather Station Data

• Strip Chart Data

Attachment E – Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

Table A.1Instantaneous Landfill Surface Emissions MonitoringInitial Monitoring Event Areas of Concern

2020 QUARTER:2PERFORMED BY:RES/WMLANDFILL NAME:Kirby Canyon Recycling & Disposal Facility

Flag Number	Grid Number	Date of Monitoring	Concentration of Emission (ppmv)	Comments
O 21	103	6/2/2020	1200 ppm	Well EW 78
O22	143	6/2/2020	1177 ppm	Well EW 71
O23	116	6/2/2020	2403 ppm	Well EW 66
O24	101	6/2/2020	994 ppm	Well EW 48
01	136	6/2/2020	800 ppm	Well EW 97
011	89	6/2/2020	1100 ppm	Well 75
012	86	6/2/2020	1150 ppm	Well 119
013	53	6/2/2020	2200 ppm	Well 121

Table A.2 Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2020 QUARTER: 2 INITIAL MONITORING PERFORMED BY: RES/WM FOLLOW-UP MONITORING PERFORMED BY: Markus Bernard/Rick Reed LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Initial Mor	nitoring Event		Corrective	e action within 5 days	1st 10-day Follow-Up 1st 30-day Follow-Up		w-Up				
Flag	Monitoring	Field	Repair	Action taken to repair	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	Exceedance	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
O 21	6/2/2020	1200 ppm	6/4/2020	Added Soil/ Water	6/8/2020	0		7/2/2020	0 ppm		Well EW 78
O22	6/2/2020	1177 ppm	6/4/2020	Added Soil/ Water	6/8/2020	0		7/2/2020	0 ppm		Well EW 71
O23	6/2/2020	2403 ppm	6/4/2020	Added Soil/ Water	6/8/2020	0		7/2/2020	0 ppm		Well EW 66
O24	6/2/2020	994 ppm	6/4/2020	Added Soil/ Water	6/8/2020	23		7/2/2020	0 ppm		Well EW 48
01	6/2/2020	800 ppm	6/4/2020	Added Soil/ Water	6/8/2020	0		7/2/2020	0 ppm		Well EW 97
011	6/2/2020	1100 ppm	6/4/2020	Added Soil/ Water	6/8/2020	86		7/2/2020	30 ppm		Well 75
O12	6/2/2020	1150 ppm	6/4/2020	Added Soil/ Water	6/8/2020	59		7/2/2020	75 ppm		Well 119
O13	6/2/2020	2200 ppm	6/4/2020	Added Soil/ Water	6/8/2020	44		7/2/2020	25 ppm		Well 121

Table A.3Instantaneous Landfill Surface Emissions MonitoringExceedance and Monitoring Logs (AB-32)

2020 QUARTER:2INITIAL MONITORING PERFORMED BY:RES/WMFOLLOW-UP MONITORING PERFORMED BY:Markus BernardLANDFILL NAME:Kirby Canyon Recycling & Disposal Facility

Initial M	lonitoring Ever	nt	1st Re-n	non Event -	10 Days	2nd Re-n	non Event	- 10 Days	
Exceedance	Monitoring	Field	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Grid ID No.	Date	Reading	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
103	6/2/2020	1200 ppm	6/8/2020	0					Well EW 78
143	6/2/2020	1177 ppm	6/8/2020	0					Well EW 71
116	6/2/2020	2403 ppm	6/8/2020	0					Well EW 66
101	6/2/2020	994 ppm	6/8/2020	23					Well EW 48
136	6/2/2020	800 ppm	6/8/2020	0					Well EW 97
89	6/2/2020	1100 ppm	6/8/2020	86					Well 75
86	6/2/2020	1150 ppm	6/8/2020	59					Well 119
53	6/2/2020	2200 ppm	6/8/2020	44					Well 121

Table A.4 Instantaneous Landfill Surface Emissions Monitoring Areas of Concern Greater than 200 ppmv

2020 QUARTER:2INITIAL MONITORING PERFORMED BY:RES/WMFOLLOW-UP MONITORING PERFORMED BY:NALANDFILL NAME:Kirby Canyon Recycling & Disposal Facility

Initial	Monitoring	Event	Re-mo	n Event	
Exceedance	Monitoring	Field	Monitoring	Reading	Comments
Grid ID No.	Date	Reading	Date	ppm	
None					

Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2020 QUARTER: 22 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: Markus Bernard LANDFILL NAME: Kirby Canyon Landfill

LANDFI	LL NAME:	Kirby Can	yon Landfil	I	Wind Spee Wind Direc				eed:8M		
Initia	Monitorin	g Event	Correc	tive action within 5 days	1st 1	0-day Follow	/-Up	1st 30	-day Follo	ow-Up	Comments
Flag	Monitoring	Field	Repair	Action taken to repair	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	Exceedance	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	
O 21	6/2/2020	1200 ppm	6/4/2020	Added Soil/ Water	6/8/2020	0		7/2/2020	0 ppm		
O22	6/2/2020	1177 ppm	6/4/2020	Added Soil/ Water	6/8/2020	0		7/2/2020	0 ppm		
O23	6/2/2020	2403 ppm	6/4/2020	Added Soil/ Water	6/8/2020	0		7/2/2020	0 ppm		
O24	6/2/2020	994 ppm	6/4/2020	Added Soil/ Water	6/8/2020	23		7/2/2020	0 ppm		
01	6/2/2020	800 ppm	6/4/2020	Added Soil/ Water	6/8/2020	0		7/2/2020	0 ppm		
011	6/2/2020	1100 ppm	6/4/2020	Added Soil/ Water	6/8/2020	86		7/2/2020	30 ppm		
012	6/2/2020	1150 ppm	6/4/2020	Added Soil/ Water	6/8/2020	59		7/2/2020	75 ppm		
O13	6/2/2020	2200 ppm	6/4/2020	Added Soil/ Water	6/8/2020	44		7/2/2020	25 ppm		

- 14	
- 22	
- 7	
10	
- 13	
1.00	
- 25	

Orange Flag Landfill Surface Emissions Monitoring Exceedances and Monitoring Log

Site: KiRBY

Instrument:	V PIC V P											Page of Pages
Culturation Plant	1	200 E										5
Calibration Standard:	200	h										
ļ	Initial Monitoring Event		First Re-M	First Re-Monitoring Event - 10	- 10 Days	Second Re-	Second Re-Monitoring Event - 10 Davs	nt - 10 Davs	30-Day	30-Day Follow-un Monitorios	nitorina	
-	Field Reading	Date	Date	No Excd.	Excd.	Date	No Excd.	Excd.	Date	No Excd.	Excd	Comments
Aumber Number	(mqq)	Monitored	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	
0/ /2	1,200	6-2-20										ALEN ANTYS
53	1177	1										1414
1	2403											
0.24 101	994											10 × 10 × 0 €
B-1 136	500											
0-11 Rg	0011											N.
0-12 26	1100											-
1	20000											WEIL 114
1	2	~										WE112)
0												
0												
Ó												
-o												
ó												
0												
ó												
-0												
0												
ó												
0												
0												
ó												
ó			_									
ó												
0												

Personnel:	LEISHWADE	omen perseta	
	AANON MLBRIDE		
	Nicle BENKS		Cal. Gas Exp. Date: 9-2/-20

Date: 6-2-20 Instrument Used: 40 A 100D Grid Spacing: 25

Temperature: 81 Precip: 0 Upwind BG: 2-0 Downwind BG: $\frac{2}{2}$

GRID ID	STAFF	START	STOP	тос	WIN	ND INFOR	MATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KENAKKO
74	Cul	1145	1200	190	Z	3	12	
75	Am	1145	1200	27	2	2	12	
83	NB	1145	1200	54	2	S	12	
89	op	1145	1200	1,100	2	2	12	WE1175
90	iw	1200	1215	41	d	3	14	
97	An	1200	1215	89	2	J	H	55
104	NB	1200	121	37	2	2	14	
105	op	1200	1215	22	2	3	14	
112	op LW	1215	1230	59	Ž	.)	14	
119	Am	1215	1230	37	7]	119	
120	NB	1215	1230	25	2	J	119	
127	OP LW	1215	1230	31	d	3	14	
128	LW	1230	1245	19	2	3	13	
126	An	1230	1245	26	2]	1	
134	NB	1230	12.45	41	2	J	ň	
136	OP	1230	1245	800	2	5	13	WEILEW97
138	LW	1245	1300	26	2	7	1)	E.
139	An	1245	1300	34	d	3	Đ	
141	NB	1745	1300	18	2	2	1)	
142	op	1245	1300	21	2	3	B	
143	LW	1300	1315	1177	à.	3	1	WEILEW71
144	An	1300	1315	26	2]		
145	NB	17:0	1315	32	7	3	13	
146	OP,	1300	1315	18	d	3	13	
147	LW	1315	1330	15	2	3	1	
148	An	1315	1330	26	2	7	4	
149	NB	1315	1330	21	2]	R	
150	OP	1315	1330	17	Ĩ.	3	15	
140	LW	1330	1345	15	2	3	IL I	
137	AM	1330	1345	22	2	1	12	

Page _____ of _____

Personnel: LEISAWADZ	OMENDERSCAN	
AARON MUBRION		
NICK BENKS		Cal. Gas Exp. Date: 7.2/-25

Date: $4 - 2 - 2 \overline{\partial}$ Instrument Used: $4 \partial A / \partial \overline{\partial}$ Grid Spacing: $2 \beta'$

Temperature: $\underline{82}$ Precip: $\underline{0}$ Upwind BG: $\underline{20}$ Downwind BG: $\underline{24}$

GRID ID	STAFF	START	STOP	тос	WIN	D INFOR	MATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	, REMARKS
132	NB	1330	1345	20	Z	3	12	
135	OP	1330	1345	36	2	3	12	
133	LW	1345	1400	19	2	С	12	
124	AM	1345	1400	14	2	כ	11	
125	NB	1345	1400	72	2	J	12	
116	of	1345	1400	2,403	2	3	12	WEILEW 66
117	LW	1400	1415	58	1	3	12	
118	An	1400	1415	96	2	J	112	
109	ND	1400	1415	45	2	J	12	
110	OP	1400	1415	71	2	3	12	
111	LW	1415	1430	40	2	3	14	
101	AM	1415	1470	994	2]	M	WEILEW 48
102	NB	1415	1430	67	2	J	14	
103	op	1415	14,20	1,200	2	C	14	WELLEW78
99	LW	1430	14.45	38	2	1	11	
95	An	1430	1.445	87	2	J	17]	
96	NB	1430	1445	51	4	J	1)	
86	op	1430	14115	1,150	2	3	13	WEN1119
8>	LW	1445	1560	136	2	1	11	
79	An	1445	1500	14	L	3	$ \Lambda $	-
80	NB	1445	1500	71	2	J	1	
81	op LW	1645	1500	94	2	1	15	
70		1500	1515	18	X	Ĵ.	\mathcal{L}	
71	An	1500	1515	59	2	7	72	
72	NB	1500	1.515	72	2	j	12	
64	op	1500	1515	14	2	1	12	
65	iw	15/5	1530	45	2	3	1)	
66	Am	ISIS	1530	91	2	Ĺ	12	
57	NB	1515	1530	16	2	1	12	
58	OP	1515	1530	63	2	Ì	12	

Page _____ of _____

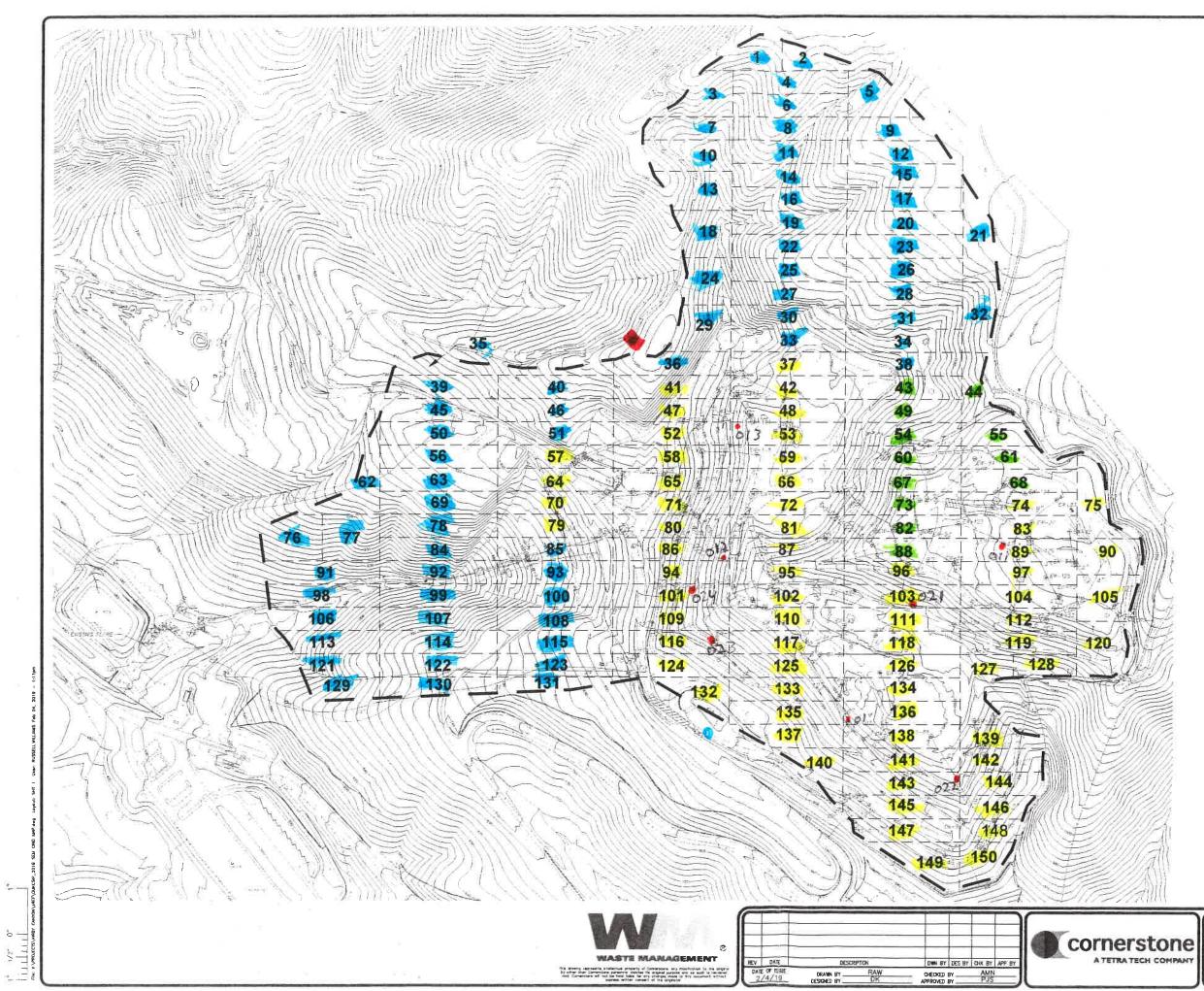
rsonnel: _	LAIGHW	ADE		OMERP	In CKA		-	
-	prell 1	BENKS					Cal. Gas	Exp. Date: <u>9-2/-2</u>
Date: <u>6</u> -	Z-2D	Instru	ment Used	1: _ KUR	-1000	Gri	d Spacing:	Z51
Femperat	ure: <u>8</u> 2	2 Pre	cip:) Upv	vind BG	2.0	Downw	vind BG: <u>2.4</u>
GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC		ND INFORM		REMARKS
		TIME	1142	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
59	Lu	1530	1545	137	2	.1	12	
52	AM	1580	1545	69	2	17	11	
53			1515	2,200	2	J	1L	WE1/121
47	OP	1530	1545	117	2	3	12	
47 48 41	LW	1545	1600	150	d	3	12	
	An	1545		72	t	3	12	
	NB	1545	1600	106	2	3	12	
37	00	1545	1600	124	L	7	W	
				k				
				·				
	-							

Page ______ of _____

331

						Cal. Gas	s Exp. Dat	e:
-2-20	Instrun	nent Usec	1:		Gri	d Spacing:		
ure:	Prec	;ip:	Up	wind BG:		Downw	vind BG:	
STAFF	START	STOP	тос	WIN	ID INFORM	1ATION	RE	EMARKS
INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT		
	-						Activi	s-thes
							1	
		ļ						
				-				
		X						
				-			J.	/
							NOWAS	LEINPls
								1
								1
			1					
								1
								1
								<u> </u>
	ure:	ure: Prec	-2-20 Instrument Used ure: Precip: STAFF START	-2-20 Instrument Used: ure: Precip: STAFF START	Ure: Precip: Upwind BG: STAFF START STOP TOC INITIALS TIME TIME PPM AVG	-2-20 Instrument Used: Grid ure: Precip: Upwind BG: STAFF START STAFF START INITIALS TIME	Cal. Gas Cal. G	Cal. Gas Exp. Date Grid Spacing: Grid Spacing:

Page _____ of _____


sonnel: _	Laighn	1000						
5								Exp. Date:
ate: <u></u>	2-20	Instrun	nent Used	t:		Gri	d Spacing:	
emperat	ure:	Prec	:ip:	Up\	wind BG:		Downw	vind BG:
GRID ID	STAFF	ŞTART	STOP	тос		ID INFORM		REMARKS
	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
19								
20								
21								
22								
23								
24								
25 26								
27								
28								
29								
30								
31								
32								
33								
34							X	
35				ie)				
36								
38								
39								
40								
45								
46								
50 51								
56								
62								
63								
60								
76								

Page ______ of _____

							Cal. Gas	Exp. Date:
,								
ate: <u>6</u>	2-20	Instrur	ment Used	: :		Gri	d Spacing:	
emperat	ure:	Pred	cip:	Up	wind BG:		Downw	ind BG:
GRID ID	STAFF	START	STOP	тос	WIN	D INFORM	IATION	DEMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
77)
28								
84								
85								
71								
72								
73								
99								
00					-			
06								
07								
28								
14								
15 21								
22								
23								
2.9								
30								
31								V

Attach Calibration Sheet Attach site map showing grid ID

Page <u>3</u> of <u>3</u>

2.4
3
$\sim \bar{O}e^{-1}$
13 1 ⁴ 14
1. F. H-
- 1
5 et
1.9
H
-0-
1.1.1. 1.12
00.00038
500H

LEGEND

EXISTING 10' CONTOUR
EXISTING ABOVEGROUND PIPING
EXISTING BELOWGROUND PIPING
EXISTING HORIZONTAL COLLECTOR
EXISTING LFG EXTRACTION WELL
EXISTING LOCAL CONTROL WELL
EXISTING WELL WITH BECS INSTALLED
EXISTING REMOTE WELLHEAD
EXISTING HORIZONTAL COLLECTOR WELLHEAD
EXISTING CONTROL VALVE
EXISTING BLIND FLANGE
EXISTING FLANGE CONNECTION
EXISTING REDUCER FITTING
EXISTING ROAD CROSSING
EXISTING RISER
EXISTING CAP ON EXISTING PIPE

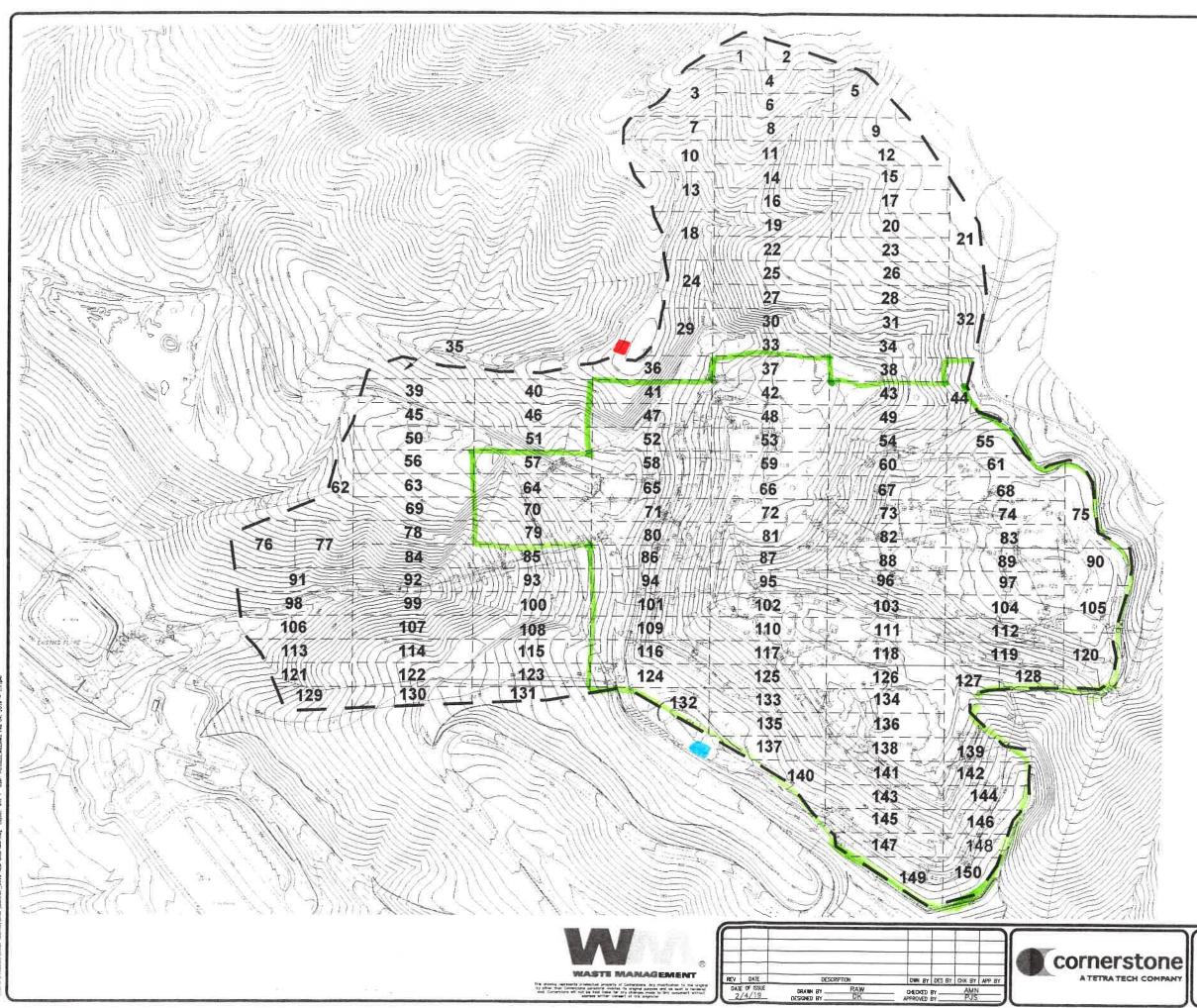
- NOTES: 1. TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY WALKER ASSOCIATES, DATE OF PHOTOGRAPHY: MARCH 10, 2018. 2. 2017 GCCS AS-BUILT SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: OCTOBER 11, 2017.
- INSKENDENEDES 6-2-20

CRIDS NOWITCRED ACTIVE - + KASS NO WASLE IN PLACE · SOOTPPM ELCEEDGNCE MOONN WIND

· upwind

2018 GCCS IMPROVEMENTS **AS-BUILT SITE PLAN**

KIRBY CANYON RECYCLING AND DISPOSAL FACILITY


MORGAN HILL, CALIFORNIA

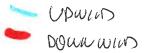
AS-BUILT

SHEET NO.

1

PROJECT NO.

11111


	LEGEND
	EXISTING 10' CONTOUR
14	EXISTING ABOVEGROUND PIPING
10 m	EXISTING BELOWGROUND PIPING
	EXISTING HORIZONTAL COLLECTOR
1 F.W. 1	EXISTING LFG EXTRACTION WELL
	EXISTING LOCAL CONTROL WELL
de la companya de la	EXISTING WELL WITH BECS INSTALLED
新知	EXISTING REMOTE WELLHEAD
二 书	EXISTING HORIZONTAL COLLECTOR WELLHEAD
16	EXISTING CONTROL VALVE
99	EXISTING BLIND FLANGE
	EXISTING FLANGE CONNECTION
- 27	EXISTING REDUCER FITTING
127-111	EXISTING ROAD CROSSING
T. 197.54 F	EXISTING RISER
	EXISTING CAP ON EXISTING PIPE

- NOTES:
 TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY WALKER ASSOCIATES. DATE OF PHOTOGRAPHY: MARCH 10, 2018.
 2017 GCCS AS-BUILT SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: OCTOBER 11, 2017.

ZNO Quanton 2020

NSPS

KIRBY	CA	NYON	F	RECYCI	ING
AND	DIS	POSA	L	FACILI	TY
MORGA	N.	HILL,	С	ALIFOR	NIA

2018 GCCS IMPROVEMENTS AS-BUILT SITE PLAN

1

PROJECT NO.

Attachment B

Integrated Surface Emission Monitoring Event Records

Personnel: 1845 hunor	omen penella	
NICIC BENKS		
NICIC BENKS		_ Cal. Gas Exp. Date: <u>9-21-2</u> 2

Date: <u>6-3-28</u> Instrument Used: <u>FUA 1000</u> Grid Spacing: <u>25'</u>

Temperature: <u>63</u> Precip: <u>D</u> Upwind BG: <u>2.D</u> Downwind BG: <u>2.4</u>

GRID	STAFF	START	STOP	тос	WI	ND INFO	RMATION	REMARKS
ID	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	RLMARKS
74	CW	0545	0610	9.71	2	3	13	
75	Am	0545	0610	6.56	2	1	11	
83	NB	0545	0610	11.59	2	3	1 X	
89	010	0545	0610	7.24	2	3	1.1	
90	LW	0610	0635	6.27	2	1	13	
97	An	0610	0675	9.03	2	Ĵ	IN I	
104	NB	0610	0625	7.41	d	J	11 I	
105	00	0610	0625	6-08	2	3	13	
112	LW	0635	0700	7.14		2	13	
119	AM	8675	0700	5.92	2]	13	
120	NB	0635	0700	5.74	d	C.	B	
127	OP	0635	0780	5.15	2	3	13	
128	LW	0)00	0725	6-11	1	2	Λ	
126	An	0707	0)25	6-50	1	2	Ñ I	
134	NB	0700	0725	5.38	1	2	1)	
136	OP	0700	0725	5.04	1	d	13	
138	LW	0725	0750	4.77	1	2	12	
139	Am	077.5	0750	3.92	11	2	12	
14/	NB	0721	0750	4.15	i	2	12	
142	96	0225	0750	5.06	1	d	12	
143	LW	6750	0815	4.88	i	2	11	
144	<u>kn</u>	0750	8815	5-15	1	2	13	
145	NB	0750	0815	4.40	1	2	13	
146	01	6720	0815	5.10	1	d	LI I	
147	LU	0815	0840	4.75	l	2	14	
148	An	0815	0840	4.93		2	14	
149	NB	0815	0840	5-29		2	14	
150	op	8815	0840	5.13	l	2	14	
140	LW	0840	0905	4-70	j	2	M	
137	Am	0840	0905	8-38	1	2	N	

Page ______ of _____

Personnel:	LEISHWADE	OMERDEROCHA	
	NICK BENKS	/	Cal. Gas Exp. Date: <u>9-21-27</u>

Date: <u>6-3-20</u> Instrument Used: <u>4VA1000</u> Grid Spacing: <u>25'</u>

Temperature: $\underline{7/}$ Precip: $\underline{0}$ Upwind BG: $\underline{2} \delta$ Downwind BG: $\underline{2} 4$

GRID ID	STAFF	START	STOP TIME	тос	WI	ND INFO	REMARKS	
	INITIALS	TIME		PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
132	NB	0840	0905	4.68	1	2	14	
135	OP	0840	0905	5.12	1	2	14	
133	LW	0905	0930	6.19	j	2	14	
124	An	0905	0970	5.30	1	2	4	
125	NB	8985	0970	5-13	Ì	L	7	
116	op	0985	0930	6.07	1	2	M	
117	LW	0930	0955	5.91	Ì	2	7	
118	An	0970	0955	6-77	1	2	1 1	
109	NB	0830	0855	6-45		2	2	
110	op	0930	0555	10.20	1	d	7	
111	LW	0955	1020	8.67	j	2	4	
101	Am	0955	1020	6.72	1	2	7	
102	ND	8855	1820	9-45		2	1	
103	90	0855	1020	11-13		d	M	
94	CW	1020	1045	6.20	1	2	4	
95	AM	1020	1045	8.13		2	M	
96	NB	1020	10115	13.21		2	1	
86	op	6501	1045	9-75		2	7	
87	Lu	1045	1110	11.11	1	2	M	
79	An	1045	1110	4.81	1	2	17	
80	NB	1845	1110	8-65		2	j l	
81	OP	1045	1110	13-24	1	d	7	
70	Lu	1110	1125	5.50	1	2	M	
71	An	1110	1135	9.68		2	7	
72	NB	1110	1135	12.45		2	4	
64	OP	1110	1125	5-28	i	d	7	
65	LU	1135	1200	10.54	Í	2	4	
66	An	1135	1200	14.97		2	4	
57	NB	1135	1200	4.71		2	1	
58	OP	1125	1200	8.45	1	2	1	

Page _____ of _____

Personnel:	LoishWADE	OMER DURGLAA	
	NICLE BERGES		Cal. Gas Exp. Date: <u>9-21-20</u>

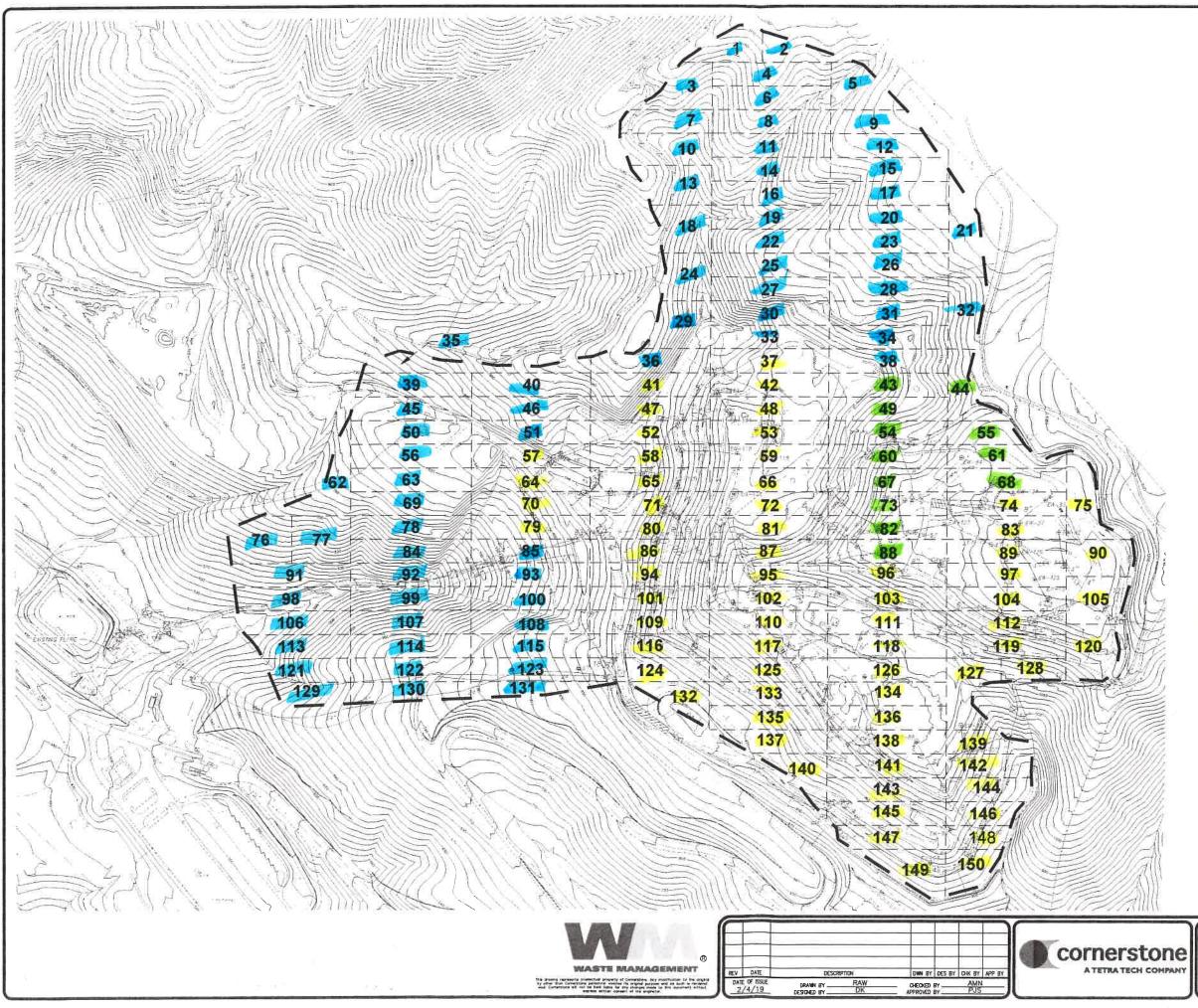
Date: <u>6-3-20</u> Instrument Used: <u>4VA1000</u> Grid Spacing: <u>25'</u>

Temperature: 78 Precip: 0 Upwind BG: 2.0 Downwind BG: 2.4

GRID	STAFF	START STOP TOC WIND INFORMATION		RMATION	REMARKS			
ID	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
59	L.W	1200	1225	15-94	1	d	7	
52	AM	1200	1225	11.71	ľ	2	4	
53	NB	1200	1225	13.80		2	1	
47	09	1200	1225	15.66	1	d	M	
48	LW	1225	1250	13.95	1	2	4	
41	An	1225	1750	11.79	Î	2	7	
42	NB	1225	1250	20.64	1	\mathcal{F}	1	
37	op	1225	1250	14-22	1	2	7	
							1	
					1			
		Server and the server of the s						

Page 3 of 3

sonnel: _	LEISLWAD	r						
10								p. Date:
Date: <u>6</u>	-3-20	Instrume	nt Used: _			_ Grid S	Spacing:	
emperat	ure:	Precip	:	_ Upwind	I BG:		Downwin	d BG:
GRID	STAFF	START	STOP	тос	WI	ND INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
43 44								Active-tassi
49								
54							-	<u> </u>
55								
60								
5/						-		
7								
>3								
82								
88								
1								Nowaste inpla
2								1
3 4								
S								
6								
>								
8								
7								
10								
//								
13								
14								
15								/
16								
17								1
18								4


Page _/___ of _____

ersonnel:	Leishwa	08						
-							Cal. Gas Exp.	Date:
Date: <u>6</u> ~	3-20	Instrume	nt Used: _			_ Grid S	Spacing:	
								BG:
GRID	STAFF INITIALS	START TIME	STOP TIME	ТОС РРМ	WIND INFOR			
ID					AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
19								1
20								
21								
2.2								
23								
24			T					
2.5								
26								
27								
2.8	l							
29								
30 31								
32								
33								
34								
35			-					
36								
38				· · · · · · · · · · · · · · · · · · ·				
39								
40								
45								
46								
50								
51								
56								
62								
63								
69								
3/								-13-

Page _2_ of _3__

÷								p. Date:		
ate: 6-	3-20	_Grid S	Spacing:							
emperature: Precip: Upwind BG:								_ Downwind BG:		
GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	WIND INFOR		MATION	REMARKS		
					AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	3		
77)		
28										
84										
85					-					
91										
7 L 7 J										
28 28										
99 99	t +									
60										
06							(
67										
08										
13										
14										
15										
21										
22										
23	-									
29										
30										
30								\vee		

Page <u></u> of <u></u>

<u>LEGEND</u>

	EXISTING 10' CONTOUR
12	EXISTING ABOVEGROUND PIPING
. de se	EXISTING BELOWGROUND PIPING
	EXISTING HORIZONTAL COLLECTOR
·运 西新 美	EXISTING LFG EXTRACTION WELL
$ \tilde{\partial}_{i} \ge -i\partial h$	EXISTING LOCAL CONTROL WELL
A	EXISTING WELL WITH BECS INSTALLED
¢1	EXISTING REMOTE WELLHEAD
1.048	EXISTING HORIZONTAL COLLECTOR WELLHEAD
新 日本	EXISTING CONTROL VALVE
÷	EXISTING BLIND FLANGE
H.	EXISTING FLANGE CONNECTION
15	EXISTING REDUCER FITTING
all and	EXISTING ROAD CROSSING
TV MARK	EXISTING RISER
	EXISTING CAP ON EXISTING PIPE

NOTES: 1. TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY WALKER ASSOCIATES. DATE OF PHOTOGRAPHY: MARCH 10, 2018. 2. 2017 GCCS AS-BUILT SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: OCTOBER 11, 2017.

INtEGRATIO 6-3-20

GRIDS MONITORED SACTIVE thross « NO WASKE IN Place

KIRBY	CANYON RECYCLING
AND	DISPOSAL FACILITY
MORG/	AN HILL, CALIFORNIA

2018 GCCS IMPROVEMENTS	
AS-BUILT SITE PLAN	

AS-BUILT

SHEET NO.

1

PROJECT NO.

Attachment C

Component Leak Monitoring Event Records

Table C.1AB-32 Component Leak MonitoringSummary of Component Leaks Greater than 500 ppmv

 2020 QUARTER:
 2

 INITIAL MONITORING PERFORMED BY:
 RES/WM

 FOLLOW-UP MONITORING PERFORMED BY:
 WM

 LANDFILL NAME:
 Kirby Canyon Recycling & Disposal Facility

Location	Initial Monitoring			Correc	10-Day Remonitoring			
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
Flare Station	06/02/20	ND	Leigh wade	-	-	-	-	-

ND= No Exceedances

Table C.2BAAQMD Component Leak MonitoringSummary of Component Leaks Greater than 1,000 ppmv

 2020 QUARTER:
 2

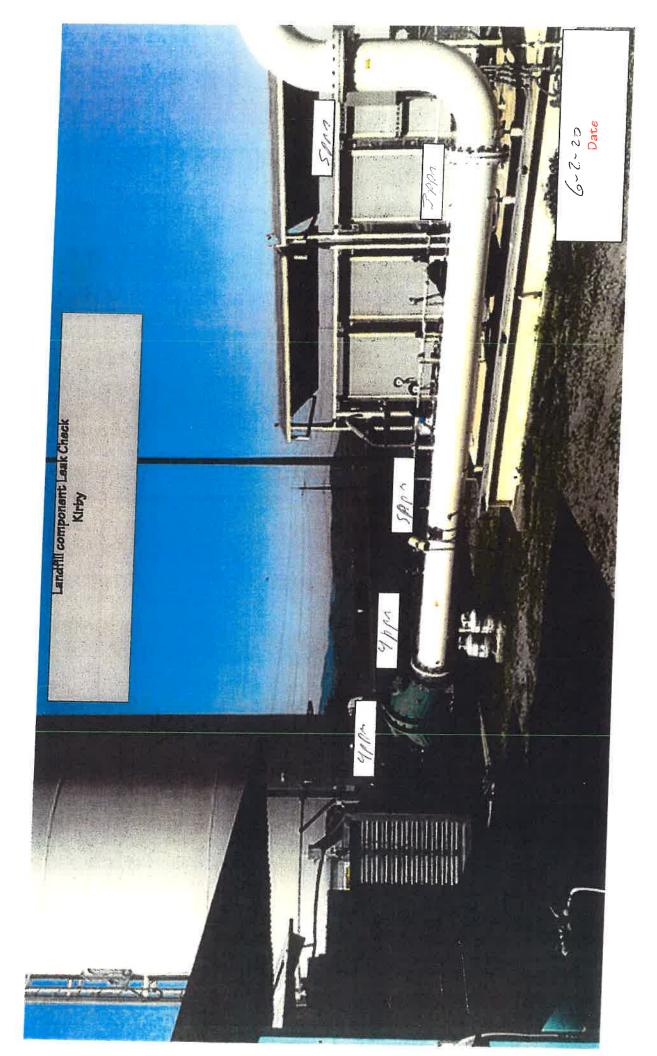
 INITIAL MONITORING PERFORMED BY:
 RES/WM

 FOLLOW-UP MONITORING PERFORMED BY:
 WM

 LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Logation	Initial Monitoring			Correc	7-Day Remonitoring			
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
Flare Station	06/02/20	ND	Leigh wade	-	-	-	-	-

ND= No Exceedances

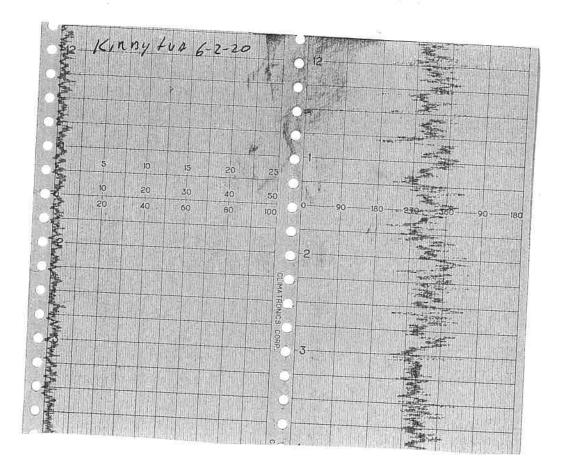

LANDFILL NAME: $\mu \cdot \alpha \cdot \alpha \cdot \beta$ QUARTERLY LFG COMPONENT LEAK MONITORING

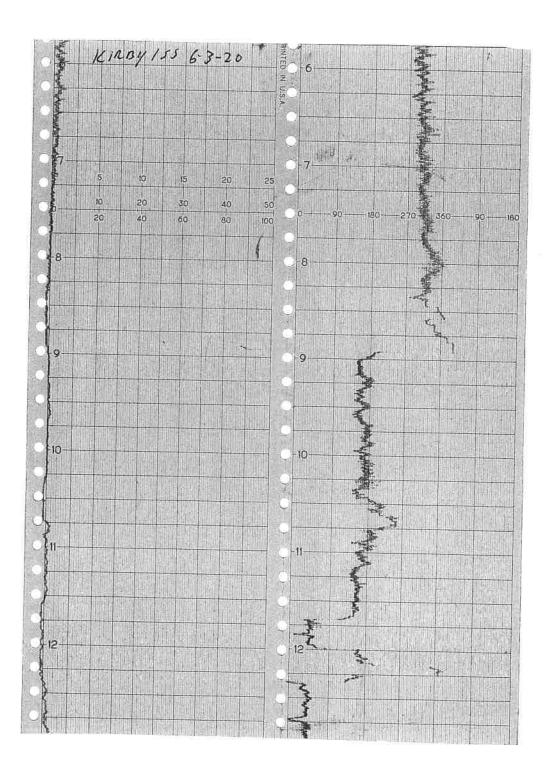

INSTRUMENT FID MAKE: Thermo Environr MODEL: TVA 1000 S/N: /ø3 & 3 '/ 6 7 7 3

DATE OF SAMPLING: 6-2-2ο TECHNICIAN: L & 3 ζ μηο κ

LOCATION OF LEAK ConcEntration DATE OF DISCOVERY DATE OF REJAIN DATE OF REJAIN RE-MONITORED REPAIN MOP EXCLUENTRATION DISCOVERY TECHNICIAN ACTION TAKEN TO REPAIN DATE OF REPAIN DATE OF REQUIRED RE- MONITORING' (ppmV) DATE OF REQUIRED RE- MONITORING' (ppmV) RE-MONITORED RE-MONITORING' (ppmV) MOP EXCLUENTRATION DISCOVERY TECHNICIAN ACTION TAKEN TO REPAIN REPAIN RE- MONITORING' (ppmV) MOP EXCLUENTRATION DISCOVERY REPAIN REPAIN REPAIN REPAIN MOP EXCLUENTRATION DISCOVERY REPAIN REPAIN REPAIN REPAIN MOP EXCLUENTRATION DISCOVERY REPAIN REPAIN REPAIN REPAIN MOP EXCLUENTRATION DISCOVERY REPAIN REPAIN REPAIN REPAIN REPAIN MOP EXCLUENTRATION DISCOVERY REPAIN REPAIN REPAIN REPAIN MOP EXCLUENTRATION DISCOVERY REPAIN REPAIN REPAIN REPAIN MOP EXCLUENTRATION REPAIN REPAIN REPAIN REPAIN REPAIN <
iy component containing landfill gas, pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article any component containing landfill gas, pursuant to BAAOMD Poor Justice 24, 204, 0
igulation 8-34-301.2.
LOCATION OF LEAK CONCENTRATION (ppm) DATE OF DISCOVERY TECHNICIAN ACTION TAKEN TO REPAIR DATE OF REQUIRED RE- MONITORING DATE OF REQUIRED RE- MONITORING RE-MON M/VEX.CEPTO.VV.13 Included Included<

BAAQMD Component Leak Field Data Sheet Template 06052014




Attachment D

Weather Station Data

WIND SPEED & DIRECTION CHART ROLL

WIND SPEED & DIRECTION CHART ROLL

	<u>16-POINT V</u>	VIND DIRECTION	N INDEX	
NO	DIRECTION		DEGREES	
		FROM	CENTER	<u>T0</u>
16	NORTH (N)	348.8	369.0	0.1.3
1	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033.8	045.0	056.3
3	EAST-NORTHEAST (ENE)	056.3	067.5	078.8
4	EAST (E)	078.8	<u>090.0</u>	101.3
5	EAST-SOUTHEAST (ESE)	101.3	112.5	123.8
6	SOUTHEAST (SE)	123.8	<u>135.0</u>	146.3
7	SOUTH-SOUTHEAST (SSE)	146.3	<u>157.5</u>	168.8
8	SOUTH (S)	168.8	180.0	191.3
9	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213.8
10	SOUTHWEST (SW)	213.8	225.0	230.3
11	WEST-SOUTHWEST (WSW)	236.3	247.5	258.8
12	WEST (W)	258.8	270.0	281.3
13	WEST-NORTHWEST (WNW)	281.3	292.5	303.8
14	NORTHWEST (NW)	30.2.8	315.0	326.3
15	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8

865 Via Lata = Colton, California 92324 = (909) 422-1001 Fax (909) 422-0707

Attachment E

Calibration Records

LANDFILL NAME: /CINBY	INSTRUMENT MAKE: HULMAD		
MODEL: LUA 1000 EQUIPMENT #:	10 SERIAL #: 1036346773		
MONITORING DATE: 6-2-20	TIME:// 40		

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{500}{2}$ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
2. Ø ppm	2. 🖅 ppm	Z.Z ppm

Background Value = 2.2 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabi Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	495	ppm	445	ppm	7	
#2	502	ppm	452	ppm	7	
#3	500	ppm	450	ppm	7	
	Calculate Response T	ime (14 3	-2+3)		7	#DIV/0!
					Must be less th	an 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Zer	o Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD - (B)]
#1	0.26	ppm	455	ppm	5
#2	0.18	ppm	502	ppm	2
#3	0.09	ppm	500	ppm	<u>ر</u>
Calculate Precision	[STD-B1] + [ST	D-B2] + [5 3	<u>500 STD-B3</u> X <u>1</u> X	<u>100</u> 1	0.46 #DIV/0
					Must be less than 10%

Performed By: 6-2-20-1140 Date/Time: 6-2-20-1140

LANDFILL NAME: 12184			NT MAKE: HERAD
MODEL: +V + 1000	EQUIPMENT #:		SERIAL #: 1036346774
MONITORING DATE: 6-2-2	0	TIME:	1140

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{500}{2}$ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
2.Ø ppm	2.6 ppm	7.9, ppm

Background Value = 2.2. ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	ig Using	90% of the Stabi Reading	lized	Time to Reach Stabilized Rea switching from Calibration Ga	ding after Zero Air to
#1	503	ppm	453	ppm	6	and the state of t
#2	500	ppm	450	ppm	6	
#3	500	ppm	450	ppm	6	
	Calculate Response	Time (<u>1</u> 4 3	<u>+2+3)</u>	1	6	#DIV/0!
Sector Differences					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard ≈ <u>500</u> ppm

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Ga		Calculate Precision [STD - (B)]
#1	0-21	ppm	503	ppm	3
#2	0-14	ppm	500	ppm	6
#3	0.10	ppm	500	ppm	6
Calculate Precision	[STD-B1] + [S1	D-B2] + [5 3	TD-B3] X <u>1</u> X 500	100 1	0.28 #DIV/0
and the second					Must be less than 10%

Performed By: AANON MUBNMOL

Date/Time: 6-2-20 -1140

LANDFILL NAME: 12, R. BY			NT MAKE: +1+57.10
MODEL: 10 1000	EQUIPMENT #:	13	SERIAL #: //02746775
MONITORING DATE: 6-2	-20	TIME:	1140

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = <u>Sou</u> ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
2.0 ppm	2.64 ppm	2.2 ppm

Background Value = 2 - 2 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	ng Using	90% of the Stab Reading	ilized	Time to Reach Stabilized Rea switching from Calibration Ga	ding after TZero Air to
#1	491	ppm	441	ppm	7	
#2	502	ppm	452	ppm	7	
#3	500	ppm	450	ppm	2	
	Calculate Response	Time (<u>1</u> 4 3	-2+3)		7	#DIV/0!
					Must be less that	in 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

....

Measurement #	Meter Reading for Zero Air (A	Meter Reading for Calibration Gas (B)	Calculate Precision [STD - (B)]
#1	0-3/ ррп	491 ppm	9
#2	0.16 ppm	Sto 2 ppm	
#3	6-19 ppm		L
Calculate Precision	[STD-B1] + [STD-B2] + 3	[STD-B3] X <u>1</u> X <u>100</u> 500 1	0.73 #DIV/0
		-	Must be less than 10%

Performed By: Omen porout A Date/Time: 6-2-20 -21 40

LANDFILL NAME: 12, 1 By	INSTRUMENT MAKE: HIJERNO
MODEL: _ +V A 1000 EQUIPMENT #:	
MONITORING DATE: 6-2-20	TIME: //40

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\int O D$ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
2.0 ppm	2.57 . ppm	2.2 ppm

Background Value = _____ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabilized Reading	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas
#1	989 ppm	439 ppm	Concentration and and and and and and and and and an
#2	497 ppm	947 ppm	
#3	500 ppm	4/50 ppm	5
	Calculate Response Time (1	+2+3)	S #DIV/0!
			Must be less than 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurèment #	Meter Reading for Z	ero Air (A)	Meter Reading Calibration Ga	for s (B)	Calculate Precision [STD - (B)]
#1	0-14	ppm	485	ppm	
#2	0-11	ppm	407	ppm	1
#3	0.08	ppm	500	ppm	5
Calculate Precision	n [STD-B1] + [S	STD-B2] + [S 3	500		0-93 #DIV/0
and the second se		-			Must be less than 10%

Performed By: NICIC BERICS Date/Time: 6-2-20 -1140

LANDFILL NAME: KINAY	NSTRUMENT MAKE: _ + HUNMU
MODEL: 407 1000 EQUIPMENT #: 10	SERIAL #: _/036346773
MONITORING DATE: 6-3-20	_TIME:

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $2 \mathcal{I}$ ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 sec		Downwind Backg Reading: (Highest in 30 seco		Background Va (Upwind + Dc 2	
2.0	ppm	2.4	ppm	2.2	ppm

Background Value = $2 \cdot 7$ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas		g Using 90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	ppm	21.6	ppm	5	
#2	24	ppm	21.6	pom	2	
#3	25	ppm	22.5	ppm	J.	
	Calculate Response Tir	me (<u>1</u> . 3	+2+3)		5	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading		Calculate Precisio	n [STD – (B)]
#1	0.21	ppm	7.1	ppm	1	
#2	0.16	ppm	24	ppm	1	
#3	0-11	ppm	25	ppm	0	
Calculate Precision	[STD-B1] + [S	TD-B2] + [1 3	STD-B3 X <u>1</u> 2 25	K <u>100</u> 1	. 2.6	#DIV/0!
				51 	Must be less	than 10%

Performed By Laish WAOZ Date/Time. 6-3-20-0540

LANDFILL NAME:	INSTRUMENT MAKE:
MODEL: EQUIPMENT #:	12 SERIAL #: 1036246741
MONITORING DATE: 6-3-20	TIME: 0540

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{2}{5}$ ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
2.0 ppm	2.4 ppm	7.2 ppm

Background Value = 2.2 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabiliz Reading	ed	Time to Reach Stabilized Reac switching from Calibration Gas	ling after Zero Air to
#1	27 ppm	20.7	ppm	1	
#2	2 4 ppm		pom	6	
#3	ZS ppm	2.2.5	ppm	6	
	Calculate Response Time (<u>1+2+3)</u> 3		6	#DIV/0!
-				Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision	[STD – (B)]
#1	0-19	ppm	2.3	ppm	2	
#2	0.13	ppm	2.4	ppm	1	
#3	0-09	ppm	25	ppm	6	
Calculate Precision	[STD-B1] + [S	TD-B2] + [3 3	STD-B3 X 1 2 25	K <u>100</u> 1	. 4.8	#DłV/0!
				-	Must be less th	an 10%

Performed By AARON MUBRIDE Date/Time: 6-3-20-0540

LANDFILL NAME: 1CIN BY	INSTRUMENT MAKE: _ f Honad
MODEL: EQUIPMENT #:	13 SERIAL #: 1/02746775
MONITORING DATE:	TIME: 0540

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $2 \int ppm$
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
Z.d ppm	214 ppm	2.2 ppm

Background Value = $2 \cdot 2$ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	1	of the Stabil ding	ized	Time to Reach Stabilized Rea switching from Calibration Ga	ding after Zero Air to
#1	24 рр	m	21.6	ppm	7	
#2	2.5 pp	m	7.7.5	mqq	2	
#3	zs pp	m _	22.5	ppm	7	
	Calculate Response Time	(<u>1+2+3</u>) 3			7	#DIV/0!
					Must be less that	an 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading		Calculate Precisio	n [STD – (B)]
#1	0.31	ppm	24	ppm	/	
#2	0-20	ppm	25	ppm	0	
#3	0,16	ppm	25	ppm	0	
Calculate Precision	[STD-B1] + [S]	TD-B2] + [: 3	STD-B3 X 1 2 25	K <u>100</u> 1	.1 - 3	#DIV/0!
			0	-	Must be less	than 10%

Performed By NICH BANKS

_____Date/Time: 6-3-20-0540

LANDFILL NAME: /(IRP. 4	INSTRUMENT MAKE: _ f Henab
MODEL:	15 SERIAL #: 1036346772
MONITORING DATE 6-3-20	TIME:

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
2.0 ppm	2.4 ррт	2.2 ppm

Background Value = 2.2 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabil Reading	zed	Time to Reach 9 Stabilized Readi switching from 2 Calibration Gas	ng after Zero Air to
#1	23 ppm	20.7	ppm	6	
#2	25 ppm	22.5	pọm	(
#3	2.5 ppm	22.5	ppm	6	
	Calculate Response Time (1	+2+3)		-6	#DIV/0!
				Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero) Air (A)	Meter Reading Calibration Ga		Calculate Precision	[STD – (B)]
#1	0.34	ppm	27	ppm	7	
#2	0-2.2	ppm	25	ppm	0	
#3	0.12	ppm	2.5	ppm	ð	
Calculate Precision	[STD-B1] + [ST[3 3	<u>STD-B3]</u> X <u>1</u> X 25	(<u>100</u> 1	2.6	#DIV/0!
					Must be less th	ian 10%

Performed By BMERPUNGCEA Date/Time: 6-3-20-0540

Site:	
Purpose:	
Operator:	
Date: 6-7-20	Time:
Model # TUA 1000 B	
Serial # <u>#10 1036386773</u>	

INSTRUMENT INTEGRITY CHECKLIST		INS [.]	TRUMENT CALIBRAT	ION
			CALIBRATION CHECK	(
Battery test	Pass / Fail	Calibration	Actual	%
	22	Gas (ppm)	(ppm)	Accuracy
Reading following ignition	<u>()</u> ppm			
		500	SOO	1005
Leak test	Pass / Fail / NA			,
	2		RESPONSE TIME	
Clean system check	Rass / Fail / NA		C	
(check valve chatter)		Calibration Gas,	/ FE	00
	\boldsymbol{h}	90% of Calibrati	on Gas, ppm	0
H ₂ supply pressure gauge	Pass / Fail / NA	Time required to	o attain 90% of Cal Gas	s ppm
(acceptable range 9.5 - 12)		1	6	
	4-3-20	2.	5	
Date of last factory calibration	1^{-} ω	3.	<u>ົ</u> ງ	
		Average		1
Factory calibration record	Pase / Fail		than 30 seconds?	Ø N
w/instrument within 3 months		· ·	COC	
			rated to <u>CH9</u> g	as.

Comments:

Site:	
Purpose:	
Operator:	
Date: 6-7-20	Time:
Model # 1000 B	
Serial # <u>#11 1036346714</u>	

Battery test Pass / Fail CALIBRATION CHECK Reading following ignition 213 ppm Actual % Leak test Pass / Fail / NA Gas (ppm) (ppm) Accuracy Leak test Pass / Fail / NA RESPONSE TIME Clean system check (check valve chatter) Pass / Fail / NA RESPONSE TIME H2 supply pressure gauge (acceptable range 9.5 - 12) Pass / Fail / NA Calibration Gas, ppm SOO Date of last factory calibration 1/3 - 20 3. 0 Average Average Factory calibration record w/instrument within 3 months Pass / Fail Fail N N N	INSTRUMENT INTEGRITY CHECKLIST		INST	RUMENT CALIBRA	TION
Reading following ignition $2 1 3 \text{ ppm}$ Gas (ppm)(ppm)AccuracyLeak testFail / NAFail / NASociality and the second	*	Ő		ALIBRATION CHEC	CK
Reading following ignition 213 ppm Leak test Pass / Fail / NA Clean system check (check valve chatter) Pass / Fail / NA H2 supply pressure gauge (acceptable range 9.5 - 12) Pass / Fail / NA Date of last factory calibration Factory calibration record w/instrument within 3 months 1/3 - 20	Battery test	Pass / Fail	Calibration	Actual	%
Leak test Fail / NA Clean system check (check valve chatter) Pass / Fail / NA H2 supply pressure gauge (acceptable range 9.5 - 12) Pass / Fail / NA Date of last factory calibration Factory calibration record w/instrument within 3 months Image / Fail	Reading following ignition	213 ppm	Gas (ppm)	(ppm)	Accuracy
Leak test Pass / Fail / NA RESPONSE TIME Clean system check (check valve chatter) Pass / Fail / NA Calibration Gas, ppm SOO H2 supply pressure gauge (acceptable range 9.5 - 12) Pass / Fail / NA Calibration Gas, ppm SOO Date of last factory calibration w/instrument within 3 months Image / Fail NA Calibration Gas, ppm SOO 90% of Calibration Gas, ppm Image / Image	g manag gamma	pp	5017	SOO	100%
Clean system check (check valve chatter) Pass / Fail / NA Calibration Gas, ppm SOO H2 supply pressure gauge (acceptable range 9.5 - 12) Pass / Fail / NA Calibration Gas, ppm <u>450</u> Date of last factory calibration Factory calibration record w/instrument within 3 months <u>4-3 - 20</u> Time required to attain 90% of Cal Gas ppm Image 1 <u>500</u> Image 2 <u>600</u> Image 3 Image 3 Image 4 Image 3 Image 4 Image 3 Image 4 Image 3 Image 4 Image 3 Image 5 Image 4 Image 4 Image 4 Image 5 Image 4 Image 4 Image 4 <td>Leak test</td> <td>Pass / Fail / NA</td> <td>100</td> <td>2-0</td> <td></td>	Leak test	Pass / Fail / NA	100	2-0	
(check valve chatter) Calibration Gas, ppm SOO H2 supply pressure gauge Calibration Gas, ppm 90% of Calibration Gas, ppm (acceptable range 9.5 - 12) Calibration Gas, ppm Goo Date of last factory calibration Calibration Soo Factory calibration record Fail Na Vinstrument within 3 months Calibration Gas, ppm Goo Gase / Fail Na Soo Gase / Fail Calibration Gas, ppm Goo 90% of Calibration Gas, ppm Goo Time required to attain 90% of Cal Gas ppm 1. Soo Soo Soo 2. Goo Goo Soo 3. Do Average Soo Equal to or less than 30 seconds? N N				RESPONSE TIME	
H2 supply pressure gauge (acceptable range 9.5 - 12) Pase / Fail / NA 90% of Calibration Gas, ppm 450 Date of last factory calibration 4-3 - 20 1. 5 Factory calibration record w/instrument within 3 months Pase / Fail 90% of Calibration Gas, ppm 450 Time required to attain 90% of Cal Gas ppm 1. 5 Pase / Fail 2. 6 3. 0 Average Equal to or less than 30 seconds? N	-	Pass'/Fail/NA	Collibration Cas	5	00
H2 supply pressure gauge (acceptable range 9.5 - 12) Pass / Fail / NA Time required to attain 90% of Cal Gas ppm 1. Date of last factory calibration <u>4-3-20</u> 2. <u>6</u> Factory calibration record w/instrument within 3 months Pass / Fail NA NA	(check valve chatter)				
(acceptable range 9.5 - 12) 1. 5. Date of last factory calibration 1. 5. Factory calibration record 1. 6. W/instrument within 3 months 1. 6.	He supply processes source				
Date of last factory calibration	· · · ·	Pass / Fall / NA	Time required to	attain 90% of Cal G	as ppm
Factory calibration record w/instrument within 3 months	(acceptable range 9.5 - 12)		1	<u>×</u>	
Factory calibration record w/instrument within 3 months Fail Equal to or less than 30 seconds? Y N	Data of last faster (selibration	42.20	2.	6	
w/instrument within 3 months Equal to or less than 30 seconds?	Date of last factory calibration	1 1 20	3.	6	
w/instrument within 3 months Equal to or less than 30 seconds?	Factory calibration report		Average		
		Paser Fall	-	nan 30 seconds?	(V) N
instrument camprated to <u>C444</u> gas.		_			\sim
					gas.

Comments:

Irpose:	
perator:	4
ate: 6-7-20	Time:

Model # <u>TUA 1000 B</u> Serial # <u>#12 1036246741</u>

INSTRUMENT INTEGRITY CHECKLIST		INSTRUMENT CALIBRATION		
			CALIBRATION CHEC	K
Battery test	Pase / Fail	Calibration	Actual	%
Reading following ignition	_2, (ppm	Gas (ppm)	(ppm)	Accuracy
Leak test	Pass / Fail / NA	500	500	100 %
			RESPONSE TIME	
Clean system check (check valve chatter)	Fass / Fail / NA	Calibration Gas	s, ppmSc	00
	\sim	90% of Calibra	tion Gas, ppm	50
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	(Pass / Fail / NA	Time required 1	to attain 90% of Cal Ga つ	is ppm
Date of last factory calibration	4-3-20	2 3	<u>7</u> 6	
Factory calibration record	Pass / Fail	Average		6
w/instrument within 3 months	Faster Fall	Equal to or less	s than 30 seconds? brated to C44	Q Ν
Commonte				gas.

Comments

Site:			
Purpose:			
Operator:			
Date: 6-7-20	Time:	0845	
Model # 1000 B			
Serial #13/102746775			

INSTRUMENT INTEGRITY	CHECKLIST	INS	TRUMENT CALIBRA	TION
	m		CALIBRATION CHEC	K
Battery test	Hass / Fail	Calibration	Actual	%
Reading following ignition	_ <u></u>	Gas (ppm)	(ppm)	Accuracy
Leak test	Pass / Fail / NA	S00	500	100%
			RESPONSE TIME	
Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas	s, ppmS	00
	6	90% of Calibrat	tion Gas, ppm 4	50
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Palss / Fail / NA		o attain 90% of Cal G	as ppm
Date of last factory calibration	4-3-20	2	6	
Date of last factory calibration		3.	8	
Factory calibration record	Pass / Fail	Average		
w/instrument within 3 months		Equal to or less	s than 30 seconds?	Ω N
		Instrument calil	brated to <u>CU4</u>	gas.
Comments:		1		1

rpose:	~~~~
perator:	M
ite: 6-7-20	Time: 0915

Model # TUA 1000 BSerial # $\frac{4}{15}/036346772$

INSTRUMENT INTEGRITY	CHECKLIST	INS	TRUMENT CALIBRAT	ION
Battery test	Pass/ Fail	Calibration	CALIBRATION CHECK Actual	%
Reading following ignition	_/ <u>/</u> Sppm	Gas (ppm)	(ppm)	Accuracy
Leak test	Pass / Fail / NA	500	500	100 %
Cloop system shock		RESPONSE TIME		
Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas		2
H ₂ supply pressure gauge	Pass / Fail / NA	90% of Calibra Time required f	tion Gas, ppm (4.5) to attain 90% of Cal Gas	
(acceptable range 9.5 - 12)		1.	<u>6</u>	
Date of last factory calibration	4-3-20	2 3	<u>k</u> 7	x
Factory calibration record	Pase / Fail	Average		\sim
w/instrument within 3 months	<u> </u>		s than 30 seconds? brated to <u>((纤</u> g	A Nas.
Comments:				

CUSTOMER: <u>RES</u> Quit #1	0	
SERIAL NUMBER:	3	
TECHNICIAN: M. M.	DATE: _	4-3-20

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID			
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0,59	< 3
	PI	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

CUSTOMER: RES UNIT #11	
SERIAL NUMBER:	
TECHNICIAN: M. M. DATE: _	4-3-70

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID			
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0,18	< 3
	PI	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

CUSTOMER: NES UNIT #	12
SERIAL NUMBER: [03624674	(
TECHNICIAN: Mu Mu	DATE: <u>4-3-20</u>

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID			
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0,76	< 3
	PI	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS	-t	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

CUSTOMER: RES UNIT #13
SERIAL NUMBER:
TECHNICIAN: DATE:

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID			
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	99	+/- 25
500	500	SOI	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0,41	< 3
	Pl	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

CUSTOMER: RESUMIT#15 SERIAL NUMBER: ______ / 036346772_____ TECHNICIAN: ______ DATE: _____

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID			
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0.69	< 3
	PI	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	2	+/- 12.5
100	100		+/- 25
500	500	-/	+/- 125
< 1	ZERO GAS		< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition Air - Zero THC Oxygen Nitrogen **Certification**

Analytical Accuracy

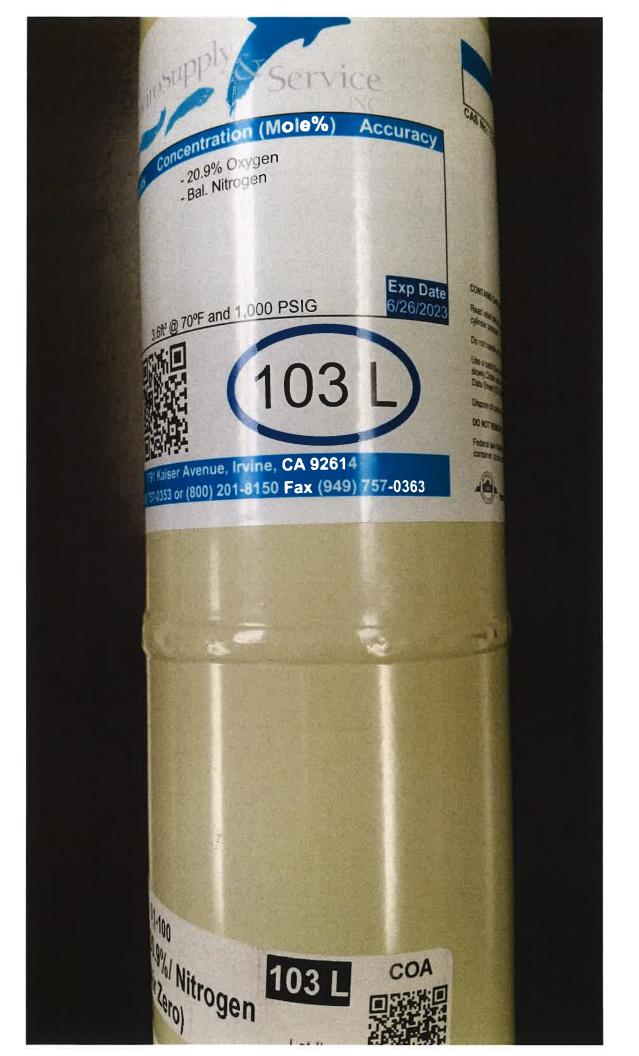
< 2 PPM 20.9% Balance

± 2%

Lot

19-6779

Mfg. Date: 4/3/2019 Parent Cylinder ID Number: 001739, 02268


Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

This mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 4/3/2019

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

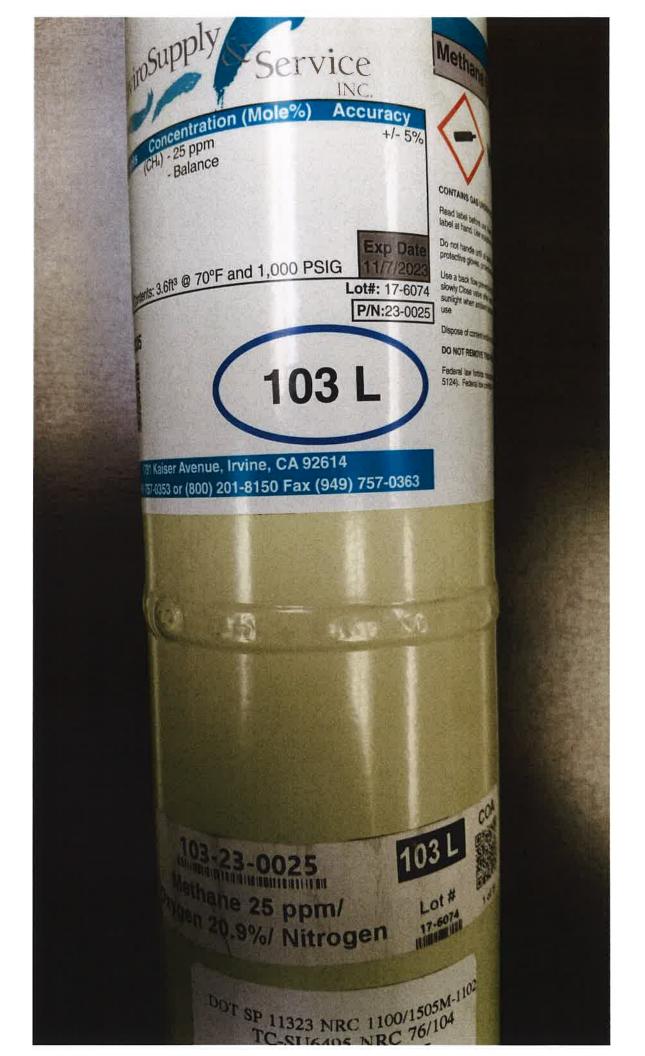
CERTIFICATE OF ANALYSIS

Composition Methane Air

Certification 25 ppm Balance Analytical Accuracy ± 5%

Lot # 17-6074

Mfg. Date: 10/16/2017 Parent Cylinder ID Number: 17161


Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 10/16/2017

INTERMOUNTAIN SPECIALTY GASES

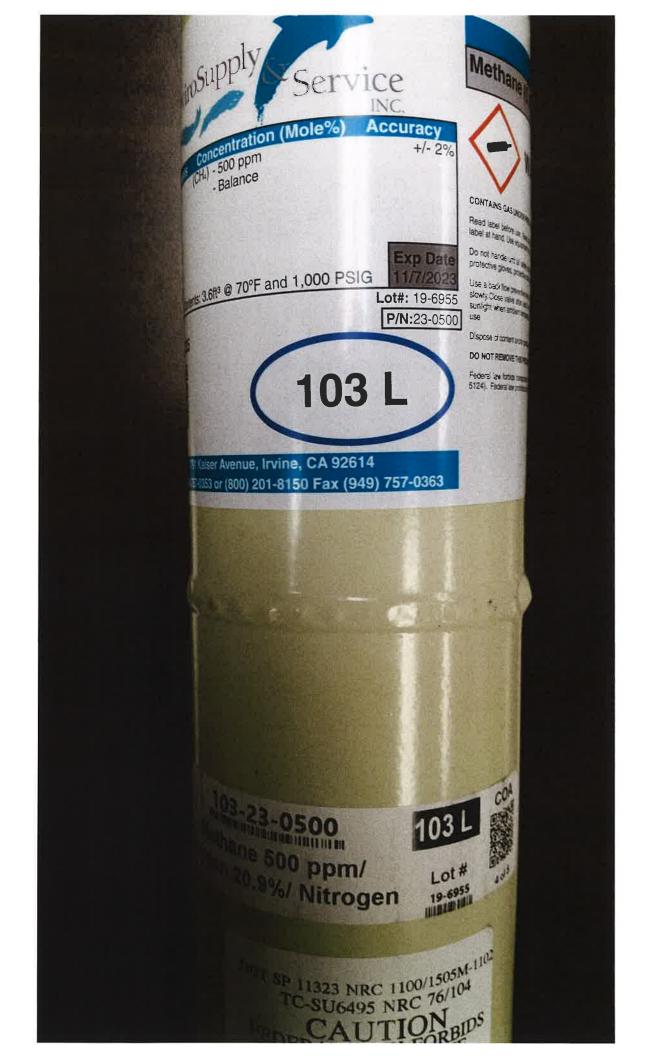
520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition Methane Air Certification 500 ppm Balance Analytical Accuracy ± 2%

Lot # 19-6955

Mfg. Date: 7/24/2019 Parent Cylinder ID 001763 Number:


Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 7/24/2019

TO REORDER CALL 1 (888) 234-5678 Concord, CA 94520

AIR, ULTRA ZERO THC <0.1 PPM Analytical Accuracy +1-2%

103L @ 70F & 1000 PSIG Lot# TX17983 PIN AIR-ZER-103L

EXP: 10/11/2022

2100 MERIDIAN PARK BLVD TO REORDER CALL 1 (888) 234-5678

METHANE 500ppm AIR BALANCE Analytical Accuracy +/- 2%

103L @ 70F & 1000 PSIG Lot# K024306 P/N MET-500-103L

EXP: 6/19/2022

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name: Kirby
 Date: 6-8-20

 Time: 8:15
 AM _____ PM

 Instrument Make: Thermo Scientific
 Model: TVA 1000
 S/N: 0928538411

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>499 ppm</u>

3. Adjust meter to read 500 ppm.

Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): 2 ppm (a)
- 2. Downwind Reading (highest in 30 seconds): 1 ppm (b)

Calculate Background Value:

 $\frac{(a) + (b)}{2} \qquad Background = \underline{1.5} ppm$

Performed by: Markus Bernard

CALIBRATION PRECISION TEST RECORD

Date: 3/23/2020
Expiration Date (3 months): <u>6/23/2020</u>
Time: <u>10:00</u> AM PM
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S/N: <u>0928538411</u>
Measurement #1:
Meter Reading for Zero Air: <u>0</u> ppm (a)
Meter Reading for Calibration Gas: <u>500</u> ppm (b)
Measurement #2:
Meter Reading for Zero Air: ppm (c)
Meter Reading for Calibration Gas: <u>500</u> ppm (d)
Measurement #3:
Meter Reading for Zero Air: ppm (e)
Meter Reading for Calibration Gas: 500 ppm (f)
Calculate Precision:
$\frac{ (500) - (b) + (500) - (d) + (500) - (f) }{3} \times \frac{1}{500} \times 100$
3 500
0.004 % (must be < than 10%)

RESPONSE TIME TEST RECORD

Date: <u>3/23/20</u>
Expiration Date (3 months): 06/23/20
Time: <u>10:00</u> AM PM
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S/N: <u>0928538411</u>
Measurement #1:
Stabilized Reading Using Calibration Gas:500ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:5seconds (a)
Measurement #2:
Stabilized Reading Using Calibration Gas:500ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:5seconds (b)
Measurement #3:
Stabilized Reading Using Calibration Gas:496ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:5seconds (c)
Calculate Response Time:

Calculate Response Time: $\frac{(a) + (b) + (c)}{3} = 5$ seconds (must be less than 30 seconds)

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name: Kirby
 Date: 7/02/20

 Time: 9:37
 AM

 PM

 Instrument Make:
 Thermo Scientific

 Model:
 TVA 1000

 S/N:
 0928538411

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>498 ppm</u>

3. Adjust meter to read 500 ppm.

Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): 2 ppm (a)
- 2. Downwind Reading (highest in 30 seconds): 2 ppm (b)

Calculate Background Value:

 $\frac{(a) + (b)}{2} \qquad Background = \underline{2} ppm$

Performed by: Markus Bernard

CALIBRATION PRECISION TEST RECORD

Date: <u>7/02/2020</u>
Expiration Date (3 months): <u>10/02/2020</u>
Time: <u>9:37</u> AM PM
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S/N: <u>0928538411</u>
Measurement #1:
Meter Reading for Zero Air:0 ppm (a)
Meter Reading for Calibration Gas: <u>498</u> ppm (b)
Measurement #2:
Meter Reading for Zero Air:0 ppm (c)
Meter Reading for Calibration Gas: <u>498</u> ppm (d)
Measurement #3:
Meter Reading for Zero Air: ppm (e)
Meter Reading for Calibration Gas: <u>498</u> ppm (f)
Calculate Precision:
$\frac{\{ (500) - (b) + (500) - (d) + (500) - (f) \}}{3} \times \frac{1}{500} \times 100$
<u>0.4</u> % (must be < than 10%)

RESPONSE TIME TEST RECORD

Date: <u>7/02/20</u>		
Expiration Date (3 months): <u>10/02/20</u>		
Time: <u>9:37</u> AMPM		
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S	S/N:	0928538411
Measurement #1:		
Stabilized Reading Using Calibration Gas: 90% of the Stabilized Reading: Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:	498 450 7	_ ppm _ ppm _ seconds (a)
Measurement #2:		
Stabilized Reading Using Calibration Gas:	498	ppm
90% of the Stabilized Reading:	450	ppm
Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:	5	seconds (b)
Measurement #3:		
Stabilized Reading Using Calibration Gas:	498	_ ppm
90% of the Stabilized Reading:	450	ppm
Time to Reach 90% of Stabilized Reading after	6	1 ()
switching from Zero Air to Calibration Gas:	6	_ seconds (c)
Calculate Response Time:		

 $\frac{(a) + (b) + (c)}{3} = \underline{6}$ seconds (must be less than 30 seconds)

CALIBRATION PRECISION TEST RECORD

Date: <u>7/15/2020</u>
Expiration Date (3 months): <u>10/15/2020</u>
Time: <u>9:45</u> AM PM
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S/N: <u>0928538411</u>
Measurement #1:
Meter Reading for Zero Air:0 ppm (a)
Meter Reading for Calibration Gas: <u>498</u> ppm (b)
Measurement #2:
Meter Reading for Zero Air:0 ppm (c)
Meter Reading for Calibration Gas: <u>497</u> ppm (d)
Measurement #3:
Meter Reading for Zero Air: ppm (e)
Meter Reading for Calibration Gas: <u>499</u> ppm (f)
Calculate Precision:
$\frac{\{ (500) - (b) + (500) - (d) + (500) - (f) \}}{3} \times \frac{1}{500} \times 100$
<u>0.4</u> % (must be $<$ than 10%)

RESPONSE TIME TEST RECORD

Date: 7/15/20	
Expiration Date (3 months): <u>10/15/20</u>	
Sime: 9:45 AM PM	
nstrument Make: Thermo Scientific Model: TVA 1000 S/N:0928538411	
Aeasurement #1:	
Stabilized Reading Using Calibration Gas: 498 ppm	
90% of the Stabilized Reading: <u>450</u> ppm	
Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: 2 seconds (a)	
switching from Zero Air to Calibration Gas: <u>2</u> seconds (a)	
Measurement #2:	
Stabilized Reading Using Calibration Gas:497 ppm	
90% of the Stabilized Reading: <u>450</u> ppm	
Time to Reach 90% of Stabilized Reading after	
switching from Zero Air to Calibration Gas: <u>5</u> seconds (b)	
Aeasurement #3:	
Stabilized Reading Using Calibration Gas: 499 ppm	
90% of the Stabilized Reading:450 ppm	
Time to Reach 90% of Stabilized Reading after	
switching from Zero Air to Calibration Gas: <u>7</u> seconds (c)	
Calculate Response Time:	

 $\frac{(a) + (b) + (c)}{3} = \underline{4.666}$ seconds (must be less than 30 seconds)

April 1, 2020

Ms. Becky Azevedo Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive San Jose, CA 95037.

Re: First Quarter 2020 Surface Emissions and Component Leak Monitoring Report for the Kirby Canyon Recycling and Disposal Facility

Dear Ms. Azevedo:

This monitoring report for the "Kirby Canyon Recycling and Disposal Facility (KCRDF) Landfill" contains the results of the First Quarter 2020 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by RES Environmental, Inc.(RES). Re-monitoring of surface emissions was conducted by KCRDF personnel.

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection procedures).

Component Leak Monitoring

- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 301 (Landfill Gas Collection and Emission Control System Requirements) and Section 602 (Collection and Control System Leak Inspection procedures).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95464, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

KCRDF Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 16, 2011. After receipt of comments, this ACO was amended, restated, and submitted to BAAQMD on July 1, 2016. SEM and Component Leak monitoring was conducted per the methods outlined in the July 1, 2016 ACO.

PROCEDURES

General

The surface of the KCRDF disposal area has been divided into one-hundred-and-fifty (150), approximately 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the walking pattern as depicted the 2011 KCRDF AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

Instantaneous Surface Emissions Monitoring

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume (ppm_v) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a) and NSPS. The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d) and CCR Title 17 §95471(c)(2).

RES personnel walked the surface of the landfill on a grid by grid basis with the wand tip held at 2 inches from the landfill surface. While sampling the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppm_v (areas of concern) or 500 ppm_v (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Appendices of this report. Applicable corrective action and re-monitoring timelines are listed below:

• Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.

- If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
- If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.

If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Integrated Surface Emissions Monitoring

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppm_v for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held within 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(2).

Grids with results greater than 25 ppm_v were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppm_v are subject to the following re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.
- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, all re-monitoring requirements have been completed.
- The second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the third exceedance.

Component Leak Monitoring Procedures

RES personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppm_v. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppm_v per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) and 1,000 ppm_v per requirements outlined in BAAQMD 8-34-303 were recorded. Applicable corrective action and re-monitoring timelines are listed below:

- Leaks between 500 and 999 ppm_v must be corrected and re-monitored within 10 days of the initial exceedance.
- Leaks at or above 1000 ppm_v must be corrected and re-monitored within 7 days of the initial exceedance.

FIRST QUARTER 2020 SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and component leak monitoring results completed for the First Quarter 2020.

Instantaneous Surface Emissions Monitoring Results

The Instantaneous surface monitoring was performed on February 12, 2020 in accordance with the NSPS, BAAQMD 8-34, and CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

Initial Monitoring Event Exceedances of 500 ppm_v

There were 9 exceedances of 500 ppm_v as methane detected on February 12, 2020. Corrective actions to initiate repairs of the exceedances were completed within five days for all locations (February 14, 2020).

Ten-Day Re-Monitoring Results

The 10-day re-monitoring event was completed on February 19, 2020. All locations were observed at less than 500 ppm_v .

One-Month Re-Monitoring Results

The 1-month re-monitoring event was completed on March 10 and 11, 2020. All locations were observed at less than 500 ppm_{v} .

Readings between 200 ppm_v and 499 ppm_v (Initial and Re-monitored)

There were no readings between 200 ppm_v and 499 ppm_v as methane detected during the initial monitoring event on February 12, 2020. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppm_v but below 500 ppm_v are required to be recorded.

Ms. Becky Azevedo Page 5

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on February 11 and 12, 2020, in accordance with the ACO and requirements outlined in CCR Title 17 §95469.

Initial Monitoring Event Exceedances of 25 ppm_v

There were no grids with exceedances of 25 ppm_v as methane detected during the initial monitoring event on February 11 and 12, 2020.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B, Integrated SEM 25 ppm_v Exceedances and Monitoring Log, and SEM Map included in Attachment B, for details.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on February 12, 2020. No leaks greater than 500 ppm_v were identified. Please see Attachment C, for details.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

Precipitation Requirements

Per the KCRDF's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within 24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25 ppm_v in air for integrated sample analyses and 500 ppm_v in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be

Ms. Becky Azevedo Page 6

performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at (510) 875-9338.

Thank you, Waste Management

Rajan Phadnis Environmental Protection Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map

Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment D – Weather Station Data

• Strip Chart Data

Attachment E – Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

Table A.1Instantaneous Landfill Surface Emissions MonitoringInitial Monitoring Event Areas of Concern

2020 QUARTER:1PERFORMED BY:RES/WMLANDFILL NAME:Kirby Canyon Recycling & Disposal Facility

Flag Number	Grid Number	Date of Monitoring	Concentration of Emission (ppmv)	Comments
1	83	2/12/2020	1103 ppm	Well 82
11	82	2/12/2020	2000 ppm	Well 123
12	89	2/12/2020	40000 ppm	Well 75
13	143	2/12/2020	2600 ppm	Surface
2	668	2/12/2020	668 ppm	Well 141
3	138	2/12/2020	880 ppm	Well 90
31	111	2/12/2020	5500 ppm	Well 134
32	71	2/12/2020	4100 ppm	Well LC109
4	101	2/12/2020	789 ppm	Well 48

Table A.2 Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2020 QUARTER: 1 INITIAL MONITORING PERFORMED BY: RES/WM FOLLOW-UP MONITORING PERFORMED BY: Markus Bernard/Rick Reed LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Initial Mo	nitoring Event		Corrective	e action within 5 days	1st 10	-day Follo	w-Up	1st 30)-day Follov	w-Up	
Flag	Monitoring	Field	Repair	Action taken to repair	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	Exceedance	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
1	2/12/2020	1103 ppm	2/14/2020	Water / Soil Added	2/19/2020	0 ppm		3/10/2020	40.86		Well 82
11	2/12/2020	2000 ppm	2/14/2020	Water / Soil Added	2/19/2020	0 ppm		3/11/2020	12.05		Well 123
12	2/12/2020	40000 ppm	2/14/2020	Water / Soil Added	2/19/2020	68 ppm		3/11/2020	283.0		Well 75
13	2/12/2020	2600 ppm	2/14/2020	Water / Soil Added	2/19/2020	20 ppm		3/11/2020	119.0		Surface
2	2/12/2020	668 ppm	2/14/2020	Water / Soil Added	2/19/2020	0 ppm		3/11/2020	1.69		Well 141
3	2/12/2020	880 ppm	2/14/2020	Water / Soil Added	2/19/2020	0 ppm		3/11/2020	14.24		Well 90
31	2/12/2020	5500 ppm	2/14/2020	Water / Soil Added	2/19/2020	35 ppm		3/10/2020	409.0		Well 134
32	2/12/2020	4100 ppm	2/14/2020	Water / Soil Added	2/19/2020	55 ppm		3/11/2020	70.12		Well LC109
4	2/12/2020	789 ppm	2/14/2020	Water / Soil Added	2/19/2020	82 ppm		3/11/2020	1.37		Well 48

Table A.3Instantaneous Landfill Surface Emissions MonitoringExceedance and Monitoring Logs (AB-32)

2020 QUARTER: 1 INITIAL MONITORING PERFORMED BY: RES/WM FOLLOW-UP MONITORING PERFORMED BY: Markus Bernard LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

Initial M	onitoring Even	nt	1st Re-n	non Event -	10 Days	2nd Re-n	non Event ·	- 10 Days	
Exceedance	Monitoring	Field	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Grid ID No.	Date	Reading	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
1	2/12/2020	1103 ppm	2/19/2020	0 ppm					Well 82
11	2/12/2020	2000 ppm	2/19/2020	0 ppm					Well 123
12	2/12/2020	40000 ppm	2/19/2020	68 ppm					Well 75
13	2/12/2020	2600 ppm	2/19/2020	20 ppm					Surface
2	2/12/2020	668 ppm	2/19/2020	0 ppm					Well 141
3	2/12/2020	880 ppm	2/19/2020	0 ppm					Well 90
31	2/12/2020	5500 ppm	2/19/2020	35 ppm					Well 134
32	2/12/2020	4100 ppm	2/19/2020	55 ppm					Well LC109
4	2/12/2020	789 ppm	2/19/2020	82 ppm					Well 48

Table A.4 Instantaneous Landfill Surface Emissions Monitoring Areas of Concern Greater than 200 ppmv

2020 QUARTER:1INITIAL MONITORING PERFORMED BY:RES/WMFOLLOW-UP MONITORING PERFORMED BY:NALANDFILL NAME:Kirby Canyon Recycling & Disposal Facility

Initial	Monitoring	Event	Re-mo	n Event	
Exceedance	Monitoring	Field	Monitoring	Reading	Comments
Grid ID No.	Date	Reading	Date	ppm	
None					

Site: K, RBV

Technician: Instrument:												30
	100×54 2100	56										rage of rages
Calibration Standard:	reappro											
2	Initial Monitoring Event		First Re-M	First Re-Monitoring Event - 10	- 10 Days	Second Re-	Monitoring Evel	nt - 10 Days	30-Dav	30-Dav Follow-up Monitoring	nitorina	Comments
	Field Reading	Date	Date	No Excd.	Excd.	Date	Date No Excd. Excd.	Excd.	Date	No Excd.	Excd.	
Number	(mdd)	Monitored	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	
	5,500	2-12-20										1.101/20
	001 /	,										1111 / 100
	2,000											Well 60107
	40.000											1.1 × 1 > C
143	2,600											C. o Kart
	1103											24121 07
	668											11/4/1 100
38	880											1.1×110×
	789	>										WELL TU
												al 112M

383

Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2019 QUARTER: 1 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: Markus Bernard LANDFILL NAME: Kirby Canyon LANDFILL

Comments			Well 82	Well 123	Well 75	Surface	Well 141	Well 90	Well 134	Well LC109	Well 48										
dU-w	Exced.	>500 ppm																			Ī
1st 30-day Follow-Up	No Exced.	<500 ppm	40.86	12.05	283.0	119.0	1.69	14.24	409.0	70.12	1.37						10				
1st 30-	Monitoring	Date	3-10-20 40.86	3-11-20			3-11-20			3-11-20	3-11-20										
dŋ-	Exced.	>500 ppm																	k.		
1st 10-day Follow-Up	No Exced.	<500 ppm	0 ppm	0 ppm	68 ppm	20 ppm	0 ppm	0 ppm	35 ppm	55 ppm	82 ppm										
1st 10	Monitoring	Date	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020										
Corrective action within 5 days	Action taken to repair	Exceedance	Water / Soil Added																		
Correcti	Repair	Date	2/14/2020	2/14/2020	2/14/2020	2/14/2020	2/14/2020	2/14/2020	2/14/2020	2/14/2020	2/14/2020										
Event -	Field	Reading	1103 ppm	2000 ppm	40000 ppm	2600 ppm	668 ppm	880 ppm	5500 ppm	4100 ppm	789 ppm		10 million (10 mil	2.11		112					
Initial Monitoring Event	Monitoring	Date	2/12/2020	2/12/2020	2/12/2020	2/12/2020	2/12/2020	2/12/2020	2/12/2020	2/12/2020	2/12/2020										
Initial	Flag	Number	-	11	12	13	2	3	31	32	4										

Personnel: IFIST WADE	Androny PUNCLA	
AANON MUBBOOK	OMER penachil	
ERNUSL REMIRUZ		Cal. Gas Exp. Date: <u>9-21-20</u>

Date: 2-12-20 Instrument Used: 40A 1000 Grid Spacing: 25'

Temperature: <u>5</u> Precip: <u>Precip</u> Upwind BG: <u>7.6</u> Downwind BG: <u>2.2</u>

GRID ID	STAFF	START	STOP	тос	WI	ND INFORM	MATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	, REPIARAS
43	LW	0955	1010	97	1	2	1	
44	AM	0955	1010	41		2	1	
49	OR	0985	1010	117	l	2	1	
54	AP	0955	1010	84		2	1	
55	OP	0955	1010	64	l	2	17	
61	LW	1010	1025	128	l	Z	6	
68	nn	1610	1025	47		2	b	
73	ER	1010	1025	91	1	4	6	
>4	NP	1010	1025	59	ŀ	2	6	
75	OP	1010	1025	32	l	2	6	
82	LW	1025	1040	2,000	l	d	6	WE1/123
83	1m	1025	1040	1,103		2	6,	W#1182
88	ER	1025	1040	71		d	b	
89	NP	1025	1040	40,000	l	2	6	W81175
90	OP	1025	1040	668	l	2	6	WE11142
96	LW	1040	1055	59	l	L	6	
97	Am	1040	1055	71		2	6	
103	En	1040	1855	45		2	6	
104	NP	1840	1055	26		2	6	
105	OP	1040	1855	54	1	2	6	
111	LW	1055	1110	5,500	ĺ	2	Ч	WEI/ 134
112	M	1055	1110	43		2	4	
118	in	1255	1110	37	1	L	9	
119	NP	18.55	1110	56		L	9	
120	op	1355	1110	40	1	2	4	
126	LW	1110	1125	32	l	2	6	
127	AM	1110	1125	58	1	2	6	
128	EN	1110	1125	21		2	b	
134	NP	1110	1125	47	1	L	6	
136	OP	1118	1125	30	l	2	6	

Page _ _ _ _ of _ _ _

Personnel: LEISLWADE	Anthony porcha	
AARON MCBAIOL	OMER PURCHA	
ERNOST PRAINTER		Cal. Gas Exp. Date: 9-2/-20

Date: 2-12-20 Instrument Used: 4VA 1000 Grid Spacing: 25*

Temperature: 54 Precip: ____ Upwind BG: <u>/,6</u> Downwind BG: <u>2.2</u>

GRID ID	STAFF	START	STOP	тос	WIN	ND INFORM	MATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKKS
138	LW	1125	1140	880	1	2	le	WE1190
139	AM	1125	1140	36		2	6	
141	EN	1125	1140	19		2	6	
142	AD	1125	1140	24		2	6	
143	op	1125	1140	2,600		d	4	SURFACE
144	LW	1200	1225	38	1	d	7	
145	AM	1210	1225	26		2	7	
146	En	1210	1225	47	1	2	1	
147	AD	1210	1225	24		L	7	
148	OP	1210	1225	64	1	d	7	
149	LW	1225	1240	30	1	2	8	
150	Am	1225	1240	45		2	8	
140	ER	1225	1240	36		2	8	
13>	Λρ	1225	1240	29		2	8	
135	OP	1225	1240	34	l	2	8	
132	LW	1240	1255	20		2	8	
133	1m	1240	1255	57	l	2	8	
124	ER	1240	1255	18	[2	8	
125	ND	1240	1255	46	1	7	8	
116	op	1240	12.55	32	1	2	8	
117	w	1255	1310	16	ż	3	9	
109	9 M	1255	1310	35	2]	9	
110	ER	1255	1310	29	L	3	9	
101	Ap	1255	1310	789	2	2	9	WE1148
102	op	nss	1310	45	Z	3	9	
94	LW	1310	1325	60	2	3	9	
95	An	1310	1325	44	2	J	y	
86	EN	1310	1725	65	2	2	ÿ	
87	NP	1310	1325	24	2	2	9	
29	op	1310	1325	31	d	7	9	

Page _____ of ____

Personnel: LEISLWADE	Anthony Done CLA	
AARONACBRIDE	Omendane UA	
ERNESL REALAND	/	Cal. Gas Exp. Date: 9-21-26

Date: 2-12-20 Instrument Used: 4UA 1000 Grid Spacing: 25'

Temperature: <u>56</u> Precip: <u>D</u> Upwind BG: <u>16</u> Downwind BG: <u>2.2</u>

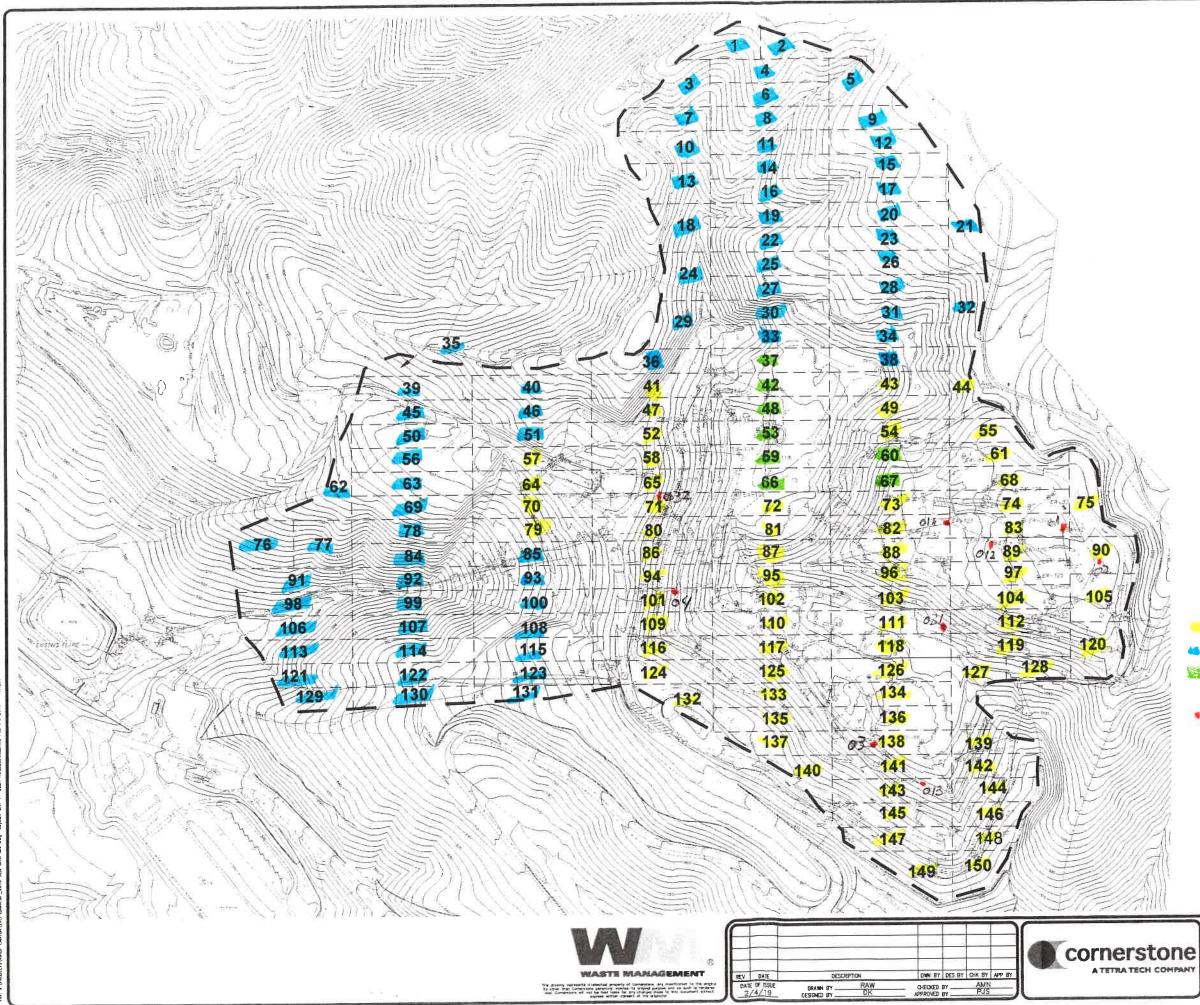
GRID ID	STAFF	START	STOP	тос	NIW	ND INFORM	ATION	REMARKS
T' a	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	NLMAINS
80	LW	1325	1340	59	2	3	9	
81	AM	1325	1340	74	2	1	ġ	
70	ER	1325	1340	36	L	Ĵ	Ĝ	
21	AP	1325	1340	4,100	L	C	9	WEIL LC 109
72	OP	1325	1340	114	Z	3	9	
64	LN	1340	1355	114	2	3	19	
65	AM	1340	1355	84	de	С	9	
57	EN	1740	1355	16	t	J	9	
58	AP	1340	1355	109	2	З	9	
52	op	1340	1355	94	2	C	9	
47	LW	1355	1410	79	3	C	Ŷ	
41	Am	1355	1410	88	2	3	9	
								22

Page ______ of _____

rsonnel:	LEISHWA	0r							
67 18							_ Cal. Gas	Exp. Dat	e:
Date: <u></u> _	-12-20	Instrur	nent Usec	i:		Grid	d Spacing:		
Femperat	ture:	Prec	cip:	Up\	wind BG:		Downv	vind BG:	
GRID ID	STAFF	START	STOP	тос	WIN	ND INFORM	1ATION	RE	MARKS
	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT		
1								NOWSSF	EINPlace
2 3									
		1							
4 5									
6									
7						8			
8									
9				[1	
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
2/									
22									
24									
25									
26									
27									
28									
29									
30							2.4		7-

Page _/___ of _____

sonnel:	LEISHWA									
							Cal. Gas	Exp. Date	e:	
Date:	12-20	Instrur	nent Used	1:		Gri	d Spacing:			
Temperature:		Prec	cip:	Up	wind BG:	Downw	wind BG:			
GRID ID	STAFF	START	STOP	тос	WIND INFORMATION				MARKS	
	INITIALS	TIME	TIME	PPM	AVG MAX. SPEED SPEED		DIRECTION 16 POINT			
31								Ĩ		
32										
33										
34										
35										
36 38						22				
38										
40										
45									í	
46							<u></u>			
50										
51										
56										
62									1	
63									1	
69		66							1	
76										
77										
>8										
84										
85										
91										
92										
93										
98										
99										
100										
106										
107								ĥ.	A	


Page 2 of 3

								Exp. Date:		
)ate: _2	-12-20	Instrun	nent Usec	l:		Gri	d Spacing:			
Temperature:		Prec	ip:	Up\	wind BG:	-	Downwind BG:			
GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	1ATION	REMARKS		
	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT			
108										
113										
114							·			
121										
122						(
123										
129										
130										
131								¥		
37								Active-tRssh		
42										
48 53										
59										
66										
60										
67										
-								V		
								(<u> </u>		

Attach Calibration Sheet

Attach site map showing grid ID

Page ______ of _____

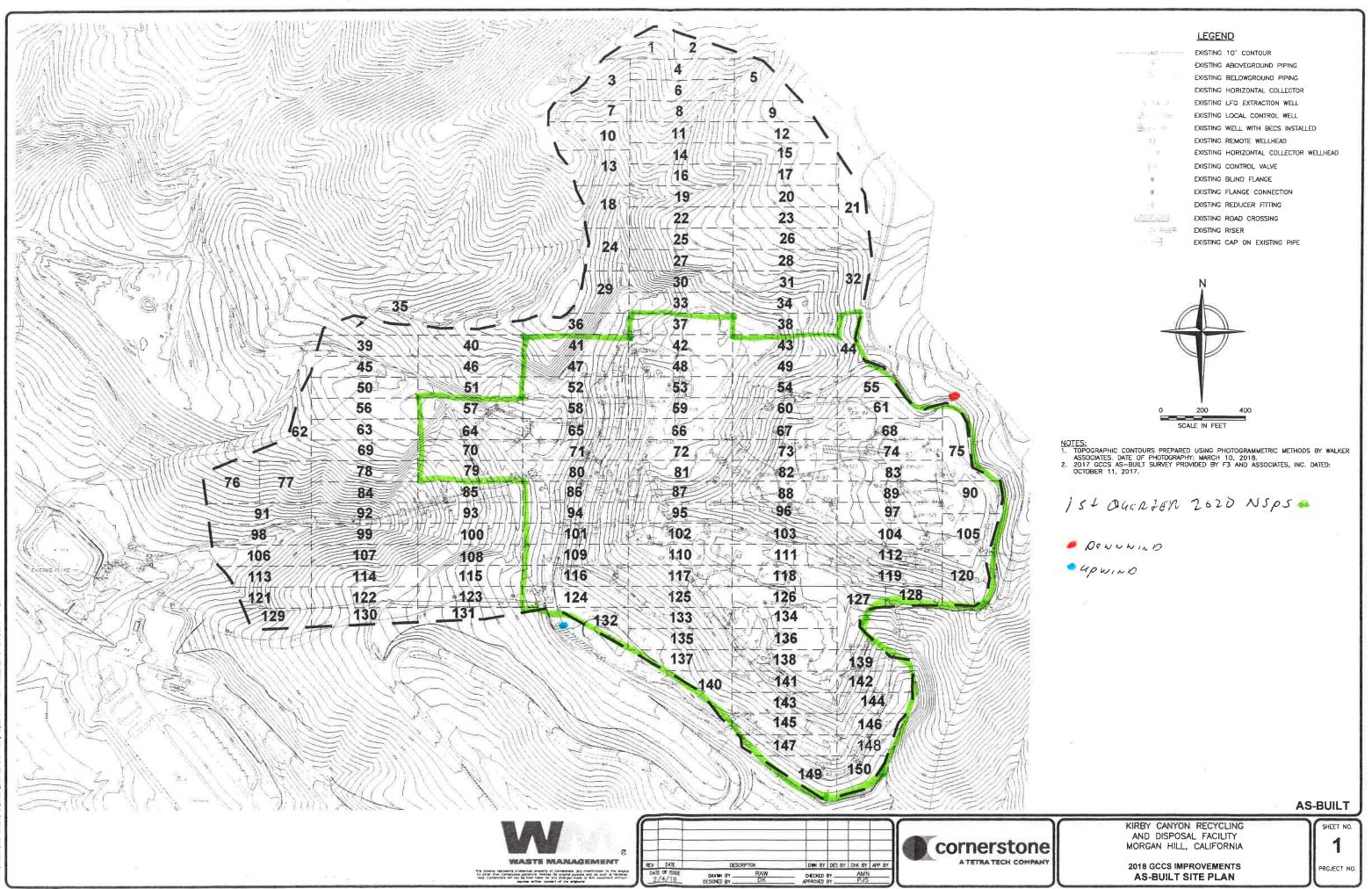
LEGEND

	EXISTING	10' CONTOUR
7.47	EXISTING	ABOVEGROUND PIPING
	EXISTING	BELOWGROUND PIPING
	EXISTING	HORIZONTAL COLLECTOR
5 500 1	EXISTING	LFG EXTRACTION WELL
3	EXISTING	LOCAL CONTROL WELL
高品 十	EXISTING	WELL WITH BECS INSTALLED
4.1	EXISTING	REMOTE WELLHEAD
i i i i	EXISTING	HORIZONTAL COLLECTOR WELLHEAD
0.1	EXISTING	CONTROL VALVE
(H)	EXISTING	BLIND FLANGE
11	EXISTING	FLANGE CONNECTION
+ 61	EXISTING	REDUCER FITTING
15.17 -112	EXISTING	ROAD CROSSING
11 AU-35 PC	EXISTING	RISER
	EXISTING	CAP ON EXISTING PIPE

NOTES: 1. TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY WALKER ASSOCIATES. DATE OF PHOTOGRAPHY: MARCH 10, 2018. 2. 2017 GCCS AS-BUILT SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: OCTOBER 11, 2017.

INSTANTANEOUS 2-12-20

6R,05 MONITORED « NO WASTE IN PLACE Active - thess


•500+ppm

KIRBY CANYON RECYCLING AND DISPOSAL FACILITY MORGAN HILL, CALIFORNIA 2018 GCCS IMPROVEMENTS

AS-BUILT SITE PLAN

AS-BUILT

0-

	EXISTING 10' CONTOUR
12 T	EXISTING ABOVEGROUND PIPING
32 II.	EXISTING BELOWGROUND PIPING
	EXISTING HORIZONTAL COLLECTOR
· 法承认	EXISTING LFG EXTRACTION WELL
-3. Av.	EXISTING LOCAL CONTROL WELL
illian th	EXISTING WELL WITH BECS INSTALLED
39	EXISTING REMOTE WELLHEAD
37	EXISTING HORIZONTAL COLLECTOR WELLHEAD
11	EXISTING CONTROL VALVE
标	EXISTING BLIND FLANGE
Ŧ.	EXISTING FLANGE CONNECTION
= 0;	EXISTING REDUCER FITTING
12/13/13	EXISTING ROAD CROSSING
in mater	EXISTING RISER
	EXISTING CAP ON EXISTING PIPE

Attachment B

Integrated Surface Emission Monitoring Event Records

Table B.1Integrated Landfill Surface MonitoringExceedances and Monitoring Log

2020 QUARTER:1INITIAL MONITORING PERFORMED BY:RESFOLLOW-UP MONITORING PERFORMED BY:N/ALANDFILL NAME:Kirby Canyon Recycling & Disposal Facility

Initial Monitoring Event			1st Re-mo			
Exceedance	Monitoring	Field	Monitoring	No Exced.	No Exced.	
Grid ID No.	Date	Reading	Date	<25 ppm	>25 ppm	Comments
None						

KIRBY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel:	LEISHWADES	Anthony percha	
	AARON MCBADE	OMEN DERECHA	
	ERNESLREN MU		Cal. Gas Exp. Date: 9-2/-20

Date: 2-11-20 Instrument Used: 4vA1000 Grid Spacing: 25'

-

Temperature: <u>66</u> Precip: <u>2</u> Upwind BG: <u>1.6</u> Downwind BG: <u>2.2</u>

GRID ID	STAFF INITIALS	START TIME	STOP TIME	ТОС РРМ	WI	ND INFO	REMARKS	
					AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REPIARKS
43	LW	1300	1325	9.65	9	6	9	
44	AM	1300	1325	7.2/	9	6	9	
49	ER	1300	1325	10.64	4	6	9	
54	AP	1300	1325	12.27	9	6	9	
55	op	1300	1325	6.45	9	6	9	
61	Lul	1325	1350	6.80	3	9	Ŷ	
68	Am	1325	1350	5.91	L	9	9	
73	ER	1325	1350	7.46	C	4	9	
74	NP	1325	1350	6.57	5	4	9	
75	00	1325	1350	7.22	3	4	9	
82	LW	1356	1415	6.18	9	5	9	
83	AM	1350	1415	6.74	9	5	y I	
88	EN	1350	1415	5.51	9	5	ÿ	
89	NP	1350	1415	6-04	9	5	9	
90	op	1350	1415	5.72	4	5	9'	
96	LW	1415	1440	7-11	3	6	10	
97	AM	1415	1440	6.87)	6	10	
103	ER	1415	1440	6.40	Ĵ	0	10	
104	NP	1415	1440	5.92	S	6	15	
125	OP	1415	1440	5.16	S	6	10	
/11	LW	1440	1505	6.52	Y	6	9	
112	RM	1440	1505	5-13	4	þ	9	
118	En	1440	1505	5.07	4	6	9	
119	NP	1440	1505	4-28	4	6	0	
120	вp	1440	1505	4.86	9	6	9	
126	LW	1505	1530	5.04	Y	6	9	
127	AM	1505	1530	4.32	4	6	9	
128	in	1505	1530	5.27	Ý	b	9	
134	Ap	1505	1530	4.70	4	le	61	
136	Op	1505	1530	5.54	Y	6	9	

Page ______ of _____

KIRBY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

=							Cal. Gas Ex	p. Date:	
ite: <u>2</u> -	-11-20	Instrume	nt Used: _			_ Grid S	pacing: _		
mperat	ure:	Precip	:	_ Upwind	BG:	G: Downwine			
GRID	STAFF	START TIME	STOP TIME	ТОС РРМ	WIND INFO		MATION	REMARKS	
ID	INITIALS				AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	NowAstring	
1									
3							· .		
4									
5							14		
b									
7									
8									
9									
0									
2									
3									
4									
5									
6							· · · · · · · · · · · · · · · · · · ·		
2			11 M						
8				1					
9									
.0									
2									
.2									
.4									
. 7									
: 6									
27				1					
8									
29									1

Page _____ of _____

KIRBY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

×				-	_		Cal. Gas Exp.	Date:
ate: _2~	11-20	Instrume	nt Used: _			_ Grid S	Spacing:	
emperat	ure:	Precip	:	_ Upwind	I BG:		Downwind	BG:
GRID	STAFF	START	STOP	TOC PPM	WIND INFO			REMARKS
ID	INITIALS	TIME	TIME		AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
31								
32								
33								
34								
36								
38								
39								
10								
15								
46								
50								
51			c					
2								
63	-							
9								
76								
77					<u> </u>			
28								
14								
35								
71								
32								
73								
38								
79								
60								

Page ______ of _____

KIRBY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

32								xp. Date:
ate: <u>2</u> -	-11-20	Instrume	nt Used:			_Grid S	Spacing:	
emperat	ure:	Precip	:	Upwind	BG:		Downwin	d BG:
GRID	STAFF	START	STOP	тос	WIN	ND INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
108								
113								
114								
115								
21								
22								
29								
130								
31								
37								
42								ACTIVE TRESS
48								
53								
59								
66								
60								
67								V

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of _____

KIRBY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: Leish WADE	ANDRONG PERALFA	
AARON MCBRIDE ERNESS REMIRED	omen puncita	
		Cal. Gas Exp. Date: <u>9-21-2</u> 0

Date: 2-12-20 Instrument Used: 4041000 Grid Spacing: 25'

Temperature: 45 Precip: 0 Upwind BG: i-6 Downwind BG: 2-2

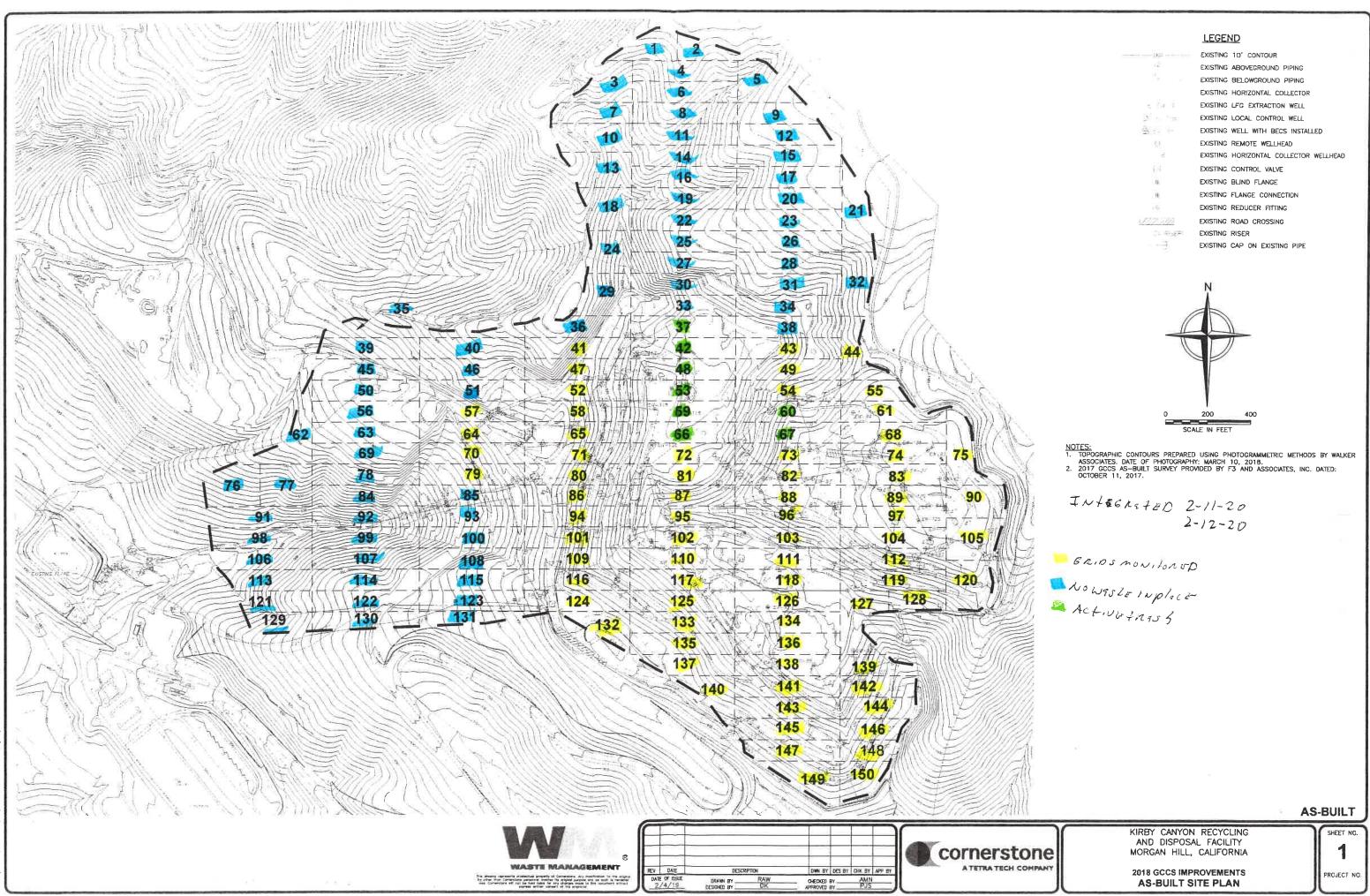
GRID	STAFF	START	STOP	тос	WIN	ND INFOR	RMATION	REMARKS
ID	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	NET AIGO
138	LW	0600	0625	5.75	3	5	2	
139	AM	0600	0625	4.62	2	5	2	
141	en	0600	0625	5.80	C	5	2	
142	AP	0600	0625	4.23	L	5	2	
143	op	0600	0625	5.07	3	5	2	
144	Lw	0675	0650	4.96	2	4	2	
145	Am	0625	0650	5.72	2	4	2	
146	En	0625	0650	5-48	7	9	2	
147	AP	0625	0650	4.20	く	4	2	
148	op	0625	0650	4.06	2	9	2	
149	LW	0650	0715	5.52	2	3	J	
150	AM	0650	0715	5-71	2	3	J	
140	en	0650	0715	5.84	22	Ĩ	2	
137	ЛР	0650	OTN.	6.57	L	2	2	
135	OP	0650	0715	5.29	2	7	C	
132	LW	0715	0740	6-15	2	J	J	
133	AM	2150	0740	6.49	2	С	С	
124	en	0715	0740	5.41	2	С	2	
125	NP	0715	0740	6.17	2	C	7	
116	op	0715	0740	5-03	2	7	J	
117	LW	0740	0805	5-49	2	4	j	
109	AM	0740	0881	4-78	2	4	3	
110	En	0740	0805	7-81	2	9)	
101	RD	0748	0800	6.42	2	9	3	
102	op	0740	orar	6-97	2	4	J	
94	LW	0805	0830	5.14	2	4	L C	
95	Am	0805	0830	7.30	2	Ý	3	
86	en	0805	9839	6-21	2	4	3	
87	AP	0805	0830	9.32	2	Ý	3	
79	op	0805	0830	5.07	2	y l	3	

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of _____

KIRBY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: CETShWAPE	ANTHORY PURCLA	
AANON MCBRIDZ	onenpeneuta	
GUNGST DENINGS		Cal. Gas Exp. Date: <u>9-2/-20</u>


Date: 2-12-20 Instrument Used: <u>FUA 1000</u> Grid Spacing: <u>251</u>

Temperature: 47 Precip: 6 Upwind BG: 1-6 Downwind BG: 2.2

GRID	STAFF	START	STOP	тос	WI	ND INFOR	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REPARKS
80	LW	6830	0855	10.46	2	3	1	
8/	Am	0830	0855	12.65	2	3	1	
70	ER	0830	0855	5-31	2	2	3	
7/	AP	0830	0855	11.60	2	3	3	
72	OP	0830	0855	14.53	2	3	3	
64	LW	8855	0920	6-17	Z	3	3	
65	AM	0855	0520	10.94		3	C	
57	ER	08:55	0920	5.30	2	2	S	
58	AP	0855	0920	14-61	d	S	S	
52	0p	0855	0920	12-28	Z	3	3	
47	LW	0920	0945	15-61	L	3	4	
41	AM	0920	0945	18.37	Z	3	9	

Attach Calibration Sheet Attach site map showing grid ID

Page ______ of _____

·----

1/11/ ||111|

	EXISTING 10' CONTOUR
2 -	EXISTING ABOVEGROUND PIPING
· .	EXISTING BELOWGROUND PIPING
	EXISTING HORIZONTAL COLLECTOR
st Ear if	EXISTING LFG EXTRACTION WELL
St. 1976	EXISTING LOCAL CONTROL WELL
A 14 94	EXISTING WELL WITH BECS INSTALLED
6,5	EXISTING REMOTE WELLHEAD
đ	EXISTING HORIZONTAL COLLECTOR WELLHEAD
(d	EXISTING CONTROL VALVE
Ti .	EXISTING BLIND FLANGE
12	EXISTING FLANGE CONNECTION
16	EXISTING REDUCER FITTING
1077-522	EXISTING ROAD CROSSING
5 9 gA	EXISTING RISER
	EXISTING CAP ON EXISTING PIPE

Attachment C

Component Leak Monitoring Event Records

Table C.1AB-32 Component Leak MonitoringSummary of Component Leaks Greater than 500 ppmv

2020 QUARTER: 1 INITIAL MONITORING PERFORMED BY: RES/WM FOLLOW-UP MONITORING PERFORMED BY: WM LANDFILL NAME: Kirby Canyon Recycling & Disposal Facility

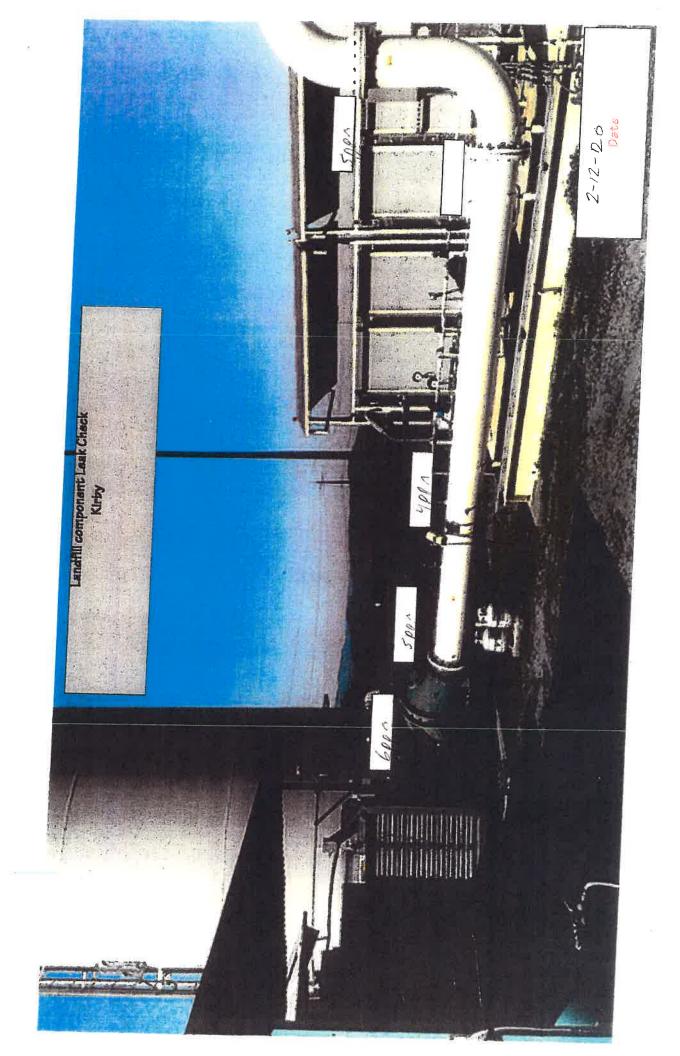
Location	h	nitial Monitorin	g	Correc	tive Action	10-	Day Remonito	ring
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
Flare Station	02/12/20	ND	Leigh wade	-	-	-	-	-

ND= No Exceedances

Table C.2BAAQMD Component Leak MonitoringSummary of Component Leaks Greater than 1,000 ppmv

 2020 QUARTER:
 1

 INITIAL MONITORING PERFORMED BY:
 RES/WM


 FOLLOW-UP MONITORING PERFORMED BY:
 WM

 LANDFILL NAME:
 Kirby Canyon Recycling & Disposal Facility

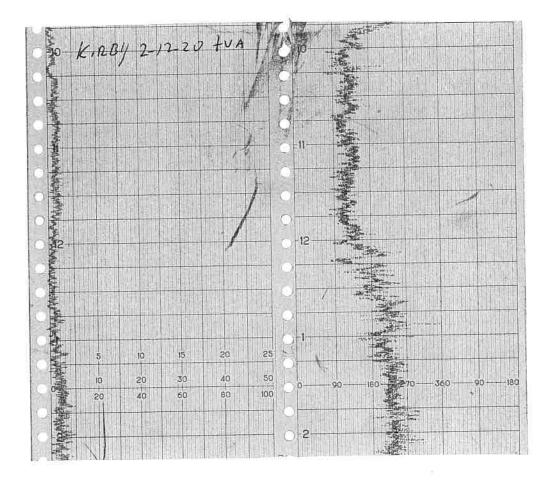
Location	h	nitial Monitorin	g	Correct	tive Action	7-[Day Remonitor	ing
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
Flare Station	02/12/20	ND	Leigh wade	-	-	-	-	-

ND= No Exceedances

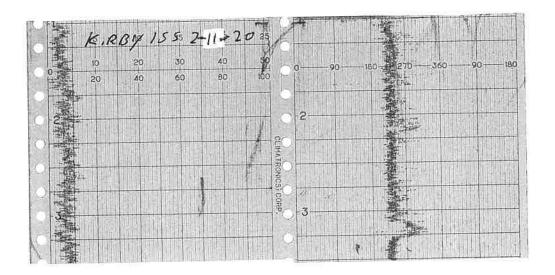
LANDFILL NAME: KIRGY QUARTERLY LFG COMPONENT LEAK MONITORING

INSTRUMENT FID MAKE: Thermo Environr MODEL: TVA 1000 S/N: / のろどる ゲビシア 3

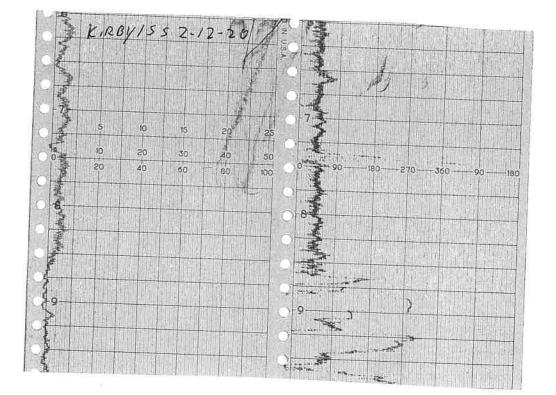
DATE OF SAMPLING: 2~/ 2 - 2 の TECHNICIAN: こぎょう んいっむ


LOCATION OF LEAK	LEAK CONCENTRATION (ppmv)	DATE OF DISCOVERY	TECHNICIAN	ACTION TAKEN TO REPAIR LEAK	DATE OF REPAIR	DATE OF ANY REQUIRED RE- MONITORING	RE-MONITORED CONCENTRATION (ppmv)	
UG FXC+ & DF WC&S								
1								
n the event that an exce	the event that an exceedance is detected, please intiate corr	ie intiate corrective act	tion and re-monitor	rective action and re-monitor the exceedance location within 7 days of the initial exceedance.	n within 7 days of t	he initial exceedance.		
VOTE: Leaks over 500 ppmv methans I, Subarticle 6, Section 95464(b)(1)(B)	VOTE: Leaks over 500 ppmv methane are exceedances at ar , Subarticle 6, Section 95464(b)(1)(B).	dances at any compon	ient containing lan	ry component containing landfill gas, pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article	the 17 of Calif	ornia Code of Regulation	is Subchapter 10, Article	
OTE: Leaks over 1,000	IOTE: Leaks over 1,000 ppmv methane are exceedances at		onent containing la	any component containing landfill gas, pursuant to BAAQMD Regulation 8-34-301.2.	AQMD Regulation	n 8-34-301.2.		

BAAQMD Component Leak Field Data Sheet Template 06052014


Attachment D

Weather Station Data


WIND SPEED & DIRECTION CHART ROLL

WIND SPEED & DIRECTION CHART ROLL

WIND SPEED & DIRECTION CHART ROLL

Environmental Inc.

	<u>16-POINT V</u>	VIND DIRECTION	INDEX	
NO	DIRECTION		DEGREES	
		FROM	CENTER	<u>T0</u>
16	NORTH (N)	348.8	369.0	C.1.3
1	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033.8	045.0	056.3
3	EAST-NORTHEAST (ENE)	056.3	067.5	078.8
4	EAST (E)	078.8	090.0	101.3
5	EAST-SOUTHEAST (ESE)	101.3	<u>112.5</u>	123.8
6	SOUTHEAST (SE)	123.8	<u>135.0</u>	146.3
7	SOUTH-SOUTHEAST (SSE)	146.3	<u>157.5</u>	168.8
8	SOUTH (S)	168.8	180.0	191.3
9	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213.8
10	SOUTHWEST (SW)	213.8	225.0	236.3
11	WEST-SOUTHWEST (WSW)	236.3	<u>247.</u> 5	258.8
12	WEST (W)	258.8	<u>270.0</u>	281.3
13	WEST-NORTHWEST (WNW)	281.3	292.5	303.8
14	NORTHWEST (NW)	30.2.8	315.0	326.3
15	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8

865 Via Lata
Colton, California 92324
(909) 422-1001 Fax (909) 422-0707

Attachment E

Calibration Records

LANDFILL NAME: KIRDY	411	STRUMEN	TMAKE: HARME
MODEL:	10		SERIAL #: 1036346773
MONITORING DATE: 2-12-20		TIME:	0950

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{500}{1000}$ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se	5 4	Downwind Ba Reading: (Highest in 30 se		Background Va (Upwind + Dow 2	
1.6	ppm	2.2	ppm	1.9	ppm

Background Value = <u>1.9</u> ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement#	Stabilized Reading Using Calibration Gas	90% of the Stabilized Reading	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	507 ppm	457 ppm	5	
#2	499 ppm	UUG ppm	7	
#3	500 ppm	450 ppm	2	
Sile for the second	Calculate Response Time (1- 3	+2+3)	#DIV/0 Must be less than 30 seconds	

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)		aneter (A) meter		ment # Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)						Calculate Precision [STD - (B	
#1	6.25	ppm	50>	ppm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
#2	0.13	ppm	455	ppm								
#3	0.07	ppm	500	ppm	0							
Calculate Precision	[STD-B1] + [S	TD-B2] + [5 3	TD-B3] X <u>1</u> X 500	<u>100</u> 1	0-53	#DIV/0!						
	and the second				Must be less than	10%						

Performed By: LOISLWADE

_____Date/Time: <u>Z~12</u> - 23 - ∂950

LANDFILL NAME: KIRBY			INSTRUMENT MAKE: HERNO		
MODEL: JUA 1006	EQUIPMENT #:			SERIAL #: 1036346774	
MONITORING DATE: 2-12-1	20		TIME:	0950	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{500}{2000}$ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Back Reading: (Highest in 30 s		Downwind Background Reading: (Highest in 30 seconds)			Background V (Upwind + Do 2	
1.6	ppm	2.2	8	ppm	1.9	ppm

Background Value = _____ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabi Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	490	ppm	440	ppm	6	
#2	501	ppm	451	ppm	6	
#3	500	ppm	450	ppm	6	
	Calculate Response	Time (<u>1</u> + 3	-2+3)		4 Must be less that	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for 2	Zero Air (A)	Meter Reading for Calibration Gas (B)				on [STD – (B)]	
#1	0.31	ppm	490	ppm	12			
#2	8.20	ppm	-50/	ppm	10			
#3	0.18	ppm	500	ppm	/			
Calculate Precisio	n [STD-B1] + [STD-B2] + [5 3	<u>500 STD-B31 X 1</u> X	<u>100</u> 1	0.73	#DIV/0		
	and the second	and the state of t			Must be less th	an 10%		

Performed By: ANTHONY PERCLAA Date/Time: 2-12-20- 0950

LANDFILL NAME: _ /C, R B Y			INSTRUMENT MAKE: HERAO		
MODEL: HUA 1000 EC	QUIPMENT #:			SERIAL #: 1636246741	
MONITORING DATE: 2-12-20			TIME:	0950	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\int O D$ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
1-6 ppm	2.2 ppm	1.9 ppm

Background Value = <u>7-9</u> ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	\$189	ppm	439	ppm	6	
#2	500	ppm	450	ppm	6	
#3	500	ppm	150	ppm	6	
	Calculate Response T	ime (<u>1</u> 4 3	-2+3)		G Must be less that	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precisio	n [STD - (B)]
#1	0.48	ppm	485	ppm		
#2	0-27	ppm	500	ppm	41	
#3	0.14	ppm	500	ppm	4	
Calculate Precision	[STD-B1] + [S	3 3	TD-B3] X <u>1</u> X 500	<u>100</u> 1	0.73	#DIV/0
	the second s			h	Must be less ti	nan 10%

Performed By: AANON MCBRIDE

_____ Date/Time: 2-12-20- のちょう

LANDFILL NAME: KIRBY	_ INSTRUMENT MAKE: +HERAD		
MODEL:		5	
MONITORING DATE: 212-20	TIME:@\$\$\$0		

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 500 ppm
- Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Back Reading: (Highest in 30 s	6	Downwind Back Reading: (Highest in 30 sec		Background V (Upwind + Do 2	
1.6	ppm	2.2	ppm	1.9	ppm

Background Value = 1.9 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement#	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	507	ppm	457	ppm	.5	
#2	498	ppm	448	ppm	C	
#3	500	ppm	450	ppm	5	
	Calculate Response	Time (<u>1</u> 4 3	<u>-2+3</u>)		Must be less that	#DIV/0!

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for a	for Zero Air (A) Meter Reading for Calcula Calibration Gas (B)				Calculate Precision	[STD – (B)]
#1	0-32	ppm	507	ppm	~ ~		
#2	0.20	ppm	498	ppm			
#3	0-19	ppm	500	ppm	<u> </u>		
Calculate Precisio	on [STD-B1] + [STD-B2] + [5 3	TD-B3] X 1 X 500	<u>100</u> 1	0.60	#DIV/0	
					Must be less that	n 10%	

Performed By: ERNESLRSARE

_____ Date/Time: _____72-20-0950

558

LANDFILL NAME: JCIRBY	INSTRUMENT MAKE: +HERAD
MODEL: EQUIPMENT #:	15 SERIAL #: 1036346772
MONITORING DATE: 2-12-20	TIME: 0950

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{200}{100}$ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Reading:	wind Background ading: thest in 30 seconds) Downwind Background Reading: (Highest in 30 seconds)			Background Value: (Upwind + Downwind 2	
1.6	ppm	2.2	ppm	1.9	ppm

Background Value = <u>/·</u>9 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	492	ppm	442	ppm	7	
#2	501	ppm	451	ppm	>	
#3	500	ppm	450	ppm	7	
	Calculate Response	Time (<u>14</u> 3	+2+3)		> Must be less than	#DIV/0

CALIBRATION PRECISION RECORD

Measurement#	Meter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		Meter Reading for Zero Air (A) Meter Reading for Calculate Precision Gas (B)		Calculate Precision	[STD - (B)]
#1	6.21	ppm	497	ppm	8			
#2	6.16	ppm	501	ppm				
#3	0-11	ppm	500	ppm	7			
Calculate Precisio	n <u>[STD-B1] + [</u> 5	3 3	TD-B3] X <u>1</u> X 500	(<u>100</u> 1	0.60 Must be less tha	#DIV/0!		

Performed By: OMER pona CAN

_____ Date/Time: 2-/2-20 - 0950

LANDFILL NAME:		IN	STRUMENT	MAKE: +HERRO
MODEL: _ 4 1,4 1000	EQUIPMENT #:	10		_SERIAL #: 1036346773
MONITORING DATE:2 - //-	-20			1255

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 2.5 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgrou Reading: (Highest in 30 seco		Downwind Background Ba Reading: (Highest in 30 seconds)		Background Val	
1-6	ppm	2.2	ppm	1.9	ppm

Background Value = <u>/-9</u> ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas Reading		zed	Time to Reach Stabilized Read switching from Calibration Gas	ling after Zero Air to	
#1	23	ppm	20.7	ppm	6	
#2	25	ppm	22.5	ppm	6	
#3	25	ppm	22.5	ppm	6	
	Calculate Response	Time (<u>1</u> - 3	+2+3)		6	#DIV/0!
		_		- N	Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Ga		Calculate Precision [STD – (B)]	
#1	0-32	ppm	23	ppm	7	
#2	0.14	ppm	25	ppm	0	
#3	0-07	ppm	25	ppm	0	
Calculate Precision [STD-B1] + [STD-B2] + [STD-B3] X 1 X 100 3 25 1			2.6	#DIV/0!		
			and the second se		Must be less the	an 10%

Performed By: <u>LEIP LWADE</u> Date/Time: <u>2-11-2012.55</u>

LANDFILL NAME: K.	By	INSTRUMENT MAKE: _ / 146R M D			
MODEL: 4 VA 1000	EQUIPMENT #:	<u>//</u> s	ERIAL #: 1036346774		
MONITORING DATE:	2-11-20	TIME: / 2	255		

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 2.5 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Background		Background Val	
Reading:	Reading:		(Upwind + Dov	
(Highest in 30 seconds)	(Highest in 30 seconds)		2	
/.6 ppm	2.2	ppm	1.9	ppm

Background Value = <u>1 - 9</u> ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	g Using	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	24	ppm	21.6	ppm	7		
#2	25	ppm	22.5	ppm	>		
#3	25	ppm	22.5	ppm	7		
	Calculate Response	Time (<u>1</u> - 3	+2+3)		7	#DIV/0!	
					Must be less tha	n 30 seconds	

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Ga		Calculate Precision	[STD – (B)]
#1	0-24	ppm	24	ppm	1	
#2	0-14	ppm	25	ppm	Ð	
#3	0.06	ppm	25	ppm	0	
Calculate Precision	[STD-B1] + [S]	7D-B2] + [5 3	<u>STD-B3]</u> X <u>1</u> X 25	100 1	/>_}	#DIV/0!

Performed By: Anthony prngith Date/Time: 2-11-20-1255

LANDFILL NAME: K.R.DY		INSTRUMENT MAKE: 1461210		
MODEL: LUALOOD	EQUIPMENT #:	12		_SERIAL #: 1036246741
MONITORING DATE:	20		TIME:	1255

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $2 \mathcal{I}$ ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Backg		Background Value:	
Reading:	Reading:		(Upwind + Downwind)	
(Highest in 30 seconds)	(Highest in 30 seco		2	
/~6 ppm	2.2	ppm	1.9	ppm

Background Value = <u>1,9</u> ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas	ng Using	90% of the Stabil Reading	ized	Time to Reach 9 Stabilized Read switching from 2 Calibration Gas	ing after
#1	24	ppm	21.6	ppm	5	
#2	24	ppm	21.6	ppm	5	
#3	25	ppm	22.5	ppm	5	
Calculate Response Time (<u>1+2+3</u>) 3					5	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Ga		Calculate Precision	[STD – (B)]
#1	039	ppm	24	ppm)	
#2	0.20	ppm	24	ppm	,	
#3	0+16	ppm	25	ppm	0	-
Calculate Precision	[STD-B1] + [S]	Г <u>D-B2] + [</u> 3	<u>STD-B3]</u> X <u>1</u> X 25	100 1	. 2,6	#DIV/0!
					Must be less that	an 10%

Performed By: ARNON MCBRIDY ______ Date/Time: ______ Date/Time: ______

LANDFILL NAME: 1CABY			INSTRUMEN	NT MAKE: HARAG
MODEL: 4 1000	EQUIPMENT #:	13		SERIAL #: 1102746775
MONITORING DATE:	20		TIME:	1255

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
1-6 ppm	2.2 ppm	1.9 ppm

Background Value = $1 \cdot 9$ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas	ng Using	90% of the Stabi Reading	lized	Time to Reach Stabilized Rea switching from Calibration Ga	ding after Zero Air to
#1	24	ppm	2116	ppm	7	
#2	25	ppm	22.5	ppm	7	
#3	25	ppm	22.5	ppm	2	
	Calculate Response	e Time (<u>1</u> - 3	+2+3)		>	#DIV/0!
					Must be less that	an 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading Calibration G		Calculate Precision	ז [STD – (B)]
#1	0.32	ppm	24	ppm	>	
#2	0.19	ppm	25	ppm	0	
#3	6-14	ppm	25	ppm	δ	
Calculate Precision	[STD-B1] + [S	TD-B2] + [\$ 3	<u>STD-B3]</u> X <u>1</u>) 25	< <u>100</u> 1	. 1.3	#DIV/0!
					Must be less the	nan 10%

Performed By: Envorst Ranipor

Date/Time: 2-11-20-1255

LANDFILL NAME: 1CINBY	INSTRUMENT MAKE:A		
MODEL: _ + UAIDOOEQUIPMENT #:	15 SERIAL #: 1036346772		
MONITORING DATE: 2-11-20	TIME:/ 2 J J		

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Reading:	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
7.6 ppm	2.2 pp	n 1.9 ppm

Background Value = <u>/- 9</u> ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readir Calibration Gas	Stabilized Reading Using Calibration Gas		zed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	23	ppm	20.7	ppm	6	
#2	24	ppm	21,6	ppm	6	
#3	25	ppm	27.5	ppm	6	
	Calculate Response	Time (<u>1</u> - 3	+2+3)		6	#DIV/0!
	and the second				Must be less that	1 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zer	o Air (A)	Meter Reading Calibration Ga		Calculate Precision [STD (B)]
#1	6.45	ppm	23	ppm	7	
#2	0.26	ppm	24	ppm	7	
#3	0.14	ppm	25	ppm	G	
Calculate Precision	[STD-B1] + [S1	D-B2] + [5 3	<u>STD-B3]</u> Х <u>1</u> Х 25	100 <u>1</u>	• <i>Y</i> , 6 Must be less that	#DIV/0!

Performed By: OMAR pone CHA Date/Time: 2-11-20-1255

LANDFILL NAME: K.RBY		INSTRUME	NT MAKE: <u><i>fHenno</i></u>
MODEL: EQUIPMENT #:	10		SERIAL #: 1036346773
MONITORING DATE: 2~12~20		TIME:	0555

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Bac Reading: (Highest in 30 se	•	Background Val (Upwind + Dov 2	
1.6	ppm	Z. Z	ppm	1.9	ppm

Background Value = <u>1-9</u> ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabi Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	ppm	21.6	ppm	5	
#2	24	ppm	21.6	ppm	5	
#3	25	ppm	22.5	ppm	5	
	Calculate Response	Time (<u>1</u> - 3	+2+3)		ک	#DIV/0!
					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD -			
#1	0.45	ppm	24	ppm	1	
#2	0.26	ppm	24	ppm	1	
#3	0-21	ppm	25	ppm	б	
Calculate Precision	[STD-B1] + [S	TD-B2] + [5 3	<u>STD-B3]</u> X <u>1</u> 25	X <u>100</u> 1	.2.6	#DIV/0!
					Must be less t	nan 10%

Performed By: <u>Loiphwar</u>

_____Date/Time: 2-/2-20-0555

LANDFILL NAME: _/C.R.	BI		NT MAKE: HITERNO
MODEL: 4VA1000	EQUIPMENT #:	11	SERIAL #: 1036346774
MONITORING DATE:	2 -12-20	TIME:	0555

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	nds) (Highest in 30 seconds)		Background Va (Upwind + Do 2	1
/,6 ppm	2:2	ppm	1.9	ppm

Background Value = 1.9ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	nt # Stabilized Reading Using 90% of the Stabiliz Calibration Gas Reading		lized	Time to Reach Stabilized Read switching from Calibration Gas	ling after Zero Air to	
#1	ZÐ	ppm	20.7	ppm	フ	
#2	24	ppm	21.6	ppm	7	
#3	25	ppm	22.5	ppm	>	
	Calculate Response	e Time (<u>1-</u> 3	+2+3)		7	#DIV/0!
					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]	
#1	0.51	ppm	27	ppm	2	
#2	0-45	ppm	24	ppm)	
#3	0-26	ppm	2.5	ppm	8	
Calculate Precision	[STD-B1] + [S	TD-B2] + [9 3	STD-B3] X 1 2 25	K <u>100</u> 1	. 4.0	#DIV/0!
					Must be less th	ian 10%

Performed By: Anthony PENG(HA _____ Date/Time: 2-12-20-0555

LANDFILL NAME: KROY	INSTRUMENT MAKE: +He	N m o
MODEL: JUA 1000 EC	QUIPMENT #:	1102746775
MONITORING DATE: 2-12-20	2TIME:	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec		Downwind Bac Reading: (Highest in 30 se	-	Background Val (Upwind + Dow 2	
1.6	ppm	2.2	ppm	1.9	ppm

Background Value = /. 9 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas	ng Using	90% of the Stabi Reading	lized	Time to Reach 9 Stabilized Read switching from 2 Calibration Gas	ing after Zero Air to
#1	Z 4	ppm	21.6	ppm	6	
#2	24	ppm	21,6	ppm	6	
#3	25	ppm	22.5	ppm	6	
Calculate Response Time (<u>1+2+3</u>) 3					5	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD	
#1	0-21	ppm	24	ppm)	
#2	0-15	ppm	24	ppm		تي البراجي البراجي ال
#3	6-11	ppm	25	ppm	б	
Calculate Precision	<u>[STD-B1] + [</u>	STD-B2] + [5 3	<u>STD-B3]</u> X <u>1</u> 25	X <u>100</u> 1	. 2.6	#DIV/0!
		3 ₍₁	25	1	Must be less th	an 10

Performed By: <u>AANON MCBRIDE</u> Date/Time: <u>2-12-20-0555</u>

LANDFILL NAME: KRBY		INSTRUMENT MAKE: _ flftnno		
MODEL: _ + v A 1000	EQUIPMENT #:	12	SERIAL #: 103624674/	
MONITORING DATE: 2-12-20)		_TIME:	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Reading:	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
1.6 ppm	2. 7 ppm	1-9 ppm

Background Value = 7.9 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	ppm	21.6	ppm	フ	
#2	25	ppm	22.5	ppm	7	
#3	25	ppm	22.5	ppm	2	
	Calculate Response	Time (<u>1-</u> 3	+2+3)		7	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zo	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD -	
#1	0-18	ppm	24	ppm	1	
#2	0.17	ppm	25	ppm	0	
#3	0-09	ppm	25	ppm	0	
Calculate Precision	[STD-B1] + [S	TD-B2] + [5 3	<u>STD-B3</u> X <u>1</u> X 25	(<u>100</u> 1	. 1-3	#DIV/0!
					Must be less th	an 10%

Performed By: ENNESS RamRES Date/Time: 2-17-20-0555

LANDFILL NAME: _ ic , R B //		INSTRUMENT MAKE: _ +HERMO			
MODEL: 4VA 1000	EQUIPMENT #:	15		SERIAL #: 1036346772	
MONITORING DATE:	2-12-20		TIME:	0555	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{2}{2}$ ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Background Reading: (Highest in 30 seconds)		Background Value (Upwind + Dow 2	
1,6	ppm	2.2	ppm	1.9	ppm

Background Value = <u>1.9</u> ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	ng Using	90% of the Stabil Reading	ized	Time to Reach Stabilized Reac switching from Calibration Gas	ling after Zero Air to
#1	23	ppm	20.7	ppm	5	
#2	25	ppm	22.5	ppm	ىر	
#3	25	ppm	22.5	ppm	5	and the second sec
	Calculate Response	Time (<u>1</u> - 3	+2+3)		J	#DIV/0!
				8	Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	r Zero Air (A) Meter Reading for Calculate Precision [STD Calibration Gas (B)		[STD – (B)]		
#1	0-45	ppm	23	ppm	2	
#2	0.22	ppm	25	ppm	0	
#3	0-14	ppm	25	ppm	0	
Calculate Precision	[STD-B1] + [S	TD-B2] + [5 3	STD-B3 X <u>1</u> X 25	(<u>100</u> 1	. 2-6	#DIV/0!
					Must be less that	n 10%

Performed By: OMARPERACTA Date/Time: 2-12-20-0555

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name: Kirby Date:
 02/19/20

 Time:
 AM 4:00
 PM

 Instrument Make:
 Thermo Scientific
 Model:
 TVA 1000
 S/N: 0928538411

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>500 ppm</u>

3. Adjust meter to read 500 ppm.

Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): 0 ppm (a)
- 2. Downwind Reading (highest in 30 seconds): 0 ppm (b)

Calculate Background Value:

 $\frac{(a) + (b)}{2} \qquad Background = \underline{0} ppm$

Performed by: Markus Bernard

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name: Kirby Canyon Recycling & Disposal
 Date: 3/10/2020

 Time: _____ AM _13:07
 PM

 Instrument Make: Thermo Scientific
 Model: TVA 1000B
 S/N: 092853411

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = 494 ppm

Background Determination Procedure

1. Upwind Reading (highest in 30 seconds):	<u>3.26</u> ppm (a)
2. Downwind Reading (highest in 30 seconds):	<u>7.43</u> ppm (b)

Calculate Background Value:

 $\frac{(a) + (b)}{2} \qquad Background = \underline{6.97} ppm$

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name:
 Kirby Canyon Recycling & Disposal
 Date: 3/11/2020

 Time:
 09:50
 AM
 PM

 Instrument Make:
 Thermo Scientific
 Model:
 TVA 1000B
 S/N: 092853411

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = 496 ppm

Background Determination Procedure

1. Upwind Reading (highest in 30 seconds):	<u>0.11</u> ppm (a)
--	---------------------

2. Downwind Reading (highest in 30 seconds): <u>2.88</u> ppm (b)

Calculate Background Value:

 $\frac{(a) + (b)}{2} \qquad Background = \underline{1.5} ppm$

Performed By: _____ RREED

CALIBRATION PRECISION TEST RECORD

Date:2/19/2	0						
Expiration Date (3 m	onths): <u>5/19/2</u>	0					
Time: <u>10:30</u> AM	PM						
Instrument Make:	Thermo Scientific	Model:	TVA 10	<u>00 B</u>	S/N:	092853841	1
Measurement #1:							
	Meter Reading for Ze	ero Air:	0	ppm (a)			
Meter	Reading for Calibratic	on Gas:	498	ppm (b)			
Measurement #2:							
	Meter Reading for Ze	ero Air:	0	ppm (c)			
Meter	Reading for Calibratic	on Gas:	499	ppm (d)			
Measurement #3:							
	Meter Reading for Ze	ero Air:	0	ppm (e)			
Meter	Reading for Calibratic	on Gas:	496	ppm (f)			
Calculate Precision:							
$\{ (500) - (b) + (500) $	$\frac{ -(d) + (500) - (f) }{3}$	x <u>1</u> x 100					
	5	500					
	1 % (must be	e < than 10%)					
Performed By:	Markus Bernard	_					

RESPONSE TIME TEST RECORD

Date: <u>2/19/2020</u>									
Expiration Date (3 months): <u>5/19/2020</u>									
Time: <u>10:30</u> AMPM									
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000 B</u>	S/N: <u>0928538</u>	3411							
Measurement #1:									
Stabilized Reading Using Calibration Gas:	498	_ ppm							
90% of the Stabilized Reading:	450	_ ppm							
Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:	3	seconds (a)							
switching from Zero An to Canoration Gas.									
Measurement #2:									
Stabilized Reading Using Calibration Gas:	499	_ ppm							
90% of the Stabilized Reading:	450	_ ppm							
Time to Reach 90% of Stabilized Reading after	2	accords (b)							
switching from Zero Air to Calibration Gas:	3	seconds (b)							
Measurement #3:									
Stabilized Reading Using Calibration Gas:	496	_ ppm							
90% of the Stabilized Reading:	450	_ ppm							
Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:	3	seconds (c)							
switching from Zero An to Canoration Gas.	5								
Calculate Response Time:									
$\frac{(a) + (b) + (c)}{3} = \frac{3}{3}$ seconds (must be less than 30 seconds)	econds)								

Performed By: Markus Bernard

SURFACE E	EMISSION	MONITORING	INSTRUMENT
	CALIB	RATION LOG	

/
<i>′</i>
Time: 0900

Serial # <u>#10 1036346773</u>

INSTRUMENT INTEGRITY CHECKLIST		INS		ATION
	<u> </u>		CALIBRATION CHE	СК
Battery test	Pass / Fail	Calibration	Actual	%
		Gas (ppm)	(ppm)	Accuracy
Reading following ignition	2./ ppm			
		G00	500	100%
Leak test	Pass / Fail / NA	700		, = 0 . /
			RESPONSE TIME	
Clean system check	Pass / Fail / NA			0.000
(check valve chatter)	0	Calibration Gas, ppm >00		
	•	90% of Calibra	tion Gas, ppm	150
H ₂ supply pressure gauge	Pass / Fail / NA	Time required t	to attain 90% of Cal G	Bas ppm
(acceptable range 9.5 - 12)	\cup	1.	6	
	~	2.	7	
Date of last factory calibration	1.3.20	3.	9	(#)
	-0			
Factory calibration record	Pass / Fail	Average	7.)	\sim
w/instrument within 3 months	\mathcal{O}	Equal to or less	s than 30 seconds?	V N
		Instrument cali	brated to <u>CH4</u>	gas.
			/	
Comments:				

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

Site:		
Purpose:		/
Operator:		7
Date:2	2-8-20	Time: 0915
Model # <u>70</u>	A 1000B	

Serial # #11 1036346779

INSTRUMENT INTEGRITY CHECKLIST		INSTRUMENT CALIBRATION		
	6		ALIBRATION CHEC	
Battery test	Pass / Fail	Calibration Gas (ppm)	Actual (ppm)	%
Reading following ignition	<u>?,3</u> ppm		(ppm)	Accuracy
Leak test	Pass / Fail / NA	500	500	100%,
Leaklest	Fass / Fail / INA		RESPONSE TIME	
Clean system check (check valve chatter)	eass / Fail / NA	Calibration Gas, p	C	00
	<u> </u>	90% of Calibration		50
H ₂ supply pressure gauge	Pass / Fail / NA		attain 90% of Cal Ga	is ppm
(acceptable range 9.5 - 12)		1	<u>}</u>	
Date of last factory calibration	1-3-20	2 3. /	6	ů.
Factory calibration record	Pase/ Fail		6	\sim
w/instrument within 3 months		Equal to or less th Instrument calibra		gas.

Comments: _____

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

ose:	
ntor: Ret Net	
2-8-20	Time: 0930

Serial # #17- 1036246741

INSTRUMENT INTEGRITY CHECKLIST		INSTRUMENT CALIBRATION		
	\bigcirc	CA	ALIBRATION CHEC	K
Battery test	(Pass / Fail	Calibration	Actual	%
Reading following ignition	ppm	Gas (ppm)	(ppm)	Accuracy
Leak test	Pass / Fail / NA	500	500	100%
	~	RESPONSE TIME		
Clean system check (check valve chatter)	Rass / Fail / NA	Calibration Gas, ppm		
	\sim	90% of Calibration	n Gas, ppm44	50
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	(Pass / Fail / NA		attain 90% of Cal Ga	is ppm
(acceptable range 9.5 - 12)		1	1	
Date of last factory calibration	1-3-20	2 3	6	8
Factory calibration record	Pass / Fail		;0	\bigcirc
w/instrument within 3 months		Equal to or less th Instrument calibra		gas.

Comments: _____

SURFACE EMISSION MONITORING INSTRUMENT
CALIBRATION LOG

Site:		
Purpose:		
Operator:		
Date: 2-8-20	Time:	0945
Model #		
Serial # 13 1102746775		

	CHECKLIST	INSTR		
	CALIBRATION CHECK			
Battery test	Pass / Fail	Calibration	Actual	%
Reading following ignition	<u>2.1</u> ppm	Gas (ppm)	(ppm)	Accuracy
Leak test	ass / Fail / NA	50 <i>0</i>	SOO	1004,
			RESPONSE TIME	
Clean system check (check valve chatter)	Pass / Fail / NA	ail / NA Calibration Gas, ppm <i>SOO</i>		
	\sim	90% of Calibration	n Gas, ppm 🔄 🦉	150
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Agas / Fail / NA	Time required to a 1.	ttain 90% of Cal G	as ppm
Date of last factory calibration	1-3-20	2.		а.
		3		
Factory calibration record	Pass / Fail	Average <u>7</u>	3	\bigcirc
w/instrument within 3 months	\bigcirc	Equal to or less th Instrument calibra		O∕∕ N gas.

Comments:

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

Site:				
Purpose:				
Operator:	M CM			
Date:	2-8-20	Time:	1015	
Model #	TUA 1000 B			

Serial # $\frac{\#15}{1036346172}$

INSTRUMENT INTEGRITY	CHECKLIST	INS ⁻	TRUMENT CALIBRA	TION
	<u> </u>		CALIBRATION CHEC	Ж
Battery test	Pass / Fail	Calibration	Actual	%
Reading following ignition	2.3 ppm	Gas (ppm)	(ppm)	Accuracy
Leak test	(Pags / Fail / NA	500	SOO	100%,
	Pass/Fall/INA		RESPONSE TIME	
Clean system check (check valve chatter)	Bass / Fail / NA			
			· · ·	50
H ₂ supply pressure gauge	Pass / Fail / NA	A Time required to attain 90% of Cal Gas ppm		
(acceptable range 9.5 - 12)	U	1.	6	
Date of last factory calibration	1-3-20	2 3	7	54
Factory calibration record w/instrument within 3 months	Pass / Fail	Average Equal to or less	له الله than 30 seconds?	Ø N
		Instrument calib	rated to <u>CHy</u>	gas.

Comments: _____

	LES UNA #10		
SERIAL NUMBER:	1036346773		
	An M	DATE: _	1-3-20

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID						
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)			
100	100	100	+/- 25			
500	500	500	+/- 125			
10000	10000	10,001	+/- 2500			
< 1	ZERO GAS	0153	< 3			
	PI	D				
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)			
50	50	1	+/- 12.5			
100	100		+/- 25			
500	500		+/- 125			
<1	ZERO GAS	/	< 3			

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

CUSTOMER:RES UNIT	H //
SERIAL NUMBER: 1036346.77	4
TECHNICIAN:M	DATE:

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID						
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)			
100	100	99	+/- 25			
500	500	500	+/- 125			
10000	10000	10,021	+/- 2500			
< 1	ZERO GAS	0,56	< 3			
	Pi	D	3.4			
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)			
50	50	1	+/- 12.5			
100	100	/	+/- 25			
500	500		+/- 125			
< 1	ZERO GAS		< 3			

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

RES UNIT #12 CUSTOMER: TECHNICIAN: ___ DATE: <u>/ -3-20</u>

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID						
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)			
100	100	100	+/- 25			
500	500	499	+/- 125			
10000	10000	10,001	+/- 2500			
< 1	ZERO GAS	0.57	< 3			
	Pi	D				
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)			
50	50	/ .	+/- 12.5			
100	100		+/- 25			
500	500		+/- 125			
< 1	ZERO GAS		< 3			

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

CUSTOMER:	RES CAR	# 13		
SERIAL NUMBE	R: 1102746	775		
TECHNICIAN: _	Ju M	DATE:	1-3-00	

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID						
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)			
100	100	100	+/- 25			
500	500	500	+/- 125			
10000	10000	10,000	+/- 2500			
< 1	ZERO GAS	0,67	< 3			
	Pli	D				
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)			
50	50	1.	+/- 12.5			
100	100	/	+/- 25			
500	500		+/- 125			
< 1	ZERO GAS		< 3			

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

CUSTOMER: RES UNIT #1	5
SERIAL NUMBER:	
TECHNICIAN:M	DATE: 1-3-20

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID							
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)				
100	100	(00	+/- 25				
500	500	SON	+/- 125				
10000	10000	(01000	+/- 2500				
< 1	ZERO GAS	0:73	< 3				
	PI	D					
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)				
50	50	/	+/- 12.5				
100	100	/	+/- 25				
500	500	/	+/- 125				
< 1	ZERO GAS		< 3				

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition Air - Zero THC Oxygen Nitrogen Certification
< 2 PPM
20.9%

Balance

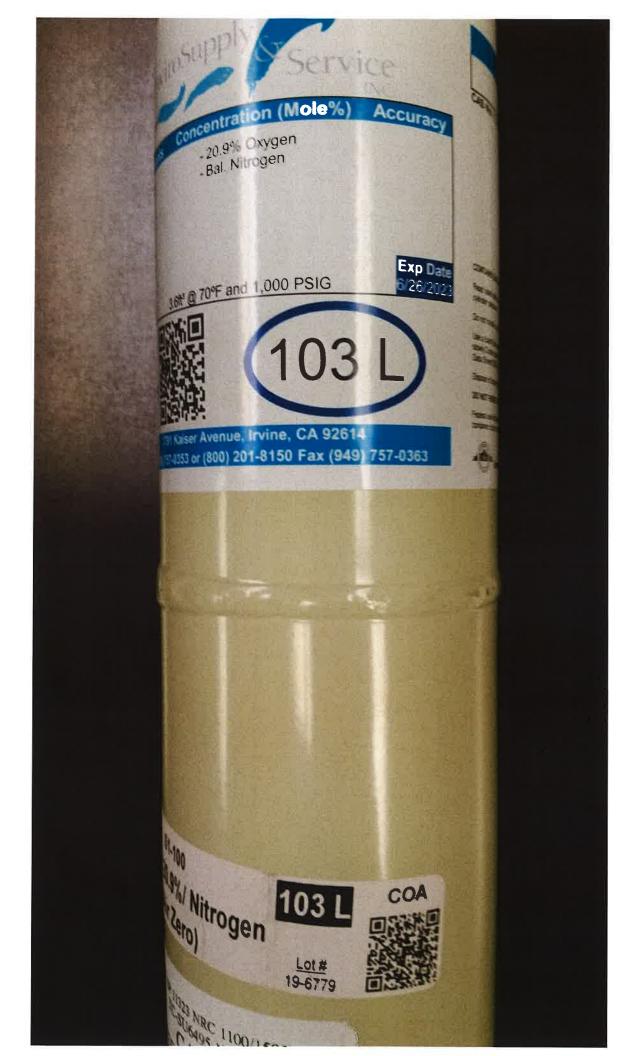
±2%

Analytical Accuracy

Lot #

19-6779

Mfg. Date: 4/3/2019 Parent Cylinder ID Number: 001739, 02268


Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

This mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 4/3/2019

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

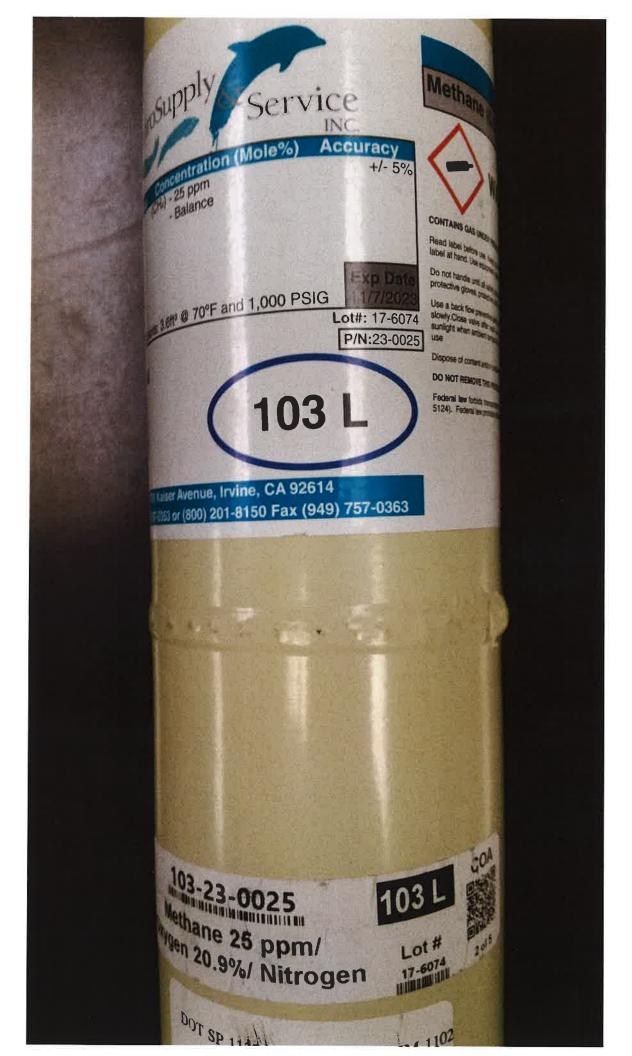
CERTIFICATE OF ANALYSIS

Composition Methane Air

Certification 25 ppm Balance Analytical Accuracy ± 5%

Lot # 17-6074

Mfg. Date: 10/16/2017 Parent Cylinder ID Number: 17161


Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 10/16/2017

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

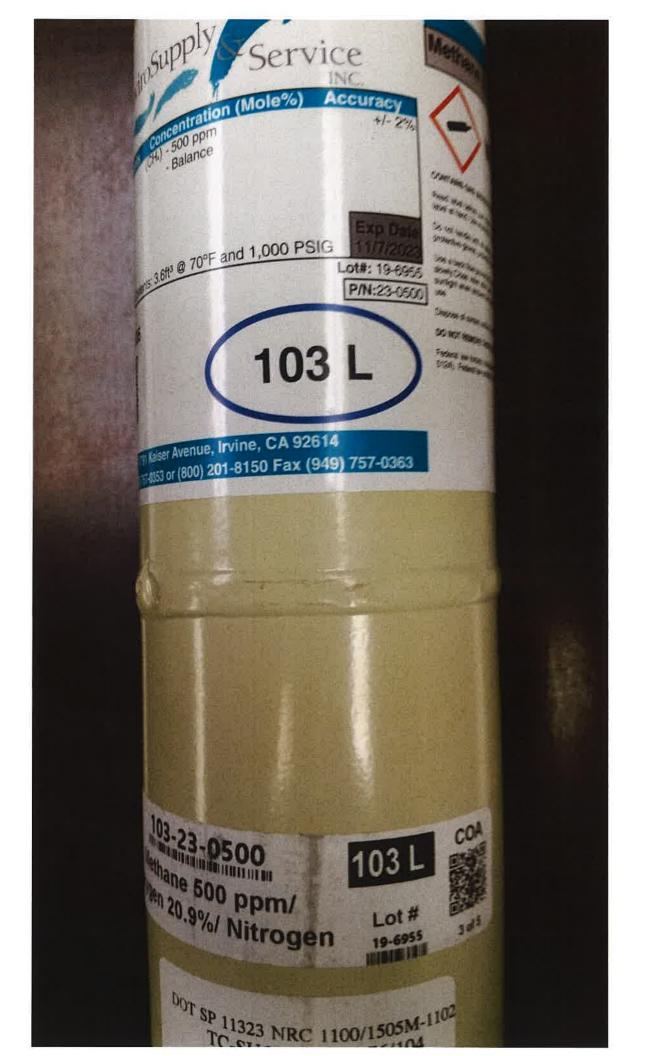
CERTIFICATE OF ANALYSIS

Composition Methane Air Certification 500 ppm Balance Analytical Accuracy ± 2%

Lot #

19-6955

Mfg. Date: 7/24/2019 Parent Cylinder ID 001763 Number:


Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 7/24/2019

APPENDIX G

COMPONENT LEAK CHECK REPORTS

KIRBY CANYON RECYCLING & DISPOSAL FACILITY, San Jose, CA FIRST QUARTER 2020 LFG COMPONENT LEAK MONITORING

 INSTRUMENT
 FID

 MAKE:
 Photo Scientific

 MODEL:
 TVA 1000

 S/N:
 1036346773

DATES OF SAMPLING: February 12, 2020 FIELD TECHNICIANS: Leigh Wade

LOCATION OF LEAK	LEAK CONCENTRATION (ppmv)	DATE OF DISCOVERY	TECHNICIAN	ACTION TAKEN TO REPAIR LEAK	DATE OF REPAIR	DATE OF ANY REQUIRED RE- MONITORING	RE-MONITORED CONCENTRATION (ppmv)
	NO EXCEEDAN	ICES WERE DET	ECTED DURING	THE FIRST QUARTER 20	20 MONITORIN	NG EVENT	
In the event that an e	exceedance is detected, please ir	ntiate corrective a	ction and re-monito	or the exceedance location	n within 7 days o	of the initial exceedance.	
	00 ppmv methane are exceedan 5, Section 95464(b)(1)(B).	ces at any compo	onent containing lar	ndfill gas, pursuant to CAI	RB Title 17 of Ca	alifornia Code of Regula	tions Subchapter 10,
NOTE: Leaks over 1	,000 ppmv methane are exceeda	ances at any com	ponent containing I	andfill gas, pursuant to B	AAQMD Regula	tion 8-34-301.2.	
ND = Not Detected							

KIRBY CANYON RECYCLING & DISPOSAL FACILITY, San Jose, CA SECOND QUARTER 2020 LFG COMPONENT LEAK MONITORING

INSTRUMENT	F
MAKE:	F
MODEL:	Т
S/N:	1

FID Photo Scientific TVA 1000 1036346773

DATES OF SAMPLING: June 2, 2020 FIELD TECHNICIANS: Leigh Wade

LOCATION OF LEAK	LEAK CONCENTRATION (ppmv)	DATE OF DISCOVERY	TECHNICIAN	ACTION TAKEN TO REPAIR LEAK	DATE OF REPAIR	DATE OF ANY REQUIRED RE- MONITORING	RE-MONITORED CONCENTRATION (ppmv)
	NO EXCEEDANCES	S WERE DETEC	TED DURING THE	SECOND QUARTER 20	20 MONITORIN	NG EVENT	
In the event that an excee	edance is detected, please intiat	e corrective actic	n and re-monitor th	ne exceedance location w	vithin 7 days of t	he initial exceedance.	
NOTE: Leaks over 500 p Article 4, Subarticle 6, Se	pmv methane are exceedances ction 95464(b)(1)(B).	at any compone	nt containing landfi	ll gas, pursuant to CARB	Title 17 of Califo	ornia Code of Regulatio	ns Subchapter 10,
NOTE: Leaks over 1,000	ppmv methane are exceedance	es at any compor	ent containing land	fill gas, pursuant to BAA	QMD Regulatior	n 8-34-301.2.	
ND = Not Detected							

APPENDIX H

MONTHLY SOLID WASTE PLACEMENT TOTALS

Solid Waste Placement Totals

January 1, 2020 through June 30, 2020

January	Disposed	February	Disposed	March	Disposed	April	Disposed	Мау	Disposed	June	Disposed
Total in Tons	19,442		18,590		16,459		12,702		21,553		20,436

Total Disposed January 1, 2020 through June 30, 2020 **109,182**

APPENDIX I

WELLFIELD MONITORING LOGS

Wellfield Monitoring Report -January 10, 14, 17, 20, and 28, 2020

Device ID	Date Time	CH₄ % by	CO ₂	0₂ % bv	Balance % by	Initial Temperature	Adjusted Temperature	Initial Pressure	Adjusted Pressure
Device ID	Date Time	% by Volume	% by Volume	% by Volume	% by Volume	(degrees F)	(degrees F)	(in. w.c.)	(in. w.c.)
KCLC0108	1/17/2020 15:04	43.7	35.8	0.4	20.1	89.0	90.0	-24.4	-21.3
KCLC0109	1/17/2020 14:56	50.9	39.0	0.0	10.1	101.0	102.0	-45.9	-45.5
KCLC0110	1/17/2020 14:51	51.5	39.7	0.0	8.8	114.0	115.0	-45.0	-45.2
KCLC0111	1/17/2020 15:29	54.1	41.4	0.0	4.5	108.0	108.0	-44.9	-44.9
KCLC0112	1/17/2020 15:36	49.9	39.9	0.0	10.2	114.0	114.0	-39.3	-39.1
KCLC0139	1/14/2020 20:46	55.6	44.3	0.0	0.1	112.0	113.0	-3.3	-3.6
KCLC0140	1/14/2020 20:43	54.9	44.1	0.0	1.0	104.0	104.0	-1.4	-2.1
KCLC0141	1/14/2020 18:19	55.5	43.4	0.0	1.1	95.0	95.0	-1.8	-2.7
KCLC0142	1/17/2020 20:10	14.3	24.3	0.0	61.4	103.0	102.0	-0.7	-0.2
KCLC0143	1/17/2020 20:19	31.6	40.8	0.0	27.6	101.0	101.0	-0.5	-0.2
KCLC0144	1/17/2020 18:23	56.2	43.7	0.0	0.1	90.0	93.0	-17.9	-36.3
KCLC0145	1/17/2020 18:37	52.6	47.3	0.0	0.1	87.0	89.0	-4.2	-27.7
KCLC0146	1/17/2020 18:28	54.8	45.1	0.0	0.1	86.0	86.0	-5.4	-8.0
KCLC0147	1/10/2020 14:16	52.9	47.0	0.0	0.1	82.0	82.0	-5.4	-8.6
KCLC0148	1/17/2020 18:42	54.4	45.5	0.0	0.1	68.0	63.0	-7.1	-32.8
KCLC0149	1/17/2020 18:47	50.9	49.0	0.0	0.1	99.0	101.0	-1.3	-16.1
KCLC0150	1/17/2020 18:32	56.5	43.4	0.0	0.1	83.0	85.0	-18.3	-34.3
KCLC0151	1/10/2020 14:11	52.0	47.9	0.0	0.1	89.0	90.0	-0.7	-0.5
KCLC0152	1/20/2020 18:32	55.2	44.7	0.0	0.1	60.0	60.0	0.2	0.3
KCLC0152	1/20/2020 18:32	55.2	44.7	0.0	0.1	60.0	50.0	0.2	0.4
KCYN0014	1/17/2020 15:09	40.0	31.7	0.0	28.3	102.0	102.0	-10.1	-8.8
KCYN0027	1/14/2020 17:23	40.2	33.6	2.4	23.8	113.0	102.0	-25.1	-15.0
KCYN0037	1/14/2020 19:41	50.9	43.2	0.0	5.9	104.0	109.0	-4.6	-13.0
KCYN0048	1/17/2020 17:51	38.6	35.0	0.0	26.4	126.0	126.0	-4.0	-1.5
KCYN0051	1/14/2020 19:31	40.8	40.0	0.0	19.2	118.0	118.0	-30.6	-27.8
KCYN0054	1/14/2020 18:31	40.8	35.3	2.5	17.8	103.0	103.0	-30.0	-27.8
KCYN0056	1/14/2020 20:05	48.6	46.8	0.0	4.6	124.0	125.0	-9.2	-9.3
KCYN0057	1/14/2020 20:05	38.6	37.9	0.0	23.5	137.0	135.0	-9.2	-9.3
		30.0	57.9	0.0	23.3	CO was 0 ppm		-9.7	-0.2
KCYN0058	1/14/2020 16:07	40.5	42.0	0.0	7.0		131.0	4.5	4.5
KCYN0058	1/14/2020 20:28	49.5	42.9	0.0	7.6	131.0		-4.5	-4.5
KCYN0058	1/28/2020 16:06	53.2	44.0	0.0	2.8	131.0	131.0	-3.8	-4.7
KCYN0058	1/28/2020 16:40				0.7	CO was 0 ppm		10	
KCYN0062	1/14/2020 16:08	55.5	41.8	0.0	2.7	122.0	122.0	-1.8	-2.4
KCYN0063	1/14/2020 16:04	56.7	41.5	0.0	1.8	116.0	117.0	-0.9	-1.3
KCYN0065	1/14/2020 18:34	55.7	44.2	0.0	0.1	80.0	88.0	-0.6	-2.0
KCYN0066	1/17/2020 17:58	54.3	41.2	0.0	4.5	129.0	128.0	-12.9	-14.7
KCYN0070	1/17/2020 19:04	48.0	37.9	0.0	14.1	115.0	115.0	-5.0	-5.0
KCYN0071	1/14/2020 16:46	44.6	36.3	0.0	19.1	130.0	131.0	-12.3	-10.6
KCYN0072	1/14/2020 16:12	51.5	38.7	0.0	9.8	113.0	113.0	-2.7	-2.6
KCYN0074	1/17/2020 19:16	55.7	42.4	0.0	1.9	129.0	127.0	-43.4	-43.4
KCYN0075	1/14/2020 19:58	54.3	44.3	0.0	1.4	136.0	136.0	-32.7	-32.7
KCYN0076	1/15/2020 20:12	56.0	43.9	0.0	0.1	133.0	134.0	-10.7	-11.9
KCYN0078	1/14/2020 17:08	47.0	37.8	0.0	15.2	134.0	134.0	-31.9	-31.8
KCYN0082	1/14/2020 19:13	30.6	33.3	0.0	36.1	110.0	111.0	-6.0	-2.7
KCYN0083	1/14/2020 19:22	25.3	31.9	0.0	42.8	114.0	112.0	-11.1	-2.8
KCYN0084	1/20/2020 18:18	52.8	41.3	0.0	5.9	119.0	119.0	-1.4	-1.4
KCYN0086	1/15/2020 20:54	56.1	43.8	0.0	0.1	134.0	133.0	-30.3	-31.0

Wellfield Monitoring Report -January 10, 14, 17, 20, and 28, 2020

Device ID	Dring Report -Janu	CH₄ % by Volume	CO ₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCYN0088	1/20/2020 17:02	52.0	38.3	0.0	9.7	112.0	112.0	-40.9	-39.5
KCYN0089	1/15/2020 19:58	55.6	40.0	0.0	4.4	143.0	140.0	-20.8	-19.9
KCYN0090	1/17/2020 20:48	43.5	35.4	0.0	21.1	106.0	107.0	-39.2	-39.4
KCYN0091	1/15/2020 19:53	56.3	43.6	0.0	0.1	132.0	132.0	-9.9	-9.8
KCYN0092	1/17/2020 13:38					CO was 5 ppm			
KCYN0092	1/17/2020 19:27	49.9	38.3	0.0	11.8	131.0	132.0	-37.4	-36.5
KCYN0092	1/20/2020 14:57					CO was 0 ppm			
KCYN0092	1/20/2020 18:42	49.7	38.7	0.0	11.6	128.0	130.0	-34.1	-34.1
KCYN0092	1/20/2020 18:43	49.7	38.7	0.0	11.6	128.0	128.0	-34.1	-34.3
KCYN0093	1/14/2020 16:28	50.6	39.8	0.0	9.6	128.0	129.0	-4.0	-4.0
KCYN0093	1/17/2020 19:31	56.9	42.6	0.0	0.5	126.0	127.0	-7.8	-11.6
KCYN0094	1/17/2020 20:42	45.7	37.5	0.0	16.8	119.0	120.0	-12.8	-12.8
KCYN0095	1/15/2020 19:45	55.3	41.2	0.0	3.5	125.0	125.0	-41.2	-41.6
KCYN0097	1/17/2020 19:09	48.3	39.1	0.0	12.6	123.0	123.0	-13.9	-13.9
KCYN0098	1/15/2020 19:38	51.0	40.4	0.0	8.6	131.0	131.0	-5.7	-5.7
KCYN0099	1/20/2020 16:52	51.6	40.9	0.0	7.5	129.0	127.0	-5.1	-5.1
KCYN0101	1/14/2020 16:56	46.9	36.2	0.0	16.9	103.0	103.0	-1.4	-1.4
KCYN0102	1/20/2020 17:08	51.8	39.0	0.0	9.2	63.0	63.0	-0.8	-0.8
KCYN0103	1/14/2020 16:51	33.2	32.4	0.0	34.4	121.0	121.0	-11.0	-10.5
KCYN0105	1/17/2020 14:48	57.6	41.6	0.0	0.8	110.0	111.0	-41.5	-41.1
KCYN0106	1/17/2020 14:41	56.9	42.0	0.0	1.1	105.0	105.0	-43.5	-43.7
KCYN0118	1/15/2020 20:31	54.4	42.2	0.0	3.4	118.0	118.0	-36.9	-37.2
KCYN0119	1/15/2020 19:50					CO was 0 ppm			
KCYN0119	1/15/2020 20:25	42.3	37.3	0.0	20.4	131.0	132.0	-17.3	-14.7
KCYN0119	1/17/2020 17:35	44.3	37.0	0.0	18.7	131.0	132.0	-13.4	-13.3
KCYN0119	1/17/2020 19:39					CO was 10 ppm	1		
KCYN0120	1/15/2020 20:19	45.1	40.1	0.0	14.8	137.0	138.0	-32.4	-29.1
KCYN0121	1/15/2020 20:34	51.5	41.6	0.0	6.9	118.0	119.0	-38.5	-38.4
KCYN0122	1/15/2020 20:27	56.7	43.2	0.0	0.1	106.0	107.0	-40.1	-37.6
KCYN0123	1/14/2020 20:10	41.6	45.5	0.0	12.9	122.0	123.0	-8.2	-3.4
KCYN0124	1/14/2020 19:24	25.5	33.9	0.4	40.2	102.0	102.0	-1.8	-1.6
KCYN0125	1/14/2020 18:30	55.2	44.7	0.0	0.1	120.0	120.0	-5.0	-9.0
KCYN0126	1/14/2020 19:07	49.7	44.3	0.0	6.0	116.0	116.0	-8.6	-8.5
KCYN0127	1/14/2020 20:23	39.7	36.5	0.0	23.8	119.0	118.0	-2.2	-2.0
KCYN0128	1/17/2020 20:31	42.3	38.3	0.0	19.4	134.0	134.0	-30.4	-26.4
KCYN0129	1/10/2020 14:35	57.2	42.7	0.0	0.1	120.0	121.0	-28.3	-29.6
KCYN0130	1/17/2020 15:18	47.2	37.8	0.0	15.0	115.0	89.0	-13.3	-13.1
KCYN0131	1/17/2020 15:25	56.8	41.8	0.0	1.4	110.0	111.0	-44.0	-44.1
KCYN0133	1/20/2020 16:55	55.2	44.7	0.0	0.1	125.0	126.0	-10.3	-13.8
KCYN0134	1/14/2020 17:12	45.5	38.1	0.0	16.4	110.0	110.0	-16.9	-16.9
KCYN0135	1/14/2020 17:18	46.2	40.2	0.0	13.6	128.0	128.0	-27.4	-27.3
KCYNLR04	1/20/2020 18:15	51.0	37.0	0.1	11.9	99.0	99.0	-34.7	-34.5
KCYNLR08	1/20/2020 16:38	57.4	38.8	0.0	3.8	80.0	80.0	-52.9	-54.1

Wellfield Monitoring Report -January 10, 14, 17, 20, and 28, 2020

Device ID	Date Time	CH₄ % by Volume	CO₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCYNLR11	1/14/2020 15:53	45.9	32.6	3.6	17.9	65.0	65.0	-42.8	-42.8

*The following wells are approved to operate at a temperature HOV of 145°F: 37, 45, 51, 57, 58,65, 66, 71, 74, 76, 78, 86, 87, 89, 91, 98, 120, 128 and 135. Wells 56, 75, 76, 87, 89, and 120, are approved to operate at a temperature HOV of 156°F. As of January 31, 2020, there are 77 vertical wells, 0 horizontal collector, and 3 LCR at KCRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

HOV = Higher Operating Value

Wellfield Monitoring Report -February 1, 4, 5, 8, 26 and 27, 2020

Device ID	Date Time	CH₄ % by Volume	CO ₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjuste Pressur (in. w.c.
KCLC0108	2/1/2020 11:48	50.9	37.9	0.2	11.0	92.0	92.0	-16.8	-20.1
KCLC0109	2/1/2020 12:02	54.4	39.9	0.0	5.7	102.0	102.0	-41.5	-41.4
KCLC0110	2/1/2020 12:08	53.2	40.3	0.0	6.5	114.0	115.0	-40.1	-40.3
KCLC0111	2/1/2020 12:50	56.0	42.0	0.0	2.0	109.0	109.0	-39.3	-39.3
KCLC0112	2/1/2020 12:31	53.1	41.3	0.0	5.6	114.0	115.0	-26.7	-26.7
KCLC0139	2/8/2020 13:08	55.0	44.9	0.0	0.1	114.0	114.0	-4.6	-5.0
KCLC0140	2/8/2020 13:04	49.8	42.2	0.0	8.0	108.0	108.0	-2.4	-2.7
KCLC0141	2/8/2020 12:50	54.1	40.9	0.0	5.0	97.0	97.0	-3.1	-4.6
KCLC0142	2/8/2020 12:34	42.1	30.9	0.0	27.0	99.0	99.0	-0.2	-0.1
KCLC0143	2/8/2020 13:55	55.7	44.2	0.0	0.1	66.0	71.0	-0.1	-0.4
KCLC0144	2/8/2020 16:56	57.4	42.5	0.0	0.1	67.0	66.0	-29.6	-31.2
KCLC0144	2/8/2020 16:57	57.4	42.5	0.0	0.1	67.0	65.0	-29.6	-31.0
KCLC0145	2/1/2020 16:33	35.8	35.6	0.0	28.6	91.0	92.0	-17.6	-17.3
KCLC0146					Offline for filling				
KCLC0147	2/1/2020 16:19	54.4	45.5	0.0	0.1	89.0	89.0	-17.3	-21.6
KCLC0148	2/1/2020 16:37	45.3	39.9	0.0	14.8	86.0	87.0	-10.4	-10.6
KCLC0148	2/1/2020 16:38	45.2	39.8	0.0	15.0	84.0	84.0	-27.0	-27.2
KCLC0149	2/8/2020 17:18	22.6	30.5	0.3	46.6	115.0	117.0	-22.1	-3.6
KCLC0150	2/1/2020 16:28	56.3	43.6	0.0	0.1	86.0	86.0	-19.3	-19.4
KCLC0151	2/1/2020 16:09	53.1	46.8	0.0	0.1	102.0	103.0	-1.9	-1.7
KCLC0152	2/4/2020 15:42	56.6	43.3	0.0	0.1	90.0	91.0	-3.4	-3.5
KCYN0014	2/1/2020 11:56	42.1	31.7	0.0	26.2	102.0	103.0	-7.5	-7.3
KCYN0027				0.0	0.1				-7.0
	2/4/2020 16:24	57.4	42.5			102.0	106.0	-4.8	
KCYN0037	2/8/2020 13:30	43.0	38.3	0.6	18.1	106.0	106.0	-25.4	-25.5
KCYN0048	2/1/2020 13:44	49.4	39.1	0.0	11.5	123.0	124.0	-0.9	-1.6
KCYN0051	2/8/2020 13:43	46.3	41.0	0.0	12.7	117.0	118.0	-25.9	-25.6
KCYN0054	2/8/2020 12:55	57.1	42.8	0.0	0.1	98.0	102.0	-1.0	-8.1
KCYN0056	2/8/2020 13:39	52.2	45.5	0.0	2.3	124.0	124.0	-6.9	-6.9
KCYN0057	2/8/2020 16:14	51.5	41.0	0.0	7.5	123.0	124.0	-1.1	-1.2
KCYN0058	2/8/2020 16:09	53.3	44.8	0.0	1.9	130.0	131.0	-5.1	-5.9
KCYN0062	2/27/2020 12:27	48.2	38.1	0.0	13.7	122.0	122.0	-2.9	-2.9
KCYN0063	2/8/2020 17:42	48.5	39.1	0.0	12.4	117.0	117.0	-2.0	-2.0
KCYN0065	2/8/2020 13:00	56.3	43.6	0.0	0.1	92.0	92.0	-0.3	-1.2
KCYN0066	2/1/2020 13:24	49.8	39.8	0.0	10.4	129.0	129.0	-17.7	-18.2
KCYN0070	2/5/2020 15:34	49.4	38.3	0.0	12.3	115.0	115.0	-4.7	-4.7
KCYN0071	2/5/2020 16:35	48.1	38.7	0.0	13.2	132.0	132.0	-9.1	-9.1
KCYN0072	2/8/2020 17:49	50.3	39.4	0.0	10.3	113.0	113.0	-3.2	-3.3
KCYN0074	2/4/2020 16:12	54.2	42.1	0.0	3.7	133.0	134.0	-43.4	-43.6
KCYN0075	2/8/2020 13:35	55.3	44.6	0.0	0.1	138.0	139.0	-34.2	-34.2
KCYN0076	2/8/2020 17:23	56.4	43.3	0.0	0.3	137.0	137.0	-17.6	-18.0
KCYN0078	2/4/2020 16:39	45.2	38.1	0.0	16.7	135.0	135.0	-34.8	-34.6
KCYN0082	2/26/2020 17:10	44.7	38.7	0.0	16.6	108.0	108.0	-1.1	-0.7
KCYN0083	2/8/2020 12:37	49.6	37.6	0.0	12.8	93.0	94.0	-0.4	-1.0
KCYN0084	2/8/2020 14:02	48.4	40.4	0.0	11.2	122.0	122.0	-2.1	-2.1
KCYN0086	2/8/2020 16:48	56.2	43.7	0.0	0.1	135.0	135.0	-29.7	-30.0
KCYN0087	2/8/2020 16:41	47.6	41.3	0.0	11.1	139.0	139.0	-12.7	-11.4
KCYN0088	2/8/2020 17:35	54.1	39.8	0.0	6.1	112.0	113.0	-38.0	-40.7
KCYN0089	2/4/2020 17:04	53.3	41.0	0.0	5.7	137.0	138.0	-20.4	-21.3
KCYN0090	2/5/2020 16:23	43.2	36.0	0.0	20.8	109.0	109.0	-39.9	-39.9
KCYN0090	2/8/2020 17:32	43.0	35.9	0.0	21.1	107.0	104.0	-39.3	-37.9
KCYN0091	2/4/2020 17:14	54.2	42.3	0.0	3.5	132.0	136.0	-16.2	-16.8
KCYN0092	2/4/2020 16:00	49.5	38.5	0.0	12.0	132.0	132.0	-35.1	-34.5

Wellfield Monitoring Report -February 1, 4, 5, 8, 26 and 27, 2020

Device ID	Date Time	CH₄ % by Volume	CO ₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCYN0092	2/4/2020 16:14				CO was	s 0 ppm			
KCYN0093	2/4/2020 16:18	39.6	36.4	0.0	24.0	128.0	129.0	-17.4	-14.9
KCYN0094	2/5/2020 16:09	44.3	37.8	0.0	17.9	123.0	124.0	-13.2	-12.7
KCYN0095	2/5/2020 16:15	56.0	40.6	0.0	3.4	125.0	126.0	-41.1	-40.9
KCYN0097	2/5/2020 15:41	46.0	38.1	0.0	15.9	122.0	122.0	-13.6	-13.6
KCYN0098	2/5/2020 15:53	47.1	39.1	0.0	13.8	135.0	135.0	-6.9	-6.9
KCYN0099	2/5/2020 15:27	45.1	38.6	0.0	16.3	128.0	130.0	-7.1	-7.1
KCYN0101	2/5/2020 16:45	52.4	38.0	0.0	9.6	98.0	98.0	-1.6	-1.5
KCYN0102	2/5/2020 16:30	53.0	39.8	0.0	7.2	89.0	89.0	-0.9	-1.1
KCYN0103	2/5/2020 16:40	52.1	40.0	0.0	7.9	110.0	115.0	-3.0	-3.3
KCYN0105	2/1/2020 12:14	57.8	42.1	0.0	0.1	112.0	112.0	-40.2	-40.4
KCYN0106	2/1/2020 12:25	57.4	42.4	0.0	0.2	93.0	95.0	-39.5	-39.6
KCYN0118	2/1/2020 14:01	55.3	41.6	0.0	3.1	119.0	119.0	-33.6	-33.2
KCYN0119	2/1/2020 14:11	51.8	39.5	0.0	8.7	129.0	130.0	-11.4	-13.1
KCYN0120	2/1/2020 14:17	42.5	34.2	3.1	20.2	70.0	70.0	-29.5	-28.3
KCYN0121	2/1/2020 13:51	57.1	42.8	0.0	0.1	117.0	118.0	-23.4	-23.5
KCYN0122	2/1/2020 14:06	57.5	42.4	0.0	0.1	108.0	108.0	-31.9	-32.6
KCYN0123	2/8/2020 16:05	53.1	43.2	0.0	3.7	121.0	122.0	-1.3	-1.5
KCYN0124	2/8/2020 13:48	40.5	37.5	0.0	22.0	93.0	93.0	-0.3	-0.3
KCYN0125	2/8/2020 13:18	55.8	43.8	0.0	0.4	120.0	121.0	-12.6	-12.7
KCYN0126	2/8/2020 13:13	50.5	43.8	0.0	5.7	116.0	117.0	-8.4	-8.4
KCYN0127	2/8/2020 16:22	51.5	40.2	0.0	8.3	116.0	116.0	-0.6	-0.6
KCYN0128	2/8/2020 16:18	51.0	42.0	0.0	7.0	133.0	133.0	-18.9	-18.9
KCYN0129	2/1/2020 16:05	57.5	42.4	0.0	0.1	119.0	120.0	-17.7	-17.4
KCYN0130	2/1/2020 13:05	47.3	36.8	0.0	15.9	115.0	116.0	-11.6	-11.6
KCYN0131	2/1/2020 12:56	57.7	42.1	0.0	0.2	119.0	120.0	-38.8	-38.8
KCYN0133	2/4/2020 16:33	48.4	40.0	0.0	11.6	126.0	126.0	-27.9	-27.9
KCYN0134	2/4/2020 16:46	45.2	38.4	0.0	16.4	110.0	110.0	-18.4	-18.4
KCYN0135	2/4/2020 16:52	46.9	40.3	0.0	12.8	128.0	129.0	-28.9	-28.9
KCYNLR04	2/8/2020 16:31	49.6	37.0	0.4	13.0	99.0	99.0	-34.6	-31.6
KCYNLR08	2/5/2020 15:19	57.1	38.9	0.0	4.0	82.0	82.0	-45.2	-53.3
KCYNLR11	2/1/2020 16:49	43.7	31.2	4.5	20.6	70.0	70.0	-40.6	-40.4

*The following wells are approved to operate at a temperature HOV of 145°F: 37, 45, 51, 57, 58,65, 66, 71, 74, 76, 78, 86, 87, 89, 91, 98, 120, 128 and 135. Wells As of February 29, 2020, there are 77 vertical wells, 0 horizontal collector, and 3 LCR at KCRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

HOV = Higher Operating Value

Wellfield Monitoring Report -March 4, 18, 20, 23 and 25, 2020

			3 and 25, 20						
Device ID	Date Time	CH₄ % by Volume	CO₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCLC0108	3/18/2020 15:22	44.2	36.2	0.0	19.6	88.0	88.0	-24.3	-24.3
KCLC0109	3/18/2020 15:17	55.2	40.5	0.0	4.3	98.0	98.0	-36.0	-36.0
KCLC0110	3/18/2020 15:11	54.4	40.8	0.0	4.8	115.0	116.0	-34.3	-34.3
KCLC0111	3/18/2020 15:41	56.5	40.0	0.0	1.1	102.0	102.0	-34.5	-33.3
KCLC0112	3/18/2020 15:41	52.4	42.4	0.0	6.3	115.0	115.0	-33.5	-29.4
KCLC0139	3/20/2020 16:19	55.3	41.3	0.0	0.3	113.0	114.0	-29.5	-29.4
KCLC0139	3/20/2020 16:24	53.7	44.0	0.0	3.3	108.0	108.0	-1.3	-2.9
KCLC0140	3/20/2020 15:45	47.8	39.1	0.0	13.1	97.0	97.0	-4.7	-3.1
KCLC0141	3/20/2020 13:43	32.1	29.4	0.0	38.5	94.0	97.0	-4.7	-4.7
		32.1							
KCLC0143	3/20/2020 15:58		36.7	0.0	32.9	71.0	71.0	-0.5	-0.6
KCLC0144	3/23/2020 17:35	49.0	50.9	0.0	0.1	66.0	66.0	-33.5	-33.8
KCLC0145	3/4/2020 16:11	46.9	41.5	0.0	11.6 Offline f	92.0	93.0	-17.2	-22.3
KCLC0146	0/00/0000 47-04	50.4	10.0			0	00.0	05.0	05.4
KCLC0147	3/23/2020 17:04	58.1	40.6	0.0	1.3	89.0	89.0	-25.2	-25.1
KCLC0148	3/23/2020 17:42	54.2	45.7	0.0	0.1	84.0	84.0	-5.4	-2.4
KCLC0149	3/23/2020 17:51	43.2	40.8	2.2	13.8	117.0	117.0	-15.9	-14.4
KCLC0150	- / /				Offline f	0			
KCLC0151	3/23/2020 17:07	50.6	38.5	0.4	10.5	103.0	103.0	-0.3	-0.4
KCLC0152	3/18/2020 16:18	56.6	43.3	0.0	0.1	61.0	56.0	1.8	1.8
KCLC0152	3/18/2020 16:19	56.6	43.3	0.0	0.1	61.0	52.0	1.8	1.7
KCYN0014	3/18/2020 15:26	47.3	33.1	0.0	19.6	101.0	102.0	-6.1	-6.3
KCYN0027	3/20/2020 13:28	54.4	39.8	0.0	5.8	113.0	113.0	-9.3	-8.4
KCYN0037	3/20/2020 14:25	54.9	45.0	0.0	0.1	70.0	70.0	0.8	0.8
KCYN0037	3/20/2020 14:28	54.9	45.0	0.0	0.1	70.0	70.0	0.8	0.0
KCYN0048	3/20/2020 11:51	41.4	35.0	0.1	23.5	122.0	121.0	-1.2	-0.7
KCYN0051	3/20/2020 15:53	46.1	40.2	0.0	13.7	118.0	118.0	-23.3	-24.0
KCYN0054	3/20/2020 16:38	37.0	29.1	4.9	29.0	102.0	102.0	-20.9	-21.1
KCYN0056	3/20/2020 16:06	54.2	45.7	0.0	0.1	124.0	124.0	-4.9	-5.0
KCYN0057	3/20/2020 17:19	51.7	41.3	0.0	7.0	124.0	57.0	-1.6	-1.8
KCYN0058	3/20/2020 17:14	52.4	42.6	0.0	5.0	131.0	131.0	-6.3	-6.3
KCYN0062	3/23/2020 14:36	50.1	37.9	0.0	12.0	122.0	122.0	-3.1	-3.1
KCYN0063	3/25/2020 14:42	48.6	38.2	0.0	13.2	117.0	117.0	-1.8	-1.8
KCYN0065	3/20/2020 16:28	55.4	44.5	0.0	0.1	92.0	92.0	-0.5	-0.6
KCYN0066	3/20/2020 11:56	50.5	39.5	0.0	10.0	128.0	128.0	-16.7	-16.6
KCYN0070	3/25/2020 15:02	52.7	40.0	0.0	7.3	115.0	116.0	-3.6	-43.6
KCYN0071	3/20/2020 13:52	48.9	39.0	0.0	12.1	132.0	133.0	-9.0	-9.0
KCYN0072	3/23/2020 14:40	46.3	37.1	0.0	16.6	113.0	113.0	-3.7	-3.6
KCYN0074	3/20/2020 12:38	56.0	42.4	0.0	1.6	133.0	134.0	-41.5	-41.5
KCYN0075	3/20/2020 16:13	55.1	44.8	0.0	0.1	139.0	139.0	-30.1	-30.1
KCYN0076	3/20/2020 11:21	52.3	40.3	0.0	7.4	138.0	139.0	-21.1	-21.1
KCYN0078	3/20/2020 12:30	50.1	39.0	0.0	10.9	134.0	135.0	-24.9	-24.8
KCYN0082	3/23/2020 16:34	50.0	39.9	0.0	10.1	108.0	109.0	-0.8	-0.8
KCYN0083	3/20/2020 14:22	54.8	40.6	0.0	4.6	98.0	100.0	-0.4	-1.3
KCYN0084	3/20/2020 16:02	46.3	36.8	0.0	16.9	122.0	122.0	-1.7	-1.9
KCYN0086	3/18/2020 16:10	57.0	42.9	0.0	0.1	135.0	119.0	-27.5	-27.6
KCYN0087	3/23/2020 16:57	48.1	40.7	0.0	11.2	139.0	139.0	-13.3	-13.3
KCYN0088	3/20/2020 13:36	53.2	39.0	0.0	7.8	112.0	112.0	-37.4	-37.8
KCYN0089	3/23/2020 17:17	53.4	43.6	0.0	3.0	138.0	138.0	-23.2	-23.2
KCYN0090	3/23/2020 16:09	45.7	37.1	0.0	17.2	109.0	109.0	-34.3	-34.3
KCYN0091	3/23/2020 15:35	47.9	38.9	0.0	13.2	136.0	136.0	-23.0	-23.0
KCYN0092	3/20/2020 12:34	50.9	39.1	0.0	10.0	132.0	132.0	-32.7	-32.1
KCYN0093	3/20/2020 12:43	46.9	37.5	0.0	15.6	127.0	127.0	-8.3	-8.3

Wellfield Monitoring Report -March 4, 18, 20, 23 and 25, 2020

Device ID	Date Time	CH₄ % by Volume	CO₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCYN0094	3/23/2020 15:53	46.0	37.7	0.0	16.3	124.0	124.0	-12.1	-12.1
KCYN0095	3/23/2020 15:57	56.6	41.8	0.0	1.6	126.0	126.0	-40.6	-40.4
KCYN0097	3/23/2020 15:25	47.0	36.8	0.0	16.2	122.0	122.0	-14.1	-14.1
KCYN0098	3/23/2020 15:48	47.8	38.2	0.0	14.0	135.0	135.0	-7.3	-7.3
KCYN0099	3/23/2020 15:20	53.4	39.5	0.0	7.1	115.0	115.0	-3.9	-3.9
KCYN0101	3/20/2020 13:47	47.5	36.7	0.0	15.8	101.0	101.0	-1.4	-1.4
KCYN0102	3/23/2020 16:14	50.0	39.4	0.0	10.6	89.0	89.0	-1.4	-1.3
KCYN0103	3/20/2020 13:43	53.8	41.4	0.0	4.8	108.0	112.0	-1.4	-2.9
KCYN0105	3/18/2020 15:06	57.7	42.2	0.0	0.1	100.0	100.0	-29.1	-29.5
KCYN0106	3/18/2020 14:55	19.1	14.1	14.1	52.7	50.0	50.0	-33.1	-33.2
KCYN0106	3/18/2020 15:00	17.7	13.2	14.8	54.3	49.0	49.0	-35.5	-33.2
KCYN0118	3/20/2020 11:38	57.7	42.2	0.0	0.1	120.0	120.0	-28.9	-29.1
KCYN0119	3/20/2020 11:33	48.1	37.8	0.0	14.1	132.0	132.0	-14.2	-14.2
KCYN0120	3/23/2020 17:28	38.7	31.3	4.8	25.2	111.0	111.0	-35.4	-35.0
KCYN0121	3/20/2020 11:43	56.1	42.0	0.0	1.9	118.0	118.0	-29.4	-29.4
KCYN0122	3/20/2020 11:35	57.0	42.9	0.0	0.1	106.0	107.0	-29.5	-29.5
KCYN0123	3/23/2020 16:52	54.2	44.7	0.0	1.1	122.0	122.0	-2.2	-2.1
KCYN0124	3/20/2020 15:49	51.5	42.5	0.0	6.0	93.0	93.0	-0.1	-0.1
KCYN0125	3/20/2020 16:33	55.4	44.5	0.0	0.1	121.0	121.0	-2.4	-2.4
KCYN0126	3/20/2020 17:09	52.4	43.2	0.0	4.4	117.0	117.0	-7.1	-7.0
KCYN0127	3/20/2020 17:31	46.9	39.0	0.0	14.1	116.0	116.0	-1.0	-1.1
KCYN0128	3/20/2020 17:23	50.7	41.0	0.0	8.3	133.0	133.0	-19.9	-19.9
KCYN0129	3/18/2020 16:14	56.5	43.4	0.0	0.1	118.0	118.0	-5.2	-5.3
KCYN0130	3/18/2020 15:31	50.4	37.8	0.0	11.8	115.0	116.0	-10.3	-10.2
KCYN0131	3/18/2020 15:37	57.6	42.3	0.0	0.1	117.0	116.0	-34.0	-34.2
KCYN0133	3/20/2020 12:25	54.9	41.2	0.0	3.9	126.0	127.0	-18.2	-20.6
KCYN0134	3/20/2020 13:11	47.0	39.1	0.0	13.9	108.0	108.0	-12.7	-12.7
KCYN0135	3/20/2020 13:06	52.5	42.6	0.0	4.9	128.0	129.0	-18.9	-16.8
KCYNLR04	3/20/2020 14:09	51.1	37.3	0.0	11.6	99.0	99.0	-30.8	-30.4
KCYNLR08	3/25/2020 14:08	0.3	0.3	22.3	77.1	82.0	82.0	-55.0	-54.8
KCYNLR08	3/25/2020 14:11	0.3	0.3	22.3	77.1	82.0	82.0	-55.0	-54.9
KCYNLR11	3/23/2020 13:56	57.5	39.3	0.0	3.2	61.0	61.0	-35.9	-36.0

*The following wells are approved to operate at a temperature HOV of 145°F: 37, 45, 51, 57, 58,65, 66, 71, 74, 76, 78, 86, 87, 89, 91, 98, 120, 128 As of March 31, 2020, there are 77 vertical wells, 0 horizontal collector, and 3 LCR at KCRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

HOV = Higher Operating Value

Wellfield Monitoring Report -April 1, 8, 14, 15, and 16, 2020

	ring Report -April	1, 0, 14, 13	, anu 10, 20	520	1	1			1
Device ID	Date Time	CH₄ % by Volume	CO₂ % by Volume	O₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
								. ,	. ,
KCLC0108	4/16/2020 8:44	44.6	35.9	1.1	18.4	90.8	90.8	-25.1	-25.1
KCLC0109	4/16/2020 8:38	56.2	40.6	0.1	3.1	97.6	97.7	-38.8	-38.8
KCLC0110	4/16/2020 8:30	55.3	41.1	0.0	3.6	114.0	113.9	-38.3	-38.2
KCLC0111	4/15/2020 14:56	54.9	41.2	0.0	3.9	110.1	110.1	-36.6	-36.6
KCLC0112	4/15/2020 14:50	50.2	39.2	0.0	10.6	115.9	115.8	-34.4	-34.1
KCLC0139	4/14/2020 14:49	56.0	42.7	0.1	1.2	110.7	113.6	-8.4	-10.1
KCLC0140	4/14/2020 14:26	37.8	35.3	0.1	26.8	110.7	109.8	-6.4	-2.8
KCLC0141	4/14/2020 13:58	41.2	35.7	0.0	23.1	97.5	97.6	-5.3	-3.3
KCLC0142	4/14/2020 13:51	14.5	23.5	0.3	61.7	100.2	98.4	-0.2	-0.1
KCLC0143	4/15/2020 10:05	26.4	32.4	0.0	41.2	105.7	102.5	-0.7	-0.2
KCLC0144	4/15/2020 12:29	57.2	42.4	0.0	0.4	90.2	90.1	-30.4	-30.8
KCLC0145	4/16/2020 9:24	57.3	42.6	0.1	0.0	54.4	54.4	-33.8	-34.1
KCLC0146	4/15/2020 12:07	57.7	42.2	0.0	0.1	87.1	88.1	-1.8	-4.8
KCLC0147	4/15/2020 8:10	56.7	43.3	0.0	0.0	89.3	89.3	-27.0	-26.9
KCLC0148	4/15/2020 12:24	56.3	42.6	0.0	1.1	88.8	88.8	-6.4	-13.5
KCLC0149	4/15/2020 12:16	25.8	28.8	6.3	39.1	110.1	110.3	-15.8	-3.2
KCLC0149	4/15/2020 12:36	30.3	34.1	3.9	31.7	109.7	108.2	-3.2	-3.1
KCLC0150	4/15/2020 8:15	58.5	41.5	0.0	0.0	67.6	67.6	-23.8	-23.7
KCLC0151	4/15/2020 11:51	56.4	43.6	0.0	0.0	88.3	88.4	2.7	2.7
KCLC0152	4/15/2020 7:55	57.9	42.0	0.1	0.0	61.6	61.2	1.7	1.7
KCYN0014	4/16/2020 8:51	39.2	31.0	0.0	29.8	101.2	100.7	-8.6	-7.3
KCYN0027	4/14/2020 12:18	54.9	39.7	0.5	4.9	114.1	114.3	-3.1	-5.4
KCYN0037	4/14/2020 15:15	53.7	41.7	0.3	4.3	99.8	100.1	-4.7	-4.7
KCYN0037	4/14/2020 15:19	53.6	42.0	0.3	4.1	99.8	99.8	-4.6	-4.6
KCYN0048	4/15/2020 14:10	55.6	42.0	0.0	2.4	105.9	109.7	0.2	-0.2
KCYN0048	4/15/2020 14:14	53.7	41.5	0.0	4.8	110.4	110.2	-0.1	-0.1
KCYN0051	4/15/2020 10:16	43.5	37.7	0.0	18.8	118.5	118.0	-27.2	-22.2
KCYN0054	4/14/2020 14:06	57.0	42.0	0.1	0.9	83.5	86.7	-0.1	-0.6
KCYN0056	4/15/2020 10:33	52.3	43.2	0.0	4.5	124.4	124.4	-6.1	-6.1
KCYN0057	4/15/2020 8:59	45.8	39.4	0.0	14.8	127.9	128.2	-2.9	-2.9
KCYN0058	4/15/2020 9:16	45.9	40.6	0.0	13.5	130.9	130.9	-7.3	-6.6
KCYN0062	4/14/2020 8:07	46.1	36.9	0.2	16.8	121.1	121.5	-3.4	-3.1
KCYN0063	4/14/2020 7:55	46.6	36.1	0.0	17.3	116.4	115.9	-2.2	-1.7
KCYN0065	4/14/2020 14:15	36.2	28.8	6.3	28.7	95.2	92.4	-2.4	-0.2
KCYN0065	4/14/2020 14:38	53.6	39.3	0.9	6.2	91.0	91.0	-0.2	-0.1
KCYN0066	4/15/2020 14:21	46.0	36.8	0.0	17.2	129.7	129.7	-19.1	-18.1
KCYN0070	4/14/2020 8:50	46.6	36.2	0.0	17.2	114.8	114.7	-7.8	-6.8
KCYN0071	4/14/2020 12:49	45.4	37.2	0.4	17.0	132.3	132.3	-9.6	-8.1
KCYN0072	4/14/2020 8:15	45.3	35.7	0.0	19.0	113.2	112.3	-4.0	-3.2
KCYN0074	4/14/2020 10:46	56.8	41.0	0.0	2.2	133.4	133.5	-43.1	-42.7
KCYN0075	4/14/2020 15:23	54.6	43.3	0.0	2.1	122.2	122.8	-33.4	-33.4
KCYN0076	4/14/2020 9:49	52.3	40.0	0.6	7.1	139.5	139.5	-23.3	-23.3
KCYN0078	4/14/2020 10:31	48.6	36.6	0.0	14.8	134.4	134.4	-32.0	-31.6
KCYN0082	4/15/2020 10:58	53.0	39.3	0.0	7.7	109.9	110.2	-0.7	-0.8
KCYN0083	4/15/2020 10:53	38.4	33.6	0.0	28.0	111.3	109.5	-2.3	-1.2
KCYN0084	4/15/2020 9:57	43.6	36.0	0.0	20.4	122.4	122.1	-2.2	-2.0
KCYN0086	4/15/2020 8:34	57.0	41.8	0.1	1.1	134.4	134.5	-32.0	-32.2
KCYN0087	4/16/2020 9:57	45.7	39.5	0.1	14.7	143.9	143.5	-11.2	-10.7
KCYN0087	4/16/2020 10:14			1	I	CO was 5 ppm			1
KCYN0088	4/14/2020 12:56	52.7	38.3	0.1	8.9	112.7	112.7	-38.3	-40.6
KCYN0089	4/14/2020 9:19	55.3	40.1	0.1	4.5	143.2	141.1	-23.3	-40.0
		00.0		J				20.0	20.0

Wellfield Monitoring Report -April 1, 8, 14, 15, and 16, 2020

Device ID	Date Time	CH₄ % by Volume	CO ₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCYN0090	4/16/2020 12:33	46.2	35.9	0.1	17.8	106.1	105.9	-33.6	-33.9
KCYN0091	4/14/2020 9:35	47.3	38.7	0.0	14.0	134.6	135.0	-23.3	-21.7
KCYN0092	4/14/2020 11:56	51.4	38.5	0.0	10.1	131.7	131.8	-33.8	-34.6
KCYN0093	4/14/2020 11:49	48.7	37.1	0.1	14.1	128.0	128.0	-11.0	-10.9
KCYN0094	4/16/2020 12:19	44.1	36.3	0.1	19.5	124.6	124.5	-12.8	-12.8
KCYN0095	4/14/2020 13:10	56.6	40.5	0.1	2.8	126.1	126.0	-37.9	-40.0
KCYN0097	4/14/2020 9:00	45.6	36.3	0.0	18.1	120.7	120.4	-14.6	-12.6
KCYN0098	4/16/2020 11:59	46.8	37.7	0.1	15.4	135.2	135.2	-7.3	-7.3
KCYN0099	4/14/2020 8:41	41.6	36.2	0.0	22.2	129.1	129.5	-8.8	-5.6
KCYN0101	4/14/2020 12:27	45.7	34.7	0.1	19.5	103.3	103.1	-1.9	-1.3
KCYN0102	4/14/2020 12:33	47.4	36.9	0.1	15.6	94.7	94.3	-0.9	-0.9
KCYN0103	4/14/2020 12:39	42.0	35.4	0.1	22.5	112.3	112.3	-4.1	-4.1
KCYN0105	4/16/2020 8:24	58.0	41.9	0.1	0.0	103.7	103.9	-37.5	-37.8
KCYN0106	4/1/2020 13:43	56.7	42.9	0.2	0.2	63.0	63.0	-27.2	-27.3
KCYN0118	4/15/2020 13:12	57.5	40.8	0.0	1.7	119.4	119.3	-32.1	-32.3
KCYN0119	4/15/2020 13:45	58.3	40.7	0.0	1.0	124.0	124.7	1.4	-0.1
KCYN0120	4/15/2020 13:29	39.9	30.8	5.4	23.9	83.2	83.9	-35.0	-34.9
KCYN0120	4/15/2020 13:35	46.9	37.7	2.3	13.1	83.5	83.3	-35.4	-35.2
KCYN0121	4/15/2020 14:00	55.1	41.4	0.0	3.5	118.1	118.1	-33.7	-33.6
KCYN0122	4/15/2020 13:20	58.1	41.6	0.0	0.3	106.2	97.4	-33.4	-33.7
KCYN0123	4/15/2020 9:08	46.7	42.0	0.0	11.3	122.9	122.9	-4.8	-4.2
KCYN0124	4/15/2020 10:27	36.4	34.0	1.3	28.3	91.1	91.2	-0.6	-0.6
KCYN0125	4/14/2020 14:33	54.8	42.0	0.1	3.1	121.7	121.7	-13.4	-13.4
KCYN0126	4/14/2020 15:07	48.4	40.9	0.1	10.6	116.8	117.0	-9.1	-6.8
KCYN0126	4/14/2020 15:10	48.2	41.2	0.0	10.6	117.0	117.0	-6.7	-7.2
KCYN0127	4/15/2020 9:40	42.1	36.5	0.0	21.4	124.4	123.2	-1.4	-1.1
KCYN0128	4/15/2020 8:52	49.2	40.4	0.0	10.4	133.6	133.6	-20.9	-20.9
KCYN0129	4/15/2020 8:41	58.0	41.9	0.0	0.1	118.3	118.2	-6.2	-5.1
KCYN0130	4/15/2020 14:35	44.6	34.8	0.0	20.6	115.6	116.0	-11.9	-11.3
KCYN0131	4/15/2020 15:03	55.7	40.7	0.0	3.6	108.7	113.0	-38.1	-38.1
KCYN0133	4/16/2020 9:39	55.0	41.2	0.3	3.5	121.7	121.8	-32.9	-32.9
KCYN0134	4/14/2020 13:22	44.7	36.5	0.1	18.7	108.9	107.4	-14.6	-12.4
KCYN0135	4/14/2020 13:28	47.4	39.5	0.1	13.0	128.4	128.4	-27.4	-27.4
KCYNLR04	4/14/2020 13:37	49.7	36.1	1.0	13.2	99.0	99.0	-31.9	-31.7
KCYNLR08	4/8/2020 9:06	59.1	40.5	0.2	0.2	80.0	80.0	-53.0	-53.3
KCYNLR11	4/16/2020 13:13	52.0	36.0	1.9	10.1	79.1	79.1	-36.4	-37.5

*The following wells are approved to operate at a temperature HOV of 145°F: 37, 45, 51, 57, 58,65, 66, 71, 74, 76, 78, 86, 87, 89, 91, 98, 120, As of April 30, 2020, there are 76 vertical wells, 0 horizontal collector, and 3 LCR at KCRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

HOV = Higher Operating Value

Wellfield Monitoring Report - May 11, 12, 13, 20, and 22, 2020

		CH₄	CO2	O ₂	Balance	Initial	Adjusted	Initial	Adjusted
Device ID	Date Time	% by Volume	% by Volume	% by Volume	% by Volume	Temperature (degrees F)	Temperature (degrees F)	Pressure (in. w.c.)	Pressure (in. w.c.)
KCLC0108	5/11/2020 10:06						99.0	. ,	-22.3
KCLC0108		33.9	30.4	3.6	32.1	99.0		-33.7	
	5/11/2020 10:16	49.6	40.5	0.0	9.9	104.0	100.0	-47.8	-47.8
KCLC0110	5/11/2020 10:25	48.7	39.3	0.6	11.4	115.0	116.0	-47.5	-47.2
KCLC0111	5/11/2020 9:43	54.3	42.9	0.2	2.6	110.0	110.0	-47.9	-45.9
KCLC0112	5/11/2020 9:39	50.1	42.0	0.0	7.9	119.0	119.0	-42.8	-42.6
KCLC0139	5/13/2020 8:39	54.9	45.0	0.0	0.1	115.0	115.0	-13.8	-13.3
KCLC0140	5/13/2020 8:43	40.9	38.8	0.0	20.3	110.0	110.0	-2.6	-1.9
KCLC0141	5/13/2020 8:23	44.8	38.2	0.0	17.0	98.0	98.0	-3.3	-2.2
KCLC0142	5/12/2020 11:10	22.2	27.6	0.0	50.2	98.0	102.0	-4.3	-2.3
KCLC0142	5/12/2020 11:12	23.2	28.0	0.0	48.8	103.0	102.0	-2.3	-0.3
KCLC0143	5/13/2020 11:05	40.9	36.0	0.0	23.1	105.0	103.0	-0.3	-0.1
KCLC0144	5/11/2020 9:21	54.1	45.8	0.0	0.1	82.0	82.0	-41.2	-41.6
KCLC0145	5/11/2020 9:04	53.0	46.9	0.0	0.1	64.0	64.0	-40.9	-41.3
KCLC0146	5/11/2020 9:10	54.3	45.6	0.0	0.1	90.0	90.0	-7.7	-8.9
KCLC0147	5/11/2020 8:54	54.9	45.0	0.0	0.1	92.0	92.0	-35.5	-35.4
KCLC0148	5/13/2020 9:42	55.0	44.9	0.0	0.1	90.0	91.0	-5.1	-5.5
KCLC0149	5/13/2020 9:47	45.3	45.0	0.1	9.6	109.0	109.0	-3.7	-3.7
KCLC0150	5/11/2020 9:00	55.0	44.8	0.0	0.2	66.0	63.0	-36.4	-38.7
KCLC0151	5/20/2020 9:15	53.2	46.8	0.0	0.0	68.7	68.9	2.4	2.4
KCLC0152	5/20/2020 9:11	56.0	42.6	0.6	0.8	73.2	73.2	0.0	-0.1
KCYN0014	5/11/2020 10:00	39.2	32.0	0.0	28.8	104.0	104.0	-8.2	-7.4
KCYN0027	5/13/2020 12:02	53.1	40.2	0.2	6.5	116.0	116.0	-2.9	-1.8
KCYN0037	5/12/2020 11:26	50.6	40.6	1.2	7.6	95.0	96.0	-11.6	-11.8
KCYN0048	5/11/2020 10:54	54.8	45.1	0.0	0.1	108.0	113.0	-0.2	-0.3
KCYN0051	5/12/2020 11:46	48.6	40.9	0.0	10.5	119.0	119.0	-25.4	-22.0
KCYN0054	5/13/2020 8:29	55.6	41.7	0.4	2.3	86.0	92.0	-0.6	-2.0
KCYN0056	5/12/2020 11:36	53.6	46.3	0.0	0.1	126.0	127.0	-5.9	-5.9
KCYN0057	5/12/2020 12:06	49.3	41.8	0.0	8.9	132.0	133.0	-2.8	-2.5
KCYN0057	5/12/2020 12:08	49.5	41.7	0.0	8.8	132.0	133.0	-2.6	-2.6
KCYN0058	5/13/2020 11:25	47.1	41.3	0.0	11.6	128.0	127.0	-1.3	-1.3
KCYN0062	5/13/2020 7:59	53.3	41.2	0.0	5.5	124.0	124.0	-2.8	-3.1
KCYN0063	5/13/2020 7:51	49.2	39.8	0.0	11.0	119.0	119.0	-1.5	-1.4
KCYN0065	5/13/2020 8:49	55.3	44.6	0.0	0.1	89.0	97.0	-1.4	-2.0
KCYN0066	5/11/2020 10:45	47.7	39.2	0.0	13.1	129.0	130.0	-18.1	-16.7
KCYN0066	5/11/2020 10:47	47.3	39.2	0.0	13.5	129.0	129.0	-14.1	-14.0
KCYN0070	5/13/2020 10:15	47.7	37.9	0.0	14.4	116.0	117.0	-6.6	-5.5
KCYN0071	5/12/2020 9:02	51.7	41.8	0.0	6.5	134.0	135.0	-8.4	-8.4
KCYN0071	5/12/2020 9:04	51.5	42.0	0.0	6.5	134.0	135.0	-8.5	-8.5
KCYN0072	5/13/2020 8:05	54.0	39.3	0.0	6.7	115.0	115.0	-2.4	-2.8
KCYN0074	5/13/2020 10:33	52.9	43.1	0.0	4.0	133.0	134.0	-44.9	-44.5
KCYN0074	5/13/2020 10:35	56.2	43.0	0.0	0.8	134.0	135.0	-44.8	-45.0
KCYN0075	5/20/2020 13:08	52.3	41.8	1.4	4.5	138.9	139.1	-35.5	-34.7
KCYN0076	5/12/2020 9:49	53.6	43.2	0.0	3.2	137.0	138.0	-24.7	-24.8
KCYN0076	5/12/2020 9:54	54.6	43.8	0.0	1.6	138.0	138.0	-27.0	-23.8
KCYN0078	5/12/2020 9:26	47.3	40.6	0.0	12.1	136.0	136.0	-34.5	-34.1
KCYN0078	5/12/2020 9:28	46.9	40.3	0.0	12.8	136.0	136.0	-36.4	-33.9
KCYN0082	5/12/2020 11:17	53.2	41.4	0.0	5.4	111.0	111.0	-0.9	-1.0
KCYN0083	5/13/2020 8:57	46.2	37.3	0.0	16.5	108.0	109.0	-1.2	-1.3
KCYN0084	5/12/2020 11:55	47.4	39.3	0.0	13.3	116.0	116.0	-1.8	-1.7
KCYN0086	5/13/2020 9:20	55.2	42.5	0.4	1.9	137.0	137.0	-34.9	-34.8
KCYN0086	5/13/2020 9:22	55.9	44.0	0.0	0.1	137.0	137.0	-34.7	-34.8
KCYN0087	5/20/2020 13:33	44.6	40.0	0.3	15.1	144.7	144.0	-12.0	-10.7

Wellfield Monitoring Report - May 11, 12, 13, 20, and 22, 2020

Device ID	Date Time	CH₄ % by Volume	CO₂ % by Volume	O₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCYN0087	5/20/2020 13:59	49.9	39.0	1.1	10.0	143.4	143.5	-25.5	-25.5
KCYN0087	5/20/2020 14:03			1		CO was 0 ppm			
KCYN0088	5/12/2020 8:37	51.8	39.9	0.3	8.0	113.0	114.0	-42.7	-42.9
KCYN0089	5/22/2020 11:02	51.2	37.9	1.5	9.4	143.7	143.8	-25.9	-25.9
KCYN0089	5/22/2020 11:10			1		CO was 0 ppm			
KCYN0090	5/12/2020 8:25	46.8	38.2	0.0	15.0	108.0	108.0	-33.9	-34.2
KCYN0091	5/12/2020 10:09	47.8	40.9	0.0	11.3	137.0	138.0	-21.0	-20.3
KCYN0091	5/12/2020 10:11	47.0	40.3	0.0	12.7	137.0	137.0	-19.1	-19.1
KCYN0092	5/12/2020 8:09	51.4	40.9	0.0	7.7	134.0	135.0	-42.9	-36.5
KCYN0092	5/12/2020 8:11	51.5	41.1	0.0	7.4	134.0	135.0	-36.2	-36.7
KCYN0093	5/12/2020 9:38	46.1	39.5	0.0	14.4	129.0	130.0	-11.7	-11.5
KCYN0093	5/12/2020 9:40	46.0	39.4	0.0	14.6	129.0	130.0	-15.5	-11.1
KCYN0094	5/12/2020 8:31	44.2	38.1	0.0	17.7	126.0	126.0	-13.8	-12.9
KCYN0095	5/12/2020 8:15	56.6	43.3	0.0	0.1	127.0	127.0	-41.3	-41.2
KCYN0097	5/13/2020 10:09	47.8	38.9	0.0	13.3	122.0	123.0	-11.2	-10.6
KCYN0098	5/12/2020 10:16	45.1	38.4	0.0	16.5	136.0	137.0	-11.7	-7.2
KCYN0098	5/12/2020 10:17	44.6	37.9	0.1	17.4	136.0	136.0	-7.2	-6.5
KCYN0099	5/13/2020 10:20	49.2	39.9	0.0	10.9	132.0	133.0	-5.1	-5.2
KCYN0099	5/13/2020 10:21	49.3	40.1	0.0	10.6	132.0	133.0	-5.8	-5.2
KCYN0101	5/12/2020 8:49	46.9	37.5	0.0	15.6	76.0	75.0	-6.7	-0.7
KCYN0102	5/12/2020 8:53	47.2	39.4	0.0	13.4	73.0	73.0	-1.4	-1.8
KCYN0103	5/20/2020 14:26	36.4	33.9	0.4	29.3	83.0	83.0	-10.3	-10.3
KCYN0105	5/11/2020 10:29	57.0	42.9	0.0	0.1	90.0	90.0	-47.5	-47.6
KCYN0118	5/11/2020 9:26	54.9	43.4	0.0	1.7	121.0	121.0	-39.6	-39.6
KCYN0119	5/20/2020 10:41	53.9	41.5	0.5	4.1	129.8	129.8	-2.1	-2.1
KCYN0120	5/20/2020 10:48	44.8	35.9	4.0	15.3	69.9	69.6	-44.8	-25.8
KCYN0121	5/11/2020 9:35	54.3	43.3	0.0	2.4	120.0	120.0	-42.0	-42.0
KCYN0122	5/11/2020 9:30	55.1	44.8	0.0	0.1	108.0	105.0	-41.8	-42.0
KCYN0123	5/12/2020 12:01	49.4	44.2	0.0	6.4	124.0	125.0	-4.6	-4.3
KCYN0124	5/12/2020 11:42	45.0	39.6	0.0	15.4	86.0	86.0	-4.3	-0.5
KCYN0125	5/20/2020 11:19	55.1	43.1	0.4	1.4	124.3	124.4	-15.5	-15.5
KCYN0126	5/20/2020 11:22	51.2	42.8	0.0	6.0	118.3	118.3	-7.9	-7.9
KCYN0127	5/20/2020 13:13	52.5	40.3	0.0	7.2	121.2	121.2	-1.0	-1.0
KCYN0128	5/13/2020 9:14	51.5	42.1	0.0	6.4	136.0	136.0	-22.7	-22.9
KCYN0128	5/13/2020 9:16	51.3	41.9	0.0	6.8	136.0	137.0	-22.7	-22.3
KCYN0129	5/11/2020 8:11	55.7	44.2	0.0	0.1	121.0	121.0	-10.4	-9.5
KCYN0129	5/11/2020 10:10	42.9	31.8	4.6	20.7	64.0	64.0	-47.3	-46.8
KCYN0130	5/11/2020 9:54	44.8	37.0	0.0	18.2	116.0	117.0	-13.1	-12.0
KCYN0131	5/11/2020 9:47	55.9	44.0	0.0	0.1	122.0	122.0	-49.3	-46.4
KCYN0133	5/13/2020 10:39	50.9	41.0	0.0	8.1	125.0	126.0	-31.9	-31.0
KCYN0134	5/12/2020 10:38	46.6	39.6	0.0	13.8	110.0	120.0	-31.3	-31.0
KCYN0135	5/12/2020 10:38	45.6	40.9	0.0	13.0	131.0	131.0	-31.0	-30.4
KCYN0135	5/12/2020 10:43	45.6	40.9	0.4	10.3	131.0	131.0	-39.8	-30.4
KCYNLR04	5/20/2020 11:01	47.4	33.6	2.8	10.3	99.7	99.8	-39.0	-30.2
KCYNLR08	5/20/2020 11:01	45.5	35.2		12.2	99.7	99.8	-54.0	-54.3
KCYNLR08				2.8					
	5/20/2020 14:10	15.7	9.9	14.0	60.4	108.3	108.1	-49.1	-49.1

*The following wells are approved to operate at a temperature HOV of 145°F: 37, 45, 51, 57, 58,65, 66, 71, 74, 76, 78, 86, 87, 89, 91, 98, 120, 128 As of May 31, 2020, there are 76 vertical wells, 0 horizontal collector, and 3 LCR at KCRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

HOV = Higher Operating Value

Device ID	Date Time	CH₄ % by Volume	CO₂ % by Volume	O₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjustec Pressure (in. w.c.)
KCLC0108	6/15/2020 11:55	41.60	32.50	4.00	21.90	102.90	102.50	-16.70	-11.66
KCLC0109	6/15/2020 12:33	51.80	39.90	0.00	8.30	82.20	82.10	-46.67	-46.74
KCLC0110	6/15/2020 12:38	55.40	41.40	0.00	3.20	115.60	115.60	-46.39	-46.42
KCLC0111	6/15/2020 13:25	56.10	43.30	0.60	0.00	108.90	108.90	-46.48	-46.45
KCLC0112	6/15/2020 12:52	53.80	42.00	0.00	4.20	119.70	119.70	-42.61	-42.64
KCLC0139	6/14/2020 13:55	56.30	43.70	0.00	0.00	116.90	117.50	-14.92	-18.27
KCLC0140	6/14/2020 13:48	44.90	39.50	0.00	15.60	109.80	109.70	-2.04	-1.90
KCLC0141	6/14/2020 11:48	45.90	38.40	0.00	15.70	97.70	97.70	-2.24	-2.19
KCLC0142	6/14/2020 11:41	19.50	26.50	0.00	54.00	103.10	102.60	-0.63	-0.49
KCLC0143	6/14/2020 14:50	40.10	35.90	0.00	24.00	103.50	102.40	-0.08	-0.04
KCLC0144	6/15/2020 15:14	55.60	44.30	0.10	0.00	92.80	92.90	-38.89	-38.96
KCLC0145	6/24/2020 14:37	56.40	41.00	0.40	2.20	89.50	89.50	-57.94	-52.88
KCLC0146	6/24/2020 14:51	56.40	43.40	0.10	0.10	95.10	95.30	-11.06	-14.74
KCLC0147	6/16/2020 16:13	56.20	43.70	0.00	0.10	92.10	92.10	-35.89	-35.46
KCLC0148	6/15/2020 15:33	53.10	46.90	0.00	0.00	91.70	91.70	-10.92	-4.84
KCLC0148	6/16/2020 16:30	54.80	42.70	0.10	2.40	80.60	81.10	-82.98	-73.08
KCLC0149	6/24/2020 13:15	55.00	45.00	0.00	0.00	92.80	93.00	-11.53	-5.03
KCLC0150	6/16/2020 16:18	57.50	42.30	0.20	0.00	75.50	75.80	-39.96	-39.96
KCLC0151	6/16/2020 16:06	55.60	44.30	0.10	0.00	73.30	73.30	2.94	2.96
KCLC0152	6/16/2020 16:04	56.00	44.00	0.00	0.00	81.00	81.00	1.05	1.07
KCYN0014	6/15/2020 12:06	51.50	32.00	0.00	16.50	103.90	103.90	-6.78	-6.84
KCYN0027	6/16/2020 12:03	54.90	41.10	0.30	3.70	115.70	116.50	-6.68	-6.68
KCYN0027	6/14/2020 14:02	49.80	40.60	0.70	8.90	100.70	100.80	-16.56	-16.61
KCYN0048	6/15/2020 14:59	43.30	40.50	0.00	12.20	127.30	127.30	-1.34	-1.29
KCYN0051	6/14/2020 15:50	49.50	38.50	0.00	12.20	127.50	119.00	-20.67	-20.67
KCYN0054	6/24/2020 13:35	55.50	44.50	0.00	0.00	87.30	93.80		-20.07
KCYN0056	6/14/2020 15:43	55.40	44.50	0.00	0.00	127.00	127.00	-0.03 -4.87	-0.73
KCYN0057	6/14/2020 15:22	54.00	44.00	0.00	4.00	132.50		-4.87	-4.85
					-		134.00		
KCYN0058	6/14/2020 16:10	53.90	40.80	0.00	5.30	128.70	129.60	-1.30	-1.83
KCYN0062	6/16/2020 11:33	49.00	38.80	0.10	12.10	124.80	125.00	-4.06	-4.14
KCYN0063	6/16/2020 11:42	51.20	40.40	0.00	8.40	118.00	118.10	-1.35	-1.34
KCYN0065	6/14/2020 13:41	48.40	37.00	2.80	11.80	101.30	102.20	-0.83	-1.29
KCYN0066	6/15/2020 15:04	58.00	42.00	0.00	0.00	129.90	129.90	-12.50	-13.00
KCYN0070	6/16/2020 15:20	49.00	37.60	0.00	13.40	116.40	116.40	-5.42	-5.38
KCYN0071	6/16/2020 13:14	49.60	39.60	0.00	10.80	133.80	133.70	-7.96	-7.94
KCYN0072	6/16/2020 11:36	45.20	36.30	0.00	18.50	115.10	115.10	-3.26	-2.68
KCYN0074	6/14/2020 11:00	56.70	43.20	0.10	0.00	134.00	134.10	-43.44	-43.59
KCYN0075	6/14/2020 16:02	54.30	42.10	0.30	3.30	137.70	138.00	-33.05	-33.57
KCYN0076	6/15/2020 15:57	44.80	33.90	4.60	16.70	139.90	139.30	-21.77	-18.86
KCYN0078	6/14/2020 11:16	47.20	39.10	0.20	13.50	134.90	135.00	-32.53	-32.48
KCYN0082	6/14/2020 14:11	49.10	38.00	0.00	12.90	111.70	111.70	-0.96	-0.94
KCYN0083	6/14/2020 14:06	44.70	36.00	0.00	19.30	110.20	110.10	-1.48	-1.37
KCYN0084	6/24/2020 13:54	56.00	41.20	0.00	2.80	118.00	126.70	-10.89	-11.44
KCYN0086	6/17/2020 16:10	56.50	43.30	0.10	0.10	132.20	134.50	-29.60	-30.07
KCYN0087	6/24/2020 13:27	45.80 40.40 0.00 13.80 143.70 143.50 -11.24 -11.23							
KCYN0087	6/24/2020 13:30	CO was 10 ppm							
KCYN0088	6/16/2020 12:50	54.00	38.90	0.30	6.80	112.60	112.60	-39.54	-40.00
KCYN0089	6/15/2020 15:52	57.70	42.30	0.00	0.00	141.20	141.20	-23.53	-23.99
KCYN0089	6/15/2020 16:00				C	CO was 10 ppm			

Wellfield Monitoring Report -June	14, 15,	, 16, and 24, 2020
-----------------------------------	---------	--------------------

Device ID	Date Time	CH₄ % by Volume	CO ₂ % by Volume	O ₂ % by Volume	Balance % by Volume	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)
KCYN0091	6/16/2020 15:42	51.30	40.60	0.00	8.10	136.60	136.70	-15.67	-15.66
KCYN0092	6/14/2020 10:55	51.50	39.90	0.20	8.40	133.60	133.60	-36.14	-35.50
KCYN0093	6/14/2020 11:07	47.60	38.80	0.00	13.60	128.60	128.70	-9.29	-9.27
KCYN0094	6/16/2020 12:25	51.30	38.60	0.00	10.10	124.40	124.40	-8.45	-8.40
KCYN0095	6/16/2020 12:11	57.40	41.10	0.30	1.20	126.20	126.30	-38.97	-38.15
KCYN0097	6/17/2020 15:55	53.20	39.60	0.10	7.10	122.80	122.80	-8.61	-9.16
KCYN0098	6/16/2020 12:34	51.10	39.40	0.00	9.50	134.80	134.80	-4.40	-4.39
KCYN0099	6/16/2020 15:12	50.60	39.70	0.20	9.50	132.30	132.30	-5.25	-5.24
KCYN0101	6/16/2020 13:04	56.70	39.70	0.00	3.60	103.30	103.20	-0.69	-0.64
KCYN0102	6/16/2020 13:09	51.60	38.50	0.00	9.90	102.50	102.60	-2.01	-1.89
KCYN0103	6/16/2020 12:56	54.20	40.70	0.00	5.10	109.30	113.80	-2.05	-3.28
KCYN0105	6/15/2020 12:45	56.40	43.50	0.10	0.00	113.00	113.10	-43.02	-43.01
KCYN0118	6/15/2020 14:45	56.40	43.60	0.00	0.00	120.70	120.70	-38.90	-38.92
KCYN0119	6/15/2020 14:31	55.70	44.30	0.00	0.00	130.90	130.90	-8.41	-8.69
KCYN0120	6/15/2020 14:25	55.70	41.50	1.20	1.60	82.70	83.80	-37.94	-38.75
KCYN0121	6/15/2020 14:51	57.30	42.60	0.20	-0.10	120.10	120.10	-41.89	-41.88
KCYN0122	6/15/2020 14:42	56.60	43.20	0.20	0.00	105.70	105.70	-40.71	-40.71
KCYN0123	6/14/2020 15:38	53.50	43.60	0.00	2.90	125.30	125.30	-4.81	-6.28
KCYN0124	6/14/2020 14:41	48.00	39.30	0.00	12.70	95.40	95.70	-0.50	-0.52
KCYN0125	6/14/2020 14:22	55.60	43.10	0.00	1.30	78.30	78.40	-14.42	-14.50
KCYN0126	6/14/2020 14:32	51.60	42.40	0.00	6.00	118.30	118.40	-7.12	-8.33
KCYN0127	6/14/2020 15:15	56.00	42.30	0.00	1.70	121.00	121.20	-0.74	-0.74
KCYN0128	6/14/2020 15:25	52.60	44.10	0.00	3.30	135.20	135.20	-21.34	-22.09
KCYN0129	6/15/2020 15:36	54.70	45.30	0.00	0.00	119.40	119.20	-0.57	0.42
KCYN0129	6/17/2020 16:01	56.40	43.60	0.00	0.00	118.00	117.80	3.89	4.39
KCYN0129	6/17/2020 16:03	56.30	43.70	0.00	0.00	117.90	118.00	4.33	4.39
KCYN0130	6/15/2020 13:47	53.50	37.80	0.00	8.70	116.90	116.80	-12.96	-17.10
KCYN0131	6/15/2020 13:36	57.30	42.50	0.10	0.10	85.90	86.00	-46.48	-46.42
KCYN0133	6/14/2020 10:47	51.70	41.30	0.20	6.80	126.90	127.00	-26.92	-26.91
KCYN0134	6/14/2020 11:19	49.40	39.00	0.00	11.60	110.00	110.00	-12.15	-12.12
KCYN0135	6/14/2020 11:25	48.40	41.40	0.10	10.10	129.90	129.90	-28.58	-28.46
KCYNLR04	6/14/2020 11:31	49.50	35.60	1.60	13.30	82.80	83.20	-34.64	-33.46
KCYNLR08	6/24/2020 13:06	58.90	40.60	0.40	0.10	102.00	102.20	-52.71	-52.75
KCYNLR11	6/15/2020 11:48	58.40	40.90	0.70	0.00	92.80	93.00	-46.70	-46.67

*The following wells are approved to operate at a temperature HOV of 145°F: 37, 45, 51, 57, 58,65, 66, 71, 74, 76, 78, 86, 87, 89, 91, 98, 120, 128 and 135. Wells 56, 75, 76, 87, 89, and 120, are approved to operate at a temperature HOV of 156°F.

As of June 30, 2020, there are 76 vertical wells, 0 horizontal collector, and 3 LCR at KCRDF.

%= percent

in. w.c.= inches in water column

degrees F= degrees Fahrenheit

HOV = Higher Operating Value

APPENDIX J

BAAQMD CORRESPONDENCE

KIRBY CANYON RECYCLING & DISPOSAL FACILITY A WASTE MANAGEMENT COMPANY

910 Coyote Creek Golf Drive P.O. Box 1870 Morgan Hill, CA 95037 (408) 779-2206 (408) 779-5165 Fax

July 17, 2020

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 Attn: Title V Reports

Re: Kirby Canyon Recycling & Disposal Facility, San Jose, CA, Facility Number A1812 Section I.F Title V, 30-Day written report to BAAQMD Notice of Violation A-57372, Dated June 18, 2020

Dear Sir or Madam:

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting this 30-day written report to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F for KCRDF to Notice of Violation ("NOV") Number A-57372 dated June 18, 2020, (see attachment) for alleged temporary flare shutdown events caused by unplanned utility power outages allegedly on February 28, June 10, July 24, July 26, August 1, August 6, September 8, November 11, November 12, November 26, and December 29, 2019 ("NOV Dates"). A signed copy of the NOV is attached. The NOV alleges violation of:

- 1. Regulation 2, Section 1-307 "...shall not operate any...equipment...for which an authority to construct or permit to operate has been issued, in violation of any permit condition imposed pursuant to Section 2-1-403 [Permit Conditions]." ("2-1-307")
- 2. Regulation 1, Section 523.3 "...violation of permit conditions or District regulations to which the source is required to conform...shall be reported to the APCO within 96 hours after such occurrence...." ("1-523.3")
- 3. Regulation 8 Section 34-301.1 "...gas collection and emission control systems are operated continuously..." ("8-34-301.1")

Alleged violations of 2-1-307 and 1-523.3 are predicated on an alleged violation of 8-34-301.1. However, KCRDF was not in violation of 8-34-301.1. For the period October 26, 2019 to November 27, 2019, BAAQMD Hearing Board issued an emergency variance for Public Safety Power Shutoff ("PSPS") events. The variance stated that "[t]he magnitude and scale of the PSPS event was unforeseeable and the resultant power outage at Kirby Canyon Landfill was unpreventable." Similarly, the alleged NOV Dates had unforeseeable and unpreventable power outages at KCRDF. Regulation 8, Rule 34, Section 113 ("8-34-113") Limited Exemption, Inspection and Maintenance, states that "requirements of Sections 8-34-301...shall not apply to solid waste sites during inspection and maintenance of the landfill gas collection or emission control system..." KCRDF appropriately reported flare downtime events under 8-34-113, as each event required inspection and maintenance during the downtime. These events were reported in KCRDF's startup and shutdown logs in its semi-annual reports. Startup could begin only after the restoration of power by the utility company and KCRDF's safety and environmental inspection and maintenance process for flare startup and emission minimization. Further, the exemption in 8-34-113 applies as KCRDF met the requirement that the "gas collection and emission control systems are not shutdown for more than 240 hours in any calendar year." As KCRDF did not violate 8-34-301.1, it also did not violate 2-1-307 nor 1-523.3.

BAAQMD's apparent interpretation that 8-34-113 does not apply where inspection and maintenance has occurred simply because an unplanned power shutoff event also occurred leads to a result that may create harm to health, safety and/or the environment. Automatically restarting flares and auxiliary equipment (blower skid, air compressor, condensate injection system, PLC and data logger, etc.) without a safety and environmental inspection and/or maintenance may cause serious health, safety and/or environmental concerns. Similarly, using an automatic backup generator would have the same concerns, with the addition of potential additional emissions associated with the generator. Further, switching between a generator and the power system creates additional downtime, as does refueling or other issues that may be associated with use of a generator.

KCRDF additionally asserts that the downtime events did not: 1) interfere with attainment of the BAAQMD, federal, or state standards; 2) endanger health, safety, or welfare of any person; 3) endanger the environment; 4) increase emissions of toxic air contaminants; 5) cause or contribute to a violation of a SAAQS or NAAQS; 6) interfere with the BAAQMD's compliance work; nor 7) result in emissions exceeding de minimis levels. Moreover, KCRDF's downtime events were not the result of equipment malfunction, knowing, willful, intentional, chronic nor committed by a recalcitrant, and did not benefit KCRDF economically nor result in a nuisance. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control but in either case, best practice requires inspection and/or maintenance prior to startup and, therefore, is reported as such.

For the above reasons, KCRDF asserts that it did not violate 2-1-307, 1-523.3 nor 8-34-301.1. and respectfully requests the NOV be rescinded.

Despite its objections, at BAAQMD's request, KCRDF has also focused its efforts toward a solution to reduce power outage downtime hours by reconfiguring the existing electrical panel for transfer switch operation and adding a backup generator to serve as an emergency power source. Subsequent to the PSPS events during 2019, KCRDF has taken the following proactive steps, including initiating the procurement process for a permanent generator (delayed due to the COVID-19 emergency):

- KCRDF hired a certified electrical contractor to review the existing electrical infrastructure at the KCRDF site and rewire the flare electrical system.
- KCRDF initiated procurement of and acquired a rental generator to serve as emergency power source for site activities.
- KCRDF hired a certified electrical contractor to hard wire the generator to the flare electrical circuit.
- KCRDF requested engineering evaluation and proposal to reconfigure the existing panels to connect and its contractor completed electrical panel work.

No other corrective action was necessary nor applicable. The flare was temporarily shut down solely because of an unplanned power outage and not the result of an intentional or negligent failure to maintain and operate, or an equipment malfunction. As soon as the electricity was restored, the flare was inspected and restarted. The shutdown was temporary, only a few hours, and did not result in any emissions.

KCRDF disagrees with the BAAQMD that temporary shutdowns resulting from unplanned power outages are violations of any BAAQMD regulation. KCRDF is committed to operating its landfill in compliance with applicable regulations and requests a meeting with BAAQMD executive staff to discuss Regulation 8-34-301.1. As you may recall, we were in the process of providing comment on a draft amendment to the Regulation in line with our response herein prior to the COVID-19 emergency. If you have any questions or need any additional information, please do not hesitate to contact me at (408) 779-2206.

Sincerely, Kirby Canyon Recycling & Disposal Facility

Jein)

Enrique Perez District Manager

cc: Erin Phillips, BAAQMD

Attachments: Copy of BAAQMD Notice of Violation A-57372

BAY AREA AIRQUALITY MANAGEMENT DISTRICT		an Francisco, CA 94105
NOTICE OF VIOLA	TION	No. A57372
ISSUED TO: Kirby Canyon Recycling an		PGN# <u>A1812</u>
ADDRESS: 910 Coyote Creek Golf D	rive	
CITY: San Jose	STATE:CA	ZIP: <u>95111</u>
PHONE: (408)960-0769		
N# Mailing Address on F61		
OCCURRENCE		
NAME:		
ADDRESS:		Same As Above
CITY:	ZIP	
SOURCE: S#1NAME: Lan		
EMISSION PT: P# NAME:		
DATE: <u>2/28/19 - 12/29/19 12</u>	Days TIME:	HRS
REG 2 RULE 1 SEC 301 No Authority to Construct		RULE 1 SEC 302 rmit to Operate
REG 1 SEC 301 H & S CODE - 41700 Public Nuisance		2 RULE - SEC 307 e to Meet Permit Condition
REG 5 SEC 301 Prohibited Open Burning		S RULE 1 SEC 301 sive Visible Emissions
\checkmark REG 8 RULE 34	SECTION 301.1	CODE
	SECTION 523.3	
Details: Min. flare temp P.C. 1437, gas	collection not operated	d continuously, RCA's not reported
RECIPIENT NAME: Enrique Perez		
TITLE: District Manager		
SIGNING THIS NOTICE IS NOT AN ADMISSION OF GUILT	x	enter (_
WITHIN 10 DAYS, RETU DESCRIPTION OF THE IN TAKEN TO PREVENT CON VIOLATION IS SUBJECT TO DOES NOT PRECLUDE FUR	IMEDIATE CORRECT ITINUED OR RECUR 2.SUBSTANTIAL PEN	RENT VIOLATION. <u>THIS</u> NALTY, YOUR RESPONSE
ISSUED BY, Erin Phillips		INSP #
DATE: 6/18/20	TIME: 1015	HRS / MAILED
PL	EASE PRESS HAP	RD

The second s

Continued On Reverse

INSTRUCTIONS

PERMIT_VIOLATIONS - !REG 2. RULE 1, SECTION 301 AND/OR 302)

Within 30 days, a permit application must be submitted to the District's Permit Division The permit application must reference the Violation Notice Number Shown on the front of this notice. If either the Violation Notice Number is not referenced or no permit application is received, then this matter will be referred to the District's Legal Department for legal action. Your response does not preclude further legal action.

If there are any questions regarding the submission of a Permit Application, call the Permit Services Division at (415) 749-4990.

ALL OTHER VIOLATIONS

Within 10 days, return a copy of this notice with a written description of the corrective action you have taken to prevent continued or recurrent violation. Immediate corrective action must be taken to stop the violation. This violation is subject to substantial penalty. Your response does not preclude further legal action.

A variance should be sought if it is necessary to continue to operate in violation of District Regulations. For information on eligiblity for, or filing of, a variance, call (415) 749-5073.

KIRBY CANYON RECYCLING & DISPOSAL FACILITY A WASTE MANAGEMENT COMPANY

910 Coyote Creek Golf Drive P.O. Box 1870 Morgan Hill, CA 95037 (408) 779-2206 (408) 779-5165 Fax

June 28, 2020

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 Attn: Title V Reports

Re: Kirby Canyon Recycling & Disposal Facility, San Jose, CA. Facility Number A1812, Section I.F Title V, 10-Day written report

Dear Sir or Madam:

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting this 10-day written report to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F for KCRDF. On June 18, 2020, Erin Phillips, Bay Area Air Quality Management District (BAAQMD) Air Quality Inspector, issued Notice of Violation ("NOV") Number A-57372, (see attachment) for alleged temporary flare shutdown events caused by unplanned utility power outages allegedly on February 28, June 10, July 24, July 26, August 1, August 6, September 8, November 11, November 12, November 26, and December 29, 2020 ("NOV Dates"). The NOV alleges violation of:

- 1. Regulation 2, Section 1-307 "...shall not operate any...equipment...for which an authority to construct or permit to operate has been issued, in violation of any permit condition imposed pursuant to Section 2-1-403 [Permit Conditions]." ("2-1-307")
- 2. Regulation 1, Section 523.3 "...violation of permit conditions or District regulations to which the source is required to conform...shall be reported to the APCO within 96 hours after such occurrence...." ("1-523.3")
- 3. Regulation 8 Section 34-301.1 "...gas collection and emission control systems are operated continuously..." ("8-34-301.1")

The unplanned power outage shutdowns noted in the NOV did not result in emissions and do not qualify as non-compliance. The downtime recorded for each of the events noted on the NOV was significantly less than 24 hours per event. KCRDF believes that it complied with the Title V permit conditions and safety protocols. KCRDF followed all measures to ensure gas movers and valves were closed during the shutdown events. KCRDF's downtime events were not the result of equipment malfunction, knowing, willful, intentional, chronic nor committed by a recalcitrant,

and did not benefit KCRDF economically nor result in a nuisance. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control.

KCRDF is committed to operating its landfill in compliance with applicable regulations and will ensure that compliance is achieved. However, KCRDF disagrees with the BAAQMD that temporary shutdowns resulting from unplanned power outages are violations of any BAAQMD regulation. As required, a 30-day follow-up letter will confirm the contents of this submittal.

If you have any questions or need any additional information please do not hesitate to contact me at (408) 779-2206

Sincerely,

Kirby Canyon Recycling & Disposal Facility

See

Enrique Perez District Manager

cc: Erin Phillips, BAAQMD

Attachment: Copy of BAAQMD Notice of Violation A-57372

BAY AREA AIRQUALITY MANAGEMENT DISTRICT		an Francisco, CA 94105
NOTICE OF VIOLA	TION	No. A57372
ISSUED TO: Kirby Canyon Recycling an		PGN# <u>A1812</u>
ADDRESS: 910 Coyote Creek Golf D	rive	
CITY: San Jose	STATE:CA	ZIP: <u>95111</u>
PHONE: (408)960-0769		
N# Mailing Address on F61		
OCCURRENCE		
NAME:		
ADDRESS:		Same As Above
CITY:	ZIP	
SOURCE: S#1NAME: Lan		
EMISSION PT: P# NAME:		
DATE: <u>2/28/19 - 12/29/19 12</u>	Days TIME:	HRS
REG 2 RULE 1 SEC 301 No Authority to Construct		RULE 1 SEC 302 rmit to Operate
REG 1 SEC 301 H & S CODE - 41700 Public Nuisance		2 RULE - SEC 307 e to Meet Permit Condition
REG 5 SEC 301 Prohibited Open Burning		S RULE 1 SEC 301 sive Visible Emissions
\checkmark REG 8 RULE 34	SECTION 301.1	CODE
	SECTION 523.3	
Details: Min. flare temp P.C. 1437, gas	collection not operated	d continuously, RCA's not reported
RECIPIENT NAME: Enrique Perez		
TITLE: District Manager		
SIGNING THIS NOTICE IS NOT AN ADMISSION OF GUILT	x	enter (_
WITHIN 10 DAYS, RETU DESCRIPTION OF THE IN TAKEN TO PREVENT CON VIOLATION IS SUBJECT TO DOES NOT PRECLUDE FUR	IMEDIATE CORRECT ITINUED OR RECUR 2.SUBSTANTIAL PEN	RENT VIOLATION. <u>THIS</u> NALTY, YOUR RESPONSE
ISSUED BY, Erin Phillips		INSP #
DATE: 6/18/20	TIME: 1015	HRS / MAILED
PL	EASE PRESS HAP	RD

The second s

Continued On Reverse

INSTRUCTIONS

PERMIT_VIOLATIONS - !REG 2. RULE 1, SECTION 301 AND/OR 302)

Within 30 days, a permit application must be submitted to the District's Permit Division The permit application must reference the Violation Notice Number Shown on the front of this notice. If either the Violation Notice Number is not referenced or no permit application is received, then this matter will be referred to the District's Legal Department for legal action. Your response does not preclude further legal action.

If there are any questions regarding the submission of a Permit Application, call the Permit Services Division at (415) 749-4990.

ALL OTHER VIOLATIONS

Within 10 days, return a copy of this notice with a written description of the corrective action you have taken to prevent continued or recurrent violation. Immediate corrective action must be taken to stop the violation. This violation is subject to substantial penalty. Your response does not preclude further legal action.

A variance should be sought if it is necessary to continue to operate in violation of District Regulations. For information on eligiblity for, or filing of, a variance, call (415) 749-5073.

KIRBY CANYON RECYCLING & DISPOSAL FACILITY A WASTE MANAGEMENT COMPANY

910 Coyote Creek Golf Drive P.O. Box 1870 Morgan Hill, CA 95037 (408) 779-2206 (408) 779-5165 Fax

June 28, 2020

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 Attn: Title V Reports

Re: Kirby Canyon Recycling & Disposal Facility, San Jose, CA, Facility Number A1812 10-Day NOV Response to BAAQMD Notice of Violation A-57372, Dated June 18, 2020

Dear Sir or Madam:

Waste Management of California, Inc. d/b/a Kirby Canyon Recycling & Disposal Facility ("KCRDF") is submitting this 10-day NOV response letter¹ to Notice of Violation ("NOV") Number A-57372 dated June 18, 2020, (see attachment) for alleged temporary flare shutdown events caused by unplanned utility power outages allegedly on February 28, June 10, July 24, July 26, August 1, August 6, September 8, November 11, November 12, November 26, and December 29, 2020 ("NOV Dates"). A signed copy of the NOV is attached. KCRDF Flare data for these dates is attached. The NOV alleges violation of:

- 1. Regulation 2, Section 1-307 "...shall not operate any...equipment...for which an authority to construct or permit to operate has been issued, in violation of any permit condition imposed pursuant to Section 2-1-403 [Permit Conditions]." ("2-1-307")
- 2. Regulation 1, Section 523.3 "...violation of permit conditions or District regulations to which the source is required to conform...shall be reported to the APCO within 96 hours after such occurrence...." ("1-523.3")
- 3. Regulation 8 Section 34-301.1 "...gas collection and emission control systems are operated continuously..." ("8-34-301.1")

Alleged violations of 2-1-307 and 1-523.3 are predicated on an alleged violation of 8-34-301.1. However, KCRDF was not in violation of 8-34-301.1. For the period October 26, 2019 to November 27, 2019, BAAQMD Hearing Board issued an emergency variance for Public Safety Power Shutoff ("PSPS") events. The variance stated that "[t]he magnitude and scale of the PSPS event was unforeseeable and the resultant power outage at Kirby Canyon Landfill was unpreventable." Similarly, the alleged NOV Dates had unforeseeable and unpreventable power outages at KCRDF.

¹ KCRDF submitted its 10-day Title V letter to BAAQMD on June 28, 2020, under Title V Permit Condition Section I.F.

Regulation 8, Rule 34, Section 113 ("8-34-113") Limited Exemption, Inspection and Maintenance, states that "requirements of Sections 8-34-301...shall not apply to solid waste sites during inspection and maintenance of the landfill gas collection or emission control system..." KCRDF appropriately reported flare downtime events under 8-34-113, as each event required inspection and maintenance during the downtime. These events were reported in KCRDF's startup and shutdown logs in its semi-annual reports. Startup could begin only after the restoration of power by the utility company and KCRDF's safety and environmental inspection and maintenance process for flare startup and emission minimization. Further, the exemption in 8-34-113 applies as KCRDF met the requirement that the "gas collection and emission control systems are not shutdown for more than 240 hours in any calendar year." As KCRDF did not violate 8-34-301.1, it also did not violate 2-1-307 nor 1-523.3.

BAAQMD's apparent interpretation that 8-34-113 does not apply where inspection and maintenance has occurred simply because an unplanned power shutoff event also occurred leads to a result that may create harm to health, safety and/or the environment. Automatically restarting flares and auxiliary equipment (blower skid, air compressor, condensate injection system, PLC and data logger, etc.) without a safety and environmental inspection and/or maintenance may cause serious health, safety and/or environmental concerns. Similarly, using an automatic backup generator would have the same concerns, with the addition of potential additional emissions associated with the generator. Further, switching between a generator and the power system creates additional downtime, as does refueling or other issues that may be associated with use of a generator.

KCRDF additionally asserts that the downtime events did not: 1) interfere with attainment of the BAAQMD, federal, or state standards; 2) endanger health, safety, or welfare of any person; 3) endanger the environment; 4) increase emissions of toxic air contaminants; 5) cause or contribute to a violation of a SAAQS or NAAQS; 6) interfere with the BAAQMD's compliance work; nor 7) result in emissions exceeding de minimis levels. Moreover, KCRDF's downtime events were not the result of equipment malfunction, knowing, willful, intentional, chronic nor committed by a recalcitrant, and did not benefit KCRDF economically nor result in a nuisance. The frequency and duration of weather or utility-related electrical interruptions are outside of KCRDF's control but in either case, best practice requires inspection and/or maintenance prior to startup and, therefore, is reported as such.

For the above reasons, KCRDF asserts that it did not violate 2-1-307, 1-523.3 nor 8-34-301.1 and respectfully requests the NOV be rescinded.

Despite its objections, at BAAQMD's request, KCRDF has also focused its efforts toward a solution to reduce power outage downtime hours by reconfiguring the existing electrical panel for transfer switch operation and adding a backup generator to serve as an emergency power source. Subsequent to the PSPS events during 2019, KCRDF has taken the following proactive steps, including initiating the procurement process for a permanent generator (delayed due to the COVID-19 emergency):

- KCRDF hired a certified electrical contractor to review the existing electrical infrastructure at the KCRDF site and rewire the flare electrical system.
- KCRDF initiated procurement of and acquired a rental generator to serve as emergency power source for site activities.
- KCRDF hired a certified electrical contractor to hard wire the generator to the flare electrical circuit.
- KCRDF requested engineering evaluation and proposal to reconfigure the existing panels to connect and its contractor completed electrical panel work.

KCRDF is committed to operating its landfill in compliance with applicable regulations and requests a meeting with BAAQMD executive staff to discuss Regulation 8-34-301.1. As you may recall, we were in the process of providing comment on a draft amendment to the Regulation in line with our response herein prior to the COVID-19 emergency. We may also supplement this response in the future. If you have any questions or need any additional information, please do not hesitate to contact me at (408) 779-2206.

Sincerely, Kirby Canyon Recycling & Disposal Facility

seen

Enrique Perez District Manager

cc: Erin Phillips, BAAQMD

Attachments: Copy of BAAQMD Notice of Violation A-57372 KCRDF Flare Data

BAY AREA AIRQUALITY MANAGEMENT DISTRICT		an Francisco, CA 94105
NOTICE OF VIOLA	TION	No. A57372
ISSUED TO: Kirby Canyon Recycling an		PGN# <u>A1812</u>
ADDRESS: 910 Coyote Creek Golf D	rive	
CITY: San Jose	STATE:CA	ZIP: <u>95111</u>
PHONE: (408)960-0769		
N# Mailing Address on F61		
OCCURRENCE		
NAME:		
ADDRESS:		Same As Above
CITY:	ZIP	
SOURCE: S#1NAME: Lan		
EMISSION PT: P# NAME:		
DATE: <u>2/28/19 - 12/29/19 12</u>	Days TIME:	HRS
REG 2 RULE 1 SEC 301 No Authority to Construct		RULE 1 SEC 302 rmit to Operate
REG 1 SEC 301 H & S CODE - 41700 Public Nuisance		2 RULE - SEC 307 e to Meet Permit Condition
REG 5 SEC 301 Prohibited Open Burning		S RULE 1 SEC 301 sive Visible Emissions
\checkmark REG 8 RULE 34	SECTION 301.1	CODE
	SECTION 523.3	
Details: Min. flare temp P.C. 1437, gas	collection not operated	d continuously, RCA's not reported
RECIPIENT NAME: Enrique Perez		
TITLE: District Manager		
SIGNING THIS NOTICE IS NOT AN ADMISSION OF GUILT	x	enter (_
WITHIN 10 DAYS, RETU DESCRIPTION OF THE IN TAKEN TO PREVENT CON VIOLATION IS SUBJECT TO DOES NOT PRECLUDE FUR	IMEDIATE CORRECT ITINUED OR RECUR 2.SUBSTANTIAL PEN	RENT VIOLATION. <u>THIS</u> NALTY, YOUR RESPONSE
ISSUED BY, Erin Phillips		INSP #
DATE: 6/18/20	TIME: 1015	HRS / MAILED
PL	EASE PRESS HAP	RD

The second s

Continued On Reverse

INSTRUCTIONS

PERMIT_VIOLATIONS - !REG 2. RULE 1, SECTION 301 AND/OR 302)

Within 30 days, a permit application must be submitted to the District's Permit Division The permit application must reference the Violation Notice Number Shown on the front of this notice. If either the Violation Notice Number is not referenced or no permit application is received, then this matter will be referred to the District's Legal Department for legal action. Your response does not preclude further legal action.

If there are any questions regarding the submission of a Permit Application, call the Permit Services Division at (415) 749-4990.

ALL OTHER VIOLATIONS

Within 10 days, return a copy of this notice with a written description of the corrective action you have taken to prevent continued or recurrent violation. Immediate corrective action must be taken to stop the violation. This violation is subject to substantial penalty. Your response does not preclude further legal action.

A variance should be sought if it is necessary to continue to operate in violation of District Regulations. For information on eligiblity for, or filing of, a variance, call (415) 749-5073.

2.28.2019

		Flare		Flare	
		F		SCFM	
Date	Time	MIN	MAX	MIN	MAX
2019/02/28	16:10:00	1665	1684	2083	2196
2019/02/28	16:12:00	1665	1683	2072	2178
2019/02/28	16:14:00	1671	1681	2090	2234
2019/02/28	16:16:00	1659	1688	2077	2201
2019/02/28	16:18:00	1671	1689	2090	2188
2019/02/28	16:20:00	1662	1683	2065	2178
2019/02/28	16:22:00	1664	1686	2083	2206
2019/02/28	16:24:00	1671	1677	2092	2182
2019/02/28	16:26:00	1671	1683	2080	2213
2019/02/28	16:28:00	1662	1687	2074	2195
2019/02/28	16:30:00	1661	1689	2100	2201
2019/02/28	16:32:00	1661	1685	2097	2166
2019/02/28	16:34:00	1666	1678	2072	2195
2019/02/28	16:36:00	1668	1689	2047	2207
2019/02/28	16:38:00	1665	1686	2097	2203
2019/02/28	16:40:00	1229	1583	-393	-1
2019/02/28	16:42:00	861	1229	-2	-1
2019/02/28	16:44:00	656	861	-2	-1
2019/02/28	16:46:00	528	656	-2	-1
2019/02/28	16:48:00	433	528	-2	-1
2019/02/28	16:50:00	363	433	-1	-1
2019/02/28	16:52:00	307	363	-1	80
2019/02/28	16:54:00	261	307	-1	52
2019/02/28	16:56:00	225	261	-1	-1
2019/02/28	16:58:00	196	225	-1	-1
2019/02/28	17:00:00	175	196	-1	-1
2019/02/28	17:02:00	160	175	-1	108
2019/02/28	17:04:00	149	160	-1	49
2019/02/28	17:06:00	140	149	-1	-1
2019/02/28	17:08:00	132	141	-1	-1
2019/02/28	17:10:00	125	132	-1	-1
2019/02/28	17:12:00	122	423	1	3406
2019/02/28	17:14:00	423	963	1	2916
2019/02/28	17:16:00	724	929	-1	49
2019/02/28	17:18:00	574	724	-1	51
2019/02/28	17:20:00	459	574	49	51
2019/02/28	17:22:00	376	459	-1	51
2019/02/28 2019/02/28	17:24:00	348	632	49	3389
2019/02/28	17:26:00	632 1275	1275	2504	2925
2019/02/28	17:28:00	1275	1541	2438 2364	2557
	17:30:00 17:32:00		1602		2514
2019/02/28 2019/02/28	17:32:00	1602 1626	1627 1642	2321 2313	2421 2467
2019/02/28	17:34:00	1626	1642	2313	2467 2439
2019/02/28	17:38:00	1630	1636	2305	2439 2422
2019/02/28	17:30:00	1620	1638	2291	2422 2384
2013/02/20	17.40.00	1030	1030	2200	2004

6.10.2019

		Flare F		Flare SCFM	
Data	Time	r MIN	MAX	MIN	MAX
Date 2019/06/10	19:10:00				
		1667	1673	2591	2625
2019/06/10	19:12:00	1669		2578	2624
2019/06/10	19:14:00	1668		2584	2621
2019/06/10	19:16:00	1664		2588	2623
2019/06/10	19:18:00	1664		2583	2624
2019/06/10	19:20:00	1668		2586	2624
2019/06/10 2019/06/10	19:22:00	1661	1678	2579	2634
	19:24:00 19:26:00	1667 1666		2581	2626
2019/06/10 2019/06/10	19:28:00	1669		2586 2579	2621 2624
2019/06/10	19:28:00	1670		2579	2624
2019/06/10	19:30:00		1675	2588	2622
2019/06/10	19:32:00	1671 1666		2587	2623
2019/06/10	19:36:00	1668		2579	2623
2019/06/10	19:38:00	1666		2579	2629
2019/06/10	19:40:00	1000	1005	2001	2022
2019/06/10	19:42:00				
2019/06/10	19:44:00				
2019/06/10	19:46:00				
2019/06/10	19:48:00				
2019/06/10	19:50:00				
2019/06/10	19:52:00				
2019/06/10	19:54:00				
2019/06/10	19:56:00				
2019/06/10	19:58:00				
2019/06/10	20:00:00				
2019/06/10	20:02:00				
2019/06/10	20:04:00				
2019/06/10	20:06:00				
2019/06/10	20:08:00				
2019/06/10	20:10:00				
2019/06/10	20:12:00				
2019/06/10	20:14:00				
2019/06/10	20:16:00				
2019/06/10	20:18:00				
2019/06/10	20:20:00				
2019/06/10	20:22:00				
2019/06/10	20:24:00				
2019/06/10	20:26:00				
2019/06/10	20:28:00				
2019/06/10	20:30:00				
2019/06/10	20:32:00				
2019/06/10	20:34:00				
2019/06/10	20:36:00				
2019/06/10	20:38:00				

2019/06/10 2019/06/10	20:40:00 20:42:00 20:44:00 20:48:00 20:50:00 20:52:00 20:52:00 20:58:00 21:00:00 21:02:00 21:04:00 21:06:00 21:08:00 21:10:00 21:14:00 21:14:00 21:22:00 21:22:00 21:24:00 21:24:00 21:26:00 21:30:00 21:30:00 21:30:00 21:30:00 21:30:00 21:30:00 21:40:00 21:40:00 21:40:00 21:40:00 21:40:00 21:50:00 21:50:00 21:50:00 21:56:00 21:56:00 21:56:00 21:56:00 21:56:00 21:56:00 21:56:00 21:58:00 22:00:00 22:04:00
2019/06/10	22:04:00
2019/06/10	22:06:00
2019/06/10	22:14:00
2019/06/10	22:16:00
2019/06/10	22:18:00
2019/06/10	22:20:00

2019/06/10	22:22:00				
2019/06/10	22:24:00	84	85	-405	51
2019/06/10	22:26:00	85	85	-1	0
2019/06/10	22:28:00	85	85	-1	105
2019/06/10	22:30:00	85	86	-1	195
2019/06/10	22:32:00	85	86	-1	-1
2019/06/10	22:34:00	85	86	-1	-1
2019/06/10	22:36:00	85	85	-1	-1
2019/06/10	22:38:00	84	85	-2	-1
2019/06/10	22:40:00	84	85	-1	-1
2019/06/10	22:42:00	84	84	-1	-1
2019/06/10	22:44:00	82	84	-2	-1
2019/06/10	22:46:00	82	84	-2	-1
2019/06/10	22:48:00	82	83	-1	-1
2019/06/10	22:50:00	82	345	-1	3414
2019/06/10	22:52:00	345	1775	3050	3239
2019/06/10	22:54:00	1549	1712	2960	3092
2019/06/10	22:56:00	1616	1642	2902	3000
2019/06/10	22:58:00	1642	1669	2836	2964
2019/06/10	23:00:00	1655	1673	2829	2897
2019/06/10	23:02:00	1658	1679	2798	2840
2019/06/10	23:04:00	1659	1672	2777	2829
2019/06/10	23:06:00	1671	1686	2769	2807
2019/06/10	23:08:00	1664	1678	2763	2787
2019/06/10	23:10:00	1676	1681	2744	2782
2019/06/10	23:12:00	1671	1677	2741	2787
2019/06/10	23:14:00	1658	1681	2734	2772
2019/06/10	23:16:00	1663	1681	2706	2764
2019/06/10	23:18:00	1659	1684	2713	2757
2019/06/10	23:20:00	1662	1677	2708	2757
2019/06/10	23:22:00	1676	1684	2705	2749
2019/06/10	23:24:00	1657	1683	2692	2747
2019/06/10	23:26:00	1673	1684	2702	2742
2019/06/10	23:28:00	1658	1673	2688	2742
2019/06/10	23:30:00	1669	1686	2685	2737

7.24.2019

		Flare		Flare	
		F		SCFM	
Date	Time	MIN	MAX	MIN	MAX
2019/07/24	16:40:00	1600	1606	1649	1690
2019/07/24	16:42:00	1600		1635	1696
2019/07/24	16:44:00	1589	1601	1631	1702
2019/07/24	16:46:00	1584		1628	1689
2019/07/24	16:48:00	1577	7 1585	1631	1694
2019/07/24	16:50:00	1581	1592	1628	1691
2019/07/24	16:52:00	1580) 1592	1641	1689
2019/07/24	16:54:00	1580	1604	1639	1689
2019/07/24	16:56:00	1589) 1599	1633	1684
2019/07/24	16:58:00	1589	1601	1640	1697
2019/07/24	17:00:00	1577	' 1594	1626	1692
2019/07/24	17:02:00	1576	5 1586	1639	1701
2019/07/24	17:04:00	1573	3 1586	1631	1683
2019/07/24	17:06:00	1575	5 1584	1636	1686
2019/07/24	17:08:00	1575	5 1580	1636	1703
2019/07/24	17:10:00	1575		1636	1692
2019/07/24	17:12:00	1574	1577	1641	1687
2019/07/24	17:14:00	1574	1587	1630	1686
2019/07/24	17:16:00				
2019/07/24	17:18:00				
2019/07/24	17:20:00				
2019/07/24	17:22:00				
2019/07/24	17:24:00				
2019/07/24	17:26:00				
2019/07/24	17:28:00				
2019/07/24	17:30:00				
2019/07/24	17:32:00				
2019/07/24	17:34:00				
2019/07/24	17:36:00				
2019/07/24	17:38:00				
2019/07/24	17:40:00				
2019/07/24	17:42:00	00/	0.40	004	
2019/07/24	17:44:00	224		-394	55
2019/07/24	17:46:00	207			49
2019/07/24	17:48:00	191			278
2019/07/24	17:50:00	178		-3	49
2019/07/24	17:52:00	166			48
2019/07/24	17:54:00	156			47
2019/07/24	17:56:00	147			49 40
2019/07/24 2019/07/24	17:58:00 18:00:00	140 135			49 47
2019/07/24 2019/07/24	18:00:00	130			47 47
2019/07/24	18:02:00	130		-3	47
2019/07/24	18:04:00	127			47
2019/07/24	18:08:00	120			47
2010/01/24	10.00.00	120	, 125	-0	-0

2019/07/24	18:10:00	118	121	-3	47
2019/07/24	18:12:00	116	118	-4	47
2019/07/24	18:14:00	113	116	-3	-3
2019/07/24	18:16:00	113	114	-3	-3
2019/07/24	18:18:00	110	113	-4	-3
2019/07/24	18:20:00	110	111	-3	-3
2019/07/24	18:22:00	108	110	-4	-3
2019/07/24	18:24:00	108	109	-3	-3
2019/07/24	18:26:00	106	108	-4	-3
2019/07/24	18:28:00	106	107	-4	-3
2019/07/24	18:30:00	105	106	-4	-3
2019/07/24	18:32:00	106	106	-4	-3
2019/07/24	18:34:00	104	106	-4	-3
2019/07/24	18:36:00	104	100	-3	-3
2019/07/24	18:38:00	104	104	-4	-3
2019/07/24	18:40:00	103	104	-4	-3
2019/07/24	18:42:00	103	104	-4	-3
2019/07/24	18:44:00	103	104	-4	-3 -1
2019/07/24	18:46:00	103	103	-3	-1
2019/07/24	18:48:00	101	103	-3	-3 -3
2019/07/24	18:50:00	101	103	-3 -3	-3 -3
2019/07/24	18:52:00	101	102		
				-3	-3 -3
2019/07/24	18:54:00	101	101	-3	
2019/07/24	18:56:00	101	101	-3	-3
2019/07/24	18:58:00	99	101	-3	-3
2019/07/24	19:00:00	99	101	-3	-3
2019/07/24	19:02:00	99	99	-3	-3
2019/07/24	19:04:00	99	99	-3	-3
2019/07/24	19:06:00	99	99	-3	-3
2019/07/24	19:08:00	98	99	-3	-3
2019/07/24	19:10:00	98	99	-3	-3
2019/07/24	19:12:00	98	99	-3	-3
2019/07/24	19:14:00	98	99	-3	-3
2019/07/24	19:16:00	98	99	-3	-3
2019/07/24	19:18:00	98	99	-3	-3
2019/07/24	19:20:00	98	98	-3	-3
2019/07/24	19:22:00	98	98	-3	-3
2019/07/24	19:24:00	98	98	-3	-3
2019/07/24	19:26:00	96	98	-3	-3
2019/07/24	19:28:00	96	98	-3	-3
2019/07/24	19:30:00	96	98	-3	-3
2019/07/24	19:32:00	96	97	-4	-3
2019/07/24	19:34:00	96	97	-3	-3
2019/07/24	19:36:00	96	97	-3	-3
2019/07/24	19:38:00	96	97	-3	-3
2019/07/24	19:40:00	96	96	-3	-3
2019/07/24	19:42:00	95	96	-3	-3
2019/07/24	19:44:00	95	96	-4	-3
2019/07/24	19:46:00	95	96	-3	-3
2019/07/24	19:48:00	94	96	-3	-3
2019/07/24	19:50:00	94	96	-3	186

2019/07/24	19:52:00	94	337	186	2125
2019/07/24	19:54:00	337	931	1874	1982
2019/07/24	19:56:00	931	1284	1937	2015
2019/07/24	19:58:00	1284	1504	1894	1975
2019/07/24	20:00:00	1504	1604	1857	1929
2019/07/24	20:02:00	1604	1639	1852	1932
2019/07/24	20:04:00	1638	1663	1844	1904
2019/07/24	20:06:00	1658	1682	1829	1900
2019/07/24	20:08:00	1658	1683	1809	1899
2019/07/24	20:10:00	1668	1673	1791	1852
2019/07/24	20:12:00	1666	1689	1762	1844
2019/07/24	20:14:00	1659	1686	1777	1841
2019/07/24	20:16:00	1662	1688	1769	1824
2019/07/24	20:18:00	1661	1681	1773	1829
2019/07/24	20:20:00	1661	1686	1761	1824
2019/07/24	20:22:00	1661	1686	1758	1826
2019/07/24	20:24:00	1661	1684	1762	1815
2019/07/24	20:26:00	1663	1688	1767	1820
2019/07/24	20:28:00	1661	1685	1743	1817
2019/07/24	20:30:00	1666	1684	1742	1810

7.26.2019

		Flare		Flare	
		F		SCFM	
Date	Time	MIN	MAX	MIN	MAX
2019/07/26	02:00:00	1667			1784
2019/07/26	02:02:00	1660			1783
2019/07/26	02:04:00	1676			1789
2019/07/26	02:06:00	1674			1784
2019/07/26	02:08:00	1667			1791
2019/07/26	02:10:00	1659			1784
2019/07/26	02:12:00	1664			1774
2019/07/26	02:14:00	1670			1784
2019/07/26	02:16:00	1662			1771
2019/07/26	02:18:00	1665			1796
2019/07/26	02:20:00	1662			1781
2019/07/26	02:22:00	1664			1783
2019/07/26	02:24:00	1624			1767
2019/07/26	02:26:00	1426			1309
2019/07/26	02:28:00	1306			1107
2019/07/26	02:30:00	1238			1030
2019/07/26	02:32:00	1192			1021
2019/07/26	02:34:00	1173			1025
2019/07/26	02:36:00	1123			1034
2019/07/26	02:38:00	897			55
2019/07/26	02:40:00	732			51
2019/07/26	02:42:00	612			51
2019/07/26	02:44:00	524			52
2019/07/26	02:46:00	456			51
2019/07/26	02:48:00	404			51
2019/07/26	02:50:00	360			51
2019/07/26	02:52:00	323			53
2019/07/26	02:54:00	291			51
2019/07/26	02:56:00	258			51 1107
2019/07/26 2019/07/26	02:58:00 03:00:00	229 228		-1 1083	1107
2019/07/26	03:00:00	301			1193
2019/07/26	03:02:00	526			1205
2019/07/26	03:04:00	845			1202
2019/07/26	03:08:00	1149			1217
2019/07/26	03:10:00	928			55
2019/07/26	03:10:00	920 740			51
2019/07/26	03:12:00	612			51
2019/07/26	03:14:00	518			49
2019/07/26	03:18:00	445			49
2019/07/26	03:20:00	389			49
2019/07/26	03:22:00	344			49 51
2019/07/26	03:22:00	306			50
2019/07/26	03:24:00	268			50 50
2019/07/26	03:28:00	245			1229
_0.0,01/20	00.20.00	210	200	•	

2019/07/26	03:30:00	249	406	1202	1244
2019/07/26	03:32:00	406	632	1204	1239
2019/07/26	03:34:00	632	1026	1225	1267
2019/07/26	03:36:00	1026	1262	1233	1272
2019/07/26	03:38:00	1140	1294	50	1255
2019/07/26	03:40:00	875	1140	-1	53
2019/07/26	03:42:00	701	875	-1	51
2019/07/26	03:44:00	581	701	-1	51
2019/07/26	03:46:00	493	581	-1	51
2019/07/26	03:48:00	415	493	-1	51
2019/07/26	03:50:00	350	415	-1	51
2019/07/26	03:52:00	299	350	-1	51
2019/07/26	03:54:00	257	299	-1	51
2019/07/26	03:56:00	224	258	-1	51
2019/07/26	03:58:00	198	224	-1	50
2019/07/26	04:00:00	177	198	-1	50
2019/07/26	04:02:00	160	177	-1	51
2019/07/26	04:04:00	146	160	-1	49
2019/07/26	04:06:00	134	146	-1	50
2019/07/26	04:08:00	124	134	-1	50
2019/07/26	04:10:00	116	124	-1	50
2019/07/26	04:12:00	109	116	-1	51
2019/07/26	04:12:00	103	109	-1	49
2019/07/26	04:16:00	98	103	-1	53
2019/07/26	04:18:00	94	99	-1	51
2019/07/26	04:20:00	90	93 94	-1	50
2019/07/26	04:22:00	87	90	-1	50
2019/07/26	04:24:00	84	87	-1	51
2019/07/26	04:26:00	81	84	-1	51
2019/07/26	04:28:00	79	81	-1	51
2019/07/26	04:30:00	73	79	0	50
2019/07/26	04:32:00	75	77	0	53
2019/07/26	04:34:00	73	75	0	51
2019/07/26	04:36:00	73	73	-1	53
2019/07/26	04:38:00	72	73	-1 -1	51
2019/07/26	04:40:00	69	72		53
2019/07/26	04:42:00	69	69	-1 -1	51
2019/07/26	04:44:00	68	69	-1 -1	53
2019/07/26	04:46:00	67	68	-1	54
2019/07/26	04:48:00	67 67	68	-1	54 54
2019/07/26	04:50:00	66	67	-1	53
2019/07/26	04:52:00	65	66	49	55
2019/07/26	04:54:00	05 65	65	49 49	55
2019/07/26	04:56:00	64	65 65	49 0	55 56
2019/07/26	04:58:00	64 64	64	49	50 54
2019/07/26	05:00:00	63	64 64	49 49	54 55
2019/07/26	05:02:00	63 62	63 62	0	55 55
2019/07/26	05:04:00	63 62	63 62	49 51	55 54
2019/07/26	05:06:00	62 62	63 63	51	54 55
2019/07/26	05:08:00	62 62	63 62	0	55 56
2019/07/26	05:10:00	62	63	49	56

2019/07/26	05:12:00	61	63	51	56
2019/07/26	05:14:00	61	63	0	56
2019/07/26	05:16:00	61	61	51	57
2019/07/26	05:18:00	61	61	53	57
2019/07/26	05:20:00	61	61	54	57
2019/07/26	05:22:00	60	61	49	57
2019/07/26	05:24:00	60	61	0	56
2019/07/26	05:26:00	60	61	49	55
2019/07/26	05:28:00	60	60	53	58
2019/07/26	05:30:00	60	61	54	58
2019/07/26	05:32:00	60	60	54	58
2019/07/26	05:34:00	60	60	51	57
2019/07/26	05:36:00	59	61	49	57
2019/07/26	05:38:00	59	60	51	57
2019/07/26	05:40:00	59	60	53	57
2019/07/26	05:42:00	59	59	53	57
2019/07/26	05:44:00	59	59	54	58
2019/07/26	05:46:00	59	59	54	57
2019/07/26	05:48:00	58	59	54	58
2019/07/26	05:50:00	58	59	56	58
2019/07/26	05:52:00	58	59	56	57
2019/07/26	05:54:00	58	58	53	57
2019/07/26	05:56:00	58	58	54	57
2019/07/26	05:58:00	58	58	54	58
2019/07/26	06:00:00	58	58	54	58
2019/07/26	06:02:00	58	58	56	58
2019/07/26	06:04:00	58	58	56	58
2019/07/26	06:06:00	58	58	56	58
2019/07/26	06:08:00	58	58	56	58
2019/07/26	06:10:00	58	58	54	57
2019/07/26	06:12:00	58	58	56	58
2019/07/26	06:14:00	58	58	54	57
2019/07/26	06:16:00	58	58	56	58
2019/07/26	06:18:00	58	58	56	58
2019/07/26	06:20:00	58	58	54	57
2019/07/26	06:22:00	58	58	54	58
2019/07/26	06:24:00	58	58	56	58
2019/07/26	06:26:00	58	58	54	58
2019/07/26	06:28:00	57	58	56	58
2019/07/26	06:30:00	58	58	56	58
2019/07/26	06:32:00	58	58	56	58
2019/07/26	06:34:00	58	58	56	58
2019/07/26	06:36:00	57	58	56	58
2019/07/26	06:38:00	57	58	54	58
2019/07/26	06:40:00	57	58	56	58
2019/07/26	06:42:00	57	58	58	58
2019/07/26	06:44:00	57	58	56	58
2019/07/26	06:46:00	57	58	56	58
2019/07/26	06:48:00	57	58	58	58
2019/07/26	06:50:00	57	58	56	58
2019/07/26	06:52:00	57	58	56	58
		-	-		

2019/07/26	06:54:00	57	58	58	58
2019/07/26	06:56:00	57	58	58	58
2019/07/26	06:58:00	57	58	56	58
2019/07/26	07:00:00	57	58	58	58
2019/07/26	07:02:00	57	58	58	58
2019/07/26	07:04:00	57	58	58	58
2019/07/26	07:06:00	57	58	56	58
2019/07/26	07:08:00	57	58	58	58
2019/07/26	07:10:00	57	58	58	58
2019/07/26	07:12:00	57	58	58	58
2019/07/26	07:14:00	57	58	56	58
2019/07/26	07:16:00	57	58	58	58
2019/07/26	07:18:00	57	58	58	58
2019/07/26	07:20:00	57	58	58	58
2019/07/26	07:22:00	57	58	58	58
2019/07/26	07:24:00	57	58	57	58
2019/07/26	07:26:00	57	58	56	58
2019/07/26	07:28:00	57	58	56	58
2019/07/26	07:30:00	57	58	58	58
2019/07/26	07:32:00	57	58	58	58
2019/07/26	07:34:00	57	58	58	58
2019/07/26	07:36:00	57	58	56	58
2019/07/26	07:38:00	57	58	56	58
2019/07/26	07:40:00	56	58	56	58
2019/07/26	07:42:00	56	58	56	58
2019/07/26	07:44:00	56	58	56	58
2019/07/26	07:46:00	56	58	56	58
2019/07/26	07:48:00	56	58	56	58
2019/07/26	07:50:00	56	58	56	57
2019/07/26	07:52:00	56	58	56	57
2019/07/26	07:54:00	57	58	56	58
2019/07/26	07:56:00	57	58	56	58
2019/07/26	07:58:00	57	58	56	58
2019/07/26	08:00:00	57	58	56	57
2019/07/26	08:02:00	57	58	56	57
2019/07/26	08:04:00	56	58	56	57
2019/07/26	08:06:00	56	58	56	57
2019/07/26	08:08:00	56	56	56	57
2019/07/26	08:10:00	56	56	56	57
2019/07/26	08:12:00	56	56	56	57
2019/07/26	08:14:00	56	56	56	57
2019/07/26	08:16:00	56	56	56	57
2019/07/26	08:18:00	56	58	56	57
2019/07/26	08:20:00	56	58	56	57
2019/07/26	08:22:00	56	58	56	57
2019/07/26	08:24:00	57	58	56	57
2019/07/26	08:26:00	57	58	56	57
2019/07/26	08:28:00	57	58	56	57
2019/07/26	08:30:00	57	58	56	57
2019/07/26	08:32:00	57	58	56	57
2019/07/26	08:34:00	57	58	56	57

2019/07/26	08:36:00	57	58	56	57
2019/07/26	08:38:00	57	58	56	57
2019/07/26	08:40:00	57	58	56	57
2019/07/26	08:42:00	57	58	56	57
2019/07/26	08:44:00	57	58	56	57
2019/07/26	08:46:00	57	58	54	57
2019/07/26	08:48:00	57	58	54	57
2019/07/26	08:50:00	57	58	54	57
2019/07/26	08:52:00	57	58	54	57
2019/07/26	08:54:00	57	59	54	1118
2019/07/26	08:56:00	59	206	1118	1287
2019/07/26	08:58:00	206	528	1254	1284
2019/07/26	09:00:00	528	1000	1265	1370
2019/07/26	09:02:00	1000	1311	1332	1378
2019/07/26	09:04:00	1311	1451	84	1373
2019/07/26	09:06:00	1033	1412	-1	84
2019/07/26	09:08:00	800	1033	49	51
2019/07/26	09:10:00	650	800	49	51
2019/07/26	09:12:00	544	650	49	50
2019/07/26	09:14:00	466	545	49	50
2019/07/26	09:16:00	404	466	-1	50
2019/07/26	09:18:00	355	404	-1	50
2019/07/26	09:20:00	314	355	-1	50
2019/07/26	09:22:00	275	314	-1	50
2019/07/26	09:24:00	236	275	49	280
2019/07/26	09:26:00	205	236	-1	327
2019/07/26	09:28:00	179	205	-1	0
2019/07/26	09:30:00	159	179	-1	0
2019/07/26	09:32:00	144	159	-1	0
2019/07/26	09:34:00	132	144	-1	0
2019/07/26	09:36:00	121	133	-1	0
2019/07/26	09:38:00	112	121	-1	0
2019/07/26	09:40:00	105	112	-1	0
2019/07/26	09:42:00	99	105	-1	0
2019/07/26	09:44:00	94	99	-1	0
2019/07/26	09:46:00	89	94	-1	0
2019/07/26	09:48:00	86	89	-1	0
2019/07/26	09:50:00	83	87	-1	0
2019/07/26	09:52:00	80	83	-1	0
2019/07/26	09:54:00	78	80	-1	0
2019/07/26	09:56:00	76	78	-1	0
2019/07/26	09:58:00	74	76	-1	0
2019/07/26	10:00:00	73	75	-1	0
2019/07/26	10:02:00	72	73	-1	0
2019/07/26	10:04:00	71	72	-1	0
2019/07/26	10:06:00	70	71	-1	0
2019/07/26	10:08:00	68	70	-1	0
2019/07/26	10:10:00	68	69	-1	0
2019/07/26	10:12:00	68	68	-1	49
2019/07/26	10:14:00	67	68	-1	49
2019/07/26	10:16:00	67	88	-1	1361

2019/07/26	10:18:00	88	397	1361	1407
2019/07/26	10:20:00	397	810	1356	1391
2019/07/26	10:22:00	810	1130	1365	1424
2019/07/26	10:24:00	1130	1399	1379	1413
2019/07/26	10:26:00	1320	1513	50	1427
2019/07/26	10:28:00	909	1320	49	50
2019/07/26	10:30:00	687	909	49	51
2019/07/26	10:32:00	539	687	50	51
2019/07/26	10:34:00	440	539	50	51
2019/07/26	10:36:00	359	440	50	51
2019/07/26	10:38:00	304	359	50	1430
2019/07/26	10:40:00	302	350	1397	1481
2019/07/26	10:42:00	350	1084	1390	1440
2019/07/26	10:44:00	1084	1523	1400	1449
2019/07/26	10:46:00	1523	1599	1398	1441
2019/07/26	10:48:00	1599	1814	1406	3648
2019/07/26	10:50:00	1609	1715	2430	2694
2019/07/26	10:52:00	1659	1684	2518	2617
2019/07/26	10:54:00	1676	1681	2514	2620
2019/07/26	10:56:00	1655	1677	2484	2596
2019/07/26	10:58:00	1659	1684	2465	2529
2019/07/26	11:00:00	1660	1681	2455	2545
2019/07/26	11:02:00	1662	1670	2423	2521
2019/07/26	11:04:00	1664	1688	2418	2511
2019/07/26	11:06:00	1662	1684	2404	2509
2019/07/26	11:08:00	1660	1686	2383	2475
2019/07/26	11:10:00	1657	1684	2398	2459
2019/07/26	11:12:00	1662	1684	2376	2477
2019/07/26	11:14:00	1662	1688	2361	2454
2019/07/26	11:16:00	1663	1683	2359	2474
2019/07/26	11:18:00	1671	1683	2360	2462
2019/07/26	11:20:00	1660	1681	2330	2470

8.1.2019

		Tag	Flare		Flare	
		Unit	F		SCFM	
Date	Time	sec	MIN	MAX	MIN	MAX
2019/08/01	16:20:00	0.000		1683	2057	2178
2019/08/01	16:22:00	0.000		1683	2042	2155
2019/08/01	16:24:00	0.000		1678		2166
2019/08/01	16:26:00	0.000		1677	2062	2147
2019/08/01	16:28:00	0.000		1685		2180
2019/08/01	16:30:00	0.000		1687		2157
2019/08/01	16:32:00	0.000		1684		2160
2019/08/01	16:34:00	0.000		1684		2172
2019/08/01	16:36:00	0.000		1684		2145
2019/08/01	16:38:00	0.000		1680		2167
2019/08/01	16:40:00	0.000		1680		2173
2019/08/01	16:42:00	0.000		1676		2155
2019/08/01	16:44:00	0.000		1691	2033	2160
2019/08/01	16:46:00	0.000		1681	2031	2185
2019/08/01	16:48:00	0.000		1684	2062	2155
2019/08/01	16:50:00	0.000		1689	2051	2159
2019/08/01	16:52:00	0.000		1688		2157
2019/08/01	16:54:00	0.000		1689	2047	2147
2019/08/01	16:56:00	0.000		1689	2053	2154
2019/08/01	16:58:00	0.000				
2019/08/01	17:00:00	0.000				
2019/08/01	17:02:00	0.000				
2019/08/01 2019/08/01	17:04:00 17:06:00	0.000 0.000				
2019/08/01	17:08:00	0.000				
2019/08/01	17:10:00	0.000				
2019/08/01	17:10:00	0.000		416	-399	49
2019/08/01	17:12:00	0.000		399		-1
2019/08/01	17:14:00	0.000		354	-1	-1
2019/08/01	17:18:00	0.000		309	-1	140
2019/08/01	17:20:00	0.000		268		62
2019/08/01	17:22:00	0.000		234	-2	-1
2019/08/01	17:24:00	0.000		207	-2	-1
2019/08/01	17:26:00	0.000		185		-1
2019/08/01	17:28:00	0.000		334		3036
2019/08/01	17:30:00	0.000		1118		2681
2019/08/01	17:32:00	0.000		1475		2426
2019/08/01	17:34:00	0.000		1626		2312
2019/08/01	17:36:00	0.000		1664		2272
2019/08/01	17:38:00	0.000			2156	2285
2019/08/01	17:40:00	0.000		1679		2281
2019/08/01	17:42:00	0.000		1680		2272
2019/08/01	17:44:00	0.000		1685		2251
2019/08/01	17:46:00	0.000		1693		2266
2019/08/01	17:48:00	0.000	1666	1686	2157	2273
2019/08/01	17:50:00	0.000	1666	1674	2145	2282

2019/08/01	17:52:00	0.000	1666	1671	2139	2264
2019/08/01	17:54:00	0.000	1669	1693	2142	2259
2019/08/01	17:56:00	0.000	1661	1688	2152	2253
2019/08/01	17:58:00	0.000	1665	1682	2112	2259
2019/08/01	18:00:00	0.000	1659	1683	2133	2254

8.6.2019

		Flare		Flare	
		F		SCFM	
Date	Time	MIN	MAX	MIN	MAX
2019/08/06	13:00:00	1659	1684	1932	2077
2019/08/06	13:02:00	1657	1680	1938	2071
2019/08/06	13:04:00	1669	1684	1930	2073
2019/08/06	13:06:00	1659	1685	1943	2054
2019/08/06	13:08:00	1665	1681	1966	2078
2019/08/06	13:10:00	1664	1689	1920	2071
2019/08/06	13:12:00	1665	1684	1973	2102
2019/08/06	13:14:00	1666	1681	1945	2061
2019/08/06	13:16:00	1661	1686	1956	2060
2019/08/06	13:18:00	1658	1682	1964	2074
2019/08/06	13:20:00	1669	1686	1975	2065
2019/08/06	13:22:00	1657	1685	1969	2090
2019/08/06	13:24:00	1664	1681	1987	2071
2019/08/06	13:26:00	1664	1688	1966	2068
2019/08/06	13:28:00	1671	1686	1979	2054
2019/08/06	13:30:00	1662	1686	1960	2077
2019/08/06	13:32:00	1467	1678	-4	2083
2019/08/06	13:34:00	1079	1469	-4	-3
2019/08/06	13:36:00	857	1079	-4	-3
2019/08/06	13:38:00	711	857	-4	-3
2019/08/06	13:40:00	604	711	-3	-3
2019/08/06	13:42:00	525	604	-3	-3
2019/08/06	13:44:00	462	525	-3	-3
2019/08/06	13:46:00	413	462	-3	-3
2019/08/06	13:48:00	372	413	-3 -3	-3
2019/08/06 2019/08/06	13:50:00 13:52:00	339 310	372 339	-3 -3	-3 -3
2019/08/06	13:52:00	286	339	-3	-3 -3
2019/08/06	13:56:00	200	286	-3	-3 -3
2019/08/06	13:58:00	230	258	-3	-3
2019/08/06	14:00:00	220	366	-3	-3 3042
2019/08/06	14:02:00	366	1280	2240	2565
2019/08/06	14:02:00	1280	1200	2109	2338
2019/08/06	14:04:00	1541	1671	2103	2330
2019/08/06	14:08:00	1646	1671	2094	2253
2019/08/06	14:10:00	1646	1681	2113	2223
2019/08/06	14:12:00	1662	1689	2110	2272
2019/08/06	14:14:00	1662	1685	2112	2232
2019/08/06	14:16:00	1660	1682	2117	2216
2019/08/06	14:18:00	1675	1682	2099	2214
2019/08/06	14:20:00	1660	1685	2103	2241
2019/08/06	14:22:00	1662	1685	2116	2235
2019/08/06	14:24:00	1658	1682	2110	2206
2019/08/06	14:26:00	1666	1683	2105	2199
2019/08/06	14:28:00	1664	1677	2093	2200
2019/08/06	14:30:00	1669	1677	2104	2192

9.8.2019

		Tag	Flare		Flare	
		Unit	F		SCFM	
Date	Time	sec	MIN	MAX	MIN	MAX
2019/09/08	08:12:00	0.000	1664	1684	1842	1962
2019/09/08	08:14:00	0.000	1662	1686	1823	1950
2019/09/08	08:16:00	0.000	1664	1687	1842	1975
2019/09/08	08:18:00	0.000	1674	1687	1839	1959
2019/09/08	08:20:00	0.000	1671	1676	1803	1949
2019/09/08	08:22:00	0.000	1667	1672	1841	1972
2019/09/08	08:24:00	0.000	1666	1674	1811	1977
2019/09/08	08:26:00	0.000	1662	1689	1846	1967
2019/09/08	08:28:00	0.000	1662	1680	1815	1972
2019/09/08	08:30:00	0.000	1672	1679	1831	1972
2019/09/08	08:32:00	0.000	1669	1677	1818	1982
2019/09/08	08:34:00	0.000			1812	1968
2019/09/08	08:36:00	0.000				1963
2019/09/08	08:38:00	0.000				1943
2019/09/08	08:40:00	0.000				1962
2019/09/08	08:42:00	0.000				1973
2019/09/08	08:44:00	0.000				1985
2019/09/08	08:46:00	0.000				1960
2019/09/08	08:48:00	0.000				1973
2019/09/08	08:50:00	0.000				220
2019/09/08	08:52:00	0.000				-1
2019/09/08	08:54:00	0.000				-1
2019/09/08	08:56:00	0.000				-1
2019/09/08	08:58:00	0.000				0
2019/09/08	09:00:00	0.000				0
2019/09/08	09:02:00	0.000				0
2019/09/08	09:04:00	0.000				0
2019/09/08	09:06:00	0.000				0
2019/09/08	09:08:00	0.000				0
2019/09/08	09:10:00	0.000				0
2019/09/08	09:12:00	0.000				0
2019/09/08	09:14:00	0.000		188		0
2019/09/08	09:16:00	0.000		172		0
2019/09/08	09:18:00	0.000				0
2019/09/08	09:20:00	0.000				0
2019/09/08	09:22:00	0.000				0
2019/09/08	09:24:00	0.000				0
2019/09/08	09:26:00	0.000				0
2019/09/08	09:28:00	0.000				0
2019/09/08	09:30:00	0.000				0
2019/09/08	09:32:00	0.000		106		0
2019/09/08	09:34:00	0.000			-1	0
2019/09/08	09:36:00	0.000				0
2019/09/08	09:38:00	0.000				-1
2019/09/08	09:40:00	0.000				-1
			50		-	-

2019/09/08	09:42:00	0.000	88	90	-1	0
2019/09/08	09:44:00	0.000	86	88	-1	-1
2019/09/08	09:46:00	0.000	85	87	-1	-1
2019/09/08	09:48:00	0.000	83	85	-1	-1
2019/09/08	09:50:00	0.000	82	83	-1	-1
2019/09/08	09:52:00	0.000	81	82	-1	-1
2019/09/08	09:54:00	0.000	80	81	-1	-1
2019/09/08	09:56:00	0.000	79	80	-1	-1
2019/09/08	09:58:00	0.000	78	79	-1	-1
2019/09/08	10:00:00	0.000	78	78	-1	-1
2019/09/08	10:02:00	0.000	77	78	-1	-1
2019/09/08	10:04:00	0.000	77	77	-1	-1
2019/09/08	10:06:00	0.000	76	77	-1	-1
2019/09/08	10:08:00	0.000	75	76	-1	-1
2019/09/08	10:10:00	0.000	75	76	-1	-1
2019/09/08	10:12:00	0.000	75	75	-2	-1
2019/09/08	10:14:00	0.000	74	75	-2	-1
2019/09/08	10:16:00	0.000	74	74	-2	-1
2019/09/08	10:18:00	0.000	73	75	-2	-1
2019/09/08	10:20:00	0.000	73	74	-2	-1
2019/09/08	10:22:00	0.000	73	73	-2	-1
2019/09/08	10:24:00	0.000	73	73	-2	-1
2019/09/08	10:26:00	0.000	73	73	-2	-1
2019/09/08	10:28:00	0.000	73	73	-2	-1
2019/09/08	10:30:00	0.000	72	73	-2	-1
2019/09/08	10:32:00	0.000	72	73	-2	-1
2019/09/08	10:34:00	0.000	72	72	-2	-1
2019/09/08	10:36:00	0.000	72	72	-2	-1
2019/09/08	10:38:00	0.000	72	72	-2	-1
2019/09/08	10:40:00	0.000	72	72	-2	-1
2019/09/08	10:42:00	0.000	72	72	-2	-1
2019/09/08	10:44:00	0.000	72	72	-2	-1
2019/09/08	10:46:00	0.000	72	72	-2	-1
2019/09/08	10:48:00	0.000	72	72	-2	-1
2019/09/08	10:50:00	0.000	72	72	-2	-1
2019/09/08	10:52:00	0.000	72	72	-2	-1
2019/09/08	10:54:00	0.000	72	72	-2	-2
2019/09/08	10:56:00	0.000	72	72	-2	-1
2019/09/08	10:58:00	0.000	72	72	-2	-2
2019/09/08	11:00:00	0.000	72	72	-2	-2
2019/09/08	11:02:00	0.000	72	72	-2	-2
2019/09/08	11:04:00	0.000	72	72	-2	-2
2019/09/08	11:06:00	0.000	72	72	-3	-2
2019/09/08	11:08:00	0.000	72	72	-3	-2
2019/09/08	11:10:00	0.000	72	72	-3	-2
2019/09/08	11:12:00	0.000	72	72	-2	-2
2019/09/08	11:14:00	0.000	72	72	-2	-2
2019/09/08	11:16:00	0.000	72	72	-2	-2
2019/09/08	11:18:00	0.000	72	72	-2	-2
2019/09/08	11:20:00	0.000	71	72	-2	-2
2019/09/08	11:22:00	0.000	70	72	-2	-2
2010/00/00	11.22.00	0.000	10	12	2	۷

2019/09/08	11:24:00	0.000	70	72	-2	-2
2019/09/08	11:26:00	0.000	70	72	-2	-1
2019/09/08	11:28:00	0.000	70	71	-2	-1
2019/09/08	11:30:00	0.000	70	71	-2	-1
2019/09/08	11:32:00	0.000	70	72	-2	-2
2019/09/08	11:34:00	0.000	70	72	-2	-2
2019/09/08	11:36:00	0.000	70	71	-2	-1
2019/09/08	11:38:00	0.000	70	71	-2	-1
2019/09/08	11:40:00	0.000	70	71	-2	-1
2019/09/08	11:42:00	0.000	70	71	-2	-1
2019/09/08	11:44:00	0.000	70	71	-2	-1
2019/09/08	11:46:00	0.000	70	71	-2	-1
2019/09/08	11:48:00	0.000	70	71	-2	-1
2019/09/08	11:50:00	0.000	70	71	-2	-1
2019/09/08	11:52:00	0.000	70	71	-2	-1
2019/09/08	11:54:00	0.000	70	71	-2	-1
2019/09/08	11:56:00	0.000	70	71	-2	-1
2019/09/08	11:58:00	0.000	70	70	-2	-1
2019/09/08	12:00:00	0.000	70	70	-2	-1
2019/09/08	12:02:00	0.000	70	70	-2	-1
2019/09/08	12:04:00	0.000	70	70	-2	-1
2019/09/08	12:06:00	0.000	70	70	-2	-1
2019/09/08	12:08:00	0.000	70	70	-2	-1
2019/09/08	12:10:00	0.000	70	70	-2	-1
2019/09/08	12:12:00	0.000	70	70	-2	-1
2019/09/08	12:14:00	0.000	70	70	-2	-1
2019/09/08	12:16:00	0.000	70	70	-2	-1
2019/09/08	12:18:00	0.000	70	71	-2	-1
2019/09/08	12:20:00	0.000	70	71	-2	-1
2019/09/08	12:22:00	0.000	70	71	-2	-1
2019/09/08	12:24:00	0.000	70	71	-2	-1
2019/09/08	12:26:00	0.000	70	71	-2	-1
2019/09/08	12:28:00	0.000	70	71	-2	-1
2019/09/08	12:30:00	0.000	70	71	-2	-1
2019/09/08	12:32:00	0.000	70	71	-2	-1
2019/09/08	12:34:00	0.000	70	71	-2	-1
2019/09/08	12:36:00	0.000	70	71	-2	-1
2019/09/08	12:38:00	0.000	70	71	-2	-1
2019/09/08	12:40:00	0.000	70	71	-2	-1
2019/09/08	12:42:00	0.000	70	71	-2	-1
2019/09/08	12:44:00	0.000	70	71	-2	-1
2019/09/08	12:46:00	0.000	70	71	-2	-1
2019/09/08	12:48:00	0.000	70	71	-2	-1
2019/09/08	12:50:00	0.000	70	72	-2	-1
2019/09/08	12:52:00	0.000	70	71	-2	-1
2019/09/08	12:54:00	0.000	70	72	-2	-1
2019/09/08	12:56:00	0.000	70	72	-2	-1
2019/09/08	12:58:00	0.000	70	72	-2	-1
2019/09/08	13:00:00	0.000	70	72	-2	-1
2019/09/08	13:02:00	0.000	72	72	-2	-1
2019/09/08	13:04:00	0.000	72	72	-2	-1
			_	—	-	-

2019/09/08	13:06:00	0.000	72	72	-2	-1
2019/09/08	13:08:00	0.000	72	72	-2	-1
2019/09/08	13:10:00	0.000	72	72	-2	-1
2019/09/08	13:12:00	0.000	72	72	-2	-1
2019/09/08	13:14:00	0.000	72	72	-2	-1
2019/09/08	13:16:00	0.000	72	72	-2	-1
2019/09/08	13:18:00	0.000	72	72	-2	-1
2019/09/08	13:20:00	0.000	72	72	-2	-1
2019/09/08	13:22:00	0.000	72	73	-2	-1
2019/09/08	13:24:00	0.000	72	73	-2	-1
2019/09/08	13:26:00	0.000	72	73	-2	-1
2019/09/08	13:28:00	0.000	72	73	-2	-1
2019/09/08	13:30:00	0.000	72	73	-2	-2
2019/09/08	13:32:00	0.000	72	74	-2	-1
2019/09/08	13:34:00	0.000	72	74	-2	-1
2019/09/08	13:36:00	0.000	74	74	-2	-1
2019/09/08	13:38:00	0.000	74	74	-2	-1
2019/09/08	13:40:00	0.000	74	74	-2	-2
2019/09/08	13:42:00	0.000	74	74	-2	0
2019/09/08	13:44:00	0.000	74	74	-2	-1
2019/09/08	13:46:00	0.000	74	74	-2	-1
2019/09/08	13:48:00	0.000	74	74	-2	-1
2019/09/08	13:50:00	0.000	74	74	-2	-1
2019/09/08	13:52:00	0.000	74	74	-2	-1
2019/09/08	13:54:00	0.000	74	74	-2	-1
2019/09/08	13:56:00	0.000	74	75	-2	-1
2019/09/08	13:58:00	0.000	74	75	-2	-2
2019/09/08	14:00:00	0.000	74	75	-2	-2
2019/09/08	14:02:00	0.000	75	75	-2	-1
2019/09/08	14:04:00	0.000	75	75	-2	-2
2019/09/08	14:06:00	0.000	74	75	-2	-1
2019/09/08	14:08:00	0.000	75	75	-2	-2
2019/09/08	14:10:00	0.000	75	75	-2	-2
2019/09/08	14:12:00	0.000	75	75	-4	-1
2019/09/08	14:14:00	0.000	75	75	-2	-2
2019/09/08	14:16:00	0.000	75	75	-2	-1
2019/09/08	14:18:00	0.000	75	75	-2	-2
2019/09/08	14:20:00	0.000	75	75	-2	-2
2019/09/08	14:22:00	0.000	75	75	-2	-2
2019/09/08	14:24:00	0.000	75	75	-2	-2
2019/09/08	14:26:00	0.000	75	75	-2	-2
2019/09/08	14:28:00	0.000	75	75	-2	-2
2019/09/08	14:30:00	0.000	75	75	-2	-1
2019/09/08	14:32:00	0.000	75	75	-2	-2
2019/09/08	14:34:00	0.000	75	75	-2	-2
2019/09/08	14:36:00	0.000	74	76	-2	-2
2019/09/08	14:38:00	0.000	75	76	-2	-2
2019/09/08	14:40:00	0.000	75	76	-2	-2
2019/09/08	14:42:00	0.000	75	76	-2	-2
2019/09/08	14:44:00	0.000	75	76	-2	-1
2019/09/08	14:46:00	0.000	75	76	-2	-2
					_	-

2019/09/08	14:48:00	0.000	75	76	-3	-2
2019/09/08	14:50:00	0.000	75	76	-3	-2
2019/09/08	14:52:00	0.000	75	76	-2	0
2019/09/08	14:54:00	0.000	75	76	-3	-2
2019/09/08	14:56:00	0.000	75	77	-2	-2
2019/09/08	14:58:00	0.000	75	77	-2	-2
2019/09/08	15:00:00	0.000	77	77	-2	-2
2019/09/08	15:02:00	0.000	77	77	-3	-2
2019/09/08	15:04:00	0.000	77	77	-3	-2
2019/09/08	15:06:00	0.000	77	77	-3	-2
2019/09/08	15:08:00	0.000	77	77	-2	-2
2019/09/08	15:10:00	0.000	77	77	-3	-2
2019/09/08	15:12:00	0.000	77	77	-3	-2
2019/09/08	15:14:00	0.000	77	78	-2	-2
2019/09/08	15:16:00	0.000	77	78	-3	-2
2019/09/08	15:18:00	0.000	77	78	-3	-2
2019/09/08	15:20:00	0.000	77	78	-3	-2
2019/09/08	15:22:00	0.000	77	78	-3	-2
2019/09/08	15:24:00	0.000	77	78	-3	-2
2019/09/08	15:26:00	0.000	77	78	-3	-2
2019/09/08	15:28:00	0.000	77	78	-3	-2
2019/09/08	15:30:00	0.000	77	78	-3	-2
2019/09/08	15:32:00	0.000	77	78	-3	-2
2019/09/08	15:34:00	0.000	77	78	-3	-2
2019/09/08	15:36:00	0.000	77	78	-3	-2
2019/09/08	15:38:00	0.000	77	78	-3	-2
2019/09/08	15:40:00	0.000	77	78	-3	-2
2019/09/08	15:42:00	0.000	77	78	-3	-2
2019/09/08	15:44:00	0.000	77	78	-3	-2
2019/09/08	15:46:00	0.000	77	78	-3	-2
2019/09/08	15:48:00	0.000	77	78	-3	-2
2019/09/08	15:50:00	0.000	77	78	-3	-2
2019/09/08	15:52:00	0.000	77	78	-3	-2
2019/09/08	15:54:00	0.000	77	78	-2	-2
2019/09/08	15:56:00	0.000	77	78	-2	-2
2019/09/08	15:58:00	0.000	77	78	-2	-1
2019/09/08	16:00:00	0.000	77	78	-2	-1
2019/09/08	16:02:00	0.000	77	78	-2	-2
2019/09/08	16:04:00	0.000	77	77	-2	-1
2019/09/08	16:06:00	0.000	77	77	-2	-1
2019/09/08	16:08:00	0.000	77	77	-2	-1
2019/09/08	16:10:00	0.000	77	78	-2	-1
2019/09/08	16:12:00	0.000	77	78	-2	-1
2019/09/08	16:14:00	0.000	77	78	-2	-1
2019/09/08	16:16:00	0.000	77	78	-2	-1
2019/09/08	16:18:00	0.000	77	78	-2	-1
2019/09/08	16:20:00	0.000	77	78	-2 -2	-1 -1
2019/09/08	16:22:00	0.000	77	78 78	-2 -2	-1 -1
2019/09/08	16:22:00	0.000	77	78 78	-2 -2	-1 -1
2019/09/08	16:24:00	0.000	77	78 78	-2 -2	-1 -1
2019/09/08			77	78 78	-2 -2	-1 -1
2019/09/00	16:28:00	0.000	11	10	-2	-1

2019/09/08	16:30:00	0.000	77	78	-2	-1
2019/09/08	16:32:00	0.000	77	78	-2	-1
2019/09/08	16:34:00	0.000	77	78	-2	-1
2019/09/08	16:36:00	0.000	77	78	-2	-1
2019/09/08	16:38:00	0.000	77	78	-2	-1
2019/09/08	16:40:00	0.000	77	78	-2	-1
2019/09/08	16:42:00	0.000	77	538	-2	3038
2019/09/08	16:44:00	0.000	538	1379	2481	2624
2019/09/08	16:46:00	0.000	1379	1468	2358	2531
2019/09/08	16:48:00	0.000	1468	1616	2355	2496
2019/09/08	16:50:00	0.000	1616	1655	2307	2434
2019/09/08	16:52:00	0.000	1647	1672	2289	2406
2019/09/08	16:54:00	0.000	1657	1688	2245	2388
2019/09/08	16:56:00	0.000	1664	1685	2245	2356
2019/09/08	16:58:00	0.000	1661	1684	2250	2358
2019/09/08	17:00:00	0.000	1658	1688	2227	2351
2019/09/08	17:02:00	0.000	1661	1686	2230	2316
2019/09/08	17:04:00	0.000	1661	1683	2252	2328
2019/09/08	17:06:00	0.000	1638	1684	2202	2354
2019/09/08	17:08:00	0.000	1642	1684	2212	2326
2019/09/08	17:10:00	0.000	1659	1688	2195	2316
2019/09/08	17:12:00	0.000	1659	1686	2198	2306
2019/09/08	17:14:00	0.000	1659	1680	2215	2315
2019/09/08	17:16:00	0.000	1671	1683	2204	2310
2019/09/08	17:18:00	0.000	1664	1680	2187	2329
2019/09/08	17:20:00	0.000	1665	1680	2217	2319

11.11.2019

FSCFMDateTimeMINMAXMINMAX2019/11/1116:50:0016591686190720332019/11/1116:52:0016631686190020252019/11/1116:54:0016621681190420242019/11/1116:56:0016711678193620232019/11/1116:58:0016661673188520412019/11/1117:00:0016681683191420232019/11/1117:02:0016681671191620322019/11/1117:04:001663168819052034
2019/11/1116:50:0016591686190720332019/11/1116:52:0016631686190020252019/11/1116:54:0016621681190420242019/11/1116:56:0016711678193620232019/11/1116:58:0016661673188520412019/11/1117:00:0016681683191420232019/11/1117:02:0016681671191620322019/11/1117:04:001663168819052034
2019/11/1116:52:0016631686190020252019/11/1116:54:0016621681190420242019/11/1116:56:0016711678193620232019/11/1116:58:0016661673188520412019/11/1117:00:0016681683191420232019/11/1117:02:0016681671191620322019/11/1117:04:001663168819052034
2019/11/1116:54:0016621681190420242019/11/1116:56:0016711678193620232019/11/1116:58:0016661673188520412019/11/1117:00:0016681683191420232019/11/1117:02:0016681671191620322019/11/1117:04:001663168819052034
2019/11/1116:56:0016711678193620232019/11/1116:58:0016661673188520412019/11/1117:00:0016681683191420232019/11/1117:02:0016681671191620322019/11/1117:04:001663168819052034
2019/11/1116:58:0016661673188520412019/11/1117:00:0016681683191420232019/11/1117:02:0016681671191620322019/11/1117:04:001663168819052034
2019/11/1117:00:0016681683191420232019/11/1117:02:0016681671191620322019/11/1117:04:001663168819052034
2019/11/1117:02:0016681671191620322019/11/1117:04:001663168819052034
2019/11/11 17:04:00 1663 1688 1905 2034
2019/11/11 17:06:00 1664 1684 1877 2031
2019/11/11 17:08:00 1663 1684 1874 2021
2019/11/11 17:10:00 1661 1685 1890 2040
2019/11/11 17:12:00 1662 1686 1880 2037
2019/11/11 17:14:00 1663 1685 1900 2035
2019/11/11 17:16:00 1660 1686 1890 2029
2019/11/11 17:18:00 1661 1686 1900 2031
2019/11/11 17:20:00 1661 1683 1907 2044
2019/11/11 17:22:00 1669 1681 1913 2028
2019/11/11 17:24:00 1463 1678 54 2051
2019/11/11 17:26:00 1018 1463 -3 54
2019/11/11 17:28:00 782 1018 -3 -2 2010/14/14 17:20:00 200 700 0 0
2019/11/11 17:30:00 630 782 -3 -2 2010/14/14 17:20:00 540 620 0 0
2019/11/11 17:32:00 519 630 -2 -2
2019/11/11 17:34:00 441 519 -2 48 2010/14/14 17:20:00 200 141 48
2019/11/11 17:36:00 380 441 48 48 2010/14/14 17:28:00 232 280 48 48
2019/11/1117:38:0033238048482019/11/1117:40:002943324848
2019/11/11 17:40.00 294 332 46 46 2019/11/11 17:42:00 263 294 48 48
2019/11/11 17:42:00 203 294 48 48 48 2019/11/11 17:44:00 237 263 -2 48
2019/11/11 17:44:00 237 203 -2 48
2019/11/11 17:48:00 197 215 -2 48
2019/11/11 17:50:00 182 197 -2 48
2019/11/11 17:52:00 169 182 -2 49
2019/11/11 17:54:00 159 169 -2 48
2019/11/11 17:56:00 149 159 -2 48
2019/11/11 17:58:00 141 149 -2 48
2019/11/11 18:00:00 135 141 48 48
2019/11/11 18:02:00 128 135 48 50
2019/11/11 18:04:00 123 129 48 50
2019/11/11 18:06:00 120 124 -2 50
2019/11/11 18:08:00 116 120 -2 50
2019/11/11 18:10:00 112 116 -2 50
2019/11/11 18:12:00 109 112 -2 50
2019/11/11 18:14:00 106 109 -2 50
2019/11/11 18:16:00 104 106 -2 50
2019/11/11 18:18:00 101 104 -2 50

2019/11/11	18:20:00	99	101	-2	50
2019/11/11	18:22:00	96	99	-2	50
2019/11/11	18:24:00	96	97	-2	50
2019/11/11	18:26:00	94	96	-2	50
2019/11/11	18:28:00	92	94	-1	50
2019/11/11	18:30:00	92	93	-2	50
2019/11/11	18:32:00	91	92	-1	50
2019/11/11	18:34:00	89	91	-1	50 50
2019/11/11	18:36:00	89	90	-1	50 50
2019/11/11	18:38:00	87	90 89	-1	50 50
				-1 -1	
2019/11/11	18:40:00	87	88		50
2019/11/11	18:42:00	86	87	-1	50
2019/11/11	18:44:00	85	86	-1	50
2019/11/11	18:46:00	84	85	-1	52
2019/11/11	18:48:00	84	85	-1	52
2019/11/11	18:50:00	82	84	-1	52
2019/11/11	18:52:00	82	83	-1	52
2019/11/11	18:54:00	82	83	-1	52
2019/11/11	18:56:00	82	82	-1	52
2019/11/11	18:58:00	80	82	-1	52
2019/11/11	19:00:00	80	81	-1	52
2019/11/11	19:02:00	80	81	-1	52
2019/11/11	19:04:00	79	80	-1	52
2019/11/11	19:06:00	79	80	-1	52
2019/11/11	19:08:00	79	79	-1	52
2019/11/11	19:10:00	77	79	-1	52
2019/11/11	19:12:00	77	78	-1	52
2019/11/11	19:14:00	77	78	-1	52
2019/11/11	19:16:00	77	78	-1	52
2019/11/11	19:18:00	77	78	-1	52
2019/11/11		75	77	-1	52
	19:20:00				
2019/11/11	19:22:00	75	77	-1	53
2019/11/11	19:24:00	75	76	-1	52
2019/11/11	19:26:00	75	76	-1	52
2019/11/11	19:28:00	75	76	-1	52
2019/11/11	19:30:00	75	76	-1	52
2019/11/11	19:32:00	75	76	-1	52
2019/11/11	19:34:00	75	75	-1	52
2019/11/11	19:36:00	75	75	-1	52
2019/11/11	19:38:00	74	75	-1	51
2019/11/11	19:40:00	74	75	-1	52
2019/11/11	19:42:00	74	74	-1	52
2019/11/11	19:44:00	74	74	-1	52
2019/11/11	19:46:00	73	74	-1	52
2019/11/11	19:48:00	73	74	-1	52
2019/11/11	19:50:00	72	73	-1	54
2019/11/11	19:52:00	72	73	-1	52
2019/11/11	19:54:00	72	73	-1	52
2019/11/11	19:56:00	72	72	-1	51
2019/11/11	19:58:00	72	72	-1	52
2019/11/11	20:00:00	71	72	-1	51

2019/11/11	20:02:00	70	72	-1	52
2019/11/11	20:04:00	70	72	-1	52
2019/11/11	20:06:00	71	71	-1	52
2019/11/11	20:08:00	70	71	-1	52
2019/11/11	20:10:00	70	71	-1	52
2019/11/11	20:12:00	70	71	-1	52
2019/11/11	20:14:00	70	71	-1	51
2019/11/11	20:16:00	70	70	-1	52
2019/11/11	20:18:00	70	70	-1	52
2019/11/11	20:20:00	68	70	-1	52
2019/11/11	20:22:00	68	70	-1	52
2019/11/11	20:24:00	68	69	-1	49
2019/11/11	20:26:00	68	69	-1	51
2019/11/11	20:28:00	68	69	-1	51
2019/11/11	20:30:00	68	69	-1	54
2019/11/11	20:32:00	68	69	-1	52
2019/11/11	20:34:00	68	69	-1	53
2019/11/11	20:36:00	68	69	-1	51
2019/11/11	20:38:00	68	68	-1	-1
2019/11/11	20:40:00	68	68	-1	54
2019/11/11	20:42:00	68	68	-1	53
2019/11/11	20:44:00	68	68	-1	51
2019/11/11	20:46:00	68	68	-1	-1
2019/11/11	20:48:00	68	68	-1	51
2019/11/11	20:50:00	68	68	-1	0
2019/11/11	20:52:00	68	68	-1	51
2019/11/11	20:54:00	68	68	-1	49
2019/11/11	20:56:00	68	68	-1	49
2019/11/11	20:58:00	68	68	-1	0
2019/11/11	21:00:00	67	68	-1	51
2019/11/11	21:02:00	67	68	-1	51
2019/11/11	21:04:00	67	67	-1	49
2019/11/11	21:06:00	67	67	-1	53
2019/11/11	21:08:00	67	67	-1	51
2019/11/11	21:10:00	67	67	-1	53
2019/11/11	21:12:00	66	67	-1	49
2019/11/11	21:14:00	66	67	-1	0
2019/11/11	21:16:00	65	67	-1	0
2019/11/11	21:18:00	65	66	-1	0
2019/11/11	21:20:00	65	66	-1	51
2019/11/11	21:22:00	65	66	-1	0
2019/11/11	21:24:00	65	66	-1	0
2019/11/11	21:26:00	65	66	-1	0
2019/11/11	21:28:00	66	66	-1	0
2019/11/11	21:30:00	65	66	-1	0
2019/11/11	21:32:00	65	66	-1	0
2019/11/11	21:34:00	65	66	-1	0
2019/11/11	21:36:00	65	66	-1	0
2019/11/11	21:38:00	65	66	-1	0
2019/11/11	21:40:00	65	66	-1	0
2019/11/11	21:42:00	65	66	-1	0

2019/11/11	21:44:00	65	66	-1	0	
2019/11/11	21:46:00	65	66	-1	0	
2019/11/11	21:48:00	65	66	-1	0	
2019/11/11	21:50:00	65	66	-1	0	
2019/11/11	21:52:00	65	65	-1	0	
2019/11/11	21:54:00	65	65	-1	0	
2019/11/11	21:56:00	65	65	-1	0	
2019/11/11	21:58:00	65	65	-1	0	
2019/11/11	22:00:00	65	65	-1	0	
2019/11/11	22:02:00	65	65	-1	0	
2019/11/11	22:04:00	64	65	-1	0	
2019/11/11	22:06:00	64	65	-1	0	
2019/11/11	22:08:00	64	64	-1	0	
2019/11/11	22:10:00	63	64	-1	49	
2019/11/11	22:12:00	63	64	-1	0	
2019/11/11	22:14:00	63	64	-1	0	
2019/11/11	22:16:00	63	64	-1	0	
2019/11/11	22:18:00	64	64	-1	0	
2019/11/11	22:20:00	63	64	-1	0	
2019/11/11	22:22:00	63	64	-1	0	
2019/11/11	22:24:00	63	64	-1	0	
2019/11/11	22:26:00	63	64	-1	0	
2019/11/11	22:28:00	63	64	-1	0	
2019/11/11	22:30:00	63	64	-1	0	
2019/11/11	22:32:00	63	63	-1	0	
2019/11/11	22:34:00	63	63	-1	0	
2019/11/11	22:36:00	63	63	-1	0	
2019/11/11	22:38:00	63	63	-1	0	
2019/11/11	22:40:00	63	63	-1	0	
2019/11/11	22:42:00	63	63	-1	0	
2019/11/11	22:44:00	63	63	-1	0	
2019/11/11	22:46:00	63	63	-1	0	
2019/11/11	22:48:00	63	63	-1	0	
2019/11/11	22:50:00	63	63	-1	0	
2019/11/11	22:52:00	63	63	-1	0	
2019/11/11	22:54:00	63	63	-1	0	
2019/11/11	22:56:00	63	63	-1	0	
2019/11/11	22:58:00	62	63	-1	0	
2019/11/11	23:00:00	62	63	-1	0	
2019/11/11	23:02:00	62	63	-1	0	
2019/11/11	23:04:00	62	63	-1	0	
2019/11/11	23:06:00	62	63	-1	0	
2019/11/11	23:08:00	62	62	-1	0	
2019/11/11	23:10:00	62	62	-1	0	
2019/11/11	23:12:00	62	62	-1	0	
2019/11/11	23:14:00	62	62	-1	0	
2019/11/11	23:16:00	62	63	-1	0	
2019/11/11	23:18:00	62	62	-1	0	
2019/11/11	23:20:00	62	62	-1	0	
2019/11/11	23:22:00	62	63	-1	0	
2019/11/11	23:24:00	62	62	-1	0	

11.12.2019

		Flare		Flare	
		F		SCFM	
Date	Time	MIN	MAX	MIN	MAX
2019/11/12	07:00:00	54	55	0	0
2019/11/12	07:02:00	54	56	0	0
2019/11/12	07:04:00	55	56	0	0
2019/11/12	07:06:00	55	56	0	0
2019/11/12	07:08:00	55	56	0	0
2019/11/12	07:10:00	55	56	0	0
2019/11/12	07:12:00	55	56	0	0
2019/11/12	07:14:00	55		-1	0
2019/11/12	07:16:00	55		0	0
2019/11/12	07:18:00	55		0	0
2019/11/12	07:20:00	55		0	0
2019/11/12	07:22:00	56		0	0
2019/11/12	07:24:00	56		0	0
2019/11/12	07:26:00	56		0	0
2019/11/12	07:28:00	56		0	0
2019/11/12	07:30:00	56		0	0
2019/11/12	07:32:00	55		-1	0
2019/11/12	07:34:00	55		-1	0
2019/11/12	07:36:00	55		0	0
2019/11/12	07:38:00	55		-1	0
2019/11/12	07:40:00	55		0	0
2019/11/12	07:42:00	55		-1	0
2019/11/12	07:44:00	55		-1	0
2019/11/12	07:46:00	55		-1	0
2019/11/12	07:48:00	56		-1	3743
2019/11/12	07:50:00	383		2444	2737
2019/11/12	07:52:00	1305		2376	2514
2019/11/12	07:54:00	1521	1629	2332	2432
2019/11/12	07:56:00	1629		2314	2455
2019/11/12	07:58:00	1655		2324	2408
2019/11/12	08:00:00 08:02:00	1662 1662		2268 2284	2420
2019/11/12			1675		2376
2019/11/12 2019/11/12	08:04:00 08:06:00	1669 1669	1676 1674	2272	2374 2356
2019/11/12	08:08:00	1665		2240 2255	2363
2019/11/12	08:00:00	1666		2233	2303
2019/11/12	08:10:00	1665		2229	2340
2019/11/12	08:12:00	1664		2240	2349
2019/11/12	08:14:00	1667		2203	2349
2019/11/12	08:18:00	1660		2215	2333
2019/11/12	08:20:00	1659		2215	2339
2019/11/12	08:20:00	1659		2213	2339
2019/11/12	08:22:00	1662		2205	2337
2019/11/12	08:24:00	1662		2203	2339
2019/11/12	08:28:00	1665		2200	2331
2019/11/12	08:30:00	1660		2210	2306
	00.00.00	1000	1010	2210	2000

2019/11/12	08:32:00	1662	1684	2203	2318
2019/11/12	08:34:00	1665	1684	2205	2311
2019/11/12	08:36:00	1659	1681	2187	2342
2019/11/12	08:38:00	1667	1684	2243	2336
2019/11/12	08:40:00	1666	1683	2218	2326

11.26.2019

		Flare		Flare	
_		F		SCFM	
Date	Time	MIN	MAX	MIN	MAX
2019/11/26	17:00:00	1670	1677	2037	2198
2019/11/26	17:02:00	1666		2028	2172
2019/11/26	17:04:00	1662		2046	2155
2019/11/26	17:06:00	1662		2047	2173
2019/11/26	17:08:00	1662		2054	2198
2019/11/26	17:10:00	1662		2047	2188
2019/11/26	17:12:00	1671	1681	2029	2185
2019/11/26	17:14:00	1664		2024	2177
2019/11/26	17:16:00	1660		2057	2178
2019/11/26	17:18:00	1660		2044	2153
2019/11/26	17:20:00	1662		2051	2170
2019/11/26	17:22:00	1659		2023	2150
2019/11/26	17:24:00	1662		2053	2140
2019/11/26	17:26:00	1662		2047	2173
2019/11/26	17:28:00	1671	1678	2048	2144
2019/11/26	17:30:00	1664		2038	2172
2019/11/26	17:32:00	1660		2038	2159
2019/11/26	17:34:00	1662	1684	2059	2160
2019/11/26	17:36:00				
2019/11/26	17:38:00				
2019/11/26	17:40:00				
2019/11/26	17:42:00				
2019/11/26	17:44:00				
2019/11/26	17:46:00				
2019/11/26	17:48:00				
2019/11/26	17:50:00				
2019/11/26	17:52:00				
2019/11/26	17:54:00				
2019/11/26	17:56:00				
2019/11/26	17:58:00				
2019/11/26	18:00:00				
2019/11/26	18:02:00				
2019/11/26	18:04:00				
2019/11/26	18:06:00				
2019/11/26	18:08:00				
2019/11/26	18:10:00				
2019/11/26	18:12:00				
2019/11/26	18:14:00				
2019/11/26	18:16:00				
2019/11/26	18:18:00				
2019/11/26	18:20:00				
2019/11/26	18:22:00				
2019/11/26	18:24:00				
2019/11/26	18:26:00				
2019/11/26	18:28:00				

2019/11/26	18:30:00
2019/11/26	18:32:00
2019/11/26	18:34:00
2019/11/26	18:36:00
2019/11/26	18:38:00
2019/11/26	18:40:00
2019/11/26	18:42:00
2019/11/26	18:44:00
2019/11/26	18:46:00
2019/11/26	18:48:00
2019/11/26	18:50:00
2019/11/26	18:52:00
2019/11/26 2019/11/26 2019/11/26 2019/11/26 2019/11/26	18:54:00 18:56:00 18:58:00 19:00:00
2019/11/26	19:02:00
2019/11/26	19:04:00
2019/11/26	19:06:00
2019/11/26	19:08:00
2019/11/26 2019/11/26 2019/11/26 2019/11/26 2019/11/26	19:10:00 19:12:00 19:14:00 19:16:00
2019/11/26	19:18:00
2019/11/26	19:20:00
2019/11/26	19:22:00
2019/11/26	19:24:00
2019/11/26	19:26:00
2019/11/26	19:28:00
2019/11/26	19:30:00
2019/11/26	19:32:00
2019/11/26	19:34:00
2019/11/26	19:36:00
2019/11/26	19:38:00
2019/11/26	19:40:00
2019/11/26	19:42:00
2019/11/26 2019/11/26 2019/11/26 2019/11/26 2019/11/26	19:44:00 19:46:00 19:48:00 19:50:00
2019/11/26	19:52:00
2019/11/26	19:54:00
2019/11/26	19:56:00
2019/11/26	19:58:00
2019/11/26	20:00:00
2019/11/26	20:02:00
2019/11/26	20:04:00
2019/11/26	20:06:00
2019/11/26	20:08:00
2019/11/26	20:10:00

2019/11/26 21:24:00		2019/11/2621:28:002019/11/2621:30:002019/11/2621:32:00	2019/11/2621:28:002019/11/2621:30:002019/11/2621:32:002019/11/2621:34:002019/11/2621:36:002019/11/2621:38:00	2019/11/2621:28:002019/11/2621:30:002019/11/2621:32:002019/11/2621:34:002019/11/2621:36:00		
2019/11/2621:18:002019/11/2621:20:00	2019/11/2621:18:002019/11/2621:20:002019/11/2621:22:002019/11/2621:24:002019/11/2621:26:00	2019/11/2621:18:002019/11/2621:20:002019/11/2621:22:002019/11/2621:24:002019/11/2621:26:002019/11/2621:28:002019/11/2621:30:002019/11/2621:32:00	2019/11/2621:18:002019/11/2621:20:002019/11/2621:22:002019/11/2621:24:002019/11/2621:26:002019/11/2621:28:002019/11/2621:30:002019/11/2621:32:002019/11/2621:34:002019/11/2621:36:002019/11/2621:38:00	2019/11/2621:18:002019/11/2621:20:002019/11/2621:22:002019/11/2621:24:002019/11/2621:26:002019/11/2621:28:002019/11/2621:30:002019/11/2621:32:002019/11/2621:34:002019/11/2621:36:002019/11/2621:38:002019/11/2621:40:002019/11/2621:44:002019/11/2621:42:002019/11/2621:44:00	2019/11/26	21:14:00
	2019/11/2621:24:002019/11/2621:26:00	2019/11/2621:24:002019/11/2621:26:002019/11/2621:28:002019/11/2621:30:002019/11/2621:32:00	2019/11/2621:24:002019/11/2621:26:002019/11/2621:28:002019/11/2621:30:002019/11/2621:32:002019/11/2621:34:002019/11/2621:36:002019/11/2621:38:00	2019/11/2621:24:002019/11/2621:26:002019/11/2621:28:002019/11/2621:30:002019/11/2621:32:002019/11/2621:34:002019/11/2621:36:002019/11/2621:38:002019/11/2621:40:002019/11/2621:44:002019/11/2621:44:00	2019/11/26	21:18:00 21:20:00

2019/11/2621:58:002019/11/2622:00:002019/11/2622:02:002019/11/2622:06:002019/11/2622:10:002019/11/2622:12:002019/11/2622:14:002019/11/2622:18:002019/11/2622:20:002019/11/2622:20:002019/11/2622:22:002019/11/2622:22:002019/11/2622:22:002019/11/2622:22:002019/11/2622:22:002019/11/2622:30:002019/11/2622:32:002019/11/2622:32:002019/11/2622:34:002019/11/2622:38:002019/11/2622:44:002019/11/2622:44:002019/11/2622:44:002019/11/2622:50:002019/11/2622:50:002019/11/2622:50:002019/11/2622:56:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/	2019/11/26 2019/11/26	21:54:00 21:56:00
2019/11/2622:02:002019/11/2622:04:002019/11/2622:08:002019/11/2622:10:002019/11/2622:12:002019/11/2622:14:002019/11/2622:18:002019/11/2622:20:002019/11/2622:22:002019/11/2622:24:002019/11/2622:30:002019/11/2622:30:002019/11/2622:30:002019/11/2622:30:002019/11/2622:34:002019/11/2622:40:002019/11/2622:40:002019/11/2622:40:002019/11/2622:40:002019/11/2622:40:002019/11/2622:40:002019/11/2622:40:002019/11/2622:40:002019/11/2622:50:002019/11/2622:50:002019/11/2622:50:002019/11/2622:50:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:10:002019/11/2623:10:002019/11/2623:14:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/	2019/11/26	21:58:00
2019/11/2622:04:002019/11/2622:08:002019/11/2622:10:002019/11/2622:12:002019/11/2622:14:002019/11/2622:18:002019/11/2622:22:002019/11/2622:22:002019/11/2622:24:002019/11/2622:28:002019/11/2622:30:002019/11/2622:34:002019/11/2622:38:002019/11/2622:38:002019/11/2622:34:002019/11/2622:44:002019/11/2622:44:002019/11/2622:44:002019/11/2622:46:002019/11/2622:50:002019/11/2622:50:002019/11/2622:50:002019/11/2622:56:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:10:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/		
2019/11/2622:06:002019/11/2622:08:002019/11/2622:10:002019/11/2622:12:002019/11/2622:14:002019/11/2622:16:002019/11/2622:20:002019/11/2622:22:002019/11/2622:22:002019/11/2622:22:002019/11/2622:22:002019/11/2622:26:002019/11/2622:30:002019/11/2622:30:002019/11/2622:36:002019/11/2622:36:002019/11/2622:38:002019/11/2622:40:002019/11/2622:40:002019/11/2622:44:002019/11/2622:46:002019/11/2622:50:002019/11/2622:50:002019/11/2622:56:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:10:002019/11/2623:14:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/		
2019/11/2622:08:002019/11/2622:10:002019/11/2622:12:002019/11/2622:14:002019/11/2622:18:002019/11/2622:20:002019/11/2622:22:002019/11/2622:22:002019/11/2622:28:002019/11/2622:30:002019/11/2622:32:002019/11/2622:34:002019/11/2622:38:002019/11/2622:38:002019/11/2622:40:002019/11/2622:44:002019/11/2622:44:002019/11/2622:46:002019/11/2622:50:002019/11/2622:50:002019/11/2622:50:002019/11/2622:56:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:11:002019/11/2623:12:002019/11/2623:14:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/		
2019/11/2622:12:002019/11/2622:14:002019/11/2622:16:002019/11/2622:20:002019/11/2622:22:002019/11/2622:22:002019/11/2622:22:002019/11/2622:24:002019/11/2622:30:002019/11/2622:30:002019/11/2622:34:002019/11/2622:34:002019/11/2622:40:002019/11/2622:40:002019/11/2622:40:002019/11/2622:40:002019/11/2622:40:002019/11/2622:40:002019/11/2622:50:002019/11/2622:50:002019/11/2622:50:002019/11/2622:50:002019/11/2622:50:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:10:002019/11/2623:10:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/		
2019/11/2622:14:002019/11/2622:16:002019/11/2622:20:002019/11/2622:22:002019/11/2622:22:002019/11/2622:24:002019/11/2622:28:002019/11/2622:30:002019/11/2622:32:002019/11/2622:34:002019/11/2622:38:002019/11/2622:38:002019/11/2622:40:002019/11/2622:44:002019/11/2622:44:002019/11/2622:46:002019/11/2622:50:002019/11/2622:50:002019/11/2622:56:002019/11/2622:56:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:06:002019/11/2623:06:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/	2019/11/26	22:10:00
2019/11/2622:16:002019/11/2622:20:002019/11/2622:22:002019/11/2622:22:002019/11/2622:24:002019/11/2622:28:002019/11/2622:30:002019/11/2622:32:002019/11/2622:36:002019/11/2622:38:002019/11/2622:38:002019/11/2622:40:002019/11/2622:40:002019/11/2622:44:002019/11/2622:46:002019/11/2622:46:002019/11/2622:50:002019/11/2622:50:002019/11/2622:56:002019/11/2622:56:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:06:002019/11/2623:06:002019/11/2623:06:002019/11/2623:10:002019/11/2623:10:002019/11/2623:12:002019/11/2623:14:002019/11/2623:20:002019/11/2623:20:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/		
2019/11/2622:18:002019/11/2622:20:002019/11/2622:22:002019/11/2622:22:002019/11/2622:28:002019/11/2622:28:002019/11/2622:30:002019/11/2622:32:002019/11/2622:38:002019/11/2622:38:002019/11/2622:38:002019/11/2622:40:002019/11/2622:44:002019/11/2622:44:002019/11/2622:50:002019/11/2622:50:002019/11/2622:55:002019/11/2622:56:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/		
2019/11/2622:20:002019/11/2622:22:002019/11/2622:24:002019/11/2622:28:002019/11/2622:30:002019/11/2622:32:002019/11/2622:34:002019/11/2622:38:002019/11/2622:38:002019/11/2622:40:002019/11/2622:40:002019/11/2622:44:002019/11/2622:44:002019/11/2622:50:002019/11/2622:50:002019/11/2622:50:002019/11/2622:56:002019/11/2622:58:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:10:002019/11/2623:14:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/		
2019/11/2622:22:002019/11/2622:24:002019/11/2622:28:002019/11/2622:30:002019/11/2622:32:002019/11/2622:34:002019/11/2622:36:002019/11/2622:38:002019/11/2622:40:002019/11/2622:42:002019/11/2622:42:002019/11/2622:42:002019/11/2622:42:002019/11/2622:50:002019/11/2622:50:002019/11/2622:52:002019/11/2622:56:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:01:002019/11/2623:01:002019/11/2623:10:002019/11/2623:11:002019/11/2623:14:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/		
2019/11/2622:26:002019/11/2622:30:002019/11/2622:32:002019/11/2622:34:002019/11/2622:36:002019/11/2622:38:002019/11/2622:38:002019/11/2622:40:002019/11/2622:44:002019/11/2622:46:002019/11/2622:48:002019/11/2622:50:002019/11/2622:50:002019/11/2622:56:002019/11/2622:58:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:04:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:14:002019/11/2623:14:002019/11/2623:14:002019/11/2623:20:002019/		
2019/11/2622:28:002019/11/2622:30:002019/11/2622:32:002019/11/2622:34:002019/11/2622:38:002019/11/2622:38:002019/11/2622:40:002019/11/2622:42:002019/11/2622:44:002019/11/2622:46:002019/11/2622:50:002019/11/2622:55:002019/11/2622:56:002019/11/2622:58:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:08:002019/11/2623:10:002019/11/2623:10:002019/11/2623:14:002019/11/2623:14:002019/11/2623:14:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/	2019/11/26	22:24:00
2019/11/2622:30:002019/11/2622:32:002019/11/2622:34:002019/11/2622:36:002019/11/2622:38:002019/11/2622:38:002019/11/2622:40:002019/11/2622:42:002019/11/2622:44:002019/11/2622:46:002019/11/2622:46:002019/11/2622:50:002019/11/2622:50:002019/11/2622:56:002019/11/2622:58:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:08:002019/11/2623:10:002019/11/2623:10:002019/11/2623:14:002019/11/2623:14:002019/11/2623:14:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:00		
2019/11/2622:32:002019/11/2622:34:002019/11/2622:36:002019/11/2622:38:002019/11/2622:40:002019/11/2622:42:002019/11/2622:42:002019/11/2622:44:002019/11/2622:48:002019/11/2622:50:002019/11/2622:52:002019/11/2622:54:002019/11/2622:56:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:01:002019/11/2623:08:002019/11/2623:10:002019/11/2623:10:002019/11/2623:14:002019/11/2623:18:002019/11/2623:20:002019/11/2623:22:002019/11/2623:22:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:00		
2019/11/2622:34:002019/11/2622:36:002019/11/2622:38:002019/11/2622:40:002019/11/2622:42:002019/11/2622:44:002019/11/2622:46:002019/11/2622:46:002019/11/2622:50:002019/11/2622:52:002019/11/2622:56:002019/11/2622:56:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:06:002019/11/2623:06:002019/11/2623:10:002019/11/2623:14:002019/11/2623:14:002019/11/2623:14:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:22:002019/11/2623:22:002019/11/2623:26:002019/11/2623:26:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:00		
2019/11/2622:36:002019/11/2622:38:002019/11/2622:40:002019/11/2622:42:002019/11/2622:44:002019/11/2622:48:002019/11/2622:50:002019/11/2622:52:002019/11/2622:55:002019/11/2622:56:002019/11/2622:58:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:04:002019/11/2623:08:002019/11/2623:10:002019/11/2623:14:002019/11/2623:14:002019/11/2623:14:002019/11/2623:20:002019/11/2623:20:002019/11/2623:20:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:00		
2019/11/2622:40:002019/11/2622:42:002019/11/2622:42:002019/11/2622:44:002019/11/2622:48:002019/11/2622:50:002019/11/2622:52:002019/11/2622:54:002019/11/2622:58:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:06:002019/11/2623:08:002019/11/2623:10:002019/11/2623:14:002019/11/2623:14:002019/11/2623:18:002019/11/2623:20:002019/11/2623:20:002019/11/2623:22:002019/11/2623:22:002019/11/2623:22:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:00		
2019/11/2622:42:002019/11/2622:44:002019/11/2622:46:002019/11/2622:48:002019/11/2622:50:002019/11/2622:52:002019/11/2622:54:002019/11/2622:58:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:02:002019/11/2623:04:002019/11/2623:10:002019/11/2623:10:002019/11/2623:10:002019/11/2623:14:002019/11/2623:18:002019/11/2623:20:002019/11/2623:22:002019/11/2623:22:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:00	2019/11/26	22:38:00
2019/11/2622:44:002019/11/2622:46:002019/11/2622:46:002019/11/2622:50:002019/11/2622:52:002019/11/2622:54:002019/11/2622:56:002019/11/2622:58:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:06:002019/11/2623:06:002019/11/2623:10:002019/11/2623:10:002019/11/2623:14:002019/11/2623:16:002019/11/2623:20:002019/11/2623:22:002019/11/2623:22:002019/11/2623:24:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:00	2019/11/26	
2019/11/2622:46:002019/11/2622:48:002019/11/2622:50:002019/11/2622:52:002019/11/2622:54:002019/11/2622:56:002019/11/2622:58:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:06:002019/11/2623:06:002019/11/2623:10:002019/11/2623:11:002019/11/2623:14:002019/11/2623:16:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:26:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:00		
2019/11/2622:48:002019/11/2622:50:002019/11/2622:52:002019/11/2622:54:002019/11/2622:58:002019/11/2622:58:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:00:002019/11/2623:06:002019/11/2623:08:002019/11/2623:10:002019/11/2623:12:002019/11/2623:14:002019/11/2623:18:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:00		
2019/11/2622:50:002019/11/2622:52:002019/11/2622:54:002019/11/2622:56:002019/11/2622:58:002019/11/2623:00:002019/11/2623:02:002019/11/2623:04:002019/11/2623:06:002019/11/2623:08:002019/11/2623:10:002019/11/2623:14:002019/11/2623:18:002019/11/2623:18:002019/11/2623:22:002019/11/2623:22:002019/11/2623:24:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:00		
2019/11/2622:54:002019/11/2622:56:002019/11/2622:58:002019/11/2623:00:002019/11/2623:02:002019/11/2623:04:002019/11/2623:06:002019/11/2623:08:002019/11/2623:10:002019/11/2623:10:002019/11/2623:14:002019/11/2623:16:002019/11/2623:20:002019/11/2623:20:002019/11/2623:22:002019/11/2623:26:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:30:002019/11/2623:30:002019/11/2623:32:00		
2019/11/2622:56:002019/11/2622:58:002019/11/2623:00:002019/11/2623:02:002019/11/2623:04:002019/11/2623:06:002019/11/2623:08:002019/11/2623:10:002019/11/2623:12:002019/11/2623:14:002019/11/2623:16:002019/11/2623:18:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:00	2019/11/26	22:52:00
2019/11/2622:58:002019/11/2623:00:002019/11/2623:02:002019/11/2623:04:002019/11/2623:06:002019/11/2623:08:002019/11/2623:10:002019/11/2623:12:002019/11/2623:14:002019/11/2623:18:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:00		
2019/11/2623:00:002019/11/2623:02:002019/11/2623:04:002019/11/2623:06:002019/11/2623:08:002019/11/2623:10:002019/11/2623:12:002019/11/2623:14:002019/11/2623:18:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00		
2019/11/2623:02:002019/11/2623:04:002019/11/2623:06:002019/11/2623:08:002019/11/2623:10:002019/11/2623:12:002019/11/2623:14:002019/11/2623:16:002019/11/2623:20:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00		
2019/11/2623:04:002019/11/2623:06:002019/11/2623:08:002019/11/2623:10:002019/11/2623:12:002019/11/2623:14:002019/11/2623:16:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00		
2019/11/2623:08:002019/11/2623:10:002019/11/2623:12:002019/11/2623:14:002019/11/2623:16:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00		
2019/11/2623:10:002019/11/2623:12:002019/11/2623:14:002019/11/2623:16:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00	2019/11/26	23:06:00
2019/11/2623:12:002019/11/2623:14:002019/11/2623:16:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:26:002019/11/2623:28:002019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00	2019/11/26	23:08:00
2019/11/2623:14:002019/11/2623:16:002019/11/2623:18:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:26:002019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00		
2019/11/2623:16:002019/11/2623:18:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:26:002019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00		
2019/11/2623:18:002019/11/2623:20:002019/11/2623:22:002019/11/2623:24:002019/11/2623:26:002019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00		
2019/11/2623:22:002019/11/2623:24:002019/11/2623:26:002019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00		
2019/11/2623:24:002019/11/2623:26:002019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00	2019/11/26	23:20:00
2019/11/2623:26:002019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00		
2019/11/2623:28:002019/11/2623:30:002019/11/2623:32:00		
2019/11/2623:30:002019/11/2623:32:00		
2019/11/26 23:32:00		

2019/11/26	23:36:00
2019/11/26	23:38:00
2019/11/26	23:40:00
2019/11/26	23:42:00
2019/11/26	23:44:00
2019/11/26	23:46:00
2019/11/26	23:48:00
2019/11/26	23:50:00
2019/11/26	23:52:00
2019/11/26	23:54:00
2019/11/26	23:56:00
2019/11/26	23:58:00

		Flare F		Flare SCFM	
Date	Time	MIN	MAX	MIN	MAX
2019/11/27	00:00:00				
2019/11/27	00:02:00				
2019/11/27	00:04:00				
2019/11/27	00:06:00				
2019/11/27	00:08:00				
2019/11/27	00:10:00				
2019/11/27	00:12:00				
2019/11/27	00:14:00				
2019/11/27	00:16:00				
2019/11/27	00:18:00				
2019/11/27	00:20:00				
2019/11/27	00:22:00				
2019/11/27	00:24:00				
2019/11/27	00:26:00				
2019/11/27	00:28:00				
2019/11/27	00:30:00				
2019/11/27	00:32:00				
2019/11/27	00:34:00				
2019/11/27	00:36:00				
2019/11/27	00:38:00				
2019/11/27	00:40:00				
2019/11/27	00:42:00				
2019/11/27	00:44:00				
2019/11/27	00:46:00				
2019/11/27	00:48:00				
2019/11/27	00:50:00				
2019/11/27	00:52:00				
2019/11/27	00:54:00				
2019/11/27	00:56:00				
2019/11/27	00:58:00				
2019/11/27	01:00:00				
2019/11/27	01:02:00				
2019/11/27	01:04:00				
2019/11/27	01:06:00				
2019/11/27	01:08:00				
2019/11/27	01:10:00				
2019/11/27	01:12:00				
2019/11/27	01:14:00				
2019/11/27	01:16:00				
2019/11/27	01:18:00				
2019/11/27	01:20:00				
2019/11/27	01:22:00				
2019/11/27	01:24:00				
2019/11/27	01:26:00				
2019/11/27	01:28:00				

2019/11/27	01:30:00	44	45	-423	66
2019/11/27	01:32:00	44	46	1	2
2019/11/27	01:34:00	46	46	1	1
2019/11/27	01:36:00	46	50	1	2486
2019/11/27	01:38:00	50	845	2486	3842
2019/11/27	01:40:00	845	1321	2483	2598
2019/11/27	01:42:00	1319	1463	2430	2542
2019/11/27	01:44:00	1463	1570	2408	2485
2019/11/27	01:46:00	1570	1641	2429	2542
2019/11/27	01:48:00	1641	1658	2405	2540
2019/11/27	01:50:00	1648	1658	2403	2470
2019/11/27	01:52:00	1656	1682	2383	2468
2019/11/27	01:54:00	1657	1681	2366	2456
2019/11/27	01:56:00	1662	1673	2368	2453
2019/11/27	01:58:00	1648	1690	2324	2443
2019/11/27	02:00:00	1661	1685	2345	2423
2019/11/27	02:02:00	1662	1679	2329	2451
2019/11/27	02:04:00	1647	1682	2309	2431
2019/11/27	02:06:00	1659	1684	2295	2413
2019/11/27	02:08:00	1665	1682	2317	2415
2019/11/27	02:10:00	1663	1678	2318	2411

12.29.2019

		Flare		Flare	
		F		SCFM	
Date	Time	MIN	MAX	MIN	MAX
2019/12/29	16:30:00	1660	1681	2282	2384
2019/12/29	16:32:00	1662	1686	2291	2404 2404
2019/12/29	16:34:00	1660	1686	2273	2390
2019/12/29	16:36:00	1666	1684	2288	2376
2019/12/29	16:38:00	1666	1684	2293	2380
2019/12/29	16:40:00	1662	1677	2288	2377
2019/12/29	16:42:00	1671	1679	2259	2398
2019/12/29	16:44:00	1672	1674	2296	2390
2019/12/29	16:46:00	1667	1672	2296	2370
2019/12/29	16:48:00	1672	1686	2289	2396
2019/12/29	16:50:00	1660	1686	2270	2383
2019/12/29	16:52:00	1660	1684	2282	2374
2019/12/29	16:54:00	1662	1688	2283	2418
2019/12/29	16:56:00	1666	1686	2280	2382
2019/12/29	16:58:00	1666	1683	2299	2385
2019/12/29	17:00:00	1662	1688	2298	2395
2019/12/29	17:02:00	1431	1687	-1	2381
2019/12/29	17:04:00	983	1431	-1	0
2019/12/29	17:06:00	756	983	-1	0
2019/12/29	17:08:00	616	756	-1	0
2019/12/29	17:10:00	504	616	-1	0
2019/12/29	17:12:00	422	504	-1	0
2019/12/29	17:14:00	356	422	-1	0
2019/12/29	17:16:00	304	356	0	0
2019/12/29	17:18:00	263	304	0	0
2019/12/29	17:20:00	231	263	0	0
2019/12/29	17:22:00	207	231	-1	0
2019/12/29	17:24:00	189	207	0	0
2019/12/29	17:26:00	173	189	0	0
2019/12/29	17:28:00	158	173	0	0
2019/12/29	17:30:00	146	158	0	0
2019/12/29	17:32:00	135	146	0	0
2019/12/29	17:34:00	125	135	0	0
2019/12/29	17:36:00	116	125	0	0
2019/12/29	17:38:00	108	116	0	0
2019/12/29	17:40:00	102	108	0	0
2019/12/29	17:42:00	96	102	0	0
2019/12/29	17:44:00	92	96 02	0	0
2019/12/29	17:46:00	88 85	92	0	0
2019/12/29 2019/12/29	17:48:00	85	88	0	0
	17:50:00	82	85	0	0
2019/12/29 2019/12/29	17:52:00 17:54:00	79 76	82 79	0 0	0 0
2019/12/29 2019/12/29	17.54.00 17:56:00	76 74	79 76	0	0
2019/12/29	17:58:00	74 72	76 74	0	0
2019/12/29	18:00:00	72	74 72	0	0
2013/12/23	10.00.00	10	12	0	0

2019/12/29	18:02:00	68	70	0	0
2019/12/29	18:04:00	67	69	0	0
2019/12/29	18:06:00	66	67	0	0
2019/12/29	18:08:00	65	66	0	0
2019/12/29	18:10:00	64	65	0	0
2019/12/29	18:12:00	64	65	0	0
2019/12/29	18:14:00	63	64	0	0
2019/12/29	18:16:00	62	63	0	0
2019/12/29	18:18:00	61	63	0	0
2019/12/29	18:20:00	60	61	0	0
2019/12/29	18:22:00	60	61	0	0
2019/12/29	18:24:00	59	60	0	0
2019/12/29	18:26:00	58	59	0	0
2019/12/29	18:28:00	57	58	0	0
2019/12/29	18:30:00	57	58	0	0
2019/12/29	18:32:00	56	57	0	0
2019/12/29	18:34:00	56	56	0	0
2019/12/29	18:36:00	55	56	0	0
2019/12/29	18:38:00	55	56	0	0
2019/12/29	18:40:00	55	55	0	0
2019/12/29	18:42:00	55	56	0	0
2019/12/29	18:44:00	55	56	0	0
2019/12/29	18:46:00	54	56	0	0
2019/12/29	18:48:00	54	55	0	0
2019/12/29	18:50:00	54	54	0	0
2019/12/29	18:52:00	54	54	0	0
2019/12/29	18:54:00	54	54	0	0
2019/12/29	18:56:00	53	54 54	0	0
2019/12/29	18:58:00	53	54	0	0
2019/12/29	19:00:00	53	53	0	0
2019/12/29	19:02:00	53	53	0	0
2019/12/29	19:02:00	53	53	0	0
2019/12/29	19:06:00	53	53	0	0
2019/12/29	19:08:00	52	53	0	0
2019/12/29	19:10:00	52	53	0	0
2019/12/29	19:12:00	52	52	0	0
2019/12/29	19:12:00	52	52	0	0
2019/12/29	19:14:00	51	51	0	0
2019/12/29	19:18:00	51	51	0	0
2019/12/29	19:20:00	51	51	0	0
2019/12/29	19:22:00	51	51	0	0
2019/12/29	19:22:00	50	51	0	0
2019/12/29	19:24:00	50 51	51	0	0
2019/12/29	19:28:00	51	51	0	0
2019/12/29	19:30:00	51	51	0	0
2019/12/29	19:32:00	51	51	0	0
2019/12/29	19:32:00	51	51	0	0
2019/12/29	19:34:00	51	51	0	0
2019/12/29	19:38:00	51	51	0	0
2019/12/29	19:38:00	50	51	0	0
2019/12/29	19:40:00	50 50	51	0	0
2019/12/29	19:42:00	50 50	51	0	0
2010/12/23	10.77.00	00	51	0	0

2019/12/29	19:46:00	50	51	0	0
2019/12/29	19:48:00	50	51	0	0
2019/12/29	19:50:00	50	50	0	0
2019/12/29	19:52:00	50	51	0	0
2019/12/29	19:54:00	50	50	0	0
2019/12/29	19:56:00	50	51	0	0
2019/12/29	19:58:00	50	50	0	0
2019/12/29	20:00:00	50 50	51	0	0
2019/12/29	20:02:00	50 50	51	0	0
2019/12/29	20:04:00	50	51	0	0
2019/12/29	20:06:00	50	51	0	0
2019/12/29	20:08:00	50	51	0	0
2019/12/29	20:10:00	50	51	0	0
2019/12/29	20:12:00	50	50	0	0
2019/12/29	20:14:00	50	51	0	0
2019/12/29	20:16:00	50	51	0	0
2019/12/29	20:18:00	50	50	0	0
2019/12/29	20:20:00	50	50	0	0
2019/12/29	20:22:00	50	51	0	0
2019/12/29	20:24:00	50	50	0	0
2019/12/29	20:26:00	50	51	0	0
2019/12/29	20:28:00	50	51	0	0
2019/12/29	20:30:00	50	51	0	0
2019/12/29	20:32:00	50	51	0	0
2019/12/29	20:34:00	50	51	0	0
2019/12/29	20:36:00	50	50	0	0
2019/12/29	20:38:00	50	51	0	0
2019/12/29	20:40:00	50	51	0	0
2019/12/29	20:42:00	50	50	0	0
2019/12/29	20:44:00	50	50	0	0
2019/12/29	20:46:00	50	50	0	0
2019/12/29	20:48:00	50	50	0	0
2019/12/29	20:50:00	50 50	50 50	0	0
2019/12/29	20:52:00	50 50	50 50	0	0
2019/12/29	20:52:00	50 50	50 50	0	0
2019/12/29	20:54:00	50 50	50 50	0	0
2019/12/29					
2019/12/29	20:58:00 21:00:00	50	50 50	0	0
		49	50	0	0
2019/12/29	21:02:00	50	50	0	0
2019/12/29	21:04:00	49	50	0	0
2019/12/29	21:06:00	49	50	0	0
2019/12/29	21:08:00	49	50	0	0
2019/12/29	21:10:00	49	50	0	0
2019/12/29	21:12:00	49	50	0	0
2019/12/29	21:14:00	49	49	0	0
2019/12/29	21:16:00	49	49	0	0
2019/12/29	21:18:00	49	50	0	0
2019/12/29	21:20:00	49	49	0	0
2019/12/29	21:22:00	49	49	0	0
2019/12/29	21:24:00	49	49	0	0
2019/12/29	21:26:00	49	49	0	0
2019/12/29	21:28:00	49	49	0	0

2019/12/29	21:30:00	49	49	0	0
2019/12/29	21:32:00	49	49	0	0
2019/12/29	21:34:00	49	50	0	0
2019/12/29	21:36:00	49	49	0	0
2019/12/29	21:38:00	49	49	0	0
2019/12/29	21:40:00	49	49	0	0
2019/12/29	21:42:00	49	49	0	0
2019/12/29	21:44:00	49	50	0	0
2019/12/29	21:46:00	49	50	0	0
2019/12/29	21:48:00	49	50	0	0
2019/12/29	21:50:00	49	50	0	0
2019/12/29	21:52:00	49	49	0	0
2019/12/29	21:54:00	49	49	0	0
2019/12/29	21:56:00	49	49	0	0
2019/12/29	21:58:00	49	49	0	0
2019/12/29	22:00:00	49	49	0	0
2019/12/29	22:02:00	49	49	0	0
2019/12/29	22:04:00	49	49	0	0
2019/12/29	22:06:00	49	49	0	0
2019/12/29	22:08:00	49	49	0	0
2019/12/29	22:10:00	49	49	0	0
2019/12/29	22:12:00	49	49	0	0
2019/12/29	22:14:00	49	49	0	0
2019/12/29	22:16:00	49	49	0	0
2019/12/29	22:18:00	49	49	0	0
2019/12/29	22:20:00	49	49	0	0
2019/12/29	22:22:00	49	49	0	0
2019/12/29	22:24:00	49	49	0	0
2019/12/29	22:26:00	49	49	0	0
2019/12/29	22:28:00	49	49	0	0
2019/12/29	22:30:00	49	49	0	0
2019/12/29	22:32:00	49	49	0	0
2019/12/29	22:34:00	49	49	0	0
2019/12/29	22:36:00	49	49	0	0
2019/12/29	22:38:00	49	49	0	0
2019/12/29	22:40:00	49	49	0	0
2019/12/29	22:42:00	49	49	0	0
2019/12/29	22:44:00	49	49	0	0
2019/12/29	22:46:00	49	49	0	0
2019/12/29	22:48:00	49	49	0	0
2019/12/29	22:50:00	49	49	0	0
2019/12/29	22:52:00	49	49	0	0
2019/12/29	22:52:00	49	49	0	0
2019/12/29	22:54:00	49	49	0	0
2019/12/29	22:58:00	49	49	0	0
2019/12/29	23:00:00	49	49	0	0
2019/12/29	23:00:00	49	49	0	0
2019/12/29 2019/12/29	23:02:00	49 49	49 49	0	0
2019/12/29 2019/12/29	23:04:00	49 49	49 49	0	0
2019/12/29 2019/12/29	23:08:00	49 49	49 49	0	
		49 49			0
2019/12/29	23:10:00		49 40	0	0
2019/12/29	23:12:00	49	49	0	0

2019/12/29	23:14:00	49	49	0	0
2019/12/29	23:16:00	49	49	0	0
2019/12/29	23:18:00	49	49	0	0
2019/12/29	23:20:00	49	49	0	0
2019/12/29	23:22:00	49	49	0	0
2019/12/29	23:24:00	49	49	0	0
2019/12/29	23:26:00	49	49	0	0
2019/12/29	23:28:00	49	49	0	0
2019/12/29	23:30:00	49	49	0	0
2019/12/29	23:32:00	49	49	0	0
2019/12/29	23:34:00	49	49	0	0
2019/12/29	23:36:00	49	49	0	0
2019/12/29	23:38:00	49	49	0	0
2019/12/29	23:40:00	49	49	0	0
2019/12/29	23:42:00	49	49	0	0
2019/12/29	23:44:00	49	49	0	0
2019/12/29	23:46:00	49	49	0	0
2019/12/29	23:48:00	49	49	0	0
2019/12/29	23:50:00	49	49	0	0
2019/12/29	23:52:00	49	49	0	0
2019/12/29	23:54:00	49	49	0	0
2019/12/29	23:56:00	48	49	0	0
2019/12/29	23:58:00	49	49	0	0
2019/12/30	00:00:00	48	49	0	0
2019/12/30	00:02:00	48	49	0	0
2019/12/30	00:04:00	48	49	0	0
2019/12/30	00:06:00	48	49	0	0
2019/12/30	00:08:00	48	49	0	0
2019/12/30	00:10:00	48	49	0	0
2019/12/30	00:12:00	48	49	0	0
2019/12/30	00:14:00	48	49	0	0
2019/12/30	00:16:00	48	49	0	0
2019/12/30	00:18:00	48	49	0	0
2019/12/30	00:20:00	48	49	0	0
2019/12/30	00:22:00	48	49	0	0
2019/12/30	00:24:00	48	49	0	0
2019/12/30	00:26:00				
2019/12/30	00:28:00				
2019/12/30	00:30:00	48	48	-413	-380
2019/12/30	00:32:00	48	49	-390	62
2019/12/30	00:34:00	48	49	0	0
2019/12/30	00:36:00	49	58	0	3154
2019/12/30	00:38:00	58	1108	-429	4123
2019/12/30	00:40:00	1108	1407	2743	2885
2019/12/30	00:42:00	1354	1376	2714	2823
2019/12/30	00:44:00	1376	1428	2712	2824
2019/12/30	00:46:00	1364	1453	53	2799
2019/12/30	00:48:00	998	1364	-1	54
2019/12/30	00:50:00	774	998	-2	0
2019/12/30	00:52:00	629	774	-2	0
2019/12/30	00:54:00	529	629	-1	0
2019/12/30	00:56:00	454	529	0	0

2019/12/30	00:58:00	396	454	0	0
2019/12/30	01:00:00	348	396	0	0
2019/12/30	01:02:00	295	348	0	0
2019/12/30	01:04:00	251	295	0	1680
2019/12/30	01:06:00	251	1351	1680	3478
2019/12/30	01:08:00	1351	1508	2812	2930
2019/12/30	01:10:00	1508	1635	2765	2891
2019/12/30	01:12:00	1635	1672	2764	2851
2019/12/30	01:14:00	1662	1672	2700	2822
2019/12/30	01:16:00	1672	1681	2679	2758
2019/12/30	01:18:00	1659	1677	2618	2740
2019/12/30	01:20:00	1671	1681	2627	2700
2019/12/30	01:22:00	1672	1680	2617	2710
2019/12/30	01:24:00	1660	1687	2608	2687
2019/12/30	01:26:00	1660	1687	2596	2699
2019/12/30	01:28:00	1665	1684	2604	2677
2019/12/30	01:30:00	1664	1683	2574	2667
2019/12/30	01:32:00	1659	1683	2584	2660
2019/12/30	01:34:00	1671	1683	2556	2649
2019/12/30	01:36:00	1669	1672	2584	2646
2019/12/30	01:38:00	1667	1671	2557	2667
2019/12/30	01:40:00	1669	1677	2564	2664

Phadnis, Rajan

From:	Raymond Salalila <rsalalila@baaqmd.gov></rsalalila@baaqmd.gov>
Sent:	Tuesday, June 30, 2020 7:56 AM
То:	Phadnis, Rajan
Cc:	Azevedo, Becky; Winter, Michael; Patrick Wenzinger; Erin Phillips; Loi Chau
Subject:	RE: KCRDF construction notification 06.19.2020

Hello Rajan,

Thank you for submitting KCRDF's Construction Plan.

The "AFFECTED LFG COMPONENTS" section of KCRDF's Construction Plan, states, "KCRDF will conduct landfill GCCS construction activities in compliance with Rule 8-34-117".

The Gas Collection System (GCS) Components Limited Exemption is needed since the Construction Plan includes the connection of components to the existing GCCS. By stating the above, KCRDF acknowledges that GCCS construction activities must comply with sections 117.1 through 117.6 of the GCS Limited Exemption, if applicable. This includes, but is not limited to, ensuring that the lesser of no more than 5 gas wells, or 10 percent of the gas collection wells of the GCCS, are shut down at any time (Reg. 8-34-117.4), and that no gas collection well may be down for more than 24 hours (Reg. 8-34-117.5).

No further information is needed at this time and KCRDF's Construction Plan has been determined to meet the minimum reporting requirements of Reg. 8-34-118.1. You may be contacted by your assigned Air District Inspector and/or Permit Engineer to verify facility compliance with the Construction Plan.

Please contact me if you have any questions.

Thank you,

Raymond Salalila

Air Quality Specialist Compliance and Enforcement Division Bay Area Air Quality Management District 375 Beale Street, Suite 600, San Francisco, CA 94105-2097 Tel: 415.749.4704 Cell: 415.760.1094 <u>rsalalila@baaqmd.gov</u>

From: Raymond Salalila
Sent: Wednesday, June 24, 2020 7:24 AM
To: Phadnis, Rajan <rphadnis@wm.com>
Cc: Azevedo, Becky <Razevedo@wm.com>; Winter, Michael <mwinter@wm.com>; Hansen Rodriguez

<HRodriguez@baaqmd.gov>; Patrick Wenzinger <pwenzinger@baaqmd.gov>; Loi Chau <lchau@baaqmd.gov> Subject: RE: KCRDF construction notification 06.19.2020

Hello Rajan,

As Loi indicated, I am currently handling Regulation 8-34-118 construction activities notifications to the Air District. Please address future submittals to me.

KCRDF's notification for Limited Exemption for Construction Activities under Reg. 8-34-118 has been received and will be reviewed by Compliance & Enforcement Staff. I will let you know if any additional information is required to meet the minimum reporting requirements of Reg. 8-34-118, and/or any other applicable limited exemptions. Please let me know if you have any questions.

Thank you,

Raymond Salalila

Air Quality Specialist Compliance and Enforcement Division Bay Area Air Quality Management District 375 Beale Street, Suite 600, San Francisco, CA 94105-2097 Tel: 415.749.4704 Cell: 415.760.1094 rsalalila@baaqmd.gov

From: Loi Chau <le>lchau@baaqmd.gov>
Sent: Tuesday, June 23, 2020 3:17 PM
To: Phadnis, Rajan <<u>rphadnis@wm.com</u>>
Cc: Azevedo, Becky <<u>Razevedo@wm.com</u>>; Winter, Michael <<u>mwinter@wm.com</u>>; Raymond Salalila
<<u>RSalalila@baaqmd.gov</u>>; Peter Nelson <<u>PNelson@baaqmd.gov</u>>
Subject: RE: KCRDF construction notification 06.19.2020

Good Afternoon Rajan,

All construction notifications will be review by Raymond Salalila in our Compliance and Enforcement Division. He will be in contact with you if he has any questions.

Regards, Loi Chau Air Quality Engineer

Bay Area Air Quality Management District | Engineering Division 375 Beale Street, Suite 600 | San Francisco, CA 94105 3 415.749.8683 | 🖶 415.749.4992 Ichau@baaqmd.gov | www.baaqmd.gov

From: Phadnis, Rajan <<u>rphadnis@wm.com</u>>
Sent: Friday, June 19, 2020 4:33 PM
To: Loi Chau <<u>lchau@baaqmd.gov</u>>
Cc: Azevedo, Becky <<u>Razevedo@wm.com</u>>; Phadnis, Rajan <<u>rphadnis@wm.com</u>>; Winter, Michael <<u>mwinter@wm.com</u>>
Subject: KCRDF construction notification 06.19.2020

Hi Loi,

Attached please find the construction notification for Kirby Canyon Recycling and Disposal Facility- A1812.

Thank you, Rajan Phadnis Waste Management EP Specialist

Recycling is a good thing. Please recycle any printed emails.

June 19, 2020

Loi Chau Permit Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Re: Kirby Canyon Recycling & Disposal Facility
 Facility Number A1812
 Request for Limited Exemption (for construction activities) from Regulation 8, Rule 34
 (Solid Waste Disposal Sites), Section 303 (Landfill Surface Requirements)

Dear Ms. Chau:

This letter requests a limited exemption from the requirements of Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) during landfill construction activities to be conducted from June 29, 2020 through September 30, 2020, at the Kirby Canyon Recycling & Disposal Facility (KCRDF) Landfill in San Jose, California. This notification is submitted pursuant to Regulation 8, Rule 34, Section 118, "Limited Exemptions for Construction Activities." The work consists of installation and repair of landfill gas (LFG) piping and laterals to improve the existing LFG collection efficiency and for leachate repair work on the existing leachate drainage system to maintain compliance with Regulation 8, Rule 34, and is to be performed during the period of June 29, 2020 through September 30, 2020.

The construction work will include excavation and installation of new piping and laterals that will connect to existing LFG extraction wells and to the gas collection and control system (GCCS); and excavation of the affected areas to remove previously placed waste to improve the flow of liquids. The affected areas will then be backfilled. The work for this project includes installation and repair of piping, excavation and backfilling. This letter also transmits the BAAQMD-required construction plan (work plan) for the proposed work. The work plan contains information required pursuant to Regulation 8, Rule 34, Section 118.1 and AB-32 §95470(a)(1)(I) and (J) and includes:

- Description of actions being taken;
- Description of landfill areas affected;
- Description of LFG components affected;
- Map showing the above areas and components;
- Reason requiring the action;
- Construction schedule; and
- Description of air quality mitigation measures planned.

No significant interruption of the current site LFG extraction and control operations is anticipated due to the work. The construction crew will mobilize to the site on or around June 29, 2020. We anticipate construction activities to conclude by September 30, 2020.

Unless notified otherwise, KCRDF will proceed in accordance with the attached work plan. We deem submittal of this plan as approval by the BAAQMD to take necessary action to ensure compliance with regulations, which may include taking additional LFG extraction wells offline for an extended period of time pursuant to Regulation 8, Rule 34, Section 118. Please do not hesitate to contact me at (408) 960-0770 with any questions.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Michael L. Winter District Engineer

Cc: Enrique Perez, KCRDF Bill Louis, WM

BAAQMD RULE 8-34-118 CONSTRUCTION PLAN

Kirby Canyon Recycling & Disposal Facility

CONSTRUCTION FOR INSTALLATION OF LFG PIPING AND LEACHATE DRAINAGE SYSTEM REPAIRS

June 29, 2020 through September 30, 2020

INTRODUCTION

This Construction Work Plan is submitted pursuant to Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 118: Limited Exemptions for Construction Activities. To obtain an exemption from BAAQMD Regulation 8, Rule 34, Section 303: Landfill Surface Requirements, the operator shall submit a construction plan in writing to the Air Pollution Control Officer (APCO) prior to beginning any construction activities.

Section 303 requires maintaining the concentration of organic compounds and methane below 500 parts per million by volume (ppmv) at all points on the landfill surface. Section 118 provides an exemption from the surface emission standard for "....areas of the landfill surface where the landfill cover material has been removed and refuse has been exposed for the express purpose of installing, expanding, replacing, or repairing components of the landfill gas, leachate, or gas condensate collection and removal systems."

- Description of actions being taken;
- Description of landfill areas affected;
- Description of landfill gas (LFG) components affected;
- Map showing the affected areas and components;
- Reason requiring the action;
- Construction schedule;
- Description of air quality mitigation measures planned; and
- Recordkeeping requirements.

ACTIONS BEING TAKEN

The work consists of excavation and installation of new piping and laterals that will connect to existing LFG extraction wells and to the GCCS; and excavation, repair, and backfilling of the affected areas at the existing leachate drainage system.

AFFECTED LANDFILL AREAS

The construction activities will occur in the area shown on the attached figure.

AFFECTED LFG COMPONENTS

KCRDF will conduct landfill GCCS construction activities in compliance with the Rule 8-34-117.

Please see below for list of proposed GCCS repairs and installations:

- Installation of 6"piping and connection of laterals from Well LC142 to 83
- Installation of 6"piping and connection of laterals from Well 37 to 56
- Installation of piping and connection of laterals from 6" road crossing to the west to Well 151
- Installation of 6" piping and connection of laterals from Well 119 to Well 152 to well 149
- Installation of a 6" piping from Well 122 (or nearby) to Well 147
- Installation of a 6" piping from Well 118 to Well 144 to Well 150- final construction will depend on grades
- Installing piping to buried 8" pipe above Well 14 to 8" header by Well 14
- Installation of 6" piping from Well 132 to 8" to the NW part of the header

It is anticipated that the construction will have no significant impact on the routine operation of the existing GCCS. Installation of new LFG extraction laterals is independent of the ongoing operations of the GCCS. When connecting LFG extraction wells, isolation valves installed within the existing GCCS piping network will be used to minimize the number of existing LFG extraction wells offline at any given time while the newly installed LFG laterals are connected to the GCCS.

REASONS FOR ACTIONS

The proposed construction work is intended to:

- Increase LFG collection efficiency by installation of new LFG laterals and piping on existing wells;
- Increase LFG collection efficiency to further reduce the potential surface emissions;
- Improvement of existing leachate drainage system

CONSTRUCTION SCHEDULE

The anticipated construction period will be between June 29, 2020 through September 30, 2020, and is summarized in the table below:

Task	Project Duration
Mobilize crew, equipment, and materials to site	Week 1
Installation of laterals and piping, excavation and backfilling	Up to 13 weeks
Clean-up and demobilize crew and materials	Week 1

Table 1 - Preliminary Construction Schedule

AIR QUALITY MITIGATION MEASURES

Emission of raw LFG will be minimized during construction. We anticipate minimal interruption of the overall site LFG extraction and control operations during the work. Installation of laterals and piping is independent of ongoing operations of the existing GCCS. Air quality mitigation will be provided during the installation and connection of piping to existing GCCS piping network. These mitigation measures are presented below and are designed to meet both the requirements of 8-34 Section 118 and $\S95470(a)(1)(I)$.

Due to the minimal amount of excavation planned for this work, air quality impacts are also anticipated to be minimal. Air quality mitigation will be provided during the following work tasks:

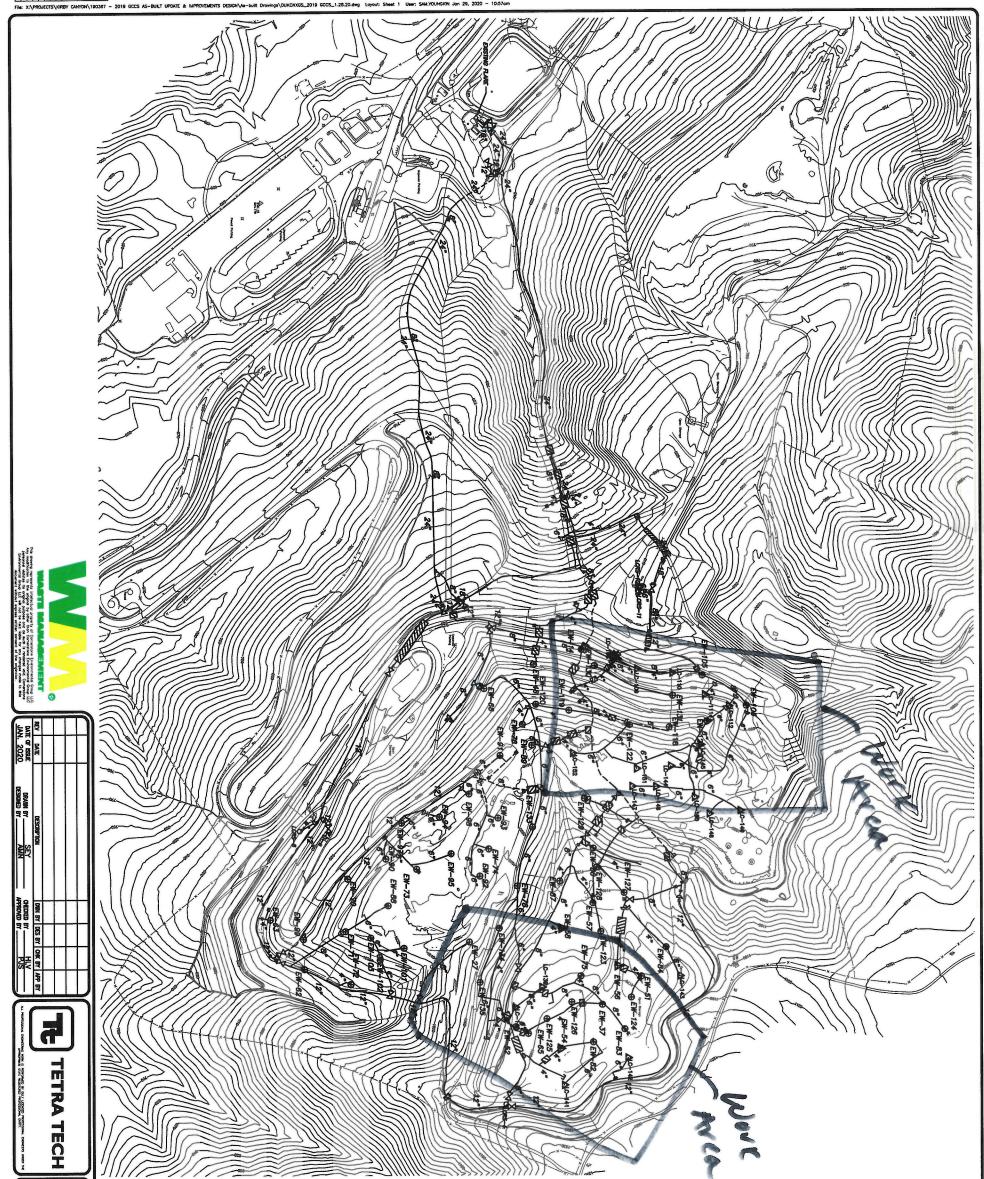
- Installation of LFG piping;
- Excavation and backfill of pipe trenches; and
- Connection of new laterals to existing piping

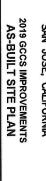
During excavation through waste and soil cover, air emission will be controlled by implementing the following measures:

- Minimizing the installation time for each component;
- Minimizing the quantity of open borings or trench excavations at any one time;
- Relocating excavated refuse to the designated waste disposal area immediately and covering the relocated waste daily by no later than the end of each day; and
- Excavations will not be left open overnight or for periods greater than 8 hours

During connection to the existing LFG piping, and installation of laterals and piping, air emissions will be controlled by implementing the following measures:

- Capping or blind flanging of all pipes and collector openings, which will remain sealed until time of connection to a vacuum source;
- Using isolation valves;
- Minimizing installation time for making each connection; and
- Minimizing the amount of open pipe during each installation, by using flange joints and flexible couplings.


RECORDKEEPING


The following records will be retained during the project:

- Construction start and end dates, projected and actual installation dates, and projected shut down times for individual gas collection system components.
- GCCS downtime and individual well shutdown times will be documented in accordance with the KCRDF's Startup, Shutdown, and Malfunction (SSM) Plan.
- Mitigation measures taken to minimize methane emissions and other potential air quality impacts will be documented.

Attachments: Figure 1 – Gas Collection and Control System layout

PROJECT NO. 190367

KIRBY CANYON RECYCLING AND DISPOSAL FACILITY SAN JOSE, CALIFORNIA

PRELIMINARY AS-BUILT

SHEET NO. **__**

- 5. SUPPLEMENTAL 2019 GCCS AS-BUILT MARKUPS/COMMENTS PROVIDED BY WM DATED: JANUARY 27, 2020.

 - 4. 2019 GCCS AS-BUILT SURVEYS PROVIDED BY F3 AND ASSOCIATES, INC. DATED: AUGUST 19, 2019 AND DECEMBER 30, 2019

 - 2. SUPPLEMENTAL 2016 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD MARK-UP DRAWING PROVIDED BY WM ON JULY 19, 2017. WELL LOCATIONS PER RECORD DRAWINGS WELL SCHEDULE DATED: JULY 13, 2016.

1. TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY WALKER ASSOCIATES. DATE OF PHOTOGRAPHY: MARCH 29, 2019.

0 200 400 SCALE IN FEET

NOTES:

0100-04 01-18

EXISTING PROBE EXISTING REMOTE WELLHEAD

A 10-108 ⊕ EN-3

EXISTING LFG EXTRACTION WELL EXISTING LOCAL CONTROL WELL EXISTING HORIZONTAL COLLECTOR EXISTING BELOWGROUND PIPING EXISTING ABOVEGROUND PIPING

O NO DEW-H15

EXISTING HORIZONTAL COLLECTOR WELLHEAD

\$ Ŧ

EXISTING CAP ON EXISTING PIPE

EXISTING RISER

ę Ŧ

Existing reducer fitting Existing road crossing Existing condensate sump

EXISTING FLANGE CONNECTION EXISTING BLIND FLANGE EXISTING CONTROL VALVE I

. ____ 12" ___

EXISTING 10' CONTOUR

LEGEND

- 3. 2017 GCCS AS-BUILT SURVEY PROVIDED BY F3 AND ASSOCIATES, INC. DATED: OCTOBER 11, 2017

KIRBY CANYON RECYCLING & DISPOSAL FACILITY A WASTE MANAGEMENT COMPANY

910 Coyote Creek Golf Drive P.O. Box 1870 Morgan Hill, CA 95037 (408) 779-2206 (408) 779-5165 Fax

April 2, 2020

Ms. Loi Chau Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Subject: Decommissioning Notification for One Vertical Well Facility Number A1812 Kirby Canyon Recycling & Disposal Facility, San Jose, California

Dear Ms. Chau,

This letter is to notify the Bay Area Air Quality Management District (BAAQMD) of the decommissioning of one vertical landfill gas (LFG) well 106 on April 1, 2020, at the Kirby Canyon Recycling & Disposal Facility (KCRDF), pursuant to Title V Permit Condition Number 1437 Part 6, as modified by Application Number 27673.

As stated in the most recent well Startup notification letter submitted on January 10, 2020, there were 77 vertical LFG collection wells, 0 horizontal collectors and 3 LCRS connected to the GCCS at the KCRDF. After the completion of these well actions, the KCRDF current GCCS component count and remaining permitted actions per Application Number 27673 are listed in the following table:

Well Action Per Application #27673	Vertical Decommissioning Actions	Vertical Installation Actions	Vertical Replacement Actions	Decomr	izontal nissioning tions	Horizontal g Installation Actions		
	VW	VW	VW	НС	LCRS	НС	LCRS	
Permitted Actions	40	50	103	5	8	2	15	
Actions Performed	22	37	0	3	0	0	0	
Remaining Actions	18	13	103	2	8	2	15	
							1. 14. 18 M.	
Current Active Well Count		76 vertical L	.FG wells, 0 HC	C and 3 L	CRS			

HC= Horizontal Trench Collectors; LCRS= Leachate Cleanout Riser; VW= Vertical Wells

If you have any questions or need any additional information please do not hesitate to contact me at (408) 960-0769.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Indly

Becky Azevedo Technical Manager

cc: Bill Louis, KCRDF Mike Winter, KCRDF

KIRBY CANYON RECYCLING & DISPOSAL FACILITY A WASTE MANAGEMENT COMPANY

910 Coyote Creek Golf Drive P.O. Box 1870 Morgan Hill, CA 95037 (408) 779-2206 (408) 779-5165 Fax

February 7, 2020

Ms. Loi Chau Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: Facility Number A1812 – Kirby Canyon Recycling & Disposal Facility Notification Requesting to Add Well 92 to List of Approved Higher Operating Value Wells

Dear Ms. Chau:

The Kirby Canyon Recycling & Disposal Facility (KCRDF), owned and operated by Waste Management of California, Inc., is subject to the Federal New Source Performance Standards/Emission Guidelines (NSPS/EG) for municipal solid waste (MSW) landfills (40 Code of Federal Regulations [CFR], Part 60, Subparts WWW and Cc) and the Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34.

This notification is being made pursuant to KCRDF Permit to Operate (PTO) Condition 1437 Parts (18)(f), which states that within 30 days of adding a component to the list of Approved Higher Operating Value (HOV) wells, the owner/operator shall notify the District in writing that the operator is requesting to add the component to the existing list. KCRDF believes that it has satisfied all requirements listed under PTO Condition 1437 Parts 18(d) and 18e(iii) to include Well 92 to the list of alternative temperature limit wells.

A review of recent monitoring data for vertical landfill gas (LFG) well 92 indicate an elevated operating temperature, and recent oxygen monitoring shows negligible oxygen has been detected at the well. Upon first discovering the elevated temperatures, KCRDF personnel monitored well 92 for carbon monoxide (CO), which is an early indicator of subsurface fire. Typically, CO concentrations of greater than 1,000 parts per million by volume (ppmv) will indicate a subsurface fire, with CO concentrations greater than 500 ppmv being of concern. The initial two readings at well 92 indicated CO readings of 5 and 0 ppmv. Subsequent monitoring reading at the well 92 indicated CO reading of 10 ppmv. Wellhead temperatures during these monitoring events were less than 140°F. Methane concentrations at Well 92 do not appear to be affected by operation at higher temperatures.

See attached table for recent monitoring data for well 92 including CO monitoring results.

KCRDF considers well 92 added to the HOV list for a temperature of 145°F as of February 4, 2020. Should the temperature measured at Well 92 during routine monitoring exceed 145°F, KCRDF will consider it an exceedance and will track the deviation in accordance with the NSPS/EG and BAAQMD requirements.

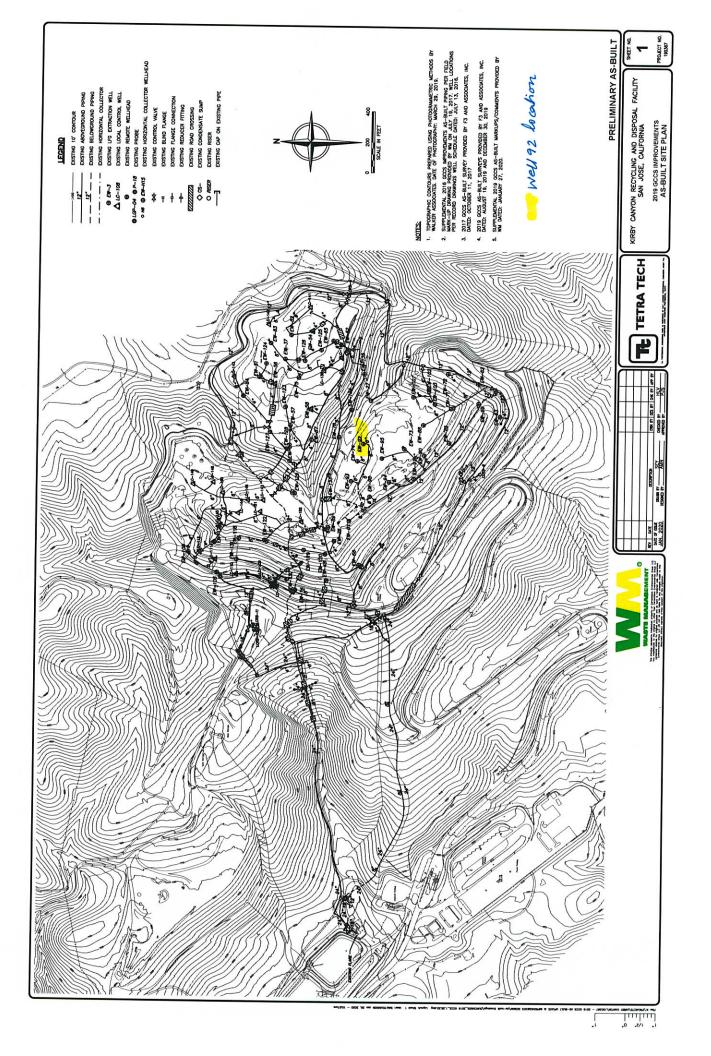
If you have any questions or need any additional information please do not hesitate to contact me at (408) 960-0769.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

Ud

Becky Azevedo Technical Manager


- cc: Bill Louis, KCRDF Mike Winter, KCRDF
- Enclosures: Well 92 Historical Monitoring Data KCRDF GCCS Map

Well 92 - Historical Monitoring Data

		-		JI JZ 1115	.orical iv	ionitoring D	ata		
Device Name	Date Time	CH4 (Methane)(%)	CO2 (Carbon Dioxide)(%)	O2 (Oxygen)(%)	Balance Gas(%)	Initial Temperature(oF)	Adjusted Temperature(oF)	Initial Static Pressure(''H2O)	Adjusted Static Pressure(''H2O)
KCYN0092	9/17/2019 15:49	49.4	37.8	0.0	12.8	121.4	120.1	-39.2	-38.2
KCYN0092	10/5/2019 14:27	47.6	37.2	0.7	14.5	129.3	129.3	-40.4	-38.8
KCYN0092	11/19/2019 14:31	45.7	37.2	1.1	16.0	124.0	124.0	-41.3	-35.2
KCYN0092	12/11/2019 10:54	50.9	38.9	0.1	10.1	129.5	129.5	-37.2	-38.1
KCYN0092	1/17/2020 13:38					CO was 5pp	m		
KCYN0092	1/17/2020 19:27	49.9	38.3	0.0	11.8	131.0	132.0	-37.4	-36.5
KCYN0092	1/20/2020 14:57					CO was 0pp	m		
KCYN0092	1/20/2020 18:42	49.7	38.7	0.0	11.6	128.0	130.0	-34.1	-34.1
KCYN0092	1/20/2020 18:43	49.7	38.7	0.0	11.6	128.0	128.0	-34.1	-34.3
KCYN0092	2/4/2020 16:00	49.5	38.5	0.0	12.0	132.0	132.0	-35.1	-34.5
KCYN0092	2/4/2020 16:14					CO was 0pp			

Table 1. Well 92 Historical Monitoring Data

KCRDF GCCS Map

KIRBY CANYON RECYCLING & DISPOSAL FACILITY A WASTE MANAGEMENT COMPANY

910 Coyote Creek Golf Drive P.O. Box 1870 Morgan Hill, CA 95037 (408) 779-2206 (408) 779-5165 Fax

January 10, 2020

Ms. Loi Chau Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Subject: Startup Notification Letter for Fourteen New Vertical Wells Facility Number A1812 Kirby Canyon Recycling & Disposal Facility, San Jose, California

Dear Ms. Chau,

This letter is to notify the Bay Area Air Quality Management District (BAAQMD) of the startup of fourteen vertical landfill gas (LFG) wells in December 2019 and January 2020 at the Kirby Canyon Recycling & Disposal Facility (KCRDF), pursuant to Title V Permit Condition Number 1437 Part 6, as modified by Application Number 27673. The affected collectors and respective startup/shutdown dates are listed in the following table:

Well ID	Well Action Type	Applicable Date
Well 139	Startup	12/23/2019; 9:02
Well 140	Startup	12/23/2019; 9:06
Well 141	Startup	12/23/2019; 8:33
Well 142	Startup	12/23/2019; 9:17
Well 143	Startup	12/23/2019; 10:52
Well 144	Startup	12/23/2019; 9:50
Well 145	Startup	12/23/2019; 10:00
Well 146	Startup	12/23/2019; 9:45
Well 147	Startup	1/10/2020; 10:16
Well 148	Startup	12/23/2019; 10:09
Well 149	Startup	12/23/2019; 10:16
Well 150	Startup	12/23/2019; 9:56
Well 151	Startup	1/10/2020; 9:45
Well 152	Startup	12/23/2019; 10:11

As stated in the most recent Well Decommissioning Notification Letter submitted on September 12, 2019, there were 63 vertical LFG collection wells, 0 horizontal collectors and 3 LCRS connected to the GCCS at the KCRDF. After the completion of these well actions, the KCRDF current GCCS component count and remaining permitted actions per Application Number 27673 are listed in the following table:

Well Action Per Application #27673	Vertical Decommissioning Actions	Vertical Installation Actions	Vertical Replacement Actions	Decomr	izontal nissioning tions	Insta	zontal allation tions
	VW	VW	VW	HC	LCRS	HC	LCRS
Permitted Actions	40	50	103	5	8	2	15
Actions Performed	21	37	0	3	0	0	0
Remaining Actions	19	13	103	2	8	2	15
Current Active Well Count	rench Collectors; LCRS= Le		.FG wells, 0 HC		CRS		

If you have any questions or need any additional information please do not hesitate to contact me at (408) 960-0769.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

N

Rajan Phadnis Environmental Protection Specialist

cc: Bill Louis, KCRDF Mike Winter, KCRDF

KIRBY CANYON RECYCLING & DISPOSAL FACILITY A WASTE MANAGEMENT COMPANY

910 Covote Creek Golf Drive F.O. Box 1870 Morgan Hill, CA 95037 (408) 779-2206 (408) 779-5165 Eax

October 15, 2019

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 Attn: Title V Reports

Re: Title V 10-Day Written Report for Delay to Notify the BAAQMD Facility Number A1812, Kirby Canyon Recycling & Disposal Facility, San Jose, CA.

Dear Sir or Madam:

The Kirby Canyon Recycling & Disposal Facility (KCRDF) is submitting this 10-day written report to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F for Monitoring Reports.

The KCRDF Title V Permit Requirement Condition 1437 (2)(b), states that "*The owner/operator* shall provide verbal notification to the Compliance and Enforcement Division of the owner/operator's intention to accept contaminated soil at the facility at least 24 hours in advance of receiving the contaminated soil. The owner/operator shall provide an estimate of the amount of contaminated soil to be received, the degree of contamination (range and average VOC Content), and the type or source of contamination." This 10-day written report is being submitted for delay to notify the BAAQMD prior to acceptance of contaminated soil. KCRDF is submitting the required notification as part of this written report (see attached).

On October 7, 2019, during routine monthly (for September 2019) soil data review and discussion, it was discovered that KCRDF had not notified the BAAQMD prior to accepting contaminated soil at the facility. The delay to notify the BAAQMD was due to an inadvertent lapse in communication between the customer and the site. The soil was accepted at the site on September 24, 2019.

As required, KCRDF will submit a 30-day follow-up written report and provide additional details as appropriate. KCRDF is committed to operating its landfill in compliance with all applicable regulations.

If you have any questions or need any additional information please do not hesitate to contact me at (408) 323-6300.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

al A Wise

Neil J. Wise District Operations Manager

Attachment: KCRDF 24 hour notification dated October 15, 2019.

cc: Becky Azevedo, KCRDF

910 Coyote Creek Golf Drive P.O. Box 1870 Morgan Hill, CA 95037 (408) 779-2206 (408) 779-5165 Fax

October 15, 2019

Mr. Jeffrey Gove Bay Area Air Quality Management District Office Compliance and Enforcement Division 375 Beale Street, Suite 600 San Francisco, CA 94105

RE: Kirby Canyon Recycling & Disposal Facility #A1812, Permit Condition # 1437

Dear Mr. Gove:

As required per the above listed permit condition, this letter serves as the 24 hour notification for the intent to accept a volatile organic compound (VOC) contaminated waste stream for disposal at the Kirby Canyon Landfill.

WM Profile Number: 641000CA
Estimated quantity of contaminated soil: 80 Cubic Yards
Degree of contamination:

VOC range of material: <u>99.7 ppm</u>
Average VOC content: <u>99.7 ppm</u>

Type or source of the contamination: <u>Soil from excavation to inspect natural gas pipeline</u>
Date of soil Acceptance: <u>September 24, 2019</u>

If you have further questions concerning this matter, please contact me at (669) 232-5365.

Sincerely,

Sergio Avila Landfill Operations Manager Kirby Canyon Recycling & Disposal Facility

KIRBY CANYON RECYCLING & DISPOSAL FACILITY A WASTE MANAGEMENT COMPANY

910 Coyote Creek Golf Drive P.O. Box 1870 Morgan Hill, CA 95037 (408) 779-2206 (408) 779-5165 Fax

October 29, 2019

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 Attn: Title V Reports

Re: Title V 30-Day Follow-up Written Report for Delayed 24-hour Notification Facility Number A1812, Kirby Canyon Recycling & Disposal Facility, San Jose, CA.

Dear Sir or Madam:

The Kirby Canyon Recycling & Disposal Facility (KCRDF) is submitting this 30-day follow-up written report to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F for Monitoring Reports.

On October 7, 2019, during routine soil data review, it was discovered that KCRDF had not notified the BAAQMD prior to accepting contaminated soil at the facility in September 2019. The delay to notify the BAAQMD was due to an inadvertent lapse in communication between the customer and the site. The soil was accepted at the site on September 24, 2019.

This letter serves as the 30-day follow-up written report including corrective and preventative actions taken by KCRDF. Upon discovery of the delayed 24-hour notification the KCRDF immediately took the following actions:

10/7/2019: During routine soil data review, it was discovered that KCRDF had not notified the BAAQMD prior to accepting contaminated soil at the facility on September 24, 2019.

10/8/2019: Corrective action items were discussed and began implementation

10/10/2019: Completed corrective action items including upgraded coding, upgraded notification process and initiated site training.

10/15/2019: Submitted 10-day written report (BAAQMD received on 10/16/2019).

10/22/2019: Completed site employee training.

KCRDF is committed to operating its landfill in compliance with applicable regulations.

If you have any questions or need any additional information please do not hesitate to contact me at (408) 323-6300.

Sincerely,

Kirby Canyon Recycling & Disposal Facility

1 lise

Neil J. Wise⁴ District Operations Manager

cc: Becky Azevedo, KCRDF

APPENDIX K

WELLFIELD DEVIATION LOG

KIRBY CANYON RECYCLING & DISPOSAL FACILITY WELLFIELD DEVIATION REPORT Reporting Period: From January 1 2020 through June 30, 2020

REPORT PREPARED BY: Rajan Phadnis UPDATED DATE: July 1, 2020 LFG MONITORING DEVICE: GEM MODEL: 2000 DATE LAST CALIBRATED: DAILY

Well ID	Date and Time	CH₄	CO2	02	Balance	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)	Comments	Duration of Exceedance As of the End of Reporting Period
		(%)	(%)	(%)	(%)	(°F)	(°F)	("WC)	("WC)		(Days)
KCLC0152	1/20/2020 18:32	55.2	44.7	0.0	0.1	60.0	60.0	0.2	0.3	NSPS/EG CAI;Dec. Flow/Vac.;Fully Closed	
KCLC0152	1/20/2020 18:32	55.2	44.7	0.0	0.1	60.0	50.0	0.2	0.4	NSPS/EG CAI;Fully Closed	
KCLC0152	2/4/2020 15:42	56.6	43.3	0.0	0.1	90.0	91.0	-3.4	-3.5	NSPS/EG CAI;Fully Open	15
Comments:Well 152	had pressure exceeda	ance duri	ng the mo	onitoring e	event in Jan	uary 2020. Adjust	ments wer made	and exceedan	ce was cleared	1.	
KCYN0092	1/17/2020 13:38					CO was 5 p	pm				
KCYN0092	1/17/2020 19:27	49.9	38.3	0.0	11.8	131.0	132.0	-37.4	-36.5	Inc. Flow/Vac.	
KCYN0092	1/20/2020 14:57					CO was 0 p	pm				
KCYN0092	1/20/2020 18:42	49.7	38.7	0.0	11.6	128.0	130.0	-34.1	-34.1	NSPS/EG CAI;Surging	
KCYN0092	2/4/2020 16:00	49.5	38.5	0.0	12.0	132.0	132.0	-35.1	-34.5	NSPS/EG CAI;Surging;No Adj. Made	
KCYN0092	2/4/2020 16:14					CO was 0 p	pm		•		21
Comments:Well 92 HOV wells.	had temperature excee	dance du	uring the	monitorinę	g event in Ja	anuary and Febru	ary 2020. CO rea	ding was below	v 100 ppm. HC	DV letter was submitted on February 7, 2020 and Wel	92 was added to the list of
KCYN0037	3/20/2020 14:25	54.9	45.0	0.0	0.1	70.0	70.0	0.8	0.8	NSPS/EG CAI;Dec. Flow/Vac.	
KCYN0037	3/20/2020 14:28	54.9	45.0	0.0	0.1	70.0	70.0	0.8	0.0	NSPS/EG CAI;Adjusted for Odor/SEM	
KCYN0037	4/14/2020 15:15	53.7	41.7	0.3	4.3	99.8	100.1	-4.7	-4.7	Surging;No Adj. Made	25
Comments: Well 37	had pressure exceeda	ince durin	ig the mo	nitoring e	vent in Mar	ch 2020. Adjusten	nents were made	and exceedan	ce was cleared	d.	
KCYN0106	3/18/2020 14:55	19.1	14.1	14.1	52.7	50.00	50.00	-33.1	-33.2	NSPS/EG CAI;Surging	
KCYN0106	3/18/2020 15:00	17.7	13.2	14.8	54.3	49.00	49.00	-35.5	-33.2	NSPS/EG CAI;Dec. Flow/Vac.;Barely Open	
KCYN0106	4/1/2020 13:43	56.7	42.9	0.2	0.2	63.0	63.0	-27.2	-27.3	Barely Open;Surging	14
Comments:Well 106	had oxygen exceedar	nce during	g the mor	nitoring ev	ent in Marc	h 2020. Exceedar	nce was cleared d	luring April 202	0. Well was de	ecommissioned on April 1, 2020.	
KCYNLR08	3/25/2020 14:08	0.3	0.3	22.3	77.1	82.0	82.0	-55.0	-54.8	NSPS/EG CAI;Adjusted for Odor/SEM	
KCYNLR08	3/25/2020 14:11	0.3	0.3	22.3	77.1	82.0	82.0	-55.0	-54.9	NSPS/EG CAI;Surging;Adjusted for Odor/SEM	
KCYNLR08	4/8/2020 9:06	59.1	40.5	0.2	0.2	80.0	80.0	-53.0	-53.3	Surging	14
Comments:LR08 ha	d oxygen exceedance	during th	e monitor	ring event	in March 20	020. Exceedance	was cleared durir	ng April 2020.			

KIRBY CANYON RECYCLING & DISPOSAL FACILITY WELLFIELD DEVIATION REPORT Reporting Period: From January 1 2020 through June 30, 2020

REPORT PREPARED BY: Rajan Phadnis UPDATED DATE: July 1, 2020 LFG MONITORING DEVICE: GEM MODEL: 2000 DATE LAST CALIBRATED: DAILY

Well ID	Date and Time	СН₄	CO2	02	Balance	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)	Comments	Duration of Exceedance A of the End of Reporting Period
		(%)	(%)	(%)	(%)	(°F)	(°F)	("WC)	("WC)		(Days)
KCLC0149	4/15/2020 12:16	25.8	28.8	6.3	39.1	110.1	110.3	-15.8	-3.2	NSPS/EG CAI;Dec. Flow/Vac.	
KCLC0149	4/15/2020 12:36	30.3	34.1	3.9	31.7	109.7	108.2	-3.2	-3.1		<1
Comments:Well 14	9 had oxygen exceeda	nce durin	g the mo	nitoring ev	ent in April	2020. Adjustmer	nts were made an	d exceedance	was corrected	i.	·
KCLC0152	3/18/2020 16:18	56.6	43.3	0.00	0.10	61.00	56.00	1.8	1.8	NSPS/EG CAI;Fully Open;Dec. Flow/Vac.	
KCLC0152	4/15/2020 7:55	57.9	42.0	0.1	0.0	61.6	61.2	1.7	1.7	NSPS/EG CAI;Inc. Flow/Vac.	
KCLC0152	5/20/2020 9:11	56.0	42.6	0.6	0.8	73.2	73.2	0.0	-0.1	NSPS/EG CAI	
KCLC0152	6/16/2020 16:04	56.00	44.00	0.00	0.00	81.0	81.0	1.1	1.1	NSPS/EG CAI	>104
Comments:Well 15	2 had pressure exceed	ance duri	ng the me	onitoring e	event in Mai	rch through June 2	2020. New latera	l was installed	and exceedar	nce was cleared during July 2020 monthly monitori	ng event.
KCYN0048	4/15/2020 14:10	55.6	42.0	0.0	2.4	105.9	109.7	0.2	-0.2	NSPS/EG CAI;Inc. Flow/Vac.	<1
Comments:Well 48	had pressure exceeda	nce durin	g the mo	nitoring ev	ent in April	2020. Adjusteme	nts were made ar	nd exceedance	was corrected	1.	
KCYN0065	4/14/2020 14:15	36	29	6.3	28.7	95.2	92.4	-2.4	-0.2	NSPS/EG CAI;Dec. Flow/Vac.	
KCYN0065	4/14/2020 14:38	54	39	0.9	6.2	91.0	91.0	-0.2	-0.1	No Adj. Made	<1
Comments:Well 65	had oxygen exceedand	e during	the initial	l monitorin	g event in A	April 2020.					
KCYN0120	4/15/2020 13:29	39.9	30.8	5.4	23.9	83.2	83.9	-35.0	-34.9	NSPS/EG CAI;Dec. Flow/Vac.;Surging	
KCYN0120	4/15/2020 13:35	46.9	37.7	2.3	13.1	83.5	83.3	-35.4	-35.2	Surging;No Adj. Made	<1
Comments:Well 12	0 had oxygen exceedar	nce during	g the initia	al monitor	ing event in	April 2020.					
KCYN0119	4/15/2020 13:45	58.3	40.7	0.0	1.0	124.0	124.7	1.4	-0.1	NSPS/EG CAI;Inc. Flow/Vac.	<1
Comments:Well 11	9 had pressure exceed	ance duri	ng the m	onitoring e	event in Apr	il 2020. Adjustem	ents were made a	and exceedanc	e was correcte	ed.	-
KCLC0151	4/15/2020 11:51	56.4	43.6	0.0	0.0	88.3	88.4	2.7	2.7	NSPS/EG CAI;Fully Open;Inc. Flow/Vac.	
KCLC0151	5/20/2020 9:15	53.2	46.8	0.0	0.0	68.7	68.9	2.4	2.4	NSPS/EG CAI	
KCLC0151	6/16/2020 16:06	55.60	44.30	0.10	0.00	73.3	73.3	2.9	3.0	NSPS/EG CAI;Barely Open	>76
Comments:Well 15	1 had pressure exceed	ance duri	ng the m	onitoring e	events in Ap	oril through June 2	020. New lateral	was installed a	nd exceedanc	e was cleared during July 2020 monthly monitorin	g event.
KCYNLR11	5/20/2020 14:10	15.7	9.9	14.0	60.4	108.3	108.1	-49.1	-49.1	NSPS/EG CAI;Fully Open;Surging	
KCYNLR11	5/22/2020 10:52	52.9	34.4	3.2	9.5	79.1	79.1	-49.4	-49.4	NSPS/EG CAI;Fully Open	2

KIRBY CANYON RECYCLING & DISPOSAL FACILITY WELLFIELD DEVIATION REPORT Reporting Period: From January 1 2020 through June 30, 2020

REPORT PREPARED BY: Rajan Phadnis UPDATED DATE: July 1, 2020 LFG MONITORING DEVICE: GEM MODEL: 2000 DATE LAST CALIBRATED: DAILY

Well ID	Date and Time	CH₄	CO2	O ₂	Balance	Initial Temperature (degrees F)	Adjusted Temperature (degrees F)	Initial Pressure (in. w.c.)	Adjusted Pressure (in. w.c.)	Comments	Duration of Exceedance As of the End of Reporting Period
		(%)	(%)	(%)	(%)	(°F)	(°F)	("WC)	("WC)		(Days)
Comments:LR11 ha	d oxygen exceedance	during ini	tial monit	toring ever	nt in May 20	020. Adjustments	were made and e	exceedance wa	as corrected.	·	
KCYN0129	6/17/2020 16:01	56.4	43.6	0.00	0.00	118.0	117.8	3.9	4.4	NSPS/EG CAI;Fully Open;Surging	
KCYN0129	6/17/2020 16:03	56.3	43.7	0.00	0.00	117.9	118.0	4.3	4.4	NSPS/EG CAI;Fully Open;Surging	>13
Comments:Well 129	had pressure exceeda	ance durir	ng the mo	onitoring e	vent in Jun	e 2020. New late	ral was installed a	and exceedanc	e was cleared	during July 2020 monthly monitoring event.	

EG CAI= Emissions Guidelines Corrective Action Initiated

APPENDIX L

MONTHLY LANDFILL GAS FLOW RATES

MONTHLY LFG Input to Flare (A-12)

January 1 2020 through June 30, 2020

KIRBY CANYON RECYCLING & DISPOSAL FACILITY, San Jose, CA

Month	Total Available Runtime (hours)	Total Downtime (hours)	Total Runtime (hours)	Average Flow (scfm)	CH4 (%)*	Total LFG Volume (scf)	Total CH ₄ Volume (scf)	Total Heat Input (MMBTU)
January-20	744.00	18.43	725.57	2,326	50.9	101,179,101	51,449,725	52,119
February-20	696.00	15.07	680.93	2,311	50.9	94,416,389	48,010,875	48,635
March 2020 ²	743.00	1.83	741.17	2,270	50.9	100,933,682	51,324,929	51,992
April-20	720.00	1.60	718.40	2,218	50.4	96,162,570	48,898,811	49,149
May-20	744.00	2.03	741.97	2,052	50.4	91,442,343	42,639,565	43,194
June-20	720.00	5.33	714.67	2,064	46.6	88,570,275	41,300,319	41,837
January 1-June 30, 2020 Totals/Avg	4,367.00	44.30	4,322.70	2,207	50.0	572,704,360	283,624,224	286,926
2019-2020-Totals/Avg	8,784.00	155.99	8,628.01	2,146	50.4	1,106,701,499	555,162,570	561,994

NOTES:

¹There were 721 hours in November 2019, due to Daylight Saving Time.

²There were 743 hours in March 2020, due to Daylight Saving Time.

*Methane content determined from March 13, 2019 and March 4, 2020 source test.

The annual heat input rate for the A-12 Flare shall not exceed 1,087,700 MMBTU and 2,980 MMBTU per day (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

MONTHLY LFG Input to I	Flare (A-12)	
KIRBY CANYON RECYC	LING & DISPOSAL FACII	LITY, San Jose, CA
MONTHLY LFG Heat Inpu	t: 2019-2020	
Month	Monthly Total Heat Input (MMBTU)	12-Month Total Heat Input (MMBTU)
July-19	50,089	554,679
August-19	46,430	556,435
September-19	44,834	558,775
October-19	42,540	557,987
November-19	42,784	555,673
December-19	48,392	559,693
January-20	52,119	567,986
February-20	48,635	577,049
March-20	51,992	583,205
April-20	49,149	585,256
May-20	43,194	575,959
June-20	41,837	561,994
MMBTU= million British the	ermal units	

Heat Input Rate A-12 Flare

IONTH:	January-20		-		-	1	
Date	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	Total CH ₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Day
1/1/2020	24.00	50.9	2,359	3,396,971	1,727,365	1,013.0	1,750
1/2/2020	23.87	50.9	2,349	3,363,085	1,710,134	1,013.0	1,732
1/3/2020	14.20	50.9	2,461	2,096,402	1,066,024	1,013.0	1,080
1/4/2020	24.00	50.9	2,372	3,416,375	1,737,232	1,013.0	1,760
1/5/2020	24.00	50.9	2,353	3,388,553	1,723,084	1,013.0	1,745
1/6/2020	24.00	50.9	2,351	3,385,496	1,721,530	1,013.0	1,744
1/7/2020	24.00	50.9	2,333	3,359,563	1,708,343	1,013.0	1,731
1/8/2020	24.00	50.9	2,318	3,338,217	1,697,488	1,013.0	1,720
1/9/2020	16.27	50.9	2,362	2,305,356	1,172,277	1,013.0	1,188
1/10/2020	23.23	50.9	2,356	3,283,701	1,669,767	1,013.0	1,691
1/11/2020	24.00	50.9	2,354	3,389,968	1,723,804	1,013.0	1,746
1/12/2020	24.00	50.9	2,334	3,361,676	1,709,417	1,013.0	1,732
1/13/2020	24.00	50.9	2,330	3,354,509	1,705,773	1,013.0	1,728
1/14/2020	24.00	50.9	2,297	3,308,227	1,682,238	1,013.0	1,704
1/15/2020	24.00	50.9	2,228	3,208,645	1,631,601	1,013.0	1,653
1/16/2020	24.00	50.9	2,198	3,165,618	1,609,722	1,013.0	1,631
1/17/2020	24.00	50.9	2,252	3,243,557	1,649,354	1,013.0	1,671
1/18/2020	24.00	50.9	2,340	3,370,011	1,713,656	1,013.0	1,736
1/19/2020	24.00	50.9	2,335	3,361,919	1,709,541	1,013.0	1,732
1/20/2020	24.00	50.9	2,326	3,349,412	1,703,181	1,013.0	1,725
1/21/2020	24.00	50.9	2,326	3,349,278	1,703,113	1,013.0	1,725
1/22/2020	24.00	50.9	2,340	3,370,124	1,713,713	1,013.0	1,736
1/23/2020	24.00	50.9	2,343	3,374,139	1,715,755	1,013.0	1,738
1/24/2020	24.00	50.9	2,325	3,348,429	1,702,681	1,013.0	1,725
1/25/2020	24.00	50.9	2,320	3,340,092	1,698,442	1,013.0	1,721
1/26/2020	24.00	50.9	2,304	3,318,228	1,687,324	1,013.0	1,709
1/27/2020	24.00	50.9	2,294	3,303,528	1,679,849	1,013.0	1,702
1/28/2020	24.00	50.9	2,296	3,306,785	1,681,505	1,013.0	1,703
1/29/2020	24.00	50.9	2,302	3,315,368	1,685,870	1,013.0	1,708
1/30/2020	24.00	50.9	2,320	3,340,939	1,698,872	1,013.0	1,721
1/31/2020	24.00	50.9	2,337	3,364,930	1,711,072	1,013.0	1,733
Totals/ Average:	725.57	50.9	2,326	101,179,101	51,449,725	1,013.0	52,119
	•	1	,	, , -	, , -	Maximum	1,760

NOTES:

*Starting May 7, 2019, Methane content determined from the March 13, 2019, A-12 Source Test is used.

The daily heat input rate for the A-12 Flare shall not exceed 3,576 MMBTU (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

Heat Input Rate A-12 Flare

MONTH: February-20

agoi		00.0	2,011	- 1, 110,000		Maximum	1,728
Totals/ Average:	680.93	50.9	2,311	94,416,389	48,010,875	1,013.0	48,635
2/29/2020	24.00	50.9	2,288	3,294,433	1,675,224	1,013.0	1,697
2/28/2020	24.00	50.9	2,324	3,346,812	1,701,859	1,013.0	1,724
2/27/2020	24.00	50.9	2,322	3,344,124	1,700,492	1,013.0	1,723
2/26/2020	24.00	50.9	2,323	3,345,172	1,701,025	1,013.0	1,723
2/25/2020	24.00	50.9	2,319	3,339,002	1,697,888	1,013.0	1,720
2/24/2020	23.70	50.9	2,320	3,299,409	1,677,754	1,013.0	1,700
2/23/2020	24.00	50.9	2,295	3,305,504	1,680,854	1,013.0	1,703
2/22/2020	24.00	50.9	2,299	3,311,178	1,683,739	1,013.0	1,706
2/21/2020	24.00	50.9	2,303	3,316,926	1,686,662	1,013.0	1,709
2/20/2020	24.00	50.9	2,309	3,324,466	1,690,496	1,013.0	1,712
2/19/2020	24.00	50.9	2,305	3,318,742	1,687,585	1,013.0	1,710
2/18/2020	24.00	50.9	2,311	3,327,790	1,692,186	1,013.0	1,714
2/17/2020	24.00	50.9	2,306	3,321,024	1.688.746	1,013.0	1,711
2/16/2020	24.00	50.9	2,307	3,322,052	1,689,268	1,013.0	1,711
2/15/2020	24.00	50.9	2,308	3,323,521	1,690,015	1,013.0	1,712
2/14/2020	24.00	50.9	2,318	3,337,978	1,697,367	1,013.0	1,719
2/13/2020	24.00	50.9	2,326	3,349,339	1,703,144	1,013.0	1,725
2/12/2020	23.70	50.9	2,340	3,326,787	1,691,676	1,013.0	1,714
2/11/2020	21.43	50.9	2,363	3,039,108	1,545,391	1,013.0	1,565
2/10/2020	20.50	50.9	2,346	2,885,511	1,467,287	1,013.0	1,486
2/9/2020	20.77	50.9	2,324	2,895,816	1,472,527	1,013.0	1,492
2/8/2020	24.00	50.9	2,311	3,328,303	1,692,447	1,013.0	1,714
2/7/2020	21.73	50.9	2,323	3,029,190	1,540,348	1,013.0	1,560
2/6/2020	21.10	50.9	2,324	2,941,665	1,495,841	1,013.0	1,515
2/5/2020	24.00	50.9	2,278	3,280,680	1,668,231	1,013.0	1,690
2/4/2020	24.00	50.9	2,261	3,256,396	1,655,882	1,013.0	1,677
2/3/2020	24.00	50.9	2,265	3,261,971	1,658,717	1,013.0	1,680
2/2/2020	24.00	50.9	2,284	3,288,542	1,672,229	1,013.0	1,694
2/1/2020	24.00	50.9	2,330	3,354,948	1,705,996	1.013.0	1,728
Date	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	Total CH ₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Da

NOTES:

*Starting May 7, 2019, Methane content determined from the March 13, 2019, A-12 Source Test is used.

The daily heat input rate for the A-12 Flare shall not exceed 3,576 MMBTU (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

Heat Input Rate A-12 Flare

MONTH: March-20

		-				Maximum	1,773
Totals/ Average:	741.17	50.9	2,270	100,933,682	51,324,929	1,013.0	51,992
3/31/2020	24.00	50.9	2,391	3,442,925	1,750,733	1,013.0	1,773
3/30/2020	24.00	50.9	2,377	3,423,067	1,740,635	1,013.0	1,763
3/29/2020	24.00	50.9	2,362	3,400,580	1,729,200	1,013.0	1,752
3/28/2020	24.00	50.9	2,355	3,391,911	1,724,792	1,013.0	1,747
3/27/2020	24.00	50.9	2,317	3,336,046	1,696,384	1,013.0	1,718
3/26/2020	24.00	50.9	2,312	3,329,596	1,693,105	1,013.0	1,715
3/25/2020	24.00	50.9	2,321	3,342,522	1,699,677	1,013.0	1,722
3/24/2020	24.00	50.9	2,334	3,360,722	1,708,932	1,013.0	1,731
3/23/2020	24.00	50.9	2,326	3,349,563	1,703,258	1,013.0	1,725
3/22/2020	24.00	50.9	2,339	3,368,536	1,712,906	1,013.0	1,735
3/21/2020	24.00	50.9	2,338	3,367,439	1,712,348	1,013.0	1,735
3/20/2020	24.00	50.9	2,328	3,351,858	1,704,425	1,013.0	1,727
3/19/2020	24.00	50.9	2,303	3,316,939	1,686,668	1,013.0	1,709
3/18/2020	23.60	50.9	2,297	3,252,142	1,653,719	1,013.0	1,675
3/17/2020	22.57	50.9	2,280	3,087,782	1,570,142	1,013.0	1,591
3/16/2020	24.00	50.9	2,240	3,226,198	1,640,527	1,013.0	1,662
3/15/2020	24.00	50.9	2,162	3,113,446	1,583,192	1,013.0	1,604
3/14/2020	24.00	50.9	2,169	3,123,987	1,588,552	1,013.0	1,609
3/13/2020	24.00	50.9	2,174	3,130,155	1,591,689	1,013.0	1,612
3/12/2020	24.00	50.9	2,202	3,170,357	1,612,131	1,013.0	1,633
3/11/2020	24.00	50.9	2,198	3,164,581	1,609,194	1,013.0	1,630
3/10/2020	24.00	50.9	2,178	3,136,616	1,594,974	1,013.0	1,616
3/9/2020	24.00	50.9	2,185	3,146,026	1,599,759	1,013.0	1,621
3/8/2020	23.00	50.9	2,164	2,986,095	1,518,434	1,013.0	1,538
3/7/2020	24.00	50.9	2,157	3,106,552	1,579,686	1,013.0	1,600
3/6/2020	24.00	50.9	2,200	3,168,312	1,611,091	1,013.0	1,632
3/5/2020	24.00	50.9	2,258	3,252,164	1,653,730	1,013.0	1,675
3/4/2020	24.00	50.9	2,259	3,253,468	1,654,393	1,013.0	1,676
3/3/2020	24.00	50.9	2,274	3,274,490	1,665,083	1,013.0	1,687
3/2/2020	24.00	50.9	2,280	3,282,482	1.669.147	1,013.0	1.691
3/1/2020	24.00	50.9	2,276	3,277,125	1,666,423	1,013.0	1,688
Date	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Da

NOTES:

*Starting May 7, 2019, Methane content determined from the March 13, 2019, A-12 Source Test is used.

The daily heat input rate for the A-12 Flare shall not exceed 3,576 MMBTU (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

 CH_4 = methane

Heat Input Rate A-12 Flare

4/27/2020 4/28/2020 4/29/2020 4/30/2020 Totals/ Average:	24.00 24.00 24.00 24.00 718.40	50.9 46.6 46.6 46.6 50.4	2,113 2,097 2,080 2,082 2,218	3,042,995 3,020,125 2,994,819 2,997,500 96,162,570	1,547,368 1,408,284 1,396,484 1,397,734 48,518,472	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,567 1,427 1,415 1,416 49,149
4/28/2020 4/29/2020	24.00 24.00 24.00	46.6 46.6	2,097 2,080	3,020,125 2,994,819	1,408,284 1,396,484	1,013.0 1,013.0	1,427 1,415
4/28/2020	24.00 24.00	46.6	2,097	3,020,125	1,408,284	1,013.0	1,427
	24.00						
		FO O	0 4 4 0				
4/26/2020	24.00	50.9	2,117	3,048,854	1,550,347	1,013.0	1,571
4/25/2020	24.00	50.9	2,130	3,067,308	1,559,731	1,013.0	1,580
4/24/2020	24.00	50.9	2,127	3,063,181	1,557,632	1,013.0	1,578
4/23/2020	24.00	50.9	2,123	3,057,388	1,554,686	1,013.0	1,575
4/22/2020	24.00	50.9	2,148	3,092,926	1,572,758	1,013.0	1,593
4/21/2020	24.00	50.9	2,158	3,107,662	1,580,251	1,013.0	1,601
4/20/2020	24.00	50.9	2,158	3,107,603	1,580,221	1,013.0	1,601
4/19/2020	24.00	50.9	2,166	3,119,277	1,586,157	1,013.0	1,607
4/18/2020	24.00	50.9	2,155	3,102,929	1,577,844	1,013.0	1,598
4/17/2020	24.00	50.9	2,153	3,100,860	1,576,792	1,013.0	1,597
4/16/2020	24.00	50.9	2,167	3,120,335	1,586,695	1,013.0	1,607
4/15/2020	24.00	50.9	2,226	3,205,440	1,629,971	1,013.0	1,651
4/14/2020	24.00	50.9	2,274	3,274,961	1,665,323	1,013.0	1,687
4/13/2020	24.00	50.9	2,302	3,314,561	1,685,459	1,013.0	1,707
		50.9	2,309	3,324,672	1,690,601	1,013.0	1,713
4/11/2020 4/12/2020	24.00 24.00	50.9	2,322	3,343,648	1,700,250	1,013.0	1,722
4/10/2020	24.00			3,333,230	1,694,952	1,013.0	,
4/9/2020	24.00	50.9 50.9	2,307 2,315	3,322,756	1,689,626	1,013.0	<u>1,712</u> 1.717
4/8/2020			2,308	3,323,402	1,689,955	1,013.0	
4/7/2020	24.00 24.00	50.9 50.9	2,301	3,313,786	1,685,065	1,013.0	1,707 1,712
4/6/2020	24.00	50.9	2,282	3,286,433	1,671,156	1,013.0	1,693
4/5/2020	24.00	50.9	2,289	3,296,395	1,676,222	1,013.0	1,698
4/4/2020	24.00	50.9	2,484	3,577,647	1,819,239	1,013.0	1,843
4/3/2020	22.40	50.9	2,498	3,357,931	1,707,513	1,013.0	1,730
4/2/2020	24.00	50.9	2,372	3,416,224	1,737,155	1,013.0	1,760
4/1/2020	24.00	50.9	2,380	3,427,722	1,743,002	1,013.0	1,766
Date	Runtime (hours)		Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Da

NOTES:

*Starting May 7, 2019, Methane content determined from the March 13, 2019, A-12 Source Test is used.

The daily heat input rate for the A-12 Flare shall not exceed 3,576 MMBTU (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

 CH_4 = methane

Heat Input Rate A-12 Flare

5/19/2020 5/19/2020 5/20/2020 5/21/2020 5/22/2020 5/23/2020 5/24/2020 5/25/2020 5/26/2020 5/27/2020 5/28/2020 5/29/2020 5/30/2020 5/31/2020	24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 23.60 24.00 24.00 24.00 24.00 24.00 24.00 24.00 741.97	46.6 46.6	1,988 2,004 2,022 2,009 2,002 2,022 2,037 2,051 2,055 2,046 2,017 2,012 2,020 2,020 2,020 2,052	2,862,730 2,885,724 2,911,702 2,893,462 2,883,255 2,910,985 2,933,765 2,953,159 2,909,927 2,946,925 2,905,109 2,896,803 2,909,317 91,442,343	1,334,891 1,345,613 1,357,727 1,349,221 1,344,462 1,357,392 1,368,015 1,377,058 1,356,899 1,374,151 1,354,652 1,350,779 1,356,615 42,639,565	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,352 1,363 1,375 1,367 1,362 1,375 1,386 1,395 1,375 1,392 1,375 1,392 1,372 1,368 1,374 43,194
5/19/2020 5/20/2020 5/21/2020 5/22/2020 5/23/2020 5/24/2020 5/25/2020 5/26/2020 5/27/2020 5/28/2020 5/28/2020 5/29/2020 5/29/2020 5/30/2020	24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 23.60 24.00 24.00 24.00 24.00 24.00	$\begin{array}{r} 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ \end{array}$	1,988 2,004 2,022 2,009 2,002 2,022 2,037 2,051 2,055 2,046 2,017 2,012	2,885,724 2,911,702 2,893,462 2,883,255 2,910,985 2,933,765 2,953,159 2,909,927 2,946,925 2,905,109 2,896,803	1,345,613 1,357,727 1,349,221 1,344,462 1,357,392 1,368,015 1,377,058 1,356,899 1,374,151 1,354,652 1,350,779	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,363 1,375 1,367 1,362 1,375 1,386 1,395 1,375 1,392 1,372 1,368
5/19/2020 5/20/2020 5/21/2020 5/22/2020 5/23/2020 5/24/2020 5/25/2020 5/26/2020 5/27/2020 5/28/2020 5/28/2020 5/28/2020 5/29/2020	24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 23.60 24.00 24.00 24.00	$\begin{array}{r} 46.6\\ 46.6\\ 46.6\\ 46.6\\ 46.6\\ 46.6\\ 46.6\\ 46.6\\ 46.6\\ 46.6\\ 46.6\\ 46.6\\ 46.6\\ \end{array}$	1,988 2,004 2,022 2,009 2,002 2,022 2,037 2,051 2,055 2,046 2,017	2,885,724 2,911,702 2,893,462 2,883,255 2,910,985 2,933,765 2,953,159 2,909,927 2,946,925 2,905,109	1,345,613 1,357,727 1,349,221 1,344,462 1,357,392 1,368,015 1,377,058 1,356,899 1,374,151 1,354,652	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,363 1,375 1,367 1,362 1,375 1,386 1,395 1,375 1,392 1,372
5/19/2020 5/20/2020 5/21/2020 5/22/2020 5/23/2020 5/24/2020 5/25/2020 5/26/2020 5/26/2020 5/27/2020 5/28/2020	24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 23.60 24.00	$\begin{array}{r} 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ \end{array}$	1,988 2,004 2,022 2,009 2,002 2,022 2,037 2,051 2,055 2,046	2,885,724 2,911,702 2,893,462 2,883,255 2,910,985 2,933,765 2,953,159 2,909,927 2,946,925	1,345,613 1,357,727 1,349,221 1,344,462 1,357,392 1,368,015 1,377,058 1,356,899 1,374,151	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,363 1,375 1,367 1,362 1,375 1,386 1,395 1,375 1,375 1,392
5/19/2020 5/20/2020 5/21/2020 5/22/2020 5/23/2020 5/24/2020 5/25/2020 5/26/2020 5/26/2020 5/27/2020	24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 23.60	$\begin{array}{r} 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ \end{array}$	1,988 2,004 2,022 2,009 2,002 2,022 2,037 2,051 2,055	2,885,724 2,911,702 2,893,462 2,883,255 2,910,985 2,933,765 2,953,159 2,909,927	1,345,613 1,357,727 1,349,221 1,344,462 1,357,392 1,368,015 1,377,058 1,356,899	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,363 1,375 1,367 1,362 1,375 1,386 1,395 1,375
5/19/2020 5/20/2020 5/21/2020 5/22/2020 5/23/2020 5/24/2020 5/25/2020 5/26/2020	24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00	$\begin{array}{r} 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \end{array}$	1,988 2,004 2,022 2,009 2,002 2,022 2,037 2,051	2,885,724 2,911,702 2,893,462 2,883,255 2,910,985 2,933,765 2,953,159	1,345,613 1,357,727 1,349,221 1,344,462 1,357,392 1,368,015 1,377,058	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,363 1,375 1,367 1,362 1,375 1,386 1,395
5/19/2020 5/20/2020 5/21/2020 5/22/2020 5/23/2020 5/24/2020 5/25/2020	24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00	$ \begin{array}{r} 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ \end{array} $	1,988 2,004 2,022 2,009 2,002 2,022 2,022 2,037	2,885,724 2,911,702 2,893,462 2,883,255 2,910,985 2,933,765	1,345,613 1,357,727 1,349,221 1,344,462 1,357,392 1,368,015	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,363 1,375 1,367 1,362 1,375 1,386
5/19/2020 5/20/2020 5/21/2020 5/22/2020 5/23/2020 5/24/2020	24.00 24.00 24.00 24.00 24.00 24.00 24.00	46.6 46.6 46.6 46.6 46.6 46.6	1,988 2,004 2,022 2,009 2,002 2,022	2,885,724 2,911,702 2,893,462 2,883,255 2,910,985	1,345,613 1,357,727 1,349,221 1,344,462 1,357,392	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,363 1,375 1,367 1,362 1,375
5/19/2020 5/20/2020 5/21/2020 5/22/2020 5/23/2020	24.00 24.00 24.00 24.00 24.00 24.00	46.6 46.6 46.6 46.6 46.6	1,988 2,004 2,022 2,009 2,002	2,885,724 2,911,702 2,893,462 2,883,255	1,345,613 1,357,727 1,349,221 1,344,462	1,013.0 1,013.0 1,013.0 1,013.0	1,363 1,375 1,367 1,362
5/19/2020 5/20/2020 5/21/2020 5/22/2020	24.00 24.00 24.00 24.00	46.6 46.6 46.6 46.6	1,988 2,004 2,022 2,009	2,885,724 2,911,702 2,893,462	1,345,613 1,357,727 1,349,221	1,013.0 1,013.0 1,013.0	1,363 1,375 1,367
5/19/2020 5/20/2020 5/21/2020	24.00 24.00 24.00	46.6 46.6 46.6	1,988 2,004 2,022	2,885,724 2,911,702	1,345,613 1,357,727	1,013.0 1,013.0	1,363 1,375
5/19/2020 5/20/2020	24.00 24.00	46.6 46.6	1,988 2,004	2,885,724	1,345,613	1,013.0	1,363
5/19/2020	24.00	46.6	1,988				
				2 862 730	1 334 891	1 013 0	1 352
	24.00	4hh	7.07.0	2,010,200			
5/18/2020			2,047	2,913,230	1,358,439	1,013.0	1,376
5/17/2020	24.00	46.6	2,063	2,947,047	1,374,208	1,013.0	1,403
5/15/2020	24.00	46.6 46.6	2,049	2,950,076 2,970,870	1,375,620 1,385,317	1,013.0 1,013.0	1,394
5/15/2020	24.00 24.00	46.6	2,049	2,949,938	1,375,556	1,013.0	1,393 1,394
5/14/2020			2,040				
5/13/2020	24.00	46.6	2,038	2,937,067	1,369,554	1,013.0	1,387
5/12/2020	24.00	46.6	2,088	2,960,226	1,380,353	1,013.0	1,398
5/11/2020	24.00	46.6	2,088	3,006,197	1,401,790	1,013.0	1,430
5/10/2020	23.00	46.6	2,139	3,040,625	1,417,843	1,013.0	1,436
5/9/2020	23.60	46.6	2,137 2,139	3,028,957	1,412,403	1,013.0	1,431
5/8/2020	24.00 22.77	46.6 46.6	2,097	3,020,095 2,919,490	1,408,270 1,361,358	1,013.0 1,013.0	1,427 1,379
5/6/2020 5/7/2020	24.00	46.6	2,085	3,002,009	1,399,837	1,013.0	1,418
5/5/2020	24.00	46.6	2,081	2,996,212	1,397,134	1,013.0	1,415
5/4/2020	24.00	46.6	2,086	3,003,802	1,400,673	1,013.0	1,419
5/3/2020	24.00	46.6	2,081	2,996,170	1,397,114	1,013.0	1,415
5/2/2020	24.00	46.6	2,082	2,998,377	1,398,143	1,013.0	1,416
5/1/2020	24.00	46.6	2,083	2,999,092	1,398,477	1,013.0	1,417
	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Da

NOTES:

*Starting May 2020, Methane content determined from the March 4, 2020, A-12 Source Test is used.

The daily heat input rate for the A-12 Flare shall not exceed 3,576 MMBTU (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

Heat Input Rate A-12 Flare

6/24/2020 6/25/2020 6/26/2020 6/27/2020 6/28/2020 6/29/2020 6/30/2020 Totals/ Average:	24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 23.80 714.67	46.6 46.6 46.6 46.6 46.6 46.6 46.6 46.6	2,099 2,103 2,095 2,067 2,062 2,048 2,021 2,026 2,093 2,064	3,022,036 3,027,601 3,016,770 2,976,479 2,969,903 2,948,610 2,910,124 2,917,885 2,989,368 88,570,275	1,409,175 1,411,770 1,406,720 1,387,932 1,384,866 1,374,937 1,356,991 1,360,610 1,393,942 41,300,319	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,427 1,430 1,425 1,406 1,403 1,393 1,375 1,378 1,378 1,412 41,837
6/25/2020 6/26/2020 6/27/2020 6/28/2020 6/29/2020	24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00	$ \begin{array}{r} 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ \end{array} $	2,099 2,103 2,095 2,067 2,062 2,048 2,021 2,026	3,022,036 3,027,601 3,016,770 2,976,479 2,969,903 2,948,610 2,910,124 2,917,885	1,409,175 1,411,770 1,406,720 1,387,932 1,384,866 1,374,937 1,356,991 1,360,610	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,430 1,425 1,406 1,403 1,393 1,375 1,378
6/25/2020 6/26/2020 6/27/2020 6/28/2020	24.00 24.00 24.00 24.00 24.00 24.00 24.00	$ \begin{array}{r} 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ \end{array} $	2,099 2,103 2,095 2,067 2,062 2,048 2,021	3,022,036 3,027,601 3,016,770 2,976,479 2,969,903 2,948,610 2,910,124	1,409,175 1,411,770 1,406,720 1,387,932 1,384,866 1,374,937 1,356,991	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,430 1,425 1,406 1,403 1,393 1,375
6/25/2020 6/26/2020 6/27/2020	24.00 24.00 24.00 24.00 24.00 24.00 24.00	$ \begin{array}{r} 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ \end{array} $	2,099 2,103 2,095 2,067 2,062 2,048	3,022,036 3,027,601 3,016,770 2,976,479 2,969,903 2,948,610	1,409,175 1,411,770 1,406,720 1,387,932 1,384,866 1,374,937	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,430 1,425 1,406 1,403 1,393
6/25/2020 6/26/2020	24.00 24.00 24.00 24.00 24.00	46.6 46.6 46.6 46.6 46.6	2,099 2,103 2,095 2,067 2,062	3,022,036 3,027,601 3,016,770 2,976,479 2,969,903	1,409,175 1,411,770 1,406,720 1,387,932 1,384,866	1,013.0 1,013.0 1,013.0 1,013.0 1,013.0 1,013.0	1,430 1,425 1,406 1,403
6/25/2020	24.00 24.00 24.00 24.00	46.6 46.6 46.6 46.6	2,099 2,103 2,095 2,067	3,022,036 3,027,601 3,016,770 2,976,479	1,409,175 1,411,770 1,406,720 1,387,932	1,013.0 1,013.0 1,013.0 1,013.0	1,430 1,425 1,406
	24.00 24.00 24.00	46.6 46.6 46.6	2,099 2,103 2,095	3,022,036 3,027,601 3,016,770	1,409,175 1,411,770 1,406,720	1,013.0 1,013.0 1,013.0	1,430 1,425
	24.00 24.00	46.6 46.6	2,099 2,103	3,022,036 3,027,601	1,409,175 1,411,770	1,013.0 1,013.0	1,430
6/23/2020	24.00	46.6	2,099	3,022,036	1,409,175	1,013.0	1
6/22/2020							1 105
6/21/2020		166	2,099	3,023,091	1,409,667	1,013.0	1,428
6/20/2020	24.00	46.6	2,096	3,018,001	1,407,294	1,013.0	1,426
6/19/2020	24.00	46.6	2,104	3,029,271	1,412,549	1,013.0	1,431
6/18/2020	24.00	46.6	2,128	3,064,531	1,428,991	1,013.0	1,448
6/17/2020	24.00	46.6	2,108	3,035,500	1,415,454	1,013.0	1,434
6/16/2020	24.00	46.6	2,094	3,014,700	1,405,755	1,013.0	1,424
6/15/2020	24.00	46.6	2,077	2,990,923	1,394,667	1,013.0	1,413
6/14/2020	24.00	46.6	2,046	2,946,079	1,373,757	1,013.0	1,392
6/13/2020	24.00	46.6	2,019	2,907,384	1,355,713	1,013.0	1,373
6/12/2020	24.00	46.6	2,030	2,923,429	1,363,195	1,013.0	1,381
6/11/2020	22.57	46.6	2,095	2,837,276	1,323,022	1,013.0	1,340
6/10/2020	22.77	46.6	2,118	2,893,818	1,349,387	1,013.0	1,367
6/9/2020	21.53	46.6	2,090	2,700,290	1,259,145	1,013.0	1,276
6/8/2020	24.00	46.6	2,031	2,925,197	1,364,019	1,013.0	1,382
6/7/2020	24.00	46.6	2,000	2,879,436	1,342,681	1,013.0	1,360
6/6/2020	24.00	46.6	2,005	2,886,924	1,346,173	1,013.0	1,364
6/5/2020	24.00	46.6	2,012	2,897,136	1,350,935	1,013.0	1,368
6/4/2020	24.00	46.6	2,058	2,964,214	1,382,213	1,013.0	1,400
6/3/2020	24.00	46.6	2,074	2,985,908	1,392,329	1,013.0	1,410
6/2/2020	24.00	46.6	2,046	2,946,061	1,373,748	1,013.0	1,392
6/1/2020	24.00	46.6	2,029	2,922,330	1,362,682	1,013.0	1,380
Date	Runtime (hours)	CH ₄ (%)*	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (BTU/scf)	Heat Input (MMBTU)/Da

NOTES:

*Starting May 2020, Methane content determined from the March 4, 2020, A-12 Source Test is used.

The daily heat input rate for the A-12 Flare shall not exceed 3,576 MMBTU (Title V Permit A1812 Condition 1437 Part 8).

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

APPENDIX M

MONTHLY CONDENSATE INJECTION LOGS

KIRBY CANYON F	RECYCLING & DISPOS	AL FACILITY						
CONDENSATE INJE	ECTION TOTALS: 2019-2	020						
Fitle V Permit A1812, Condition Number 1437 Part 14								
Month	Average Condensate Injection Rate (gpm)	Monthly Condensate Injection Throughput (gallons)	Condensate Injection Throughput 12-Month Total (gallons)					
July-19	2.3	65,405	1,012,978					
August-19	2.4	51,971	990,935					
September-19	2.4	48,947	973,624					
October-19	1.6	50,116	950,044					
November-19	2.2	50,103	907,321					
December-19	2.1	73,269	865,803					
January-20	2.1	77,427	860,372					
February-20	2.5	90,691	868,280					
March-20	2.3	96,514	863,047					
April-20	2.3	88,798	861,053					
May-20	2.2	80,028	848,299					
June-20	1.2	46,650	819,919					
NOTES:								

gpm= gallons per minute

Pursuant to Title V Permit A1812, Condition Number 1437 Part 14, the landfill gas condensate injection rate shall not exceed 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 1437 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

KIRBY CANYON RECYCLING & DISPOSAL FACILITY

CONDENSATE INJECTION (A-12 Flare)

Januarv-20

Start Date	Start Time	End Date	End Time	Total Injection Time (min.)	Average GPM	Total Gallons
2020/01/01	00:00:00	2020/01/01	16:36:00	996	2.1	2066
2020/01/01	19:52:00	2020/01/01	23:58:00	248	2.2	539
2020/01/02	00:00:00	2020/01/02	23:52:00	1432	2.1	3052
2020/01/03	11:34:00	2020/01/03	23:58:00	746	2.1	1570
2020/01/04	00:00:00	2020/01/04	07:18:00	438	2.1	903
2020/01/04	10:40:00	2020/01/04	23:58:00	800	2.1	1704
2020/01/05	00:00:00	2020/01/05	14:44:00	884	2.1	1838
2020/01/05	18:20:00	2020/01/05	23:58:00	340	2.1	728
2020/01/06	00:00:00	2020/01/06	23:58:00	1440	2.1	3006
2020/01/07	00:00:00	2020/01/07	14:50:00	890	2.0	1821
2020/01/07	18:26:00	2020/01/07	23:58:00	334	2.2	719
2020/01/08	00:00:00	2020/01/08	23:58:00	1440	2.1	3039
2020/01/09	00:00:00	2020/01/09	06:44:00	404	2.1	840
2020/01/09	16:34:00	2020/01/09	23:58:00	446	2.1	949
2020/01/10	00:00:00	2020/01/10	14:54:00	894	2.1	1851
2020/01/13	09:50:00	2020/01/13	23:58:00	850	2.1	1781
2020/01/14	00:00:00	2020/01/14	23:58:00	1440	2.1	2969
2020/01/15	00:00:00	2020/01/15	23:58:00	1440	1.9	2777
2020/01/16	00:00:00	2020/01/16	23:58:00	1440	1.7	2388
2020/01/17	00:00:00	2020/01/17	23:58:00	1440	1.7	2431
2020/01/18	00:00:00	2020/01/18	23:58:00	1440	1.7	2459
2020/01/19	00:00:00	2020/01/19	23:58:00	1440	1.8	2583
2020/01/20	00:00:00	2020/01/20	23:58:00	1440	2.1	2960
2020/01/21	00:00:00	2020/01/21	23:58:00	1440	2.1	2987
2020/01/22	00:00:00	2020/01/22	23:58:00	1440	2.1	3051
2020/01/23	00:00:00	2020/01/23	16:56:00	1016	2.1	2150
2020/01/23	20:20:00	2020/01/23	23:58:00	220	2.2	485
2020/01/24	00:00:00	2020/01/24	23:58:00	1440	2.2	3110
2020/01/25	00:00:00	2020/01/25	15:50:00	950	2.2	2043
2020/01/25	19:56:00	2020/01/25	23:58:00	244	2.3	556
2020/01/26	00:00:00	2020/01/26	23:58:00	1440	2.2	3156
2020/01/27	00:00:00	2020/01/27	17:32:00	1052	2.1	2244
2020/01/27	21:02:00	2020/01/27	23:58:00	178	2.3	403
2020/01/28	00:00:00	2020/01/28	23:58:00	1440	2.2	3175
2020/01/29	00:00:00	2020/01/29	23:58:00	1440	2.2	3142
2020/01/30	00:00:00	2020/01/30	20:36:00	1236	2.2	2695
2020/01/30	23:50:00	2020/01/30	23:58:00	10	2.3	23
2020/01/31	00:00:00	2020/01/31	23:58:00	1440	2.2	3234
Totals				37,648	2.1	77,427
			Maxin	num GPM	2.3	

gpm= gallons per minute

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the landfill gas condensate injection rate shall not exceed 5

gpm. Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

CONDENSATE INJECTION (A-12 Flare)

February-20

Start Date	Start Time	End Date	End Time	Total Injection Time (min.)	Average GPM	Total Gallor
2020/02/01	00:00:00	2020/02/01	23:58:00	1,440	2.2	3,239
2020/02/02	00:00:00	2020/02/02	15:34:00	934	2.2	2,045
2020/02/02	18:58:00	2020/02/02	23:58:00	302	2.3	687
2020/02/03	00:00:00	2020/02/03	23:58:00	1,440	2.2	3,166
2020/02/04	00:00:00	2020/02/04	23:58:00	1,440	2.2	3,151
2020/02/05	00:00:00	2020/02/05	23:58:00	1,440	2.2	3,170
2020/02/06	00:00:00	2020/02/06	09:52:00	592	2.2	1,309
2020/02/06	11:54:00	2020/02/06	14:32:00	158	2.2	342
2020/02/06	15:36:00	2020/02/06	23:58:00	504	2.3	1,138
2020/02/07	00:00:00	2020/02/07	15:08:00	908	2.2	2,026
2020/02/07	17:30:00	2020/02/07	23:58:00	390	2.3	888
2020/02/08	00:00:00	2020/02/08	23:58:00	1,440	2.2	3,220
2020/02/09	00:00:00	2020/02/09	12:56:00	776	2.2	1,716
2020/02/09	16:22:00	2020/02/09	23:58:00	458	2.3	1,053
2020/02/10	00:00:00	2020/02/10	11:06:00	666	2.3	1,513
2020/02/10	14:36:00	2020/02/10	23:58:00	564	2.3	1,285
2020/02/11	00:00:00	2020/02/11	09:22:00	562	2.3	1,272
2020/02/11	12:04:00	2020/02/11	23:58:00	716	2.3	1,634
2020/02/12	00:00:00	2020/02/12	15:12:00	912	2.3	2,070
2020/02/12	15:38:00	2020/02/12	23:58:00	502	2.3	1,168
2020/02/13	00:00:00	2020/02/13	23:58:00	1,440	2.3	3,286
2020/02/14	00:00:00	2020/02/14	23:58:00	1,440	2.3	3,284
2020/02/15	00:00:00	2020/02/15	23:58:00	1,440	2.3	3,272
2020/02/16	00:00:00	2020/02/16	23:58:00	1,440	2.3	3,253
2020/02/17	00:00:00	2020/02/17	23:58:00	1,440	2.3	3,255
2020/02/18	00:00:00	2020/02/18	23:58:00	1,440	2.3	3,270
2020/02/19	00:00:00	2020/02/19	23:58:00	1,440	2.3	3,263
2020/02/20	00:00:00	2020/02/20	23:58:00	1,440	2.5	3,572
2020/02/21	00:00:00	2020/02/21	00:48:00	48	3.0	144
2020/02/21	04:08:00	2020/02/21	21:04:00	1,016	3.1	3,156
2020/02/22	00:26:00	2020/02/22	09:50:00	564	3.1	1,770
2020/02/22	13:14:00	2020/02/22	19:28:00	374	3.1	1,168
2020/02/22	23:02:00	2020/02/22	23:58:00	58	3.1	182
2020/02/23	00:00:00	2020/02/23	08:22:00	502	3.1	1,544
2020/02/23	11:58:00	2020/02/23	18:38:00	400	3.2	1,274
2020/02/23	22:02:00	2020/02/23	23:58:00	118	3.2	380
2020/02/24	00:00:00	2020/02/24	08:18:00	498	3.1	1,564
2020/02/24	11:50:00	2020/02/24	23:34:00	704	3.2	2,233
2020/02/25	02:54:00	2020/02/25	12:50:00	596	3.1	1,868
2020/02/25	16:52:00	2020/02/25	22:14:00	322	3.2	1,031
2020/02/26	01:42:00	2020/02/26	10:40:00	538	3.2	1,705
2020/02/26	14:10:00	2020/02/26	18:40:00	270	3.3	883
2020/02/26	22:44:00	2020/02/26	23:58:00	76	3.3	250
2020/02/27	00:00:00	2020/02/27	07:22:00	442	3.2	1,405
2020/02/27	10:50:00	2020/02/27	16:44:00	354	3.2	1,129
2020/02/27	21:22:00	2020/02/27	23:58:00	158	3.3	528
2020/02/28	00:00:00	2020/02/28	04:26:00	266	3.3	869
2020/02/28	07:56:00	2020/02/28	14:44:00	408	3.1	1,275
2020/02/28	20:02:00	2020/02/28	23:58:00	238	3.2	766
2020/02/29	00:00:00	2020/02/29	03:14:00	194	3.1	606
2020/02/29	06:38:00	2020/02/29	14:18:00	460	3.1	1,429
2020/02/29	18:42:00	2020/02/29	23:58:00	318	3.1	986
Totals				36,586	2.5	90,691
			Maxin	num GPM	3.3	

gpm= gallons per minute Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the landfill gas condensate injection rate shall not exceec 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

CONDENSATE INJECTION (A-12 Flare)

March-20

Start Date	Start Time	End Date	End Time	Total Injection Time (min.)	Average GPM	Total Gallor
2020/03/01	00:00:00	2020/03/01	04:10:00	250	3.0	747
2020/03/01	07:20:00	2020/03/01	15:30:00	490	3.0	1,487
2020/03/01	19:12:00	2020/03/01	23:58:00	288	3.1	898
2020/03/02	00:00:00	2020/03/02	04:52:00	292	3.0	891
2020/03/02	08:02:00	2020/03/02	18:44:00	642	2.7	1,758
2020/03/02	22:36:00	2020/03/02	23:58:00	84	2.1	174
2020/03/03	00:00:00	2020/03/03	11:12:00	672	2.0	1,342
2020/03/03	12:16:00	2020/03/03	23:58:00	704	2.2	1,567
2020/03/04	00:00:00	2020/03/04	11:52:00	712	2.0	1,421
2020/03/04	15:02:00	2020/03/04	23:58:00	538	2.3	1,248
2020/03/05	00:00:00	2020/02/05	23:58:00	1,440	2.2	3,233
2020/03/06	00:00:00	2020/03/06	23:58:00	1,440	2.3	3,287
2020/03/07	00:00:00	2020/03/07	23:58:00	1,440	2.2	3,201
2020/03/08	00:00:00	2020/03/08	01:58:00	120	2.2	266
2020/03/08	03:00:00	2020/03/08	23:58:00	1,260	2.2	2,802
2020/03/09	00:00:00	2020/03/09	23:58:00	1,440	2.3	3,273
2020/03/10	00:00:00	2020/03/10	23:58:00	1,440	2.3	3,318
2020/03/11	00:00:00	2020/03/11	23:58:00	1,440	2.3	3,349
2020/03/12	00:00:00	2020/03/12	23:58:00	1,440	2.3	3,364
2020/03/13	00:00:00	2020/03/13	18:26:00	1,106	2.3	2,516
2020/03/13	22:12:00	2020/03/13	23:58:00	108	2.4	254
2020/03/14	00:00:00	2020/03/14	23:58:00	1,440	2.3	3,271
2020/03/15	00:00:00	2020/03/15	23:58:00	1,440	2.2	3,178
2020/03/16	00:00:00	2020/03/16	23:58:00	1,440	2.2	3,147
2020/03/17	00:00:00	2020/03/17	16:02:00	962	2.2	2,099
2020/03/17	18:48:00	2020/03/17	23:58:00	312	2.3	712
2020/03/18	00:00:00	2020/03/18	08:44:00	524	2.2	1,172
2020/03/18	09:20:00	2020/03/18	23:58:00	880	2.2	1,959
2020/03/19	00:00:00	2020/03/19	23:58:00	1,440	2.2	3,215
2020/03/20	00:00:00	2020/03/20	19:54:00	1,194	2.2	2,667
2020/03/21	00:04:00	2020/03/21	23:58:00	1,436	2.3	3,301
2020/03/22	00:00:00	2020/03/22	23:58:00	1,440	2.3	3,287
2020/03/23	00:00:00	2020/03/23	23:58:00	1,440	2.3	3,245
2020/03/24	00:00:00	2020/03/24	23:58:00	1,440	2.2	3,195
2020/03/25	00:00:00	2020/03/25	23:58:00	1,440	2.2	3,172
2020/03/26	00:00:00	2020/03/26	23:58:00	1,440	2.2	3,143
2020/03/27	00:00:00	2020/03/27	23:58:00	1,440	2.2	3,181
2020/03/28	00:00:00	2020/03/28	23:58:00	1,440	2.2	3,163
2020/03/29	00:00:00	2020/03/29	23:58:00	1,440	2.2	3,203
2020/03/30	00:00:00	2020/03/30	15:04:00	904	2.2	2,016
2020/03/30	20:28:00	2020/03/30	23:58:00	212	2.4	508
2020/03/31	00:00:00	2020/03/31	23:58:00	1,440	2.3	3,286
Totals				42,490	2.3	96,514
			Maxim	um GPM	3.1	

gpm= gallons per minute Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the landfill gas condensate injection rate shall not exceed 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

CONDENSATE INJECTION (A-12 Flare)

Start Date	Start Time	End Date	End Time	Total Injection Time (min.)	Average GPM	Total Gallons
2020/04/01	00:00:00	2020/04/01	16:42:00	1,002	2.2	2,191
2020/04/01	21:42:00	2020/04/01	23:58:00	138	2.4	326
2020/04/02	00:00:00	2020/04/02	23:58:00	1,440	2.3	3,287
2020/04/03	00:00:00	2020/04/03	09:04:00	544	2.2	1,200
2020/04/03	11:36:00	2020/04/03	20:38:00	542	2.3	1,254
2020/04/04	01:38:00	2020/04/04	17:14:00	936	2.3	2,125
2020/04/04	21:48:00	2020/04/04	23:58:00	132	2.4	310
2020/04/05	00:00:00	2020/04/05	23:58:00	1,440	2.3	3,269
2020/04/06	00:00:00	2020/04/06	23:58:00	1,440	2.2	3,227
2020/04/07	00:00:00	2020/04/07	23:58:00	1,440	2.2	3,204
2020/04/08	00:00:00	2020/04/08	23:58:00	1,440	2.2	3,177
2020/04/09	00:00:00	2020/04/09	23:58:00	1,440	2.2	3,169
2020/04/10	00:00:00	2020/04/10	23:58:00	1,440	2.2	3,184
2020/04/11	00:00:00	2020/04/11	23:58:00	1,440	2.2	3,176
2020/04/12	00:00:00	2020/04/12	23:58:00	1,440	2.2	3,193
2020/04/13	00:00:00	2020/04/13	23:58:00	1,440	2.2	3,224
2020/04/14	00:00:00	2020/04/14	23:58:00	1,440	2.3	3,272
2020/04/15	00:00:00	2020/04/15	23:58:00	1,440	2.3	3,279
2020/04/16	00:00:00	2020/04/16	23:58:00	1,440	2.3	3,279
2020/04/17	00:00:00	2020/04/17	23:58:00	1,440	2.2	3,225
2020/04/18	00:00:00	2020/04/18	15:04:00	904	2.2	2,004
2020/04/18	20:12:00	2020/04/18	23:58:00	228	2.4	539
2020/04/19	00:00:00	2020/04/19	19:20:00	1,160	2.3	2,621
2020/04/19	23:50:00	2020/04/19	23:58:00	10	2.4	24
2020/04/20	00:00:00	2020/04/20	21:02:00	1,262	2.3	2,932
2020/04/21	00:52:00	2020/04/21	21:46:00	1,254	2.3	2,866
2020/04/22	01:48:00	2020/04/22	020/04/22 23:58:00 1,332	1,332	2.3	3,073
2020/04/23	00:00:00	2020/04/23	04:12:00	252	2.3	576
2020/04/23	08:00:00	2020/04/23	23:58:00	960	2.3	2,239
2020/04/24	00:00:00	2020/04/24	13:20:00	800	2.3	1,810
2020/04/24	18:34:00	2020/04/24	23:58:00	326	2.4	781
2020/04/25	00:00:00	2020/04/25	15:52:00	952	2.3	2,183
2020/04/25	21:22:00	2020/04/25	23:58:00	158	2.4	377
2020/04/26	00:00:00	2020/04/26	18:14:00	1,094	2.3	2,539
2020/04/26	23:20:00	2020/04/26	23:58:00	40	2.4	95
2020/04/27	00:00:00	2020/04/27	20:26:00	1,226	2.3	2,805
2020/04/28	00:52:00	2020/04/28	19:54:00	1,142	2.3	2,634
2020/04/29	00:32:00	2020/04/29	21:50:00	1,278	2.3	3,000
2020/04/30	01:42:00	2020/04/30	23:58:00	1,338	2.3	3,130
Totals				39,170	2.3	88,798
			Maxii	mum GPM	2.4	

gpm= gallons per minute

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the landfill gas condensate injection rate shall not exceed 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

CONDENSATE INJECTION (A-12 Flare)

May-20

Start Date	Start Time	End Date	End Time	Total Injection Time (min.)	Average GPM	Total Gallon
2020/05/01	00:00:00	2020/05/01	01:08:00	68	2.3	156
2020/05/01	04:54:00	2020/05/01	23:58:00	1,146	2.3	2,672
2020/05/02	00:00:00	2020/05/02	07:56:00	476	2.3	1,088
2020/05/02	11:52:00	2020/05/02	23:58:00	728	2.4	1,752
2020/05/03	00:00:00	2020/05/03	10:24:00	624	2.3	1,435
2020/05/03	14:20:00	2020/05/03	23:58:00	580	2.4	1,402
2020/05/04	00:00:00	2020/05/04	15:36:00	936	2.3	2,145
2020/05/04	21:28:00	2020/05/04	23:58:00	152	2.5	381
2020/05/05	00:00:00	2020/05/05	20:50:00	1,250	2.4	2,997
2020/05/06	01:08:00	2020/05/06	23:58:00	1,372	2.4	3,279
2020/05/07	00:00:00	2020/05/07	09:42:00	582	2.3	1,359
2020/05/07	12:12:00	2020/05/07	23:58:00	708	2.5	1,804
2020/05/08	00:00:00	2020/05/08	17:58:00	1,078	2.5	2,655
2020/05/08	19:24:00	2020/05/08	23:58:00	276	2.6	713
2020/05/09	00:00:00	2020/05/09	05:50:00	350	2.5	866
2020/05/09	08:38:00	2020/05/09	17:36:00	538	2.4	1,282
2020/05/09	23:40:00	2020/05/09	23:58:00	20	2.2	44
2020/05/10	00:00:00	2020/05/10	16:54:00	1,014	2.2	2,191
2020/05/10	23:02:00	2020/05/10	23:58:00	58	2.0	118
2020/05/11	00:00:00	2020/05/11	17:44:00	1,064	2.0	2,142
2020/05/11	22:58:00	2020/05/11	23:58:00	62	2.1	127
2020/05/12	00:00:00	2020/05/12	18:08:00	1,088	2.0	2,203
2020/05/12	22:28:00	2020/05/12	23:58:00	92	2.1	189
2020/05/13	00:00:00	2020/05/13	20:20:00	1,220	2.0	2,471
2020/05/14	00:22:00	2020/05/14	19:22:00	1,140	2.0	2,336
2020/05/15	00:08:00	2020/05/15	23:58:00	1,432	2.1	2,966
2020/05/16	00:00:00	2020/05/16	23:58:00	1,440	2.1	3,086
2020/05/17	00:00:00	2020/05/17	11:22:00	682	2.1	1,464
2020/05/17	16:12:00	2020/05/17	23:58:00	468	2.2	1,029
2020/05/18	00:00:00	2020/05/18	16:20:00	980	2.2	2,110
2020/05/18	21:52:00	2020/05/18	23:58:00	128	2.2	287
2020/05/19	00:00:00	2020/05/19	23:58:00	1,440	2.2	3,174
2020/05/20	00:00:00	2020/05/20	23:58:00	1,440	2.2	3,185
2020/05/21	00:00:00	2020/05/21	23:58:00	1,440	2.2	3,166
2020/05/22	00:00:00	2020/05/22	09:16:00	556	2.1	1,191
2020/05/22	13:32:00	2020/05/22	23:58:00	628	2.3	1,430
2020/05/23	00:00:00	2020/05/23	21:04:00	1.264	2.2	2,744
2020/05/24	01:40:00	2020/05/24	18:22:00	1,002	2.2	2,181
2020/05/25	00:54:00	2020/05/25	16:22:00	928	2.2	2,070
2020/05/26	00:58:00	2020/05/26	20:50:00	1,192	2.3	2,730
2020/05/27	02:52:00	2020/05/27	15:36:00	764	2.3	1,722
2020/05/28	00:42:00	2020/05/28	15:36:00	894	1.8	1,569
2020/05/29	00:12:00	2020/05/29	16:40:00	988	1.7	1,703
2020/05/29	23:18:00	2020/05/29	23:58:00	42	1.7	77
2020/05/30	00:00:00	2020/05/29	16:18:00	978	1.8	1,788
2020/05/30	21:48:00	2020/05/30	23:58:00	132	2.0	270
2020/05/30	00:00:00	2020/05/30	14:28:00	868	2.0	1,806
2020/05/31	20:26:00	2020/05/31	23:58:00	214	2.1	473
Totals	20.20.00	2020/03/31	23.30.00	36,522	2.2	473 80,028
IUIdis	<u> </u>		Meri	mum GPM	2.2	00,020

gpm= gallons per minute

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the landfill gas condensate injection rate shall not exceed 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

CONDENSATE INJECTION (A-12 Flare)

June-20

Start Date	Start Time	End Date	End Time	Total Injection Time (min.)	Average GPM	Total Gallons
2020/06/01	00:00:00	2020/06/01	07:50:00	470	2.3	1,091
2020/06/01	11:10:00	2020/06/01	23:58:00	770	1.8	1,383
2020/06/02	00:00:00	2020/06/02	23:58:00	1,440	1.6	2,314
2020/06/03	00:00:00	2020/06/03	20:46:00	1,246	1.5	1,864
2020/06/04	02:48:00	2020/06/04	21:30:00	1,122	1.5	1,738
2020/06/05	02:12:00	2020/06/05	23:58:00	1,308	1.3	1,683
2020/06/06	00:00:00	2020/06/06	23:58:00	1,440	1.1	1,558
2020/06/07	00:00:00	2020/06/07	23:58:00	1,440	1.0	1,418
2020/06/08	00:00:00	2020/06/08	23:58:00	1,440	0.9	1,306
2020/06/09	00:00:00	2020/06/09	18:02:00	1,082	0.9	973
2020/06/09	20:38:00	2020/06/09	23:58:00	202	1.3	269
2020/06/10	00:00:00	2020/06/10	09:04:00	544	1.2	674
2020/06/10	10:42:00	2020/06/10	23:58:00	798	2.2	1,790
2020/06/11	00:00:00	2020/06/11	09:12:00	552	2.2	1,235
2020/06/11	09:22:00	2020/06/11	09:26:00	4	0.5	2
2020/06/11	10:50:00	2020/06/11	18:00:00	430	2.5	1,068
2020/06/12	00:12:00	2020/06/12	07:30:00	438	2.5	1,084
2020/06/12	11:34:00	2020/06/12	17:06:00	332	2.5	819
2020/06/12	23:12:00	2020/06/12	23:58:00	48	1.7	83
2020/06/13	00:00:00	2020/06/13	06:50:00	410	2.7	1,124
2020/06/13	10:58:00	2020/06/13	16:10:00	312	2.7	845
2020/06/13	22:18:00	2020/06/13	23:58:00	102	2.6	268
2020/06/14	00:00:00	2020/06/14	04:18:00	258	2.9	738
2020/06/15	11:34:00	2020/06/15	23:58:00	746	2.8	2,077
2020/06/16	00:00:00	2020/06/16	23:58:00	1,440	1.4	2,012
2020/06/17	00:00:00	2020/06/17	23:58:00	1,440	1.4	2,034
2020/06/18	00:00:00	2020/06/18	23:58:00	1,440	1.2	1,772
2020/06/19	00:00:00	2020/06/19	23:58:00	1,440	0.8	1,174
2020/06/20	00:00:00	2020/06/20	23:58:00	1,440	0.6	849
2020/06/21	00:00:00	2020/06/21	23:58:00	1,440	0.6	864
2020/06/22	00:00:00	2020/06/22	23:58:00	1,440	0.7	953
2020/06/23	00:00:00	2020/06/23	23:58:00	1,440	0.7	1,037
2020/06/24	00:00:00	2020/06/24	23:58:00	1,440	0.7	1,077
2020/06/25	00:00:00	2020/06/25	23:58:00	1,440	0.8	1,134
2020/06/26	00:00:00	2020/06/26	23:58:00	1,440	0.8	1,192
2020/06/27	00:00:00	2020/06/27	23:58:00	1,440	0.8	1,179
2020/06/28	00:00:00	2020/06/28	23:58:00	1,440	0.8	1,172
2020/06/29	00:00:00	2020/06/29	23:58:00	1,440	0.8	1,168
2020/06/30	12:06:00	2020/06/30	12:16:00	10	1.0	10
2020/06/30	12:44:00	2020/06/30	23:58:00	676	2.4	1,619
Totals				37,780	1.2	46,650
			Maxin	num GPM	2.9	

gpm= gallons per minute

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the landfill gas condensate injection rate shall not exceed 5 gpm.

Pursuant to Title V Permit A1812, Condition Number 25301 Part 14, the total landfill gas condensate injection throughput shall not exceed 2,000,000 gallons during any consecutive 12-month period.

APPENDIX N

GAS MIGRATION MONITORING REPORTS

WASTE MANAGEMENT

910 Coyote Creek Golf Drive San Jose, CA 95037

July 15, 2020

Ms. Becky Azevedo Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive San Jose, CA 95037

Re: Second Quarter 2020 Perimeter gas and Methane in Structure Monitoring Report Kirby Canyon Recycling & Disposal Facility

Dear Ms. Azevedo:

This report for the "Kirby Canyon Recycling and Disposal Facility (KCRDF) Landfill" contains the results of the Second Quarter 2020 Perimeter Gas and Methane in Structure Monitoring conducted at the KCRDF. All monitoring was conducted by KCRDF personnel.

REGULATORY REQUIREMENTS

Requirements for monitoring are outlined in 40 CFR 258.23, Title 27 California Code of Regulations (CCR), Article 6, Gas Monitoring at Active and Closed Disposal Sites. These regulations require periodic monitoring to ensure that methane concentrations are less than 5 percent at the property boundary and less than 1.25 percent in on-site buildings and structures. Reporting requirements are presented in Title 27 §20934.

MONITORING RESULTS AND MAP [TITLE 27 §20934(a)(1), (2), (3) AND (5)]

Monitoring was conducted in accordance with 40 CFR 258.23 and Title 27, Article 6 at the locations shown in the attached map (Attachment A). Results for both probes and structures are summarized in Table 1. Field data are presented in Attachment B.

No exceedances of Subtitle D (40 CFR 258.23) and California Code of Regulations (CCR) Title 27, Division 2, Section 20919.5 were detected during any of the monitoring events.

Results for probes and are summarized in Table 1. All other Field data sheets are presented in Attachment B.

Kirby Canyon Recycling and Disposal Facility Perimeter Gas Monitoring Probe Results

Analyst:Markus BernardDate: 6/12/2020Instrument:Gem 5000Serial #: G502469Atmospheric Temperature (Deg F):81Barometric Pressure:29 Inch of HGWind Speed:3 mphWind Direction:Weather Condition:Clear

Probe ID	Time	CH ₄	Probe Pressure		lition (clean, locked)	Commente
Probe ID	Time	(%)	(in-H ₂ 0)	Arrival	Departure	Comments
KIRBP01A	5/14/2020 15:07	0	0	Yes	Yes	
KIRBP01B	5/14/2020 15:12	0	0.04	Yes	Yes	
KIRBP02A	5/14/2020 15:23	0	0.04	Yes	Yes	
KIRBP02B	5/14/2020 15:26	0	0.03	Yes	Yes	
KIRBP03A	5/20/2020 16:04	0	0.01	Yes	Yes	
KIRBP03B	5/20/2020 16:08	0	0.03	Yes	Yes	
KIRBP04A	5/20/2020 15:55	0	0.02	Yes	Yes	
KIRBP04B	5/20/2020 16:00	0	0.04	Yes	Yes	
KIRBP05A	5/20/2020 15:49	0	0.04	Yes	Yes	
KIRBP05B	5/20/2020 15:51	0	0.01	Yes	Yes	
KIRBP06A	5/20/2020 15:38	0	0.04	Yes	Yes	
KIRBP06B	5/20/2020 15:41	0	0.04	Yes	Yes	
KIRBP07A	5/20/2020 15:30	0	0.06	Yes	Yes	
KIRBP07B	5/20/2020 15:33	0	0.01	Yes	Yes	
KIRBP08A	5/20/2020 15:16	0	0.05	Yes	Yes	
KIRBP08B	5/20/2020 15:19	0	0.04	Yes	Yes	

	T '	CH ₄	Probe		lition (clean, , locked)	
Probe ID	Time	$\begin{array}{c} (\%) \\ (\%) \\ (in-H_20) \end{array}$	Arrival	Departure	Comments	
KIRBP09A	5/20/2020 14:56	0	0.03	Yes	Yes	
KIRBP09B	5/20/2020 15:00	0	0.01	Yes	Yes	
KIRBP10A	6/12/2020 9:47	0	0.01	Yes	Yes	
KIRBP10B	6/12/2020 9:50	0	0.03	Yes	Yes	
KIRBP11A	6/12/2020 9:39	0	0	Yes	Yes	
KIRBP11B	6/12/2020 9:42	0	0.01	Yes	Yes	
KIRBP12A	5/14/2020 14:56	0	0	Yes	Yes	
KIRBP12A	5/14/2020 14:58	0	0	Yes	Yes	
KIRBP14A	5/14/2020 13:42	0	0.01	Yes	Yes	
KIRBP14B	5/14/2020 13:45	0	0	Yes	Yes	
KIRBP015	5/14/2020 13:31	0	0.02	Yes	Yes	

ND = No detection

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

(1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any onsite structures.

(2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Note: The reading should not exceed 25% LEL = 1.25% CH₄ = 12,500 ppm CH₄

Immediately notify compliance personnel of any readings in excess of 5 percent methane.

SI KUCI UKE FID MUNI I UKING DATA									
Analyst: <u>MB</u>	Date: <u>6/8/2020</u>								
Instrument: <u>FID</u>		Serial <u>#: 092</u>	8538411						
Monitored Location	Time	PPM	Comments						
Scale House	10:20 AM	0							
Admin Building	10:30 AM	0							
Operations Break Trailer	10:45 AM	0							

STRUCTURE FID MONITORING DATA

ND = No detection

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane

MONITORING EQUIPMENT AND METHODOLOGY [TITLE 27 §20934(a)(4)]

Perimeter Gas Monitoring

The facility conducted the required monitoring using a CES-Landtec GEM-2000 gas analyzer (GEM). The monitoring was conducted by Marcus Bernard on May 12 and 20, 2020 and June 12, 2020. The static pressure of each probe was monitored using the GEM's internal pressure transducers and the probes were monitored to determine methane concentration.

Facility Structures

Marcus Bernard used a TVA 1000 to monitor buildings and structures to check for the presence of methane on June 8, 2020. The instrument was calibrated on June 8, 2020 using 500 ppm methane standard.

Combustible Methane Gas Monitor Calibration

Some facility structures are monitored continuously using Sierra Monitors. The monitor is calibrated at a frequency determined by the manufacturer. The most recent calibration was conducted by Marcus Bernard on June 23, 2020.

GENERAL WEATHER CONDITIONS [TITLE 27 §20934(a)(3)]

General weather conditions are the time of monitoring are presented in Table 3.

Tuble 5 General Weather Conditions									
Description	May 14, 2020	May 20, 2020	June 12, 2020						
General conditions	Mostly Cloudy	Fair	Partly Cloudy						
Avg Wind Speed (mph)	16	10	10						
Wind Direction	N/NNW	N/WNW	NW/NNW						
Barometric Pressure, (Inches of Hg)	30.07	30.09	30.06						
Average Ambient (Temperature Deg F)	63	61	64						

Table 3 General Weather Conditions

If you have any questions regarding this notification, please do not hesitate to contact me at (510) 875-9338.

Thank you, **Waste Management**,

FM

Rajan Phadnis EP Air Specialist- Northern California-Nevada

Attachments: Perimeter Gas Probe Location Map KCRDF Field Data

ATTACHMENT A

SITE MAP

ATTACHMENT B

FIELD DATA

Kirby Canyon Recycling and Disposal Facility Perimeter Gas Monitoring Probe Results

Analyst:Markus BernardDate:6/12/2020Instrument:Gem 5000Serial #:G502469Atmospheric Temperature (Deg F):81Barometric Pressure:29 Inch of HGWind Speed:3 mphWind Direction:Weather Condition:Clear

Probe ID	Time	CH4	Probe Pressure	1	Condition ped, locked)	Commente
1100010	Time	(%)	(in-H ₂ 0)	Arrival	Departure	Comments
KIRBP01A	3:07 PM 5/14/20	0	0.00	Yes	Yes	
KIRBP01B	3:12 PM 5/14/20	0	0.04	Yes	Yes	
KIRBP02A	3:23 PM 5/14/20	0	0.04	Yes	Yes	
KIRBP02B	3:26 PM 5/14/20	0	0.03	Yes	Yes	
KIRBP03A	4:04PM 5/20/20	0	0.01	Yes	Yes	
KIRBP03B	4:08 PM 5/20/20	0	0.03	Yes	Yes	
KIRBP04A	3:55 PM 5/20/20	0	0.02	Yes	Yes	
KIRBP04B	4:00PM 5/20/20	0	0.04	Yes	Yes	
KIRBP05A	3:49 PM 5/20/20	0	0.04	Yes	Yes	
KIRBP05B	3:49 PM 5/20/20	0	0.01	Yes	Yes	
KIRBP06A	3:38 PM 5/20/20	0	0.04	Yes	Yes	
KIRBP06B	3:41 PM 5/20/20	0	0.04	Yes	Yes	
KIRBP07A	3:30 PM 5/20/20	0	0.06	Yes	Yes	
KIRBP07B	3:33 PM 5/20/20	0	0.01	Yes	Yes	
KIRBP08A	3:16 PM 5/20/20	0	0.05	Yes	Yes	
KIRBP08B	3:19 PM 5/20/20	0	0.04	Yes	Yes	
KIRBP09A	2:56 PM 5/20/20	0	0.03	Yes	Yes	
KIRBP09B	3:00PM 5/20/20	0	0.01	Yes	Yes	
KIRBP10A	9:47 AM 6/12/20	0	0.01	Yes	Yes	

	T .	CH4	CH ₄ (%) Probe Pressure (in-H ₂ 0)		Condition ped, locked)	Comments
Probe ID	Time	(%)		Arrival	Departure	
KIRBP10B	9:50 AM 6/12/20	0	0.03	Ok	Ok	
KIRBP011A	9:39 AM 6/12/20	0	0.00	Ok	Ok	
KIRBP011B	9:42 AM 6/12/20	0	0.01	Ok	Ok	
KIRBP12A	2:56 PM 5/14/20	0	.03	Ok	Ok	
KIRBP12B	2:58 PM 5/14/20	0	.02	Ok	Ok	
KIRBP14A	1:42 PM 5/14/20	0	.00	Ok	Ok	
KIRBP14B	1:45 PM 5/14/20	0	.00	Ok	Ok	
KIRBP15	1:31 PM 5/14/20	0	.00	Ok	Ok	

ND = No detection

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

(1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.

(2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Note: The reading should not exceed 25% LEL = 1.25% CH₄ = 12,500 ppm CH₄

Immediately notify compliance personnel of any readings in excess of 5 percent methane.

STRUCTURE FID MONITORING DATA

Analyst: <u>Markus Bernard</u>

Date: <u>6/8/2020</u>

Instrument: FID

Serial #: 0928538411

Monitored Location	Time	РРМ	Comments
Scale House	10:20 AM	0	
Admin Building	10:30 AM	0	
Operations Break Trailer	10:45 AM	0	

ND = No detection

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane.

GAS DETECTOR CALIBRATION RECORD

LOCATION: KIRBY CANYON RECYCLING AND DISPOSAL FACILITY

MANUFACTURER & MODEL NUMBER: Sierra Monitor Corporation Model # 2001

CALIBRATED BY / INSTRUMENT USED: / Cal System Model# 26

CALIBRATION GAS EXPIRATION DATE: September 27, 2021

Location	DATE CALIBRATED	SERIAL NUMBER	Methane LEL* SENSOR alarm 10,000 ppm	MAINTENANCE PERFORMED / COMMENTS ON MONITOR CONDITION
Main Office	6-23-20	1500700087GAM	YES	Good Condition
Scale House	6-23-20	1500700088GAM	YES	Good Condition
Break Trailer	6-23-20	1500700089GAM	YES	Good Condition

** This form must be retained for 12 months after completion.

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name: Kirby
 Date: _____6-8-20

 Time: 8:15
 AM _____ PM

 Instrument Make: _____Thermo Scientific
 Model: _____TVA 1000
 S/N: ____0928538411

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>499 ppm</u>

3. Adjust meter to read 500 ppm.

Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): _____ ppm (a)
- 2. Downwind Reading (highest in 30 seconds): 1 ppm (b)

Calculate Background Value:

 $\frac{(a) + (b)}{2} \qquad Background = \underline{1.5} ppm$

Performed by: Markus Bernard

CALIBRATION PRECISION TEST RECORD

Date: 3/23/2020
Expiration Date (3 months): <u>6/23/2020</u>
Time: <u>10:00</u> AM PM
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S/N: <u>0928538411</u>
Measurement #1:
Meter Reading for Zero Air: <u>0</u> ppm (a)
Meter Reading for Calibration Gas: <u>500</u> ppm (b)
Measurement #2:
Meter Reading for Zero Air: ppm (c)
Meter Reading for Calibration Gas: <u>500</u> ppm (d)
Measurement #3:
Meter Reading for Zero Air: ppm (e)
Meter Reading for Calibration Gas: 500 ppm (f)
Calculate Precision:
$\frac{ (500) - (b) + (500) - (d) + (500) - (f) }{3} \times \frac{1}{500} \times 100$
3 500
0.004 % (must be < than 10%)

Performed by: <u>M. Bernard</u>

RESPONSE TIME TEST RECORD

Date: <u>3/23/20</u>
Expiration Date (3 months): 06/23/20
Time: <u>10:00</u> AM PM
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000</u> S/N: <u>0928538411</u>
Measurement #1:
Stabilized Reading Using Calibration Gas:500ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:5seconds (a)
Measurement #2:
Stabilized Reading Using Calibration Gas:500ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:5seconds (b)
Measurement #3:
Stabilized Reading Using Calibration Gas:496ppm90% of the Stabilized Reading:450ppmTime to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:5seconds (c)
Calculate Response Time:

Calculate Response Time: $\frac{(a) + (b) + (c)}{3} = 5$ seconds (must be less than 30 seconds)

Performed by: <u>M. Bernard</u>

March 31, 2020

Ms. Becky Azevedo Kirby Canyon Recycling & Disposal Facility 910 Coyote Creek Golf Drive San Jose, CA 95037

Re: First Quarter 2020 Perimeter gas and Methane in Structure Monitoring Report Kirby Canyon Recycling & Disposal Facility

Dear Ms. Azevedo:

This report for the "Kirby Canyon Recycling and Disposal Facility (KCRDF) Landfill" contains the results of the First Quarter 2020 Perimeter Gas and Methane in Structure Monitoring conducted at the KCRDF. All monitoring was conducted by KCRDF personnel.

REGULATORY REQUIREMENTS

Requirements for monitoring are outlined in 40 CFR 258.23, Title 27 California Code of Regulations (CCR), Article 6, Gas Monitoring at Active and Closed Disposal Sites. These regulations require periodic monitoring to ensure that methane concentrations are less than 5 percent at the property boundary and less than 1.25 percent in on-site buildings and structures. Reporting requirements are presented in Title 27 §20934.

MONITORING RESULTS AND MAP [TITLE 27 §20934(a)(1), (2), (3) AND (5)]

Monitoring was conducted in accordance with 40 CFR 258.23 and Title 27, Article 6 at the locations shown in the attached map (Attachment A). Results for both probes and structures are summarized in Table 1. Field data are presented in Attachment B.

No exceedances of Subtitle D (40 CFR 258.23) and California Code of Regulations (CCR) Title 27, Division 2, Section 20919.5 were detected during any of the monitoring events.

Results for probes and are summarized in Table 1. All other Field data sheets are presented in Attachment B.

Kirby Canyon Recycling and Disposal Facility Perimeter Gas Monitoring Probe Results

Analyst:Markus BernardDate:1/30/2020Instrument:Gem 2000Serial #:GM11977Atmospheric Temperature (Deg F):56Barometric Pressure:29 Inch of HGWind Speed:2 mphWind Direction:Weather Condition:Clear

Probe ID	Time	CH ₄	Probe Pressure		lition (clean, locked)	Comments
r robe ID	1 mie	(%)	(in-H ₂ 0)	Arrival	Departure	Comments
KIRBP01A	1/29/20 5:19 PM	0	.09	Ok	Ok	
KIRBP01B	1/29/20 5:20 PM	0	.00	Ok	Ok	
KIRBP02A	1/29/20 5:27	0	.00	Ok	Ok	
KIRBP02B	1/29/20 5:29	0	.02	Ok	Ok	
KIRBP03A	4:03 PM	0	.07	Ok	Ok	
KIRBP03B	4:05 PM	0	.21	Ok	Ok	
KIRBP04A	3:49 PM	0	.06	Ok	Ok	
KIRBP04B	3:51 PM	0	.05	Ok	Ok	
KIRBP05A	3:38 PM	0	.04	Ok	Ok	
KIRBP05B	3:41 PM	0	.04	Ok	Ok	
KIRBP06A	3:31 PM	0	.02	Ok	Ok	
KIRBP06B	3:33 PM	0	.03	Ok	Ok	
KIRBP07A	3:23 PM	0	.03	Ok	Ok	
KIRBP07B	3:25 PM	0	.04	Ok	Ok	
KIRBP08A	2:36 PM	0	.06	Ok	Ok	
KIRBP08B	2:38 PM	0	.06	Ok	Ok	
KIRBP09A	2:21 PM	0	.03	Ok	Ok	

Ms. Becky Azevedo Date: March 31, 2020

Decks ID	T!	CH ₄	Probe		lition (clean, locked)	Guuranta
Probe ID	Time	(%)	Pressure (in-H ₂ 0)	Arrival	Departure	Comments
KIRBP09B	2:23 PM	0	.02	Ok	Ok	
KIRBP10A	2:10 PM	0	.05	Ok	Ok	
KIRBP10B	2:13 PM	0	.07	Ok	Ok	
KIRBP011A	2:03 PM	0	.01	Ok	Ok	
KIRBP011B	2:05 PM	0	.02	Ok	Ok	
KIRBP12A	1/29/20 5:08 PM	0	.09	Ok	Ok	
KIRBP12B	1/29/20 5:11 PM	0	.08	Ok	Ok	
KIRBP14A	5:10 PM	0	.12	Ok	Ok	
KIRBP14B	5:12 PM	0	.13	Ok	Ok	
KIRBP15	5:19 PM	0	.10	Ok	Ok	

ND = No detection

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

(1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.

(2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Note: The reading should not exceed 25% LEL = 1.25% CH₄ = 12,500 ppm CH₄

Immediately notify compliance personnel of any readings in excess of 5 percent methane.

STRUCTURE FID MONITORING DATA

Analyst:	<u>MB</u>
Instrume	nt: FID

Date: 03/27/2020 Serial #: 0928538411

Monitored Location	Time	PPM	Comments
Scale House	10:30 AM	0	
Admin Building	10:15 AM	0	
Operations Break Trailer	10:25 AM	0	

ND = No detection

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane

MONITORING EQUIPMENT AND METHODOLOGY [TITLE 27 §20934(a)(4)]

Perimeter Gas Monitoring

The facility conducted the required monitoring using a CES-Landtec GEM-2000 gas analyzer (GEM). The monitoring was conducted by Marcus Bernard on January 29 and 30, 2020. The static pressure of each probe was monitored using the GEM's internal pressure transducers and the probes were monitored to determine methane concentration.

Facility Structures

Marcus Bernard used a TVA 1000 to monitor buildings and structures to check for the presence of methane on March 27, 2020. The instrument was calibrated on March 27, 2020 using 500 ppm methane standard.

Combustible Methane Gas Monitor Calibration

Some facility structures are monitored continuously using Sierra Monitors. The monitor is calibrated at a frequency determined by the manufacturer. The most recent calibration was conducted by Marcus Bernard on March 27, 2020.

GENERAL WEATHER CONDITIONS [TITLE 27 §20934(a)(3)]

General weather conditions are the time of monitoring are presented in Table 3.

Description	January 29, 2020	January 30, 2020					
General conditions	Partly Cloudy	Partly Cloudy					
Wind Speed (mph)	14	14					
Wind Direction	NNW	NW/NNW					
Barometric Pressure, (Inches of Hg)	30.24	30.23					
Average Ambient (Temperature Deg F)	54	53					

Table 3 General Weather Conditions

If you have any questions regarding this notification, please do not hesitate to contact me at (510) 875-9338.

Thank you, **Waste Management**,

FM

Rajan Phadnis EP Air Specialist- Northern California-Nevada

Attachments: Perimeter Gas Probe Location Map KCRDF Field Data

ATTACHMENT A

SITE MAP

ATTACHMENT B

FIELD DATA

Kirby Canyon Recycling and Disposal Facility Perimeter Gas Monitoring Probe Results

Analyst:Markus BernardDate:1/30/2020Instrument:Gem 2000Serial #:GM11977Atmospheric Temperature (Deg F):56Barometric Pressure:29 Inch of HGWind Speed:2 mphWind Direction:Weather Condition:Clear

Probe ID	Time	CH ₄ Probe Pressure			Condition ped, locked)	Comments
Probe ID	Time	(%)	$(in-H_20)$	Arrival	Departure	
KIRBP01A	1/29/20 5:19 PM	0	.09	Ok	Ok	
KIRBP01B	1/29/20 5:20 PM	0	.00	Ok	Ok	
KIRBP02A	1/29/20 5:27	0	.00	Ok	Ok	
KIRBP02B	1/29/20 5:29	0	.02	Ok	Ok	
KIRBP03A	4:03 PM	0	.07	Ok	Ok	
KIRBP03B	4:05 PM	0	.21	Ok	Ok	
KIRBP04A	3:49 PM	0	.06	Ok	Ok	
KIRBP04B	3:51 PM	0	.05	Ok	Ok	
KIRBP05A	3:38 PM	0	.04	Ok	Ok	
KIRBP05B	3:41 PM	0	.04	Ok	Ok	
KIRBP06A	3:31 PM	0	.02	Ok	Ok	
KIRBP06B	3:33 PM	0	.03	Ok	Ok	
KIRBP07A	3:23 PM	0	.03	Ok	Ok	
KIRBP07B	3:25 PM	0	.04	Ok	Ok	
KIRBP08A	2:36 PM	0	.06	Ok	Ok	
KIRBP08B	2:38 PM	0	.06	Ok	Ok	
KIRBP09A	2:21 PM	0	.03	Ok	Ok	
KIRBP09B	2:23 PM	0	.02	Ok	Ok	
KIRBP10A	2:10 PM	0	.05	Ok	Ok	

Broke ID	Т:	CH ₄ Probe				Condition ped, locked)	Comments
Probe ID	Time	(%)	Pressure (in-H ₂ 0)	Arrival	Departure		
KIRBP10B	2:13 PM	0	.07	Ok	Ok		
KIRBP011A	2:03 PM	0	.01	Ok	Ok		
KIRBP011B	2:05 PM	0	.02	Ok	Ok		
KIRBP12A	1/29/20 5:08 PM	0	.09	Ok	Ok		
KIRBP12B	1/29/20 5:11 PM	0	.08	Ok	Ok		
KIRBP14A	5:10 PM	0	.12	Ok	Ok		
KIRBP14B	5:12 PM	0	.13	Ok	Ok		
KIRBP15	5:19 PM	0	.10	Ok	Ok		

ND = No detection

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

(1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.

(2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Note: The reading should not exceed 25% LEL = 1.25% CH₄ = 12,500 ppm CH₄

Immediately notify compliance personnel of any readings in excess of 5 percent methane.

STRUCTURE FID MONITORING DATA

Analyst: <u>Markus Bernard</u>

Date: ___03/27/2020_

Instrument: FID

Serial <u>#: 0928538411</u>

Monitored Location	Time	PPM	Comments
Scale House	10:30 AM	0	
Admin Building	10:15 AM	0	
Operations Break Trailer	10:25 AM	0	

ND = No detection

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane.

GAS DETECTOR CALIBRATION RECORD

LOCATION: KIRBY CANYON RECYCLING AND DISPOSAL FACILITY

MANUFACTURER & MODEL NUMBER: Sierra Monitor Corporation Model # 2001

CALIBRATED BY / INSTRUMENT USED: / Cal System Model# 26

CALIBRATION GAS EXPIRATION DATE: September 27, 2021

Location	DATE CALIBRATED	SERIAL NUMBER	Methane LEL* SENSOR alarm 10,000 ppm	MAINTENANCE PERFORMED / COMMENTS ON MONITOR CONDITION
Main Office	3-27-20	1500700087GAM	YES	Good Condition
Scale House	3-27-20	1500700088GAM	YES	Good Condition
Break Trailer	3-27-20	1500700089GAM	YES	Good Condition

** This form must be retained for 12 months after completion.

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name: Kirby
 Date: 3/27/20

 Time: 10:15 AM
 PM

 Instrument Make:
 Thermo Scientific
 Model:
 TVA 1000
 S/N:
 0928538411

Calibration Procedure

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>499 ppm</u>

3. Adjust meter to read 500 ppm.

Background Determination Procedure

- 1. Upwind Reading (highest in 30 seconds): 1 ppm (a)
- 2. Downwind Reading (highest in 30 seconds): 2 ppm (b)

Calculate Background Value:

 $\frac{(a) + (b)}{2} \qquad Background = \underline{1.5} ppm$

Performed by: Markus Bernard

CALIBRATION PRECISION TEST RECORD

Date:2/19/2	0						
Expiration Date (3 m	onths): <u>5/19/2</u>	0					
Time: <u>10:30</u> AM	PM						
Instrument Make:	Thermo Scientific	Model:	TVA 10	<u>00 B</u>	S/N:	092853841	1
Measurement #1:							
	Meter Reading for Ze	ero Air:	0	ppm (a)			
Meter	Reading for Calibratic	on Gas:	498	ppm (b)			
Measurement #2:							
	Meter Reading for Ze	ero Air:	0	ppm (c)			
Meter	Reading for Calibratic	on Gas:	499	ppm (d)			
Measurement #3:							
	Meter Reading for Ze	ero Air:	0	ppm (e)			
Meter	Reading for Calibratic	on Gas:	496	ppm (f)			
Calculate Precision:							
$\{ (500) - (b) + (500) $	$\frac{ -(d) + (500) - (f) }{3}$	x <u>1</u> x 100					
	5	500					
	1 % (must be	e < than 10%)					
Performed By:	Markus Bernard	_					

RESPONSE TIME TEST RECORD

Date: <u>2/19/2020</u>		
Expiration Date (3 months): <u>5/19/2020</u>		
Time: <u>10:30</u> AMPM		
Instrument Make: <u>Thermo Scientific</u> Model: <u>TVA 1000 B</u>	S/N: <u>0928538</u>	3411
Measurement #1:		
Stabilized Reading Using Calibration Gas:	498	_ ppm
90% of the Stabilized Reading:	450	_ ppm
Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:	3	seconds (a)
switching from Zero An to Canoration Gas.		
Measurement #2:		
Stabilized Reading Using Calibration Gas:	499	_ ppm
90% of the Stabilized Reading:	450	_ ppm
Time to Reach 90% of Stabilized Reading after	2	accords (b)
switching from Zero Air to Calibration Gas:	3	seconds (b)
Measurement #3:		
Stabilized Reading Using Calibration Gas:	496	_ ppm
90% of the Stabilized Reading:	450	_ ppm
Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas:	3	seconds (c)
switching from Zero An to Canoration Gas.	5	
Calculate Response Time:		
$\frac{(a) + (b) + (c)}{3} = \frac{3}{3}$ seconds (must be less than 30 seconds)	econds)	

Performed By: Markus Bernard

APPENDIX O

A-12 FLARE PERFORMANCE TEST SUMMARY OF RESULTS

Kirby Canyon Recycling and Disposal Facility BAAQMD Facility # A1812

Annual Compliance Emissions Test Report #20077 Landfill Gas Flare- Source A-12

Located at: 910 Coyote Creek Golf Drive San Jose, CA 95037

Prepared For:

SCS Engineers Dave Bearden 3117 Fite Circle Suite 108 Sacramento, CA 95827 (916) 361-1297 dbearden@scsengineers.com

For Submittal To:

Attn: Gloria Espena/Marco Hernandez Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105 gespena@baaqmd.gov/mhernandez@baaqmd.gov sourcetest@baaqmd.gov

Testing Performed On:

March 4th, 2020

Final Report Submitted On:

April 27th, 2020

Performed and Reported by:

Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706 bluesky@blueskyenvironmental.com Office (510) 525 1261 / Mobile (510) 508-3469

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that: a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program; b) that the sampling and analytical procedures and data presented in the report are authentic and accurate: c) that all testing details and conclusions are accurate and valid, and: d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for Compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (925) 338-4875.

Chull Ch

Chuck Arrivas, QSTI Project Manager

TABLE of CONTENTS

SECTION	1. INTRODUCTION	3
1.1.	SUMMARY	3
SECTION	2. SOURCE TEST PROGRAM	4
2.1.	Overview	4
2.2.	Pollutants Tested	
2.3.	Test Date(s)	4
2.4.	SAMPLING AND OBSERVING PERSONNEL	4
2.5.	SOURCE/PROCESS DESCRIPTION	4
2.6.	Source Operating Conditions	5
SECTION	3. SAMPLING AND ANALYSIS PROCEDURES	5
SECTION 3.1.	3. SAMPLING AND ANALYSIS PROCEDURES Port location	
	Port location	5
3.1.		5 5
3.1. 3.2.	Port location Point description/Labeling – ports/stack Sample train description Sampling procedure description	5 5 5 5
3.1. 3.2. 3.3.	Port location Point description/Labeling – ports/stack Sample train description	5 5 5 5
3.1. 3.2. 3.3. 3.4.	Port location Point description/Labeling – ports/stack Sample train description Sampling procedure description	5 5 5 5 6
3.1. 3.2. 3.3. 3.4. 3.5.	Port location Point description/Labeling – ports/stack Sample train description Sampling procedure description Instrumentation and Analytical Procedures	5 5 5 6 8

А.	Tabulated Results

- В. Calculations
- С. Laboratory Reports
- Field Data Sheets D.
- Ε. Strip Charts
- F. Process Information
- G. Calibration Certifications and Quality Assurance Records
- Н. Sample Train Configuration and Stack Diagrams
- Ι. Related Correspondence (Source Test Plan and Related Emails)
- J. K. Permit to Operate
- Flare Flow Meter Calibration Document

SECTION 1. INTRODUCTION

1.1. Summary

Blue Sky Environmental, Inc was contracted to perform the annual emissions testing on the A-12 Landfill Gas Flare at Kirby Canyon Recycling and Disposal Facility (KCRDF), 910 Coyote Creek Golf Drive, San Jose, California. This report presents the results of the test program. Table 1 summarizes the source test information. Table 2 summarizes the results compared to the emission limits. The flare met all compliance emission criteria.

Test Location:	Kirby Canyon Recycling and Disposal Facility 910 Coyote Creek Golf Drive, San Jose, CA 95037			
Source Contact:	Rebecca Azevedo (408) 779-2206			
Source Tested:	Enclosed Landfill Gas Flare (A-12)			
Source Test Date:	March 4 th , 2020			
Test Objective:	Determine Compliance with Regulation 8, Rule 34 and Permit to Operate 1812, Condition 1437, Part 10, 11, 12, 13 and Part 20d			
Test Performed By:	Chuck Arrivas (925) 338-4875 Email: <u>carrivas@blueskyenvironmental.com</u>			
Test Parameters:	Landfill Gas O ₂ , N ₂ , CO ₂ , THC, CH ₄ , NMOC, HHV, F-Factor, Sulfur & VOC Species, Volumetric Flow Rate <u>Flare Emissions</u> THC, CH ₄ , NMOC, NOx, CO, O ₂ , SO ₂ , Volumetric Flow Rate.			

Table 2. Compliance Summary

A <u>Condensate On</u>	Average Test Result	Permit Limit	Compliance Status
NOx, lbs/MMBTU	0.045	0.06	In Compliance
CO, lbs/MMBTU	0.003	0.3	In Compliance
SO ₂ , ppmvd	27.4	300	In Compliance
NMOC, (ppmvd @ 3% O ₂ as CH ₄)	1.0	30	In Compliance
CH ₄ Removal Efficiency (AB32)	>99.998%	99	In Compliance
B Condensate Off			
NOx, lbs/MMBTU	0.037	0.06	In Compliance
CO, lbs/MMBTU	0.004	0.3	In Compliance
SO ₂ , ppmvd	27.2	300	In Compliance
NMOC, (ppmvd @ 3% O ₂ as CH ₄)	1.0	30	In Compliance
CH ₄ Removal Efficiency (AB32)	>99.998%	99	In Compliance

SECTION 2. SOURCE TEST PROGRAM

2.1. Overview

The annual source test was conducted to demonstrate that the A-12 landfill gas flare is operating in accordance with the Bay Area Air Quality Management District (BAAQMD) Permit to Operate #1812 and Regulation 8 Rule 34. Testing was also performed to demonstrate compliance with the California Landfill Methane Gas Rule under AB32 for Flare performance. This Flare was previously tested on March 13th, 2019.

2.2. Pollutants Tested

The following EPA and ASTM sampling and analytical methods were used:

Sample and Traverse Point Determination
O2 and CO2, Stack Gas Molecular Weight
Moisture
NOX Emissions & NO2 Converter Efficiency
CO Emissions
CH ₄ Emissions
Calculation of Stack Gas Flow Rate
THC Emissions
LFG Gas analysis for NMOC by GC
AP-42 Table 2.4-1 VOC Species
LFG Gas analysis for BTU and F-Factor
SO ₂ , Sulfur Species, H ₂ S and TRS

2.3. Test Date(s)

Testing was conducted on March 4th, 2020.

2.4. Sampling and Observing Personnel

Chuck Arrivas and Kurt Mussatti representing Blue Sky Environmental, Inc, performed testing.

Dave Bearden of SCS Engineers was present to operate and oversee the Flare operation and assist in coordinating testing and the collection of process data during testing.

The BAAQMD was notified of the test in a plan submitted by SCS Engineers on February 12th, 2020. A Source Test Protocol acknowledgement was requested and received by Blue Sky Environmental (NST # 5843) on February 13th, 2020 but no agency observers were present to witness the testing. Copies of the source test protocol and BAAQMD NST acknowledgement can be found in Appendix I.

2.5. Source/Process Description

The enclosed landfill gas flare consists of a 124 million British Thermal Units per hour (MMBtu/hr) multiple nozzle burner manufactured by LFG Specialties, Inc. The flare shell is approximately 50 feet high and approximately 12.5 feet in diameter. The inside diameter is 11 feet 6 inches (138").

The flare setpoint was established at 1,605°F. Methane quality is typically about 46 - 52%, however it was closer to 46% during this test. Landfill gas condensate is collected and periodically injected into the flare via one vertical nozzle positioned near the burner.

2.6. Source Operating Conditions

The flare operating temperature and the landfill gas flow rate records are recorded on the Yokogawa and the data is contained in Appendix-F.

The flare was operated at an average temperature of 1,599°F. The average landfill gas flow rate was 2,243 standard cubic feet per minute (scfm) for Condensate On to 2,306 scfm for Condensate Off.

The condensate injection rates are recorded on the Yokogawa at approximately 1.54 gallons per minute.

The landfill gas methane content for Condensate On averaged 46.4% and Condensate Off averaged 46.8%. O₂ ranged from 1.6% to 1.9%.

SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

3.1. Port location

The A-12 Flare sampling was conducted in the 11.5 feet (138") inside diameter (ID) stack, via ports approximately 45 feet above grade, accessed by a 60 foot boom-lift. Two of the four, 4-inch flange ports are available approximately 4 stack diameters downstream from the burners and approximately 1 stack diameter upstream from the exit.

3.2. Point description/Labeling - ports/stack

Blue Sky Environmental conducted two perpendicular 8-point traverses per EPA Method 1 and found O_2 stratification about 10%, therefore subsequent CEM sampling was conducted with 8-point traverses per port to achieve the required (EPA Method 1) representative sampling of the emissions. The traverse points for the 138 inch diameter exhaust stack with 8 inch ports were 12.4, 22.5, 34.8, 52.6, 101.4, 119.2, 131.5, and 141.6 inches.

3.3. Sample train description

Sampling system diagrams are included in the Appendix H. Additional descriptive information is included in the following section.

3.4. Sampling procedure description

Three, 30-minute minimum test runs were performed with the Condensate Injection On, and repeated with the Condensate Injection Off.

3.5. Instrumentation and Analytical Procedures

Sampling & Traverse Points Selection by EPA Method 1. This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

Stack Gas Molecular Weight by EPA Method 3/3A. This method is used to determine the molecular weight of the stack gas. Measurements of gas constituents $\%O_2$ and $\%CO_2$ were obtained from the CEMS system.

Stack Gas Moisture by EPA Method 4-16.4 is an acceptable alternative to EPA Method 4 for the determination of moisture using F-factors. In this case the mole fraction of the moisture in the ambient air is calculated using equations in EPA Method 4-16.4 from 1) the measured ambient relative humidity, ambient temperature and barometric pressure, 2) the mole fraction from free water in the fuel, calculated from the moisture % in the fuel which is determined by the analytical lab to be the balance after all the major gaseous components have been summed, and 3) the mole fraction from the hydrogen in the fuel. To determine the moisture in the fuel, the raw fuel analysis before normalization to 100% is referenced.

EPA Method 19 (gas) was used to determine stack gas volumetric flow rates using oxygen based F-factors. F-factors are ratios of combustion gas volumes generated from heat input. The heating value of the fuel in Btu per cubic foot is determined from analysis of the fuel gas samples using ASTM D1946/3588 gas chromatography analytical procedures. Total fuel consumption was measured by CARB Method 1, 2, 3 and 4. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates were used to determine emission rates.

EPA Method 3A (O₂, CO₂), 10 (CO) and 7E (NO_x) are continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample and analyzing it by continuous monitoring gas analyzers in a CEM test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, diaphragm pump and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI was provided to each analyzer to avoid pressure variable response differences. The entire sampling system was leak checked prior to and at the end of the sampling program.

The sampling and analytical system (for EPA Methods) was checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations, and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations usually use the calibration gas that most closely matches the stack gas effluent. Along with the Sampling System Bias, the Zero and Calibration Drift values were determined for each test. Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, Span, Calibration Gas, Analyzer Calibration Error (Linearity), Sampling System Bias, Zero Drift, Calibration Drift and Response Time. In addition, the NOx analyzer NO₂ to NO conversion efficiency check defers to EPA Method 20 section 5.6 for the criteria and procedure. All calibration gases are EPA Protocol #1. The analyzer data recording system consists of a Honeywell DPR3000 strip chart recorder supported by a Data Acquisition System (DAS).

EPA Method 25C/18: Sampling for Total Hydrocarbons, Methane and Non-Methane Hydrocarbons. EPA Method 25A/18 (FID/GC Method) employs a heated TECO 55C FID with GC column, heated Teflon sample gas transfer lines to provide a continuous sample to the heated FID/GC Hydrocarbon Analyzer. Heated lines were used if necessary to avoid moisture or hydrocarbon condensation. Methane is determined by the calibrated GC method in the TECO 55C NMHC/CH₄/THC Analyzer. Calibration gases are selected to fall within 25-35%, 45-55% and 80-90% of Range for Methane, Total Hydrocarbon and Non-Methane Hydrocarbons.

Calibrations are performed through the probe and entire sample system. The system linearity check was performed prior to testing and during testing and calibration drift checks were performed after every run. All data was corrected according to EPA Method 25A. In some cases where the drift exceeded 3%, the system was re-calibrated and the average was calculated with and without the recalibration values. Both sets of values are reported in the calculation section of the appendices, but only the highest values of the two methods were used in the Tabulated results.

ASTM D1945/3588 gas chromotography analytical procedures. Total fuel consumption for each source is monitored by a dedicated fuel gas meter. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates were used to determine emission rates.

ASTM Method 5504: Sampling for H_2S and Sulfur species in fuels. Sampling consisted of preevacuated 6-Liter SILCO SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SILCO canisters have a silanized (glass) lining that permits longer holding times (up to 72 hours) for reactive sulfur compounds. The flow controller, valve and canister are designed so that no sample contacts stainless steel components that can remove hydrogen sulfide. The flow controllers consisted of capillary orifice tubing designed to sample for pre-set durations such as 1hr, 2-hrs and 4-hrs. The samples were analyzed for 20 sulfur compounds by ASTM Method D-5504 GC/SCD (gas chromatography/sulfur chemiluminescent detector).

TO-15 is the analytical strategy for Compendium Method TO-15 involves using a high resolution gas chromatograph (GC) coupled to a mass spectrometer. Mass spectra for individual peaks in the total ion chromatogram are examined with respect to the fragmentation pattern of ions corresponding to various VOCs including the intensity of primary and secondary ions. The fragmentation pattern is compared with stored spectra taken under similar conditions, in order to identify the compound. For any given compound, the intensity of the primary fragment is compared with the system response to the primary fragment for known amounts of the compound. This establishes the compound concentration that exists in the sample.

System Performance Criteria	
Instrument Linearity	≤2% Full Scale
Instrument Bias	≤5% Full Scale
System Response Time	$\leq 2 \text{ minutes}$
NOx Converter Efficiency (EPA 7E)	≥ 90%
Instrument Zero Drift	\leq 3% Full Scale
Instrument Span Drift	\leq 3% Full Scale

Concurrent with the exhaust sampling, Blue Sky collected a total of six samples in SILCO SUMMA canisters of the LFG for analysis. The samples were integrated into 10L Tedlar bags then immediately transferred into the SILCO canisters. This approach reduces the risk of plugging up a SUMMA canister orifice, and maintains the steady integration rate of the sample that can be occur when the SUMMA canister vacuum drops below approximately 5 " Hg. The samples were collected and analyzed for EPA AP-42 Table 2.4-1 Compounds, using TO-15, ASTM 1945 and 25C. The samples were also analyzed for ASTM 5504 Sulfur Species (incl. H₂S and TRS).

The inlet volumetric flow rate was continuously measured and recorded by the LFG Flowmeter.

3.6. Instrumentation and Analytical procedures

The following continuous emissions analyzers were used:

Instrumentation	Parameter	Principle
TECO 42i	NO _x	Chemiluminescence
TECO 48C	СО	GFC/IR
Ratfisch RS-55	ТНС	FID
Fuji ZRH	CO ₂	IR
Servomex 1440	O ₂	Paramagnetic

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of DPR or Omega 3 channel strip chart recorders, which can be supported by a Data Acquisition System (DAS).

The data logger produces time stamped data in an excel format that is then used to report the averages and calibration values.

3.7. Comments: Limitations and Data Qualifications

The measured emissions meet the Permit required limits, no deviations from the protocol or abnormalities during the test were observed.

Blue Sky Environmental has reviewed this report for accuracy, and concluded that the test procedures followed historically accepted standards of practice and are accurately described and documented. The review included the following items:

Review of the general text Review of calculations Review of CEMS data Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations, subsequent to this, and do not warranty the accuracy of information supplied by others.

SECTION 4. <u>APPENDICES</u>

А.	Tabulated Results
В.	Calculations
С.	Laboratory Reports
D.	Field Data Sheets
Е.	Strip Charts
F.	Process Information
G.	Calibration Certifications and Quality Assurance Records
H.	Sample Train Configuration and Stack Diagrams
I.	Related Correspondence (Source Test Plan and Related Emails)
J.	Permit to Operate
K.	Flare Flow Meter Calibration Document

A Tabulated Results

Kirby Canyon Recycling & Disposal Facility Flare A-12 1,599°F Condensate On

Test Time9Standard Temp., °FFlare Temperature, °F AverageCondensate Injection, gpmFuel Flow Rate, SCFMFuel Heat Input, MMBTU/HrExhaust Flow Rate, DSCFM (Method 19)Oxygen, O_2 , %Carbon Dioxide, CO2, %Water Vapor, H2O, %NO2, ppmNO2, NONOx, ppmNOx, ppmNOx, ppmNOx, ppmNOx, ppmNOx, ppmNOx, ppmNOx, ppmNOx, ppmNOx, bs/hrNOx, lbs/hrCO, ppmCO, ppmCO, bs/hrCO, bs/hrCO, bs/hrCD, bs/MMBTUTHC, ppm (25A) wetTHC, ppm (M18)CH4, bs/hr	3/4/20 008-0951 70 1,600 1.57 2,235 64.9 23,303 12.02 7.91 5.0 17.7 <1.0 <0.06 17.8 11.8 11.8 11.8 2.96 0.046 3.4 2.2 0.34 0.005 235 22.5	3/4/20 1006-1047 70 1,599 1.54 2,240 66.9 23,052 11.86 8.24 4.9 18.7 <1.0 <0.05 18.6 12.1 12.1 3.06 0.046 1.5 1.0 0.15 0.002	$\frac{3/4/20}{1102-1143}$ 70 1,599 1.52 2,253 67.5 23,434 11.93 8.19 4.8 18.0 <1.0 <0.06 18.2 11.9 11.9 3.04 0.045 1.7 1.1 0.17 2.002	$\begin{array}{c} 1,599\\ 1.54\\ 2,243\\ 66.5\\ 23,263\\ 11.94\\ 8.11\\ 4.9\\ 18.1\\ <1.0\\ <0.06\\ 18.2\\ 12.0\\ 12.0\\ 12.0\\ 3.02\\ \hline 0.045\\ 2.2\\ 1.4\\ 0.22\\ \hline \end{array}$	0.06
Test Time9Standard Temp., °FFlare Temperature, °F AverageCondensate Injection, gpmFuel Flow Rate, SCFMFuel Flow Rate, SCFMFuel Heat Input, MMBTU/HrExhaust Flow Rate, DSCFM (Method 19)Oxygen, O_2 , %Carbon Dioxide, CO2, %Water Vapor, H2O, %Water Vapor, H2O, %NO2, ppmNO2, ppmNO2, NONOx, ppmNOx, ppmNOx, ppm @ 15% O2NOx, ppm @ 15% O2NOx, lbs/hrNOx, lbs/hrCO, ppm @ 15% O2CO, ppm @ 15% O2CO, ppm @ 15% O2CO, ppm @ 15% O2TRS as H2S, ppm in FuelSO2, ppm (Calculated)THC, ppm dryTHC, ppm dryTHC, lbs/hr as CH4CH4, ppm (M18)CH4, lbs/hrCH4, lbs/hr	$\begin{array}{c} 008-0951 \\ \hline 70 \\ \hline 1,600 \\ \hline 1.57 \\ \hline 2,235 \\ \hline 64.9 \\ \hline 23,303 \\ \hline 12.02 \\ \hline 7.91 \\ \hline 5.0 \\ \hline 17.7 \\ \hline <1.0 \\ \hline <0.06 \\ \hline 17.8 \\ \hline 11.8 \\ \hline 2.96 \\ \hline 0.046 \\ \hline 3.4 \\ \hline 2.2 \\ \hline 0.34 \\ \hline 0.005 \\ \hline 235 \\ \end{array}$	$\begin{array}{r} 70 \\ 1,599 \\ 1.54 \\ 2,240 \\ 66.9 \\ 23,052 \\ 11.86 \\ 8.24 \\ 4.9 \\ 18.7 \\ <1.0 \\ <0.05 \\ 18.6 \\ 12.1 \\ 12.1 \\ 3.06 \\ \textbf{0.046} \\ 1.5 \\ 1.0 \\ 0.15 \\ \end{array}$	$\begin{array}{r} 1102 - 1143 \\ \hline 70 \\ 1,599 \\ 1.52 \\ 2,253 \\ 67.5 \\ 23,434 \\ 11.93 \\ 8.19 \\ 4.8 \\ 18.0 \\ <1.0 \\ <0.06 \\ 18.2 \\ 11.9 \\ 11.9 \\ 11.9 \\ 3.04 \\ \textbf{0.045} \\ 1.7 \\ 1.1 \\ 0.17 \end{array}$	$\begin{array}{c} 1.54\\ 2,243\\ 66.5\\ 23,263\\ 11.94\\ 8.11\\ 4.9\\ 18.1\\ <1.0\\ <0.06\\ 18.2\\ 12.0\\ 12.0\\ 3.02\\ \textbf{0.045}\\ 2.2\\ 1.4\\ 0.22\\ \end{array}$	0.06
Flare Temperature, °F AverageCondensate Injection, gpmFuel Flow Rate, SCFMFuel Heat Input, MMBTU/HrExhaust Flow Rate, DSCFM (Method 19)Oxygen, O_2 , %Carbon Dioxide, CO_2 , %Water Vapor, H ₂ O, %NO, ppmNO ₂ , ppmNO ₂ , ppmNOx, bls/hrNOx, lbs/hrCO, ppmCO, ppmCO, lbs/hrCO, lbs/hrCO, lbs/hrTRS as H ₂ S, ppm in FuelSO ₂ , ppm (Calculated)THC, ppm dryTHC, ppm (M18)CH4, lbs/hr	$\begin{array}{c} 1,600\\ 1.57\\ 2,235\\ 64.9\\ 23,303\\ 12.02\\ 7.91\\ 5.0\\ 17.7\\ <1.0\\ <0.06\\ 17.8\\ 11.8\\ 11.8\\ 11.8\\ 11.8\\ 11.8\\ 2.96\\ \textbf{0.046}\\ 3.4\\ 2.2\\ 0.34\\ \textbf{0.005}\\ 235\\ \end{array}$	$\begin{array}{c} 1,599\\ 1.54\\ 2,240\\ 66.9\\ 23,052\\ 11.86\\ 8.24\\ 4.9\\ 18.7\\ <1.0\\ <0.05\\ 18.6\\ 12.1\\ 12.1\\ 3.06\\ \textbf{0.046}\\ 1.5\\ 1.0\\ 0.15\\ \end{array}$	$\begin{array}{c} 1,599\\ 1.52\\ 2,253\\ 67.5\\ 23,434\\ 11.93\\ 8.19\\ 4.8\\ 18.0\\ <1.0\\ <0.06\\ 18.2\\ 11.9\\ 11.9\\ 3.04\\ \textbf{0.045}\\ 1.7\\ 1.1\\ 0.17\\ \end{array}$	$\begin{array}{c} 1.54\\ 2,243\\ 66.5\\ 23,263\\ 11.94\\ 8.11\\ 4.9\\ 18.1\\ <1.0\\ <0.06\\ 18.2\\ 12.0\\ 12.0\\ 3.02\\ \textbf{0.045}\\ 2.2\\ 1.4\\ 0.22\\ \end{array}$	0.06
Condensate Injection, gpmFuel Flow Rate, SCFMFuel Heat Input, MMBTU/HrExhaust Flow Rate, DSCFM (Method 19)Oxygen, O_2 , %Carbon Dioxide, CO_2 , %Water Vapor, H_2O , %NO2, ppmNO2, ppmNO2, ppmNOx, ppmQNOx, ppmNOx, lbs/hrNOx, lbs/hrCO, ppmCO, ppmCO, lbs/hrCO, lbs/hrCO, lbs/hrTRS as H_2S , ppm in FuelSO2, ppm (Calculated)THC, ppm dryTHC, ppm dryTHC, lbs/hr as CH_4 CH4, lbs/hr	$\begin{array}{c} 1.57\\ 2,235\\ 64.9\\ 23,303\\ 12.02\\ 7.91\\ 5.0\\ 17.7\\ <1.0\\ <0.06\\ 17.8\\ 11.8\\ 11.8\\ 11.8\\ 11.8\\ 2.96\\ \textbf{0.046}\\ 3.4\\ 2.2\\ 0.34\\ \textbf{0.005}\\ 235\\ \end{array}$	$\begin{array}{c} 1.54\\ 2,240\\ 66.9\\ 23,052\\ 11.86\\ 8.24\\ 4.9\\ 18.7\\ <1.0\\ <0.05\\ 18.6\\ 12.1\\ 12.1\\ 3.06\\ \textbf{0.046}\\ 1.5\\ 1.0\\ 0.15\\ \end{array}$	$\begin{array}{c} 1.52 \\ 2,253 \\ 67.5 \\ 23,434 \\ 11.93 \\ 8.19 \\ 4.8 \\ 18.0 \\ <1.0 \\ <0.06 \\ 18.2 \\ 11.9 \\ 11.9 \\ 11.9 \\ 11.9 \\ 3.04 \\ \textbf{0.045} \\ 1.7 \\ 1.1 \\ 0.17 \end{array}$	$\begin{array}{c} 1.54\\ 2,243\\ 66.5\\ 23,263\\ 11.94\\ 8.11\\ 4.9\\ 18.1\\ <1.0\\ <0.06\\ 18.2\\ 12.0\\ 12.0\\ 3.02\\ \textbf{0.045}\\ 2.2\\ 1.4\\ 0.22\\ \end{array}$	0.06
Fuel Flow Rate, SCFMFuel Heat Input, MMBTU/HrExhaust Flow Rate, DSCFM (Method 19)Oxygen, O_2 , %Carbon Dioxide, CO_2 , %Water Vapor, H_2O , %Water Vapor, H_2O , %NO, ppmNO2, ppmNO2/NONOx, ppm @ 15% O2NOx, lbs/hrNOx, lbs/hrCO, ppm @ 15% O2CO, ppm @ 15% O2CO, ppm @ 15% O2CO, lbs/hrCO, lbs/hrCO, lbs/hrTRS as H2S, ppm in FuelSO2, ppm (Calculated)THC, ppm dryTHC, lbs/hr as CH4CH4, lbs/hr	$\begin{array}{c} 2,235 \\ 64.9 \\ 23,303 \\ 12.02 \\ 7.91 \\ 5.0 \\ 17.7 \\ <1.0 \\ <0.06 \\ 17.8 \\ 11.8 \\ 11.8 \\ 11.8 \\ 11.8 \\ 2.96 \\ \textbf{0.046} \\ 3.4 \\ 2.2 \\ 0.34 \\ \textbf{0.005} \\ 235 \end{array}$	$\begin{array}{r} 2,240\\ 66.9\\ 23,052\\ 11.86\\ 8.24\\ 4.9\\ 18.7\\ <1.0\\ <0.05\\ 18.6\\ 12.1\\ 12.1\\ 3.06\\ \textbf{0.046}\\ 1.5\\ 1.0\\ 0.15\\ \end{array}$	$\begin{array}{r} 2,253 \\ 67.5 \\ 23,434 \\ 11.93 \\ 8.19 \\ 4.8 \\ 18.0 \\ <1.0 \\ <0.06 \\ 18.2 \\ 11.9 \\ 11.9 \\ 11.9 \\ 3.04 \\ \textbf{0.045} \\ 1.7 \\ 1.1 \\ 0.17 \end{array}$	$\begin{array}{c} 2,243\\ 66.5\\ 23,263\\ 11.94\\ 8.11\\ 4.9\\ 18.1\\ <1.0\\ <0.06\\ 18.2\\ 12.0\\ 12.0\\ 12.0\\ 3.02\\ \hline 0.045\\ 2.2\\ 1.4\\ 0.22\\ \end{array}$	0.06
Fuel Heat Input, MMBTU/HrExhaust Flow Rate, DSCFM (Method 19)Oxygen, O_2 , %Carbon Dioxide, CO_2 , %Water Vapor, H_2O , %Water Vapor, H_2O , %NO, ppmNO_2, ppmNO_2/NONOx, ppm @ 15% O_2NOx, ppm @ 15% O_2NOx, lbs/hrNOx, lbs/hrCO, ppm @ 15% O_2CO, ppm @ 15% O_2CO, ppm @ 15% O_2CO, lbs/hrCO, ppm @ 15% O_2CO, ppm @ 15% O_2CD, bs/hrTRS as H_2S , ppm in FuelSO_2, ppm (Calculated)THC, ppm dryTHC, ppm dryTHC, lbs/hr as CH_4 CH_4, ppm (M18)CH_4, lbs/hr	$\begin{array}{c} 64.9\\ 23,303\\ 12.02\\ \hline 7.91\\ 5.0\\ 17.7\\ <1.0\\ <0.06\\ 17.8\\ 11.8\\ 11.8\\ 11.8\\ 11.8\\ 2.96\\ \hline \textbf{0.046}\\ 3.4\\ 2.2\\ 0.34\\ \hline \textbf{0.005}\\ 235\\ \end{array}$	$\begin{array}{r} 66.9\\ 23,052\\ 11.86\\ 8.24\\ 4.9\\ 18.7\\ <1.0\\ <0.05\\ 18.6\\ 12.1\\ 12.1\\ 3.06\\ \textbf{0.046}\\ 1.5\\ 1.0\\ 0.15\\ \end{array}$	$\begin{array}{r} 67.5\\ 23,434\\ 11.93\\ 8.19\\ 4.8\\ 18.0\\ <1.0\\ <0.06\\ 18.2\\ 11.9\\ 11.9\\ 11.9\\ 3.04\\ \textbf{0.045}\\ 1.7\\ 1.1\\ 0.17\end{array}$	$\begin{array}{r} 66.5\\ 23,263\\ 11.94\\ 8.11\\ 4.9\\ 18.1\\ <1.0\\ <0.06\\ 18.2\\ 12.0\\ 12.0\\ 12.0\\ 3.02\\ \hline 0.045\\ 2.2\\ 1.4\\ 0.22\\ \end{array}$	0.06
Exhaust Flow Rate, DSCFM (Method 19)Oxygen, O_2 , %Carbon Dioxide, CO_2 , %Water Vapor, H_2O , %NO, ppmNO_2, ppmNO_2/NONOx, ppm @ 15% O_2 NOx, ppm @ 15% O_2 NOx, ppm @ 15% O_2 NOx, lbs/hrNOx, lbs/hrCO, ppmCO, ppm @ 15% O_2 CO, ppm @ 15% O_2 CO, ppmCO, ppm @ 15% O_2 CO, lbs/hrCO, lbs/hrCD, lbs/hrTHC, ppm (Calculated)THC, ppm dryTHC, lbs/hr as CH4CH4, ppm (M18)CH4, lbs/hr	23,303 12.02 7.91 5.0 17.7 <1.0	$\begin{array}{r} 66.9\\ 23,052\\ 11.86\\ 8.24\\ 4.9\\ 18.7\\ <1.0\\ <0.05\\ 18.6\\ 12.1\\ 12.1\\ 3.06\\ \textbf{0.046}\\ 1.5\\ 1.0\\ 0.15\\ \end{array}$	$\begin{array}{r} 67.5\\ 23,434\\ 11.93\\ 8.19\\ 4.8\\ 18.0\\ <1.0\\ <0.06\\ 18.2\\ 11.9\\ 11.9\\ 11.9\\ 3.04\\ \textbf{0.045}\\ 1.7\\ 1.1\\ 0.17\end{array}$	$\begin{array}{c} 23,263\\ 11.94\\ 8.11\\ 4.9\\ 18.1\\ <1.0\\ <0.06\\ 18.2\\ 12.0\\ 12.0\\ 12.0\\ 3.02\\ \hline 0.045\\ 2.2\\ 1.4\\ 0.22\\ \end{array}$	0.06
Oxygen, O_2 , %Carbon Dioxide, CO_2 , %Water Vapor, H_2O , %NO, ppmNO_2, ppmNO_2/NONOx, ppm @ 15% O_2 NOx, ppm @ 15% O_2 NOx, ppm @ 15% O_2 NOx, lbs/hr NOx, lbs/MMBTU CO, ppmCO, ppm @ 15% O_2 CO, lbs/hr CO, lbs/hrCO, lbs/hrCO, lbs/hrCO, lbs/hrCO, lbs/hrCO, lbs/hrCO, lbs/hrTHC, ppm (Calculated) THC, ppm dryTHC, lbs/hr as CH_4 CH4, ppm (M18)CH4, lbs/hr	23,303 12.02 7.91 5.0 17.7 <1.0	$\begin{array}{c} 11.86\\ 8.24\\ 4.9\\ 18.7\\ <1.0\\ <0.05\\ 18.6\\ 12.1\\ 12.1\\ 3.06\\ \textbf{0.046}\\ 1.5\\ 1.0\\ 0.15\\ \end{array}$	$\begin{array}{r} 23,434 \\ 11.93 \\ 8.19 \\ 4.8 \\ 18.0 \\ <1.0 \\ <0.06 \\ 18.2 \\ 11.9 \\ 11.9 \\ 11.9 \\ 3.04 \\ \textbf{0.045} \\ 1.7 \\ 1.1 \\ 0.17 \end{array}$	$ \begin{array}{r} 11.94 \\ 8.11 \\ 4.9 \\ 18.1 \\ <1.0 \\ <0.06 \\ 18.2 \\ 12.0 \\ 12.0 \\ 3.02 \\ 0.045 \\ 2.2 \\ 1.4 \\ 0.22 \\ \end{array} $	0.06
Oxygen, O_2 , %Carbon Dioxide, CO_2 , %Water Vapor, H_2O , %NO, ppmNO_2, ppmNO_2/NONOx, ppm @ 15% O_2 NOx, ppm @ 15% O_2 NOx, ppm @ 15% O_2 NOx, lbs/hr NOx, lbs/MMBTU CO, ppmCO, ppm @ 15% O_2 CO, lbs/hr CO, lbs/hrCO, lbs/hrCO, lbs/hrCO, lbs/hrCO, lbs/hrCO, lbs/hrCO, lbs/hrTHC, ppm (Calculated) THC, ppm dryTHC, lbs/hr as CH_4 CH4, ppm (M18)CH4, lbs/hr	$\begin{array}{c} 12.02 \\ \hline 7.91 \\ \hline 5.0 \\ \hline 17.7 \\ < 1.0 \\ < 0.06 \\ \hline 17.8 \\ \hline 11.8 \\ \hline 11.8 \\ \hline 2.96 \\ \hline 0.046 \\ \hline 3.4 \\ \hline 2.2 \\ \hline 0.34 \\ \hline 0.005 \\ \hline 235 \end{array}$	$\begin{array}{c} 11.86\\ 8.24\\ 4.9\\ 18.7\\ <1.0\\ <0.05\\ 18.6\\ 12.1\\ 12.1\\ 3.06\\ \textbf{0.046}\\ 1.5\\ 1.0\\ 0.15\\ \end{array}$	$ \begin{array}{r} 11.93\\ 8.19\\ 4.8\\ 18.0\\ <1.0\\ <0.06\\ 18.2\\ 11.9\\ 11.9\\ 3.04\\ 0.045\\ 1.7\\ 1.1\\ 0.17\\ \end{array} $	$ \begin{array}{r} 11.94 \\ 8.11 \\ 4.9 \\ 18.1 \\ <1.0 \\ <0.06 \\ 18.2 \\ 12.0 \\ 12.0 \\ 3.02 \\ 0.045 \\ 2.2 \\ 1.4 \\ 0.22 \\ \end{array} $	0.06
Water Vapor, H_2O , %NO, ppmNO_2, ppmNO_2, ppmNO_2/NONOx, ppmNOx, ppm @ 15% O_2NOx, ppm @ 15% O_2NOx, lbs/hrNOx, lbs/hrCO, ppmCO, ppm @ 15% O_2CO, lbs/hrCO, lbs/hrCO, lbs/hrTRS as H_2S , ppm in FuelSO_2, ppm (Calculated)THC, ppm dryTHC, lbs/hr as CH_4 CH_4, ppm (M18)CH_4, lbs/hr	5.0 17.7 <1.0	4.9 18.7 <1.0 <0.05 18.6 12.1 12.1 3.06 0.046 1.5 1.0 0.15	4.8 18.0 <1.0	4.9 18.1 <1.0 <0.06 18.2 12.0 12.0 3.02 0.045 2.2 1.4 0.22	0.06
NO, ppm NO_2 , ppm NO_2 , NO NO_2/NO NO_2/NO NO_x , ppm NOx , ppm NOx , ppm 0_2 NOx , ppm 0_2 NOx , lbs/hr NOx , lbs/hr CO , ppm CO , ppm CO , lbs/hr CO , lbs/hr CO , lbs/hr CO , lbs/hr CO , lbs/MMBTUTRS as H ₂ S, ppm in Fuel SO_2 , ppm (Calculated)THC, ppm dryTHC, ppm dryTHC, lbs/hr as CH ₄ CH_4 , ppm (M18) CH_4 , lbs/hr	5.0 17.7 <1.0	18.7 <1.0	4.8 18.0 <1.0	4.9 18.1 <1.0 <0.06 18.2 12.0 12.0 3.02 0.045 2.2 1.4 0.22	0.06
NO_2 , ppm NO_2/NO NO_x , ppm NO_x , ppm @ 15% O_2 NO_x , ppm @ 15% O_2 NO_x , lbs/hr NO_x , lbs/MMBTU CO , ppm CO , ppm @ 15% O_2 CO , lbs/hr CO , lbs/hr CO , lbs/hr CO , lbs/hr TRS as H_2S , ppm in Fuel SO_2 , ppm (Calculated)THC, ppm dryTHC, ppm dryTHC, lbs/hr as CH_4 CH_4 , ppm (M18) CH_4 , lbs/hr	<1.0 <0.06 17.8 11.8 11.8 2.96 0.046 3.4 2.2 0.34 0.005 235	<1.0 <0.05 18.6 12.1 12.1 3.06 0.046 1.5 1.0 0.15	<1.0 <0.06 18.2 11.9 11.9 3.04 0.045 1.7 1.1 0.17	<1.0 <0.06 18.2 12.0 12.0 3.02 0.045 2.2 1.4 0.22	0.06
NO_2 , ppm NO_2/NO NO_x , ppm NO_x , ppm @ 15% O_2 NO_x , ppm @ 15% O_2 NO_x , lbs/hr NO_x , lbs/MMBTU CO , ppm CO , ppm @ 15% O_2 CO , lbs/hr CO , lbs/hr CO , lbs/hr CO , lbs/hr TRS as H_2S , ppm in Fuel SO_2 , ppm (Calculated)THC, ppm dryTHC, ppm dryTHC, lbs/hr as CH_4 CH_4 , ppm (M18) CH_4 , lbs/hr	<1.0 <0.06 17.8 11.8 11.8 2.96 0.046 3.4 2.2 0.34 0.005 235	<1.0 <0.05 18.6 12.1 12.1 3.06 0.046 1.5 1.0 0.15	<1.0 <0.06 18.2 11.9 11.9 3.04 0.045 1.7 1.1 0.17	<1.0 <0.06 18.2 12.0 12.0 3.02 0.045 2.2 1.4 0.22	0.06
NO_2/NO NOx, ppm $NOx, ppm @ 15\% O_2$ $NOx, ppm @ 15\% O_2$ $NOx, lbs/hr$ $NOx, lbs/hr$ $NOx, lbs/MMBTU$ $CO, ppm @ 15\% O_2$ $CO, lbs/hr$ $CO, lbs/hr$ $CO, lbs/hr$ $CO, lbs/hr$ $TRS as H_2S, ppm in FuelSO_2, ppm (Calculated)THC, ppm dryTHC, ppm dryTHC, lbs/hr as CH_4CH_4, ppm (M18)CH_4, lbs/hr$	<0.06 17.8 11.8 11.8 2.96 0.046 3.4 2.2 0.34 0.005 235	<0.05 18.6 12.1 12.1 3.06 0.046 1.5 1.0 0.15	<0.06 18.2 11.9 11.9 3.04 0.045 1.7 1.1 0.17	<0.06 18.2 12.0 12.0 3.02 0.045 2.2 1.4 0.22	0.06
NOx, ppm NOx, ppm @ 15% O2 NOx, ppm @ 15% O2 NOx, lbs/hr NOx, lbs/hr NOx, lbs/hr NOx, lbs/MMBTU CO, ppm CO, ppm @ 15% O2 CO, lbs/hr CO, lbs/hr CO, lbs/hr TRS as H2S, ppm in Fuel SO2, ppm (Calculated) THC, ppm dry THC, ppm dry THC, lbs/hr as CH4 CH4, ppm (M18) CH4, lbs/hr CO	17.8 11.8 11.8 2.96 0.046 3.4 2.2 0.34 0.005 235	18.6 12.1 12.1 3.06 0.046 1.5 1.0 0.15	18.2 11.9 11.9 3.04 0.045 1.7 1.1 0.17	18.2 12.0 12.0 3.02 0.045 2.2 1.4 0.22	0.06
NOx, ppm @ 15% O2 NOx, ppm @ 15% O2 NOx, lbs/hr NOx, lbs/hr NOx, lbs/MMBTU CO, ppm CO, lbs/hr CO, lbs/hr CO, lbs/hr CO, lbs/hr CO, lbs/hr CO, lbs/hr TRS as H2S, ppm in Fuel SO2, ppm (Calculated) THC, ppm dry THC, lbs/hr as CH4 CH4, ppm (M18) CH4, lbs/hr	11.8 11.8 2.96 0.046 3.4 2.2 0.34 0.005 235	12.1 12.1 3.06 0.046 1.5 1.0 0.15	11.9 11.9 3.04 0.045 1.7 1.1 0.17	12.0 12.0 3.02 0.045 2.2 1.4 0.22	0.06
NOx, ppm @ 15% O2 NOx, lbs/hr NOx, lbs/MMBTU CO, ppm CO, ppm @ 15% O2 CO, lbs/hr CO, lbs/hr CO, lbs/hr TRS as H2S, ppm in Fuel SO2, ppm (Calculated) THC, ppm dry THC, lbs/hr as CH4 CH4, ppm (M18) CH4, lbs/hr	11.8 2.96 0.046 3.4 2.2 0.34 0.005 235	12.1 3.06 0.046 1.5 1.0 0.15	11.9 3.04 0.045 1.7 1.1 0.17	12.0 3.02 0.045 2.2 1.4 0.22	0.06
NOx, lbs/hr NOx, lbs/hr CO, ppm CO, ppm @ 15% O2 CO, lbs/hr CO, lbs/hr CO, lbs/hr CO, lbs/MMBTU TRS as H2S, ppm in Fuel SO2, ppm (Calculated) THC, ppm dry THC, lbs/hr as CH4 CH4, ppm (M18) CH4, lbs/hr	2.96 0.046 3.4 2.2 0.34 0.005 235	3.06 0.046 1.5 1.0 0.15	3.04 0.045 1.7 1.1 0.17	3.02 0.045 2.2 1.4 0.22	0.06
NOx, Ibs/MMBTU CO, ppm CO, ppm @ 15% O2 CO, lbs/hr CO, lbs/hr CO, lbs/hr CO, lbs/MMBTU TRS as H2S, ppm in Fuel SO2, ppm (Calculated) THC, ppm dry THC, lbs/hr as CH4 CH4, ppm (M18) CH4, lbs/hr	0.046 3.4 2.2 0.34 0.005 235	0.046 1.5 1.0 0.15	0.045 1.7 1.1 0.17	0.045 2.2 1.4 0.22	0.06
CO, ppm CO, ppm @ 15% O2 CO, lbs/hr CO, lbs/hr CO, lbs/hr CO, lbs/MMBTU TRS as H2S, ppm in Fuel SO2, ppm (Calculated) THC, ppm (25A) wet THC, ppm dry THC, lbs/hr as CH4 CH4, ppm (M18) CH4, lbs/hr CH4	3.4 2.2 0.34 0.005 235	1.5 1.0 0.15	1.7 1.1 0.17	2.2 1.4 0.22	
CO, ppm @ 15% O2CO, lbs/hrCO, lbs/MMBTUTRS as H2S, ppm in FuelSO2, ppm (Calculated)THC, ppm (25A) wetTHC, ppm dryTHC, lbs/hr as CH4CH4, ppm (M18)CH4, lbs/hr	2.2 0.34 0.005 235	1.0 0.15	1.1 0.17	1.4 0.22	
CO, lbs/hr CO, lbs/MMBTU TRS as H ₂ S, ppm in Fuel SO ₂ , ppm (Calculated) THC, ppm (25A) wet THC, ppm dry THC, lbs/hr as CH ₄ CH ₄ , ppm (M18) CH ₄ , lbs/hr	0.34 0.005 235				
CO, lbs/MMBTUTRS as H2S, ppm in FuelSO2, ppm (Calculated)THC, ppm (25A) wetTHC, ppm dryTHC, lbs/hr as CH4CH4, ppm (M18)CH4, lbs/hr	0.005 235				
TRS as H2S, ppm in FuelSO2, ppm (Calculated)THC, ppm (25A) wetTHC, ppm dryTHC, lbs/hr as CH4CH4, ppm (M18)CH4, lbs/hr			0.003	0.003	0.30
SO2, ppm (Calculated) THC, ppm (25A) wet THC, ppm dry THC, lbs/hr as CH4 CH4, ppm (M18) CH4, lbs/hr		307	311	284	
THC, ppm (25A) wet THC, ppm dry THC, lbs/hr as CH ₄ CH ₄ , ppm (M18) CH ₄ , lbs/hr	44.3	29.8	29.9	27.4	300
THC, ppm dry THC, lbs/hr as CH ₄ CH ₄ , ppm (M18) CH ₄ , lbs/hr	1.65	<1.0	<1.0	<1.2	
THC, lbs/hr as CH4 CH4, ppm (M18) CH4, lbs/hr	1.73	<1.05	<1.05	<1.28	
CH ₄ , lbs/hr	0.10	< 0.060	< 0.061	< 0.074	
CH ₄ , lbs/hr	0.7	1.5	1.1	1.1	
	0.040	0.086	0.064	0.063	
TNMHC, ppm as CH ₄ (M18)	0.5	0.5	0.5	0.5	
TNMHC, lbs/hr as CH_4	0.029	0.029	0.029	0.029	
TNMHC, ppm as Hexane (C_6H_{14}) @ 3% O_2	0.17	0.17	0.17	0.17	
TNMHC, ppm (a) 3% O ₂ as CH ₄	1.0	1.0	1.0	1.0	30
INLET TNMOC (Method 25C)	1,136	1,046	1,223	1,135	
INLET NMOC lbs/hr as CH_4	6.3	5.8	6.8	6.3	or
	99.54%	99.51%	99.57%	99.54%	98
	462,000	465,000	466,000	464,333	
	2,563.3	2,585.7	2,606.3	2,585	1
	99.998%	>99.997%	>99.998%	>99.998%	99
•	463,136	466,046	467,223	465,468	
INLET THC (TOC) lbs/hr as CH ₄	2,570	2,591	2,613	2,591	
	99.996%	_,	_,	99.997%	

< Value = 2% of Analyzer Range

WHERE,

ppm = Parts Per Million Concentration Lbs/hr = Pound Per Hour Emission Rate Tstd. = Standard Temp. (°R = °F+460) MW = Molecular Weight DSCFM = Dry Standard Cubic Feet Per Minute NOx = Oxides of Nitrogen as NO₂ (MW = 46) CO = Carbon Monoxide (MW = 28) TOC = THC = Total Organic Carbon as Methane including CH ₄ (MW = 16) THC = Total Hydrocarbons as Methane (MW = 16) NMOC = Total Non-Methane Organic Carbon as Methane (MW = 16) SO₂ = Sulfur Dioxide as SO₂ (MW = 64.1)

CALCULATIONS,

 $\begin{array}{l} \label{eq:ppm} PPM @ 15\% O_2 = ppm * 5.9 / (20.9 - \%O_2) \\ \mbox{PPM } @ 3\% O_2 = ppm * 17.9 / (20.9 - \%O_2) \\ \mbox{Lbs/hr} = ppm x 8.223 E-05 x DSCFM x MW / Tstd. °R \\ \mbox{Lbs/day} = Lbs/hr * 24 \\ \mbox{Removal Efficiency} = (inlet lbs/hr- outlet lbs/hr) / inlet lbs/hr \\ \mbox{SO}_2 emission ppm = H2S in fuel * Fuel Flow/Stack Gas Flow} \end{array}$

Kirby Canyon Recycling & Disposal Facility

Landfill Gas Characterization

RUN			R1-LFG-CON	R2-LFG-CON	R3-LFG-CON	AVERAGE
Test Date			3/4/20	3/4/20	3/4/20	_
Acrylonitrile		ppb	<48.7	<48.0	<48.0	<48.2
Benzene		ppb	375	437	437	416
Benzyl Chloride	Chloromethylbenzene	ppb	<24.3	<24.0	<24.0	<24.1
Carbon Tetrachloride		ppb	<24.3	<24.0	<24.0	<24.1
Chlorobenzene		ppb	<24.3	<24.0	72.6	<40.3
Chloroethane		ppb	107	121	114	114
Chloroform		ppb	<24.3	<24.0	<24.0	<24.1
1,1 Dichloroethane	Ethylidene Dichloride	ppb	<24.3	<24.0	<24.0	<24.1
1,1 Dichloroethene	Vinylidene Chloride	ppb	<24.3	<24.0	<24.0	<24.1
1,2 Dichloroethane	Ethylene Dichloride	ppb	98.0	113	110	107
1,4 Dichlorobenzene		ppb	<24.3	<24.0	52.7	<33.7
Ethylbenzene		ppb	732	1,260	1,290	1,094
Ethlyene Dibromide	1,2 Dibromoethane	ppb	<24.3	<24.0	<24.0	<24.1
Fluorotrichloromethane	Trichlorofluoromethane	ppb	39.5	41.5	39.9	40.3
Hexane		ppb	236	209	200	215
Isopropyl Alcohol	IPA	ppb	10,800	12,200	13,300	12,100
Methyl Alcohol	Methanol	ppb	16,700	18,900	21,300	18,967
Methyl Ethyl Ketone (MEK)	2-Butanone	ppb	10,900	12,100	12,700	11,900
Methylene Chlo r ide		ppb	75.0	81.8	77.4	78.1
Methyl isobutyl ketone (MiBK)		ppb	434	601	627	554
Methyl tert Butyl Ether	MTBE	ppb	27.8	<24.0	<24.0	<25.3
Perchloroethylene	Tetrachloroethylene	ppb	27.4	45.0	47.2	39.9
Styrene		ppb	48.2	122	141	103.7
Toluene		ppb	3,160	4,430	4,520	4,037
1,1,1 Trichlororethane		ppb	<24.3	<24.0	<24.0	<24.1
1,1,2,2 Tetrachloroethane		ppb	<24.3	<24.0	<24.0	<24.1
Trichloroethylene	Trichloroethene	ppb	35.6	44.3	47.2	42.4
Vinyl Chloride		ppb	<24.3	<24.0	28.3	25.5
Xylenes		ppb	1,505	2,960	3,206	2,557
Carbon Disulfide		ppm	0.115	< 0.096	< 0.096	< 0.102
Carbonyl Sulfide		ppm	< 0.097	< 0.096	< 0.096	< 0.096
Dimethyl Sulfide		ppm	2.07	2.06	1.97	2.03
Ethyl Mercaptan		ppm	0.103	0.106	0.121	0.110
Methyl Mercaptan		ppm	2.29	2.91	3.10	2.77
Hydrogen Sulfide		ppm	228	299	302	276
TRS as H2S		ppm	235	307	311	284

Kirby Canyon Recycling & Disposal Facility Flare A-12

1,599°F

Condensate Off

RUN	1	2	3	AVERAGE	LIMITS
Test Date	3/4/20	3/4/20	3/4/20		
Test Time	1214-1255	1312-1353	1410-1453		
Standard Temp., °F	70	70	70		
Flare Temperature, °F Average	1,599	1,599	1,599	1,599	
Condensate Injection, gpm	0.00	0.00	0.00	0.00	
Fuel Flow Rate, SCFM	2,286	2,308	2,325	2,306	
Fuel Heat Input, MMBTU/Hr	66.4	69.0	69.7	68.4	
Exhaust Flow Rate, DSCFM (Method 19)	23,868	23,632	24,144	23,881	
Oxygen, O ₂ , %	11.92	11.75	11.87	11.85	
Carbon Dioxide, CO ₂ , %	8.21	8.32	8.28	8.27	
Water Vapor, H ₂ O, %	4.8	4.8	4.7	4.8	
NO, ppm	14.7	15.3	14.8	14.9	
NO ₂ , ppm	<1.0	<1.0	<1.0	<1.0	
NO ₂ /NO	< 0.07	< 0.07	< 0.07	< 0.07	
NOx, ppm	14.5	15.1	14.7	14.8	
NOx, ppm @ 15% O ₂	9.5	9.8	9.6	9.6	
NOx, ppm @ 15% O ₂	9.5	9.8	9.6	9.6	
NOx, lbs/hr	2.47	2.55	2.53	2.52	
NOx, lbs/MMBTU	0.037	0.037	0.036	0.037	0.06
CO, ppm	3.0	2.7	2.4	2.7	
CO, ppm @ 15% O ₂	2.0	1.8	1.6	1.8	
CO, lbs/hr	0.31	0.28	0.25	0.28	
CO, lbs/MMBTU	0.005	0.004	0.004	0.004	0.30
TRS as H ₂ S, ppm in Fuel	198	361	285	281	
SO ₂ , ppm	19.0	35.3	27.4	27.2	300
THC, ppm (25A) wet	1.97	3.81	<1.0	<2.3	
THC, ppm dry	2.07	4.00	<1.05	<2.37	
THC, lbs/hr as CH ₄	0.12	0.23	< 0.063	< 0.140	
CH ₄ , ppm (M18)	1.0	1.0	0.6	0.9	
CH ₄ , lbs/hr	0.059	0.059	0.036	0.051	
TNMHC, ppm as CH ₄ (M18)	0.50	0.50	0.50	0.50	
TNMHC, lbs/hr as CH ₄	0.03	0.03	0.03	0.03	
TNMHC, ppm as Hexane (C ₆ H ₁₄) @ 3% O ₂	0.2	0.2	0.2	0.2	
TNMHC, ppm (a) $3\% O_2$ as CH_4	1.0	1.0	1.0	1.0	30
INLET TNMOC (Method 25C)	1,308	1,393	1,395	1,365	
INLET NMOC lbs/hr as CH ₄	7.4	8.0	8.1	7.8	or
NMOC Removal Efficiency	99.60%	99.63%	99.63%	99.62%	98
INLET CH ₄ , ppm	468,000	469,000	468,000	468,333	
INLET CH ₄ lbs/hr	2,655.8	2,687.1	2,701.1	2,681	
CH ₄ Removal Efficiency	>99.998%	>99.998%	>99.999%	>99.998%	99
INLET THC (TOC) ppm as CH ₄	469,308	470,393	469,395	469,699	
INLET THC (TOC) lbs/hr as CH ₄	2,663	2,695	2,709	2,689	
THC (TOC) Removal Efficiency	99.995%	99.991%	99.998%	99.995%	

< Value = 2% of Analyzer Range

WHERE,

$$\begin{split} &ppm = Parts \ Per \ Million \ Concentration \\ &Lbs/hr = Pound \ Per \ Hour \ Emission \ Rate \\ &Tstd. = Standard \ Temp. (°R = °F+460) \\ &MW = Molecular \ Weight \\ &DSCFM = Dry \ Standard \ Cubic \ Feet \ Per \ Minute \\ &NOx = Oxides \ of \ Nitrogen \ as \ NO_2 \ (MW = 46) \\ &CO = Carbon \ Monoxide \ (MW = 28) \\ &TOC = THC = Total \ Organic \ Carbon \ as \ Methane \ including \ CH_4 \ (MW = 16) \\ &THC = Total \ Hydrocarbons \ as \ Methane \ (MW = 16) \\ &NMOC = Total \ Non-Methane \ Organic \ Carbon \ as \ Methane \ (MW = 16) \\ &SO_2 = Sulfur \ Dioxide \ as \ SO_2 \ (MW = 64.1) \end{split}$$

CALCULATIONS,

 $\begin{array}{l} \label{eq:ppm} PPM @ 15\% O_2 = ppm * 5.9 / (20.9 - \%O_2) \\ \mbox{PPM } @ 3\% O_2 = ppm * 17.9 / (20.9 - \%O_2) \\ \mbox{Lbs/hr} = ppm x 8.223 E-05 x DSCFM x MW / Tstd. °R \\ \mbox{Lbs/day} = Lbs/hr * 24 \\ \mbox{Removal Efficiency} = (inlet lbs/hr- outlet lbs/hr) / inlet lbs/hr \\ \mbox{SO}_2 emission ppm = H2S in fuel * Fuel Flow/Stack Gas Flow} \end{array}$

Kirby Canyon Recycling & Disposal Facility

Landfill Gas Characterization

RUN			R1-LFG-COFF	R2-LFG-COFF	R3-LFG-COFF	AVERAGE
Test Date			3/4/20	3/4/20	3/4/20	-
Acrylonitrile		ppb	<48.2	<49.5	<44.9	<47.5
Benzene		ppb	437	428	414	426
Benzyl Chloride	Chloromethylbenzene	ppb	<24.1	<24.7	<22.5	<23.8
Carbon Tetrachloride		ppb	<24.1	<24.7	<22.5	<23.8
Chlorobenzene		ppb	85.6	81.1	80.5	82.4
Chloroethane		ppb	114	123	118	118
Chloroform		ppb	<24.1	<24.7	<22.5	<23.8
1,1 Dichloroethane	Ethylidene Dichloride	ppb	<24.1	<24.7	<22.5	<23.8
1,1 Dichloroethene	Vinylidene Chloride	ppb	<24.1	<24.7	<22.5	<23.8
1,2 Dichloroethane	Ethylene Dichloride	ppb	111	109	106	109
1,4 Dichlorobenzene		ppb	69.4	75.6	75.6	73.5
Ethylbenzene		ppb	1,370	1,380	1,320	1,357
Ethlyene Dibromide	1,2 Dibromoethane	ppb	<24.1	<24.7	<22.5	<23.8
Fluorotrichloromethane	Trichlorofluoromethane	ppb	39.9	39.2	39.7	39.6
Hexane		ppb	208	209	203	207
Isopropyl Alcohol	IPA	ppb	14,000	13,300	13,500	13,600
Methyl Alcohol	Methanol	ppb	21,900	21,600	21,900	21,800
Methyl Ethyl Ketone (MEK)	2-Butanone	ppb	13,200	12,800	13,000	13,000
Methylene Chloride		ppb	80.4	81.3	79.5	80.4
Methyl isobutyl ketone (MiBK)			635	654	604	631
Methyl tert Butyl Ether	MTBE	ppb	<24.1	<24.7	<22.5	23.77
Perchloroethylene	Tetrachloroethylene	ppb	50.2	50.6	50.2	50.3
Styrene		ppb	155	155	158	156
Toluene		ppb	4,660	4,560	4,620	4,613
1,1,1 Trichlororethane		ppb	<24.1	<24.7	<22.5	<23.8
1,1,2,2 Tetrachloroethane		ppb	<24.1	<24.7	<22.5	<23.8
Trichloroethylene	Trichloroethene	ppb	44.5	43.2	44.3	44.0
Vinyl Chloride		ppb	27.9	28.7	29.1	28.6
Xylenes		ppb	3,470	3,110	3,356	3,312
Carbon Disulfide		ppm	0.135	0.123	0.120	0.126
Carbonyl Sulfide		ppm	< 0.096	< 0.099	< 0.090	< 0.095
Dimethyl Sulfide		ppm	2.07	2.08	2.12	2.09
Ethyl Mercaptan		ppm	0.122	0.152	0.140	0.138
Methyl Mercaptan		ppm	2.80	3.32	3.08	3.07
Hydrogen Sulfide		ppm	190	352	276	273
TRS as H2S		ppm	198	361	285	281

APPENDIX P

A-12 FLARE 12-MONTH SULFUR DIOXIDE EMISSIONS LOG

12-MONTH CONSECUTIVE SOx Emission Rate (Tons/Year) :2019-2020 Kirby Canyon Recycling & Disposal Facility

Month	SO ₂ (Tons/Month)	SO ₂ (12- Months Tons)
July-19	3.15	37.0
August-19	2.78	36.8
September-19	2.81	36.6
October-19	2.75	36.5
November-19	2.74	36.1
December-19	2.98	36.1
January-20	3.20	36.4
February-20	3.18	36.6
March-20	3.12	36.7
April-20	3.05	36.5
May-20	2.82	36.1
June-20	2.82	35.4

Plant #1812, Condition 1437 Item 20

Pursuant to Title V Permit A1812, Condition Number 25301 Part 20, the Sulfur dioxide emissions from Flare A-12 shall not exceed 300 ppmv of SO2 and sulfur dioxide emissions from A-12 shall not exceed 94.9 tons per year.

To demonstrate compliance with above limits, the site will conduct annual testing of total TRS at the landfill gas main header. The most recent TRS value will be used to calculate the monthly SO2 emissions in tons.

Appendix P includes table with SO_2 12-month tons during the reporting period. The sulfur dioxide emissions from A-12 did not exceed 94.9 tons per year.