REDWOOD LANDFILL, INC. P.O. Box 793 8950 Redwood Highway Novato, CA 94948 (415) 892-2851 (415) 898-1354 Fax

May 30, 2024

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V Reports compliance@baagmd.gov

Director of the Air Division USEPA, Region IX 75 Hawthorne Street San Francisco, CA 94105 Attn: Air-3 r9.aeo@epa.gov

SUBJECT: Combined Title V Semi-Annual and Partial 8-34 Annual Report 40 CFR 63 Subpart AAAA Semi-Annual Report Redwood Landfill, Inc. 8950 Redwood Highway, Novato, CA 94948 Facility Number A1179 1. D RECEIVED IN

TV Tracking #: 918

ENFORCEMENT 05/30/2024

Dear Sir or Madam:

The Redwood Landfill, Inc. (RLI) is submitting this Combined Title V Semi-Annual and Partial 8-34 Annual Report for the period of November 1, 2023 to April 30, 2024, to the Bay Area Air Quality Management District (BAAQMD) and the United States Environmental Protection Agency (USEPA), Region IX. The Semi-Annual Startup, Shutdown and Malfunction (SSM) Report is also enclosed, as required by 40 Code of Federal Regulations (CFR) Part 63 Subpart AAAA. The Combined Title V Semi-Annual and Partial 8-34 Annual Report satisfies the requirements of the Title V Permit listed in Condition Number 19867 Part 32 and Standard Condition I.F.

Based on information and belief formed after reasonable inquiry, I certify under penalty of law that the statements included in this report are true, accurate, and complete.

Sincerely. Redwood Landfill, Inc.

Scott Tignac Area Director, Northern California and Nevada

Attachments: Combined Title V Semi-Annual and Partial 8-34 Annual Report

Combined Title V Semi-Annual and Partial 8-34 Annual Report

For the Redwood Landfill 8950 Redwood Highway Novato, California 94948 Facility Number A1179

November 1, 2023 to April 30, 2024

Prepared for Redwood Landfill, Inc. 8950 Redwood Highway Novato, CA

For Submittal to: The Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

The United States Environmental Protection Agency Region IX 75 Hawthorne Street San Francisco, CA 94105

> Prepared by: Redwood Landfill, Inc. 8950 Redwood Highway Novato, CA

CONTENTS

1	INTRODUCTION 1.1 Purpose	1 1
	1.2 Record Keeping and Reporting	1
2	 SEMI-ANNUAL MONITORING REPORT 2.1 Collection System Operation [BAAQMD 8-34-501.1& §60.757(f)(4)] 2.2 Emission Control Device Downtime [BAAQMD 8-34-501.2 & §60.757(f)(3)] 2.3 Temperature Monitoring Results [(BAAQMD 8-34-501.3, 8-34-507, & §60.757(f)(1)] 2.4 Monthly Cover Integrity Monitoring [BAAQMD 8-34-501.3, 8-34-507, & §60.757(f)(1)] 2.5 Less Than Continuous Operation (BAAQMD 8-34-501.5) 2.6 Surface Emissions Monitoring [BAAQMD 8-34-501.6, 8-34-506, & §60.757(f)(5)] 2.7 Component Leak Testing [BAAQMD 8-34-501.6, 8-34-503) 2.8 Solid Waste Placement Records (BAAQMD 8-34-501.7) 2.9 Non-Degradable Waste Acceptance Records (BAAQMD 8-34-501.8) 	2 3 5 5 6 7 7 8 8 8 8
	 2.10 Wellhead Monitoring Data (BAAQMD 8-34-501.4 & 8-34-505) 2.11 Gas Flow Monitoring Results [BAAQMD 8-34-501.10, 8-34-508 & §60.757(f)(1)] 2.12 Compliance With §60.757(f)(6) 2.13 Compliance With Title V Permit Condition 13123 (S-34 & S-39) 2.14 Compliance With Title V Permit Conditions 14098 and 16516 (S-55) 2.15 Compliance With Title V Permit Conditions 22820 (S-49) 2.16 Compliance With Title V Permit Condition 19865 (S-41) 2.17 Compliance With Title V Permit Condition 19866 (S-42) 2.18 Compliance With Title V Permit Condition 19867, Parts 6-10 2.19 Compliance With Title V Permit Condition 19867, Parts 14 and 15 2.20 Compliance With Title V Permit Condition 22940 (S-56) 2.22 Compliance With Title V Permit Condition 22941 (S-57) 2.23 Compliance With Title V Permit Condition 23052 (S-58) 2.24 Compliance With Title V Permit Condition 24527 (S-61 and S-62) 2.25 Compliance With Title V Permit Condition 25634 	8 9 10 11 12 12 12 12 13 13 17 17 17 18 18
3	PERFORMANCE TEST REPORT 3.1 Source Test Results (BAAQMD 8-34-412) 3.3 Compliance With §60.757(g)(1) 3.4 Compliance With §60.757(g)(2) 3.6 Compliance With §60.757(g)(3) 3.7 Compliance With §60.757(g)(4) 3.8 Compliance With §60.757(g)(5) 3.9 Compliance With §60.757(g)(6)	20 22 23 24 24 25 25

4 START-UP, SHUTDOWN, MALFUNCTION REPORT

List of Tables

25

27

- Table 2-1
 Semi-Annual Report Requirements
- Table 2-2A-51 and A-60 Downtimes
- Table 2-3 S-64 and S-65 Downtimes
- Table 2-4 GCCS Downtime Summary
- Table 2-5
 Applicable Temperature Limits
- Table 2-6Solid Waste Placement
- Table 2-7 Total LFG Flow
- Table 2-8
 Composting and Screening Operations Throughput
- Table 2-9Unleaded Gasoline Throughput
- Table 2-10 Waste Processed at S-41
- Table 2-11Quarterly LFG Characterization
- Table 2-12
 Quarterly Engine Inlet (pre-treatment) Characterization
- Table 2-13 Rolling 4-Quarter TRS Concentration
- Table 2-14 Annual LFG Characterization
- Table 2-15Toxic Air Contaminants Sampling
- Table 2-16Leachate Flow Information for S-58
- Table 2-17 POC Concentrations for S-58
- Table 2-18 S-61 and S-62 Portable Diesel Engines
- Table 2-19Rolling 4-Quarter LFG Input and CO and SO2 Emissions
- Table 3-1
 Performance Test Requirements
- Table 3-2 A-51 Flare Source Test Results
- Table 3-3 A-60 Zone A Flare Source Test Results
- Table 3-4 A-60 Zone B Flare Source Test Results
- Table 3-5
 S-64 Engine Source Test Results
- Table 3-6 S-65 Engine Source Test Results

List of Appendices

- Appendix A Site Map
- Appendix B A-51 and A-60 Flare SSM Logs and GCCS Downtime Summary
- Appendix C Correspondence
- Appendix D Wellfield SSM Log
- Appendix E A-51 and A-60 Flare Temperature Reports
- Appendix F Missing A-51 and A-60 Flow and Temperature Records
- Appendix G Cover Integrity Forms
- Appendix H Surface Emissions and Component Leak Monitoring Reports
- Appendix I Wellfield Monitoring Logs
- Appendix J Wellfield Deviation Log

- Appendix K Monthly Landfill Gas Flow Rates
- Appendix L VOC Soils Logs
- Appendix M H2S Weekly and Quarterly Monitoring
- Appendix N Source Test Report Summary
- Appendix O S-55 Static Pressure Performance Test (Leak Test)
- Appendix P Rolling Quarterly LFG Input and CO and SO₂ Emissions

1.1 Purpose

This document is a Title V Combined Semi-Annual Report and Partial 8-34 Annual Report for Redwood Landfill, Inc. (RLI) pursuant to Title V Permit Standard Condition I.F and Condition Number 19867, Part 32. This Combined Report satisfies the requirements of Bay Area Air Quality Management District's (BAAQMD) Regulation 8, Rule 34, Section 411 and Title 40 Code of Federal Regulations (CFR) Part 60 Subpart WWW (40 CFR §60.757[f]), New Source Performance Standards (NSPS) for municipal solid waste (MSW) landfills, and the RLI Title V Standard Condition I.F. This report covers compliance activities conducted from November 1, 2023 to April 30, 2024. This Combined Report also includes the Semi-Annual Start-up, Shutdown, and Malfunction (SSM) Plan Report activities pursuant to National Emission Standards for Hazardous Air Pollutants (NESHAP), 40 CFR Part 63, Subpart AAAA for Landfills.

Section 2 of this Report contains the elements required to satisfy both BAAQMD Regulation 8-34-411 and 40 CFR §60.757(f).

Section 3 of this Combined Report includes a discussion of the data from the most recent source tests, for the A-51 and A-60 Flares, in compliance with BAAQMD Regulation 8-34-412 and Title V Permit Condition Number 19867, Part 30.

Section 4 and Appendices B, D, and E of this Report contain the Semi-Annual Report of SSM Plan activities.

1.2 Record Keeping and Reporting

Records are maintained and available for inspection in accordance with BAAQMD Regulation 8-34-501.12 and 40 CFR §60.758. The primary location for records storage is Redwood Landfill. Records are maintained onsite at the Landfill for a minimum of five years.

2 SEMI-ANNUAL MONITORING REPORT

In accordance with RLI Title V Permit Standard Conditions I.F and 19867, Part 32; BAAQMD Regulation 8-34-411; and 40 CFR §60.757(f) of the NSPS for landfills, this report is a Title V Combined Semi-Annual Report and Partial 8-34 Annual Report that is required to be submitted by RLI. This Report contains monitoring data for the operation of the gas collection and control system (GCCS). The operational records have been reviewed and summarized. The timeframe included in this Report is November 1, 2023 to April 30, 2024. The following table lists the rules and regulations that are required to be included in this Combined Report:

RULE	REQUIREMENT	LOCATION			
	All collection system downtime, including individual well shutdown times and the reason for the shutdown.	Section 2.1, Appendices B & D			
8-34-501.2, §60.757(f)(3)	All emission control system downtime and the reason for the shutdown.	Section 2.2, Appendix B			
8-34-501.3, 8-34-507, §60.757(f)(1)	Continuous temperature for all operating flares and any enclosed combustor subject to Section 8-34-507.	Section 2.3, Appendices E & F			
8-34-501.4, 8-34-505, 8-34-510	Testing performed to satisfy any of the requirements of this rule.	Sections 2.4 & 2.10, Appendices G & I			
8-34-501.5	Monthly landfill gas (LFG) flow rates and well concentration readings for facilities subject to 8-34-404.	Sections 2.5 & 2.11, Appendix K			
8-34-501.6, 8-34-503, 8-34-506,	For operations subject to Section 8-34-503 and 8-34-506, records of all monitoring dates, leaks in excess of the limits in Section 8-34-301.2 or 8-34-303 that are discovered by the operator, including the location of the leak, leak concentration in parts per million by volume (ppm _v), date of discovery, the action taken to repair the leak, date of the repair, date of any required re-monitoring, and the re-monitored concentration in ppm _v .	Sections 2.6 & 2.7, Appendix H			
8-34-501.7	Annual waste acceptance rate and current amount of waste in-place.	Section 2.8			
	Records of the nature, location, amount, and date of deposition of non- degradable wastes, for any landfill areas excluded from the collection system requirement as documented in the GCCS Design Plan.	Section 2.9			
8-34-501.9, 8-34-505,	For operations subject to Section 8-34-505, records of all monitoring dates and any excesses of the limits stated in Section 8-34-305 that are discovered by the operator, including well identification number, the measured excess, the action taken to repair the excess, and the date of repair.	Section 2.10, Appendices I & J			
8-34-501.10, 8-34-508, §60.757(f)(1)	Continuous gas flow rate records for any site subject to Section 8-34-508.	Section 2.11, Appendix K			

Table 2-1 Semi-Annual Report Requirements

RULE	REQUIREMENT	LOCATION IN REPORT		
	For operations subject to Section 8-34-509, records or key emission control system operating parameters.	Section 2.2.2		
	The records required above shall be made available and retained for a period of five years.	Section 1.2		
§60.757(f)(2)	Description and duration of all periods when the gas stream is diverted §60.757(f)(2) from the control device through a bypass line or the indication of bypass flow as specified under §60.756.			
(60.757(f)(6)) The date of installation and the location of each well or collection system expansion added pursuant to paragraphs (a)(3), (b), (c)(4) of (60.755) .		Section 2.12		
§60.10(d)(5)(i)Start-up, Shutdown, Malfunction Events		Section 4, Appendices B, D, and E		

2.1 COLLECTION SYSTEM OPERATION [BAAQMD 8-34-501.1& §60.757(f)(4)]

Appendix A contains a map of the GCCS at RLI. Section 2.1.1 includes all collection system downtimes. The information contained in Appendix B, A-51 and A-60 Flares SSM Logs, GCCS Downtime Summary, S-64 and S-65 Landfill Gas Engine SSM logs, and S-71 Gas Treatment System Downtime Log, includes the individual well shutdown times and the reason for each shutdown.

2.1.1 FLARE SYSTEM DOWNTIME

The A-51 Flare commenced operation in June 2005, and the A-60 Flare commenced operation on April 1, 2009. Table 2-2 summarizes the A-51 and A-60 Flares' downtimes for the reporting period.

Month	A-51 Downtime (Hours)	A-60 Downtime (Hours)			
November 2023	721.00	0.63			
December 2023	740.37	0.00			
January 2024	201.37	0.77			
February 2024	0.00	5.73			
March 2024	2.73	1.50			
April 2024	542.40	0.50			
Total Hours:	2,207.87	9.13			

Table 2-2 A-51 and A-60 Downtimes

During the period covered in this report, the GCCS was not shut down for more than five days on any one occasion. Appendix B contains the A-51 and A-60 Flare SSM

logs, and GCCS Downtime Summary which lists dates, times, and lengths of shutdowns for the reporting period and year-to-date.

2.1.2 LANDFILL GAS ENGINE SYSTEM DOWNTIME

The S-64 and S-65 Landfill Gas Engines (with accompanying S-71 Landfill Gas Treatment System) commenced operation in April 27, 2017. Table 2-3 summarizes the S-64 and S-65 Engines' downtimes for the reporting period.

Month	S-64 Downtime (Hours)	S-65 Downtime (Hours)		
November 2023	721.00	721.00		
December 2023	744.00	744.00		
January 2024	744.00	744.00		
February 2024	696.00	696.00		
March 2024	743.00	743.00		
April 2024	212.75	194.17		
Total Hours:	3,860.75	3,842.17		

Table 2-3 S-64 and S-65 Downtimes

During the period covered in this report, the S-71 treatment system treated all landfill gasses going to the engines. Appendix B contains the S-64 and S-65 Engine SSM logs, and S-71 Downtime Log (with respect to engine operation) which lists dates, times, and lengths of shutdowns for the reporting period.

As directed by PG&E on 5/12/23, the engine plant had been shut down until the landslide area is fixed by PG&E/Caltrans. BAAQMD was notified on June 27, 2023 with the 10-day/30-day report that the following testing will not be completed as follows:

- 2nd and 3rd Quarter 2023 24-hour emissions testing of Engine No. 1 (S64) and Engine No. 2 (S65) by 9/30/23. Both engines were offline (Condition 25635 Part 4 (NOx), Part 5 (CO), Part 12 (H2S), and Part 14 (CH4))
- 2nd and 3rd Quarter 2023 Laboratory analysis of landfill gas to Engine inlet by 9/30/23. Engines were offline (2016 Compliance Agreement)
- July 2023 annual source tests for Engines S64 and S65 with the associated S71 Gas Treatment System (usually performed in July) will not be done because they were offline.

Testing will be resumed within 60 days of the engines restarting. The engines were restarted on April 8, 2024.

2.1.3 WELL DISCONNECTION LOG

A Wellfield SSM Log that lists dates, times, and lengths of disconnections for the reporting period is included in Appendix D. In addition, 3 wells (out of a possible 5) remains disconnected at the end of the reporting period, pursuant to BAAQMD Regulation 8-32-116.2 (Limited Exemption, Well Raising).

2.2 EMISSION CONTROL DEVICE DOWNTIME [BAAQMD 8-34-501.2 & §60.757(f)(3)]

No bypassing of the control system or emissions of raw LFG occurred. The Flare SSM Logs that include all downtimes and reasons for each shutdown for the A-51 and A-60 Flares are contained in Appendix B. Device downtime is summarized in Table 2-4.

Total 2023 Downtime:	51.07
November 1, 2023 through April 30, 2024 Downtime:	0.63
January 1, 2024 through April 30, 2024 Total Downtime:	0.00
Total 2024 Downtime:	0.00

 Table 2-4 GCCS Downtime Summary

2.2.1 LFG BYPASS OPERATIONS (§60.757(f)(2))

Title 40 CFR §60.757(f)(2) is not applicable at RLI because no bypass line is installed. LFG cannot be diverted around the control equipment.

2.2.2 KEY EMISSION CONTROL OPERATING PARAMETERS (BAAQMD 8-34-501.11 & 8-34-509)

The A-51 and A-60 Flares are subject to continuous temperature monitoring as required in BAAQMD Regulation 8-34-507 and 40 CFR §60.757(f)(1).

2.3 TEMPERATURE MONITORING RESULTS [(BAAQMD 8-34-501.3, 8-34-507, & §60.757(f)(1)]

The RLI has two flares used to destroy LFG collected by the GCCS (A-51 and A-60). Combustion zone temperatures of the flares are monitored with thermocouples and recorded with Yokogawa DX100 paperless chart recorders. There were no continuous recorder device SSM events during the reporting period. As shown in Appendix F, there were no periods of missing temperature data for the flares during the reporting period.

Title V Permit Condition Number 19867 Part 22 states that the minimum combustion zone temperature shall be equal to the average combustion zone temperature determined during the most recent complying source test minus 50°F, provided that the minimum combustion zone temperature is not less than 1,400°F. Pursuant to Part 22, the following temperature limits applied during the reporting period:

Device	Test Date	Report Submitted	Average Temperature During Test (°F)	3-hr Minimum Temperature (°F)
A-51	1/12/2023	3/9/2023	1,498	1,448
A-51	1/10/2024	3/8/2024	1,497	1,447
A-60 Zone A	7/13/2022	9/11/2022	1,582	1,532
A-60 Zone B	7/12/2023	9/8/2023	1,618	1,568

Table 2-5 Applicable Temperature Limits

The three-hour minimum temperature applies upon submittal of the source test report. Operating records for the flares indicate all flares operated in compliance with the applicable three-hour average minimum temperatures from November 1, 2023 to April 30, 2024.

Pursuant to Title V Permit Condition Number 19867, Part 30g, the annual source test at A-60 may be conducted while A-60 is operating in either zone, provided that each operating zone is tested at least once every five years. The most recent source test for Zone A was completed in July 2022. Zone B was tested in July 2023, meeting the obligation to test each zone every five years.

As directed by PG&E on 5/12/23, the engine plant had been shut down until the landslide area is fixed by PG&E/Caltrans. BAAQMD was notified on June 27, 2023 with the 10-day/30-day report that the following testing will not be completed as follows:

- 2nd and 3rd Quarter 2023 24-hour emissions testing of Engine No. 1 (S64) and Engine No. 2 (S65) by 9/30/23. Both engines were offline (Condition 25635 Part 4 (NOx), Part 5 (CO), Part 12 (H2S), and Part 14 (CH4))
- 2nd and 3rd Quarter 2023 Laboratory analysis of landfill gas to Engine inlet by 9/30/23. Engines were offline (2016 Compliance Agreement)
- July 2023 annual source tests for Engines S64 and S65 with the associated S71 Gas Treatment System (usually performed in July) will not be done because they were offline.

Testing will be resumed within 60 days of the engines restarting. The engines were restarted on April 8, 2024.

2.4 MONTHLY COVER INTEGRITY MONITORING [BAAQMD 8-34-501.3, 8-34-507, & §60.757(f)(1)]

The Monthly Cover Integrity Monitoring Reports are included in Appendix G. The cover integrity monitoring was performed on the following dates:

- November 30, 2023
- December 19, 2023
- January 23, 2024
- February 26, 2024
- March 29, 2024
- April 26, 2024

No breaches of cover integrity (e.g., cover cracks or exposed garbage) were found during the reporting period. If areas of concern were observed, repairs were documented as required.

2.5 LESS THAN CONTINUOUS OPERATION (BAAQMD 8-34-501.5)

The RLI does not operate under BAAQMD Regulation 8-34-404 (Less Than Continuous Operation) and therefore is not required to submit monthly LFG flow rates.

2.6 SURFACE EMISSIONS MONITORING [BAAQMD 8-34-501.6, 8-34-506, & §60.757(f)(5)]

Quarterly Surface Emissions Monitoring (SEM), pursuant to BAAQMD Regulation 8-34-506, was conducted during the reporting period. A flame ionization detector (FID) was used during the SEM events to monitor the path along the landfill surface according to the Landfill SEM Map. Any areas suspected of having emission problems by visible observations also were monitored. Immediately prior to both monitoring events, the FID was zeroed and calibrated using zero air and a 500-ppm_v methane calibration gas.

The Fourth Quarter 2023 SEM event was conducted by Roberts Environmental Services (RES) personnel on November 28, 2023. Five exceedances were identified. Corrective action and re-monitoring are described below:

- The first 10-day re-monitoring was completed on December 1, 2023. All locations were observed at less than 500 ppmv as methane.
- 1-month remonitoring was completed on December 21, 2023. All locations cleared.

The First Quarter 2024 SEM was conducted by RES on January 26, 2024. Four exceedances were identified. Corrective action and re-monitoring are described below:

- 10-day re-monitoring was completed on January 30, 2024. All locations cleared.
- 1-month remonitoring was completed February 23, 2024. All locations cleared.

Per the Compliance Agreement between RLI and BAAQMD, the SEM frequency was increased to bi-monthly. In the First Quarter 2024, the bi-monthly Instantaneous SEM was performed on March 25, 2024. There were no exceedances of 500-ppm_v methane detected. No re-monitoring was required.

SEM Reports are included in Appendix H.

2.7 COMPONENT LEAK TESTING [BAAQMD 8-34-501.6, 8-34-503)

Quarterly component leak testing, pursuant to BAAQMD Regulation 8-34-503, occurred during the reporting period on the following dates:

Fourth Quarter 2023 – November 28, 2023 First Quarter 2024 – January 26, 2024

No exceedances were identified during either monitoring event. The Component Leak Testing results are included with the SEM reports in Appendix H.

2.8 SOLID WASTE PLACEMENT RECORDS (BAAQMD 8-34-501.7)

The solid waste placement total was calculated for the period of November 1, 2023 to April 30, 2024. The current waste in place figure includes solid waste placed in the landfill through the end of the reporting period. Table 2-6 summarizes the RLI solid waste placement records for the reporting period.

Table 2-6 Solid Waste Placement

Waste Placement (November 1, 2023 to April 30, 2024)	90,000 tons
Current Waste In Place as of May 1, 2024	15.26 million tons

2.9 NON-DEGRADABLE WASTE ACCEPTANCE RECORDS (BAAQMD 8-34-501.8)

RLI does not have non-degradable waste areas that are excluded from the collection system. Therefore, BAAQMD Regulation 8-34-501.8 is not applicable.

2.10 WELLHEAD MONITORING DATA (BAAQMD 8-34-501.4 & 8-34-505)

Wellhead monitoring was performed monthly pursuant to BAAQMD Regulation 8-34-505. The well data for November 1, 2023 to April 30, 2024 are included in Appendix I. Each well was monitored in accordance with the following requirements:

- 8-34-305.1 Each wellhead shall operate under a vacuum.
- 8-34-305.2 The LFG temperature in each wellhead shall be less than 55 degrees Celsius (131°F).
- 8-34-305.4 The oxygen concentration in each wellhead shall be less than 5 percent by volume.

The wellhead monitoring was performed on the following dates:

- November 2, 6, 7, 8, 9, 10, 13, 14, 16, 17, and 20, 2023
- December 4, 6, 7, 8, 11, 12, 13, 14, 18, and 19, 2023
- January 5, 8, 12, 16, 18, 19, 22, 23, and 24, 2024
- February 5, 6, 9, 13, 15, 21, 22, and 23, 2024
- March 5, 6, 8, 13, 14, 15, 26, 27, and 28, 2024
- April 2, 3, 5, 10, 16, 17, and 18, 2024

WELLHEAD DEVIATIONS [BAAQMD 8-34-501.9 & §60.757(f)(1)]

A total of eighteen (18) deviations from the wellhead standards in 8-34-305 occurred during the reporting period. All but seven exceedances were addressed prior to the end of this reporting period (as of May 1, 2024).

The Wellfield Deviation Log is included in Appendix J.

2.11 GAS FLOW MONITORING RESULTS [BAAQMD 8-34-501.10, 8-34-508 & §60.757(f)(1)]

The LFG flow rates from both the A-51 and A-60 flares are measured with Veris flow meters. The S-64 and S65 LFG engines are measured with ABB flow meters. The flow meters meet the requirements of BAAQMD Regulation 8-34-508 by recording fuel flow at least every 15 minutes.

Appendix K contains a summary of the daily and monthly LFG flow rates and heat input for the flares and engine plant. The A-51 flare is utilized as a backup for the A-60 flares. These flow rates for November 1, 2023 to April 30, 2024 are summarized in Table 2-7:

Emission Control Device	Total Runtime (hours)	Average Flow Rate (scfm)	Average Methane (%) ¹	Total LFG Flow (scf)	12-Month Total LFG Flow (scf) Corrected to 500 BTU/scf	Max Daily Flow (scf) Corrected to 500 BTU/scf
A-51	2,160	1,128	52.0	146,249,087	380,758,434	1,824,487
A-60	4,359	1,682	47.8	439,862,963	826,817,160	3,219,340
S-64	507	547	49.4	16,645,221	16,717,869	929,079
S-65	526	559	49.7	17,644,843	28,552,190	888,997
Total	4,366	2,368	48.9	620,402,114	1,252,845,654	

Table 2-7 Total LFG Flow

¹Methane content was determined from the 7/13/22, 7/14/22, 1/12/23, 7/12/23, and 1/10/24 Source Tests. Heating value of methane used in heat input calculations is 1,013 BTU/scf scfm = standard cubic feet per minute scf= standard cubic feet

MMBTU = million British thermal units

Pursuant to Title V Condition Number 19867, Part 20, the total LFG throughput to the either flare did not exceed 4,320,000 scf during any one day. The A-51 and A-60 Flares

combined total LFG throughput did not exceed 2,207,520,000 scf during any consecutive 12-month period.

Appendix K contains a summary of the combined daily LFG flow rates for the A-51 and A-60 Flares and the consecutive 12-month summaries.

There were no periods of missing data or chart recorder non-operation for the A-51 and A-60 Flares or the landfill gas engine plant (S-64 and S-65 engines) during the reporting period. The Flare Missing Data Report Forms are included in Appendix F.

As directed by PG&E on 5/12/23, the engine plant had been shut down until the landslide area is fixed by PG&E/Caltrans. BAAQMD was notified on June 27, 2023 with the 10-day/30-day report that the following testing will not be completed as follows:

- 2nd and 3rd Quarter 2023 24-hour emissions testing of Engine No. 1 (S64) and Engine No. 2 (S65) by 9/30/23. Both engines were offline (Condition 25635 Part 4 (NOx), Part 5 (CO), Part 12 (H2S), and Part 14 (CH4))
- 2nd and 3rd Quarter 2023 Laboratory analysis of landfill gas to Engine inlet by 9/30/23. Engines were offline (2016 Compliance Agreement)
- July 2023 annual source tests for Engines S64 and S65 with the associated S71 Gas Treatment System (usually performed in July) will not be done because they were offline.

Testing will be resumed within 60 days of the engines restarting. The engines were restarted on April 8, 2024.

2.12 COMPLIANCE WITH §60.757(f)(6)

"The date of installation and the location of each well or collection system expansion added pursuant to (a)(3), (b), (c)(4) of §60.755."

Routine GCCS maintenance occurred during the reporting period. The Wellfield SSM Log is included in Appendix D, Wellfield SSM Log.

Zero (0) wells were added to and one (1) well was removed from the collection system during the reporting period (November 1, 2023 to April 30, 2024).

As of the end of this reporting period, 136 total collectors (132 vertical wells and 4 horizontal collectors) were in service at RLI. A map of the LFG collection system showing the positioning of all vertical wells, horizontal collectors, and other LFG extraction devices is included in Appendix A.

2.13 COMPLIANCE WITH TITLE V PERMIT CONDITION 13123 (S-34 & S-39)

The S-34 Compost Facility Operations and S-39 Screening Operations were utilized during the reporting period. The total amount of material processed did not exceed 160,368 tons during any consecutive 12-month period during the reporting period of November 1, 2023 to April 30, 2024. Monthly and 12-month rolling throughputs are summarized in Table 2-8.

Month	Total Throughput (tons)	Rolling 12-Month Throughput (tons)
November-2023	11,259	121,032
December-2023	11,494	121,565
January-2024	11,003	122,933
February-2024	10,643	125,109
March-2024	10,868	127,340
April-2024	12,252	129,143

 Table 2-8 Composting and Screening Operations Throughput

Pursuant to Title V Permit Condition Number 13123 Part 7, all yard waste material was processed within 72 hours of receipt. In addition, pursuant to Title V Permit Condition Number 13123 Part 8, the plant received no public nuisance notices of violation during the reporting period of November 1, 2023 to April 30, 2024.

2.14 COMPLIANCE WITH TITLE V PERMIT CONDITIONS 14098 AND 16516 (S-55)

Pursuant to Title V Permit Condition Number 14098, the annual gasoline throughput for the S-55 Non-Retail Gasoline Dispensing Facility Number 8573 did not exceed 940,000 gallons in any consecutive 12-month period during the timeframe of this report. Monthly gasoline throughput totals for the reporting period are listed in Table 2-9:

Month	Total Throughput (gallons)	Rolling 12-Month Fuel Usage (gallons)
November-2023	285	4,298
December-2023	285	4,286
January-2024	284	4,185
February-2024	260	4,089
March-2024	359	3,962
April-2024	403	4,065

Table 2-9 Unleaded Gasoline Throughput

Pursuant to Title V Permit Condition Number 16516, the Static Pressure Performance Test (Leak Test) for S-55 was performed on March 7, 2024. S-55 also passed the 2023 Leak Test. The Static Pressure Performance Test results are included in Appendix O.

2.15 COMPLIANCE WITH TITLE V PERMIT CONDITIONS 22820 (S-49)

The permit for S-49 was surrendered to BAAQMD on November 4, 2013. The equipment is no longer on site.

2.16 COMPLIANCE WITH TITLE V PERMIT CONDITION 19865 (S-41)

Pursuant to Title V Permit Condition 19865, the total of waste processed at the S-41 Yard and Green Waste Shredding Operation did not exceed 820 tons per day or 200,000 tons per year. Table 2-10 summarizes the amount of waste processed at S-41 during the reporting period:

Month	Total Throughput (tons)	Rolling 12-Month Throughput (tons)
November-2023	11,259	121,032
December-2023	11,494	121,565
January-2024	11,003	122,933
February-2024	10,643	125,109
March-2024	10,868	127,340
April-2024	12,252	129,143

Table 2-10 Waste Processed at S-41

2.17 COMPLIANCE WITH TITLE V PERMIT CONDITION 19866 (S-42)

The total amount of material received at the S-42 Soil and Cover Stockpiles did not exceed 1,160 tons per day and 105,500 tons per year.

2.18 COMPLIANCE WITH TITLE V PERMIT CONDITION 19867, PARTS 6-10

The following is a summary of vehicle activity at the RLI:

- The mean vehicle fleet weight for all off-site vehicles traveling on paved roads was 15.27 tons, which is less than the permit limit of 15.31 tons.
- Mean vehicle fleet weight for all off-site vehicles traveling on gravel or dirt roads was 16.55 tons, which does not exceed the permit limit of 16.63 tons.
- The mean vehicle fleet weight for all on-site landfilling and construction related vehicles was 12.8 tons, which is below the permit limit of 28.37 tons.
- During the reporting period, the vehicle miles travelled (VMT) per day on gravel roads did not exceed the permit limit of 280 VMT per day. 2023 calendar year VMT on gravel roads was 24,952 VMT, below the limit of 87,080 VMT. 2024 partial calendar year VMT on gravel roads was 7,730 VMT, below the limit of 87,080 VMT.

- During the reporting period, the VMT per day on dirt roads did not exceed the permit limit of 639 VMT per day. 2023 calendar year VMT on dirt roads was 117,419 VMT, below the limit of 198,650 VMT. 2024 partial calendar year VMT on dirt roads was 36,376 VMT, below the limit of 198,650 VMT.
- During the reporting period, the VMT per day on paved roads did not exceed the permit limit of 622 VMT per day. 2023 calendar year VMT on paved roads was 78,882 VMT, below the limit of 205,880 VMT. 2024 partial calendar year VMT on paved roads was 22,329 VMT, below the limit of 205,880 VMT.
- During the reporting period, the VMT per day on dirt roads for the on-site vehicle fleet did not exceed the permit limit of 61 VMT per day. 2023 calendar year VMT on dirt roads is 18,365 VMT, below the limit of 19,080 VMT. 2024 partial calendar year VMT on dirt roads is 6,974 VMT, below the 19,080 VMT.

The records for VMT and average vehicle fleet weights are available for review at RLI.

2.19 COMPLIANCE WITH TITLE V PERMIT CONDITION 19867, PARTS 14 AND 15

No contaminated soil containing volatile organic compound (VOC) concentrations greater than 50 parts per million (ppm) was received during this reporting period. The total VOC emission rate for the reporting period (November 1, 2023 to April 30, 2024) is 0.00 lbs. The VOC soil log is included in Appendix L.

2.20 COMPLIANCE WITH TITLE V PERMIT CONDITION 19867, PARTS 31 AND 33

WEEKLY H₂S MONITORING

Pursuant to Title V Permit Condition Number 19867, Part 31b, weekly hydrogen sulfide (H_2S) readings were taken using Draeger/RAE tubes. This sampling frequency was increased to twice weekly starting November 22, 2016 per the Compliance Agreement between RLI and BAAQMD. All terms of the agreement have been complied with.

The twice weekly H₂S readings and quarterly averages are summarized in Appendix M, H₂S Twice Weekly and Quarterly Monitoring.

QUARTERLY H₂S CHARACTERIZATION

Pursuant to Title V Permit Condition Number 19867, Part 31a, RLI collected the quarterly characterization of the LFG for analysis of sulfur compounds. The results are included in Tables 2-11 (LFG pre-A80 treatment), 2-12 (Engine Inlet pre-S71 treatment), and Appendix M. The single test TRS limit of 370 ppm has been exceeded during this period. BAAQMD is working on a new Compliance Agreement.

Table 2-11 LFG (pre-A80 treatment) Characterization Results

Compound	Fourth Quarter 2023	First Quarter 2024
Compound	Result (ppm _∨)	Result (ppm _∨)

Compound	Fourth Quarter 2023 Result (ppm _v)	First Quarter 2024 Result (ppm _v)
Hydrogen Sulfide	1,700	3,100
Carbonyl Sulfide	1.40	ND
Methyl Mercaptan	2.20	1.50
Ethyl Mercaptan	0.44	ND
Dimethyl Sulfide	0.41	ND
Carbon Disulfide	ND	ND
Total Reduced Sulfur	1,717	3,119

ND = not detected

N/A = not applicable

Table 2-12 Engine Inlet (pre-S71 treatment) Characterization Results

Compound	Fourth Quarter 2023 Result (ppm _v)	First Quarter 2024 Result (ppm _v)
Hydrogen Sulfide	-	2,000
Carbonyl Sulfide	-	ND
Methyl Mercaptan	-	1.40
Ethyl Mercaptan	-	ND
Dimethyl Sulfide	-	ND
Carbon Disulfide	-	ND
Total Reduced Sulfur	-	2,011

ND = not detected

N/A = not applicable

As directed by PG&E on 5/12/23, the engine plant had been shut down until the landslide area is fixed by PG&E/Caltrans. BAAQMD was notified on June 27, 2023 with the 10-day/30-day report that the following testing will not be completed as follows:

- 2nd and 3rd Quarter 2023 24-hour emissions testing of Engine No. 1 (S64) and Engine No. 2 (S65) by 9/30/23. Both engines were offline (Condition 25635 Part 4 (NOx), Part 5 (CO), Part 12 (H2S), and Part 14 (CH4))
- 2nd and 3rd Quarter 2023 Laboratory analysis of landfill gas to Engine inlet by 9/30/23. Engines were offline (2016 Compliance Agreement)
- July 2023 annual source tests for Engines S64 and S65 with the associated S71 Gas Treatment System (usually performed in July) will not be done because they were offline.

Testing will be resumed within 60 days of the engines restarting. The engines were restarted on April 8, 2024.

ROLLING 4-QUARTER TRS LIMIT

The rolling 4-quarter average TRS concentration was calculated at the end of each quarter using data collected from twice weekly tube samples and quarterly analytical samples per Condition 19867, Part 31b. Results are shown in Table 2-13. As shown in

the table, at the end of all the Quarters, the calculated rolling 4-quarter TRS concentration (after treatment) was in excess of the 350 ppm_v limit. BAAQMD is working on a new Compliance Agreement. Follow-up actions are discussed later in this section.

Quarter	Calculated TRS (ppmv)	Rolling Quarterly Average Annual TRS (ppmv)
2023 Q2	1,598	1,133
2023 Q3	349	1,075
2023 Q4	329	992
2024 Q1	326	651

Table 2-13 Rolling 4-Quarter TRS Concentration

ANNUAL LFG CHARACTERIZATION

LFG characterization sampling was conducted concurrently with the A-51 annual source test as required by Title V Permit Condition Number 19867, Part 31 on January 10, 2024. The LFG sample was collected from the main LFG header and analyzed for the organic and sulfur compounds listed in Part 31. The results were included in the Annual Source Test report submitted on March 8, 2024.

Results for Toxic Air Contaminants (TACs) are presented in Table 2-14 and indicate that the LFG collected by S-5 did not exceed the limits listed in Title V Permit Condition 19867, Part 18.b.

Compound	Result (ppb _v)	Concentration Limit* (ppb _v)
Acrylonitrile	<srl< td=""><td>300</td></srl<>	300
Benzene	81	1,500
Benzyl Chloride	<srl< td=""><td>500</td></srl<>	500
Carbon Tetrachloride	<srl< td=""><td>200</td></srl<>	200
Chlorobenzene	<srl< td=""><td>200</td></srl<>	200
Chloroethane	<srl< td=""><td>500</td></srl<>	500
Chloroform	<srl< td=""><td>200</td></srl<>	200
1,4-Dichlorobenzene	<srl< td=""><td>1,000</td></srl<>	1,000
Ethylbenzene	294	4,000
Ethylene Dibromide	<srl< td=""><td>200</td></srl<>	200
Ethylene Dichloride	<srl< td=""><td>200</td></srl<>	200
Ethylidene Dichloride	<srl< td=""><td>500</td></srl<>	500
Hexane	<srl< td=""><td>2,000</td></srl<>	2,000
Isopropyl Alcohol	304	10,000
Methyl Alcohol	745	300,000
Methyl Ethyl Ketone	722	15,000

Table 2-14 Annual LFG Characterization:	Toxic Air Contaminants
Table 2-14 Annual LI & Characterization.	I UNIC All CUIItaininainte

Compound	Result (ppb _v)	Concentration Limit* (ppb _v)
Methylene Chloride	<srl< td=""><td>1,000</td></srl<>	1,000
Methyl tert-Butyl Ether	<srl< td=""><td>500</td></srl<>	500
Perchloroethylene	<srl< td=""><td>1,000</td></srl<>	1,000
Styrene	<srl< td=""><td>500</td></srl<>	500
1,1,2,2-Tetrachloroethane	<srl< td=""><td>200</td></srl<>	200
Toluene	789	20,000
1,1,1-Trichloroethane	<srl< td=""><td>200</td></srl<>	200
Trichloroethylene	<srl< td=""><td>500</td></srl<>	500
Vinyl Chloride	<srl< td=""><td>2,000</td></srl<>	2,000
Vinylidene Chloride	<srl< td=""><td>500</td></srl<>	500
Xylenes	698	20,000

ppb_v = parts per billion by volume

<SRL = less than the sample reporting limit

Per the Compliance Agreement, quarterly samples were collected and analyzed for ethylbenzene and 1,4-Dichlorobenzene on December 7, 2022 and March 29, 2024 at the Flare and the Engine Inlet (pre-treatment). Laboratory analyses were performed by ALS Environmental (ALS). Results from this sampling are presented in Table 2-15 below.

Table 2-15 Toxic Air Contaminants Sampling

Species	4 th Quarter 2023 Flare (ppb _v)	4 th Quarter 2023 Engine Inlet (ppb _v)	1 st Quarter 2024 Flare (ppb _v)	1 st Quarter 2024 Engine Inlet (ppb _v)	Limit (ppb _v)
Ethylbenzene	2,100	-	960	1,100	4,000
1,4-Dichlorobenzene	200	-	88	98	1,000

As directed by PG&E on 5/12/23, the engine plant had been shut down until the landslide area is fixed by PG&E/Caltrans. BAAQMD was notified on June 27, 2023 with the 10-day/30-day report that the following testing will not be completed as follows:

- 2nd and 3rd Quarter 2023 24-hour emissions testing of Engine No. 1 (S64) and Engine No. 2 (S65) by 9/30/23. Both engines were offline (Condition 25635 Part 4 (NOx), Part 5 (CO), Part 12 (H2S), and Part 14 (CH4))
- 2nd and 3rd Quarter 2023 Laboratory analysis of landfill gas to Engine inlet by 9/30/23. Engines were offline (2016 Compliance Agreement)
- July 2023 annual source tests for Engines S64 and S65 with the associated S71 Gas Treatment System (usually performed in July) will not be done because they were offline.

Testing will be resumed within 60 days of the engines restarting. The engines were restarted on April 8, 2024.

GROUND LEVEL H2S MONITORING

RLI began conducting fenceline monitoring for ground level H₂S concentrations in accordance with the May 2011 Proposed Hydrogen Sulfide Monitoring Plan in November 2016. Monitoring was conducted on the following days:

- November 16, 2023
- December 19, 2023
- January 25, 2024
- February 22 and 27, 2024
- March 20 and 22, 2024
- April 11, 2024

There were no H_2S concentrations observed above 30 ppb averaged over 60 minutes or 60 ppb averaged over 3 minutes.

2.21 COMPLIANCE WITH TITLE V PERMIT CONDITION 22940 (S-56)

The permit for S-56 was surrendered to BAAQMD on October 8, 2020. The equipment is no longer on site.

2.22 COMPLIANCE WITH TITLE V PERMIT CONDITION 22941 (S-57)

The permit for S-57 was surrendered to BAAQMD on October 8, 2020. The equipment is no longer on site.

2.23 COMPLIANCE WITH TITLE V PERMIT CONDITION 23052 (S-58)

Pursuant to Permit Condition 23052 Part 1, the total leachate influent rate to the Aerated Leachate Pond (S-58), excluding non-contact storm runoff, did not exceed 39.42 million gallons during any consecutive 12-month period. Table 2-16 displays the leachate flow information for S-58.

Month Total Leachate Influent Rate to S-58 (gallons)		Total Rolling 12-Month Flow Rate to S-58 (millions of gallons)
November 2023	1,524,020	32,489,500
December 2023	1,563,840	32,721,180
January 2024	2,910,480	31,117,520
February 2024	5,925,940	32,246,960
March 2024	4,358,480	32,214,380
April 2024	2,472,460	30,838,780

 Table 2-16 Leachate Flow Information for S-58

As shown in Table 2-17, the average concentration of precursor organic compounds (POCs) in the leachate influent to S-58 did not exceed the limits specified by Title V Permit Condition Number 23052 Parts 2 and 3:

Sample Date	Benzene (ppb)	1,4-Dichlorobenzene (ppb)	Vinyl Chloride (ppb)	Total POC Concentration (ppb)	
June 7, 2023	16.4	5.6	ND	140	
Limit	19	48	7	500	

Table 2-17 POC Concentrations for S-58

2.24 COMPLIANCE WITH TITLE V PERMIT CONDITION 24527 (S-61 AND S-62)

The S-61 Portable Diesel Engine for Waste Tipper and S-62 Portable Diesel Engine for Power Screens operated less than 4,992 hours combined during any 12-month period ending in the November 1, 2023 to April 30, 2024 reporting period. Table 2-18 displays runtime hours for S-61 and S-62 during the reporting period.

Month	S-61 Total Runtime (Hours)	S-62 Total Runtime (Hours)	Combined Rolling 12- Month Total (Hours)			
November 2023	0	0	0			
December 2023	0	0	0			
January 2024	0	0	0			
February 2024	0	0	0			
March 2024	0	0	0			
April 2024	0	0	0			
	Month November 2023 December 2023 January 2024 February 2024 March 2024	MonthS-61 Total Runtime (Hours)November 20230December 20230January 20240February 20240March 20240	MonthS-61 Total Runtime (Hours)S-62 Total Runtime (Hours)November 202300December 202300January 202400February 202400March 202400			

Table 2-18 S-61 and S-62 Portable Diesel Engines

2.25 COMPLIANCE WITH TITLE V PERMIT CONDITION 25634

Permit Condition 25634 requires the calculation of monthly LFG Input to all LFG-Fired Combustion Equipment and calculation of monthly emissions of CO and SO₂. The calculations are summarized on a quarterly basis to show compliance with rolling 4-

quarter limits. These calculations are summarized below. Complete calculations are presented in Appendix P.

		Rolling 4-Quarter Totals		
Year	Quarter	LFG Input (MMscf)	CO Emissions (tons)	SO ₂ Emissions (tons)
2023	2	1,147	22.0	87.3
2023	3	1,214	23.9	88.8
2023	4	1,254	24.7	89.3
2024	1	1,264	24.0	69.7
Lin	nits	2,625	237.5	99

Table 2-19 Rolling 4-Quarter LFG Input and CO and SO₂ Emissions

3 PERFORMANCE TEST REPORT

In accordance with BAAQMD Regulation 8-34-413 and 40 CFR §60.757(g) in NSPS, a Performance Test Report is required to be submitted from subject facilities containing performance and monitoring data for the operation of the GCCS. The operational records listed in Table 3-1 have been reviewed, summarized, and are included herein.

Rule	Requirement	Location in Report
8-34-412, §60.8, §60.752(b)(2)(iii)(B), §60.754(d)	Compliance Demonstration Test	Section 3.1,
§60.757(g)(1)	A diagram of the collection system showing collection system positioning including all wells, horizontal collectors, surface collectors, or other gas extraction devices, including the locations of any areas excluded from collection and the proposed sites for future collection system expansion.	Section 3.2, Appendix A
§60.757(g)(2)	The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based.	Section 3.3
§60.757(g)(3)	The documentation of the presence of asbestos or non- degradable material for each area from which collection wells have been excluded based on the presence of asbestos or non-degradable material.	Section 3.4
§60.757(g)(4)	The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on non- productivity and the calculations of gas generation flow rate for each excluded area.	Section 3.5
§60.757(g)(5)	The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is inadequate to move the maximum flow rate expected over the life of the landfill.	Section 3.6
§60.757(g)(6)	The provisions for the control of off-site migration.	Section 3.7

Table 3-1 Performance Test Requirements

3.1 SOURCE TEST RESULTS (BAAQMD 8-34-412)

3.1.1 FLARE (A-51) SOURCE TEST RESULTS

The 2024 Annual Compliance Demonstration Test (Source Test) was conducted on January 10, 2024. The Test Report was submitted to BAAQMD on March 8, 2024. A summary of the source test report is presented in Appendix N.

The results for the A-51 Flare indicated that the flare is in compliance with BAAQMD Regulation 8-34-301.3 and Title V Condition Number 19867, Parts 23 and 26. Inlet LFG samples were collected from the discharge side of the blower during the test to show compliance with the NMOC limits from Title V Permit Condition Number 18.a. Table 3-2 below shows the results of the source test, averaged from three test runs.

Condition	Flare (A-51) Average Results	Permit Limit	8-34-301.3 limit	Compliance Status
NO _x (ppm _v @ 15% O ₂)	13.9	15		In Compliance
CO (ppm _v @ 15% O ₂)	3.3	82		In Compliance
NMOC Outlet (ppmv @ 3% O ₂)	<5.5		30	In Compliance
NMOC Inlet (ppm _v)	44	360		In Compliance

 Table 3-2
 A-51
 Flare
 Source
 Test
 Results

Although the Compliance Agreement ended on January 15, 2023, RLI has continued to comply with the Compliance Agreement as BAAQMD works on a new Compliance Agreement. BAAQMD requested RLI to retest A-51 for TRS. RLI retested A-51 on May 16, 2024. The A51 source test report for the retest is pending.

3.1.2 FLARE (A-60) SOURCE TEST RESULTS

The A-60 Flare has two operating Zones (A and B). Title V Permit Condition 19867, Part 30 states that source testing can be conducted while the flare is operating in either zone, provided that each operating zone is tested at least once every five years.

The 2022 Source Test was performed on by Blue Sky Environmental, LLC on July 13, 2022 with the flare operating in Zone A. The Test Report was submitted to BAAQMD on September 11, 2022. A summary of the report is presented in Appendix N.

The results for Zone A of the A-60 Flare indicate that the flare is in compliance with BAAQMD Regulation 8-34-301.3 and Title V Condition Number 19867, Parts 23 and 26. Inlet LFG samples were collected from the discharge side of the blower during the test to show compliance with the NMOC limits from Title V Permit Condition Number 18.a. Table 3-3 below shows the results of the source test, averaged from three test runs.

Table 3-3 A-60 Zone A Trate Source Test Results				
Condition	Flare (A-60 Zone A) Average Results	Permit Limit	8-34-301.3 limit	Compliance Status
NO _x (ppm _v @ 15% O ₂)	12.2	15		In Compliance
CO (ppm _v @ 15% O ₂)	34.7	82		In Compliance
NMOC Outlet (ppmv @ 3% O ₂)	<2.9		30	In Compliance
NMOC Inlet (ppm _v)	195	360		In Compliance

 Table 3-3
 A-60 Zone A Flare Source Test Results

The 2023 Source Test was performed on by Blue Sky Environmental, LLC on July 12, 2023 with the flare operating in Zone B. The Test Report was submitted to BAAQMD on September 8, 2023 and was included in the November 2023 semi-annual report. The results for Zone B of the A-60 Flare indicate that the flare is in compliance with BAAQMD Regulation 8-34-301.3 and Title V Condition Number 19867, Parts 23 and 26. Inlet LFG samples were collected from the discharge side of the blower during the test

to show compliance with the NMOC limits from Title V Permit Condition Number 18.a. Table 3-4 below shows the results of the source test.

Condition	Flare (A-60 Zone B) Average Results	Permit Limit	8-34- 301.3 limit	Compliance Status
NO _x (ppm _v @ 15% O ₂)	7.6	15		In Compliance
CO (ppm _v @ 15% O ₂)	21.0	82		In Compliance
NMOC Outlet (ppm _v @ 3% O ₂)	<3.1		30	In Compliance
NMOC Inlet (ppm _v)	118	360		In Compliance

Table 3-4 A-60 Zone B Flare Source Test Results

The A-60B test report (tested on 7/12/23) showed that the flare met all permit requirements except for TRS. Since 7/17/2023, RLI established sulfur treatment for the A60 flare and subsequent averaged sulfur inlet concentrations have been below the TRS limit.

3.1.3 ENGINES (S-64 AND S-65) SOURCE TEST RESULTS

The S-64 and S-65 landfill gas (LFG) Engines are operating in accordance with the Bay Area Air Quality Management District (BAAQMD) Permit to Operate (PTO) for Facility 1179, Permit Condition 25635, Part 13. Testing also satisfied initial testing requirements of 40 CFR 60, Subpart JJJ – New Source Performance Standards for Spark Ignition Internal Combustion Engines.

The 2022 Source Test was performed on the S-64 and S-65 LFG Engines by Blue Sky Environmental, LLC on July 14 and 15, 2022. The Test Report was submitted to BAAQMD on September 12, 2022. A summary of the report is presented in Appendix N.

The results for S-64 Engine indicates that the engine is in compliance with PTO Permit Condition 25635, Part 13. Table 3-5 below shows the results of the source test, averaged from three test runs (particulate and formaldehyde have a testing frequency of one engine per year).

Condition	S-64 Engine Average Results	Permit Limit	Compliance Status
NO _x (gm/BHp-hr)	0.01	0.15	In Compliance
CO (gm/BHp-hr)	0.4	1.8	In Compliance
NMOC (gm/BHp-hr as CH ₄)	0.02	0.16	In Compliance
Total Particulate (g/BHp)	0.05	0.10	In Compliance
Formaldehyde (lb/hr)	0.04	0.51	In Compliance

 Table 3-5
 S-64 Engine Source Test Results

The results for S-65 Engine indicates that the engine is in compliance with PTO Permit Condition 25635, Part 13. Table 3-6 below shows the results of the source test, averaged from three test runs.

Condition	S-65 Engine Average Results	Permit Limit	Compliance Status
NO _x (gm/BHp-hr)	0.09	0.15	In Compliance
CO (gm/BHp-hr)	0.2	1.8	In Compliance
NMOC (gm/BHp-hr as CH ₄)	0.02	0.16	In Compliance

Table 3-6 S-65 Engine Source Test Results

As directed by PG&E on 5/12/23, the engine plant had been shut down until the landslide area is fixed by PG&E/Caltrans. BAAQMD was notified on June 27, 2023 with the 10-day/30-day report that the following testing will not be completed as follows:

- 2nd and 3rd Quarter 2023 24-hour emissions testing of Engine No. 1 (S64) and Engine No. 2 (S65) by 9/30/23. Both engines were offline (Condition 25635 Part 4 (NOx), Part 5 (CO), Part 12 (H2S), and Part 14 (CH4))
- 2nd and 3rd Quarter 2023 Laboratory analysis of landfill gas to Engine inlet by 9/30/23. Engines were offline (2016 Compliance Agreement)
- July 2023 annual source tests for Engines S64 and S65 with the associated S71 Gas Treatment System (usually performed in July) will not be done because they were offline.

Testing will be resumed within 60 days of the engines restarting. The engines were restarted on April 8, 2024.

3.3 COMPLIANCE WITH §60.757(G)(1)

"A diagram of the collection system showing collection system positioning including wells, horizontal collectors..."

A map of the LFG collection system showing the positioning of all vertical wells, horizontal collectors, and other LFG extraction devices is included in Appendix A.

3.4 COMPLIANCE WITH §60.757(g)(2)

"The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based."

RLI's GCCS has historically provided LFG wells and collectors spaced in accordance with standard industry practices. The A-51 and A-60 flares, LFG extraction wells, and piping are more than adequate to move the current LFG flow rate. RLI will continue to add additional LFG control capacity as necessary with the approval of the BAAQMD. The installed collector density appears more than adequate for controlling surface emissions, based on continuous compliance and operational experience.

The total capacity of the LFG mover equipment was designed and will be designed to meet the current United States Environmental Protection Agency (EPA) Model AP-42 projections of LFG generation and the historic LFG extraction rates determined to be continuously available from the facility.

DEMONSTRATING COMPLIANCE WITH §60.757(g)(2)

"The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based."

Compliance with 40 CFR §60.757(g)(2) is maintained by performing quarterly SEM. Refer to Section 2.6, Surface Emissions Monitoring for information pertaining to the SEM results. These results show that the GCCS has sufficient coverage over the waste footprint. The current flaring system has the capacity to destroy more than twice the actual recovery. Well monitoring data shows that adequate vacuum is available at all points in the wellfield, demonstrating that the piping network is sufficient to handle all extracted LFG.

3.6 COMPLIANCE WITH §60.757(g)(3)

"The documentation of the presence of asbestos or non-degradable material for each area from which collection wells have been excluded based on the presence of asbestos or non-degradable material."

No segregated areas or accumulations of asbestos material are documented for the site in the GCCS Design Plan. Therefore, 40 CFR 60.757(g)(3) is not applicable.

3.7 COMPLIANCE WITH §60.757(g)(4)

"The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on non-productivity and the calculations of gas generation flow rate for each excluded area."

No non-productive areas have been excluded from the coverage of the GCCS. Therefore, 40 CFR 60.757(g)(4) is not applicable.

3.8 COMPLIANCE WITH §60.757(g)(5)

"The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is inadequate to move the maximum flow rate expected over the life of the landfill."

The present LFG mover equipment capacity is adequate to move the current LFG flow rate. RLI will continue to add additional LFG control capacity as necessary with the approval of the BAAQMD.

Zero (0) wells were added to and one (1) well was removed to the collection system during the reporting period (November 1, 2023 to April 30, 2024).

As of the end of this reporting period, 136 total collectors (132 vertical wells and 4 horizontal collectors) were in service at RLI.

3.9 COMPLIANCE WITH §60.757(g)(6)

"The provisions for the control of off-site migration."

RLI is a diked area that is completely surrounded by permanent surface water features (San Antonio Creek, Hans Slough, West Slough, and South Slough) which present a barrier to gas migration. The waste footprint is also surrounded by an engineered leachate collection trench that provides a further barrier to LFG migration. Based on the location of RLI and on existing LFG monitoring data, the existing GCCS has been adequate in preventing subsurface lateral migration of LFG to off-site locations.

DEMONSTRATING COMPLIANCE WITH §60.757(g)(6)

"The provisions for the control of off-site migration."

The landfill operator will continue surface monitoring in accordance with the approved monitoring plans. If the GCCS at RLI does not meet the measures of performance set forth in the NSPS/Emissions Guidelines (EG), the GCCS will be adjusted or modified in accordance with the NSPS/EG requirements.

3.10 COMPLIANCE AGREEMENT SUMMARY

In response to increased concentrations of H_2S , 1,4-dichlorobenzene and ethylbenzene observed both during routine sampling events and the 2016 Source Test. RLI entered into a Compliance Agreement with BAAQMD on November 22, 2016. The Compliance Agreement ended on January 15, 2023 with RLI and BAAQMD currently working on a new Compliance Agreement. The 2016 agreement included enhanced monitoring and reporting activities for RLI:

• The frequency for H₂S monitoring using Draeger/RAE tubes was increased from weekly to twice per week.

- Monthly fenceline monitoring for ground-level H₂S is now required.
- The frequency for TO-15 sampling for 1,4-dichlorobenzene and ethylbenzene was increased to quarterly.
- The frequency for instantaneous SEM was increased from quarterly to bimonthly.

Reports summarizing this monitoring are required to be submitted to BAAQMD by the 20th day of each month.

All terms of the Agreement were complied with during the reporting period. The monthly compliance reports were completed and submitted to BAAQMD on the following dates:

- December 8, 2023
- January 5, 2024
- February 7, 2024
- March 15, 2024

4 START-UP, SHUTDOWN, MALFUNCTION REPORT

Start-up, Shutdown, Malfunction (SSM) Report for the Collection and Control Systems at the Redwood Landfill

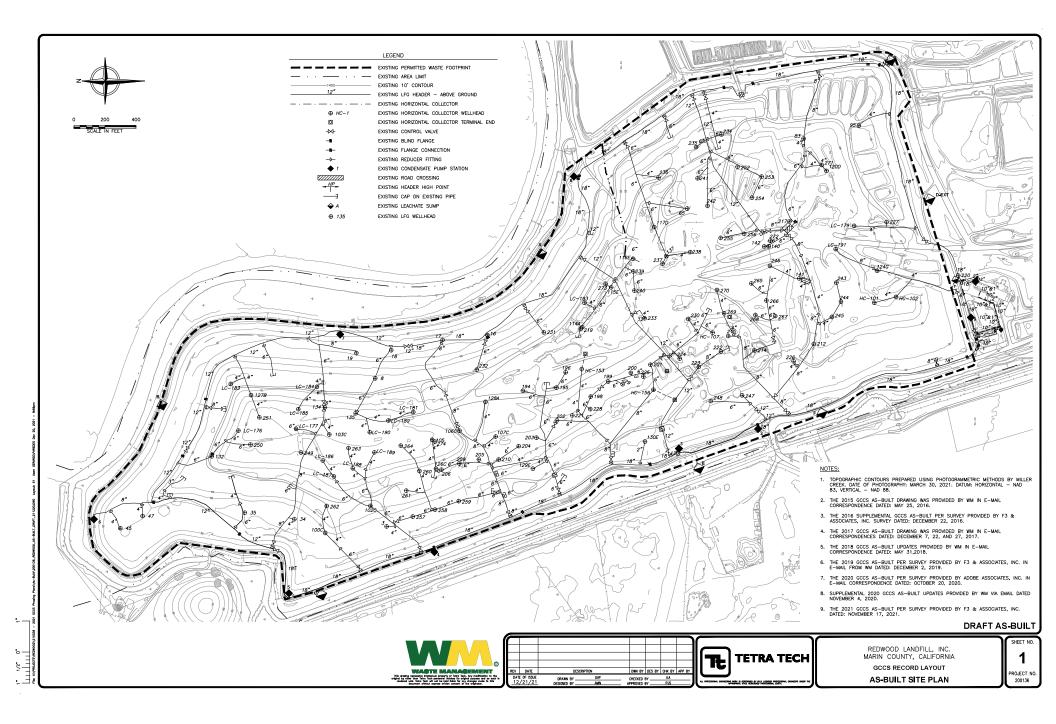
The NESHAP contained in 40 CFR Part 63, AAAA for MSW landfills to control hazardous air pollutants include the regulatory requirements for submittal of a semiannual report (under 40 CFR §63.10(d)(5) of the general provisions) if an SSM event occurred during the reporting period. The reports required by 40 CFR §63.1980(a) of the NESHAP and §60.757(f) of the NSPS summarize the GCCS exceedances. These two semi-annual reports contain similar information and have been combined as allowed by 40 CFR §63.10(d)(5)(i) of the General Provisions.

NESHAP 40 CFR Part 63, AAAA became effective on January 16, 2004. SSM events that occurred during the semi-annual reporting period (November 1, 2023 to April 30, 2024) are noted in this section and included in Appendix B. The following information is included as required:

- During the reporting period, 5 A-51 Flare SSM events, 24 A-60 Flare Zone A SSM events, and 1 A-60 Flare Zone B SSM events occurred. The time, duration, and cause of each event are included in Appendix B, Flare and Engine SSM Logs.
- During the reporting period, 8 wellfield SSM events occurred. The time and duration of these events are included in Appendix D, Wellfield SSM Log.
- During the reporting period, 26 S-64 Engine (#1) SSM events, 14 S-65 Engine (#2) SSM events occurred. The time, duration, and cause of each event are included in Appendix B, Flare & Engine SSM Logs
- During the reporting period, 0 monitoring/recorder equipment SSM event occurred.
- In all 78 flare, wellfield, and engine SSM events, automatic systems and operator actions were consistent with the standard operating procedures contained in the SSM Plan.
- Revisions of the SSM Plan to correct deficiencies in the landfill operations or procedures were neither required nor prepared (§63.6(e)(3)(viii)).

I certify the following:

Based on information and belief formed after reasonable inquiry, information on the startup, shutdown, malfunction forms, all accompanying reports, and other required certifications are true, accurate, and complete.


Signature of Responsible Official

May 30, 2024 Date

Scott Tignac Name of Responsible Official

APPENDIX A

SITE MAP

APPENDIX B

FLARE (A-51 & A-60) SSM LOGS, ENGINE (S-64 & S65) SSM LOGS, AND GCCS DOWNTIME SUMMARY

A-51 CONTROL DEVICE DOWNTIME LOG

Event No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason	(5) Applicable Regulation	(6) Type of Event	(7) Procedures Used (a),(b)	(8) Did Steps Taken Vary From (7)	(9) Did Event Cause Any Emission Limit Exceedance?	(10) Describe Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed
	x Shutdown		9/20/23 10:30	9/20/23 10:32	0.03		Manual shutdown running on	x 113: Inspection/Maintenance 116: Well Raising	x Manual (Go to 7)	Procedures 1 to 3	Yes (Go to 9) x No	Yes (Go to 10)			
1		A-51 Flare				2208.80	A60 only. Manual restart for flare	· 5	Automatic (Go to 9)					Mike Chan	12/21/2023
	x Startup		12/21/23 11:18	12/21/23 11:20	0.03		maintenance and testing	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
	Malfunction							118: Construction Activities	Automatic (Go to 9)		x No	No			ļ/
			12/21/23 14:56	12/21/23 14:58	0.03		Manual shutdown running on	x 113: Inspection/Maintenance	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
2	x Shutdown	A-51 Flare				432.60	A60 only. Manual restart for flare	116: Well Raising	Automatic (Go to 9)		x No	No		Mike Chan	1/8/2024
	x Startup		1/8/24 15:32	1/8/24 15:34	0.03		maintenance and testing	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
	Malfunction							118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			<u> </u>
			1/8/24 15:34	1/8/24 15:36	0.03		Manual shutdown running on	x 113: Inspection/Maintenance	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
3	x Shutdown	A-51 Flare				17.87	A60 only. Manual restart for flare		Automatic (Go to 9)	1 to 3	x No	No		Mike Chan	1/9/2024
	x Startup		1/9/24 9:26	1/9/24 9:28	0.03		maintenance. A51 source test on	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
	Malfunction				0.00		1/10/24.	118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			3/25/24 5:08	3/25/24 5:10	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			1
4	x Shutdown	A-51 Flare	0/20/24 0.00	0/20/24 0.10	0.00	2.73	Low flow alarm shutdown. Flare	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		Mike Chan	3/25/2024
-	x Startup	A-011 laic	3/25/24 7:52	3/25/24 7:54	0.03	2.10	Cycling up and down.	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		WINC OTIAN	0/20/2024
	Malfunction		3/23/24 1.32	5/25/24 7.54	0.05			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/8/24 9:38	4/8/24 9:40	0.03			x 113: Inspection/Maintenance	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
5	x Shutdown	A-51 Flare	4/0/24 9.50	4/0/24 9.40	0.05	542.37	Manual shutdown for Engine Plant startup. Operate system	116: Well Raising	Automatic (Go to 9)	1 to 3	x No	No		Mike Chan	5/1/2024
5	x Startup	A-JI Flaid	A 51 chut c	lown as of May 1,	2024	J42.J1	with A60 only.	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			5/1/2024
	Malfunction		A-51 shut t	lowit as of May 1,	2024			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			

A-60 ZONE A CONTROL DEVICE DOWNTIME LOG

Event No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason		(5) Applicable Regulation		(6) Type of Event	(7) Procedures Used (a),(b)		(8) Did Steps aken Vary From (7)	1	(9) Did Event Cause Any Emission Limit Exceedance?	(10) Describe Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed
1	x Shutdown x Startup	A-60 Zone A	11/15/23 9:12	11/15/23 9:14	0.03	0.10	PG&E unplanned power outage. Flare switched to generator		113: Inspection/Maintenance116: Well Raising117: Gas Collection	х	Manual (Go to 7) Automatic (Go to 9) Manual (Go to 7)	Procedures 1 to 3 Procedures		Yes (Go to 9) No Yes (Go to 9)	x	Yes (Go to 10) No Yes (Go to 10)		Mike Chan	11/15/2023
	Malfunction		11/15/23 9:18	11/15/23 9:20	0.03		power.		118: Construction Activities	_	Automatic (Go to 9)	1 to 4		No	x	No			
	x Shutdown		11/21/23 12:48	11/21/23 12:50	0.03			х	113: Inspection/Maintenance 116: Well Raising	_	Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3		Yes (Go to 9) No		Yes (Go to 10) No			
2	x Startup	A-60 Zone A	11/21/23 13:20	11/21/23 13:22	0.03	0.53	VFD/Blower alarm shutdown.		117: Gas Collection	_	Manual (Go to 7)	Procedures		Yes (Go to 9)	×	Yes (Go to 10)		Mike Chan	11/21/2023
	Malfunction		11/21/20 10:20	11/21/20 10.22	0.00			_	118: Construction Activities		Automatic (Go to 9)	1 to 4	х			No			
	x Shutdown		1/25/24 9:52	1/25/24 9:54	0.03		Low temperature	_	113: Inspection/Maintenance 116: Well Raising	_	Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3	\square	Yes (Go to 9) No	x	Yes (Go to 10) No			
3	x Startup	A-60 Zone A	1/25/24 9:54	1/25/24 9:56	0.03	0.03	shutdown/restart		117: Gas Collection	-	Manual (Go to 7)	Procedures		Yes (Go to 9)	~	Yes (Go to 10)		Mike Chan	1/25/2024
	Malfunction		1/20/21 0.01	1/20/21 0.00	0.00				118: Construction Activities		Automatic (Go to 9)	1 to 4		No	х	No			
	x Shutdown		1/25/24 10:02	1/25/24 10:04	0.03		Manual shutdown for	_	113: Inspection/Maintenance 116: Well Raising		Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3	-	Yes (Go to 9) No		Yes (Go to 10) No			
4	x Startup	A-60 Zone A	1/25/24 10:46	1/25/24 10:49	0.02	0.73	maintenance/thermocouple.		117: Gas Collection		Manual (Go to 7)	Procedures		Yes (Go to 9)		Yes (Go to 10)		Mike Chan	1/25/2024
	Malfunction		1/25/24 10:46	1/25/24 10:48	0.03				118: Construction Activities		Automatic (Go to 9)	1 to 4		No		No			
			2/1/24 10:32	2/1/24 10:34	0.03				113: Inspection/Maintenance		Manual (Go to 7)	Procedures	-	Yes (Go to 9)		Yes (Go to 10)			
5	x Shutdown x Startup	A-60 Zone A				1.33	Manual shutdown for maintenance/thermocouple	_	116: Well Raising 117: Gas Collection		Automatic (Go to 9) Manual (Go to 7)	1 to 3 Procedures	_	No Yes (Go to 9)		No Yes (Go to 10)		Mike Chan	2/1/2024
	Malfunction		2/1/24 11:52	2/1/24 11:54	0.03			_	118: Construction Activities		Automatic (Go to 9)	1 to 4	-	No	-	No			
			2/5/24 6:44	2/5/24 6:46	0.03			х	113: Inspection/Maintenance		Manual (Go to 7)	Procedures		Yes (Go to 9)		Yes (Go to 10)			
6	x Shutdown	A-60 Zone A				0.27	VFD/Flame alarm shutdown.		116: Well Raising		Automatic (Go to 9)	1 to 3		No	х	No		Mike Chan	2/5/2024
	x Startup Malfunction		2/5/24 7:00	2/5/24 7:02	0.03			_	117: Gas Collection 118: Construction Activities		Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 4	-	Yes (Go to 9)	-	Yes (Go to 10) No			
	Manufiction								113: Inspection/Maintenance		Manual (Go to 7)	Procedures	-	No Yes (Go to 9)	×	Yes (Go to 10)			
7	x Shutdown	A CO Zama A	2/5/24 13:50	2/5/24 13:52	0.03	0.40		-	116: Well Raising	-	Automatic (Go to 9)	1 to 3		No	х	No		Miles Chan	0/5/0004
/	x Startup	A-60 Zone A	2/5/24 13:56	2/5/24 13:58	0.03	0.10	VFD/Flame alarm shutdown.		117: Gas Collection	-	Manual (Go to 7)	Procedures		Yes (Go to 9)		Yes (Go to 10)		Mike Chan	2/5/2024
	Malfunction		2/0/21 10:00	2/0/21 10:00	0.00			-	118: Construction Activities		Automatic (Go to 9)	1 to 4		No	х	No			ļ
	x Shutdown		2/14/24 7:24	2/14/24 7:26	0.03			х	113: Inspection/Maintenance 116: Well Raising	_	Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3	-	Yes (Go to 9) No	v	Yes (Go to 10) No			
8	x Startup	A-60 Zone A				3.63	Flame alarm shutdown.		117: Gas Collection	-	Manual (Go to 7)	Procedures		Yes (Go to 9)	Â	Yes (Go to 10)		Mike Chan	2/14/2024
	Malfunction		2/14/24 11:02	2/14/24 11:04	0.03			-	118: Construction Activities	_	Automatic (Go to 9)	1 to 4	х			No			
			2/26/24 6:58	2/26/24 7:00	0.03				113: Inspection/Maintenance		Manual (Go to 7)	Procedures		Yes (Go to 9)		Yes (Go to 10)			
9	x Shutdown	A-60 Zone A			0.00	0.10	Flame alarm shutdown.		116: Well Raising		Automatic (Go to 9)	1 to 3		No	х	No		Mike Chan	2/26/2024
	x Startup Malfunction		2/26/24 7:04	2/26/24 7:06	0.03				117: Gas Collection 118: Construction Activities	_	Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 4		Yes (Go to 9)		Yes (Go to 10) No			
	Manufiction								113: Inspection/Maintenance		Manual (Go to 7)	Procedures		Yes (Go to 9)	^	Yes (Go to 10)			
10	x Shutdown	A-60 Zone A	2/26/24 8:38	2/26/24 8:40	0.03	0.30	Flome clorm chutdourn		116: Well Raising	-	Automatic (Go to 9)	1 to 3		No	х	No		Mike Chan	2/26/2024
10	x Startup	A-60 Zone A	2/26/24 8:56	2/26/24 8:58	0.03	0.30	Flame alarm shutdown.		117: Gas Collection	-	Manual (Go to 7)	Procedures		Yes (Go to 9)		Yes (Go to 10)		Mike Chan	2/20/2024
	Malfunction				0.00				118: Construction Activities		Automatic (Go to 9)	1 to 4		No	х	No			
	x Shutdown		3/11/24 7:04	3/11/24 7:06	0.03				113: Inspection/Maintenance 116: Well Raising	-	Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3		Yes (Go to 9)	×	Yes (Go to 10) No			
11	x Startup	A-60 Zone A				0.10	Low flow alarm shutdown.		117: Gas Collection	-	Manual (Go to 7)	Procedures		Yes (Go to 9)	Ê	Yes (Go to 10)		Mike Chan	3/11/2024
	Malfunction		3/11/24 7:10	3/11/24 7:12	0.03				118: Construction Activities	-	Automatic (Go to 9)	1 to 4		No	х	No			
			3/11/24 11:16	3/11/24 11:18	0.03				113: Inspection/Maintenance	-	Manual (Go to 7)	Procedures		Yes (Go to 9)		Yes (Go to 10)			
12	x Shutdown	A-60 Zone A			5.00	0.23	Low flow alarm due to S71		116: Well Raising	_	Automatic (Go to 9)	1 to 3		No	х	No		Mike Chan	3/11/2024
	x Startup Malfunction		3/11/24 11:30	3/11/24 11:32	0.03		switching lead/lag vessels	_	117: Gas Collection	_	Manual (Go to 7)	Procedures 1 to 4	-	Yes (Go to 9)	~	Yes (Go to 10)			
	Malfunction								118: Construction Activities	Х	Automatic (Go to 9)	1104		No	Х	No			L!

A-60 ZONE A CONTROL DEVICE DOWNTIME LOG

Event No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason	(5) Applicable Regulation	(6) Type of Event	(7) Procedures Used (a),(b)	(8) Did Steps Taken Vary From (7)	(9) Did Event Cause Any Emission Limit Exceedance?	(10) Describe Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed
	x Shutdown		3/12/24 9:56	3/12/24 9:58	0.03			x 113: Inspection/Maintenance 116: Well Raising	Manual (Go to 7) x Automatic (Go to 9)	Procedures 1 to 3	Yes (Go to 9)	Yes (Go to 10) x No			
13	x Startup	A-60 Zone A	0/40/04 40 00		0.00	0.17	Low flow alarm shutdown.	117: Gas Collection	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		Mike Chan	3/12/2024
	Malfunction		3/12/24 10:06	3/12/24 10:08	0.03			118: Construction Activities	x Automatic (Go to 9)	1 to 4	No	x No			
			3/14/24 8:14	3/14/24 8:16	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
14	x Shutdown	A-60 Zone A	5/14/24 0.14	3/14/24 0.10	0.00	0.10	Low flow alarm shutdown.	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		Mike Chan	3/14/2024
	x Startup		3/14/24 8:20	3/14/24 8:22	0.03	0110		117: Gas Collection	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			0, 1, 1, 202.
	Malfunction							118: Construction Activities	x Automatic (Go to 9)	1 to 4	No	x No			
I			3/15/24 6:44	3/15/24 6:46	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
15	x Shutdown	A-60 Zone A				0.07	Low flow alarm shutdown.	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		Mike Chan	3/15/2024
	x Startup		3/15/24 6:48	3/15/24 6:50	0.03			117: Gas Collection	Manual (Go to 7)	Procedures 1 to 4	Yes (Go to 9)	Yes (Go to 10)			
	Malfunction							118: Construction Activities	x Automatic (Go to 9)		NO	x No			
	y Chutdown		3/15/24 12:08	3/15/24 12:10	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures 1 to 3	Yes (Go to 9)	Yes (Go to 10)			
16	x Shutdown	A-60 Zone A				0.07	Low flow alarm shutdown.	116: Well Raising 117: Gas Collection	x Automatic (Go to 9)		Yes (Go to 9)	x No Yes (Go to 10)		Mike Chan	3/15/2024
	x Startup Malfunction		3/15/24 12:12	3/15/24 12:14	0.03			118: Construction Activities	Manual (Go to 7) x Automatic (Go to 9)	Procedures 1 to 4		x No			
	Wanunction							x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
	x Shutdown		3/19/24 11:04	3/19/24 11:06	0.03			116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No			
17	x Startup	A-60 Zone A				0.13	Low flow alarm shutdown.	117: Gas Collection	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		Mike Chan	3/19/2024
	Malfunction		3/19/24 11:12	3/19/24 11:14	0.03			118: Construction Activities	x Automatic (Go to 9)	1 to 4	No	x No			
	Wandhoton							x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
	x Shutdown		3/20/24 10:44	3/20/24 10:46	0.03			116: Well Raising	x Automatic (Go to 9)	1 to 3		x No			
18	x Startup	A-60 Zone A				0.10	Low flow alarm shutdown.	117: Gas Collection	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		Mike Chan	3/20/2024
	Malfunction		3/20/24 10:50	3/20/24 10:52	0.03			118: Construction Activities	x Automatic (Go to 9)	1 to 4	No	x No			
								x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
10	x Shutdown		3/28/24 10:38	3/28/24 10:40	0.03	o ==		116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No			
19	x Startup	A-60 Zone A				0.77	Low flow alarm shutdown.	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		Mike Chan	3/28/2024
	Malfunction		3/28/24 11:24	3/28/24 11:26	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			2/20/24 15:00	3/28/24 15:10	0.02			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
20	x Shutdown	A-60 Zone A	3/28/24 15:08	3/20/24 15.10	0.03	0.07	Low flow alarm shutdown.	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		Mike Chan	3/28/2024
20	x Startup	A-00 Zone A	3/28/24 15:12	3/28/24 15:14	0.03	0.07	Low now alarm shutdown.	117: Gas Collection	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		WIKE CHAIT	3/20/2024
	Malfunction		5/20/24 15.12	5/20/24 15:14	0.05			118: Construction Activities	x Automatic (Go to 9)	1 to 4	No	x No			
			4/8/24 18:46	4/8/24 18:48	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
21	x Shutdown	A-60 Zone A			0.00	0.10	Low flow alarm shutdown.	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		Mike Chan	4/8/2024
	x Startup		4/8/24 18:52	4/8/24 18:54	0.03		Engines coming back online	117: Gas Collection	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
	Malfunction							118: Construction Activities	x Automatic (Go to 9)	1 to 4	No	x No			
			4/10/24 23:52	4/10/24 23:54	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures 1 to 3	Yes (Go to 9)	Yes (Go to 10)			
22	x Shutdown x Startup	A-60 Zone A				0.13	Low flow alarm shutdown.	116: Well Raising 117: Gas Collection	x Automatic (Go to 9) Manual (Go to 7)	Procedures	Yes (Go to 9)	x No Yes (Go to 10)		Mike Chan	4/11/2024
	Malfunction		4/11/24 0:00	4/11/24 0:02	0.03			118: Construction Activities	x Automatic (Go to 9)	1 to 4	No	x No			
	manufiction							x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
22	x Shutdown	A-60 Zone A	4/12/24 2:58	4/12/24 3:00	0.03	0.20	Low flow alarm shutdown.	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		Mike Chan	4/12/2024
23	x Startup	A-OU ZONE A	4/12/24 3:10	4/12/24 3:12	0.03	0.20	Low now alarm shuldown.	117: Gas Collection	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			4/12/2024
	Malfunction		7,12/27 0.10		0.00			118: Construction Activities	x Automatic (Go to 9)	1 to 4	No	x No			
ļ	and the state		4/12/24 9:28	4/12/24 9:30	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
24	x Shutdown x Startup	A-60 Zone A				0.07	Low flow alarm shutdown.	116: Well Raising	x Automatic (Go to 9)	1 to 3	No Voc (Co to 0)	x No		Mike Chan	4/12/2024
			4/12/24 9:32	4/12/24 9:34	0.03			117: Gas Collection	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)	1	1	

A-60 ZONE B CONTROL DEVICE DOWNTIME LOG

vent No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason	(5) Applicable Regulation	(6) Type of Event	(7) Procedures Used (a),(b)	(8) Did Steps Taken Vary From (7)	(9) Did Event Cause Any Emission Limit Exceedance?	(10) Describe Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed
			7/13/23 9:34	7/13/23 9:36	0.03			x 113: Inspection/Maintenance	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
1	x Shutdown	A-60 Zone B	1/13/23 9.34	1113/23 9.30	0.05	7022.43	Manual shutdown A60B after	116: Well Raising	Automatic (Go to 9)	1 to 3	x No	No		Mike Chan	5/1/2024
	Startup	A-00 Zone B	Zone B shut	down as of May 1	2024	7022.43	A60B source testing.	117: Gas Collection	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		WIKE CHAIT	3/1/2024
	Malfunction			aowin as of May 1	, 2027			118: Construction Activities	Automatic (Go to 9)	1 to 4	No	No			

(a) STANDARD OPERATING PROCEDURES

Shutdown	
Procedure No.	Procedure
1.	Ensure that there is no unsafe conditions present, contact manager immediately
2.	Initiate shutdown sequence below by one or more of the following (Note date and time in Section 1 of form above)
	a. Press Emergency Stop if necessary
	b. Close On/Off switch(es) or Push On/Off button(s)
	c. Close adjacent valves if necessary
3.	Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note date and time in Section 2 of form above)
Chartern	
Startup	Brassdurg
Procedure No.	Procedure
1.	Ensure that there is no unsafe conditions present
2.	Ensure that the system is ready to start by one of the following:
	a. Valves are in correct position
	b. Levels, pressures, and temperatures are within normal starting range
	c. Alarms are cleared
	d. Power is on and available to control panel and ready to energized equipment.

- e. Emergency stop is de-energized
 Initiate start sequence (Note time and date in section 1 of form above)
 Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note time and date in Section 2 of form above)

3. 4. Malfunction

EQUIPMENT	PURPOSE	MALFUNCTION	COMMON CAUSES	PROCEDURE NOTYPICAL RESPONSE ACTIONS
`		EVENT		
LFG Collection and Control Sys				
Blower or Other Gas Mover Equipment	Applies vacuum to wellfield to extract LFG and transport to control device	Loss of LFG Flow/Blower Malfunction	Flame arrestor fouling/detrioratior -Automatic valve problems -Blower failure (e.g., belt, motor, impeller, coupling, seizing, etc.) -Loss of power -Extraction piping failure -Condensate Knock-out problems -Extraction piping blockages	1. Repair breakages in extraction piping 2. Clean flame arrestor 3. Repair blockages in extraction piping 4. Verify automatic valve operation, compressed air/nitrogen supply 5. Notify power utility, if appropriat 6. Provide/utilize auxiliary power source, if necessar 7. Repair Blower 9. Activate back-up blower, if available 10. Clean knock-up pot/demister 11. Drain knock-out pot
Extraction Wells and Collection Piping	Conduits for extractions and movement of LFG flow	Collection well and pipe failures	-Break/crack in header or lateral piping -Leaks at wellheads, valves, flanges, Test ports, seals, couplings, etc. -Collection piping blockages -Problems due to settlement (c.g. pipe separation, deformation, development of low points	12. Repair leaks or breaks in lines or wellheads 13. Follow procedures for loss of LFG flow/blower malfunction 14. Repair blockages in collection piping 15. Repair settlement in collection piping 16. Re-install, repair, or replace piping
Blower or Other Gas Mover Equipment And Control Device	Collection and control of LFG	Loss of electrical power	- Force majeure/Act of God (e.g., lightning, flood, earthquake, etc.) -Area-wide or local blackout or brown-ou -Interruption in service (e.g. blown service fuse -Electrical line failure -Breaker trip -Transformer failure -Motor starter failure/trip -Motor starter failure/trip -Overdraw of power -Problems in electrical panel -Damage to electrical equipment from on-site operations	17. Check/reset breaker 18. Check/repair telectrical panel components 19. Check/repair motor startet 20. Check/repair motor startet 21. Check/repair dectrical line 22. Test amperage to various equipment 23. Contact electricity applien 24. Contact/contract electrician 25.Provide auxiliary power (if necessary
LFG Control Device	Combusts LFG	Low temperature conditions at control device	-Problems with temperature -monitoring equipmen -Problems/failure of -thermocouple and/or thermocouple wiring -Change of LFG flow -Change of LFG quality -Problems with air louvers -Problems with airfule controls -Change in atmospheric conditions	 Check/repair temperature monitoring equipment Check/repair thermocouple and/or wiring Follow procedures for loss of flow/blower malfunction Check/adjust louvers Check/adjust air/fuel controls
LFG Control Device	Combusts LFG	Loss of Flame	- Comparing an auto-partice construction - Problems/failure of thermocouple - Loss/change of LFG flow - Loss/change of LFG quality - Problems with air/fuel controls - Problems with temperature monitoring equipmen	31. Check/repair temperature monitoring equipment 32. Check/repair thermocouple 33. Follow procedures for loss of flow/blower malfunction 44. Check/adjust air/fuel controls 35. Check/adjust/Fepair flame sensor 36. Check/adjust/FG collectors
Flow Monitoring/ Recording Device	Measures and records gas flow from collection system to control	Malfunctions of Flow Monitoring/Recording Device	-Problems with orifice plate, pitot tube, or other in-line flow measuring device -Problems with device controls and/or wiring -Problems with chart recorder	 Check/adjust/repair flow measuring device and/or wiring Check/repair chart recorder Replace paper in chart recorder
Temperature Monitoring/ Recording Device	Monitors and records combustion temperature of enclosed combustion device	Malfunctions of Temperature Monitoring/Recording Device	-Problems with thermocouple -Problems with device controls and/or wiring -Problems with chart recorder	 Check/adjust/repair thermocouple Check/adjust/repair controller and/or wiring Check/adjust/repair cletricial panel component Check/adjust/repair cletricial panel component Check/repair chart recordei Replace paper in chart recordei
Control Device	Combusts LFG	Other Control Device Malfunctions	-Control device smoking (i.e. visible emissions) -Problems with flare insulation -Problems with pilot light system -Problems with airfuel controllers -Problems with diarfuel controllers -Problems with thermocouple -Problems with flame arrester -Problems with flame arrester -Alarmed malfunction conditions not covered abow -Unalarmed conditions discovered during inspection not covered above	 Site-specific diagnosis procedure: Site-specific responses actions based on diagnosis Open manual louvers Clean pitot orifice Clean/rain finame arrestor Refill propane supply Check/repair pilot sparking system

(b) For each permit limit exceedance complete an "SSM Plan Departure Form".

REDWOOD LANDFILL, INC. WMRE LFG Engine #1 (S-64) DEVICE DOWNTIME LOG

							<u> </u>					(9) Did Event	(10) Describe		
Event No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason	(5) Applicable Regulation	(6) Type of Event	(7) Procedures Used (a),(b)	(8) Did Steps Taken Vary From (7)	Cause Any Emission Limit Exceedance?	Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed
			5/18/23 16:35	5/18/23 16:37	0.03			x 113: Inspection/Maintenance	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
1	x Shutdown	Engine #1	3/10/23 10:33	3/10/23 10:37	0.05	7817.67	PG&E 5/12/23: No electricity export until landslide area is	116: Well Raising	Automatic (Go to 9)	1 to 3	x No	No		C Johnson	4/8/2024
	Startup	(S-64)	4/8/24 10:15	4/8/24 10:17	0.03	1011.01	repaired	117: Gas Collection	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		o oonnoon	4/0/2024
	Malfunction		1/0/21 10:10	1/0/21 10:11	0.00			118: Construction Activities	Automatic (Go to 9)	1 to 4	No	No			
			4/8/24 10:30	4/8/24 10:32	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
2	x Shutdown	Engine #1				0.25	compressor vibation	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		C Johnson	4/8/2024
	x Startup	(S-64)	4/8/24 10:45	4/8/24 10:47	0.03			117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
	Malfunction							118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/8/24 11:00	4/8/24 11:02	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures 1 to 3	Yes (Go to 9)	Yes (Go to 10)			
3	x Shutdown	Engine #1 (S-64)				0.50	detonation 17	116: Well Raising	x Automatic (Go to 9)		No	x No		C Johnson	4/8/2024
	x Startup Malfunction	(0-04)	4/8/24 11:30	4/8/24 11:32	0.03			117: Gas Collection 118: Construction Activities	x Manual (Go to 7)	Procedures 1 to 4	Yes (Go to 9) x No	Yes (Go to 10) No			
	wanunction							x 113: Inspection/Maintenance	Automatic (Go to 9) Manual (Go to 7)		Yes (Go to 9)	Yes (Go to 10)			
	x Shutdown	Engine #1	4/8/24 12:30	4/8/24 12:32	0.03			116: Well Raising	x Automatic (Go to 9)	Procedures 1 to 3	No	x No			
4	x Startup	(S-64)				0.92	low jacket water outlet pressure	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/8/2024
	Malfunction	(0 0 1)	4/8/24 13:25	4/8/24 13:27	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
	Manufiction							x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
	x Shutdown	Engine #1	4/8/24 14:00	4/8/24 14:02	0.03			116 Well Raising	x Automatic (Go to 9)	1 to 3	No	x No			
5	x Startup	(S-64)				0.17	low jacket water outlet pressure	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/8/2024
	Malfunction		4/8/24 14:10	4/8/24 14:12	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
								x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
	x Shutdown	Engine #1	4/8/24 14:25	4/8/24 14:27	0.03	0.47		116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No			1/0/0001
6	x Startup	(S-64)	4/0/04 44.05	4/0/04 44:07	0.00	0.17	low jacket water outlet pressure	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/8/2024
	Malfunction		4/8/24 14:35	4/8/24 14:37	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/8/24 14:50	4/8/24 14:52	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
7	x Shutdown	Engine #1	4/0/24 14.50	4/0/24 14.52	0.03	0.33	exhaust temperature	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		C Johnson	4/8/2024
'	x Startup	(S-64)	4/8/24 15:10	4/8/24 15:12	0.03	0.55	exhaust temperature	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/0/2024
	Malfunction		4/0/24 13:10	4/0/24 13:12	0.05			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/8/24 16:10	4/8/24 16:12	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
8	x Shutdown	Engine #1	4/0/24 10:10	4/0/24 10:12	0.00	5.00	low jacket water outlet pressure	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		C Johnson	4/8/2024
Ĵ	x Startup	(S-64)	4/8/24 21:10	4/8/24 21:12	0.03	0.00		117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		0 00000000	., 0, 202 .
	Malfunction							118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/9/24 8:55	4/9/24 8:57	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
9	x Shutdown	Engine #1				2.83	gas compressor vibration	116: Well Raising	x Automatic (Go to 9)	1 to 3		x No		C Johnson	4/9/2024
	x Startup	(S-64)	4/9/24 11:45	4/9/24 11:47	0.03			117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
	Malfunction							118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/9/24 14:45	4/9/24 14:47	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures 1 to 3	Yes (Go to 9)	Yes (Go to 10)			
10	x Shutdown x Startup	Engine #1 (S-64)				0.25	gas compressor vibration	116: Well Raising	x Automatic (Go to 9)			x No		C Johnson	4/9/2024
		(0-04)	4/9/24 15:00	4/9/24 15:02	0.03			117: Gas Collection 118: Construction Activities	x Manual (Go to 7)	Procedures 1 to 4	Yes (Go to 9) x No	Yes (Go to 10)			
	Malfunction							x 113: Inspection/Maintenance	Automatic (Go to 9) Manual (Go to 7)		Yes (Go to 9)	No Yes (Go to 10)			
	x Shutdown	Engine #1	4/10/24 3:05	4/10/24 3:07	0.03			116: Well Raising	x Automatic (Go to 9)	Procedures 1 to 3	No	x No			
11	x Shutdown x Startup	(S-64)				0.92	engine over speed	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/10/2024
	Malfunction	()	4/10/24 4:00	4/10/24 4:02	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
	manufiction							x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
1	x Shutdown	Engine #1	4/10/24 19:20	4/10/24 19:22	0.03			116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No			
12	x Startup	(S-64)			_	1.00	engine over speed	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/10/2024
	Malfunction	, í	4/10/24 20:20	4/10/24 20:22	0.03			118: Construction Activities	Automatic (Go to 9)		x No	No			
I	mananouon	<u> </u>					<u> </u>								

REDWOOD LANDFILL, INC. WMRE LFG Engine #1 (S-64) DEVICE DOWNTIME LOG

Event No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason	(5) Applicable Regulation	(6) Type of Event	(7) Procedures Used (a),(b)	(8) Did Steps Taken Vary From (7)	(9) Did Event Cause Any Emission Limit Exceedance?	(10) Describe Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed
13	x Shutdown x Startup	Engine #1 (S-64)	4/13/24 13:05	4/13/24 13:07	0.03	0.75	detonation 17	x 113: Inspection/Maintenance 116: Well Raising 117: Gas Collection	Manual (Go to 7) x Automatic (Go to 9) x Manual (Go to 7)	Procedures 1 to 3 Procedures	Yes (Go to 9) No Yes (Go to 9)	Yes (Go to 10) x No Yes (Go to 10)		C Johnson	4/13/2024
	Malfunction	~ /	4/13/24 13:50	4/13/24 13:52	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/15/24 14:40	4/15/24 14:42	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
14	x Shutdown	Engine #1	4/13/24 14:40	4/13/24 14.42	0.05	0.92	exhasut claps broken	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		C Johnson	4/15/2024
	x Startup	(S-64)	4/15/24 15:35	4/15/24 15:37	0.03			117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
	Malfunction							118: Construction Activities	Automatic (Go to 9)		x No	No			
	y Chutdown		4/18/24 8:55	4/18/24 8:57	0.03			x 113: Inspection/Maintenance	x Manual (Go to 7)	Procedures 1 to 3	Yes (Go to 9)	Yes (Go to 10)			
15	x Shutdown x Startup	Engine #1 (S-64)				0.17	113 114 wire change to q2 q2	116: Well Raising 117: Gas Collection	Automatic (Go to 9) x Manual (Go to 7)	Procedures	x No Yes (Go to 9)	No Yes (Go to 10)		C Johnson	4/18/2024
	Malfunction	(0 0 1)	4/18/24 9:05	4/18/24 9:07	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
	Walturiction							x 113: Inspection/Maintenance	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
	x Shutdown	Engine #1	4/18/24 21:10	4/18/24 21:12	0.03			116: Well Raising	Automatic (Go to 9)	1 to 3	x No	No			
16	x Startup	(S-64)				1.50	greg adjust gas flow	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/18/2024
	Malfunction		4/18/24 22:40	4/18/24 22:42	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/40/04 00.55	4/40/04 00:57	0.02			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
17	x Shutdown	Engine #1	4/18/24 22:55	4/18/24 22:57	0.03	0.17	condensate	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		C Johnson	4/18/2024
17	x Startup	(S-64)	4/18/24 23:05	4/18/24 23:07	0.03	0.17	condensate	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/10/2024
	Malfunction		4/10/24 23:03	4/10/24 23.07	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/19/24 8:45	4/19/24 8:47	0.03			x 113: Inspection/Maintenance	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
18	x Shutdown	Engine #1	1,10,210.10	1110/210.11	0.00	7.00	plant oputage	116: Well Raising	Automatic (Go to 9)	1 to 3	x No	No		C Johnson	4/19/2024
	x Startup	(S-64)	4/19/24 15:45	4/19/24 15:47	0.03		Prem oberrado	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		0.000	.,
	Malfunction							118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/19/24 15:45	4/19/24 15:47	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
19	x Shutdown	Engine #1 (S-64)				1.17	unknown	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		C Johnson	4/19/2024
	x Startup	(3-04)	4/19/24 16:55	4/19/24 16:57	0.03			117: Gas Collection 118: Construction Activities	x Manual (Go to 7)	Procedures 1 to 4	Yes (Go to 9)	Yes (Go to 10)			
	Malfunction							x 113: Inspection/Maintenance	Automatic (Go to 9) x Manual (Go to 7)		x No Yes (Go to 9)	No Yes (Go to 10)			
	x Shutdown	Engine #1	4/22/24 6:55	4/22/24 6:57	0.03			116: Well Raising	Automatic (Go to 9)	Procedures 1 to 3	x No	No			
20	x Startup	(S-64)				6.42	broken clapms/oil leak	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/22/2024
	Malfunction	()	4/22/24 13:20	4/22/24 13:22	0.03			118: Construction Activities	Automatic (Go to 9)		x No	No			
								x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
0.1	x Shutdown	Engine #1	4/23/24 23:50	4/23/24 23:52	0.03	0.75		116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No			4/04/0004
21	x Startup	(Š-64)	4/24/24 0.25	4/04/04 0:07	0.02	0.75	engine over speed	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/24/2024
	Malfunction		4/24/24 0:35	4/24/24 0:37	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/24/24 1:10	4/24/24 1:12	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
22	x Shutdown	Engine #1	4/24/24 1.10	4/24/24 1.12	0.05	0.17	engine over speed	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		C Johnson	4/24/2024
~~~	x Startup	(S-64)	4/24/24 1:20	4/24/24 1:22	0.03	0.17	engine over speed	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		0 001113011	7/27/2027
	Malfunction		1/2 1/21 1.20	WE WE I 1122	0.00			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
1			4/24/24 2:15	4/24/24 2:17	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
23	x Shutdown	Engine #1	-			0.67	engine over speed	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		C Johnson	4/24/2024
	x Startup	(S-64)	4/24/24 2:55	4/24/24 2:57	0.03		Ŭ '	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
┣──	Malfunction							118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			ļ
1		<b>–</b>	4/24/24 18:35	4/24/24 18:37	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures 1 to 3	Yes (Go to 9)	Yes (Go to 10)			
24	x Shutdown x Startup	Engine #1 (S-64)				1.25	gas compressor shut down	116: Well Raising 117: Gas Collection	x Automatic (Go to 9)		No Xos (Co to 9)	x No		C Johnson	4/24/2024
		(0-04)	4/24/24 19:50	4/24/24 19:52	0.03				x Manual (Go to 7)	Procedures 1 to 4	Yes (Go to 9)	Yes (Go to 10)			
	Malfunction							118: Construction Activities	Automatic (Go to 9)	1.04	x No	No			

### REDWOOD LANDFILL, INC. WMRE LFG Engine #1 (S-64) DEVICE DOWNTIME LOG

Event No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason	(5) Applicable Regulation	(6) Type of Event	(7) Procedures Used (a),(b)	(8) Did Steps Taken Vary From (7)	(9) Did Event Cause Any Emission Limit Exceedance?	(10) Describe Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed
			4/25/24 7:20	4/25/24 7:22	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
25	x Shutdown	Engine #1	4/23/24 7.20	4/23/24 1.22	0.05	0.42	gas compressor shutdown	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		C Johnson	4/25/2024
25	x Startup	(S-64)	4/25/24 7:45	4/25/24 7:47	0.03	0.42	gas compressor shutdown	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/23/2024
	Malfunction		4/23/24 7.43	4/23/24 1.41	0.05			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/29/24 20:55	4/29/24 20:57	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
26	x Shutdown	Engine #1	4/29/24 20.33	4/29/24 20.37	0.03	0.83	low fuel pressure	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		C Johnson	4/29/2024
20	x Startup	(S-64)	4/29/24 21:45	4/29/24 21:47	0.03	0.05	low idel pressure	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/29/2024
	Malfunction		4/23/24 21.43	4/23/24 21.47	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			

### REDWOOD LANDFILL, INC. WMRE LFG Engine #2 (S-65) DEVICE DOWNTIME LOG

Event No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason	(5) Applicable Regulation	(6) Type of E	(7)	-	(9) Did Event Cause Any Emission Limit Exceedance?	(10) Describe Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed
1	x Shutdown Startup	Engine #2 (S-65)	5/12/23 10:55	5/12/23 10:57	0.03	7966.83	PG&E 5/12/23: No electricity export until PG&E give approval.	x 113: Inspection/Maintenance 116: Well Raising 117: Gas Collection	x Manual (Go to Automatic (Go Manual (Go to	o to 9) 1 to 3	x No	Yes (Go to 10) No Yes (Go to 10)		C Johnson	4/8/2024
	Malfunction	( )	4/8/24 9:45	4/8/24 9:47	0.03		Landslide area being repaired	118: Construction Activities	Automatic (Go	· · · · ·	No	No			
	x Shutdown	Engine #2	4/8/24 10:00	4/8/24 10:02	0.03			x 113: Inspection/Maintenance 116: Well Raising	Manual (Go to x Automatic (Go	,	Yes (Go to 9)	Yes (Go to 10) x No			
2	x Startup	(S-65)	4/8/24 10:10	4/8/24 10:12	0.03	0.17	gas compressor vibration sensor	117: Gas Collection	x Manual (Go to	p 7) Procedures		Yes (Go to 10)		C Johnson	4/8/2024
	Malfunction x Shutdown	Engine #2	4/9/24 11:25	4/9/24 11:27	0.03			118: Construction Activities x 113: Inspection/Maintenance 116: Well Raising	Automatic (Go Manual (Go to x Automatic (Go	7) Procedures	X No Yes (Go to 9)	No Yes (Go to 10) x No			
3	x Startup Malfunction	(S-65)	4/9/24 11:40	4/9/24 11:42	0.03	0.25	gas compressor vibration sensor	117: Gas Collection 118: Construction Activities	x Manual (Go to Automatic (Go	p 7) Procedures		Yes (Go to 10)		C Johnson	4/9/2024
	x Shutdown	Engine #2	4/9/24 14:45	4/9/24 14:47	0.03			x 113: Inspection/Maintenance	Manual (Go to x Automatic (Go	p 7) Procedures		Yes (Go to 10)			
4	x Startup Malfunction	(S-65)	4/9/24 14:55	4/9/24 14:57	0.03	0.17	gas compressor vibration sensor	117: Gas Collection 118: Construction Activities	x Manual (Go to Automatic (Go	7) Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/9/2024
5	x Shutdown	Engine #2	4/16/24 12:15	4/16/24 12:17	0.03	0.83	detination 1	x 113: Inspection/Maintenance 116: Well Raising	Manual (Go to x Automatic (Go	,	Yes (Go to 9) No	Yes (Go to 10) x No		C Johnson	4/16/2024
0	x Startup Malfunction	(S-65)	4/16/24 13:05	4/16/24 13:07	0.03	0.00		117: Gas Collection     118: Construction Activities	x     Manual (Go to Automatic (Go	,	x No	Yes (Go to 10) No		0 bonnson	4/10/2024
6	x Shutdown	Engine #2	4/18/24 21:10	4/18/24 21:12	0.03	1.58	condensate	x 113: Inspection/Maintenance 116: Well Raising	Manual (Go to x Automatic (Go	o to 9) 1 to 3	No	Yes (Go to 10) x No		C Johnson	4/18/2024
	x Startup Malfunction	(S-65)	4/18/24 22:45	4/18/24 22:47	0.03			117: Gas Collection           118: Construction Activities	x     Manual (Go to Automatic (Go	o to 9) 1 to 4	x No	Yes (Go to 10) No			
7	x Shutdown	Engine #2	4/18/24 22:55	4/18/24 22:57	0.03	0.25	gas compressire shut down	x 113: Inspection/Maintenance 116: Well Raising	Manual (Go to x Automatic (Go	o to 9) 1 to 3	No	Yes (Go to 10) x No		C Johnson	4/18/2024
	x Startup Malfunction	(S-65)	4/18/24 23:10	4/18/24 23:12	0.03			117: Gas Collection         118: Construction Activities	x Manual (Go to Automatic (Go	o to 9) 1 to 4	x No	Yes (Go to 10) No			
8	x Shutdown	Engine #2 (S-65)	4/19/24 8:45	4/19/24 8:47	0.03	7.00	plant outage	x 113: Inspection/Maintenance 116: Well Raising	x Manual (Go to Automatic (Go	o to 9) 1 to 3	x No	Yes (Go to 10)		C Johnson	4/19/2024
	x Startup Malfunction	(3-65)	4/19/24 15:45	4/19/24 15:47	0.03			117: Gas Collection 118: Construction Activities	x Manual (Go to Automatic (Go	o to 9) 1 to 4	x No	Yes (Go to 10)			
9	x Shutdown	Engine #2 (S-65)	4/23/24 9:05	4/23/24 9:07	0.03	0.50	unknown	x 113: Inspection/Maintenance 116: Well Raising	Manual (Go to x Automatic (Go	o to 9) 1 to 3	No	Yes (Go to 10) x No		C Johnson	4/23/2024
	x Startup Malfunction	(3-03)	4/23/24 9:35	4/23/24 9:37	0.03			117: Gas Collection 118: Construction Activities x 113: Inspection/Maintenance	x Manual (Go to Automatic (Go	o to 9) 1 to 4	x No	Yes (Go to 10) No Yes (Go to 10)			
10	x Shutdown x Startup	Engine #2 (S-65)	4/23/24 10:05	4/23/24 10:07	0.03	1.50	unknown	116: Well Raising 117: Gas Collection	Manual (Go to x Automatic (Go x Manual (Go to	o to 9) 1 to 3	No	x No Yes (Go to 10) Yes (Go to 10)		C Johnson	4/23/2024
	Malfunction	(0.00)	4/23/24 11:35	4/23/24 11:37	0.03			118: Construction Activities x 113: Inspection/Maintenance	Automatic (Go Manual (Go to	o to 9) 1 to 4	x No	No Yes (Go to 10)			
11	x Shutdown x Startup	Engine #2 (S-65)	4/24/24 18:35	4/24/24 18:37	0.03	1.17	gas compreessor shut down	116: Well Raising 117: Gas Collection	x Automatic (Go x Manual (Go to	o to 9) 1 to 3	No	x No Yes (Go to 10)		C Johnson	4/24/2024
	Malfunction	(200)	4/24/24 19:45	4/24/24 19:47	0.03			118: Construction Activities x 113: Inspection/Maintenance	Automatic (Go Manual (Go to	o to 9) 1 to 4	x No	No Yes (Go to 10)			ļ
12	x Shutdown x Startup	Engine #2 (S-65)	4/25/24 7:25	4/25/24 7:27	0.03	1.58	gas compressor shut down	116: Well Raising 117: Gas Collection	x Automatic (Go x Manual (Go to	o to 9) 1 to 3	No	x No Yes (Go to 10)		C Johnson	4/25/2024
	Malfunction	(0.00)	4/25/24 9:00	4/25/24 9:02	0.03			118: Construction Activities	Automatic (Go	<u> </u>	x No	No			

### REDWOOD LANDFILL, INC. WMRE LFG Engine #2 (S-65) DEVICE DOWNTIME LOG

Even No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason	(5) Applicable Regulation	(6) Type of Event	(7) Procedures Used (a),(b)	(8) Did Steps Taken Vary From (7)	(9) Did Event Cause Any Emission Limit Exceedance?	(10) Describe Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed
			4/29/24 21:00	4/29/24 21:02	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
13	x Shutdown	Engine #2	4/23/24 21:00	4/23/24 21.02	0.05	1.17	low fuel pressure	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		C Johnson	4/29/2024
15	x Startup	(S-65)	4/29/24 22:10	4/29/24 22:12	0.03	1.17		117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C Johnson	4/23/2024
	Malfunction		4/29/24 22.10	4/29/24 22.12	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			
			4/29/24 22:30	4/29/24 22:32	0.03			x 113: Inspection/Maintenance	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
14	x Shutdown	Engine #2	4/29/24 22.30	4/29/24 22.32	0.03	0.25	pol to coolant diff	116: Well Raising	x Automatic (Go to 9)	1 to 3	No	x No		C Johnson	4/29/2024
14	x Startup	(S-65)	4/29/24 22:45	4/29/24 22:47	0.03	0.25	por to coolant un	117: Gas Collection	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		Coonson	4/23/2024
	Malfunction		4/20/24 22.40	4/20/24 22.47	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	x No	No			

### REDWOOD LANDFILL, INC. WMRE TREATMENT SYSTEM (S-71) DOWNTIME LOG

Even No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason	(5) Applicable Regulation	(6) Type of Event	(7) Procedures Used (a),(b)	(8) Did Steps Taken Vary From (7)	(9) Did Event Cause Any Emission Limit Exceedance?	(10) Describe Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed
		<b>-</b> · · ·	5/18/23 16:35	5/18/23 16:37	0.03			x 113: Inspection/Maintenance	x Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)			
1	x Shutdown	Treatment System	5/10/25 10:55	3/10/23 10.3/	0.00	7817.17	PG&E 5/12/23: No electricity export until landslide area is	116: Well Raising	Automatic (Go to 9)	1 to 3	x No	No		C Johnson	4/8/2024
	Startup	(S-71)	4/8/24 9:45	4/8/24 9:47	0.03	7017.17	repaired	117: Gas Collection	Manual (Go to 7)	Procedures	Yes (Go to 9)	Yes (Go to 10)		C JOINSON	4/0/2024
	Malfunction	(- / /)	4/0/24 9.40	4/0/24 9.47	0.03			118: Construction Activities	Automatic (Go to 9)	1 to 4	No	No			

#### Emission Control Devices Gas Collection and Control System (GCCS) Downtime Summary

Redwood Landfill, Novato, CA GCCS DOWNTIME REPORT Period: November 1, 2023 to April 30, 2024								
SHUTDOWN DATE/TIME	START-UP DATE/TIME	TOTAL DOWNTIME (hours)	COMMENTS/ACTION TAKEN					
11/15/23 09:12	11/15/23 09:18	0.10	PG&E unplanned power outage. Flare switched to generator power.					
11/21/23 12:48	11/21/23 13:20	0.53	VFD/Blower alarm shutdown.					
		0.00	No GCCS Downtime in December 2023					
		0.00	No GCCS Downtime in January 2024					
		0.00	No GCCS Downtime in February 2024					
		0.00	No GCCS Downtime in March 2024					
		0.00	No GCCS Downtime in April 2024					

Combined Emission Control Devices	
Total 2023 Downtime:	51.07
November 1, 2023 through April 30, 2024 Downtime:	0.63
January 1, 2024 through April 30, 2024 Total Downtime:	0.00
Total 2024 Downtime:	0.00

**APPENDIX C** 

CORRESPONDENCE



8950 Redwood Highway P.O. Box 793 Novato, CA 94948 (415) 892-2851 (855) 242-0798 Fax

April 23, 2024

Mr. Davis Zhu Senior Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105 dzhu@baaqmd.gov

### Re: Well Actions Letter Title V Permit Condition Number 19867, Part 17, Facility A1179 Redwood Landfill, Inc., Novato, California

Dear Mr. Zhu:

On behalf of Redwood Landfill, Inc. (RLI), this letter is to notify the Bay Area Air Quality Management District (BAAQMD) of the well actions recently performed at the RLI, pursuant to Title V Permit A1179 as modified by Application Number (AN) 30065. These well actions are summarized below:

• 1 Horizontal collector RLHC0153 was decommissioned on 4/18/2024.

AN 30065 allows installation of up to 100 new vertical wells, unlimited one-to-one replacement of vertical wells, installation of up to 50 new horizontal collectors, decommissioning of up to 50 vertical wells, and decommissioning of up to 15 horizontal collectors.

As stated in the May 1, 2023 Well Actions Letter, prior to the completion of this well action, RLI had 137 total collectors (132 vertical wells and 5 horizontal collectors) connected to the GCCS. With the completion of this well action, RLI's existing GCCS component count and permitted remaining actions per AN 30065 are listed in the following table:

	Install New Vertical Wells	Decommission Vertical Wells	Install New Horizontal Collectors	Decommission Horizontal Collectors	Replace Vertical Wells*
Actions Permitted Under AN 30065	100	50	50	15	Unlimited
Actions Performed by RLI per AN 30065	54	23	0	5	-
Actions Remaining Under AN 30065	46	27	50	10	Unlimited
Active Collector Count after Actions in this Letter	136 Total Collectors: 132 Vertical LFG Wells and 4 Horizontal Collectors				

*One-for-one well replacement at new optimal locations.

If you have any questions regarding this notification, please contact me at (510) 613-2852 or Alisha McCutcheon, Redwood Landfill Technical Manager, at (415) 373-8033.

Thank you, **Redwood Landfill, Inc.** 

Auchael Chan

Michael Chan Environmental Protection Specialist

### Chan, Michael

From:	Chan, Michael
Sent:	Tuesday, April 23, 2024 2:13 PM
То:	'Davis Zhu'
Cc:	McCutcheon, Alisha
Subject:	Redwood Landfill Well Actions Notification April 2024
Attachments:	2024.04.23 - RLI Well Actions Letter decom well RLHC0153.pdf

Hi Davis,

Attached is the Well Actions Notification letter that Redwood Landfill has decommissioned 1 well in the collection system.

Thanks,

Mike

### **Michael Chan**

EP Air Quality Specialist mchan2@wm.com

**T:** 510.613.2852 **C:** 510.205.0410 172 98th Avenue Oakland, CA 94603



### Chan, Michael

From:	Microsoft Outlook <microsoftexchange329e71ec88ae4615bbc36ab6ce41109e@wm.com></microsoftexchange329e71ec88ae4615bbc36ab6ce41109e@wm.com>
То:	'Davis Zhu'
Sent:	Tuesday, April 23, 2024 2:13 PM
Subject:	Relayed: Redwood Landfill Well Actions Notification April 2024

# Delivery to these recipients or groups is complete, but no delivery notification was sent by the destination server:

'Davis Zhu' (dzhu@baaqmd.gov)

Subject: Redwood Landfill Well Actions Notification April 2024



# **APPENDIX D**

# WELLFIELD SSM LOG

### COLLECTION SYSTEM DOWNTIME LOG

Event No.	Check Applicable Event	Device	(1) Event Start Date/Time	(2) Event End Date/Time	(3) Duration (Hrs)	Downtime (Hrs)	(4) Cause or Reason	(5) Applicable Regulation	(6) Type of Event	(7) Procedures Used (a),(b)	(8) Did Steps Taken Vary From (7)	(9) Did Event Cause Any Emission Limit Exceedance?	(10) Describe Emission Standard(s) Exceeded (b)	Completed By	(11) Date Entry Completed	
1	x Shutdown	RLLC0254	10/19/22 10:18	10/19/22 10:20	0.03	13,429.70	Well raising, well located in	113: Inspection/Maintenancex116: Well Raising	x Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3	Yes (Go to 9) x No	Yes (Go to 10) No		· Mike Chan	5/1/2024	
	Startup Malfunction	TILLOOLO T	Well offlir	ne as of May 1, 20	024	10,120110	active fill area	117: Gas Collection           118: Construction Activities	Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 4	Yes (Go to 9) No	Yes (Go to 10) No			0, 112021	
2	x Shutdown	RLLC0224	7/3/23 12:20	7/3/23 12:22	0.03	3.719.75	Well raising, well located in	113: Inspection/Maintenancex116: Well Raising	x Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3	Yes (Go to 9) x No	Yes (Go to 10) No		Mike Chan	12/5/2023	
2	x Startup Malfunction	NELC0224	12/5/23 12:05	12/5/23 12:07	0.03	3,718.75	active fill area	117: Gas Collection118: Construction Activities	x Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 4	Yes (Go to 9) x No	Yes (Go to 10) No		Mike Chan	12/3/2023	
3	x Shutdown	RLLC0222	8/24/23 14:15	8/24/23 14:17	0.03	1 600 67	Well raising, well located in	113: Inspection/Maintenancex116: Well Raising	x Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3	Yes (Go to 9) x No	Yes (Go to 10) No		· Mike Chan	10/31/2023	
3	x Startup Malfunction	RLLC0222	10/31/23 10:55	10/31/23 10:57	0.03	1,628.67	1,628.67	active fill area	117: Gas Collection         118: Construction Activities	x Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 4	Yes (Go to 9) x No	Yes (Go to 10) No		Mike Chan	10/31/2023
4	x Shutdown	RLLC0201	10/31/23 9:05	10/31/23 9:07	0.03	149.17	Well raising, well located in	113: Inspection/Maintenancex116: Well Raising	x Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3	Yes (Go to 9) x No	Yes (Go to 10) No		Mike Chan	11/6/2023	
4	x Startup Malfunction	NELC0201	11/6/23 14:15	11/6/23 14:17	0.03	149.17	active fill area	117: Gas Collection           118: Construction Activities	x Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 4	Yes (Go to 9) x No	Yes (Go to 10) No				
5	x Shutdown	RLLC0225	10/31/23 9:05	10/31/23 9:07	0.03	149.17	Well raising, well located in	113: Inspection/Maintenancex116: Well Raising	x Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3	Yes (Go to 9) x No	Yes (Go to 10) No		Mike Chan	11/6/2023	
5	x Startup Malfunction	NELCO223	11/6/23 14:15	11/6/23 14:17	0.03	143.17	active fill area	117: Gas Collection           118: Construction Activities	x Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 4	Yes (Go to 9) x No	Yes (Go to 10) No			11/0/2023	
6	x Shutdown	RLLC0222	11/17/23 14:30	11/17/23 14:32	0.03	3,969.50	Well raising, well located in	113: Inspection/Maintenancex116: Well Raising	x Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3	Yes (Go to 9) x No	Yes (Go to 10) No		Mike Chan	5/1/2024	
0	Startup Malfunction	NELCO222	Well offlir	ne as of May 1, 20	024	3,303.00	active fill area	117: Gas Collection         118: Construction Activities	Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 4	Yes (Go to 9) No	Yes (Go to 10) No		WIRE OTAT	5/1/2024	
7	x Shutdown	RLLC0233	12/18/23 11:05	12/18/23 11:07	0.03	3.228.92	Well raising, well located in	113: Inspection/Maintenancex116: Well Raising	x Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3	Yes (Go to 9) x No	Yes (Go to 10) No		Mike Chan	5/1/2024	
'	Startup Malfunction		Well offlir	ne as of May 1, 20	024	5,220.92	active fill area	117: Gas Collection118: Construction Activities	Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 4	Yes (Go to 9) No	Yes (Go to 10) No			5/ 1/2024	
8	x Shutdown	RLHC0153	4/18/24 14:30	4/18/24 14:32	0.03	N/A	Well decommissioned pursuant	x 113: Inspection/Maintenance 116: Well Raising	x Manual (Go to 7) Automatic (Go to 9)	Procedures 1 to 3	Yes (Go to 9) x No	Yes (Go to 10) No		· Mike Chan	N/A	
0	Startup Malfunction	NEI 100 100		N/A		IN/A	to AN #30065 on 4/18/24	117: Gas Collection           118: Construction Activities			N/A				IN/A	

#### (a) STANDARD OPERATING PROCEDURES

Shutdown	
Procedure No.	Procedure
1.	Ensure that there is no unsafe conditions present, contact manager immediately
2.	Initiate shutdown sequence below by one or more of the following (Note date and time in Section 1 of form above)
	a. Press Emergency Stop if necessary
	b. Close On/Off switch(es) or Push On/Off button(s)
	c. Close adjacent valves if necessary
3.	Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note date and time in Section 2 of form above)
Chartern	
Startup	Brassdurg
Procedure No.	Procedure
1.	Ensure that there is no unsafe conditions present
2.	Ensure that the system is ready to start by one of the following:
	a. Valves are in correct position
	b. Levels, pressures, and temperatures are within normal starting range
	c. Alarms are cleared
	d. Power is on and available to control panel and ready to energized equipment.

- e. Emergency stop is de-energized
   Initiate start sequence (Note time and date in section 1 of form above)
   Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note time and date in Section 2 of form above)

### 3. 4. Malfunction

EQUIPMENT	PURPOSE	MALFUNCTION	COMMON CAUSES	PROCEDURE NOTYPICAL RESPONSE ACTIONS
`		EVENT		
LFG Collection and Control Sys				
Blower or Other Gas Mover Equipment	Applies vacuum to wellfield to extract LFG and transport to control device	Loss of LFG Flow/Blower Malfunction	Flame arrestor fouling/detrioratior -Automatic valve problems -Blower failure (e.g., belt, motor, impeller, coupling, seizing, etc.) -Loss of power -Extraction piping failure -Condensate Knock-out problems -Extraction piping blockages	1. Repair breakages in extraction piping     2. Clean flame arrestor     3. Repair blockages in extraction piping     4. Verify automatic valve operation, compressed     air/nitrogen supply     5. Notify power utility, if appropriat     6. Provide/utilize auxiliary power source, if necessar     7. Repair Blower     9. Activate back-up blower, if available     10. Clean knock-up pot/demister     11. Drain knock-out pot
Extraction Wells and Collection Piping	Conduits for extractions and movement of LFG flow	Collection well and pipe failures	-Break/crack in header or lateral piping -Leaks at wellheads, valves, flanges, Test ports, seals, couplings, etc. -Collection piping blockages -Problems due to settlement (c.g. pipe separation, deformation, development of low points	12. Repair leaks or breaks in lines or wellheads     13. Follow procedures for loss of LFG flow/blower     malfunction     14. Repair blockages in collection piping     15. Repair settlement in collection piping     16. Re-install, repair, or replace piping
Blower or Other Gas Mover Equipment And Control Device	Collection and control of LFG	Loss of electrical power	- Force majeure/Act of God (e.g., lightning, flood, earthquake, etc.) -Area-wide or local blackout or brown-ou -Interruption in service (e.g. blown service fuse -Electrical line failure -Breaker trip -Transformer failure -Motor starter failure/trip -Motor starter failure/trip -Overdraw of power -Problems in electrical panel -Damage to electrical equipment from on-site operations	17. Check/reset breaker     18. Check/repair telectrical panel components     19. Check/repair motor startet     20. Check/repair motor startet     21. Check/repair dectrical line     22. Test amperage to various equipment     23. Contact electricity applien     24. Contact/contract electrician     25.Provide auxiliary power (if necessary
LFG Control Device	Combusts LFG	Low temperature conditions at control device	-Problems with temperature -monitoring equipmen -Problems/failure of -thermocouple and/or thermocouple wiring -Change of LFG flow -Change of LFG quality -Problems with air louvers -Problems with airfule controls -Change in atmospheric conditions	<ol> <li>Check/repair temperature monitoring equipment</li> <li>Check/repair thermocouple and/or wiring</li> <li>Follow procedures for loss of flow/blower malfunction</li> <li>Check/adjust louvers</li> <li>Check/adjust air/fuel controls</li> </ol>
LFG Control Device	Combusts LFG	Loss of Flame	- Comparing an auto-partice construction - Problems/failure of thermocouple - Loss/change of LFG flow - Loss/change of LFG quality - Problems with air/fuel controls - Problems with temperature monitoring equipmen	31. Check/repair temperature monitoring equipment     32. Check/repair thermocouple     33. Follow procedures for loss of flow/blower malfunction     44. Check/adjust air/fuel controls     35. Check/adjust/Fepair flame sensor     36. Check/adjust/FG collectors
Flow Monitoring/ Recording Device	Measures and records gas flow from collection system to control	Malfunctions of Flow Monitoring/Recording Device	-Problems with orifice plate, pitot tube, or other in-line flow measuring device -Problems with device controls and/or wiring -Problems with chart recorder	<ol> <li>Check/adjust/repair flow measuring device and/or wiring</li> <li>Check/repair chart recorder</li> <li>Replace paper in chart recorder</li> </ol>
Temperature Monitoring/ Recording Device	Monitors and records combustion temperature of enclosed combustion device	Malfunctions of Temperature Monitoring/Recording Device	-Problems with thermocouple -Problems with device controls and/or wiring -Problems with chart recorder	<ol> <li>Check/adjust/repair thermocouple</li> <li>Check/adjust/repair controller and/or wiring</li> <li>Check/adjust/repair cletricial panel component</li> <li>Check/adjust/repair cletricial panel component</li> <li>Check/repair chart recordei</li> <li>Replace paper in chart recordei</li> </ol>
Control Device	Combusts LFG	Other Control Device Malfunctions	-Control device smoking (i.e. visible emissions) -Problems with flare insulation -Problems with pilot light system -Problems with airfuel controllers -Problems with diarfuel controllers -Problems with thermocouple -Problems with flame arrester -Problems with flame arrester -Alarmed malfunction conditions not covered abow -Unalarmed conditions discovered during inspection not covered above	<ol> <li>Site-specific diagnosis procedure:</li> <li>Site-specific responses actions based on diagnosis</li> <li>Open manual louvers</li> <li>Clean pitot orifice</li> <li>Clean/rain finame arrestor</li> <li>Refill propane supply</li> <li>Check/repair pilot sparking system</li> </ol>

(b) For each permit limit exceedance complete an "SSM Plan Departure Form".

# APPENDIX E

# A-51 AND A-60 FLARE TEMPERATURE REPORTS

### Redwood Landfill, Novato, CA

A-51 Flare TEMPERATURE DEVIATION/ INOPERATIVE MONITOR REPORT

November 1, 2023 to April 30, 2024

REPORT PREPARED BY:	Michael Chan	DATE:	May 30, 2024
TEMPERATURE SENSING DEVICE:	Thermocouple	MODEL:	Thermo-Electric

START DATE & TIME	END DATE & TIME	TEMP ( [°] F) / FLOW	CAUSE	EXPLANATION	ACTION TAKEN				
	No deviations or inoperative monitors during the month of November 2023								
	No deviations or inoperative monitors during the month of December 2023								
		No deviations	s or inoperative monitors during the r	month of January 2024					
		No deviations	or inoperative monitors during the n	nonth of February 2024					
		No deviation	ns or inoperative monitors during the	month of March 2024					
		No deviatio	ns or inoperative monitors during the	e month of April 2024					
COMMENTS:			vith Title V Permit Condition Number I not drop below 1,400 degrees Fahr		•				
2 The A-51 Flare combustion zone 3-hour average temperature did not drop below the 1448°F (3/9/23 to 3/7/24) or 1447°F (3/8/24 to current) limits established during the January 12, 2023 and January 10, 2024 Annual Source Tests, while the flare was in operation, pursuant to Title V Permit Condition Number 19867, Part 22, and 40 CFR 60.752 b(2)(iii)(B)(2) in Subpart WWW of the NSPS.									

### Redwood Landfill, Novato, CA

A-60 Flare TEMPERATURE DEVIATION/ INOPERATIVE MONITOR REPORT

November 1, 2023 to April 30, 2024

REPORT PREPARED BY:	Michael Chan	DATE:	May 30, 2024
TEMPERATURE SENSING DEVICE:	Thermocouple	MODEL:	Thermo-Electric

START DATE & TIME	END DATE & TIME	TEMP ( [°] F) / FLOW	CAUSE	EXPLANATION	ACTION TAKEN					
	No deviations or inoperative monitors during the month of November 2023									
	No deviations or inoperative monitors during the month of December 2023									
		No deviations	s or inoperative monitors during the r	nonth of January 2024						
		No deviations	or inoperative monitors during the n	nonth of February 2024						
		No deviatior	is or inoperative monitors during the	month of March 2024						
		No deviatio	ns or inoperative monitors during the	e month of April 2024						
COMMENTS:		Zone A 3-hour a	vith Authority To Construct (ATC) 19 average temperature did not drop be are combustion Zone B 3-hour avera	low 1,400 degrees Fahrenheit (°F) v	while the flare was in operation,					
2 The A-60 Flare Zone A combustion zone three-hour average temperature did not drop below 1,525°F (9/10/21 - 9/10/22) or 1,532°F (9/11/22 - current) limits established during the July 13, 2021 and July 13, 2022 source tests. Source Tests, pursuant to 40 CFR 60.752 b(2)(iii)(B)(2) in Subpart WWW of the NSPS. Zone B of the A-60 Flare combustion zone 3-hour average temperature did not drop below the 1,555°F (9/14/18 to 9/7/23) or 1,568°F (9/8/23 to current) limits established in the July 17, 2018 and July 12, 2023 Source Tests. Pursuant to Title V Condition 19867 Part 30g, the Annual Source Test at A-60 may be conducted while it is operating in either zone, provided that each operating zone is tested at least once every five years.										

## **APPENDIX F**

**MISSING A-51 AND A-60 FLOW AND TEMPERATURE RECORDS** 

Emission Control Devices				
A-51 Flare Missing Data Summary				
Redwood Landfill, Novato, CA FLARE MISSING DATA REPORT	November 1, 2023 to Apr	il 30, 2024		
Date & Time	Date & Time	Total Missing Data	Total Missing Data	Comments
		Hours	Days	
There was no missing data for November	2023			
There was no missing data for December	2023			
There was no missing data for January 20	)24			
There was no missing data for February 2	2024			
There was no missing data for March 202	4			
There was no missing data for April 2024				

Flare A-51	Hours	Days
Total Missing Data:	0.00	0.00
Total Complete Data:	4,367.00	181.96
Missing Data Percentage:	0.00%	0.00%

Emission Control Devices				
A-60 Flare Missing Data Summary				
Redwood Landfill, Novato, CA FLARE MISSING DATA REPORT	November 1, 2023 to Apr	ril 30, 2024		
Date & Time	Date & Time	Total Missing Data	Total Missing Data	Comments
		Hours	Days	
There was no missing data for November	2023			
There was no missing data for December	2023			
There was no missing data for January 20	024			
There was no missing data for February 2	2024			
There was no missing data for March 202	24			
There was no missing data for April 2024				

Flare A-60	Hours	Days
Total Missing Data:	0.00	0.00
Total Complete Data:	4,367.00	181.96
Missing Data Percentage:	0.00%	0.00%

# **APPENDIX G**

# COVER INTEGRITY MONITORING REPORTS

Tealing Wate Management-Redwood Landfill         Date 11/30/2023       Received       Manager       Pate       11/30/202         Date 11/30/2023       Repairs Complete       Manager       Date       Date       Date       Date 10/202         Cell/Pad       Cell/Pad       Description of finding : No cover integrity issues found in the month of November.       Date Identified       Repaired       Cell/Pad         Cell/Pad       Cell/Pad       Cell/Pad       Cell/Pad         Date Identified       Repaired       Cell/Pad         Date Identified       Repaired				Mont	thly Cover I	ntegrity In	spection	Form		
Technician       Riley Lindberg       Repairs Complete       Manager       Date         Cell/Pad       Cell/Pad       Cell/Pad       Cell/Pad       Date         Description of finding 1: No cover integrity issues found in the month of November.       Description of corrective action:       Description of corrective action:         Date Identified       Image: Cell/Pad       Date Identified       Repaired       Cell/Pad         Description of finding:       Cell/Pad       Description of finding and corrective action:       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Description of finding and corrective action:       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Description of finding and corrective action:       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Description of finding and corrective action	Facility	Waste Manag	gement- Redw	vood Landfi	1					
cell/Pad       Cell/Pad         Description of finding :       No cover integrity issues found in the month of November.       Description of corrective action:         Date Identified       Date Identified       Repaired         Cell/Pad       Cell/Pad       Cell/Pad         Description of finding:       Date Identified       Repaired         Cell/Pad       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Description of finding and corrective action:       Description of finding and corrective action:         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad	Date	11/30/2023		Red	teived	Manager	Ramin Kha	iny	Date	11/30/2023
Description of finding :       No cover integrity issues found in the month of November.       Description of corrective action:         Date Identified       Repaired       Repaired         Cell/Pad       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Description of finding and corrective action:       Description of finding and corrective action:         Description of finding and corrective action:       Description of finding and corrective action:         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action: <td>Technician</td> <td>Riley Lindber</td> <td>g</td> <td>Repairs</td> <td>Complete</td> <td>Manager</td> <td></td> <td></td> <td>Date</td> <td></td>	Technician	Riley Lindber	g	Repairs	Complete	Manager			Date	
month of November.       Date Identified       Repaired         Cell/Pad       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Date Identified       Repaired       Cell/Pad         Cell/Pad       Cell/Pad       Description of finding and corrective action:       Cell/Pad         Date Identified       Repaired       Date Identified       Repaired         Date Identified       Repaired       Date Identified       Repaired         Date Identified       Repaired       Date Identified       Repaired         Date Identified       Repaired       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Cell/Pad         Date Identified       Repaired       Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Cell/Pad       Cell/Pad         Date Identified       Repaired       Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Cell/Pad       Description of finding and corrective action:	Cell/Pad					Cell/Pad			•	
Cell/Pad       Cell/Pad         Description of finding:       Description of finding and corrective action:         Date Identified       Repaired         Cell/Pad       Cell/Pad         Cell/Pad       Cell/Pad         Date Identified       Repaired         Cell/Pad       Cell/Pad         Date Identified       Repaired         Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired         Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired         Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Cell/Pad       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Cell/Pad       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Description of finding and corrective action: </td <td>-</td> <td>-</td> <td>No cover integ</td> <td>grity issues f</td> <td>found in the</td> <td>Descriptio</td> <td>n of correct</td> <td>tive action:</td> <td></td> <td></td>	-	-	No cover integ	grity issues f	found in the	Descriptio	n of correct	tive action:		
Cell/Pad       Cell/Pad         Description of finding:       Description of finding and corrective action:         Date Identified       Repaired         Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired         Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Date Identified       Repaired       Cell/Pad         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:	Date I	lentified			<u>г</u>	Date Id	entified		Repaired	I
Date Identified     Repaired     Date Identified     Repaired       Cell/Pad     Cell/Pad     Cell/Pad     Description of finding and corrective action:       Date Identified     Repaired     Date Identified     Repaired       Date Identified     Repaired     Cell/Pad     Cell/Pad       Description of finding and corrective action:     Description of finding and corrective action:     Description of finding and corrective action:       Date Identified     Repaired     Cell/Pad     Cell/Pad       Description of finding and corrective action:     Description of finding and corrective action:     Cell/Pad       Description of finding and corrective action:     Date Identified     Repaired       Cell/Pad     Cell/Pad     Cell/Pad     Cell/Pad       Date Identified     Repaired     Cell/Pad     Cell/Pad	Cell/Pad					Cell/Pad		•		
Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Cell/Pad       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Date Identified       Repaired       Cell/Pad         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Date Identified       Repaired       Cell/Pad         Date Identified	Description	of finding:				Description	n of finding	and correctiv	e action:	
Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Date Identified       Repaired       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Cell/Pad       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Date Identified       Repaired       Cell/Pad       C	Date lo	lentified		Repaired		Date Id	entified		Repaired	
Date Identified     Repaired     Date Identified     Repaired       Cell/Pad     Cell/Pad     Description of finding and corrective action:     Description of finding and corrective action:       Date Identified     Repaired     Date Identified     Repaired       Cell/Pad     Date Identified     Repaired     Cell/Pad       Description of finding and corrective action:     Cell/Pad     Description of finding and corrective action:       Date Identified     Repaired     Date Identified     Repaired       Date Identified     Repaired     Date Identified     Repaired       Date Identified     Repaired     Date Identified     Repaired       Cell/Pad     Cell/Pad     Date Identified     Repaired       Description of finding and corrective action:     Cell/Pad     Description of finding and corrective action:       Date Identified     Repaired     Date Identified     Repaired       Date Identified     Repaired     Cell/Pad     Cell/Pad       Date Identified     Repaired     Date Identified     Repaired       Cell/Pad     Cell/Pad     Cell/Pad     Cell/Pad	Cell/Pad				·	Cell/Pad			·	·
Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified         Cell/Pad       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Description of finding and corrective action:         Date Identified       Repaired       Date Identified         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Description of finding and corrective action:         Date Identified       Repaired       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired										
Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Cell/Pad         Date Identified       Repaired       Cell/Pad       Cell/Pad       Cell/Pad         Date Identified       Repaired       Date Identified       Repaired       Cell/Pad         Date Identified       Repaired       Date Identified       Repaired       Cell/Pad         Date Identified       Repaired       Date Identified       Repaired       Cell/Pad       Cell/Pad	Date I	lentified		Repaired		Date Id	entified		Repaired	
Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Cell/Pad         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Cell/Pad         Date Identified       Repaired       Description of finding and corrective action:       Cell/Pad         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Cell/Pad       Cell/Pad	-				-	-		-		
Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Cell/Pad         Date Identified       Repaired       Date Identified       Repaired         Date Identified       Repaired       Cell/Pad       Cell/Pad			confective ac	uon.		Description	n of finding	and correctiv	e action:	
Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired         Description of finding and corrective action:       Cell/Pad         Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired         Date Identified       Repaired         Date Identified       Repaired         Cell/Pad       Cell/Pad								and correctiv	e action:	-
Date Identified     Repaired     Date Identified     Repaired       Cell/Pad     Cell/Pad     Cell/Pad     Cell/Pad       Description of finding and corrective action:     Description of finding and corrective action:     Description of finding and corrective action:       Date Identified     Repaired     Date Identified     Repaired       Cell/Pad     Cell/Pad     Cell/Pad		lentified			<b></b>	Date Id		and correctiv		
Cell/Pad     Cell/Pad       Description of finding and corrective action:     Description of finding and corrective action:       Date Identified     Repaired     Date Identified     Repaired       Cell/Pad     Cell/Pad     Cell/Pad     Cell/Pad	Cell/Pad			Repaired	<b></b>	Date Id Cell/Pad	lentified	l	Repaired	Į
Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Cell/Pad       Cell/Pad	Cell/Pad Description	of finding and		Repaired		Date Id Cell/Pad Description	lentified	l	Repaired	
Cell/Pad Cell/Pad	Cell/Pad Description Date Io	of finding and		Repaired tion:		Date Id Cell/Pad Description Date Id	lentified	l	Repaired e action:	
Cell/Pad Cell/Pad	Cell/Pad Description Date k Cell/Pad	of finding and lentified	corrective ac	Repaired tion: Repaired		Date Id Cell/Pad Description Date Id Cell/Pad	lentified	and corrective	Repaired e action: Repaired	
	Cell/Pad Description Date K Cell/Pad Description	of finding and lentified of finding and	corrective ac	Repaired tion: Repaired tion:		Date Id Cell/Pad Description Date Id Cell/Pad Description	lentified	and corrective	Repaired e action: Repaired e action:	
	Cell/Pad Description Date K Cell/Pad Description Date K	of finding and lentified of finding and	corrective ac	Repaired tion: Repaired tion:		Date Id Cell/Pad Description Date Id Cell/Pad Description Date Id	lentified	and corrective	Repaired e action: Repaired e action:	
Date Identified Repaired Date Identified Repaired	Cell/Pad Description Date Id Cell/Pad Description Date Id Cell/Pad	of finding and lentified of finding and	corrective ac	Repaired tion: Repaired tion: Repaired		Date Id Cell/Pad Description Date Id Cell/Pad Date Id Cell/Pad	lentified	and corrective and corrective	Repaired e action: Repaired e action: Repaired	

				thly Cover I	ntegrity Ir	spection	Form		
Facility	Waste Mana	agement- Redw							
Date	12/19/2023		Red	ceived	Manager	Ramin Kha	iny	Date	12/19/2023
Technician	Riley Lindbe	irg	Repairs	Complete	Manager	Ramin Kh	hany	Date	1/25/2024
Cell/Pad	Area E/F	•			Cell/Pad			•	
area is locat	ed has some	West side of the deep runoff rate received in last	vines. Due		Descriptio new dirt a		ive action: A	rea was fille	ed in with
Date Id	entified	12/19/2023			Date Id	entified	12/19/202	Repaired	1/25/2024
Cell/Pad		//			Cell/Pad				-//
				ĵ		U			nine.
	entified		Repaired		Contraction of the second		2/1000	197016	1.1
Cell/Pad		d corrective act			C-F				Ale W
Date Id	entified		Repaired	<b></b>					
Cell/Pad		·•		-		1 20	VI WEa	A A	
	entified	d corrective act	Repaired		A A A A		DCT DCT		
Cell/Pad				-			AC &	LIN	\$8.5T (47)
-		d corrective act	tion:	_					
Date Id Cell/Pad	lentified		Repaired				11/11		
	of finding an	d corrective act	ion:		* 8 E L 6 6 6 8 6 1	+•   47 5 3			
Date Id	lentified		Repaired				11.4	Nott 11	28 11-1
Cell/Pad							TIM	WHIE	51111
Description	of finding an	d corrective act	tion:				<u>(l):</u>		
	entified		Repaired						

Facility	Waste Management-	Redwood Landfill			
Date	1/25/2024	Received	Manager Ramin Khany	Date	1/25/2024
Technician	Riley Lindberg	Repairs Complete	Manager	Date	1
Cell/Pad	Well 230, south of we	orking face	Cell/Pad		X
	ge hole formed around				
Date Id Cell/Pad	dentified 1/25/2	024	Date Identified 1	/25/2024 Repaired	
	of finding: dentified	Repairer			
Cell/Pad	entined	Reparter		I ERVEN	
Date Io Cell/Pad	of finding and correcti dentified of finding and correcti	Repairer			
Cell/Pad	dentified of finding and correcti	Repairer ve action:			
Cell/Pad	dentified of finding and correcti	Repaired we action:	<ul> <li>a construction of the second constr</li></ul>		
Cell/Pad	dentified of finding and correcti	Repaired			
		d.		1 Mil	C. A.S.

Technician       Riley Lindberg       Repairs Complete       Manager       Date         Description of finding :       No cover integrity issues found for this cell/Pad       Description of corrective action:       Description of corrective action:         Date Identified       2/26/2024       Date Identified       2/26/2024       Repaired         Date Identified       2/26/2024       Date Identified       2/26/2024       Repaired         Date Identified       2/26/2024       Date Identified       2/26/2024       Repaired         Date Identified       2/26/2024       Date Identified       Repaired       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired       Description of finding and corrective action:         Date Identified       Repaired       Description of finding and corrective action:       Description of finding and corrective action:         D	WM			Mont	thly Cover I	ntegrity In	spection	Form		
Technician         Riley Lindberg         Repairs Complete         Manager         Date           Cell/Pad         Cell/Pad         Cell/Pad	Facility	Waste Mana	gement- Redw	vood Landfi						
Cell/Pad       Cell/Pad         Description of finding :       No cover integrity issues found for this       Description of corrective action:         Date Identified       2/26/2024       Date Identified       2/26/2024 Repaired         Cell/Pad       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Descri	Date	2/26/2024		Ree	ceived	Manager	Ramin Kha	iny	Date	2/26/2024
Description of finding : No cover integrity issues found for this month.       Description of corrective action:         Date identified       2/26/2024       Date identified       2/26/2024         Date identified       2/26/2024       Cell/Pad       Cell/Pad         Description of finding:       Description of finding and corrective action:       Description of finding and corrective action:         Date identified       Repaired       Date identified       Repaired         Description of finding and corrective action:       Description of finding and corrective action:       Description of finding and corrective action:         Date identified       Repaired       Date identified       Repaired         Date identified       Repaired       Description of finding and corrective action:       Description of finding and corrective action:         Date identified       Repaired       Date identified       Repaired       Description of finding and corrective action:         Date identified       Repaired       Date identified       Repaired       Description of finding and corrective action:         Date identified       Repaired       Cell/Pad       Description of finding and corrective action:       Description of finding and corrective action:         Date identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date ident	Technician	Riley Lindber	g	Repairs	Complete	Manager			Date	
Description of finding : No cover integrity issues found for this month.       Description of corrective action:         Date identified       2/26/2024       Date identified       2/26/2024         Date identified       2/26/2024       Cell/Pad       Cell/Pad         Description of finding:       Description of finding and corrective action:       Description of finding and corrective action:         Date identified       Repaired       Date identified       Repaired         Description of finding and corrective action:       Description of finding and corrective action:       Description of finding and corrective action:         Date identified       Repaired       Date identified       Repaired         Date identified       Repaired       Description of finding and corrective action:       Description of finding and corrective action:         Date identified       Repaired       Date identified       Repaired       Description of finding and corrective action:         Date identified       Repaired       Date identified       Repaired       Description of finding and corrective action:         Date identified       Repaired       Cell/Pad       Description of finding and corrective action:       Description of finding and corrective action:         Date identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date ident	Cell/Pad					Cell/Pad				
month.       Date Identified       2/26/2024       Date Identified       2/26/2024       Repaired         Cell/Pad       Cell/Pad       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Repaired       Cell/Pad         Date Identified       Repaired       Cell/Pad       Cell/Pad       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified <td>-</td> <td>of finding :  </td> <td>No cover integ</td> <td>rity issues</td> <td>found for this</td> <td>-</td> <td>n of correct</td> <td>ive action:</td> <td></td> <td></td>	-	of finding :	No cover integ	rity issues	found for this	-	n of correct	ive action:		
Cell/Pad       Cell/Pad         Description of finding:       Description of finding and corrective action:         Date Identified       Repaired         Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired	month.									
Cell/Pad       Cell/Pad         Description of finding:       Description of finding and corrective action:         Date Identified       Repaired         Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired	Date l	dentified	2/26/2024		I	Date Id	entified	2/26/2024	Repaired	
Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Description of finding and corrective action:         Date Identified       Repaired       Description of finding and corrective action:         Date Identified       Repaired       Description of finding and corrective action:         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Deteldentified         Date Identified       Repaired       Description of finding and corrective action:         Date Identified       Repaired       Description of finding and corrective action:         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Description of finding and corrective action:         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Description of finding and corrective action:         Date Identified       Repaired       Description of finding and corrective action:         Date Identified       <						Cell/Pad				
Cell/Pad       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Cell/Pad       Cell/Pad         Date Identified       Repaired       Cell/Pad       Cell/Pad         Date Identified       Repaired       Cell/Pad       Cell/Pad         Date Identified       Repaired       Cell/Pad       Cell/Pad         Cell/Pad       Cell/Pad       Cell/Pad       Cell/Pad         Date Identified       Repaired       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Cell/Pad         Description of finding and corrective action:       Cell/Pad       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Cell/Pad       Description of finding and corrective action:         Description of finding and corrective		of finding:					of finding	and correctiv	e action:	
Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired       Date Identified         Date Identified       Repaired       Date Identified       Repaired       Cell/Pad         Cell/Pad       Cell/Pad       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Date Identified       Repaired       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Cell/Pad       Cell/Pad       Description of finding and corrective action:         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad         Description of finding and corrective action:       Cell/Pad       Description of finding and corrective action:	Cell/Pad				ļ	Cell/Pad		and correctiv	•	
Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired         Date Identified       Repaired         Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired         Date Identified       Repaired         Date Identified       Repaired         Date Identified       Repaired         Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired         Cell/Pad       Cell/Pad         Date Identified       Repaired         Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:		dentified		Repaired			entified	1	Repaired	
Date Identified       Repaired       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Date Identified       Repaired       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Date Identified       Repaired       Cell/Pad       Description of finding and corrective action:         Description of finding and corrective action:       Cell/Pad       Description of finding and corrective action:	Cell/Pad									
Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired         Date Identified       Repaired         Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired         Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:	Date I	dentified		Repaired		Date Id	entified		Repaired	
Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:       Description of finding and corrective action:	Cell/Pad									
Cell/Pad       Cell/Pad         Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified         Cell/Pad       Cell/Pad       Repaired         Description of finding and corrective action:       Cell/Pad       Description of finding and corrective action:					1			and correctiv		
Description of finding and corrective action:       Description of finding and corrective action:         Date Identified       Repaired       Date Identified       Repaired         Cell/Pad       Cell/Pad       Cell/Pad       Description of finding and corrective action:		dentified		Repaired			entified		Repaired	
Date Identified     Repaired     Date Identified     Repaired       Cell/Pad     Cell/Pad     Cell/Pad     Cell/Pad		of finding and	corrective ac	tion:			offinding	and correctiv	e action:	
Cell/Pad Cell/Pad Cell/Pad Description of finding and corrective action:	Description		r corrective ac	uon.		Description	rormung		e acuon.	
Description of finding and corrective action: Description of finding and corrective action:	Date l	dentified		Repaired		Date Id	entified		Repaired	
Date Identified Penaired Date Identified Penaired	Cell/Pad		corrective ac	tion:		Description	n of finding	and correctiv	e action:	
		of finding and	I COFFECTIVE aC	uon.			-			

		Monthly Cover I	ntegrity Ins	pection Fe	m	_	
Facility	Waste Management-	Redwood Landfill		_		-	- t-t
Date	3/29/2024	Received	Manager	Por A	May	Date	3/29/2
Technician	Jimmie Brunning	Repairs Complete	Manager		-	Date	
Cell/Pad	1(925)505-8592		Cell/Pad		_		
	d this month.	ive action: No cover integrity	Description	or moing a	na correct	ive action,	
Date	dentified	Repaired	Date Ide	entified	-	Repaired	1
Cell/Pad.		Inepaired	Cell/Pad	interine G		interprint and	
		Longing 1		and the ad		In contrast	_
	dentified	Repaired	Date Id	entified	-	Repaired	-
Cell/Pad	of finding and correct	ius action:		of finding a	ord corcord	ive action-	_
Cell/Pad			Cell/Pad				
Description	of finding and correct	ive action:	Description	of finding a	ind correct	live action:	
					ind correct		
Date I Cell/Pad	dentified	Repaired	Date (d Cell/Pad	entified		Repaired	
Date I Cell/Pad		Repaired	Date (d Cell/Pad			Repaired	1
Date I Cell/Pad Description	dentified	Repaired	Date Id Cell/Pad Description	entified		Repaired	
Date I Cell/Pad Description Date I Cell/Pad	dentified of finding and correct dentified	Repaired	Date Id Cell/Pad Description Date Id Cell/Pad	entified of finding a entified	ind correct	Repaired tive action: Repaired	
Date I Cell/Pad Description Date I Cell/Pad	dentified of finding and correct	Repaired	Date Id Cell/Pad Description Date Id Cell/Pad	entified of finding a	ind correct	Repaired tive action: Repaired	
Date I Cell/Pad Description Date I Cell/Pad Description	dentified of finding and correct dentified	Repaired	Date (d) Cell/Pad Description Date (d) Cell/Pad Description	entified of finding a entified	ind correct	Repaired tive action: Repaired	
Date I Cell/Pad Description Date I Cell/Pad Description Date I Cell/Pad	dentified of finding and correct dentified of finding and correct	Repaired   Ne action: Ne action: Ne action:	Date Id Cell/Pad Description Date Id Cell/Pad Description	entified of finding a entified of finding a	ind correct	Repaired tive action: Repaired tive action: Repaired	
Date I Cell/Pad Description Date I Cell/Pad Description Date I Cell/Pad	dentified of finding and correct dentified	Repaired   Ne action: Ne action: Ne action:	Date Id Cell/Pad Description Date Id Cell/Pad Description	entified of finding a entified of finding a	ind correct	Repaired tive action: Repaired tive action: Repaired	
Date I Cell/Pad Description Date I Cell/Pad Description Date I Cell/Pad	dentified of finding and correct dentified of finding and correct	Repaired   Ne action: Ne action: Ne action:	Date Id Cell/Pad Description Date Id Cell/Pad Description	entified of finding a entified of finding a	ind correct	Repaired tive action: Repaired tive action: Repaired	

					ntegrity Ins	spection Fo	m		
Facility	Waste Man	agement- f	Redwood Landfi	1	-			2.77	
Date	4/26/2024		Rec	eived	Manager	Ramin Khany		Date	4/26/2024
Technician	Jimmie Bru	nning	Repairs	Complete	Manager		10	Date	
Cell/Pad					Cell/Pad				-
	of finding an	d correctiv	e action: No co	ver integrity	Description	n of finding an	d corrective a	action:	_
ssues to rep	port this mor	nth.							
Date lo	lentified		Repaired	-	Date Id	entified	Rec	aired	-
Cell/Pad					Cell/Pad		10.00		-
	of finding an					n of finding an			
Date lo	lentified	-	Repaired		Date Id	entified	Rep	aired	
Cell/Pad	5	·			Cell/Pad	1	-		
Cell/Pad	entified of finding an	d correctiv	Repaired		Cell/Pad	entified		action:	
Cell/Pad Description Date Id Cell/Pad		Ē	Repaired		Cell/Pad Description Date Id Cell/Pad		d corrective a	action: aaired	
Cell/Pad Description Date lo Cell/Pad Description Date lo Cell/Pad	of finding an lentified of finding an	d correctiv	Repaired Repaired Repaired		Cell/Pad Description Date Id Cell/Pad Description Date Id Cell/Pad	entified	d corrective a Rep d corrective a Rep	action: paired action: paired	
Cell/Pad Description Date lo Cell/Pad Description Date lo Cell/Pad	of finding an lentified of finding an	d correctiv	Repaired Repaired Repaired		Cell/Pad Description Date Id Cell/Pad Description Date Id Cell/Pad	entified	d corrective a Rep d corrective a Rep	action: paired action: paired	
Cell/Pad Description Date lo Cell/Pad Description Date lo Cell/Pad Description	of finding an lentified of finding an	d correctiv	Repaired Repaired Repaired		Cell/Pad Description Date Id Cell/Pad Description Date Id Cell/Pad Description	entified	d corrective a d corrective a Rep d corrective a	action: paired action: paired	
Cell/Pad Description Date lo Cell/Pad Description Date lo Cell/Pad Description	of finding an lentified of finding an lentified	d correctiv	Repaired Repaired Repaired re action:		Cell/Pad Description Date Id Cell/Pad Description Date Id Cell/Pad Description	entified	d corrective a Rep d corrective a d corrective a	action: aatred action: action: action:	
Cell/Pad Description Date lo Cell/Pad Description Date lo Cell/Pad Description	of finding an lentified of finding an lentified	d correctiv	Repaired Repaired Repaired re action: Repaired		Cell/Pad Description Date Id Cell/Pad Description Date Id Cell/Pad Description	entified	d corrective a Rep d corrective a d corrective a	action: aatred action: action: action:	

# **APPENDIX H**

# SURFACE EMISSIONS MONITORING / COMPONENT LEAK



WASTE MANAGEMENT

172 98th Avenue Oakland, CA 94603 (510) 430-8509

December 28, 2023

Ms. Alisha McCutcheon Redwood Landfill, Inc. 8590 Redwood Highway Novato, California 94948

# Re: Fourth Quarter 2023 Surface Emissions and Component Leak Monitoring Report for Redwood Landfill, Inc.

Dear Ms. McCutcheon:

This monitoring report for "**Redwood Landfill, Inc. (RLI)**" contains the results of the Fourth Quarter 2023 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by Roberts Environmental Services, LLC. (RES). Re-monitoring of surface emissions and site-wide component leak monitoring was conducted by RES and/or Waste Management (WM) personnel.

### **APPLICABLE REQUIREMENTS**

The monitoring discussed in this report was conducted in accordance with the following requirements:

### Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- National Emission Standards for Hazardous Air Pollutants (NESHAP): Municipal Solid Waste Landfills, Title 40: Chapter I: Subchapter C: Part 63: Subpart AAAA, §63.1981(h)(5)
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection procedures).

### **Component Leak**

- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 301 (Landfill Gas Collection and Emission Control System Requirements) and Section 602 (Collection and Control System Leak Inspection procedures).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95464, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

### **RLI Plan and Alternative Compliance Measures**

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on March 24, 2011. After receipt of comments, this ACO was amended, restated, and submitted to BAAQMD on July 1, 2016. SEM and Component Leak monitoring was conducted per the methods outlined in the July 1, 2016 ACO.

### PROCEDURES

### General

The surface of the RLI disposal area has been divided into two hundred-eight (208), approximately 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the 25-foot interval walking pattern as depicted the 2011 RLI AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

### **Instantaneous Surface Emissions Monitoring**

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume ( $ppm_v$ ) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a) and NSPS. The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d) and CCR Title 17 §95471(c)(2).

RES personnel walked the surface of the landfill on a grid by grid basis with the wand tip held at 2 inches from the landfill surface. While sampling the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

Ms. Alisha McCutcheon Page 3

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppm_v (areas of concern) or 500 ppm_v (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Appendices of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
  - If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
  - If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.

If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

# **Integrated Surface Emissions Monitoring**

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppm_v for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held at 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(3).

Grids with results greater than 25  $ppm_v$  were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25  $ppm_v$  are subject to the following re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.
- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.

- If the second 10-day re-monitoring event shows the second exceedance is corrected, all re-monitoring requirements have been completed.
- The second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the third exceedance.

# **Component Leak Monitoring Procedures**

RES personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppm_v. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppm_v per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) and 1,000 ppm_v per requirements outlined in BAAQMD 8-34-303 were recorded. Applicable corrective action and re-monitoring timelines are listed below:

- Leaks between 500 and 999 ppm_v must be corrected and re-monitored within 10 days of the initial exceedance.
- Leaks at or above 1000 ppm_v must be corrected and re-monitored within 7 days of the initial exceedance.

# FOURTH QUARTER 2023 SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and component leak monitoring results completed for the Fourth Quarter 2023.

# **Instantaneous Surface Emissions Monitoring Results**

The Instantaneous surface monitoring was performed on November 28, 2023 in accordance with the NSPS, BAAQMD 8-34, and CCR Title 17 §95469, NESHAP Subpart AAAA, and ACO. Results and data from the monitoring are presented in Attachment A.

#### Initial Monitoring Event Exceedances of 500 ppm_v

There were five (5) exceedances of 500  $ppm_v$  as methane detected on November 28, 2023. Corrective actions to initiate repairs of the exceedances were completed within five days for all locations.

#### First Ten-Day Re-Monitoring Results

The first 10-day re-monitoring was completed on December 1, 2023. All locations were observed at less than 500  $ppm_v$  as methane.

#### **One-Month Re-Monitoring Results**

The 1-month re-monitoring event was completed on December 21, 2023. All locations were observed at less than  $500 \text{ ppm}_v$ .

# Readings between 200 ppmy and 499 ppmy (Initial and Re-monitored)

There were no readings between 200 ppm_v and 499 ppm_v as methane detected during the initial monitoring event on November 28, 2023. Pursuant to CCR Title 17 95471(c), instantaneous surface emissions exceeding 200 ppm_v but below 500 ppm_v are required to be recorded.

# **Integrated Surface Emissions Monitoring Results**

The Integrated surface sampling (ISS) was performed on November 27 and December 14, 2023 in accordance with the ACO and requirements outlined in CCR Title 17 §95469.

# Initial Monitoring Event Exceedances of 25 ppmy

There were 0 grids with exceedances of 25  $ppm_v$  as methane detected during the initial monitoring event.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B, Integrated SEM 25 ppm_v Exceedances and Monitoring Log, and SEM Map included in Attachment B, for details.

# **Component Leak Monitoring Results**

Component leak monitoring was conducted per the applicable requirements on November 28, 2023. No leaks greater than 500 ppm_v were identified. Please see Attachment C, for details.

# WEATHER CONDITIONS

# Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

# **Precipitation Requirements**

Per the RLI's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no precipitation  $\geq 0.01$ " within 24 hours,  $\geq 0.16$ " within 48 hours, nor  $\geq 0.25$ " within 72 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

# **EQUIPMENT CALIBRATION**

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25  $ppm_v$  in air for integrated sample analyses and 500  $ppm_v$  in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at (510) 613-2852.

Thank you, Waste Management

Atch Chon

Michael Chan Environmental Protection Specialist

#### Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

#### Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

#### Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

#### Attachment D – Weather Station Data

• Strip Chart Data

#### **Attachment E – Calibration Records**

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

# Table A.1 Instantaneous Landfill Surface Emissions Monitoring Initial Monitoring Event Areas of Concern

 2023 QUARTER:
 4

 PERFORMED BY:
 RES and WM

 LANDFILL NAME:
 Redwood Landfill, Inc.

Flag Number	Grid Number	Latitude	Longitude	Date of Monitoring	Concentration of Emission (ppm _v )	Comments
01	107	38.17252	-122.56627	11/28/2023	514	capwell
O2	98	38.17134	-122.56577	11/28/2023	512	well18
O21	128	38.17385	-122.56678	11/28/2023	830	Well127
022	187	38.17168	-122.56925	11/28/2023	638	Well102c
023	157	38.16905	-122.56786	11/28/2023	1,700	Well204
023	157	36.10905	-122.30700	11/20/2023	1,700	Well204
	+					1
<u> </u>						
	+					
		-		-		
	1					
	1					
L	+					1
	1					
	1					
	1					
	1					
	1					
	+					
Notes: Please refer	to field data she	ets for details				

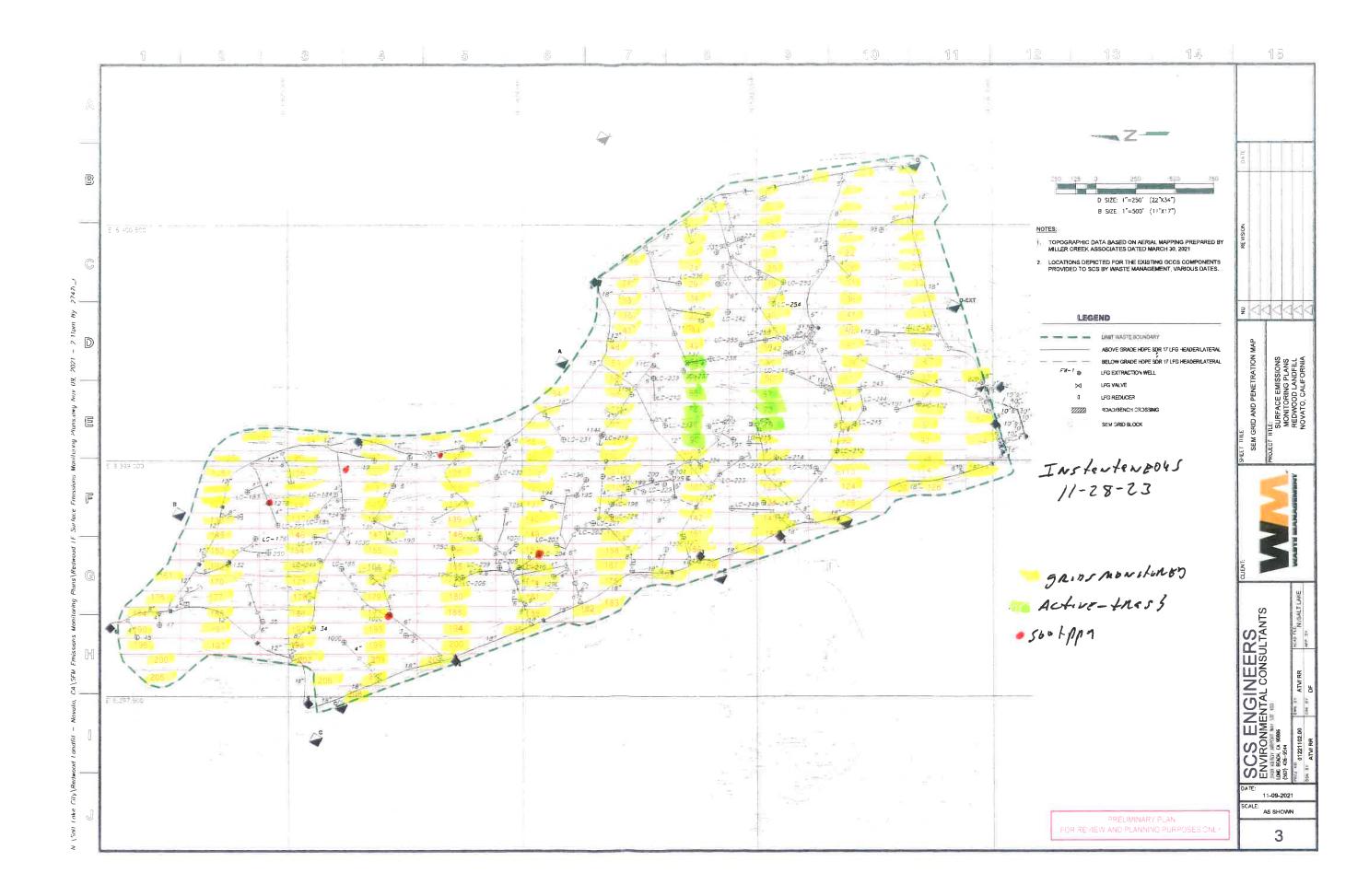
# Table A.2 Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

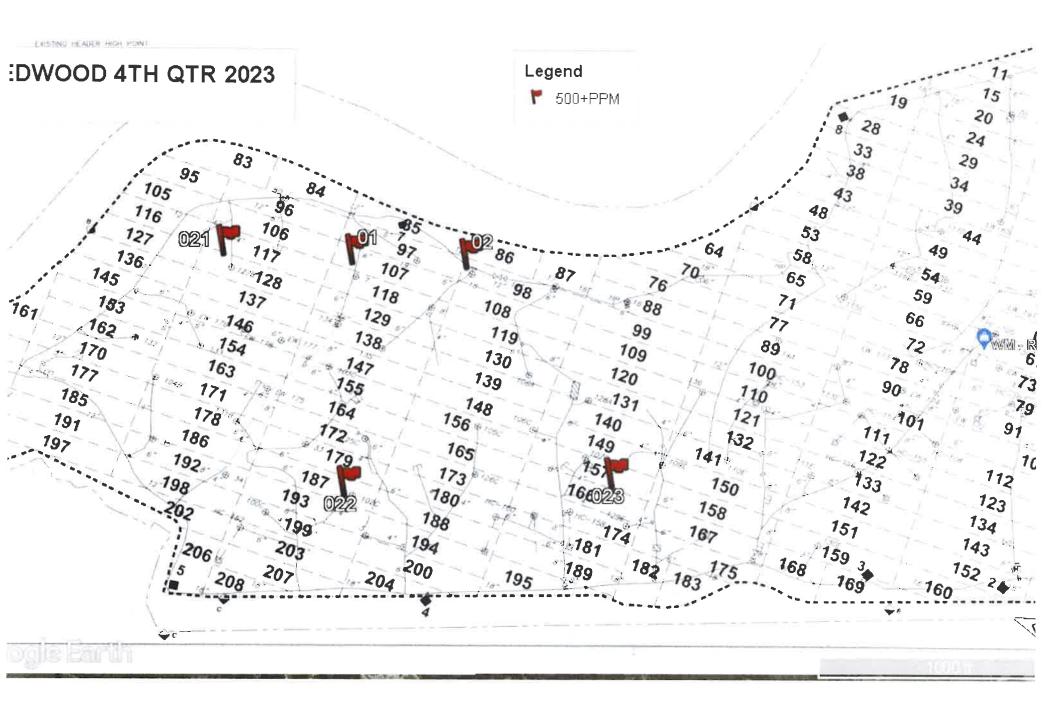
#### 2023 QUARTER: 4 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: Riley Lindberg

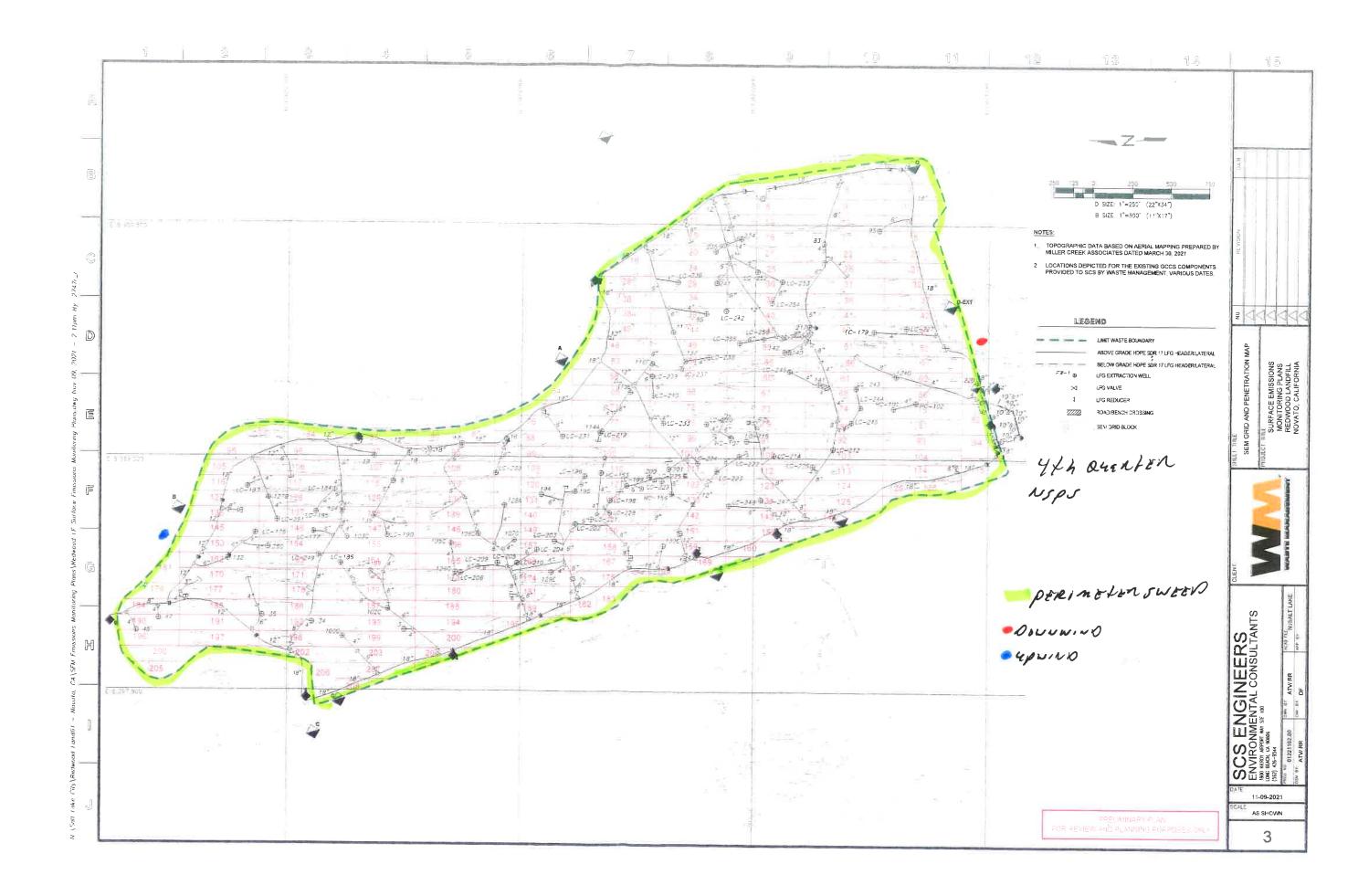
LANDFILL NAME: Redwood Landfill, Inc.

Initia	Monitoring	Event	(	Corrective Action		1st 10-day Follow-Up		2nd 10-day Follow-Up		1st 30-day Follow-Up				
Flag	Monitoring	Reading	Repair	Action	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	ppm	Date	Taken	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
01	11/28/2023	514	12/1/2023	Increased BECs	12/1/2023	1		n/a			12/21/2023	3		capwell
O2	11/28/2023	512	12/1/2023	Added and compacted soil	12/1/2023	446		n/a			12/21/2023	352		well18
O21	11/28/2023	830	12/1/2023	Increased BECs & Added and compacted soil	12/1/2023	83		n/a			12/21/2023	103		Well127
O22	11/28/2023	638	12/1/2023	Added and compacted soil	12/1/2023	49		n/a			12/21/2023	51		Well102c
O23	11/28/2023	1,700	12/1/2023	Added and compacted soil	12/1/2023	237		n/a			12/21/2023	219		Well204

# Table A.3Instantaneous Landfill Surface Emissions MonitoringExceedance and Monitoring Logs (AB-32)


# 2023 QUARTER: 4 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: Riley Lindberg LANDFILL NAME: Redwood Landfill, Inc.


Initial	Monitoring	Event	1st Re-m	non Event -	10 Days	2nd Re-mon Event - 10 Days			
Flag	Monitoring	Reading	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	ppm	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
O1	11/28/2023	514	12/1/2023	1		n/a			capwell
O2	11/28/2023	512	12/1/2023	446		n/a			well18
O21	11/28/2023	830	12/1/2023	83		n/a			Well127
O22	11/28/2023	638	12/1/2023	49		n/a			Well102c
O23	11/28/2023	1,700	12/1/2023	237		n/a			Well204


# Table A.4Instantaneous Landfill Surface Emissions MonitoringAreas of Concern Greater than 200 ppmv

# 2023 QUARTER: 4 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: LANDFILL NAME: Redwood Landfill, Inc.

Initial	Monitoring	Event	Re-mo	n Event	
Flag	Monitoring	Reading	Monitoring	Reading	Comments
Number	Date	ppm	Date	ppm	
		No	200-499 ppmv	locations	







# Orange Flag Landfill Surface Emissions Monitoring Exceedances and Monitoring Log

Site: RED NOOD

Quarter /		447 20	523	1			1.2			-			Page of Pag
Technicia		LEISHW	ADE	1									Page of Pag
Instrumer		LEISHW turk 10	00										
Calibratio	n Standard:	SOP	on			-							
	Initial I	Monitoring Event		First Re-M	Ionitoring Even	t - 10 Days	Second Re-	Monitoring Eve	nt - 10 Dave	30.00	y Follow-up Mor	alterian	
Flag	Grid	Field Reading	Date	Date	No Excd.	Excd.	Date	No Excd.	Excd.	Date	No Excd.	Excd.	Comments
Number	Number	(ppm)	Monitored	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	1
0-1	107	514	11-28-23				(			- monitored	idde ppm	~300 ppin	LA A ALLAND D. D. IT
<del>0</del> -2	98	512	1				10000						9MAGRICEN PIPE
<del>0</del> -21	128	870	1	1									WE11/8
0-27	197	830 638 1700											WEN127
0-22 0-23	187	1200	V										WEIL/OZC
0-	157	1,00	*										4 MAGLKON POPE WEII 18 WEN127 WEII 1020 WEII 204
0-	-												
0-	-												
0-													
0-													
0-													
0-					-								
0-					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
0-													
0-	-												
				-									
0-													
0-													
0-													
D-													
)-													
)-													
)-				-					1				
)-													
)-		1											
)-					-								

wpt			REDWOOD 4TH 2023		
ID	lat	lon	time	name	cmt
1	38.172517	-122.56627	2023-11-28T19:00:11Z	01	514Ppmcapwell
2	38.17134303	-122.56577	2023-11-28T19:05:15Z	02	512Ppmwell18
3	38.17384796	-122.566781	2023-11-28T19:00:17Z	<b>O</b> 21	Ppm830Well127
4	38.17167998	-122.56925	2023-11-28T19:26:19Z	O22	Ppm638Well102c
5	38.16904597	-122.567864	2023-11-28T19:41:02Z	O23	Well204Ppm1700

Personnel: LEISHWADE MISHELESTACOA	tonnie OF/ing Juveni Myping	
Mishel ostacon Jenny Maroz		Cal. Gas Exp. Date: //-16-24
Date: <u>//-28-23</u> Instrument Us	sed: JUA1000 Grid	Spacing: ZJ/
Temperature: <u>35</u> Precip:	O Upwind BG: 2-2	Downwind BG: 2.8

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	ATION	REMARKS
	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KENAKKU
1	LW	0520	0535	14	3	4	16	
2	ME	0520	0525	22	3	4	16	
3	TM	0520	0525	19	3	4	16	
4	ED	0520	ar	51	3	4	16	
5	TM	0520	0525	47	3	Ц	16	
6	ZW	0535	0550	26	3	4	16	
ל	ME	0531	0550	51	3	4	16	
8	41	0535	0550	39	3	Ĥ	16	
9	EO	0535	050	25	3	4 4	16	
18	50	0525	0550	17	3	Ĥ	16	
11	LN	0550	0605	65	4	4	16	-
12	ME	0550	0601	84	4	4	16	-
13	51	0550	0605	47	4	4	16	
14	वष	0550	060	26	4	4	16	
15	Ja	0550	obar	51	4	4	16	
16	LW	0605	0620	108	3	3	2	
17	ME	0605	0820	74	3	3	2	
18	d-	ober	0620	16	3	3	2	
19	ED	0615	0820	64	3	3	2	
20	Jn	060	0620	145	3	3	2	
21	LW	0620	0635	107	3	3	2	
22	ME	0627	0625	41	3	3	2	
23	Jr.	0620	0620	28	3	3	2	
24	2P	0620	0875	9.6	3	3	2	
25	JA	0620	082	145	3	3	2	
26	LW	0635	0650	36	3	4	15	
27	ME	0825	0650	18	3	4	15	
28	In	0825	0150	71	3	4	15	
29	65	0825		115	3	1	15	
30	アハ	0835	0850	85	3	4	15	

Page _____ of _____

Personnel: Lois & WAOU	EDDIC DE ling	
Mighor Estrana	JUVENI MEDINS	Cal. Gas Exp. Date: //-/0-24

Date: 11-28-23 Instrument Used: 40A 1000 Grid Spacing: 25'

Temperature: 37 Precip: 0 Upwind BG: 22 Downwind BG: 28

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	MATION	REMARKS
GRED ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
31	LW	0650	0765	27	3	4	16	
32	ME	0650	0705	34	3	4	16	
33	5-	0650	6705	78	3	4	16	
34	20	0610	0755	95	3	4	16	
31	ラヘ	0650	0705	71	3	4	16	
36	LW	2050	0720	42	3	3	110	
37	ME	0705	0720	25	3	3	16	
38	tn	0705	0720	31	3	3	16	
39	20	070	0720	27	3	3	16	
40	Ja,	0705	0720	54	3	3	16	
41	La	0720	0735	35	2	3	116	
42	AE	0720	0735	26	2	3	16	
43	5m	0727	1500	81	2	3	lib	
44	60	0720	07.25	42	2	3	16	
45	Ja	0720	0725	30	2	3	16	
46	Lu	0735	0750	27	3	5	16	
47	AE	0735	0750	4/	3	5	14	
48	7-1	0735	0750	66	3	5	14	
49	どろ	2550	0750	51	3	5	14	
50	Ja	2550	050	30	3	5	14	
51	LN	0750	0805	ZZ	2	3	14	
52	ME	0750	080	47	2	3	14	
53	fm	0750	080	35	2	3	14	
55	80	0750	0820	118	2	3	jų	
56	on	020	0825	26	2	3	14	
57	Lw	0805	0820	49	2	3	14	
58	ME	080	0820	32	2	3	14	
60	JA	082	0825	64	2	3	14	
61	03	0805	0820	37	2	3	14	
62	5-	0800	0823	28	2	3	14	

Page <u>2</u> of <u>2</u>

Personnel	Lough whor	ono.c pring	
	Mishor EIFREDR	JOVENIA BDING	
	Jonny Maroz	0	Cal. Gas Exp. Date: 1/-10-29
Date:	/1-28-23 Instrument L	Jsed: 4VA1000 G	rid Spacing: 25'

Temperature: 42 Precip: O Upwind BG: 22 Downwind BG: 28

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	MATION	REMARKS
Gird ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLMARKS
63	w	0820	0835	41	3	4	15	
64	ME	0820	2580	38	3	4	15	
65	54	0520	082	94	3	4	15	
68	20	0520	0835	31	3	4	15	
69	JA	0820	2680	27	3	4	15	
>0	LW	0835	0850	40	2	3	16	
71	AE	0821	0850	86	2	3	16	
74	TA	0871	0850	51	2	3	16	
75	60	0835	0850	30	2	3	16	
76	Ja	8835	0858	27	2	3	16	
77	lu	0850	0905	61	2	2	16	
80	ME	0850	0905	50	2	2	16	
81	JM	0850	050	22	2	2	16	
82	20	0850	0905	39	2	2	16	
87	JM	0850	0985	47	2	2	16	
84	12	0905	0920	36	2	3	16	
85	ME	0985	0920	22	2	3	16	
88	チョ	0905	0520	41	2	3	41	
87	50	0511	0920	30	2	3	16	
88	JA	0505	0520	57	2	3	16	
85	LV	0920	0935	84	3	4	14	
91	ME	0920	0925	39	3	4	14	
92	53	0520	280	22	3	of	14	
93	RD	0520	0925	47	3	4	14	
84	Jn,	0920	0931	30	3	4	14	
95	Lu	0935	0950	62	2	3	14	
96	ME	0925	080	79	2	3	14	
.97	1 mg	0535	0950	25	2	3	14	
98	מש	0820	0215	512	2	3	14	WEH 18
99	5-2	0720	0850	41	2	3	14	

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of ____

Personnel: Lays & WARK	EDDIC DELLS	
MIEW ETTREDA	toveni MADINS	
JENNY MULLON	U	Cal. Gas Exp. Date: 11-10-24
	)	

Date: <u>//-28-23</u> Instrument Used: <u>/////000</u> Grid Spacing: <u>ZJ'</u>

Temperature: 51 Precip: 0 Upwind BG:  $2 \cdot 2$  Downwind BG: $2 \cdot 5$ 

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	1ATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
100	Lw	0950	1005	113	2	3	14	
101	148	0950	1005	87	2	3	14	
102	TM	0950	1005	54	2	3	14	
103	En	0550	100	77	2	3	14	
104	m	0950	1005	49	2	3	14	
105	Lu	1005	1020	37	2	4	14	
106	ME	1015	1020	54	2	4	14.	7
107	53	1005	1020	514	2	4	14	4NASTKED PIPE
108	53	1005	1020	29	2	4	14	
105	5n	1005	1120	36	2	4	14	
110	1~	1020	1035	40	3	5	10	
111	ME	1020	102	ZZ	3	5	10	
112	7-	1020	1035	89	3	5	10	
113	13	1020	1035	26	3	5	10	
114	アー	1020	1000	30	3	5	10	(
115	Lw	1035	1050	44	5	1	10	
116	Mr	1025	1050	22	5	1	10	
117	7-7	105	1050	60	5	1	10	
118	モク	1035	1850	51	5	7	10	
119	ワヘ	102	1050	37	5	7	10	
120	LN	1050	1105	54	5	1	12	
121	MC	1050	1105	46	S	1	12	
122	Th	1000	1105	75	5	1	12	
123	20	1050	1125	ZZ	5	7	12	
124	77	1050	IIN	70	5	1	12	
125	LW	1105	1120	60	3	5	10	
126	ME	1105	1/20	39	3	5	10	
127	Ja	110	1120	60	3	5	10	
128	50	1185	1120	830	3	5	10	WE11127
129	Ja	1105	1020	40	3	5	10	

Page <u></u> of <u>7</u>

Personnel: LEISH WAAL	60012 DELINS	
genny Munor	JUVERY MEDING	Cal. Gas Exp. Date: //-/6-2 9
0		/

Date: 11-28-23 Instrument Used: 4VA1000 Grid Spacing: 25'

Temperature: 59 Precip: 0 Upwind BG: 22 Downwind BG: 2F

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	1ATION	REMARKS
	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
130	LN	1120	1135	52	4	6	M	
131	ME	1120	1135	30	4	6	11	
132	71	1120	1135	27	4	6	II II	
133	en	1120	1131	45	4	6	U	
134	JA	1/20	1135	61	4	6	11	1
131	La	1135	1150	30	5	6	10	
136	ME	1175	1150	28	5	b	10	
137	01	1135	1150	40	5	6	10	
138	20	1135	1150	27	5	6	10	1
139	(JA	1135	1150	49	5	ما	10	
140	Lw	1150	1205	62	5	7	12	
14/	NE	1150	122	21	5	1	12	
142	70	1110	1205	41	5	1	12	
143	40	1150	120	39	5	1	12	
144	ティ	1150	12.5	26	5	7	12	
145	11	1230	1245	51	5	6	li	
146	ME	1230	1245	30	5	6	11	
127	ta	1230	1221	22	5	5	11	
148	ED	1270	122	37	5	S	ü	
149	JA	1230	124	25	5	8	11	
150	Lu	1245	1300	114	5	10	11	
151	nt	1245	1300	87	S	10	11	
152	TA	1245	1300	66	5	10	11	
153	En	122	1305	49	5	10	II	
154	ファ	1245	1300	51	5	10	М	
115	Lu	1300	1315	30	6	9	11	
15-6	At	1300	131	22	6	9	11	
157	すっ	1300	1315	1700	6	9	11	WE11 204
158	80	1300	1315	75	6	9		,
159	73	13.0	1315	40	6	9	11	

Page <u>5</u> of <u>7</u>

Personnel: Logs war	Enore DEline	
JURRY MAND	JUVSAI MEDINS	Cal. Gas Exp. Date: //-/0-24
Date: <u>//-28-23</u> Instrumen	t Used:Gri	d Spacing:
Temperature: <u>62</u> Precip:	D Upwind BG: Z.Z	Downwind BG: 2-8

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMARKS
160	Lw	1315	1330	32	5	10	12	
161	ME	1315	1330	29	5	10	12	
162	71	1315	1370	61	5	10	12	
163	ED	1315	1730	40	5	10	12	
184	5-	131	1330	35	5	10	12	
165	LU	1330	1345	26	5	6	12	
166	ME	1330	1345	19	5	202	12	
167	アク	1270	1345	77	5	8	12	
168	50	1373	1345	35	5	E	12	
169	37	1333	1245	41	5	6	12	
170	LW	1345	1400	20	Ż	13	12	
17/	ME	1345	1400	26	1	13	12	
172	51	134	1400	39	7	13	12	
173	En	1345	1400	26	1	13	12	
174	Jin	1345	1400	41	7	13	12	
175	in	1400	1415	58	4	5	12	
176	45	1400	1415	46	4	5	12	
177	20	1400	1415	30	4	55	12	
178	EN CIT	1410	141	22	4	55	12	
179	50	1400	1415	84	4	5	12	
180	LW	1415	1430	26	5	9	10	
181	ME	1415	1430	40	5	9	10	
182	7-7	1415	1430	31	5	9	10	
183	20	1415	1420	27	5	9	10	
184	5-1	1415	1430	34	5	9	10	
185	Lu	1430	1445	22	55	1	11	
186	ME	1420	1445	35	5	7	1	
187	1-9	1430	1465	638	5	1	il	W01/1026
189	cn .	1435	144	65	5	7	11	
189	JE	1425	1445	27	5	1	11	

Page 6 of 7

Personnel: Loip winr Marcharchartmone	SUVERI MEDIN		
Joney Menor		Cal. Gas I	Exp. Date: 1/-10-24
Date: //-28-23 Instrument U	sed: +UX1000	Grid Spacing: _	25'

Temperature: 67 Precip: 0 Upwind BG: 2.2 Downwind BG: 2.8

GRID ID	STAFF	START	STOP	тос	WIN	D INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEHARG
190	LW	1445	1500	14	5	8	10	
191	ME	1445	1500	19	5	Ś	10	
182	TM	144	1500	35	5	Ś	10	
193	ED	1445	1500	54	55	ŝ	10	
194	ゴハ	1445	1500	26	5	G	10	
195	12	1500	1515	30	5	9	12	
193	ME	1500	1515		5	9	12	
157	JA	1500	1515	4/ 28	5	9	12	
198	ED	15:0	1515	19	5	9	12	
199	JA	1500	1515	26	5	9	12	
200	LW	1515	1530	34	1	10	12	
20/	ME	1515	1570	22	1	10	12	
202	JM	1515	1550	40	T	10	12	
203	ED	ISN	1575	18	7	10	12	
204	JA	1515	1830	26	7	10	12	
205	LW	1530	1545	22	10	9	1/	
206	ME	1530	1545	19	6	9	il li	
207	51	1570	1545	27	6	9	11	
208	ED	1570	1545	14	6	9	M	
				5				
				2	1			
-								
				1				
				1				

Page <u>></u> of <u>></u>

334

							Cal. Gas	Exp Date:
te //	-28-23	Instrur	nent Usec	t;;		Gri	d Spacing	
mperat	ure:	Pre	cip:	Up	wind BG:		Downw	vind BG;
RID ID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
-4								Active-th
9								
57								
7Z 73								
73								
9								
10								Ý
							<u></u>	
-		-			-			
				-			1	
							-	
					-			

Page _____ of _____

Year: Quarter: 4+h

2023

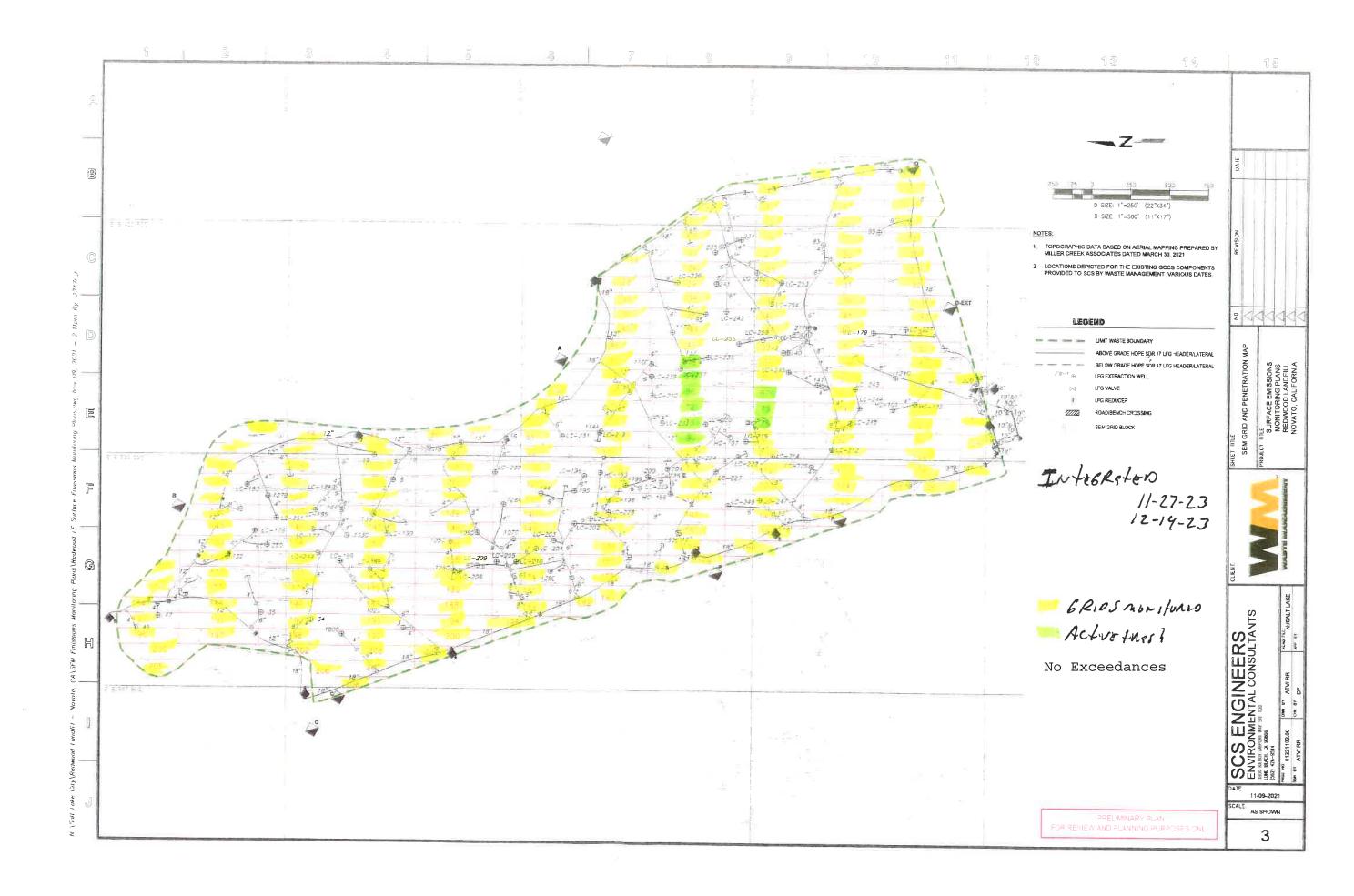
IME Date	IME Location ID	IME Concentration (ppm)		
11-28-23	P-2	18		
	P-4	16		
	P-5	2/		
	P-6	14		
	P-7	16		
	P-8	21		
	P-1	34		
	P-9	19		
	RLLC0234	45		
	RLI00083	27		
	RLI00095	31		
	RLLC0235	34		
	RLLC0252	14		
	RLLC0236	23		
	RLLC0241	27		
	RLLC0253	46		
	P-10	32		
	RLLC0254	20		
	P-14	45		
	RLI00065	37		
	RLLC0242	20		
	P-16	16		
	P-17	29		
	RLI0117D	18		
	RLLC0179	13		
	RLLC0217	24		
	RLLC0227	2/		
	P-47	46		
	RLI00140	35		
	RLI00142	19		
	RLLC0255	20		
	RLLC0256	43		
	P-19	7/		
	RLI0116E	19		
	RLI00137	26		
	RLLC0237	35		
	RLLC0238	27		
	P-11			
	RLLC0239	31		
L	RLI00141	20		

IME Date	IME Location ID	IME Concentration (ppm)
11-28-23	RLLC0246	24
)	RLI0124G	35
	RLI00220	27
	P-21	34
	P-22	66
	P-23	2/
	P-82	118
	P-83	27
	P-84	64
	P-85	32
	RLI0115E	24
	RLLC0240	29
	RLLC0243	36
	RLLC0244	2.5
	RLIHC101	23
	RLIHC101	57
	RLLC0230	49
	RLLC0233	30
	RLLC0245	22
	P-86	127
	P-48	39
	P-43	
	P-45	24
	P-38	40
	RLI00017	
	RLI00017	19 28
	RLLC0231	
	RLIO114A	34
		26
	RLLC0219	42
	RLLC0215	20
	RLIHC107	16
	P-49	28
	RLI00018	512
	RLI00019	51
	RLLC0214	37
	RLLC0222	20
	RLLC0212	16
	P-50	45
	RLLC0232	16 45 39
(	RLLC0196	20

IME Date	IME Location ID	IME Concentration (ppm)
	RLLC0229	3/
11-28-23	RLHC0153	20
)	RLLC0200	20 45
	RLLC0201	77
	RLLC0223	26
	RLLC0224	19
	RLLC0226	27
	RLLC0183	34
	P-51	25
	RLLC0184	3/
	RLI00008	22
	RLLC0195	5/
	RLLC0199	46
	RLLC0225	39
	P-52	52
	RLI0127B	830
	RLI0128A	20
	RLLC0194	17
	RLLC0198	34
	RLHC0156	24
	P-13	32
	RLLC0247	18
	RLLC0248	
	P-53	67
	RLLC0251	40
	RLI00134	18
	RLI00135	27
	RLLC0221	
	RLLC0228	24 31
	P-12	29
	RLLC0176	
	P-55	40
	RLI0103C	36
		2/
	RLLC0190	24
	RLI0106C	38
	RLLC0202	2/ 23 2) 44
	P-54	23
	RLLC0250	27
J.	RLI0105C	4.6
V°	RLI0107C	3/

IME Date	IME Location ID	IME Concentration (ppm)
11-28-23	RLLC0203	
1	RLLC0204	1700
	RLI0130E	30
	P-56	18
	RLI00132	2/
	RLLC0249	31
	RLLC0186	37
	RLLC0209	26
	RLLC0205	41
	RLLC0210	36
	RLLC0188	25
N. Contraction of the second sec	RLI0126C	18
	RLI0129E	29
	RLLC0206	77
	P-61	37 22
	RLI00035	45
	RLI0102C	638
	P-81	7/
	RLI00045	7.6 1.8
	RLI00047	25
	P-74	36
	RLI00034	
	RLI00003	29 3>
	P-76	40
	P-77	18
	P-78	
	RLI0100C	25 3/
	P-75	16
	P-79	14
	RLLC0192	53
	P-44	18
	P-45	16
	P-73	2>
	73	REMOVE
	79	1
	79	
	79	
	67-73	
	67	W
A	195	28

IME Date	IME Location ID	IME Concentration (ppm)
11-28-23	RLLC0257	31
	RLLC0258	20
	RLLC0259	46
	RLLC0260	19
	RLLC0261	30
	RLLC0262	14
	RLLC0263	2.5
	RLLC0264	18
	RLLC0265	54
	RLLC0266	3/
	RLLC0267	22
	RLLC0268	36
	RLLC0269	45
	RLLC0270	18
	RLLC0271	19
	RLLC0272	51
	RLLC0273	26
	RLLC0274	30
	RLI00275	24
	RLI00276	32
	RLI00277	25
	RLI00278	46
	RLI00279	18
	RLI00280	3/
	RLI00281	20
	RLI00282	26
	RLI00283	45
	RLI00284	30
	RLI00285	28
	RLI00286	34
	RLI00287	41
	RLLC0177	55
	RLLC0180	20
	RLLC0181	/7
	RLLC0185	14
	RLLC0187	7.5
	RLLC0189	29 35
	RLLC0191	4/
	RLLC0191	2.6
		6.40


Attachment B

Integrated Surface Emission Monitoring Event Records

# Table B.1 Integrated Landfill Surface Monitoring Exceedances and Monitoring Log

# 2023 QUARTER: 4 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: LANDFILL NAME: Redwood Landfill, Inc.

Initial	Monitoring	Event	1st Re-m	non Event -	10 Days	2nd Re-n	non Event	- 10 Days	
Exceedance	Monitoring	Reading	Monitoring	No Exced.	No Exced.	Monitoring	No Exced.	No Exced.	
Grid ID No.	Date	ppm	Date	<25 ppm	>25 ppm	Date	<25 ppm	>25 ppm	Comments
				No Exc	eedances Det	ected			



	LEISH W Misure JERRY	ESTAGO	n Jo	VENS ME	Ding	<u> </u>		- 11-1- 0
							Cal. Gas Exp	. Date: 11-10-2
Date: //	-27-23	Instrum	ent Used: _	fUA10	04	Grid S	Spacing:	51
emperat	ure: 67	Preci	o:	_ Upwind	BG: 🧕	2.2	_ Downwind	BG: 2.8
GRID	STAFF	START	STOP	тос	WIND INFO		RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
1	LW	1005	1030	4.61	4	6	10	
2	ME	1005	1.30	3.98	4	6	16	
3	70	1001	1:30	4.12	4	6	10	
4	60	1:05	1030	6.51	4	6	10	
5	51	1005	1030	5.98	4	6	10	
6	LW	1030	1055	4.57	4	1	10	
7	ME	1070	102	8.34	4	7	10	
8	1 m	1030	1055	10.40	4	1	10	
9	50	1030	1815	8.71	4	7	10	
10	Ja	1030	1655	5.46	6	1	10	
21	lu	1055	1120	8.70	3	5	10	
12	MIS	1851	1120	9.66	3	5	10	
13	JM	1015	1120	6.14	3	5	10	
14	モク	1005	1120	5.38	3	55	10	
15	1 gn	1255	1120	12.41	3	5	10	
16	L	1120	1145	9.74	5	7	10	
17	NE	1120	1145	6.13	5	7	10	
18	yn	1120	114	5.84	5	1	10	
19	ED	1120	114	7.25	5	1	10	
20	ワつ	1120	1145	14.27	5	1	10	
21	LV	1145	1210	11.64	4	6	II	
22	NE	1121	1210	6.07	4	6	11	
23	Ja	1145	1210	5.42	4	6	u l	
24	ED	1145	1210	11.41	4	6	11	
25	72	114	1210	16.85	4	6	ii l	
2-6	W	1210	1235	5.39	4	1	10	
27	NE	1210	122	4.71	4	7	10	
28	30	1210	1221	11.47	4	1	10	
29	50	1210	1231	9.60	4	1	10	
30	00	1210	1230	12.41		1	10	

Page _____ of _____

12	LEISS W MISGEE	Estran	J	DUON: M	EDING	7		
	JERRY 1	NUNOZ					Cal. Gas Exp	. Date: 11-10-2
Date: <u>/1</u> -	-27-23	_ Instrume	ent Used: _	+VA100	ь	_ Grid S	Spacing:	25'
Femperat	ure: 67	Preci	D:	Upwind	BG: Z	12	Downwind	BG: 2.8
GRID	STAFF	START	STOP		ND INFOR	MATION	DEMARKS	
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
31	LW	1235	1300	5.50	5	10	D	
32	ME	1221	1300	4.68	5	10	10	
33	50	1231	1300	7.21	5	10	10	
34	20	1231	1300	9.45	5	10	10	
35	JA	1235	1300	7.66	5	10	10	
36	LW	1300	1325	5.94	5	9	11	
3>	ME	1300	132	5.10	5	9	11	
38	54	1300	132	8.47	5	9	1/	
39	50	130	1325	10.61	5	9	11	
40	on	1300	1325	8.75	5	9	Ŭ.	
4/	LW	1325	1350	7.21	4	6	10	
42	ME	132	1350	5.48	4	6	10	
43	In	1321	1350	7.91	4	6	10	
24	50	132	1350	9.24	i ý	6	10	
45	In	132	1350	6.12	4	6	10	
46	Lw	1350	1415	5.47	3	7	11	
47	115	1350	1415	5.81	3	7	11	
48	500	1250	1415	8.30	3	7	H	
45	600	1350	1815	7.22	3	7	1	
50	1 Jan	1350	1415	9.14	3	1	V	
51	LW	1415	1440	6.22	5	9	11	
52	ME	1415	1440	5.48	5	9	1	
53	3-2	120	1440	8.71	5	9	11	
55	50	1215	1440	6.90	5	9	1)	
56	52	1415	1840	5.47	5	9	11	
57	Lw	2440	150	4.81	4	1	11	
58	NE	1840	1501	6.71	4	1	11	
68	Jas	1240	1501	7.48	4	1	1	L
61	50	1440	1505	6.54	¥	1	11	
62	3-3	1440	ISN	5.92	4	1	N	

Page 2 of 3

	MICHAL	ESTAGY	2 40	VEN' M	MING	r		
	LEISAN. MISHBC JUNRY	MUROZ		14 4 1 14	sign y		Cal. Gas Exp	. Date: //-/0
								ZS1 BG: Z.S
GRID	STAFF	START	STOP	тос	WIN	D INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
63	LN	1505	1530	4.21	5	1	11	
64	ME	1525		7.34		7	И	
65	In	1505	1530		5	1	I	
68	20	1505	1520	7.35	5	7	11	
69	0m Lw		1530	6.28	5	1	Ü I	
70	12			6.75	5 4	6	12	
21	ME	1520	1555	7.40	4	6	12	
74	Th	1530	1311	5.68	4	6	12	
	20	1530	1555	6.13	4	6	12	
76	5n	1530	1555	8.40	4	6	12	
77	LW		1620	9.56	4 5	1	11	
80	ME	1555	1620	6.45	5	1	11	
81	1m		1620	6.11	5	1	M	
82	217	1550	1620	5.28	5	1	I	
83	The	1555	1620	5.11	5	1	¥.	
_								

Page <u>J</u> of <u>J</u>

1					_		Cal. Gas Ex	p. Date:
te: <u>//-</u>	27-23	Instrume	nt Used: _		_	Grid S	pacing:	
mperati	ure:	Precip	:	Upwind	BG:		Downwin	d BG:
GRID	STAFF	TAFF START	STOP	тос	WIND INFO		MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
-4					-			Activo thes
6								
7								
2								
3							7	
10								
				-				
						1		
-					-			
	-					1.000		

Page _____ of _____

Personnel:	LEISHWADE	FUVENI MEDING	
	MISURCESTRADA	ERQ. & DE Ling	
	MISUELES HADA JERRY MUNDZ	-	Cal. Gas Exp Date 11-10-24

Date: 12-14-23 Instrument Used: 4041000 Grid Spacing 25'

Temperature: <u>97</u> Precip: <u>P</u> Upwind BG: <u>2.9</u> Downwind BG: <u>2.8</u>

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
84	LU	0630	0655	5.13	1	- 1	16	
85	ME	0130	0615	4.77		1	16	
84	50	0270	6655	5.21	1	i	16	
87	51	0630	0855	4.85	1	1	16	
88	6D	0830	0655	4.66	1	1	16	
89	la	0655	0720	7.24	Ц	5	2	
21	nt	0415	0720	6.89	4	5	2	
92	Tr	082	072.	6.54	4	5	2	
93	TO	0655	0720	5.27	4	5	2 2	
54	ED	0655	0720	6.13	4	5	2	
95	lu	0720	0745	5.58		2	16	
96	15	0720	674	5.26		2	16	
97	50	6720	0745	5.44		2	16	
98	In	0720	0741	6.26	i	2	16	
95	50	020	0745	5.88	1	2	14	
180	LW	orus	0810	6.61	5	1	6	
101	ME	6725	0810	8.40	5	1	Ŀ	
102	57	0725	68/0	9.65	5	1	6	
103	20	0)45	0810	8.30	5	1	4	
154	62	02	0810	6.21	5	1	6	
105	LW	0810	0835	5.47	6	1	6	
101	ME	0810	0875	6.03	6	9	4	
107	In	1812	082	5.67	6	9	i	
108	5-	0810	082	6.50	6	g	6	
109	60	0810	0825	9.74	6	9	6	
110	Lu	0835	0900	8.52	6	6	6	
111	Ar	0825	0500	7.56	6	6	6	
112	2	0825	0900	7.38	6		6	
113	ナッ	021	0900	6.80	6	808	6	
114	on	0830	05+0	6.07	I	8	U U	

Page / of 5

Personnel:	LEISHWADE	TUVENI MEDING	
	MIGHELESTAADA JERRY MUNDZ	EPA. & DE Ling	
	JERRY MUNOZ		Cal. Gas Exp. Date: 11-10-24

Date: 12-14-23 Instrument Used: 4041000 Grid Spacing: 25'

Temperature: 47 Precip: P Upwind BG: 2.0 Downwind BG: 2.8

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
115	w	0970	0825	4.70	5	7	6	
116	ME	0560	052	4.38	5	1	6	
117	50	0900	652	5.10	5	1	6	
118	TA	6800	130	5.41	5	1	6	
115	NO	0800	.525	6.02	5	7	6	
120	12	0925	0830	5.74	4	6	6	
121	nr	0525	0510	7.28	4	6	6	
122	50	6925	0550	7.98	4	6	6	
123	Ja	0821	0550	5.60	4	4	6	
124	Lu	082	0510	4.28	4	6	6	
125	LW	0910	1015	5.92	4 5	7	7	
126	ME	0950	1015	5.07	5	1	7	
127	70	0910	1011	5.90	5	1	7	
128	177	0250	1815	6.07	5	7	7	
125	53	6950	1015	5.41	5	1	T	
170	W	1015	1040	4.58	6	8	6	
131	NY	1015	1040	5.30	6	5	E	
132	34	1015	1080	7.84	1	8	8	
133	Ja	1015	1640	6.50	6	5	8	
134	20	1011	1040	6.72	6	6	E	
135	LW	1040	1105	5.41	5	1	8	
136	48	1640	1105	4.12	5	7	8	
137	53	1:40	1100	5-07	5		مح أحد أحد	
138	5-1	1140	1105	5.20	5	7	6	
135	00	1040	1105	5.22	5	1	6	
140	LN	1105	1130	6.10	6	10	1	
121	ME	110	1170	8.7/	6	10	1	
142	うつ	1125	1130	6.20	6	10	1	
147	57	1105	1130	6.10	6	10	7	
144	05	1105	1180	5.47	6	10	1	

Page 2 of 5

LEISHWADE	FUVEN' MEDING	
MISURCESTAADA	ERQ. & DE LING	
MISUBLES MADA JERRY MUNDZ		Cal. Gas Exp Date: 1/-10-24

Date: 12-14-23 Instrument Used 4041000 Grid Spacing: 25'

Temperature: 47 Precip: 0 Upwind BG: 2.0 Downwind BG: 2.8

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLMARKS
145	in	1130	1155	5.17	5	10	8	
146	MIS	1130	1105	4.20	5	10	Ğ	
147	サク	1130	1155	5.92	5	lD	Ŷ	
148	TA	1170	1155	6-25	5	10	8	
149	80	1170	1155	7.95	5	10	6	
150	L	1155	1220	12.40	5	10	Î Î	
151	mr	1155	1220	10.18	5	10	8	
182	7-	IN	/220	6-80	5	10		
153	72	1155	1220	5.21	5	10	6	
154	En	1155	1220	5.70	5	10	6	
185	LW	1220	1245	6.11	4	6	9	
156	MB	120	1225	6.21	4	6	9	
157	m	1220	1245	5.92	4	4	9	
158	J-1	1223	122	5.20	4	6	9	
158	ED	1220	1245	2.57	4	6	9	
16 0	1	1245	1310	5.80	5	9	8	
161	ME	124	1710	4.26	5	9	8	
112	Ja	1221	1310	6.18	5	9	8	
163	50	124	1310	9.30	5	9	8	
164	03	1241	1310	12.57	5	9	6	
165	Lu	1310	1325	2.82	6	10	8	
186	Mr	1210	1325	7.40	þ	10	8	
167	57	1310	1331	8.50	6	10	8	
16F	Ja	1310	132	6-50	6	10	8	
189	50	1310	1335	5.12	6	10	8	
170	LV	1335	1400	7.25	5	9	8	
171	mo	1325	1400	648	5	9	8	
172	57	1721	1400	9.14	5	9	8	
173	01	132	1400	7-38	5	9	6	
174	an	132	1400	7.12	5	9	6	

Page _____ of _____

sonnel: _	Misure	estnagn.	Je	PA.S. DE	OIN9 Litts	_		
	JERRY,	nunoz					Cal. Gas Exp	Date: //-10-24
Date 12	-14-23	Instrume	ent Used: _	tua 1000		Grid S	spacing:	251
Femperat	ure: 47	Precip	); 0	Upwind	BG:	2.0	Downwind	BG: 2.8
GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
175	LN	1410	1425	5.41	4	10	6	
176	AE	1410	142	6.20	4	10	G	
177	$\sigma \uparrow$	1200	142	5.84	4	6	G	
178	51	1400	1425	6.16	4	6	Ś	
179	00	1200	1425	5.35	4	6	\$	
180	1.W	142	1410	5.81	5	10	5	
181	NE	1425	1410	7.23		10	G	
182	50	1425	1450	6.45	55	10	5	
183	) Ja	1425	1450	6.12	5	10	G	
184	EP	1421	1450	5.31	5	10	6	
185	12	1410	1515	6.07	5	9	6	
186	my	1450	1515	5.44	5	9	8	
187	50	1250	1815	4.58	5	9	6	
188	on	1450	150	6.20	5	9	S	
185	50	1450	155	5.34	5	9	E E	
150	LW	1515	1540	5.47	5	ID	8	
191	Mr	1515	1540	6.67	5	10	6	
192	5-	1515	1540	8.13	5	10	0	
183	Gn	184	1548	6.85	5	10	Ĩ	
124	5~	1815	1540	5.47	5	10	4	
195	Lu	1540	1605	6.62	5	10	8	
186	NE	1540	16.5	5.95	5	10	8	
157	Jm	1540	1605	4.70	5	10	8	
198	In	1540	1605	5.00	5	10	\$	
195	60	1548	1805	5.81	5	10	4	
200	Lw	1815	1630	4.80	3	5	10	
201	AE	1615	1830	5.06	3	5	10	
202	Ja	18:5	1630	4.82	3	5	10	
207	30	16a	1830	5.67	3	5	10	
204	En	1605	1830	4.12	3	5	10	

Page 4 of 5

Personnel.	LEISHWADE	TUVENI MEDING	
	MISURCESTRAPA	EDQ. & DE Ling	
	JERRY MUNOZ	-	Cal. Gas Exp Date: 1/-10-24

Date: 12-14-23 Instrument Used: +VA1000 Grid Spacing 25'

Temperature: <u>97</u> Precip: <u>P</u> Upwind BG: <u>2.9</u> Downwind BG: <u>2.8</u>

GRID	STAFF	START	STOP	STOP TOC	WIN	ID INFOR	REMARKS	
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	NETINKKS
205	CW	1630	1655	4.18	3	55	16	
206	AE	1620	1611	3.76	3	5	16	
207	JA	1630	1681	4.21	3	55	16	
218	50	1670	1655 1611 1681 1255	4.80	3	5	16	
							2	
			-		-			
			-					
	-		1					
				-				
		1						
			-					
			-	-				
	1		1	-				
					-			
						-		
_								
		-				-		

Page <u>S</u> of <u>S</u>

						Cal. Gas Ex	p. Date:	
-14-23	Instrume	nt Used : _			Grid S	pacing:		
emperature: Pre		cip: Upwind BG:				Downwind BG:		
STAFE	- START	STOP	тос	WIND INFO		MATION	REMARKS	
INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT		
							Active-ths.	
						2		
					1		×	
						_		
				-				
				-				
		-				+		
-								
		-	-					
				-				
1 C				1			1	
	ure:	ure: Precip	ure: Precip: STAFF START STOP	ure: Precip: Upwind	ure: Precip: Upwind BG: STAFF START STOP TOC INITIALS TIME TIME PPM AVG	ure: Precip: Upwind BG: STAFF START STOP TOC INITIALS TIME TIME PPM AVG MAX.	INITIALS     TIME     TIME     PPM     AVG SPEED     MAX. SPEED     DIRECTION 16 POINT       Image: Strategy of the strategy of t	

Page ____ of ____

Attachment C

Component Leak Monitoring Event Records

# Table C.1AB-32 Component Leak MonitoringSummary of Component Leaks Greater than 500 ppmv

# 2023 QUARTER: 4 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: LANDFILL NAME: Redwood Landfill, Inc.

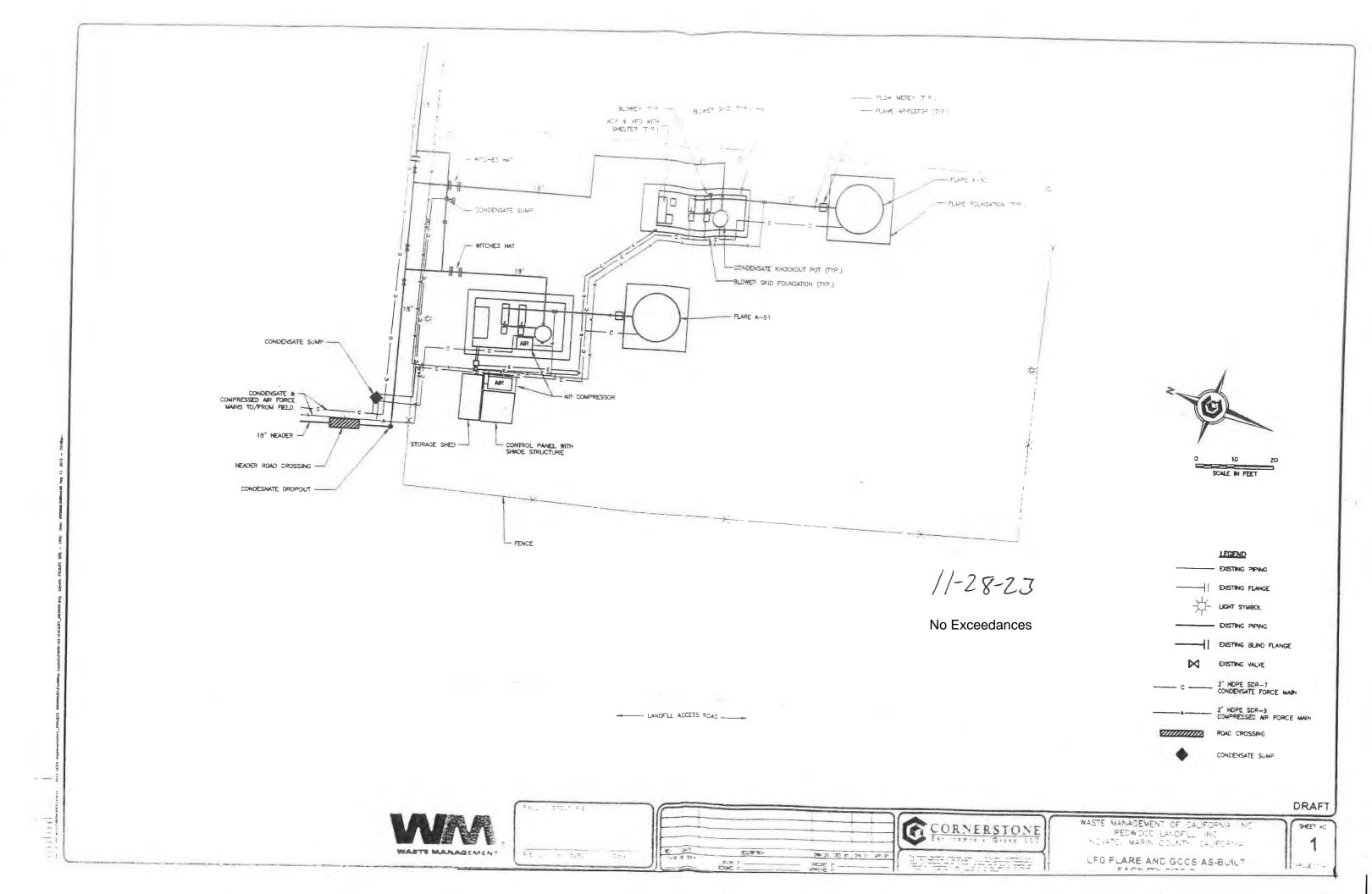
Location	l	nitial Monitorin	g	C	corrective Action	10-	Day Remonitor	ing		
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech		
	No Exceedances Detected									

# Table C.2BAAQMD Component Leak MonitoringSummary of Component Leaks Greater than 1,000 ppmv

# 2023 QUARTER: 4 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: LANDFILL NAME: Redwood Landfill, Inc.

Date		J	0	orrective Action	7-Day Remonitoring				
Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech		
No Exceedances Detected									
			No E         Image: Im	Image: Constraint of the sector of	No Exceedances Detected           Image: Constraint of the system           Image: Constraint of the system	Image: Second	Image: Constraint of the system         Image: Constraint of the system           Image: Constraint of the system         Image: Constraint of the system         Image: Constraint of the system           Image: Constraint of the system         Image: Constraint of the system         Image: Constraint of the system           Image: Constraint of the system         Image: Constraint of the system         Image: Constraint of the system           Image: Constraint of the system         Image: Constraint of the system         Image: Constraint of the system           Image: Constraint of the system         Image: Constraint of the system         Image: Constraint of the system           Image: Constraint of the system         Image: Constraint of the system         Image: Constraint of the system           Image: Constraint of the system         Image: Constraint of the system         Image: Constraint of the system           Image: Constraint of the system         Image: Constraint of the system         Image: Constraint of the system           Image: Constraint of the system         Image: Constraint of the system         Image: Constraint of the system           Image: Constraint of the system         Image: Constraint of the system         Image: Constraint of the system           Image: Constraint of the system         Image: Constraint of the system         Image: Constraint of the system           Image: Constraint of the system         Image: Constraint of the system		

## LANDFILL NAME: んきひゃっつ QUARTERLY LFG COMPONENT LEAK MONITORING


INSTRUMENT FID MAKE: Thermo Environr MODEL: TVA 1000 S/N: J#36346773

DATE OF SAMPLING: 1/-28-23 TECHNICIAN: 6 813 4 W/+8 6

LOCATION OF LEAK	LEAK CONCENTRATION (ppmv)	DATE OF DISCOVERY	TECHNICIAN	ACTION TAKEN TO REPAIR LEAK	DATE OF REPAIR	DATE OF ANY REQUIRED RE- MONITORING	RE-MONITORED CONCENTRATION (ppmv)
NOFLEGGAALTS						li -	
In the event that an exce	edance is detected, pleas	e intiate corrective ac	tion and re-monito	r the exceedance locatior	n within 7 days of t	he initial exceedance.	

NOTE: Leaks over 500 ppmv methane are exceedances at any component containing landfill gas, pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

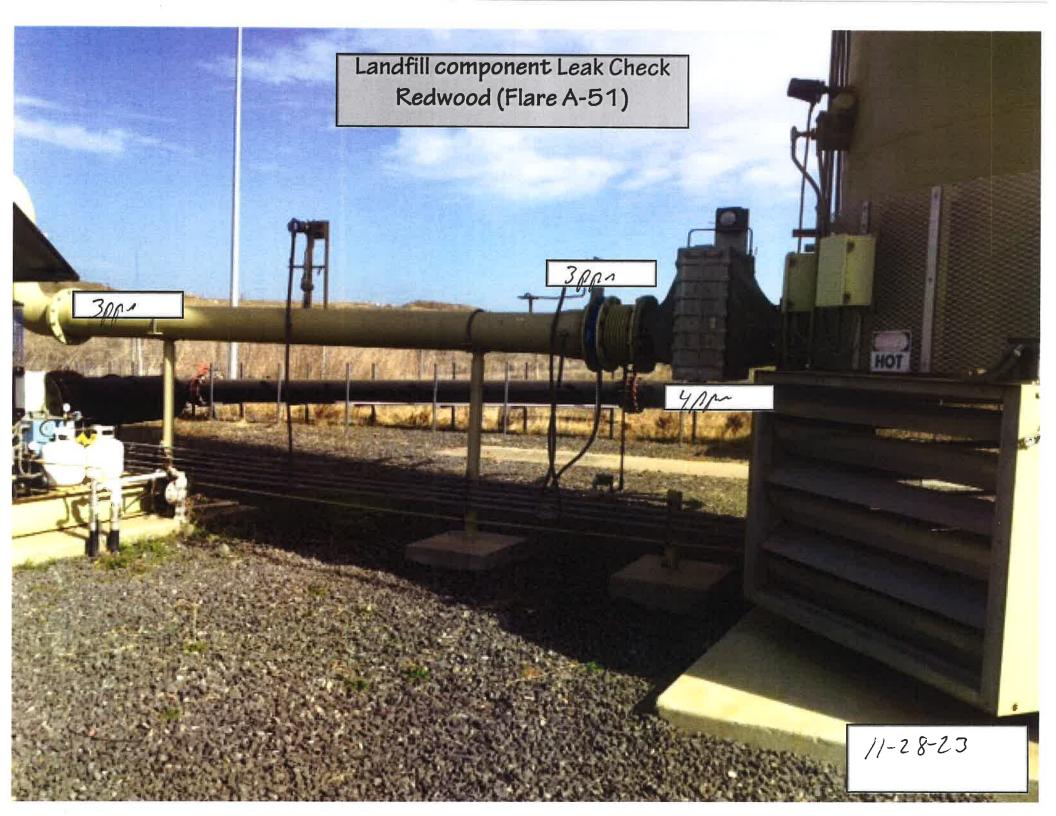
NOTE: Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas, pursuant to BAAQMD Regulation 8-34-301.2.

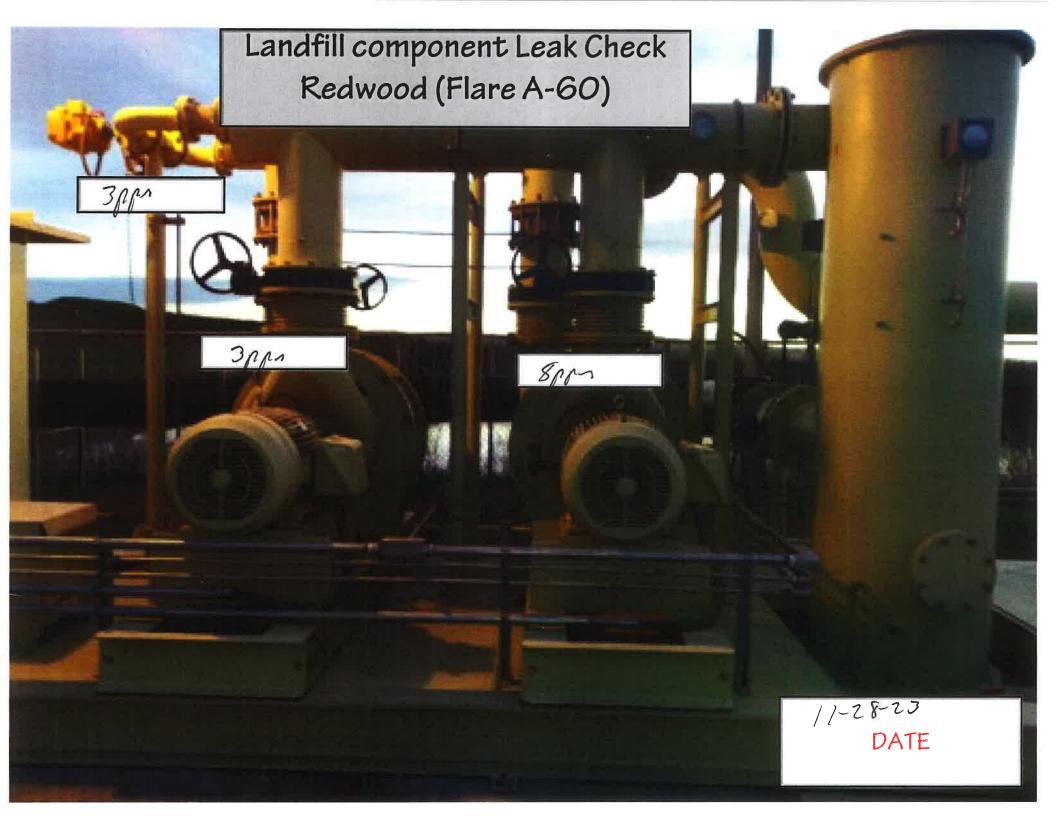


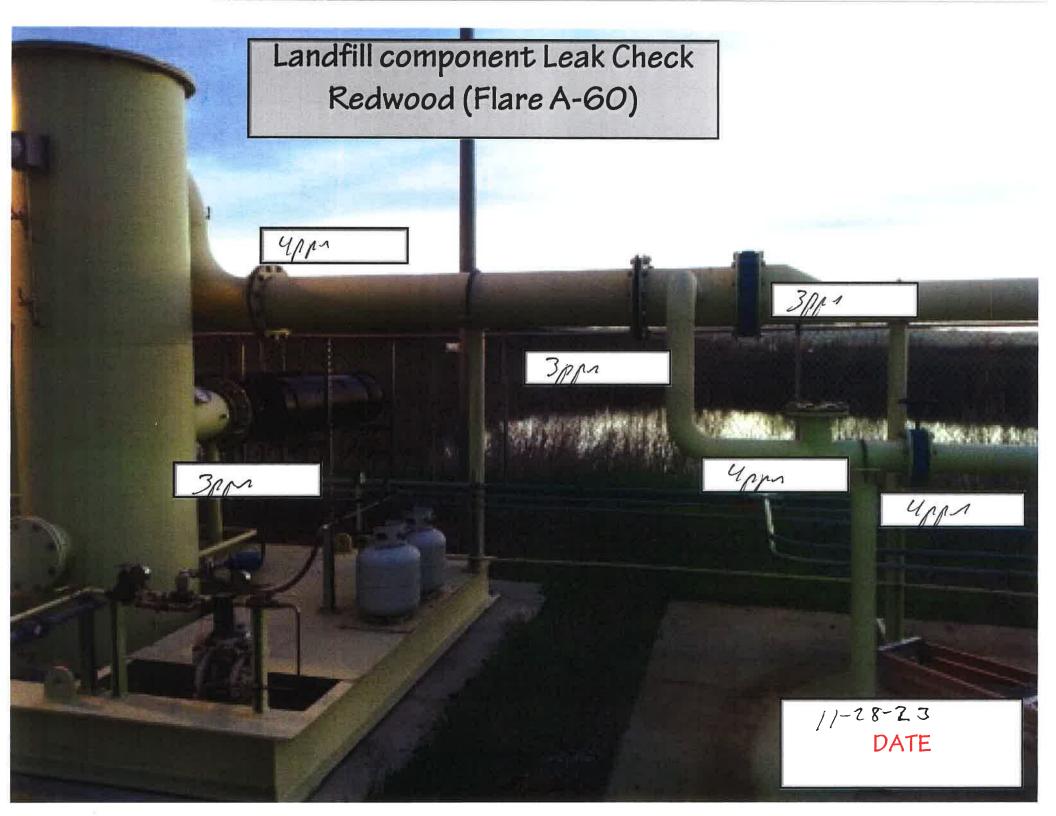
# REDWOOD 3520+ ENGINE PLANT, CA Site Map 8950 Redwood Hwy, Novato, CA 94948

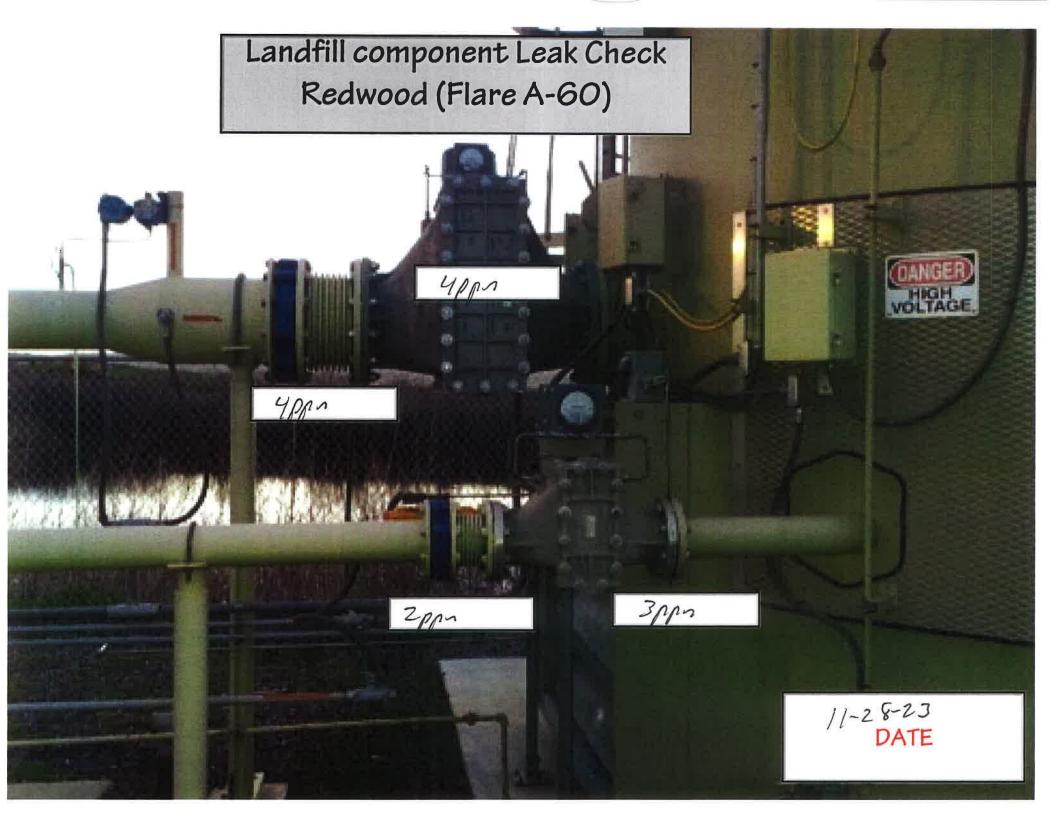
3-1-19 RAA ISSUED FOR CONSTRUCTION					and the
A 10-24-15 RAA BUILDING PERMIT APPLICATION SET	SCALES AS SHOWN		CUER	DESCRIPTION	loss for
A 10-2-15 RAA 95% DESIGN RESUDNITTAL	DATE: 5-5-15		WASTE MANAGEMENT RENEWABLE EXCROLY		PROJECT NO. 1003.005.001
A 8-12-15 RAA 958 DESIGN SUBNITTAL	DRAWN: JFD CHECKED: RFC		LANDFILL TO GAS ENERGY PROJECT	PROPOSED CONDITIONS AND	SHEET
A 5-6-15 RAA 50X DESIGN SUBMITTAL REV DATE BY DESCRIPTION	APPROVED: RAA	www.ac-engineering.com	REDWOOD LANDFILL, NOVATO, CA	HAZARDOUS AREA CLASSIFICATIONS	C-5

NEC CLASS 1 DYISTON


HE EAST & DIVENUE 2


BIOGAS PRETREATMENT AREA (EQUIPMENT LAYOUT TO BE DETERMINED)


11-28-23


No Exceedances



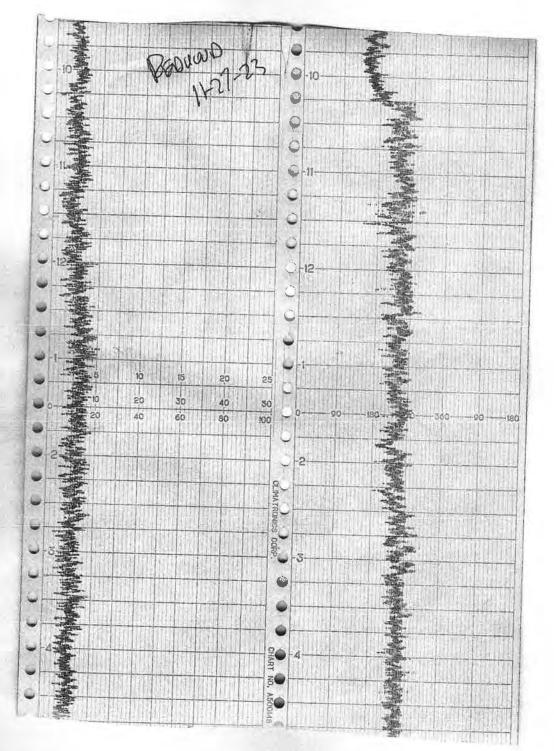






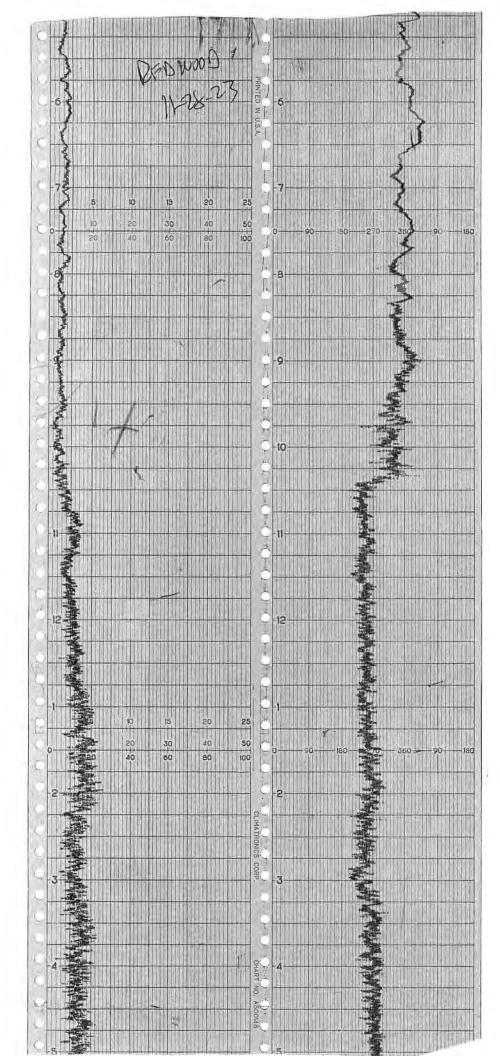


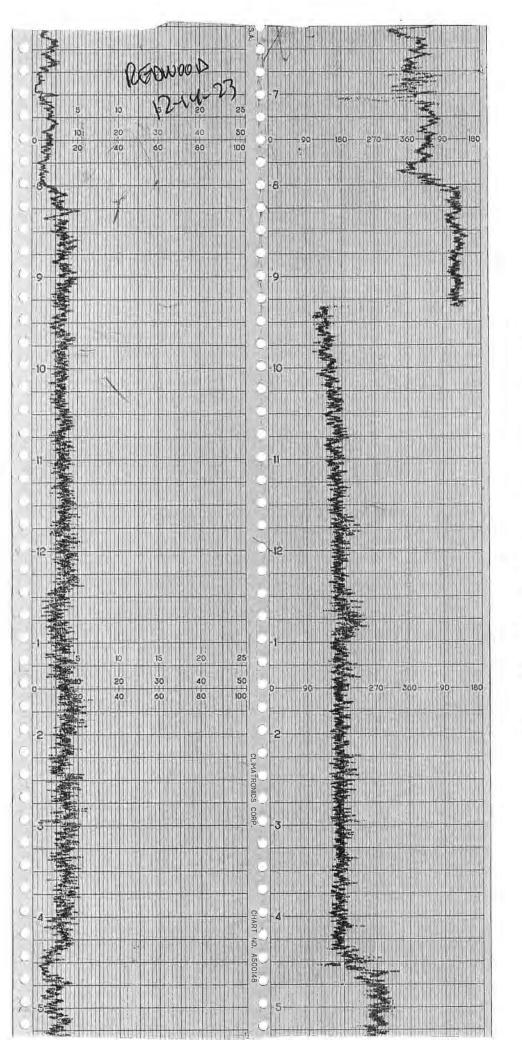
# Attachment D


Weather Station Data

# Environmental Inc.

	16-POINT WIND DIRECTION INDEX									
NO	DIRECTION		DEGREES							
		FROM	CENTER	<u>T0</u>						
16	NORTH (N)	348.8	369.0	0.1.3						
1	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8						
2	NORTHEAST (NE)	033.8	045.0	056.3						
3	EAST-NORTHEAST (ENE)	056.3	067.5	078.8						
4	EAST (E)	078.8	<u>090.0</u>	101.3						
5	EAST-SOUTHEAST (ESE)	101.3	112.5	123.8						
6	SOUTHEAST (SE)	123.8	<u>135.0</u>	146.3						
7	SOUTH-SOUTHEAST (SSE)	146.3	<u>157.5</u>	168.8						
8	SOUTH (S)	168.8	180.0	191.3						
9	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213.8						
10	SOUTHWEST (SW)	213.8	225.0	230.3						
11	WEST-SOUTHWEST (WSW)	236.3	247.5	258.8						
12	WEST (W)	258.8	270.0	281.3						
13	WEST-NORTHWEST (WNW)	281.3	292.5	303.8						
14	NORTHWEST (NW)	30.2.8	315.0	326.3						
15	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8						


865 Via Lata = Colton, California 92324 = (909) 422-1001 Fax (909) 422-0707


# WIND SPEED & DIRECTION CHART ROLL



----

WIND SPEED & DIRECTION CHART ROLL





# WIND SPEED & DIRECTION CHART ROLL

# Attachment E

Calibration Records

# **RESPONSE TIME TEST RECORD**

Date: 10/17/23			
Expiration Date (3 months):			
Expiration Date (Charter /			
Time: <u>9:35</u> AM PM		0	
Instrument Make: Photovac Model: MicroFID S/N:	: <u>CZMF34</u>	<u>.0                                    </u>	
Measurement #1:		11012	
Stabilized Reading Using Calibratic	on Gas:	496.3	ppm
90% of the Stabilized Re	eading: _	49.6	ppm
Time to Reach 90% of Stabilized Readin switching from Zero Air to Calibratio	ng after on Gas:	16	_ seconds (a)
Measurement #2: Stabilized Reading Using Calibration	on Gas:	493.7	ppm
90% of the Stabilized Re	eading:	49.4	ppm
Time to Reach 90% of Stabilized Readin switching from Zero Air to Calibratio	ig after	14	seconds (b)
Measurement #3:		harr	
Stabilized Reading Using Calibratio	on Gas:	493.5	ppm
90% of the Stabilized Re	eading:	49.4	ppm
Time to Reach 90% of Stabilized Readin switching from Zero Air to Calibratio	on Gas:	14	seconds (c)

Calculate Response Time:

 $\frac{(a) + (b) + (c)}{3} = \frac{14.66}{5}$  seconds (must be less than 30 seconds)

Performed By: R. Lindberg



# **CALIBRATION PRECISION TEST RECORD**

Date: <u>10/12/23</u> Expiration Date (3 months): <u>1/17/23</u> Time: <u>9:35</u> AM ____ PM Instrument Make: <u>Photovac</u> Model: <u>MicroFID</u> S/N: <u>CZMF340</u> Measurement #1:

> Meter Reading for Zero Air: <u>0.0</u> ppm (a) Meter Reading for Calibration Gas: <u>996.3</u> ppm (b)

Measurement #2:

Meter Reading for Zero Air:	0.0	_ ppm (c)
Meter Reading for Calibration Gas:	493.7	_ ppm (d)

Measurement #3:

Meter Reading for Zero Air: 0.0 ppm (e) Meter Reading for Calibration Gas: 493.5 ppm (f)

Calculate Precision:

 $\frac{\{|(500) - (b)| + |(500) - (d)| + |(500) - (f)|\}}{3} \times \frac{1}{500} \times \frac{1}{500}$ 

1.1 % (must be < than 10%)

Performed By: R. Lindberg



# CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name: Redwood Landfill
 Date: 12/1/2023

 Time: 10:30 AM
 PM

 Instrument Make: Photovac
 Model: MicroFID
 S/N: CZMF340

**Calibration Procedure** 

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>501.7</u> ppm

### **Background Determination Procedure**

1. Upwind Reading (highest in 30 seconds):	<u>    1.6     ppm (a)</u>

2. Downwind Reading (highest in 30 seconds): <u>1.1</u> ppm (b)

Calculate Background Value:

 $\underline{(a) + (b)}_{2} \qquad Background = \underline{1.35} ppm$ 

Performed By: <u>Riley Lindberg</u>

# CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name: Redwood Landfill
 Date: 12/21/2023

 Time: 8:30 AM PM

 Instrument Make: Photovac Model: MicroFID S/N: CZMF340

**Calibration Procedure** 

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>500.9</u> ppm

### **Background Determination Procedure**

1. Upwind Reading (highest in 30 seconds):	<u>2.2</u> ppm (a)
2. Downwind Reading (highest in 30 seconds):	<u>0.9</u> ppm (b)

Calculate Background Value:

 $(a) + (b) \qquad Background = 1.55 ppm$ 

Performed By: <u>Riley Lindberg</u>



LANDFILL NAME REDWOD	INSTRUMENT MAKE AHONNO
MODEL: 4UA1000 EQUIPMENT #: 10	SERIAL #: 1036346773
MONITORING DATE: 11-28-23	TIME: 0515

#### **Calibration Procedure:**

- 1. Allow instrument to zero itself while introducing air.
- Anow instrument to zero lisen while introducing air.
   Introduce calibration gas into the probe. Stabilized reading = _____ ppm
- 3. Adjust meter settings to read 500 ppm.

#### Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 sec		Downwind Back Reading: (Highest in 30 seco		Background Val ( <u>Upwind + Dow</u> 2	
2.2	ppm	218	ppm	2.5	ppm

Background Value = _ 2 ... ppm

#### **INSTRUMENT RESPONSE TIME RECORD**

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabilized Reading		Time to Reach 9 Stabilized Read switching from Calibration Gas	ing after Zero Air to
#1	504 ppm	454	ppm	6	
#2	458 ppm	448	ppm	6	
#3	ppm دہ ر	450	ppm	6	
	Calculate Response Time (1 3	<u>+2+3</u> )		4	#DIV/0!
				Must be less than	n 30 seconds

#### CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading Calibration Gas		Calculate Precision	[STD – (B)]
#1	0.18	ppm	504	ppm	4	
#2	0.14	ppm	488	ppm	2	
#3	0111	ppm	500	ppm	ð	
Calculate Precision	n <u>[STD-B1] + [S</u>	3 3	<u>500 STD-B3]</u> X <u>1</u> X	<u>100</u> 1	O. & D Must be less tha	#DIV/0! In 10%

Performed By: LEULWADD

Date/Time: 11-28-23-0515



LANDFILL NAME REDNOUD			INSTRUME	NT MAKE:	filunno
MODEL JUAIOUU	EQUIPMENT #:	11			AL #: 1036346772
MONITORING DATE	11-28-23		TIME:	0515	r

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading =  $\gamma v \circ$ ppm
- 3. Adjust meter settings to read 500 ppm.

#### Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 see		Downwind Back Reading: (Highest in 30 seco		Background Val (Upwind + Dow 2	- C. 211
2.2	ppm	218	ppm	2.5	ppm

Background Value = <u>2</u> J ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		Stabilized Reading Using Calibration Gas90% of the Stabilized Reading		Time to Reach 9 Stabilized Readi switching from 2 Calibration Gas	ng after
#1	504	ppm	454	ppm	4	
#2	500	ppm	450	ppm	4	
#3	500	ppm	450	ppm	4	
	Calculate Response T	ime ( <u>14</u> 3	-2+3)		y Must be less than	#DIV/0!

#### CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading for C Calibration Gas (B)		Calculate Precision	[STD – (B)]
#1	0.09	ppm	514	ppm	У	
#2	0.07	ppm	500	ppm	D	
#3	0.04	ppm	510	ppm	0	
Calculate Precisio	n [STD-B1] + [S	3 3	<u>500 STD-B3] X 1</u> X	<u>100</u> 1	G.Z.G Must be less th	#DIV/0

Performed By: MISGEL ESLACOA

Date/Time: 11-28-27-05/5



LANDFILL NAME:	(MOD)	1	INSTRUMEN	IT MAKE: +Honno
MODEL LUALOUD	EQUIPMENT #:			SERIAL #: /03624674/
MONITORING DATE	11-28-27		TIME	0511

#### **Calibration Procedure:**

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 50 * ppm
- 3. Adjust meter settings to read 500 ppm.

#### Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 seco		Downwind Backg Reading: (Highest in 30 seco		Background Valu	
2.2	2.8	ppm	2.5	ppm	

Background Value =  $2 \cdot 5$  ppm

#### **INSTRUMENT RESPONSE TIME RECORD**

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabilized Reading		Time to Reach Stabilized Read switching from Calibration Gas	ling after Zero Air to	
#1	485	ppm	445	ppm	6	1
#2	502	ppm	412	ppm	6	
#3	500	ppm	450	ppm	6	
	Calculate Response T	ime ( <u>1</u> - 3	+2+3)		6	#DIV/0!
					Must be less that	n 30 seconds

#### **CALIBRATION PRECISION RECORD**

Measurement #	Meter Reading for Ze	Meter Reading Calibration Gas		Calculate Precision [	STD – (B)]	
#1	6.09	ppm	485	ppm	5	
#2	0.05	ppm	502	ppm	Z	
#3	6.0-6	ppm	500	ppm	0	
Calculate Precision	[STD-B1] + [S	TD-B2] + [5 3	<u>500 STD-B31 X 1 X</u>	<u>100</u> 1	O · 4.6 Must be less than	#DIV/0!

Performed By: JENNY MUNOZ

Date/Time: 11-28-23-05/5



LANDFILL NAME: REDWIND	INSTRUMENT	MAKE: +Honno
MODEL: _ + VA 1000 EQUIPMENT #:		SERIAL #: //02746725
MONITORING DATE: 1/-28-23	TIME	0515

#### **Calibration Procedure:**

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading =  $\frac{2}{2}$  ppm
- 3. Adjust meter settings to read 500 ppm.

#### Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 seco	-	Background Val (Upwind + Dov 2	
2-2	ppm	2.8	ppm	2.5	ppm

Background Value = 2.5 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	sing 90% of the Stabilized Reading		Time to Reach Stabilized Reac switching from Calibration Gas	ling after Zero Air to	
#1	480	ppm	440	ppm	5	
#2	500	ppm	450	ppm	5	
#3	500	ppm	450	ppm	5	
6.7	Calculate Response	Time ( <u>1</u> - 3	+2+3)		ۍ	#DIV/0!
					Must be less that	n 30 seconds

#### **CALIBRATION PRECISION RECORD**

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision	[STD – (B)]
#1	0.13	ppm	450	ppm	10	
#2	0.08	ppm	502	ppm	0	
#3	0.06	ppm	500	ppm	0	
Calculate Precisio	on [STD-B1] + [S	3 3	<u>500 STD-B31 X 1</u> X	<u>100</u> 1	0-66 Must be less tha	#DIV/0! In 10%

Performed By PODIC DELING

Date/Time: 11-28-23 - 0515



LANDFILL NAME: RONDO			INSTRUMEN	NT MAKE: + Hon no
MODEL: JUAIONS	EQUIPMENT #:			SERIAL #: //02746776
MONITORING DATE:	11-28-27		TIME:	OSIS

#### **Calibration Procedure:**

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading =  $5^{b}$ ppm
- 3. Adjust meter settings to read 500 ppm.

#### **Background Determination Procedure**

Upwind Backgr Reading: (Highest in 30 sec		Downwind Back Reading: (Highest in 30 sec		Background Va (Upwind + Do 2	
2.2	ppm	2.8	ppm	2.5	ppm

Background Value = 2 · 5 ppm

#### **INSTRUMENT RESPONSE TIME RECORD**

Measurement # Stabilized Readin Calibration Gas		Using	90% of the Stab Reading	ilized	Time to React Stabilized Rea switching fror Calibration Ga	ading after n Zero Air to
#1	5+7	ppm	457	ppm	6	
#2	500	ppm	410	ppm	6	
#3	500	ppm	450	ppm	6	
	Calculate Response T	ime ( <u>1</u> . 3	+2+3)		б	#DIV/0!
					Must be less th	an 30 seconds

#### **CALIBRATION PRECISION RECORD**

Measurement #	Meter Reading for Z	Aeter Reading for Zero Air (A)		Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		-		[STD – (B)]
#1	0.10	ppm	507	ppm	7			
#2	0.06	ppm	500	ppm	0			
#3	0.04	ppm	100	ppm	Ð			
Calculate Precision	[STD-B1] + [5	<u>3</u> 3570-B2] + [	<u>500 STD-B31 X 1 X</u>	<u>100</u> 1	0-46 Must be less tha	#DIV/0! an 10%		

Performed By: JUVANI MEDINS

Date/Time: 11-28-23-05/5

LANDFILL NAME REDWORD		INSTRUME	NT MAKE: HENNO
MODEL: LUA LOOD EQUIPMENT #:	10		SERIAL # 1036346773
MONITORING DATE: 11-27-23		TIME	1000

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading = 23ppm
- 3. Adjust meter settings to read 25 ppm.

# Background Determination Procedure

Upwind Backg Reading: (Highest in 30 s		Downwind Ba Reading: (Highest in 30 s		Background Va	
2.2	ppm	2.8	ppm	2.5	ppm

Background Value = _____ ppm

# INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabil Reading	90% of the Stabilized Reading		% of g after ro Air to
#1	24	ppm	21.6	ppm	Y	
#2	27	ppm	22.5	ppm	4	
#3	25	ppm	22.5	ppm	4	
	Calculate Response	Time ( <u>1</u> - 3	<u>-2+3</u> )		Must be less than 3	#DIV/0!

#### CALIBRATION PRECISION RECORD

# Calibration Gas Standard = 25 ppm

			ias (B)		
0.10	ppm	24	ppm	1	
0.07	ppm	25	ppm	0	
0.04	ppm	20	ppm	D	
[STD-B1] + [S	3 3	<u>STD-B31</u> X <u>1</u> 25	X <u>100</u> 1	1.3	#DIV/0!
	0.07	0.0> ppm 0.04 ppm	o・o>         ppm         こよ           o・o4         ppm         こん           ISTD-B1] + [STD-B2] + [STD-B3]         X 1	o.o>         ppm         ~         ppm           o.o_         ppm         ~         ppm           o.o_         ppm         ~         ppm           ISTD-B1] + [STD-B2] + [STD-B3]         X 1 X 100	0:0>         ppm         こ         ppm         つ           0:04         ppm         こ         ppm         つ           1:5TD-B1] + [STD-B2] + [STD-B3]         X 1 X 100         1.3

Performed By LEISh WADE

Date/Time 11-27-23 - 1000

1



LANDFILL NAME: LOW 603			INSTRUMENT MAKE	Honno
MODEL FUALOUS	EQUIPMENT #	11	SERIAL #	1036346772
MONITORING DATE: 11-27-	23		TIME /060	

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- 25 2. Introduce calibration gas into the probe. Stabilized reading = __ ppm
- 3 Adjust meter settings to read 25 ppm.

#### Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Bac Reading: (Highest in 30 sec		Background Va (Upwind + Do 2	
2.2	ppm	2.8	ppm	2.5	ppm

Background Value = 2.5 ppm

## INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabil Reading	zed	Time to Reach 90% of Stabilized Reading after switching from Zero Air t Calibration Gas	
#1	23	ppm	20.7	ppm	5	
#2	25	ppm	22.5	ppm	5	
#3	25	ppm	22.5	ppm	~	
	Calculate Response	Time ( <u>1-</u> 3	+2+3)		Must be less than	#DIV/0!

#### CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading Calibration Ga	-	Calculate Precision	n [STD – (B)]
#1	6:14	ppm	23	ppm	2	
#2	641	ppm	2.5	ppm	G	
#3	0.06	ppm	25	ppm	0	
Calculate Precisio	on [STD-B1] + [	<u>STD-B2] + [</u> 3	<u>STD-B31</u> X <u>1</u> X 25	( <u>100</u> 1	Za-6 Must be less th	#DIV/0!

Performed By Night CESTRODA

Date/Time 11-27-23-1000



LANDFILL NAME LUDWOWD	INSTRUMENT MAKE: HAARMO			
MODEL JUA 106 EQUIPMENT # _			SERIAL #	1036246741
MONITORING DATE: 11-27-23		TIME:	1000	

#### Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2 Introduce calibration gas into the probe Stabilized reading = 2.1 ppm
- 3 Adjust meter settings to read 25 ppm

#### Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 seco		Background Val (Upwind + Dow 2	
Z.2	ppm	2.8	ppm	2.5	ppm

Background Value = 2. / ppm

### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabili Reading	zed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	ppm	21.6	ppm	6	
#2	24	ppm	21.6	ppm	4	
#3	25	ppm	225	ppm	6	
	Calculate Response	Time ( <u>1-</u> 3	<u>+2+3)</u>			#DIV/0!

#### CALIBRATION PRECISION RECORD

# Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze			g for as (B)	Calculate Precision [STD – (E	
#1	0.09	ppm	24	ppm	/	
#2	0.07	ppm	24	ppm	1	-
#3	0.04	ppm	25	ppm	δ	
Calculate Precisio	n [STD-B1] + [S	TD-B2] + [5 3	<u>STD-B31</u> X <u>1</u> X 25	( <u>100</u> 1	Z. 6 Must be less th	#DIV/0!

Performed By JERNY MENOZ

Date/Time 11-27-23- 1000

2

LANDFILL NAME PODWIND	INSTRUMENT MAKE: + Hons
MODEL: +UAIOOD EQUIPMENT #	13 SERIAL # 1102746775
MONITORING DATE 11-27-23	TIME. 1600

#### Calibration Procedure:

135

- 1. Allow instrument to zero itself while introducing air
- Introduce calibration gas into the probe Stabilized reading = 25 ppm 2
- 3 Adjust meter settings to read 25 ppm

# Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 sec	-	Background Val (Upwind + Dow 2	
2.2	ppm	2.8	ppm	2.5	ppm

Background Value =  $2^{\sqrt{2}}$  ppm

#### INSTRUMENT RESPONSE TIME RECORD

Calibration Gas		90% of the Stabili Reading	zed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	24	ppm	21.6	ppm	5	
#2	21	ppm	22.1	ppm	5	
#3	21	ppm	22.5	ppm	.5	
	Calculate Response	Time ( <u>1-</u> 3	+2+3)		Must be less that	#DIV/0!

#### CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision	[STD (B)]		
#1	0113	ppm	24	ppm	1	
#2	UUD	ppm	25	ppm	Ð	
#3	0.07	ppm	20	ppm	6	
Calculate Precision         [STD-B1] + [STD-B2] + [STD-B3]         X         1         X         100           3         25         1					ا بر کا Must be less th	#DIV/0!

Performed By EPD. C DE/INS

Date/Time 11-27-23 - 100 0

LANDFILL NAME REPROVO	INSTRUMENT MAKE +HANNO			
MODEL: LUAIDOO EQUIPMENT #	16	SERIAL #: 1102746776		
MONITORING DATE 11-27-23	TIME	1000		

#### Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2 Introduce calibration gas into the probe. Stabilized reading = <u>2</u>, ppm
- 3 Adjust meter settings to read 25 ppm.

#### Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec		Downwind Bac Reading: (Highest in 30 sec		Background Value: (Upwind + Downwind) 2		
2.2	ppm	2.8	ppm	2.5	ppm	

Background Value = 2.5 ppm

# INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas		90% of the Stabil Reading	zed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	23	ppm	20.7	ppm	7	
#2	24	ppm	21.6	ppm	7	
#3	25	ppm	27.5	ppm	2	
	Calculate Response	e Time ( <u>1-</u> 3	+2+3)		> Must be less thar	#DIV/0!

#### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B		surement # Meter Reading for Zero Ai			Calculate Precision [STD – (B)]
#1	0.10	ppm	ZJ	ppm	2	
#2	0.07	ppm	24	ppm	1	
#3	2 6.0	ppm	20	ppm	D	
Calculate Precision	[STD-B1] + [S	<u>TD-B2] + [</u> 5 3	<u>STD-B3]</u> X <u>1</u> X 25	( <u>100</u> 1	#DIV/0! Must be less than 10%	

Date/Time 11-27-23 -1000

÷



LANDFILL NAME: REALING	INSTRUMEN	MAKE: HAMM
MODEL: +VAIOOD EQUIPMENT #: 10		SERIAL #: 1036346773
MONITORING DATE: /2-14-23	TIME	0620

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

# Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se	g: Reading:		- 11	Background Val (Upwind + Dow 2	
2.0	ppm	2.8	ppm	2.4	ppm

Background Value = 2.9 ppm

### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas		90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	ppm	21.6	ppm	6	
#2	21	ppm	22.1	ppm	6	
#3	25	ppm	22.5	ppm	6	
	6	#DIV/0!				
					Must be less than	30 seconds

# CALIBRATION PRECISION RECORD

Measurement #	surement # Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)				Calculate Precision [STD – (B)]
#1	0.07	ppm	24	ppm	/
#2	0.05	ppm	25	ppm	0
#3	0.08	ppm	25	ppm	8
Calculate Precision	[STD-B1] + [S	<u>TD-B2] + [5</u> 3	Hust be less than 10%		

Performed By: LEISZWAND

Date/Time: 12-14-23- 0620



#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME: 200000			INSTRUMEN	TMAKE 4	Henn
MODEL LVAIDO	EQUIPMENT #:	11		SERIAL #	1036346772
MONITORING DATE:	12-14-27		TIME	0620	

#### Calibration Procedure:

- 1_ Allow instrument to zero itself while introducing air-
- 2. Introduce calibration gas into the probe. Stabilized reading =  $\frac{2.5}{\text{ppm}}$
- 3 Adjust meter settings to read 25 ppm.

#### **Background Determination Procedure**

Upwind Backg Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 sec		Background Val (Upwind + Dow 2	
ZO	ppm	2-8	ppm	2.4	ppm

Background Value =  $\frac{2 \cdot 9}{2}$  ppm

#### INSTRUMENT RESPONSE TIME RECORD

Stabilized Readir Calibration Gas	ig comg	90% of the Stabil Reading	izea	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
24	ppm	21.6	ppm	4	
24	ppm	21.6	ppm	4	
25	ppm		ppm	9	
Calculate Response	Time ( <u>1-</u> 3			4 Must be been the	#DIV/0!
	24 24 25	24 ppm 24 ppm 25 ppm	ZY         ppm         ZI.6           ZY         ppm         ZI.6           ZS         ppm         ZI.5	ZY         ppm         ZI.6         ppm           ZY         ppm         ZI.6         ppm           ZY         ppm         ZI.6         ppm           ZY         ppm         ZI.6         ppm	Calibration GasReadingStabilized Reading switching from 2 Calibration Gas24ppm21.6ppm24ppm21.6ppm25ppm72.7ppm

#### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero Air (A)		Meter Readin Calibration G		Calculate Precision [STD – (B	
#1	0.13	ppm	24	ppm	/	
#2	0.09	ppm	24	ppm	1	
#3	0.06	ppm	25	ppm	D	
Calculate Precision	[STD-B1] + [S	TD-B2] + [5 3		( <u>100</u> 1	2.6	#DIV/0!
					Must be less the	an 10%

Performed By: Myleor es frenk

Date/Time: 12-14-23-0620

125 ronmental Inc

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME: 1200 WWW		INSTRUMENT MAKE: +Hore 20			
MODEL: 441000	EQUIPMENT #:	12		SERIAL #: 1036246741	
MONITORING DATE:	12-14-23		TIME:	6620	

#### Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

 Introduce calibration gas into the probe. Stabilized reading = _____
 Adjust motor actives a stabilized reading = _____ ppm

3. Adjust meter settings to read 25 ppm,

#### Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Bac Reading: (Highest in 30 sec		Background Va (Upwind + Do 2	- / - 1
2.0	ppm	2.8	ppm	2.4	ppm

Background Value = 2 - 4 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas Reading		ized	Time to Reach s Stabilized Read switching from Calibration Gas	ing after Zero Air to	
#1	24	ppm	21.6	ppm	5	
#2	25	ppm	225	ppm	5-	-
#3	25	ppm	22.5	ppm	5	
	5	#DIV/0!				
					Must be less than	1 30 seconds

#### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		er Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]
#1	0.12	ppm	24	ppm	7
#2	0.08	ppm	25	ppm	10
#3	0.04	ppm	25	ppm	0
Calculate Precision	[STD-B1] + [S	TD-B2] + [9 3	<u>STD-B31</u> X <u>1</u> 25	K <u>100</u> 1	/. 3 #DIV/0! Must be less than 10%

Performed By: TERRY MENUZ

Date/Time: 12-14-23 - 0620



#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME RED WORD	INSTRUMENT MAKE: HUMM
MODEL: +VALOON EQUIPMENT #: 13	SERIAL #: 1/02746775
MONITORING DATE: 12-14-23	TIME 0620

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

#### Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 seco		Background Valu (Upwind + Dow 2	000.1
2.0	ppm	2.8	ppm	2.4	ppm

Background Value = 2-4 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Stabilized Reading Using Calibration Gas		ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	ppm	21.6	ppm	4	
#2	21	ppm	22.5	ppm	4	
#3	25	ppm	22.5	ppm	4	
	Calculate Response 1	ime ( <u>1-</u> 3	+2+3)		#DIV/0! Must be less than 30 seconds	

#### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero Air (A)		Meter Reading Calibration G		Calculate Precision [STD – (E	
#1	0.15	ppm	24	ppm	1	
#2	0.10	ppm	25	ppm	0	
#3	0.06	ppm	25	ppm	ь	
Calculate Precision	[STD-B1] + [S]	<u>[D-B2] + [5</u> 3	<u>STD-B3</u> ] X <u>1</u> ) 25	( <u>100</u> 1	/3 Must be less th	#DIV/0!

Performed By: JUUGNI MUDING

Date/Time: 12-14-23 - 062 0



#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME: 28	pwoon		INSTRUMEN		lenno
MODEL: 4VAINCO	EQUIPMENT #:	16		SERIAL #:	1102746776
	12-14-23		TIME:	0620	

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

#### Background Determination Procedure

Upwind Background Downwind Background Reading: Reading: (Highest in 30 seconds) (Highest in 30 seconds)		Background Value: (Upwind + Downwind) 2			
2.2	ppm	2-8	ppm	2-4	ppm

Background Value = 2.4 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabil Reading	ized	Time to Reach 9 Stabilized Read switching from Calibration Gas	ing after Zero Air to
#1	24	ppm	21.6	ppm	5	
#2	$2\dot{y}$	ppm	21.6	ppm	5	
#3	25	ppm	2205	ppm	~	
	Calculate Response Ti	me ( <u>1</u> - 3	+2+3)		~	#DIV/0!
					Must be less than	30 seconds

#### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading Calibration Ga		Calculate Precision	i [STD – (B)]
#1	0.11	ppm	24	ppm	1	
#2	0.07	ppm	24	ppm	1	
#3	0.05	ppm	25	ppm	D	
Calculate Precision	[STD-B1] + [S	<u>TD-B2] + [</u> 3	<u>STD-B3]</u> X <u>1</u> X 25	<u>100</u> 1	Z · 6 Must be less th	#DIV/0!

Performed By: EDDie DE Lins

Date/Time: 12-14-23 - 062 •



Site:		
Purpose:		
Operator:Mu M		
Date:	Time:	0815
Model # (000		
Serial # 10 (0363467) 3		

INSTRUMENT INTEGRITY CHECKLIST		INSTRUMENT CALIBRATION		
Battery test Reading following ignition	Pages / Fail し、) ppm	C/ Calibration Gas (ppm)	ALIBRATION CHE Actual (ppm)	CK % Accuracy
Leak test	Pass / Fail / NA	500	500	100%
Clean system check (check valve chatter)	as / Fail / NA	RESPONSE TIME		
H2 supply pressure gauge (acceptable range 9.5 - 12)	Rass / Fail / NA	90% of Calibration Gas nom US()		
Date of last factory calibration	10-6.23	2. (	0	
Factory calibration record w/instrument within 3 months				gas.

Comments: _____



ite:	
Irpose:	
perator:	M
ate:	Time:0830
lodel # 1000	

Serial # #11 (0363467)4

INSTRUMENT INTEGRITY CHECKLIST		INSTRUMENT CALIBRATION			
Battery test Reading following ignition	2.4 ppm	CA Calibration Gas (ppm)	LIBRATION CHEC Actual (ppm)	CK % Accuracy	
Leak test	Pass / Fail / NA	500	500	1004,	
Clean system check (check valve chatter)	Fail / NA	Calibration Gas, p		500	
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Time required to a 1.	Gas, ppm Ittain 90% of Cal G	as ppm	
Date of last factory calibration	10-6-23	2	F		
Factory calibration record w/instrument within 3 months	Pase / Fail	Average <u>S</u> Equal to or less the Instrument calibration	(	gas.	
Comments:					



Site:				
Purpose:	A+ -			
Operator:M	u My			
Date:		Time;	0845	
Model # 1000				
Serial # #12 1036	24674			
INSTRUMENT INTEGRITY	CHECKLIST	INSTR		ATION
Battery test	Pass / Fail		LIBRATION CHE	
Reading following ignition	_2.(_ ppm	Calibration Gas (ppm)	Actual (ppm)	% Accuracy
Leak test	Pass / Fail / NA	Sau	500	100%
Clean system check (check valve chatter)	Gass / Fail / NA		RESPONSE TIME	
	0	Calibration Gas, p 90% of Calibration		<u>007.</u>
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA	Time required to a 1.		
Date of last factory calibration	10-6-23	2 3	5	
Factory calibration record w/instrument within 3 months	Pase / Fail	Average 5 Equal to or less the Instrument calibrat		ƴ∕N _gas.
Comments:				



ite:		
urpose:		
perator:////		
ate:	Time:	0900
Nodel # TUA 1000		

Serial # #13 1102746770

INSTRUMENT INTEGRITY CHECKLIST		INSTRUMENT CALIBRATION		
Battery test	Pass / Fail	Calibration	LIBRATION CHE	%
Reading following ignition	<u> </u>	Gas (ppm)	(ppm)	Accuracy
Leak test	Pass / Fail / NA	560	500	(00%
Clean system check (check valve chatter)	Pase / Fail / NA	Calibration Gas, p	pm	500
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pase / Fail / NA	90% of Calibration Time required to a 1.		as ppm
Date of last factory calibration	10-6-23	2. 3.	~	
Factory calibration record w/instrument within 3 months	Pass / Fail	Average <u>So</u> Equal to or less th Instrument calibra		G N gas.

Comments:



Site:		
Purpose:		
Operator: MU M		
Date:/1-3-27	Time:	0945
Model # 1000		
Serial # <u>#16 1102746776</u>		

INSTRUMENT INTEGRITY	CHECKLIST	INSTR	UMENT CALIBR	ATION
Battery test Pass/ Fail		CA Calibration	LIBRATION CHE Actual	CK %
Reading following ignition	_ <u>2.'(</u> ppm	Gas (ppm)	(ppm)	Accuracy
Leak test	Fass / Fail / NA	500	500	100%
Clean system check (check valve chatter)	Fass / Fail / NA	Calibration Gas, p	RESPONSE TIME	≡ S <i>u©</i>
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Fass / Fail / NA	90% of Calibration Time required to a 1.		UGO Gas ppm
Date of last factory calibration	10-6-23	2	5	
Factory calibration record w/instrument within 3 months	Pages / Fail	Average Equal to or less th Instrument calibra		Q N gas.

Comments:

8



١.,

Site:			
Purpose:			
Operator:			
Date: 12-2-23	Time:	0900	
Model # 1000			
Serial # #10 1036346773			

INSTRUMENT INTEGRITY	CHECKLIST	INST	RUMENT CALIBR	ATION
Battery test			ALIBRATION CHE	СК
ballory lost	Pass / Fail	Calibration	Actual	%
Reading following ignition	<u>1.5</u> ppm	Gas (ppm)	(ppm)	Accuracy
Leak test	Pass / Fail / NA	500	500	100%
	6	RESPONSE TIME		
Clean system check	Pass / Fail / NA			
(check valve chatter)		Calibration Gas, p	ppm 4	600
	6	90% of Calibration		150
H ₂ supply pressure gauge	Fass / Fail / NA		attain 90% of Cal C	
(acceptable range 9.5 - 12)	U	1.		as phu
		2.		
Date of last factory calibration	10-6-23	3.	0	
	A		6	
Factory calibration record	Pass / Fail	Average	6	
w/instrument within 3 months	$\mathbf{\nabla}$	Equal to or less the	nan 30 seconds?	(Ŷ) N
		Instrument calibra	ited to Cuh	gas.

Comments:



Purpose:	he M			
Date: 12-2-27	<u> </u>	Time:	0915	
Model # <u> </u>				
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	UMENT CALIBR	ATION
Battery test Reading following ignition	Pass / Fail	CA Calibration Gas (ppm)	LIBRATION CHE Actual (ppm)	CK % Accuracy
Leak test	Pass / Fail / NA	500	SØD RESPONSE TIME	100
Clean system check check valve chatter)	(Pass) / Fail / NA	Calibration Gas, p 90% of Calibration	pint	500 USO
H ₂ supply pressure gauge acceptable range 9.5 - 12)	Pass / Fail / NA	Time required to a 1.	ttain 90% of Cal 0	Sas ppm
Date of last factory calibration	10-6-23 Fasil/Fail	3 Average	<u> </u>	
v/instrument within 3 months	Casa / Lan	Equal to or less the Instrument calibrat		Ø N gas.



Site:		
Purpose:	<u></u>	
Operator:	M	
Date: 12-2-23		Time: 0970
Model # 1000		
Serial # #12 103624	6741	
INSTRUMENT INTEGRITY O	HECKLIST	INSTRUMENT CALIBRATION
Battery test	Pass / Fail	CALIBRATION CHECK Calibration Actual %
Reading following ignition	21(ppm	Gas (ppm) (ppm) Accuracy
Leak test	Pass / Fail / NA	500 500 100
Clean system check	eass / Fail / NA	RESPONSE TIME
(check valve chatter)	<u>^</u>	Calibration Gas, ppm <u>500</u>
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	ass / Fail / NA	90% of Calibration Gas, ppm <u>UGO</u> Time required to attain 90% of Cal Gas ppm 1.
Date of last factory calibration	10-6-23	$\begin{array}{c} 2. \\ 3. \end{array} \qquad \begin{array}{c}  \\  \end{array} \qquad \begin{array}{c}  \\  \end{array}$
Factory calibration record w/instrument within 3 months	Pass / Fail	Average <u>5.6</u> Equal to or less than 30 seconds? $\Im$ N Instrument calibrated to <u>CH4</u> gas.

Comments:



Site	
Purpose:	
Date:	Time: 0945
Model # <u>TUA 1000</u> Serial # <u>#13 110774677</u> 5	
INSTRUMENT INTEGRITY CHECKLIST	INSTRUMENT CALIBRATION
Battery test       Pass / Fail         Reading following ignition       2.6 ppm         Leak test       Pass / Fail / NA         Clean system check (check valve chatter)       Pass / Fail / NA         H2 supply pressure gauge (acceptable range 9.5 - 12)       Pass / Fail / NA         Date of last factory calibration       10-6-23         Factory calibration record w/instrument within 3 months       Fail	CALIBRATION CHECK Calibration Gas (ppm)Calibration Gas (ppm)Actual 

Comments:



Purpose:				
Operator:	Mu D	1		
Date:	>	Time:	1030	
Model # <u>+ 1000</u> Serial # <u>#16  101</u>	2746776			
INSTRUMENT INTEGRIT	Y CHECKLIST	INST	RUMENT CALIBR	ATION
Battery test	Pags / Fail	Calibration	ALIBRATION CHE Actual	CK %
Reading following ignition	2.5 ppm	Gas (ppm)	(ppm)	Accuracy
eak test	Cass / Fail / NA	500	500	100
Clean system check check valve chatter)	Fail / NA	Calibration Gas, p		500
12 supply pressure gauge acceptable range 9.5 - 12)	Fail / NA	90% of Calibration Time required to a 1.	n Gas, ppm attain 90% of Cal ( 0	450 Gas ppm
Date of last factory calibration	10-6-23	2. (	0	
actory calibration record	Pass / Fail	Average Equal to or less the Instrument calibration		Q N gas.

Comments:



CUSTOMER:	RH	FS Va	A # 10	
SERIAL NUMBER:		103	6346773	
	M	M	DATE:	10-6-23

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	(00	+/- 25
500	500	500	+/- 125
10000	10000	(0,000	+/- 2500
< 1	ZERO GAS	0.65	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS	/	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.



NES OUN # 11 1036346774 CUSTOMER: SERIAL NUMBER: DATE: 10-6-23 TECHNICIAN:

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0.63	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS	1	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.



TECHNICIAN: DATE: 10-6-23

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0169	< 3
	Pli	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

Environmental Inc.

CUSTOMER: nES UNA SERIAL NUMBER: (1) TECHNICIAN: DATE: 10-6-27

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0.68	< 3
	Pli	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS	/	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

Environmental Inc.

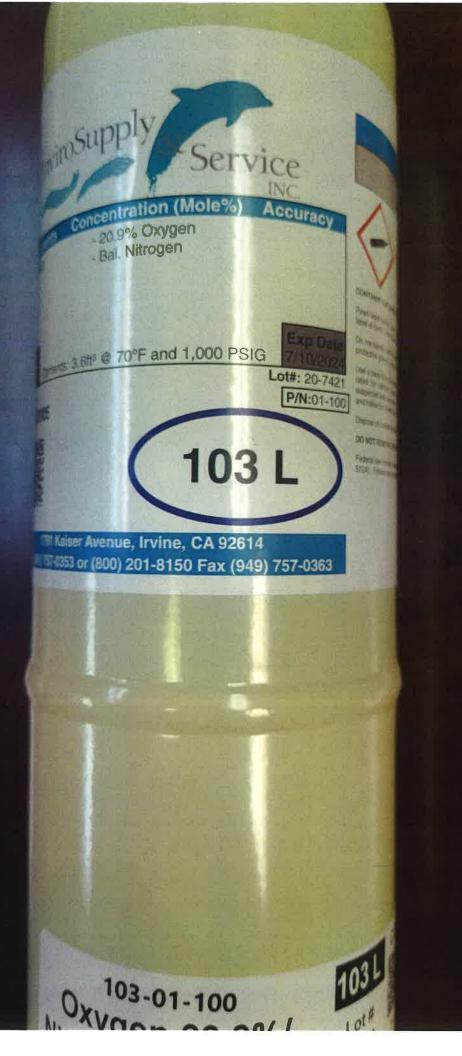
CUSTOMER: <u>RES</u>	Un 17#16		
SERIAL NUMBER:	11027467	16	
	M	DATE: _	10-6-23

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,211	+/- 2500
< 1	ZERO GAS	0171	< 3
	PI	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
<1	ZERO GAS	/	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

## Intermountain Specialty Gases


520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com



-			
	CERTIF	ICATE OF ANAI	<b>AYSIS</b>
<u>Composition</u>		Certification	Analytical Accuracy (+/-)
Oxygen		20.9 %	2%
Nitrogen		Balance UHP	
· · · · · · · · · · · · · · · · · · ·	20 5421		
Lot #	20-7421	·····································	新生物。我们在14年,14日,14日,14日,14日,14日,14日,14日,14日,14日,14日
Mfg. Date:	5/20/2020		
Expiration Date:	1. 1		
Transfill Date:	see cylinder		2
Parent Cylinder II Number:	D NY02268	а <u>л</u>	
Method of Prepa	ration:		
Gravimetric/Press	the second se		
Method of Analy			
	as prepared gravimet to calibrate the scale.		ne NIST by certified weights (ID
		÷ "	
		Analysis By: Tony	Janquart
			ity Assurance Manager

NO. CONT.

Certificate Date: 5/20/2020





### INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

### CERTIFICATE OF ANALYSIS

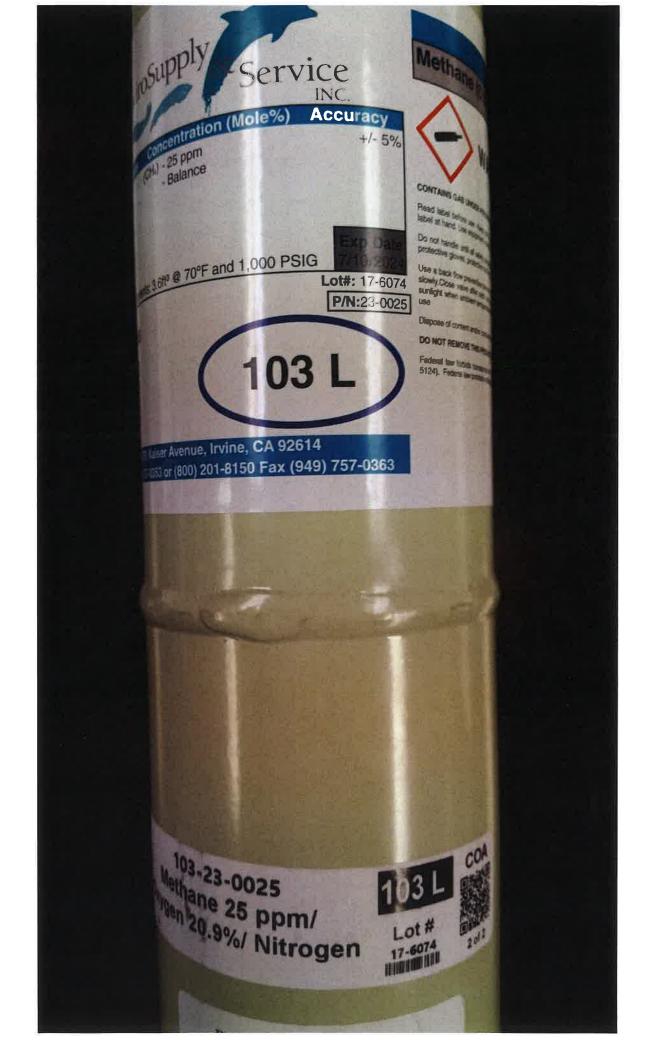
Composition Methane Air

Certification 25 ppm Balance Analytical Accuracy ± 5%

### Lot #

17-6074

Mfg. Date: 10/16/2017 Parent Cylinder ID Number: 17161


### **Method of Preparation**:

Gravimetric/Pressure Transfilled

### Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 10/16/2017





### INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

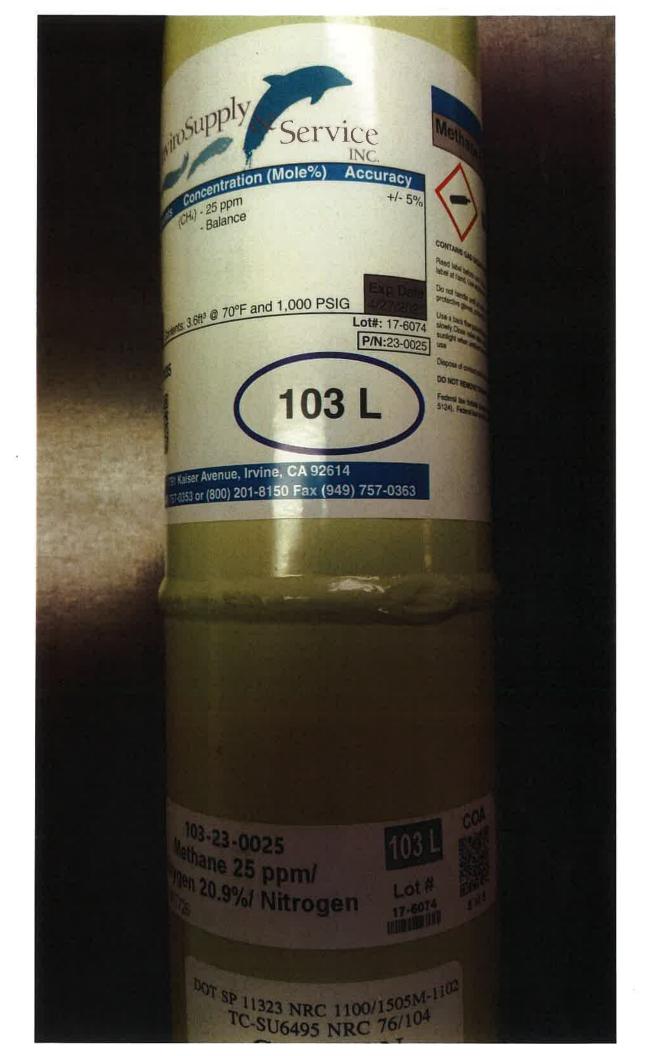
### CERTIFICATE OF ANALYSIS

Composition Methane Air

Certification 25 ppm Balance Analytical Accuracy ± 5%

### Lot # 17-6074

Mfg. Date: 10/16/2017 Parent Cylinder ID Number: 17161


### **Method of Preparation**:

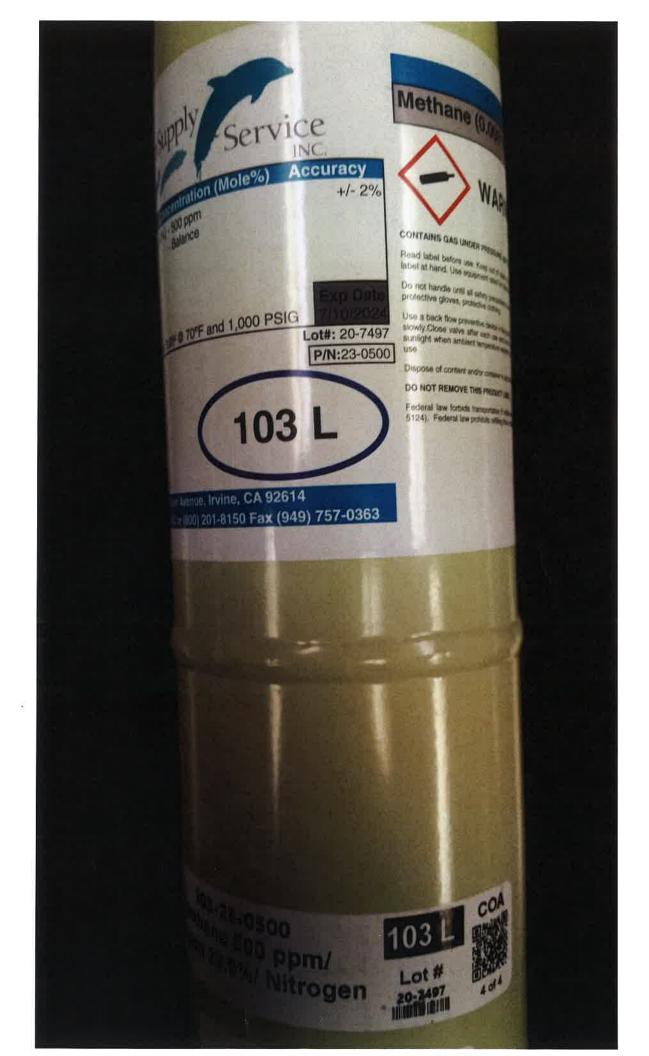
Gravimetric/Pressure Transfilled

### Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 10/16/2017




## Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com



## **CERTIFICATE OF ANALYSIS**

Composition		Certification	Analytical Accuracy	(+/-)
Methane		500 ppm	2%	
Oxygen		20.9 %	2%	
Nitrogen		Balance UH	r	
Lot #	20-7497	1. 1. 1. 1. 1. 1.		
Mfg. Date:	7/10/2020			
Expiration Date:				
Transfill Date:	see cylinder			
Parent Cylinder ID Number:	TWC001763			
Method of Prepar	ation	State of the second		Conservation
Gravimetric/Pressu				
Method of Analys				
The parent mix was	s prepared gravimetri	cally and is traceable	le to the NIST by certified weigh	ts (ID
#CA10814) used to	o calibrate the scale.			
				- 13 mel
				<u>na natimizaciji</u>
a.		Analysis By: Title: Certificate Date:	Tony Janquart Quality Assurance Manager 7/10/2020	





### **CERTIFICATE OF ANALYSIS**

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number2-108-80Norlab Part#J1971500PACylinder Size103 LiterNumber of Cyl1

Customer Part# N/A

Cust Number 07152 Order Number 69671309 PO Number 08361523

Date on Manufacture6/10/2022Expires06/2025Analytical Accuracy+/- 2 %

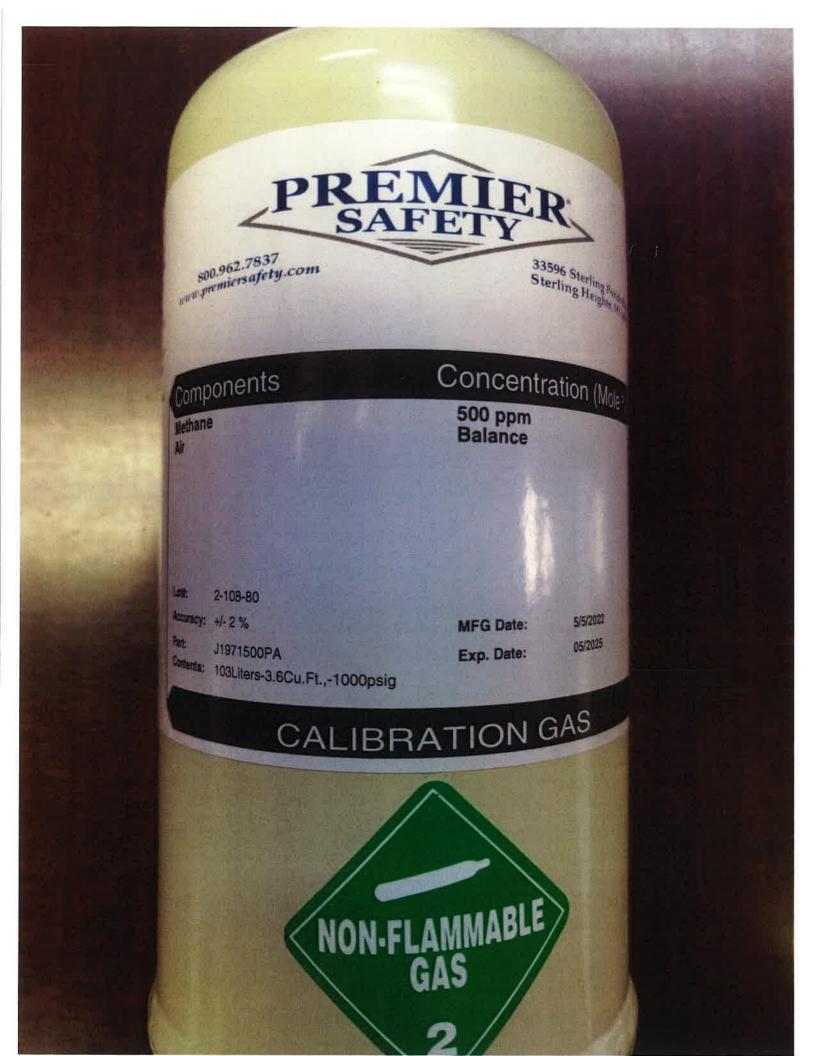
Component Methane Air Reported Concentration 500 ppm Balance Requested Concentration 500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:


Dienens

Date Signed:

6/10/2022

David Reed Lab Technician

> 898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672





### **CERTIFICATE OF ANALYSIS**

Norco, Inc Twin Falls Warehouse 203 S. Park Ave. West Twin Falls, ID 83301

Cust Number WH012 PO Number 04A35563

Lot Number	3-088-88
Norlab Part#	J1971500PA
Cylinder Size	103 Liter
Number of Cyl	5

Customer Part# N/A

Order Number 71846398

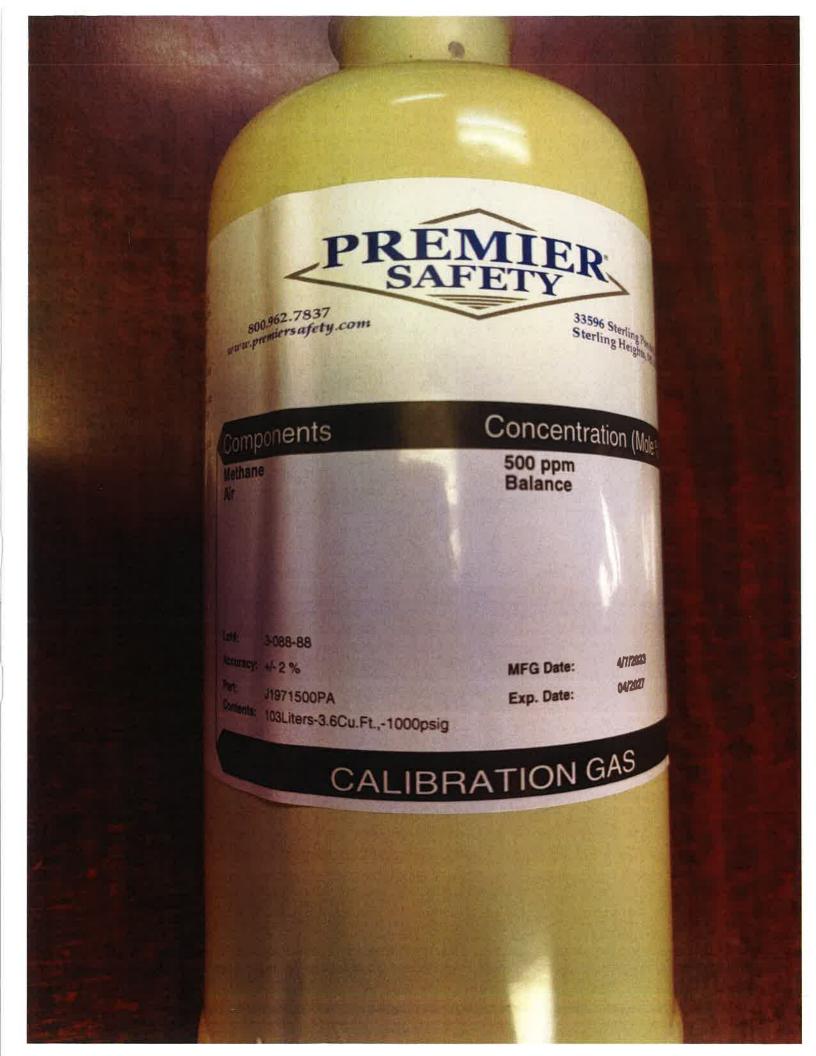
Date on Manufacture 4/7/2023 Expires 04/2027 Analytical Accuracy +/- 2 %

Component Methane Air

Reported Concentration 500 ppm Balance

Requested Concentration 500 ppm Balance

Storage:


Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Date Signed: 4/7/2023 Jeff Korn Lab Technician

Approved:

898 W. GOWEN ROAD . BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672





### **CERTIFICATE OF ANALYSIS**

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number2-154-85Norlab Part#J1002Cylinder Size103 LiterNumber of Cyl1

Customer Part# N/A

Cust Number 07152 Order Number 69679439 PO Number 04906817

Date on Manufacture6/13/2022Expires06/2025Analytical AccuracyCertified

Component Air Oxygen T.H.C. (as Methane) Nitrogen Reported Concentration Zero Grade 20.9 % < 1.0 ppm Balance Requested Concentration Zero Grade 20.9 % < 1.0 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

Minor constituents tested with standards traceable to NIST by mass or comparison to SRM's (Standard Reference Materials).

NIST Traceable Numbers are available upon request.

Approved:

All

Date Signed:

6/13/2022

David Reed Lab Technician

> 898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

800.962.7837 providersafety.com

components

THC. (as Methane)

Amgen

Concentration (M

PREMIER

Zero Grade 20.9 % < 1.0 ppm Balance

2-154-85 Certified J1002 Insts: 103Liters-3.6Cu.Ft.,-1000psig

MFG Date: Exp. Date:

6/13/2022 05/2025

33396 Sterlings

# CALIBRATION GAS





### **CERTIFICATE OF ANALYSIS**

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number 3-340-61 Norlab Part# J1971500PA Cylinder Size 103 Liter Number of Cyl 5

Customer Part# N/A

Reported Concentration 500 ppm Balance

Cust Number 07152 Order Number 73732858 PO Number 04B70733

Date on Manufacture 12/7/2023 Expires 12/2027 +/- 2 % Analytical Accuracy

Component Methane Air

Requested Concentration 500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager

Date Signed:

12/7/2023

898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672





### **CERTIFICATE OF ANALYSIS**

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number3-340-62Norlab Part#J197125PACylinder Size103 LiterNumber of Cyl5

Customer Part# N/A

Cust Number 07152 Order Number 73732858 PO Number 04B70733

Date on Manufacture12/7/2023Expires12/2027Analytical Accuracy+/- 5 %

Component Methane Air Reported Concentration 25 ppm Balance Requested Concentration 25 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager Date Signed:

12/7/2023

898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

# PREMIER 33596 Sterling Paral Sterling Heights, Mith

\$00.962.7837 our premiersafety.com

Concentration (Mole

25 ppm Balance

### Components

Methane

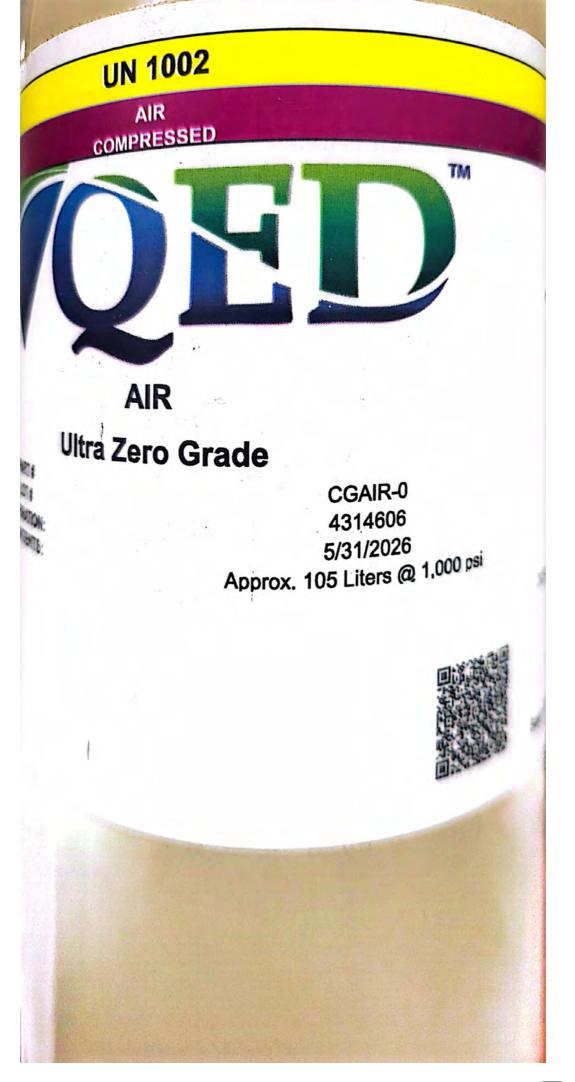
Air

14 3-340-62

Accuracy: +1-5 %

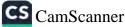
22

J197125PA


MFG Date:

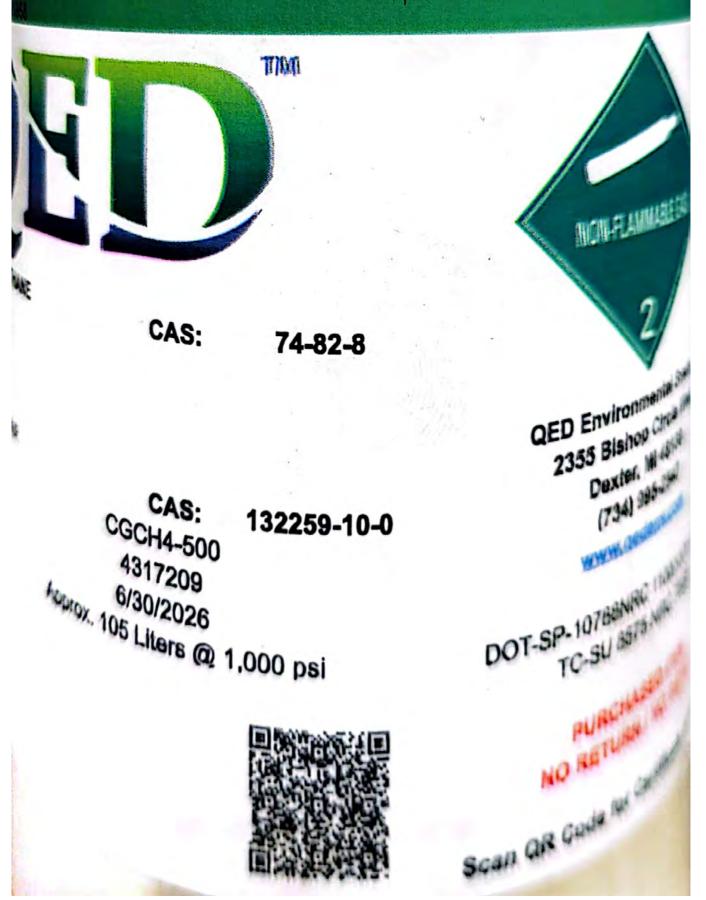
Exp. Date:

12/7/2023 12/2027


Instants: 103Liters-3.6Cu.Ft.,-1000psig












### DGAS, N.O.S









WASTE MANAGEMENT

172 98th Avenue Oakland, CA 94603 (510) 430-8509

May 15, 2024

Ms. Alisha McCutcheon Redwood Landfill, Inc. 8590 Redwood Highway Novato, California 94948

### Re: First Quarter 2024 Surface Emissions and Component Leak Monitoring Report for Redwood Landfill, Inc.

Dear Ms. McCutcheon:

This monitoring report for "**Redwood Landfill, Inc. (RLI)**" contains the results of the First Quarter 2024 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by Roberts Environmental Services, LLC. (RES). Re-monitoring of surface emissions and site-wide component leak monitoring was conducted by RES and/or Waste Management (WM) personnel.

#### **APPLICABLE REQUIREMENTS**

The monitoring discussed in this report was conducted in accordance with the following requirements:

#### Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- National Emission Standards for Hazardous Air Pollutants (NESHAP): Municipal Solid Waste Landfills, Title 40: Chapter I: Subchapter C: Part 63: Subpart AAAA, §63.1981(h)(5)
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection procedures).

#### **Component Leak**

- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 301 (Landfill Gas Collection and Emission Control System Requirements) and Section 602 (Collection and Control System Leak Inspection procedures).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95464, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

#### **RLI Plan and Alternative Compliance Measures**

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on March 24, 2011. After receipt of comments, this ACO was amended, restated, and submitted to BAAQMD on July 1, 2016. SEM and Component Leak monitoring was conducted per the methods outlined in the July 1, 2016 ACO.

#### PROCEDURES

#### General

The surface of the RLI disposal area has been divided into two hundred-eight (208), approximately 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the 25-foot interval walking pattern as depicted the 2011 RLI AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

#### **Instantaneous Surface Emissions Monitoring**

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume ( $ppm_v$ ) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a) and NSPS. The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d) and CCR Title 17 §95471(c)(2).

RES personnel walked the surface of the landfill on a grid by grid basis with the wand tip held at 2 inches from the landfill surface. While sampling the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

Ms. Alisha McCutcheon Page 3

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppm_v (areas of concern) or 500 ppm_v (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Appendices of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
  - If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
  - If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.

If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

#### **Integrated Surface Emissions Monitoring**

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppm_v for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held at 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(3).

Grids with results greater than 25  $ppm_v$  were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25  $ppm_v$  are subject to the following re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.
- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.

- If the second 10-day re-monitoring event shows the second exceedance is corrected, all re-monitoring requirements have been completed.
- The second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the third exceedance.

#### **Component Leak Monitoring Procedures**

RES personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppm_v. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppm_v per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) and 1,000 ppm_v per requirements outlined in BAAQMD 8-34-303 were recorded. Applicable corrective action and re-monitoring timelines are listed below:

- Leaks between 500 and 999 ppm_v must be corrected and re-monitored within 10 days of the initial exceedance.
- Leaks at or above 1000 ppm_v must be corrected and re-monitored within 7 days of the initial exceedance.

#### FIRST QUARTER 2024 SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and component leak monitoring results completed for the First Quarter 2024.

#### **Instantaneous Surface Emissions Monitoring Results**

The Instantaneous surface monitoring was performed on January 26, 2024 in accordance with the NSPS, BAAQMD 8-34, and CCR Title 17 §95469, NESHAP Subpart AAAA, and ACO. Results and data from the monitoring are presented in Attachment A.

#### Initial Monitoring Event Exceedances of 500 ppm_v

There were four (4) exceedances of 500  $ppm_v$  as methane detected on January 26, 2024. Corrective actions to initiate repairs of the exceedances were completed within five days for all locations.

#### First Ten-Day Re-Monitoring Results

The first 10-day re-monitoring was completed on January 30, 2024. All locations were observed at less than 500  $ppm_v$  as methane.

#### **One-Month Re-Monitoring Results**

The 1-month re-monitoring event was completed on February 23, 2024. All locations were observed at less than  $500 \text{ ppm}_v$ .

#### Readings between 200 ppmy and 499 ppmy (Initial and Re-monitored)

There were no readings between 200 ppm_v and 499 ppm_v as methane detected during the initial monitoring event on January 26, 2024. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppm_v but below 500 ppm_v are required to be recorded.

#### **Integrated Surface Emissions Monitoring Results**

The Integrated surface sampling (ISS) was performed on January 27 and 28, 2024 in accordance with the ACO and requirements outlined in CCR Title 17 §95469.

#### Initial Monitoring Event Exceedances of 25 ppmy

There were 0 grids with exceedances of 25  $ppm_v$  as methane detected during the initial monitoring event.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B, Integrated SEM 25 ppm_v Exceedances and Monitoring Log, and SEM Map included in Attachment B, for details.

#### **Component Leak Monitoring Results**

Component leak monitoring was conducted per the applicable requirements on January 26, 2024. No leaks greater than 500 ppm_v were identified. Please see Attachment C, for details.

#### WEATHER CONDITIONS

#### Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

#### **Precipitation Requirements**

Per the RLI's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no precipitation  $\geq 0.01$ " within 24 hours,  $\geq 0.16$ " within 48 hours, nor  $\geq 0.25$ " within 72 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

#### **EQUIPMENT CALIBRATION**

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25  $ppm_v$  in air for integrated sample analyses and 500  $ppm_v$  in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at (510) 613-2852.

Thank you, Waste Management

Atch Chon

Michael Chan Environmental Protection Specialist

#### Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

#### Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

#### Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

#### Attachment D – Weather Station Data

• Strip Chart Data

#### **Attachment E – Calibration Records**

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

### Table A.1 Instantaneous Landfill Surface Emissions Monitoring Initial Monitoring Event Areas of Concern

 2024 QUARTER:
 1

 PERFORMED BY:
 RES and WM

 LANDFILL NAME:
 Redwood Landfill, Inc.

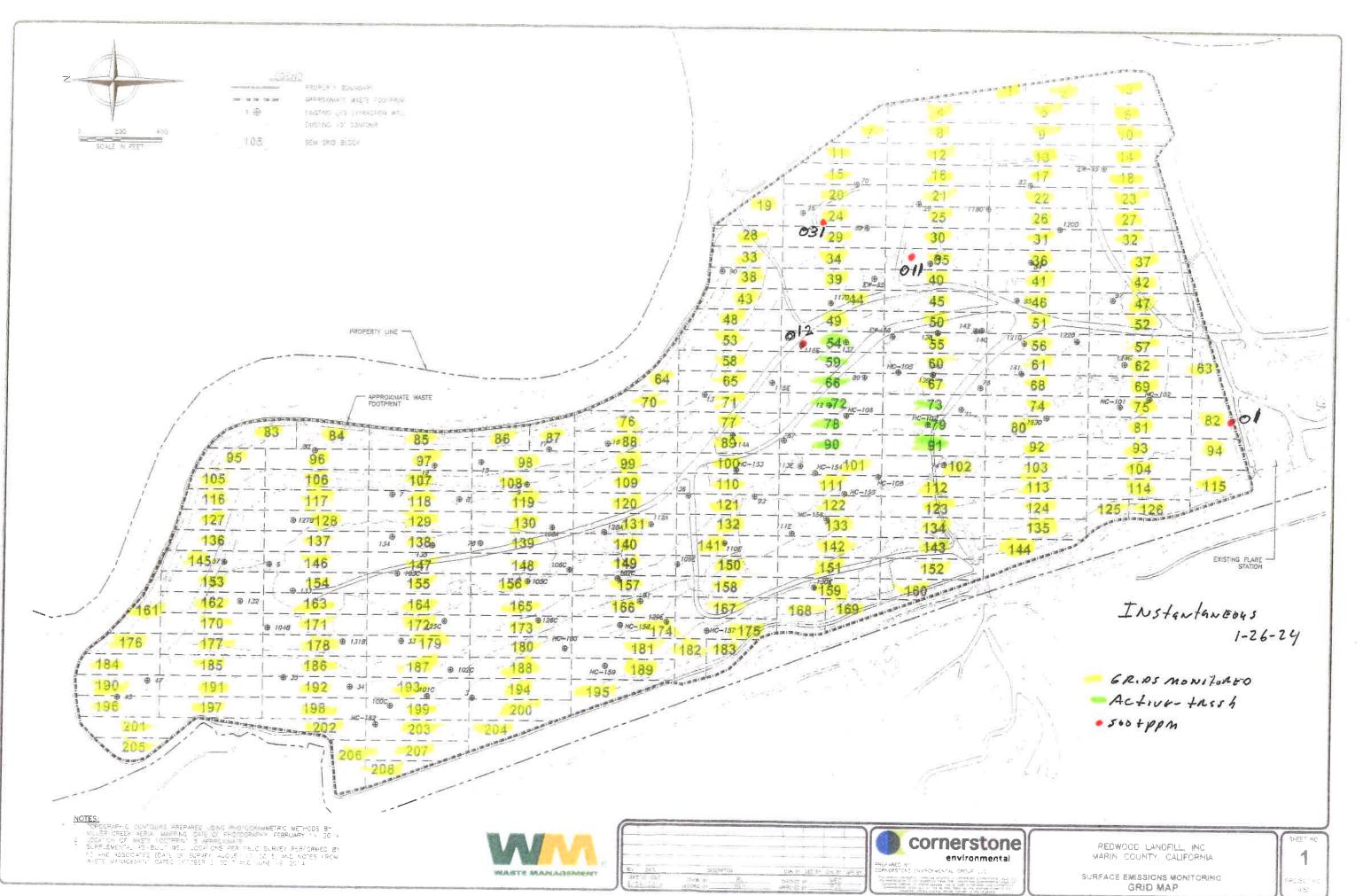
Flag Number	Grid Number	Latitude	Longitude	Date of Monitoring	Concentration of Emission (ppm _v )	Comments
011	35	38.16539	-122.56216	1/26/2024	1,438	Well 276
O12	54	38.16704	-122.56363	1/26/2024	5,620	Well 116
01	82	38.16139	-122.56432	1/26/2024	1,530	Well 220
O31	24	38.16662	-122.56185	1/26/2024	1,000	Well 236
L	+					
L	+					
L	+					
<u> </u>						
Notes: Please refer	to field data sho	ets for details	Į			ł
inotes. I lease lelel						

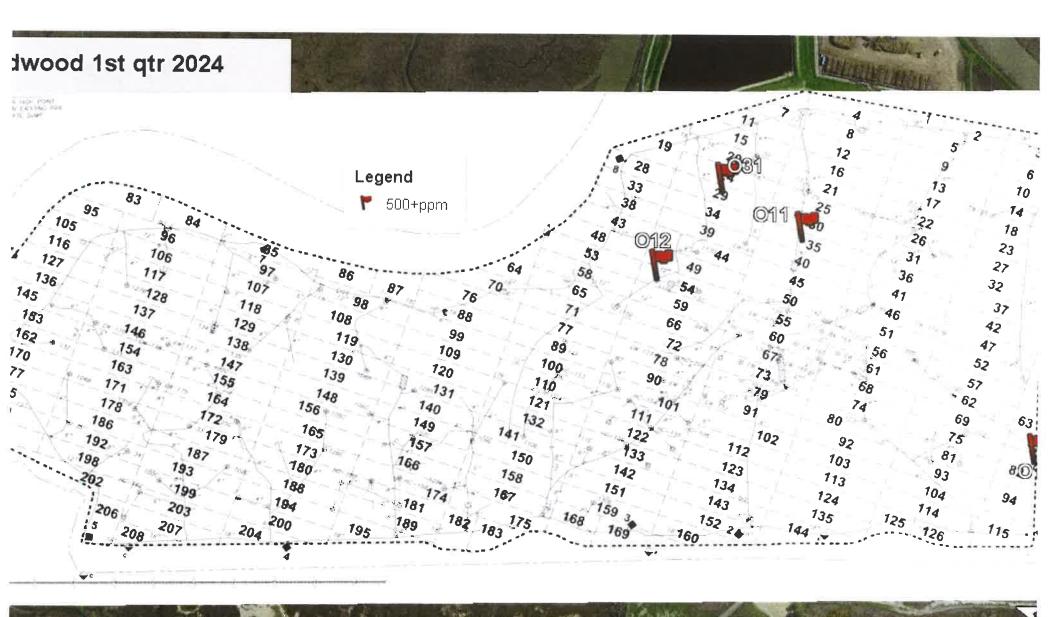
## Table A.2Instantaneous Landfill Surface Emissions MonitoringExceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

#### 2024 QUARTER: 1 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: Riley Lindberg LANDFILL NAME: Redwood Landfill, Inc.

Initia	I Monitoring	Event	(	Corrective Action	1st 10	)-day Follo	w-Up	2nd 10	0-day Follov	w-Up	1-month Follow-Up			
Flag	Monitoring	Reading	Repair	Action	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	ppm	Date	Taken	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
011	1/26/2024	1,438	1/30/2024	Increased BECs	1/30/2024	158		n/a			2/23/2024	205		Well 276
O12	1/26/2024	5,620	1/30/2024	Increased BECs & Added and compacted soil	1/30/2024	258		n/a			2/23/2024	122		Well 116
01	1/26/2024	1,530	1/30/2024	Added and Compacted soil	1/30/2024	197		n/a			2/23/2024	58		Well 220
O31	1/26/2024	1,000	1/30/2024	Increased BECs	1/30/2024	204		n/a			2/23/2024	217		Well 236

## Table A.3Instantaneous Landfill Surface Emissions MonitoringExceedance and Monitoring Logs (AB-32)

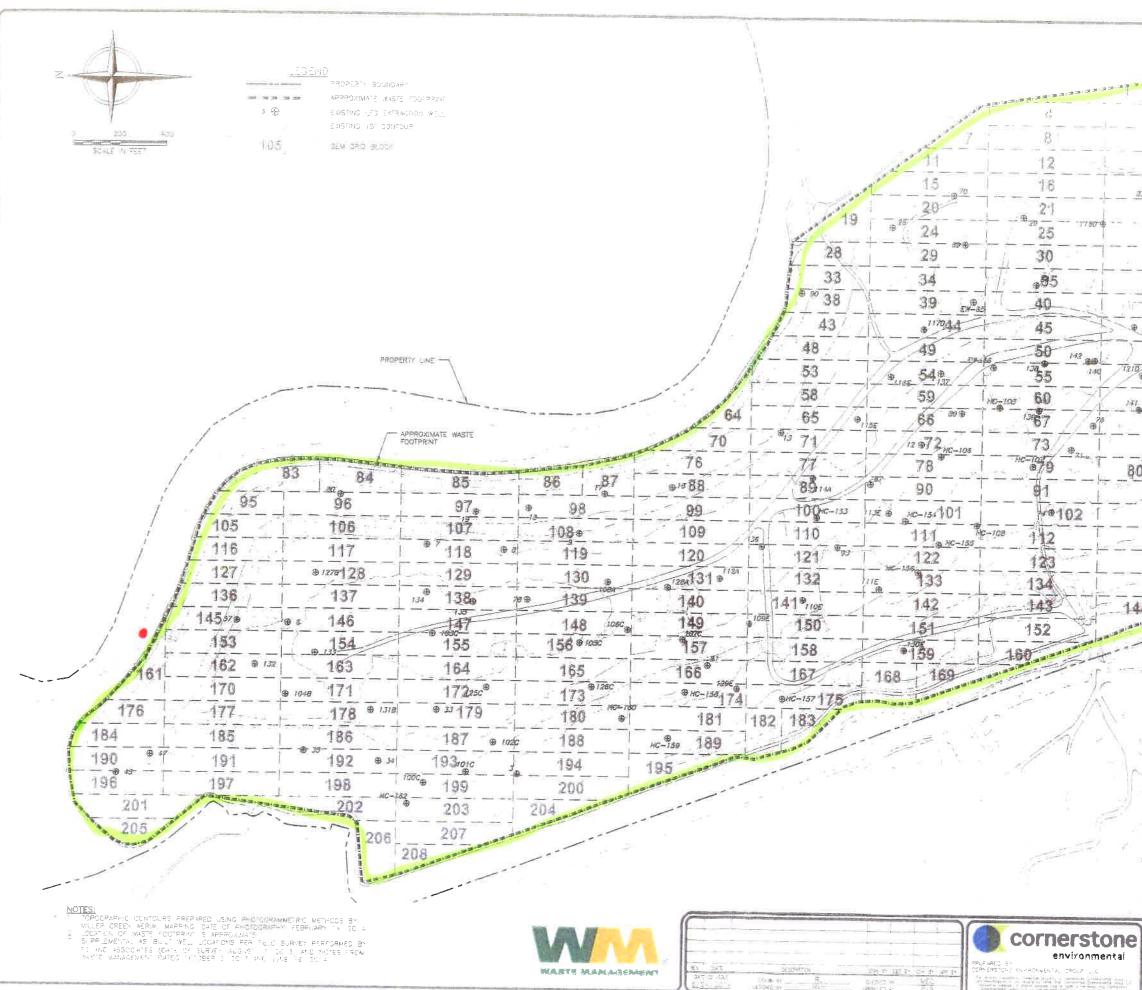

#### 2024 QUARTER: 1 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: Riley Lindberg LANDFILL NAME: Redwood Landfill, Inc.


Initial	Monitoring	Event	1st Re-n	1st Re-mon Event - 10 Days			non Event	- 10 Days	
Flag	Monitoring	Reading	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	ppm	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
O11	1/26/2024	1,438	1/30/2024	158		n/a			Well 276
O12	1/26/2024	5,620	1/30/2024	258		n/a			Well 116
O1	1/26/2024	1,530	1/30/2024	197		n/a			Well 220
O31	1/26/2024	1,000	1/30/2024	204		n/a			Well 236

# Table A.4Instantaneous Landfill Surface Emissions MonitoringAreas of Concern Greater than 200 ppmv

#### 2024 QUARTER: 1 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: LANDFILL NAME: Redwood Landfill, Inc.

Initial	Monitoring	Event	Re-mo	n Event	
Flag	Monitoring	Reading	Monitoring	Reading	Comments
Number	Date	ppm	Date	ppm	
		No	200-499 ppmv	locations	






ogle Earth

EcoTerra Ready-Mix Concrete

1000 ft



อาณาสู เปลี่ยวสามารถเหลือเลือกเสียง 10 9 - 13 14 Fik- 75 @ <u>az 17</u> 18 22 23 27 31 32 36 37 42 41 · 42 P # 46 51 .52 ₽ 56 57 * 62 141 61 63 - NG-191 75 68 74 80,330,10 82 81 92 .93 94 103 104 113 114 115 124 125 126 135 144 EXISTING FLARE -1st Quarter 2024 NSPS per; noten surep 0 YOWIND · DOWNWIND SHEET NO REDWOOD LANDFILL INC. 1 MARIN COUNTY CALIFORNIA SURFACE EMISSIONS MONITORING GRID MAP

#### Orange Flag Landfill Surface Emissions Monitoring Exceedances and Monitoring Log

Site: REOWIDD

Quarter /		15+2=	24										Page of	Page
Technicia		LEISHWI	100	1									rage 01	Fage
Instrumen		LEISHNI LEISHNI LUAIOO	0											
Calibratio	n Standard:	500000								1				-
=		Ionitoring Event	1		Ionitoring Event		Second Re	Monitoring Eve	nt - 10 Days	30-Da	y Follow-up Mo	nitoring	Comments	
Flag	Grid	Field Reading	Date	Date	No Excd.	Excd.	Date	No Excd.	Excd.	Date	No Excd.	Excd.	Commenta	
Number	Number	(ppm)	Monitored	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm		
0-31	24	1,000	1-26-24	· · · · · · · · · · · · · · · · · · ·	S 10 10 1								WE1/236	
0-1	82	1.530	1							1			W220	
0-11	24 82 35	1,530 1,438 5,620					-	1 1 1 1 1 1					400000	
0-12	54	5.620	V							-			WE1/276 WE1/116	
0-	-1	2/0-											WE1/116	
0-				-				-						
0-		1												_
0-							1							
0-	1													
0-						-								
0-				-		-								
0-		1.00			a					-			-	
0-			1		1	1			-					
0-														
0-	1													
0-				A			1							_
0-											1			
0-														
0-														
0-											-	-		
0-														
0-														
0-			2			1								-
0-														-
0-														

wpt			redwood 1st qtr 2024		
ID	lat	lon	time	name	cmt
1	38.16538601	-122.562156	2024-01-26T19:28:39Z	011	1438PPMWELL276
2	38.16704404	-122.563634	2024-01-26T19:42:00Z	012	5620PPMWELL116
3	38.16138902	-122.564322	2024-01-26T15:56:02Z	01	1530PPMW220
4	38.16662201	-122.561845	2024-01-26T19:31:28Z	031	1000PPMWEll236

ersonnel	LEISh Misur Jenn	LADE		yoven	y AFC	ins					
	Migue	L & stars.	2	GREE	10002	-					
					Cal. Gas Exp. Date: //-/0						
Date	1-26-29	Instrui	ment Use	d tv.	A 1000	Grie	d Spacing	251			
Tempera	iture: <u>4</u> /	Pre Pre	cip:	Upv	vind BG	2.9	Downv	vind BG: 2.8			
GRID ID	STAFF	START	STOP	тос	WIN	D INFORM	ATION	REMARKS			
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT				
1	LW	0700	0715	35	4	5	7				
2	NE	0700	0745	21	4	5	7				
34		0200	0725	19	4	5	7				
4	3m	0700	0715	47	4	5	7				
5	6L	0100	075	56	4	5	7				
6	LN	0715	0730	22	3	4	7				
>	NE	250	6730	119	3	4	7:				
8	JA	0715	0730	94	3	4	7				
9	50		0770	127	3	4	7				
10	GL	0715	0730	34	3	4	7				
11	LW	0733	0745	90	3	4	0				
12	MT	0730	6745	120	3	4	4				
13	JA	6730	074	54	3	4	6				
14	31	0730	0745	37	3	4	G				
15	62	6730	0745	89	3	il il	G				
16	LW	0745	0800	146	1	2	4				
17	lat	0741	0800	42	1	2	6				
18	34	0745	0800	30		2	L				
19	7-2	0741	0800	145	i	2	6				
20	61	0745	0800	117	1	2	4				
21	LN	0800	2815	154	b	1	6				
22	ME	0800	0815	78	0	i	1.				
23	53	0800	0815	25	0	1	1				
24	53	0800	085	1000	0		6	WE11236			
25	66	OFOU	0815	82	D	1	d				
2.6	LW	0815	0830	47	2	4	8				
27	15	081	0830	31	2	4					
28	77	0811	0870	64	Z	4	8				
29	5m	082	0830	89	2	4	G				
38	GU	ofu	0830	66	2	4	6				

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of _____

334

erspone.	LEISLWADE MIGHELESTRENA JERMY MUMM	JOUGNI MEDING CREGIGETU	
	JERMY MUNUL		Cal Gas Exp Date 11-10-24
Date _	1-26-24 Instrument Us	ed tvA1000 Gri	d Spacing 231
Tempera	ature: Precip;	Upwind BG; <u>2.9</u>	Downwind BG 2.8
1		WIND INFORM	IATION

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	ATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 15 POINT	OLCIANICO
31	in	0830	0845	41	3	4	9	
32	ME	0830	0845	35	3	4	9	
37	5~	0830	8845	76	3		9	
34	Ja	0830	0845	104	3	4	9	
35	66	0830	0845	1,438	3	4	9	WE11276
34	LW	0845	0900	51	1	2	6	
3>	ME	0841	0900	37	i	2	10	
38	50	0845	0907	75	1	2	6	
39	53	084	2900	81		2	6	
48	66	0841	0910	136	1	2	6	
41	LW	0910	0915	42	1	3	6	
42	AB	0960	0945	30	1	3	G	
43	5-	0800	092	57	I	3	8	
44	57	0900	091	69		3	8	
45	66	0200	0915	54		3	6	
46	Lw	0911	0530	39	3	4	6	
47	ne	0915	6930	27	3	4	6	
48	71	0815	0930	113	3	4	6	
49	52	0815	0930	62	3	4	6	
50	66	054	0830	87	3	4	6	
51	LW	0975	0945	34	)	2	4	
52	No	0930	0945	26	1	2	4	
53	50	0820	0845	79	1	2	4	
25	5-	49.20	0945	113		2	4	
56	66	0530	0245	86		2	4	
53	LW	0945	1000	39	3	5	12	
58	45	0545	1000	34	3	5	12	
60	m	0841	1000	47	3	5	12	
61	うつ	6965	1000	38	3	55	12	
62	60	0845	1000	42	3	5	12	

Page 2 of >

arsonne'	Misary	ABLANZ	ħ	JOUENY GR86	MEDI	~5	Ca: Gas	Exp Date /1-10-24
Date /	-26-24	Instru	ment Use	d tv,	41000	Gri	d Spacing	251
Temperat	ture: 🔰	D Pre	cip	Dow	rind BG	2.4	Downv	vind BG: 2.8
GRID ID	STAFF	START	STOP	тос	WIN	ND INFORM	ATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
63	LW	1000	1015	25	3	4	12	
64	AX	1000	1015	5>	3	4	12	
65	7~	1000	1015	39	3	4	12	
67	79	1000	1015	51	3	4	12	
68	60	1000	1015	40	3	Ц	12	
69	LW	1015	1030	32	4	5	12	
70	ME	1015	1070	56	4	5	12	
>/	00	1815	1030	38	4	5	12	
74	0-1	1011	120	66	4	5	12	
75	GL	1015	1030	59	4	5	12	
76	1~	1070	1045	84	4	4	12	
77	1.8	1030	1045	37	ef	6	12	
80	5-	1030	10ks	50	4	6	12	
81	1 7 4	1030	1025	42	4	6	12	
82	6L	1630	1045	1,530	4	6	12	wzzopipE
83	LW	1045	1110	37	4	4	9	
84	ne	106-5	1110	58	4	4	9	
85	on	1045	11.0	9/	4	6	9	1
89	5-	1045	1100	55	4	4	9	
87	GL	1045	1/00	71	4	6	9	
88	LW	1100	1115	84	2	4	10	
89	NE	1100	1115	61	2	4	10	
92	22	1100	1115	108	2	4	10	
53	57	1100	1115	8>	2	4	10	
94	66	1100	1115	45	2	4	10	
95	11	1115	1130	32	1	3	12	
9-6	NE	1115	1130	45	1	3	12	
52	54	1115	1130	37	1	3	12	

Attach Calibration Sheet Attach site map showing grid ID

m

Page 3 of >

Parsonnat	LEIGHWARE	FUNGLI AUDING		
	Migher ESLACOR	JUNGLI AUDING GREGIANT		
	Jonny MANZ		Cal Gas Exp. De	ate 11-10-24
Date	1-26-24 Instrument L	152d 4VA1000 3	rid Spacing ZS	./

Temperature: 50 Precip: 0 Upwind BG 2.4 Downwind BG. 2.8

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	NOITAN	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 15 POINT	
100	LW	1130	1145	77	5	8	9	
101	NE	1120	1145	54	S	G	9	
102	72	1120	1145	111	5	G	9	
100	51	1130	1145	60	5	S.	9	
104	GL	1130	1145	47	5	6	1	
105	Lw	1145	1200	34	5	1	10	
106	ME	114	1200	26	5	7	10	
167	57	1145	1200	39	5	7	10	
108	Ju	1145	1200	51		7	10	
109	62	1145	1200	72	55	1	10	
110	LV	1200	1215	54	6	6	10	
111	ME	1200	124	70	6	6	10	
112	73	1200	120	62	6	6	10.	
113	3	1203	124	39	6	G	10	
114	6L	1205	1215	41		6	10	
115	lw	1211	1230	60	5	8	10	
116	ny	ius	1230	128	-25555	S	10	
117	5n	1215	1230	69		ç	10	
118	33	1215	1230	42	5	8	10	
119	66	1215	1230	36	5	6	10	
120	LW	1230	1245	24	5	8	10	
121	ne	1230	nu	57	5	8	10	
122	2	1230	1245	68	5	S	10	
123	72	1230	1245	43	5	Š	10	
124	66	1230	1245	47	5	6	10	
125	12	1245	1300	31	4	4	10	
126	ME	1245	1300	19	4	6	10	
127	ナへ	1245	1300	34	4	6	10	
128	5	1241	1300	26	4	6	10	
129	GU	1245	1300	59	4	6	10	

Attach Calibration Sheet Attach site map showing grid ID

Page _ _ of >

TERMA RELAT				GRUG	i MEDIN Igen	5	Cat. Gas s	Exp Date 11-10-24
Date ,		26-24 Instrument Use		d turino and			d Spacing 21	
Tempera	iture	Prec	cip 0	Uрч	vind BG: _	2-4	Downwl	nd BG 2-8
GRID ID	STAFF	START TIME	STOP TIME	TOC	WIND	INFOR	MATION	REMARKS

9.009.10	21741	JUARU	1 3107	100			the second se	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 15 POINT	
130	LW	1.300	1315	44	4	7	Q	
131	ME	1300	1315	26	4	7	G	
132	5-	1300	1315	65	4	7	8	
133	72	1300	131	114	4	7	6	
134	60	1300	1315	48	4	1	6	
135	LW	1315	1330	29	4 2	5	6	
132	ne	1315	1330	37	2	5	G.	
13>	71	1715	1330	42	2	5	6	
139	jn	1315	1320	31	2		6	
135	Jn 6L	1315	1330	20	2	5	8	
140	LW	1330	1345	46	2	5555	9	
141	ME	1330	1345	32	2	5	9	
142	51	1330	132	76	2	5	9	
143	50	1300	1345	45	2	5	9 9	
144		1330	1345	32	2	5	9	
145	lw	1345	1400	51	1	7	9	
146	ME	1345	1460	30	1	7	9	
147	5-	1345	1400	ZF	1	7	9	
148	50	1341	1400	26	1	7	9	
145	EL	1345	1400	74	1	1	9	
150	10	1400	1415	148	5	7	9	
151	15	1200	141	92	5	7	8	
152	51	14.0	1415	47	5	7	6	
153	7	1400	145	31	5	7	8	
154	GL	6400	145	29	5	7	6	
155	12	1415	1470	5>	5	C	9	
151	NE	1415	1430	72		8	9	
157	97	1415	1430	89	5	8	9	
158	21	1415	1430	66	5 5 5 5 5	\$	9	
159	GL	1415	1420	40	ζ	6	9	

Attach Calibration Sheet

Attach site map showing grid ID

Page _ S of Z

Date 121-24 Instrument Used WAlows Grid Spacing 25'

Temperature 54 Precip: 0 Upwind BG 2.4 Downwind BG 2.5

GRID ID	STAFF	START	STOP	тос	WIN	D INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
160	IN	1430	1445	31	5	8	9	
16/	ME	1470	144	25	9	G	9	
162	5-	1430	1445	38	5	8	9	
163	74	1430	1465	55	55	8	9	
164	EL	1470	1445	72	5	8	9	
165	LN	1441	1500	104	5	7	10	
166	48	144	1500	68	5	7	10	
167	77	1441	1500	91	5	7	10	
168	72	1245	1500	40	5	7	10	
189	GL	1445	1500	28	5	7	10	
170	1~	1500	1515	75	7	9	LI I	
171	Mr	1500	ISU	61	7	9	11	
172	27	1500	1511	45	7	9	U	
173	57	1500	1515	82	1	9	U U	
174	6C	1500	1515	55	7	9	11	
175	LW	1515	1530	49	7	9	10	
176	ME	1515	1570	21	7	9	lo	
177	34	1515	1530	35	7	9	10	
178	37	1815	1530	64	7	9	10	
179	GL	1515	1530	98	1	9	10	
180	LW	1530	1545	49	6	9	10	
181	MB	1530	1545	35	6	9	10	
182	20	1530	1545	27		9	10	
183	Ja	1530	1545	34	6 6	9	10	
184	ec	1530	1545	20	6	9	10	
185	w	1545	1600	26	5	10	1	
186	1.5	1545	16.0	45	5	10	ii l	
187	on	1545	1600	71	5	10	11	
188	300	184	1600	50	5	10	II I	
185	64	114	1600	38	5	10	11	

Page 6 of 7

LEISHVAPV JOURNI AUDING Mighol ETLNENA GAUGIOFEL JEARY MULAR Cal Gas Exp Date 11-10-21

Date 1-26-24 instrument Used fur 1000 Grid Spacing 25'

Temperature 60 Precip: Devind BG: 2-4 Downwind BG 2.8

GRID ID	STAFF	START	STOP	TOC PPM	WE	ID INFORM	NOITAN	REMARKS
	INITIALS	TIME	TIME		AVG SPEED	MAX. SPEED	DIRECTION 15 POINT	
190	LW	1600	1615	18	3	5	10	
191	nt	1100	1615	24	3	5	10	
192	74	1800	1615	65	3	ς	10	
197	73	1600	1615	31	3	5	10	
194	66	1600	1615	48	3	5	10	
195	LW	1615	1670	36	3	4	10	
196	ne	1615	1630	23 27	4	þ	10	
187	フラ	1815	1670	27	4	4	10	
198	73	1615	1670	41	4	6	10	
199	66	1615	1630	30	4	4	16	
200	Lw	1630	1645	57 28	4	1	10	
20/	ME	1630	1645	28	4	7	10	
ZUZ	In	1670	1845	56	4	7	10 -	
203	52	1630	1141	34	4	7	10	
204	60	1630	1645	24	44 55	1	10	
205	LW	1645	1700	19	5	E	H	
206	ME	1645	1700	46	5	8	И	
207	JM	1645	1700	21	5	6	l li	
208	ワつ	1845	1700	30	5	9	W I	
				· · · · · · · · ·		- S.		
					1			

Page Z of Z

								Exp Date
ste /	-26-24	lostruo	ent Used			Jri:	1 Spalling	
mperad	ure;	Preo	ip	Up;	vind BG		Downw	rind BG
IRID ED	STAFF	START	STOP	тос	WIN	ID INFORM	NOITA	REMARKS
	INITIALS	TIME	STOP TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 15 POINT	
496236				_				Active-ther
.6								
2								
5								
9			_				2	
29 0 21								
								4
		-						
		-						
					1			
					11			

Page / of /

#### Year: Quarter:

2024 1st

IME Date		<b>IME Location ID</b>	<b>IME Concentration (ppm</b>
1-26-24	0519	P-2	18
1	0528	P-4	12
	0531	P-5	22
	0522	P-6	16
	0.524	P-7	31
	0540	P-8	24
	0530	P-1	17
	6615	P-9	15
	0532	RLLC0234	31
	0637	RLI00083	2.6
	0600	RLI00095	45
	0540	RLLC0235	31
	0611	RLLC0252	24
	0526	RLLC0236	1,000
	0628	RLLC0241	19
	0630	RLLC0253	27
	0610	P-10	3/
	0531	RLLC0254	54
	0547	P-14	17
	0541	RLI00065	36
	0617	RLLC0242	22
	0639	P-16	24
	0627	P-17	14
	0610	RLI0117D	41
	0554	RLLC0179	30
	0617	RLLC0217	81
	0630	RLLC0227	37
	0520	P-47	31
	0651	RLI00140	45
	0525	RLI00142	62
	0638	RLLC0255	30
	0651	RLLC0256	19
	0828	P-19	15
	0851	RLI0116E	5,620
	0613	RLI00137	45
	0557	RLLC0237	51
	0640	RLLC0238	7-6
	0542	P-11	2.6
	0619	RLLC0239	34
Y	0651	RLI00141	20

Year: Quarter: 2024 IST

IME Date	TIME	IME Location ID	IME Concentration (ppm)
1-26-24	0631	RLLC0246	37
	0538	RLI0124G	2.5
	0611	RLI00220	28
	0524	P-21	39
	0640	P-22	51
	0539	P-23	17
	0611	P-82	2.6
	0319	P-83	30
	0628	P-84	19
	0615	P-85	17
	0522	RLI0115E	36
	0619	RLLC0240	45
	0619	RLLC0243	22
	0655	RLLC0244	31
	0532	RLIHC101	39
	0612	RLIHC102	20
	0659	RLLC0230	17
	0610	RLLC0233	34
	0531	RLLC0245	51
	0540	P-86	35
	0528	P-48	22
	0540	P-43	6/
	0540	P-36	32
	0618	P-38	48
	0678	RLI00017	42
	0528	RLI00016	47
	0547	RLLC0231	28
	0620	RLI0114A	24
	0618	RLLC0219	40
	0254	RLLC0215	81
	0537	RLIHC107	38
	0645	P-49	77
	0532	RLI00018	25
	0830	RLI00019	21
	0555	RLLC0214	
	0828	RLLC0222	48
	0521	RLLC0212	32
-1	0634	P-50	25
	0545	RLLC0232	
	0590	RLLC0196	51

Year: Quarter: 2024 15T

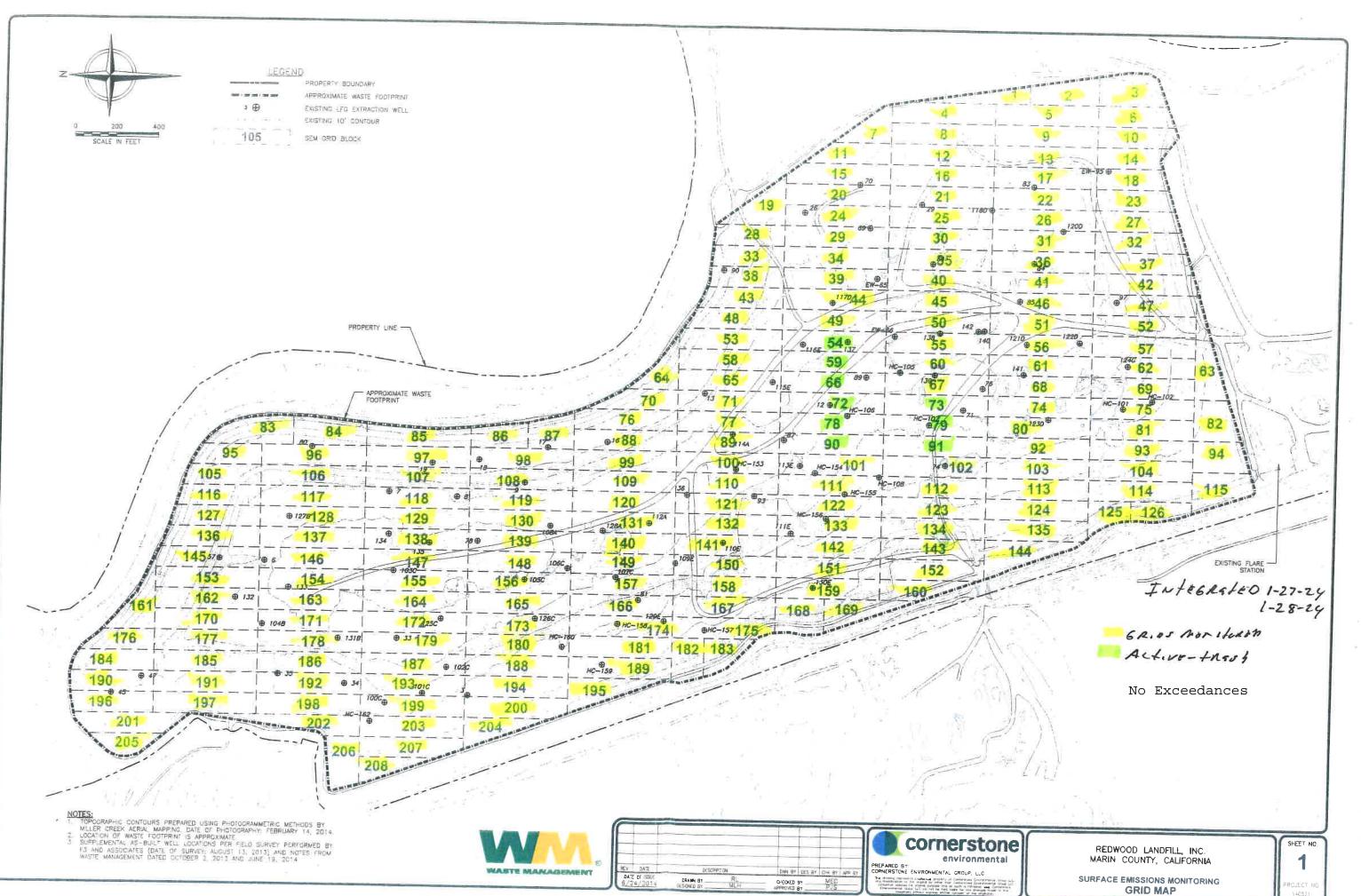
IME Date	TIME	<b>IME Location ID</b>	IME Concentration (ppm)
1-26-24	0539	RLLC0229	25
	0612	RLHC0153	40
	0541	RLLC0200	3.6
	0539	RLLC0201	25
	0534	RLLC0223	43
	0551	RLLC0224	24
	0611	RLLC0226	26
	6528	RLLC0183	39
	6527	P-51	48
	0617	RLLC0184	48
	061/	RLI00008	79
	6632	RLLC0195	20
	6138	RLLC0199	18
	0582	RLLC0225	26
	0528	P-52	7.6
	0614	RLI0127B	44
	0530	RLI0128A	51
	0655	RLLC0194	49
	0620	RLLC0198	30
	0634	RLHC0156	27
	0519	P-13	2/
	0572	RLLC0247	
	0630	RLLC0248	39 26
	0549	P-53	49
	0547	RLLC0251	41
	0635	RLI00134	38
	2631	RLI00135	32
	0537	RLLC0221	20
	0611	RLLC0228	15
	0549	P-12	68
	0520	RLLC0176	28
	6636	P-55	35
	0641	RLI0103C	79
	0531	RLLC0190	42
	0858	RLI0106C	23
	0557	RLLC0202	39
	0618	P-54	41
	0530	RLLC0250	74
	0547	RLI0105C	17
	0674	RLI0107C	28

Year: Quarter: 2024 157 @19

IME Date	the second se	IME Location ID	IME Concentration (ppm)
1-26-24	0611	RLLC0203	61
	0524	RLLC0204	24 36
T-19/11-11-11	0613	RLI0130E	36
	0517	P-56	64
	0520	RLI00132	25
	0548	RLLC0249	31
	0610	RLLC0186	27
	0618	RLLC0209	27
	0555	RLLC0205	45
	0607	RLLC0210	42
	0630	RLLC0188	36
	0839	RLI0126C	24
	0652	RLI0129E	31
	0617	RLLC0206	40
	0611	P-61	87
	0635	RLI00035	35
	0347	RLI0102C	27
	0614	P-81	18
	0551	RLI00045	17
	0530	RLI00047	24
	0641	P-74	41
	0614	RLI00034	35
	0519	RLI00003	20
	0548	P-76	39
	0612	P-77	87
	0841	P-78	26
	0548	RLI0100C	38
	0611	P-75	44
	0528	P-79	51
	0624	RLLC0192	77
	0610	P-44	35
N/	0554	P-45	26
-	0612	P-73	72

Year: Quarter:

IME Date	TIME	IME Location ID	IME Concentration (ppm
1-26-24	0541	RLLC0257	40
	0540	RLLC0258	26
	0615	RLLC0259	15
	0602	RLLC0260	24
	0617	RLLC0261	21
and the second second	0539	RLLC0262	26
	0547	RLLC0263	15
	0650	RLLC0264	29
	0618	RLLC0265	13
	0547	RLLC0266	
	0630	RLLC0267	24 30
	0542	RLLC0268	4/
	0530	RLLC0269	29
	0617	RLLC0270	47
	0645	RLLC0271	30
	0548	RLLC0272	24
	0134	RLLC0273	68
	0131	RLLC0274	54
	0610	RLI00275	37
	0624	RLI00276	1,438
	0649	RLI00277	64
	0540	RLI00278	94
	0105	RLI00279	107
	0632	RLI00280	38
	0602	RLI00281	65
	0531	RLI00282	32
	0520	RLI00283	17
	0528	RLI00284	24
	0525	RLI00285	ZZ
	0554	RLI00286	29
	0650	RLI00287	87
	0618	RLLC0177	62
	0547	RLLC0180	54
	0619	RLLC0181	39
	0158	RLLC0185	25
	0630	RLLC0187	66
	0520	RLLC0189	42
	0527	RLLC0191	51
	0554	RLLC0193	60
V.	0639	W220	1,530


Attachment B

Integrated Surface Emission Monitoring Event Records

#### Table B.1 Integrated Landfill Surface Monitoring Exceedances and Monitoring Log

#### 2024 QUARTER: 1 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: LANDFILL NAME: Redwood Landfill, Inc.

Initial	Monitoring	Event	1st Re-m	non Event -	10 Days	2nd Re-n	non Event	- 10 Days	
Exceedance	Monitoring	Reading	Monitoring	No Exced.	No Exced.	Monitoring	No Exced.	No Exced.	
Grid ID No.	Date	ppm	Date	<25 ppm	>25 ppm	Date	<25 ppm	>25 ppm	Comments
				No Exc	eedances Det	ected			



1 APPROLECTIS VILLE

	LEISHN, Migher JENNY	ES FACO MUNOZ	A 0	OVENT AL	RS		Cal. Gas Exp	D. Date: 11-10-2
				fua 10	00		pacing:	
Temperat	ure: <u>40</u>	Precip	0	Upwind	BG	2.4	Downwind	BG: 2.8
GRID	STAFF	START	STOP	тос	WIN	ND INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKKS
1	LW	0545	0610	4.10	3	4	2	
2	ME	0545	0610	5.16	3	4	7	
3	77	0545	0610	4.98	3	4	2	
4	5-7	0545	0610	8.71	3	4	2	
5	BL	0595	0610	8.13	3	4	2	
6	Lw	0610	0635	6.32		5	J	
7	NE	0610	0635	10.14	33		1	
8	20	0610	0635	12.24	3	55		
9	37	0610	0635	9.75	3	5	1	
10	60	0610	0635	7.11	33	55		
11	LW	0635	6700	12.46	2	3	-16	
12	ME	0631	0700	15.90	2	3	16	
13	Ja	0635	0700	10.27	2	3	16	
14	JA	0635	0700	6.45	2	3	16	
15	GL	0635	0000	16.38	2	3	10	
16	LW	0700	0725	20.44	3	5	2	
17	ne	0000	0725	8.07	3	5	2	
18	00	0700	0725	6.92	3	5	2	
19	In	0700	0725	12-26	3	C	2	
20	66	0700	0725	21.40	3	3	2	
21	LW	0725	0750	18.77	2	4	ما	
22	115	2500	0750	9.45	2	4	16	
23	7-2	0725	0750	7.18	2	4	16	
24	32	0725	0750	15.66	2	4	16	
25	GL	0725	0750	17.90	2	4	16	
26	22	0750	0815	8.64	2	4	2	
27	MC	6750	0845	6.10	2	4	2	
28	to	0750	0815	8.45	2		2	
29	33	0750	0845	11.22	2	4	2	
30	GC	0250	0845	14.51	2	af	2	

Page _____ of _____

1	LEIS hu Misher JEANY	ESTACO	n	SREG 10	182			
	~						Cal. Gas Exp	p. Date: //-10-2
ate: <u>/</u> -	-27-24	Instrume	ent Used: _	tua 1	000	_ Grid S	Spacing:	25'
emperat	ure: 50	Precip	0	Upwind	BG:	2.4	Downwind	BG: 2.8
GRID	STAFF	START	STOP	тос	WI	ND INFO	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REFINING
31	LN	0815	0840	7.20	2	4	2	
32	ME	0815	6840	6.51	2	4	2	
33	Th	0815	0840	7.48	2	4	2	
34	Ju	0811	0840	14.51	2	4	2	1
35	60	0815	0840	9.60	2		2	
36	LW	0840	0905	8.35	2	4	2	
37	45	0840	2805	6.28	2	3	2	
38	on	0840	0905	11.90	2		2	
39	Jon	0840	0925	20.75	2	3	2	
40	GL	0840	0905	15.57	2	3	2	
41	LW	0905	0930	6.40	4	7	6	
42	ME	0925	0930	5-32	4	1	10	
43	2m	0905	087	7.58	4	1	6	
44	124	092	0950	12.66	4	7	6	
45	66	0525	0927	9.54	4	1	4	
46	2	0970	0955	7.26	5	9	6	
47	ME	0970	0951	5.28	5	G	6	
48	00	0530	0885	9.64		8	16	
49	17m	0930	0955	10.58	5	8	10	
50	GL	0530	0555	12.27	5	8	4	2
51	LW	0955	1020	8.65	6	0	6	
52	ME	0855	1020	6.03	10	G	6	
53	22	0555	1020	8.66	6	6	6	
55	50	0505	1020	9.75	6	8	6	1
56	66	0855	1020	8-31	6	8	V	
53	LW	1020	1045	7.28	5	1	6	
58	no	1020	1045	8.46	5	1	6	
60	Jrn	1020	1045	6.97	5	1	10	
6/	JA	1020	1045	7.02	5	7	6	
62	GL	1020	1040	2-14	5	1	6	

Page Z of S

327

-	LEISH W Mighol Jonny	- GStnel	A G	UVENI M SAFE lop	e2			1
÷	Jonny	morer					Cal. Gas Exp	p. Date: <u>//-/0-2</u>
Date: 1-	27-24	Instrume	ent Used :	tUAL	Dud	Grid S	Spacing:	25'
emperati	ure <u>5</u> e	• Precip	o: _ Ø	Upwind	BG:	2.4	Downwind	BG: Z.8
GRID	STAFF	START	STOP	тос	WIN	ND INFOR	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
63	lu	1041	1110	5.47	5	6	6	
64	ME	1045	1110	7.28	5	G	6	
65	0n	1045	1110	16.57	5	G	6	
67		1045	1100	7.24		6	6	
68	7n 61	1045	1110	6.81	55	6	6	
69	LV	1110	1135	6.30	5	7	1	
73	ME	1110	1135	6.92	5	7	17	
71	Jas	1110	1175	9.14	5	7	7	
74	Ja	110	1135	7.11	5 5	7	7	
75	61	1110	1135	6.84	5	1	1	
76	lw	1135	1200	8.45	5	1	7	
77	ME	1135	1200	13.56	5	1	7	
80	Th	1135	1200	11.92	5	1	1	
8/	Ju Ju	1135	1200	8.45	5	1	1	
82	66	1135	1200	9.70	55	1	7	
83	LW	1200	1225	6.54	5	1	1	
84	ME	1200	1225	5.81	Ş	1	7	
85	m	1200	1225	6.12	5	7	7	
86	54	1200	1225	5.48	5	1	7	
87	GC,	1200	1225	6.30	5	1	1	
88	LN	1225	1250	9.57	5	1	1	
89	ME	1225	1250	11.64	55	7	7	
92	50	122	nso	8.07	5	1	1	
93	In	1225	4250	7.55	5	1	7	
94	GC	1225	1250	6.28	5	1	1	
95	LN	1250	1315	6.81	5	4	8	
96	ME	1250	1315	7.50	5	Ĝ	6	
97	Ja	1200	1315	6-30	5	G	G	-
98	30	1250	1315	8.2>	5	Ê	6	
99	GC	1255	1315	6-11	1	Č	Q	· · · · · · · · · · · · · · · · · · ·

Page <u>3</u> of <u>5</u>

	LEISAN	- EStaco	A U	CA SE In	152			
	Loisha Misari Jenny	All not		ale rop			Cal. Gas Exp.	Date: 11-10-2
Date: /-	-27-24	_ Instrume	ent Used	FUA10	00	_Grid S	Spacing: <u>7</u>	2.51
emperat	ure: <u>54</u>	Preci	o: 0	Upwind	BG:	2.4	_ Downwind	BG: 2.8
GRID	STAFF	START	STOP	тос	WIN	ND INFOR	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	ICE IN ICID
100	IN	1315	1340	9.60	4	1	6	
101	ME	1315	1340	11.45	4	7	8	
102	74	1315	1340	13.71	y	7	E I	
103	54	1315	1340	9-28	4	1	8	
184	66	1315	1340	7.16	4	7	8	
105	LV	1340	1405	6.75	5	1	9	
106	57	1340	1425	6.50	5	7	6	
107	TM	1340	140	6.81		1	ŝ	
108	ne	1340	1725	7.34	55	7	8	
109	GL	1340	1405	9.27	5	1	8	
110	Lw	1405	1430	6.40	5	8	8	
111	ME	1405	1430	8.21	5	G	8	
112	5m	1405	1470	11-45	5	8	6	
113	71	1405	1430	9.68		8	6	
114	62	1405	1430	8.39	55	6	6	
115	LU	1470	1455	7.33	5	1	9	
116	ME	1430	1455	6.51	5	7	E	
117	0-1	1430	1455	6.19	5	1	6	
118	32	1430	1455	6.47	5	7	6	
119	66	1430	1455	8.61	5	1	6	
120	w	1455	1520	9.20	5	1	1	
121	ME	1455	1520	9.84	5	1	7	
122	Ja	1455	1520	11.16	5	7	1	
123	Jas	1405	1520	8.78		7	7	
124	66,	1455	1520	7.46	55	7	7	
125	LW	1520	1545	6.51	3	5	9	
128	ME	1520	1545	6.02	3	5	9	
127	Jas	1520	1545	5.49	3	5	9	
128	73	1520	1545	6-37	3	5	9	
129	GL	1520	1841	6-11	3	5	9	

Page 4 of 5

327

rsonnel:	LEIS h WI	198		NUGNI MU	ning	_		
	MISGEL JENRY	ESTACOL	6	CRUG lop	12		010	D 1 11 14.21
	Jonny	14402					Cal. Gas Exp	. Date: 11-10-24
Date: _/	-27-24	Instrum	ent Used:	fua100	D	_ Grid S	Spacing:	251
Tempera	ture: 60	Preci	o:	Upwind	BG:	2.4	Downwind	BG: 218
GRID	STAFF	START	STOP TOC WIND INFORMATION		RMATION	REMARKS		
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
130	LV	1545	1610	8.44	t	2	10	
131	ME	1545	1610	6.51		2	10	
132	うろ	1545	1610	6.98	1	2	16	
133	53	1541	1610	9.75		2	10	
134	GL	1545	1610	8.22	1	2	10	
135	Lw	1610	1635	8.07	t	3	10	
136	NY	1210	1635	7.20	1	3	10	
137	JM	1610	1675	6.44	1	3	10	
138	JA	1610	1635	6.10	j	3	10	
139	66	1610	1875	6.07	1	3	10	
140	lw	1635	100	8-29	5	7	12	
141	ME	1435	1700	10.20	5	7	12	
142	JM	1635	1700	9.56	5	1	12	
143	02	1625	1700	7-11	500	1	12	
144	62	162	1700	6-41	5	1	12	
145	LN	1700	1725	6.25	4	6	12	
146	ME	1700	1725	7.81	4	6	12	
147	TA	1700	1725	9.55	4	16	12	
148	71	1700	1725	10.30	4	6	12	
145	66	1700	1725	9.65	4	b	12	
						1		
								· · · · · · · · · · · · · · · · · · ·
b							1	

Page _____ of ____

-								p. Date:
ate: <u> </u>	-27-24	Instrume	nt Used:	_		Grid S	pacing:	
emperat	ure:	Precip	:	Upwind	BG:		Downwin	d BG:
GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
54								Active-the
59 66 72								
72								
73								
78 79							2	
90								
91				-				V
				-				
				1				
				-				
_	-							
				-				
_								
				1	-			
				-		-		

Page _____ of _____

	Loisha.		20	UCRIM.	some			
	JERNY	EST-Nord 101 82	6	rob lop b	~v	_	Cal Gas Eyr	. Date: 11-10-2
				1				
Date:	-18-09	_ Instrume	ent Used: _	YUA 100		Grid S	pacing:	15
Femperat	cure: 40	Precip	); <u>ð</u>	Upwind	BG: _2		Downwind	BG: 2-8
GRID	STAFF	START	STOP	тос	WIN	D INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKK5
150	LW	0630	0655	12.17	3	4	16	
151	ME	0630	Ober	14-03	3	4	16	
152	77	0833	0655	9.27		4	16	
153	51	0630	6825	6.55	3	4	16	
154	66	6637	0655	6.81	3	4	16	
155	LV	0655	0720	5.47	3	4	16	
156	ME	0851	0720	6.30	3	4	116	
157	Ja	0851	6720	9.68	3	4	16	
158	7n	0855	0720	11.45	3	4	16	
159	66	0155	6720	8.13	3	ч	طا	
110	LV	0720	0745	7.20	4	5	1	
161	ME	6720	0745	5.18	4	5		
182	アク	0722	074	6.30	4	5	1	
163	Ja	0720	074	6.55	4	5		
184	66	0720	0745	8.25	ч	5		
165	LW	0745	0810	9.77	3	4	2	
166	NE	0745	0810	10.35	3	4	2	
167	Ja	0745	0810	8.15	3	4	2	
168	7n	0741	0810	7-38	3	4	2	
169	66	0740	0810	6.57	3	4	2	
170	LW	0810	0835	7.45	2	3	16	
171	ME	08/0	0825	6.90	2	3	16	
172	57	0810	0835	9.35	2	3	16	2
173	71	08/0	0825	8-14	2	3	16	
174	66	0810	0825	10.27	2	3	16	
175	LN	0875	0900	8-15	3	4	16	
176	15	0831	0800	692	3	4	16	
177	71	082	0900	6.47	3	4	16	
178	- yn	0825	5030	8-30	3	4	16	
175	66	0821	0500	11.44	3	H	16	

Page _/___of ____

327

rsonnel	Loishwi	NDE,	1	TUVGNI ME	FOINS			
	Mishall Jonny	ESTALAL	4	Enollop.	n		Cal. Cas Fur	D. Date: 11-10-2
Date: _/	-28-24	_ Instrum	ent Used:	fur 10	00	_ Grid S	Spacing:	25'
Tempera	ture: <u>41</u>	Preci	p:	Upwind	BG:	2.4	_ Downwinc	BG: 2.8
GRID	STAFF	START	STOP	тос	WIN	ND INFO	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REPARKS
180	LN	0900	0925	9.74	2	3	16	
181	ME	6900	0525	6.50	2	3	16	
182	JM	AP	0925	5.47	2	3	16	
183	51	0900	0521	6.11	2	3	16	
184	CL	0900	0525	6.92	2	3	16	
183	L	0925	0950	7.45	5	7	6	
186	ME	0921	0950		5		4	
187	フク	0921	0950	9.54	5	7	6	
188	77	052	0950	7.70	Ś	7	6	
185	66	0925	0950	6.5	5	1	6	
193	w	0250	1015	5.28	4	6	6	
191	At	0950	100	8.39	4	6	Q	
192	53	0550	1015	10-71	4	6	8	
193	51	0950	1015	9.50		6	6	
154	66	0950	LOW	9.68	4	6	8	
185	Lw	1015	1040	7-34	4	6	G	
186	45	1015	1640	5.20	4	6	8	
187	51	101	1040	6.17	4	6	G	
158	アク	101	1040	6.84	4	6	E	
199	BL	1015	1040	8.13	1	6	8	
200	11	1040	1105	7.91	4	5	6	
20/	15	1040	110	6.47	4	1	6	
202	27	1040	1105	6.80	4	555	1 ê	
203	24	1040	1105	6.57	4	S	8	
204		1048	1105	5-28	4	5	8	
205	u	110/	1130	6.03	4	5	6	
206	NE	1105	1170	5.40	4	5	G	
212	50	1125	1430	6.21	4	5		
208	5-1	llas	1130	5.46	u	5	6	1

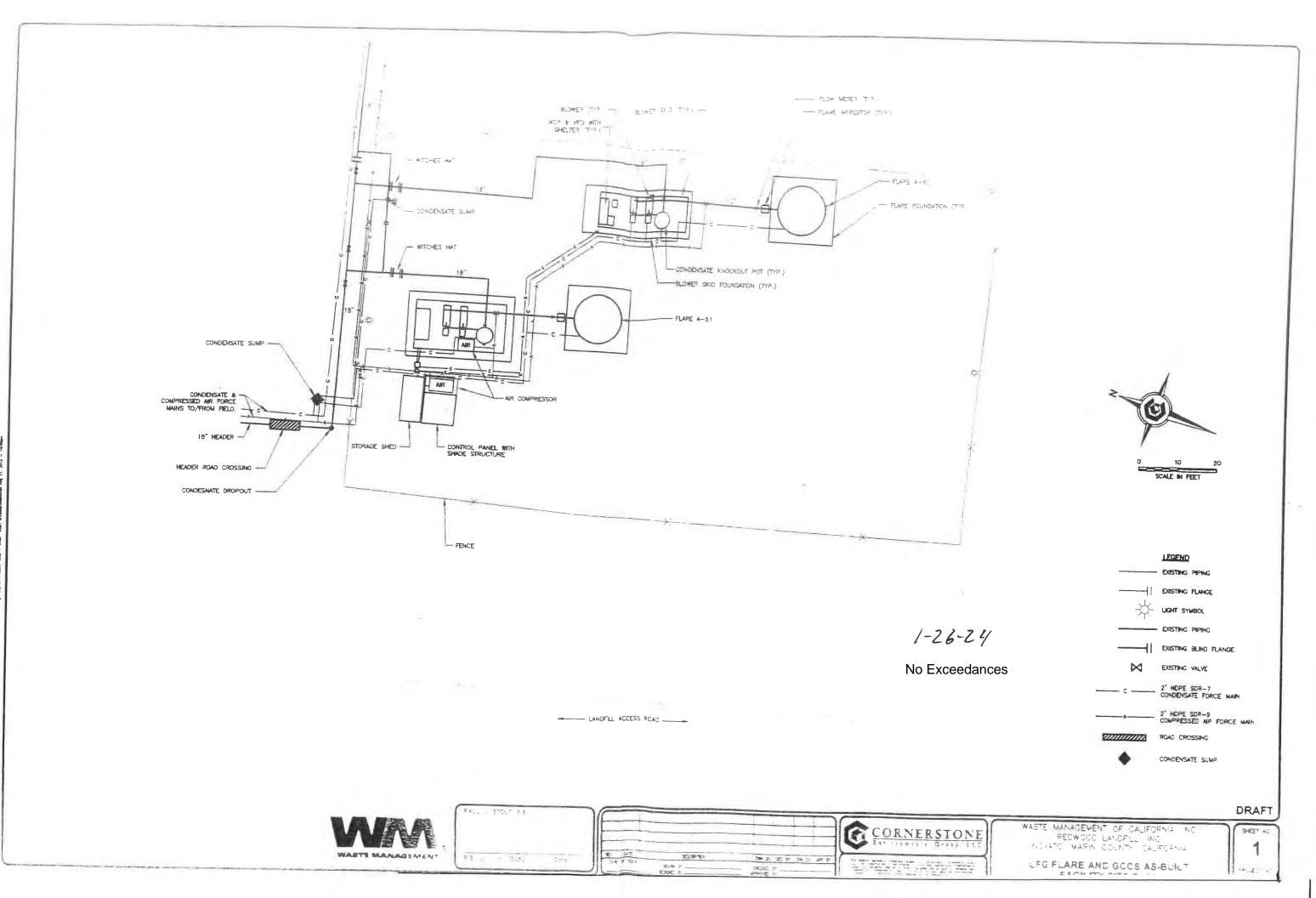
Page 2 of 2

327

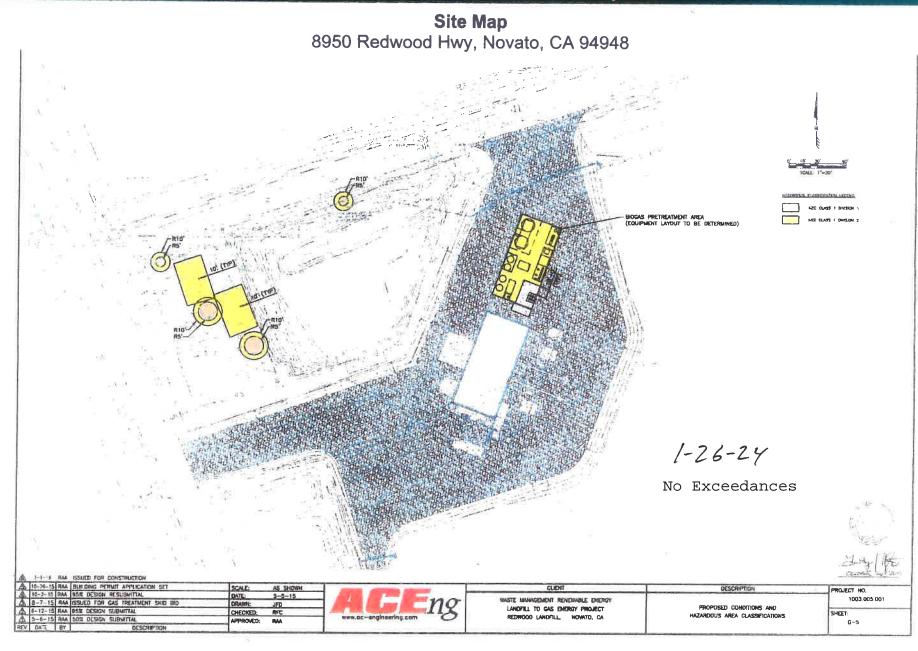
Attachment C

Component Leak Monitoring Event Records

# Table C.1AB-32 Component Leak MonitoringSummary of Component Leaks Greater than 500 ppmv

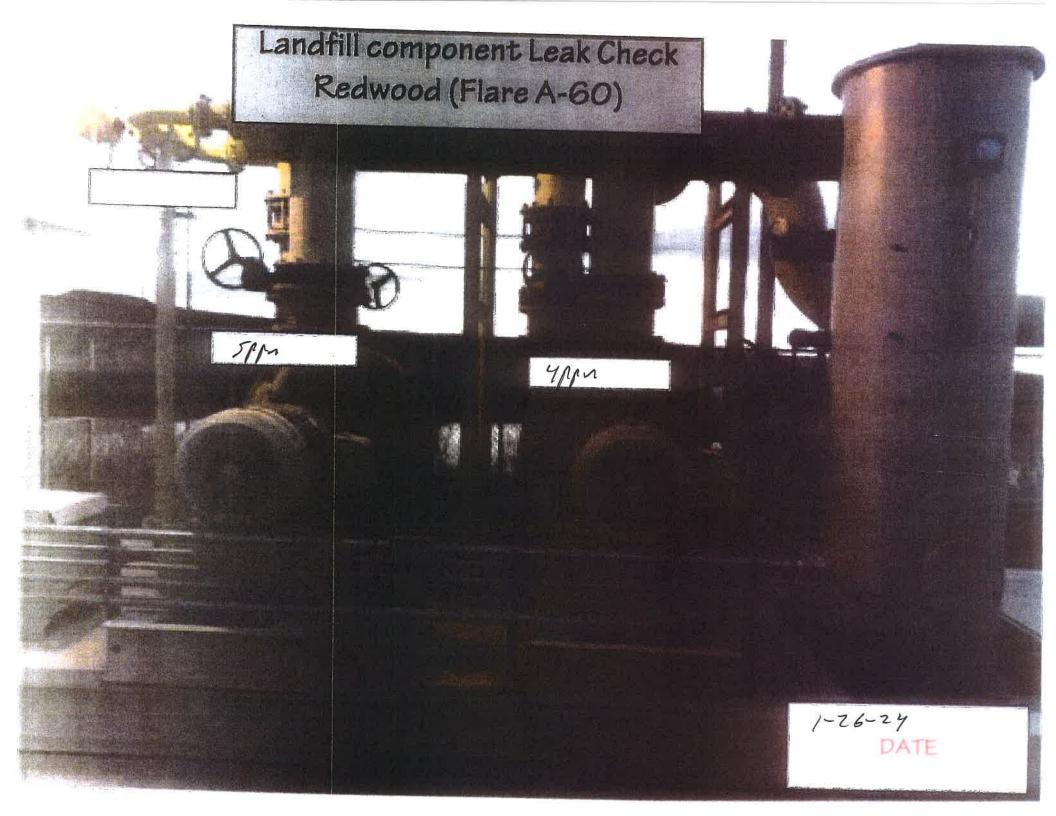

#### 2024 QUARTER: 1 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: LANDFILL NAME: Redwood Landfill, Inc.

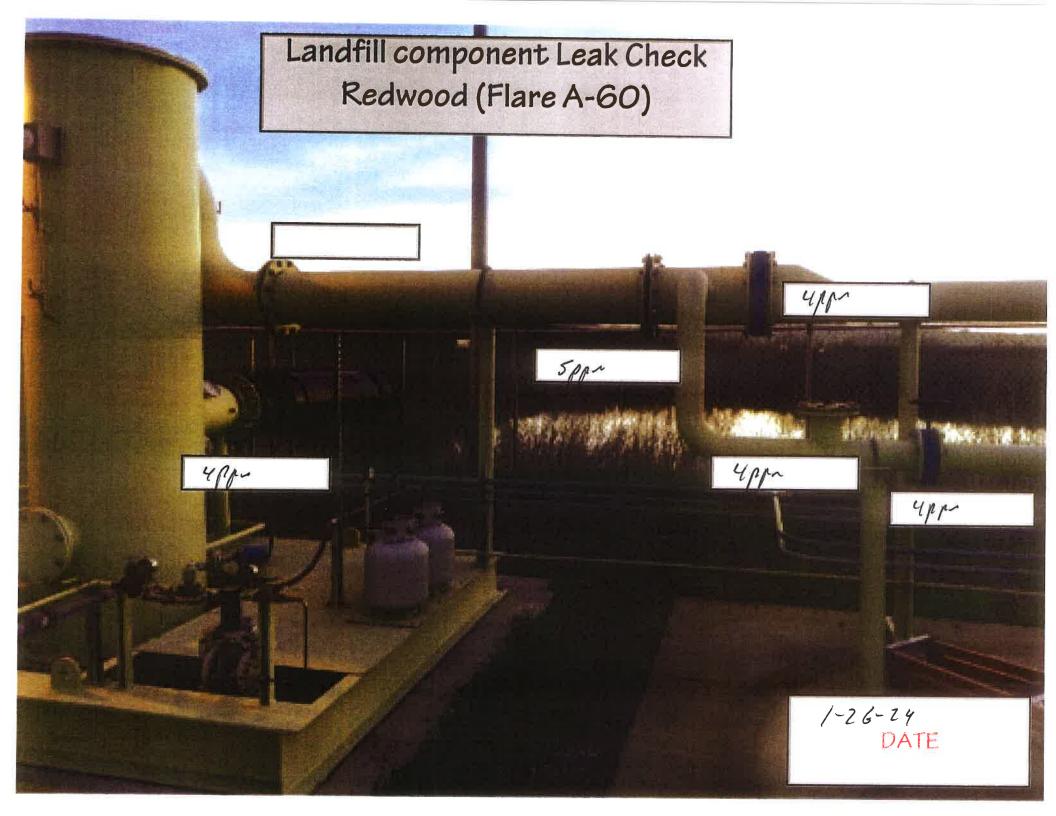
Location	l	nitial Monitorin	g	C	corrective Action	10-	Day Remonitor	ing
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
			No E	Exceedances [	Detected			

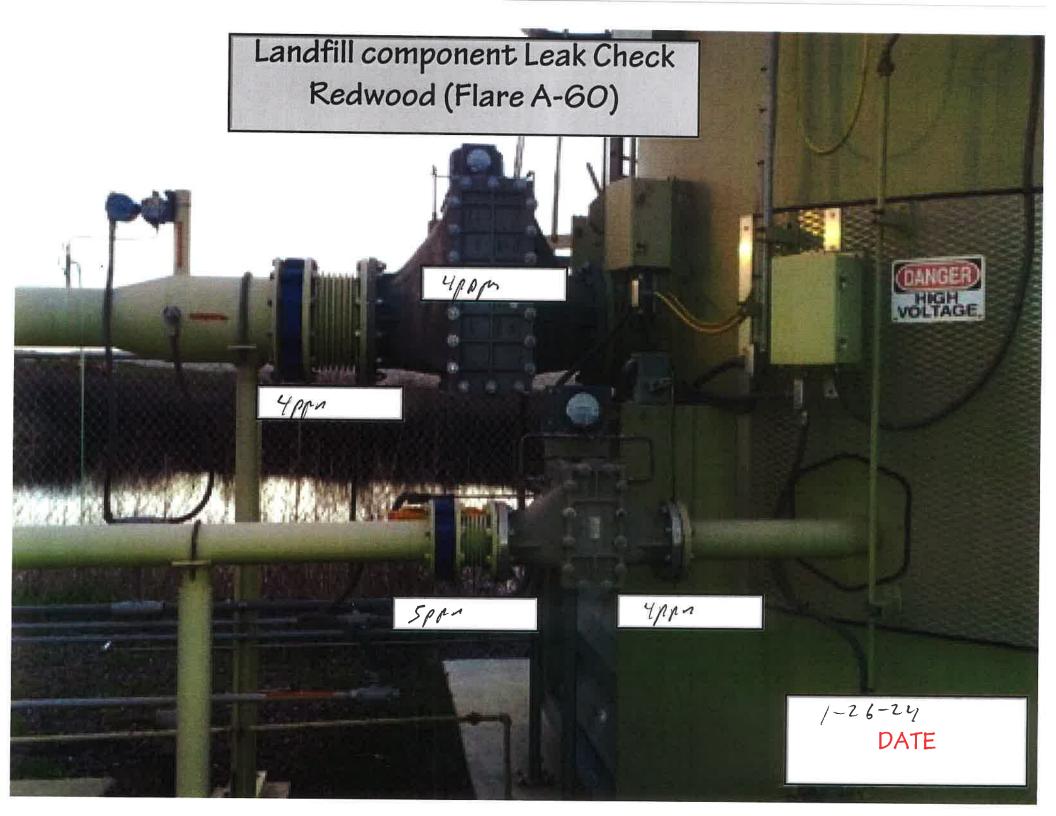

# Table C.2BAAQMD Component Leak MonitoringSummary of Component Leaks Greater than 1,000 ppmv

#### 2024 QUARTER: 1 INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: LANDFILL NAME: Redwood Landfill, Inc.


Location		Initial Monitoring	g	C	Corrective Action	7	-Day Remonitori	ng			
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech			
	No Exceedances Detected										





### REDWOOD 3520+ ENGINE PLANT, CA





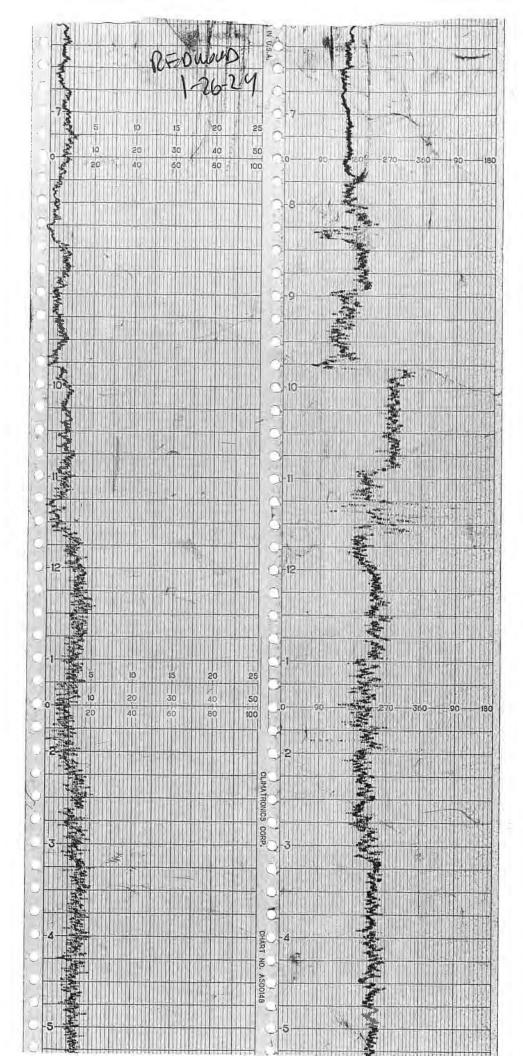


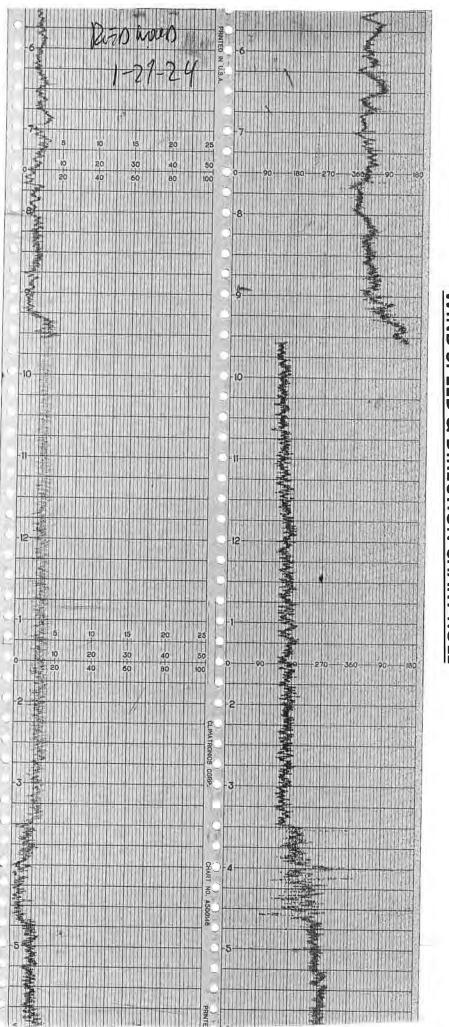






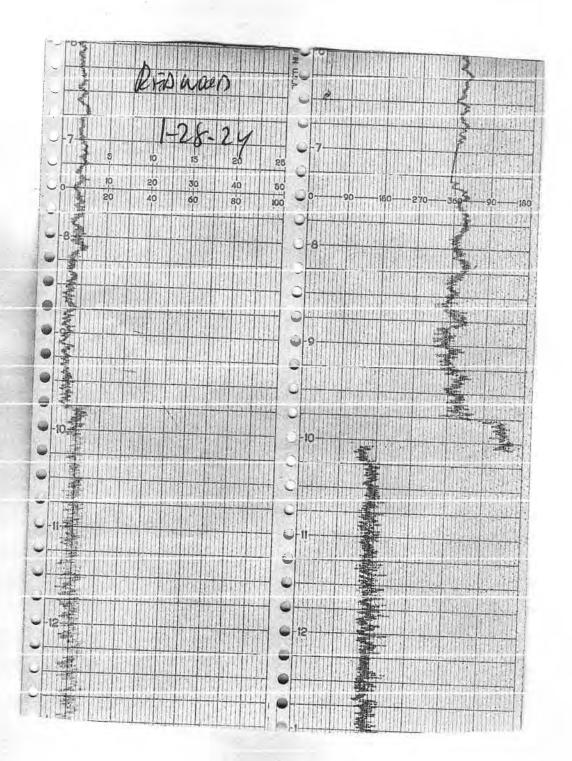

#### Attachment D


Weather Station Data


## Environmental Inc.

	<u>16-POINT V</u>	VIND DIRECTION	N INDEX	
NO	DIRECTION		DEGREES	
		FROM	CENTER	<u>T0</u>
16	NORTH (N)	348.8	369.0	0.1.3
1	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033.8	045.0	056.3
3	EAST-NORTHEAST (ENE)	056.3	067.5	078.8
4	EAST (E)	078.8	<u>090.0</u>	101.3
5	EAST-SOUTHEAST (ESE)	101.3	112.5	123.8
6	SOUTHEAST (SE)	123.8	<u>135.0</u>	146.3
7	SOUTH-SOUTHEAST (SSE)	146.3	<u>157.5</u>	168.8
8	SOUTH (S)	168.8	180.0	191.3
9	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213.8
10	SOUTHWEST (SW)	213.8	225.0	230.3
11	WEST-SOUTHWEST (WSW)	236.3	247.5	258.8
12	WEST (W)	258.8	270.0	281.3
13	WEST-NORTHWEST (WNW)	281.3	292.5	303.8
14	NORTHWEST (NW)	30.2.8	315.0	326.3
15	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8

865 Via Lata = Colton, California 92324 = (909) 422-1001 Fax (909) 422-0707


WIND SPEED & DIRECTION CHART ROLL





# WIND SPEED & DIRECTION CHART ROLL

## WIND SPEED & DIRECTION CHART ROLL



¥.

#### Attachment E

Calibration Records

#### **RESPONSE TIME TEST RECORD**

Date: <u>1/30/2024</u>	Location: <u>Redwoo</u>	d Landfill	
Expiration Date (3 months): <u>4/30/2024</u>	_		
Time: <u>10:45am</u>			
Instrument Make: Micro FID	Model: <u>FID</u>	S/N:	CZMF340
Measurement #1:			
Stabilized Reading Using Calibration Gas:		499	ppm
90% of the Stabilized Reading:		441	ppm
Time to Reach 90% of Stabilized Reading as switching from Zero Air to Calibration Gas:	fter	<u>8</u> secoi	nds (1)
Measurement #2:			
Stabilized Reading Using Calibration Gas:		490.7	_ ppm
90% of the Stabilized Reading:		441.6	_ ppm
Time to Reach 90% of Stabilized Reading as switching from Zero Air to Calibration Gas:	fter	8	_ seconds (2)
Measurement #3:			
Stabilized Reading Using Calibration Gas:		491.1	_ ppm
90% of the Stabilized Reading:		442	_ ppm
Time to Reach 90% of Stabilized Reading as switching from Zero Air to Calibration Gas:	fter	9	seconds (3)

Calculate Response Time:  $\frac{(1) + (2) + (3)}{3} = \frac{8.3333}{3}$  seconds (must be less than 30 seconds)

Performed By: <u>Riley Lindberg</u>

#### **CALIBRATION PRECISION TEST RECORD**

Landfill Name: <u>Redwood Landfill</u> Date: <u>1/30/2024</u>
Expiration Date (3 months): <u>4/30/2024</u>
Time: <u>10:45am</u> hh:mm
Instrument Make: <u>Micro FID</u> Model: <u>FID</u> S/N: <u>CZMF340</u>
Calibration Gas Standard: 500 ppm
Measurement #1:
Meter Reading for Zero Air:0 ppm (1)
Meter Reading for Calibration Gas: <u>490</u> ppm (2)
Measurement #2:
Meter Reading for Zero Air: <u>0.0</u> ppm (3)
Meter Reading for Calibration Gas: <u>490.7</u> ppm (4)
Measurement #3:
Meter Reading for Zero Air: <u>0.0</u> ppm (5)
Meter Reading for Calibration Gas: <u>491.1</u> ppm (6)
Calculate Precision:
$[(500) - (2)] + [(500) - (4)] +  (500) - (6) ] \qquad x  1 \qquad x \qquad 100$
3 500 1
= <u>1.88</u> % (must be < than 10%)
Performed By: <u>Riley Lindberg</u>
Calibration Gas Certification Data and Expiration Date:

QED, Air, Ultra Zero THC <0.1 ppm Analytical Accuracy  $\pm$  2% Exp: 8/1/2024 Lot #4123701

QED, Methane 500ppm Analytical Accuracy  $\pm 2\%$  Exp: 1/1/2025 Lot #4202001

#### CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name: Redwood Landfill
 Date: 1/30/2024

 Time: 10:30 AM
 PM

 Instrument Make: Photovac
 Model: MicroFID
 S/N: CZMF340

**Calibration Procedure** 

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>500.6</u> ppm

#### **Background Determination Procedure**

1. Upwind Reading (highest in 30 seconds):	<u> </u>

2. Downwind Reading (highest in 30 seconds): <u>1.1</u> ppm (b)

Calculate Background Value:

 $(a) + (b) \qquad Background = 1.15 ppm$ 

Performed By: <u>Riley Lindberg</u>

#### CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

 Landfill Name: Redwood Landfill
 Date: 2/23/2024

 Time: 9:35 AM
 PM

 Instrument Make: Photovac
 Model: MicroFID
 S/N: CZMF340

**Calibration Procedure** 

- 1. Allow instrument to internally zero itself while introducing zero air.
- 2. Introduce the calibration gas into the probe.

Stable Reading = <u>500.9</u> ppm

#### **Background Determination Procedure**

1. Upwind Reading (highest in 30 seconds):	<u>1.2</u> ppm (a)

2. Downwind Reading (highest in 30 seconds): <u>0.5</u> ppm (b)

Calculate Background Value:

 $\underline{(a) + (b)}_{2} \qquad Background = \underline{0.85} ppm$ 

Performed By: <u>Riley Lindberg</u>

## 24

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME 120000	INSTRUMENT MAKE: +40n n +
MODEL: 1000 EQUIPMENT #: 1	D SERIAL #: 1036346773
MONITORING DATE: 1-26-24	TIME: OSIS

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading =  $\int p p$  ppm
- 3 Adjust meter settings to read 500 ppm.

#### Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Back Reading: (Highest in 30 seco		Background Val (Upwind + Dov 2	
Z.Y ppm	2.8	ppm	2.6	ppm

Background Value = 2.6 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas				Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	481	ppm	441	ppm	6	
#2	100	ppm	450	ppm	6	
#3	500	ppm	410	ppm	6	
	Calculate Response	Fime ( <u>1-</u> 3	+2+3)		6	#DIV/0!
					Must be less than	30 seconds

#### CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zer			g for as (B)	Calculate Precision [STD – (B)]	
#1	0.18	ppm	495	ppm		
#2	0.15	ppm	502	ppm	0	
#3	0-07	ppm	500	ppm	0	
Calculate Precision	n [STD-B1] + [ST	<u>D-B2] + [</u> 3	<u>500 500 500 500 500 500 500 500 500 500</u>	100 1	O-33 Must be less that	#DIV/0! n 10%

Performed By: LEISLUNDY

Date/Time: 1-26-24 0515

151213 _____ Environmenta¹In

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME REN WOOD	INSTRUMENT MAKE +HUN NO
MODEL LUBINUS EQUIPMENT #	11 SERIAL # 1036346772
MONITORING DATE: 1-26-24	TIME: 0515

#### Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe Stabilized reading =  $\int o P$  ppm
- 3 Adjust meter settings to read 500 ppm

#### Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 sec		Background Va (Upwind + Dow 2	
2-4	ppm	2.8	ppm	2.6	ppm

Background Value = 2.6 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	516	ppm	412	ppm	5	
#2	459	ppm	445	ppm	5	
#3	510	ppm	410	ppm	5	
	Calculate Response	Time ( <u>1</u> - 3	+2+3)		5	#DIV/0!
					Must be less than	30 seconds

#### CALIBRATION PRECISION RECORD

Measurement #			Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B	
#1	0,10	ppm	506	ppm	6	
#2	0.08	ppm	485	ppm	1	
#3	0.06	ppm	500	ppm	ð	
Calculate Precision	[STD-B1] + [S	<u>TD-B2] + [</u> 3	<u>500 STD-B3]</u> X <u>1</u> X	<u>100</u> 1	P. 46 Must be less tha	#DIV/0!

Performed By Mistel Estacor

Date/Time: 1-26-24 0515

## 120

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME REDNUN	INSTRUMENT MAKE: HAMM			
MODEL +VAIOUS EQUIPMENT #	12 SERIAL # 103624674/			
MONITORING DATE 1-26-24	TIME OSIS			

#### **Calibration Procedure:**

- 1. Allow instrument to zero itself while introducing air
- Allow instrument to zero itself while introducing air
   Introduce calibration gas into the probe. Stabilized reading = _____ ppm
- 3. Adjust meter settings to read 500 ppm.

#### Background Determination Procedure

Upwind Background	Downwind Background	Background Value:		
Reading:	Reading:	(Upwind + Downwind)		
(Highest in 30 seconds)	(Highest in 30 seconds)	2		
2. 4 ppm	Z-8 ppm	Z.6 ppm		

Background Value = 2-6 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	ement # Stabilized Reading Using Calibration Gas				Time to Reach 9 Stabilized Read switching from Calibration Gas	ing after Zero Air to
#1	485	ppm	435	ppm	7	
#2	500	ppm	450	ppm	7	-
#3	500	ppm	450	ppm	2	
	Calculate Response Ti	me ( <u>1</u> - 3	+2+3)		7	#DIV/0!
					Must be less than	30 seconds

#### CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ter Reading for Zero Air (A) Meter Reading for C Calibration Gas (B)		Calculate Precision [STD – (B)		
#1	6.13	ppm	489	ppm	11	
#2	0.08	ppm	500	ppm	Ø	
#3	0106	ppm	500	ppm	0	
Calculate Precision	[STD-B1] + [S]	TD-B2] + [5 3	<u>51D-B3]</u> X <u>1</u> X 500	<u>100</u> 1	0.73 Must be less the	#DIV/0!

Performed By JENRY MURUZ

Date/Time 1-26-29 0515

#### 25

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME REMANN	INSTRUMENT MAKE HARANS
MODEL: AVAION EQUIPMENT #:	13 SERIAL # 110274677
MONITORING DATE: 1-26-24	TIME OSIS

#### **Calibration Procedure:**

- 1. Allow instrument to zero itself while introducing air
- Allow instrument to zero itself while introducing air
   Introduce calibration gas into the probe. Stabilized reading = _____ ppm
- 3. Adjust meter settings to read 500 ppm

#### Background Determination Procedure

Upwind Background	Downwind Background	Background Value:	
Reading:	Reading:	(Upwind + Downwind)	
(Highest in 30 seconds)	(Highest in 30 seconds)	2	
2.4 ppm	2.8 ppm	2.6 ppm	

Background Value = 2 - 6 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	g 90% of the Stabilized Reading		Time to Reach 90 Stabilized Readin switching from Z Calibration Gas	ng after
#1	453 ppr	1 447	ppm	6	
#2	Siz ppr	n 452	ppm	6	
#3	SID ppr	450	ppm	6	
	6	#DIV/0!			
				Must be less than	30 seconds

#### CALIBRATION PRECISION RECORD

Measurement #			Meter Reading for Zero Air (A		t # Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)				-		Calculate Precision [STD – (	
#1	0.09	ppm	453	ppm	3							
#2	0.07	ppm	502	ppm	7.							
#3	2-14	ppm	500	ppm	ð							
Calculate Precision	[STD-B1] + [S	3 3	<u>500 STD-B31</u> X <u>1</u> X	<u>100</u> 1	O.J. Must be less than	#DIV/0!						

Performed By: 6RV2 / MP22

Date/Time 1-26-24 0515

122 -_<

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME _ RED WING	INS	INSTRUMENT MAKE: HUAN			
	QUIPMENT # 16	SERIAL #:	1102746776		
MONITORING DATE 1-26-	24	TIME OSIS			

#### Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading =  $\int o \nabla$  ppm
- 3. Adjust meter settings to read 500 ppm.

#### Background Determination Procedure

Upwind Backs Reading: (Highest in 30 s		Downwind Bac Reading: (Highest in 30 sec		Background Value: (Upwind + Downwind) 2		
2-4	ppm	2.8	ppm	2-6	ppm	

Background Value = 2-6 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas				Time to Reach 9 Stabilized Readi switching from 2 Calibration Gas	ing after
#1	507	ppm	457	ppm	5	
#2	498	ppm	448	ppm	5	
#3	500	ppm	451	ppm	5	
Calculate Response Time ( <u>1+2+3</u> ) 3					2	#DIV/0!
					Must be less than	30 seconds

#### CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading Calibration Gas		Calculate Precision	STD – (B)]
#1	0.13	ppm	507	ppm	7	
#2	0110	ppm	488	ppm	2	
#3	0.09	ppm	500	ppm	6	
Calculate Precisio	n [STD-B1] + [S	3 3	500 <u>500</u>	<u>100</u> 1	0.60	#DIV/0!
					Must be less that	n 10%

Performed By: JUVEN. ALDING

Date/Time: 1-26-24 0015

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME: REDNUSD		INSTRUMEN	TMAKE: +Henno
MODEL: _ + VA 1000 EQUIPMENT #:	10		SERIAL #: 1036346773
MONITORING DATE: 1-27-24	-	TIME	0530

#### Calibration Procedure:

1 Allow instrument to zero itself while introducing air.

2. Introduce calibration gas into the probe. Stabilized reading = 2.5 ppm

3 Adjust meter settings to read 25 ppm.

#### Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
2.4 ppm	2.8 ppm	2-6 ppm

Background Value = 2.6 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	asurement # Stabilized Reading Using 90% of the Stabilized Calibration Gas Reading		zed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	23	ppm	20.7	ppm	7
#2	24	ppm	21.8	ppm	ク
#3	25	ppm	225	ppm	7
	Calculate Response Tin	ne <u>(1-</u> 3	<u>+2+3)</u>		#DIV/0! Must be less than 30 seconds

#### CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ng for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision	[STD – (B)]	
#1	0.09	ppm	23	ppm	2	
#2	0.04	ppm	24	ppm	1	
#3	0.04	ppm	25	ppm	D	
Calculate Precision	[STD-B1] + [S	TD-B2] + [\$ 3	<u>STD-B31</u> X <u>1</u> ) 25	( <u>100</u> 1	Y. D Must be less tha	#DIV/0! n 10%

Performed By: LEICLWARD

Date/Time: 1-27-29 - 0520



#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME RENNOVO	INSTRUMENT MAKE _ f Herm
MODEL ALUNS EQUIPMENT #:	2/ SERIAL #: 1036346772
MONITORING DATE: 1-27-24	TIME: 0530

#### Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 2J ppm
- 3 Adjust meter settings to read 25 ppm.

#### Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Bac Reading: (Highest in 30 se		Background Val (Upwind + Dov 2	
2.4	ppm	2.8	ppm	216	ppm

Background Value = 2.6 ppm

#### **INSTRUMENT RESPONSE TIME RECORD**

Measurement #	Stabilized Reading Usin Calibration Gas	90% of the Stabili Reading	zed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	ZY PI	om	216	ppm	Ч	
#2	24 PI	om	21.6	ppm	4	
#3	ZS PI	om	22.5	ppm	4	
	Calculate Response Time	( <u>1</u> 4 3	-2+3)		4	#DIV/0!
					Must be less than	30 seconds

#### CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A) Meter Reading for ( Calibration Gas (B)				Calculate Precision	i [STD – (B)]
#1	0.16	ppm	24	ppm	)	
#2	0.11	ppm	24	ppm	1	
#3	0.05	ppm	25	ppm	D	
Calculate Precisio	n [STD-B1] + [S	3 3	<u>STD-B3</u> ] X <u>1</u> ) 25	( <u>100</u> 1	Z uch Must be less th	#DIV/0!

Performed By: Risler ESLAGA

Date/Time 1-27-24 -0530



#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

	EN WOOD	INSTRUMENT MAKE: 4HERN			
MODEL: JUA 100	equipment #:	1 A 4	SERIAL #: 103624674/		
MONITORING DATE:	1-27-24	TIME	0530		

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air_
- 2. Introduce calibration gas into the probe. Stabilized reading = <u>2</u>*S* ppm
- 3 Adjust meter settings to read 25 ppm.

#### Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 sec		Reading:	Downwind Background Reading: Highest in 30 seconds)		ue: mwind)
2.4	ppm	2:8	ppm	2.6	ppm

Background Value =  $2 \cdot 6$  ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	g Using	90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	24	ppm	21.6	ppm	6		
#2	25	ppm	22.5	ppm	6		
#3	25	ppm	22.5	ppm	6		
	Calculate Response	Time ( <u>1</u> - 3	+2+3)		6	#DIV/0!	
					Must be less tha	n 30 seconds	

#### CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	er Reading for Zero Air (A)		g for as (B)	Calculate Precision [STD – (B	
#1	0.14	ppm	24	ppm	/	
#2	0.11	ppm	25	ppm	0	
#3	0.06	ppm	20	ppm	0	
Calculate Precision	[STD-B1] + [S	TD-B2] + [S 3	<u>STD-B3</u> ] X <u>1</u> X 25	( <u>100</u> 1	/ · J	#DIV/0!

Performed By:

JENNY MUNDZ

Date/Time: 1-27-24-0530

Environmental toc

### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME REANING	INSTRUMENT MAKE HUNNO
MODEL EQUIPMENT #: 1	3 SERIAL # 1/02746775
MONITORING DATE: 1-27-24	TIME: 6530

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

### Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 sec		Background Val (Upwind + Dow 2	
2.4	ppm	2.8	ppm	2.6	ppm

Background Value = 2 - 5 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas Reading		ized	Time to Reach Stabilized Read switching from Calibration Gas	ding after Zero Air to	
#1	23	ppm	20.7	ppm	6	
#2	25	ppm	225	ppm	6	
#3	25	ppm	27.	ppm	6	
	6	#DIV/0!				
					Must be less that	n 30 seconds

### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #			(A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD -	
#1	0.10	ppm	23	ppm	Z	
#2	6.07	ppm	25	ppm	0	
#3	0.04	ppm	25	ppm	0	
Calculate Precisio	n <u>[STD-B1] + [S1</u>	<u>[D-B2] + [</u> 5 3	<u>STD-B3]</u> X <u>1</u> 25	X <u>100</u> 1	26 Must be less th	#DIV/0!

Performed By:

JOUEN' MEDING

Date/Time: 1-27-24 -053>



#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME: 120000		INSTRUMEN	TMAKE: HERNO
MODEL: HUALOUS EQUIPMENT #:	16		SERIAL #: 1102746776
MONITORING DATE 1-27-24	10	TIME	0530

#### **Calibration Procedure:**

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

#### Background Determination Procedure

Upwind Background Downwind Background Reading: Reading:			Background Val	ue:	
-			Reading: (Highest in 30 seconds) <u>(Upwin</u>		<u>vnwind)</u>
2.4	ppm	2.6	ppm	2.6	ppm

Background Value = 2.5 ppm

#### **INSTRUMENT RESPONSE TIME RECORD**

Measurement # Stabilized Readin Calibration Gas				ized	Time to Reach Stabilized Reac switching from Calibration Gas	ling after Zero Air to
#1	24	ppm	21.6	ppm	r	
#2	25	ppm	22.5	ppm	5	
#3	25	ppm	22.5	ppm	5	
	Calculate Response	e Time ( <u>1-</u> 3	<u>+2+3)</u>		5	#DIV/0!
					Must be less that	n 30 seconds

#### CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	er Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B		
#1	0.14	ppm	24	ppm	1	
#2	0.10	ppm	25	ppm	0	
#3	0-09	ppm	25	ppm	0	
Calculate Precision	<u>[STD-B1] + [S</u>	3 3	<u>STD-B3]</u> X <u>1</u> 25	X <u>100</u> 1	/> Must be less th	#DIV/0! nan 10%

Performed By: 6186 /oper

Date/Time: 1-27-24- 0530



### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME: 2502	1070		INSTRUME	NT MAKE	+Hon w
MODEL LVAIONO	EQUIPMENT #:	1 -			AL #: 1036346773
MONITORING DATE:	28-24		TIME		

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2 Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3. Adjust meter settings to read 25 ppm.

#### Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec		Downwind Bac Reading: (Highest in 30 see		Background Va (Upwind + Do 2	
2.4	ррт	2.8	ppm	2.6	ppm

Background Value = 2.6 ppm

### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readir Calibration Gas	90% of the Stabilized Reading		Time to Reach S Stabilized Read switching from Calibration Gas	ing after Zero Air to	
#1	23	ppm	20-7	ppm	5	
#2	25	ppm	225	ppm	5	
#3	75	ppm	22.5	ppm	5	
	5	#DIV/0!				
					Must be less than	30 seconds

#### CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STE			
#1	0.15	ppm	23	ppm	2	
#2	0.12	ppm	21	ppm	0	
#3	0.08	ppm	25	ppm	0	
Calculate Precision	[STD-B1] + [	<u>STD-B2] + [5</u> 3	<u>5TD-B3]</u> X <u>1</u> 2 25	X <u>100</u> 1	Z v vs Must be less th	#DIV/0!

Performed By: Loys 2nnor

Date/Time 2-28-24 0610

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

				INSTRUMENT MAKE: +4000			
MODEL	FUA 1000	EQUIPMENT #:				1036346772	
MONITOR	ING DATE:	28-24		TIME:	0600		

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 27 ppm
- 3. Adjust meter settings to read 25 ppm.

#### Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Bac Reading: (Highest in 30 se		Background Va (Upwind + Do 2	
2.4	ppm	2.8	ppm	2.6	ppm

Background Value = 2cB ppm

### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	24	ppm	21.6	ppm	b	
#2	21	ppm	225	ppm	6	
#3	75	ppm	22.5	ppm	6	
	6	#DIV/0!				
					Must be less than	1 30 seconds

#### CALIBRATION PRECISION RECORD

Measurement #			Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]	
#1	0.4	ppm	24	ppm	1	
#2	0.08	ppm	25	ppm	6	
#3	0-84	ppm	20	ppm	6	
Calculate Precision [STD-B1] + [STD-B2] + [S 3		<u>STD-B3]</u> X <u>1</u> X 25	100 1	/_3	#DIV/0!	
					Must be less th	an 10%

Performed By Mighel Estrant Date/Time 1-28-24-0610

## CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME RENWOUD	INSTRUMENT MAKE 1 Hon ro
MODEL TVA 1000 EQUIPMENT #: 1	
MONITORING DATE: 1-28-24	TIME 0600

#### Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading = 2s ppm
- 3. Adjust meter settings to read 25 ppm.

## Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Bad Reading: (Highest in 30 se	Ū	Background Val (Upwind + Dov 2	
2.4	ppm	218	ppm	2.6	ppm

Background Value =  $2 \cdot 6$  ppm

### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Read		90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	23	ppm	20,7	ppm	5		
#2	24	ppm	21.8	ppm	5		
#3	20	ppm	22.5	ppm	S		
	~	#DIV/0!					
					Must be less that	n 30 seconds	

## CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero Air (A)		Meter Readin Calibration G		Calculate Precision [STD – (B)]		
#1	0120	ppm	23	ppm	7		
#2	0.14	ppm	24	ppm			
#3	0.07	ppm	20	ppm	D		
Calculate Precision	[STD-B1] + [S	3 3	<u>STD-B3</u> ] X <u>1</u> X 25	( <u>100</u> 1	y, D Must be less th	#DIV/0!	

Performed By:

JERRY ALANDZ

Date/Time: 1-28-24-0600

_____<

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME REM WOOD	INSTRUMENT MAKE & Homo			
MODEL: ALOUD EQUIPMENT #_	13 SERIAL # /102746775			
MONITORING DATE 1-28-24	TIME D600			

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 2J ppm
- 3 Adjust meter settings to read 25 ppm.

### **Background Determination Procedure**

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
Zig ppm	2.8 ppm	2-6 ppm

Background Value = 2.6 ppm

### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabil Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas			
#1	ZY ppm	21.6	ppm	5			
#2	24 ppm	21.6	ppm	5			
#3	Z/ ppm	221	ppm	5			
	Calculate Response Time ( <u>1+2+3</u> ) 3						
				Must be less than	n 30 seconds		

#### CALIBRATION PRECISION RECORD

Measurement #			Meter Reading Calibration Ga		Calculate Precision [STD – (B)]		
#1	0.14	ppm	24	ppm	1		
#2	0.11	ppm	24	ppm	1		
#3	0.88	ppm	25	ppm	D		
Calculate Precision	[STD-B1] + [	STD-B2] + [5 3	<u>5TD-B3</u> ] X <u>1</u> X 25	( <u>100</u> 1	Z·L Must be less t	#DIV/0!	

Performed By: DUCKI MEDING

Date/Time 1-28-24-0600

, Tr

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME REDWOOD	INSTRUMENT MAKE 244000
MODEL: LUAIDOD EQUIPMENT #:	16 SERIAL #: 1102746776
MONITORING DATE: 1-28-24	ТІМЕ: 0600

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- Introduce calibration gas into the probe Stabilized reading = _____ ppm
- 3. Adjust meter settings to read 25 ppm.

#### Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec		Downwind Bac Reading: (Highest in 30 sec		Background Va (Upwind + Do 2	
7.4	ppm	2.8	ppm	2.6	ppm

Background Value = 2.6 ppm

#### **INSTRUMENT RESPONSE TIME RECORD**

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabi Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas
#1	ZY ppm	21.6	ppm	4
#2	ZJ ppm	22.0	ppm	4
#3	25 ppm	27.5	ppm	4
	Calculate Response Time (	(+2+3) 3		#DIV/0!
				Must be less than 30 seconds

### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Meter Reading for Ze	ero Air (A)			Calculate Precision [ST	D – (B)]
0-16	ppm	24	ppm	1	
0.10	ppm	25	ppm	0	
0.09	ppm	25	ppm	0	
[STD-B1] + [S	<u>TD-B2] + [5</u> 3	<u>STD-B3]</u> X <u>1</u> X 25	<u>100</u> 1	/-3	#DIV/0
	0-16 0-10 0-09	0-16 ppm 0-10 ppm 0-25 ppm	Calibration Ga 0-16 ppm フタ 0-20 ppm マッ 0-35 ppm マッ [STD-B1] + [STD-B2] + [STD-B3] X 1 X	Calibration Gas (B)           0-16         ppm         24         ppm           0-10         ppm         25         ppm           0-35         ppm         25         ppm           [STD-B1] + [STD-B2] + [STD-B3] X 1 X 100         X 1 X 100	Calibration Gas (B)         0-16       ppm         0-10       ppm

Performed By: 6NBC/opton

Date/Time: 1-28-24- 0600



Г

SURFACE	EMISSION	MON	ITORIN	IG II	NSTR	UMENT
	CALIB	RATIO		G		

Site:		
Purpose:		
Operator:		
Date:	Time:	0815
Model #		
Serial # <u>#10 10363467</u> 73		

INSTRUMENT INTEGRITY CHECKLIST		INSTR		TION
Battery test Reading following ignition	ignition		LIBRATION CHE Actual (ppm)	CK % Accuracy
Leak test	Pass / Fail / NA	500	500	100 %
Clean system check (check valve chatter)	Fail / NA	Calibration Gas, p		500
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Time required to a 1.	n Gas, ppm uttain 90% of Cal G	as ppm
Date of last factory calibration	1-5-24	2. (		
Factory calibration record w/instrument within 3 months	Pass / Fail	Average Equal to or less th Instrument calibra	<b>.</b> .	Ø∕ N _gas.



ite:		
urpose:		
perator:	M	
Pate:	Time:	0830
Aodel # 1000		

Serial # # 11 1036346779

INSTRUMENT INTEGRITY CHECKLIST		INSTRUMENT CALIBRATION			
D-H-		CA	LIBRATION CHEC	СК	
Battery test	Pass / Fail	Calibration	Actual	%	
Reading following ignition	_216_ppm	Gas (ppm)	(ppm)	Accuracy	
Leak test	Pass / Fail / NA	500	500	100%.	
		RESPONSE TIME			
Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas, p		500	
(		90% of Calibration		450	
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA		ttain 90% of Cal G		
(acceptable ralige 9.5 - 12)	i	1.	0		
Date of last factory calibration	1-5-29	2(	2		
Factory calibration record	Pass / Fail	Average	0	2	
w/instrument within 3 months	$\cup$	Equal to or less the Instrument calibra		gas.	

Comments: _____



Site:	-			
Purpose:				
Operator:	Van M	11		
Date: 1-5-24		Time:	0845	
Model # 1000	0			
Serial # <u>#12 /03</u>	6246741			
	Y CHECKLIST	INSTR	UMENT CALIBR	ATION
Battery test	Pass / Fail	CA Calibration	LIBRATION CHE	
Reading following ignition		Gas (ppm)	Actual (ppm)	% Accuracy
Leak test	Pass / Fail / NA	500	500	1007.
Clean system check	Pass / Fail / NA		RESPONSE TIME	
(check valve chatter)	0	Calibration Gas, p 90% of Calibration		500
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA	Time required to a		
Date of last factory calibration	1-5-2-4	2. <u>6</u> 3. S		
Factory calibration record	Fase / Fail	Average 5	6	( <i>A</i> )
w/instrument within 3 months		Equal to or less th Instrument calibra		(ØN _gas.
Comments:				



Site:				
Purpose:				
Operator:	Vu M	4		
Date: 1-5-2-4		Time:	0900	
Model # 100	0			
Serial # #13 /10	2746775			
INSTRUMENT INTEGRIT	YCHECKLIST	INSTR		ATION
Battery test	Pass / Fail	CA Calibration	LIBRATION CHE	
Reading following ignition	0	Gas (ppm)	Actual (ppm)	% Accuracy
Leak test	Pass / Fail / NA	500	500	100%
	4		RESPONSE TIME	Ξ
Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas, p	om	500
1 - · · · 1	6	90% of Calibration	Gas, ppm	440
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA	Time required to a	ttain 90% of Cal (	Gas ppm
	15 04	1. <u>6</u> 2. 6	2	
Date of last factory calibration	1-2-69	3.		
Factory calibration record	Pass / Fail	Average 50	6	$\sim$
w/instrument within 3 months	$\mathcal{O}$	Equal to or less th		(Y) N
		Instrument calibrat	ted to <u>clify</u>	_gas.
Comments:				



Purpose: Operator: Date:/-S-2-9	hu M	Time:	0945	_
Model # <u> </u>	46776			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR		TION
Battery test Reading following ignition Leak test Clean system check (check valve chatter) H ₂ supply pressure gauge (acceptable range 9.5 - 12) Date of last factory calibration Factory calibration record w/instrument within 3 months	Pass / Fail 2.1 ppm Pass / Fail / NA Pass / Fail / NA Pass / Fail / NA 1-5-29 Pass / Fail	Calibration Gas (ppm)	Gas, ppm ttain 90% of Cal G  6 an 30 seconds?	% Accuracy (007,

CUSTOMER: RES UNIT 10 1036346773 SERIAL NUMBER: DATE: __/~S-2-4 TECHNICIAN:

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID			
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,004	+/- 2500
< 1	ZERO GAS	0,69	
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50 50			+/- 12.5
100 100		/	+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

DES UNIT # 11 CUSTOMER: 036346774 **SERIAL NUMBER:** 1-5-24 **TECHNICIAN:** DATE:

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	600	+/- 125
10000	10000	19,001	+/- 2500
< 1	ZERO GAS	0.64	< 3
	Pli	D	
ISOBUTYLENE GAS NOMINAL (ppm) CALIBRATION GAS_(ppm)		TVA READING (ppm)	TOLERANCE (ppm)
50 50		1	+/- 12.5
100	100		+/- 25
500	500 500		+/- 125
< 1 ZERO GAS			< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

CUSTOMER:	vit #12	
SERIAL NUMBER: (036240	5741	
	_ DATE:	1-5-24

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID			
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	< 3		
	Pli	D	
ISOBUTYLENE GAS NOMINAL (ppm) CALIBRATION GAS (ppm)		TVA READING (ppm)	TOLERANCE (ppm)
50 50		/	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
< 1 ZERO GAS		/	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

S UNIT#13 CUSTOMER: 1102746775 SERIAL NUMBER: TECHNICIAN: DATE:

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID				
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
100	100	99	+/- 25	
500	500	603	+/- 125	
10000	10000	10,200	+/- 2500	
< 1	ZERO GAS	(2:6)	< 3	
	Pli	D		
ISOBUTYLENE GAS NOMINAL (ppm) CALIBRATION GAS.(ppm)		TVA READING (ppm)	TOLERANCE (ppm)	
50 50		1	+/- 12.5	
100 100		/	+/- 25	
500	500	/	+/- 125	
< 1 ZERO GAS			< 3	

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

357

P.O. Box 748 Colton, California 92324 (909) 422-1001 TOLL FREE (888) 325-1098 FAX (909) 422-0707 www.resenvironmental.com



S Vait # CUSTOMER: 102746776 SERIAL NUMBER: 1-5-24 **TECHNICIAN:** DATE:

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	99	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	< 3		
	Pli	D	
ISOBUTYLENE GAS NOMINAL (ppm) CALIBRATION GAS.(ppm)		TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1 ZERO GAS		/	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

## Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com



**CERTIFICATE OF ANALYSIS** Composition Certification Analytical Accuracy (+/-) 20.9 % 2% Oxygen Nitrogen Balance UHP Lot # 20-7421 Mfg. Date: 5/20/2020 Expiration Date: Transfill Date: see cylinder Parent Cylinder ID NY02268 Number: Method of Preparation: Gravimetric/Pressure Transfilled Method of Analysis: The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale. Analysis By: **Tony Janquart** Title: Quality Assurance Manager

Certificate Date:

5/20/2020





## INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

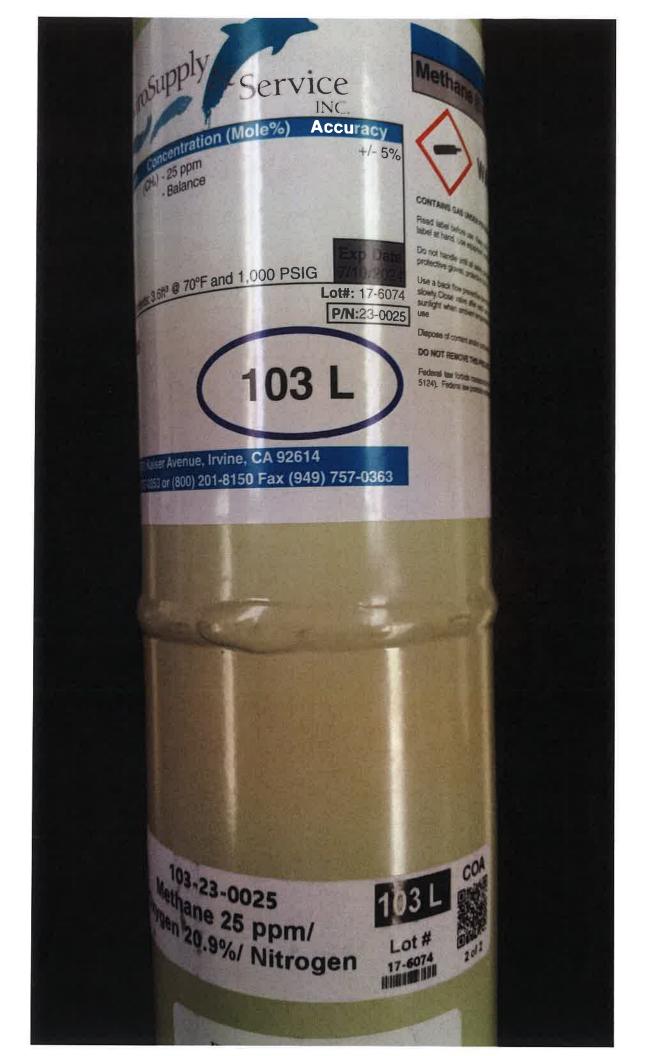
## CERTIFICATE OF ANALYSIS

Composition Methane Air

Certification 25 ppm Balance Analytical Accuracy ± 5%

## Lot # 17-6074

Mfg. Date: 10/16/2017 Parent Cylinder ID Number: 17161


## **Method of Preparation**:

Gravimetric/Pressure Transfilled

## Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 10/16/2017





## INTERMOUNTAIN SPECIALITY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

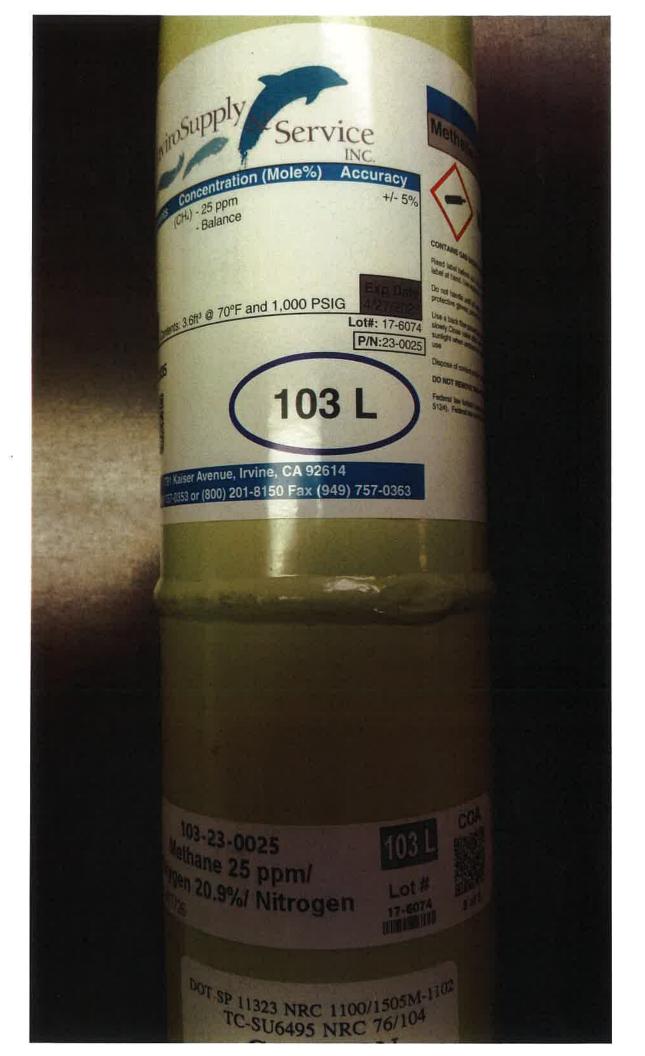
## CERTIFICATE OF ANALYSIS

Composition Methane Air

Certification 25 ppm Balance Analytical Accuracy ± 5%

## Lot # 17-6074

Mfg. Date: 10/16/2017 Parent Cylinder ID Number: 17161


## **Method of Preparation:**

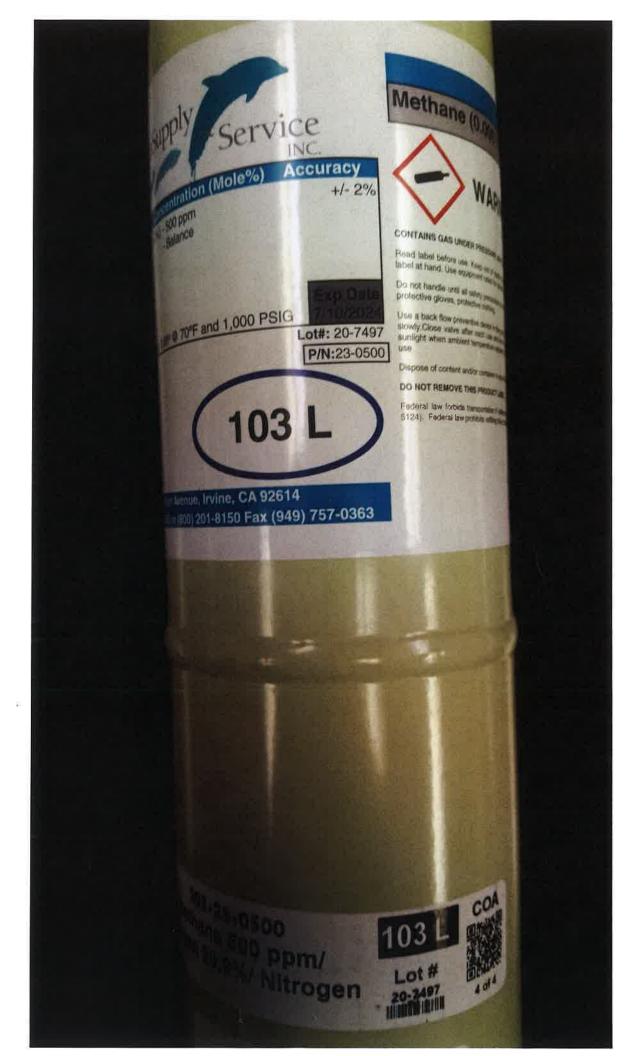
Gravimetric/Pressure Transfilled

## Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 10/16/2017




## Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com



## **CERTIFICATE OF ANALYSIS**

Composition		Certification	Analytical	Accuracy (+/-)
Methane		500 ppm		2%
Oxygen Nitrogen		20.9 % Balance UHI		2%
x + 0	AD FIDE			
Lot # Mfg. Date:	<b>20-7497</b> 7/10/2020			
Expiration Date:	//10/2020			
Transfill Date:	see cylinder			
Parent Cylinder ID Number:	TWC001763			
<b>Method of Prepar</b>	ation:			
Gravimetric/Pressu	re Transfilled			
Method of Analys				
The parent mix was		cally and is traceabl	e to the NIST by certi	ified weights (ID
5		Analysis By: Title: Certificate Date:	Tony Janquart Quality Assurance N 7/10/2020	/lanager





## **CERTIFICATE OF ANALYSIS**

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number 2-108-80 Norlab Part# J1971500PA Cylinder Size 103 Liter Number of Cyl 1

Customer Part# N/A

Cust Number 07152 Order Number 69671309 PO Number 08361523

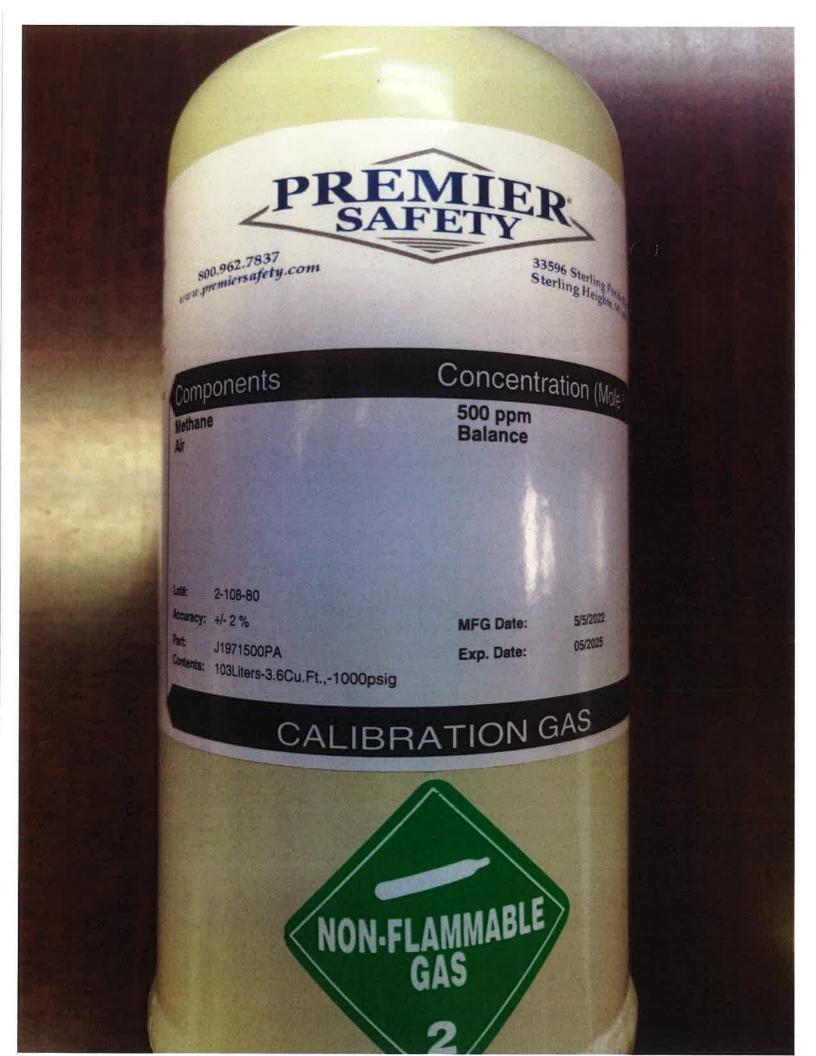
Date on Manufacture6/10/2022Expires06/2025Analytical Accuracy+/- 2 %

Component Methane Air Reported Concentration 500 ppm Balance Requested Concentration 500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.


Approved:

Dieners

Date Signed:

6/10/2022

David Reed Lab Technician





## **CERTIFICATE OF ANALYSIS**

Norco, Inc Twin Falls Warehouse 203 S. Park Ave. West Twin Falls, ID 83301

Cust Number WH012 PO Number 04A35563

Lot Number	3-088-88
Norlab Part#	J1971500PA
Cylinder Size	103 Liter
Number of Cyl	5

Customer Part# N/A

Order Number 71846398

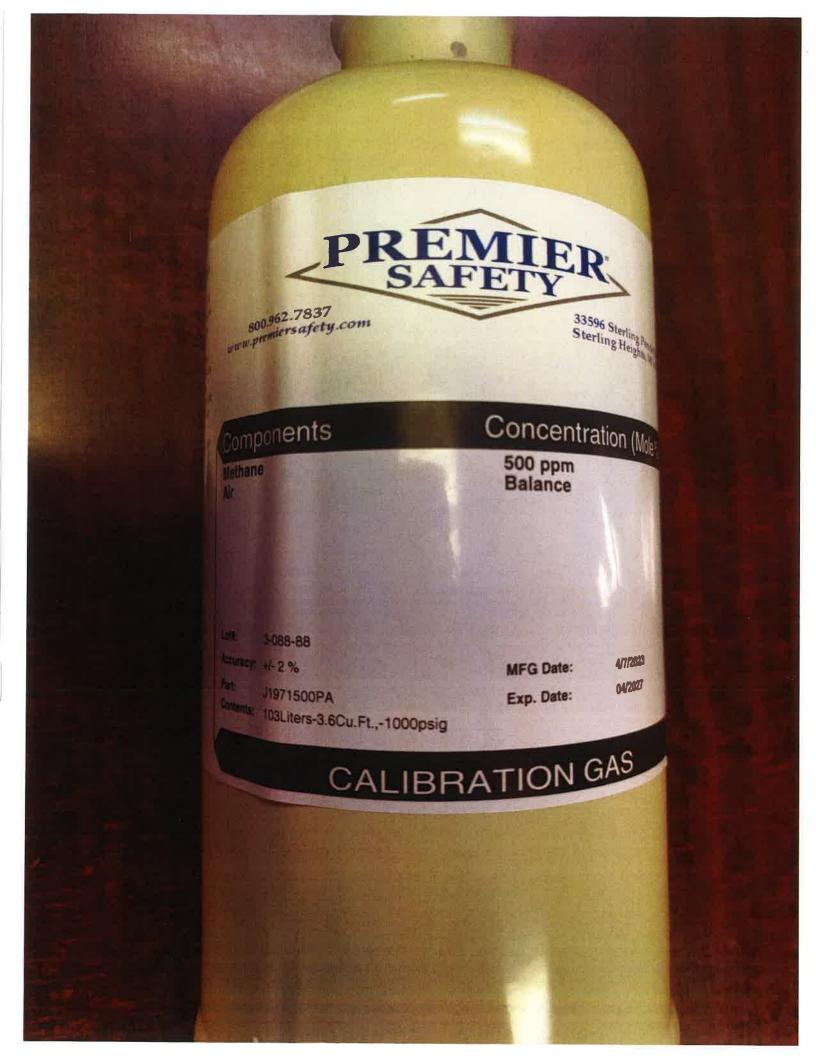
Date on Manufacture 4/7/2023 Expires 04/2027 +/- 2 % Analytical Accuracy

**Component** Methane Air

Reported Concentration 500 ppm Balance

Requested Concentration 500 ppm Balance

4/7/2023


Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Date Signed: Jeff Korn Lab Technician

Approved:





## **CERTIFICATE OF ANALYSIS**

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number2-154-85Norlab Part#J1002Cylinder Size103 LiterNumber of Cyl1

Customer Part# N/A

Cust Number 07152 Order Number 69679439 PO Number 04906817

Date on Manufacture6/13/2022Expires06/2025Analytical AccuracyCertified

Component Air Oxygen T.H.C. (as Methane) Nitrogen Reported Concentration Zero Grade 20.9 % < 1.0 ppm Balance

Requested Concentration Zero Grade 20.9 % < 1.0 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

Minor constituents tested with standards traceable to NIST by mass or comparison to SRM's (Standard Reference Materials).

NIST Traceable Numbers are available upon request.

Approved:

Rul

Date Signed:

6/13/2022

David Reed Lab Technician

800.962.7837 premiersafety.com

components

THC. (as Methane)

ongen

Narogen

# Concentration (Mr)

PREMIER

Zero Grade 20.9 % < 1.0 ppm Balance

2-154-85 r: Certified J1002 103Liters-3.6Cu.Ft.,-1000psig

MFG Date: Exp. Date:

6/13/2022 06/2028

33596 Startings

## CALIBRATION GAS





## **CERTIFICATE OF ANALYSIS**

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number3-340-61Norlab Part#J1971500PACylinder Size103 LiterNumber of Cyl5

Customer Part# N/A

Cust Number 07152 Order Number 73732858 PO Number 04B70733

 Date on Manufacture
 12/7/2023

 Expires
 12/2027

 Analytical Accuracy
 +/- 2 %

Component Methane Air Reported Concentration 500 ppm Balance Requested Concentration 500 ppm Balance

Storage: Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager Date Signed:

12/7/2023





## **CERTIFICATE OF ANALYSIS**

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number3-340-62Norlab Part#J197125PACylinder Size103 LiterNumber of Cyl5

Customer Part# N/A

Cust Number 07152 Order Number 73732858 PO Number 04B70733

Date on Manufacture12/7/2023Expires12/2027Analytical Accuracy+/- 5 %

Component Methane Air **Reported Concentration** 25 ppm Balance Requested Concentration 25 ppm Balance

Storage: Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager Date Signed:

12/7/2023

# PREMIER

800.962.7837 au premiersafety.com 33596 Sterling Pandas Sterling Heights, Mile

Concentration (Mole

## Components

Methane

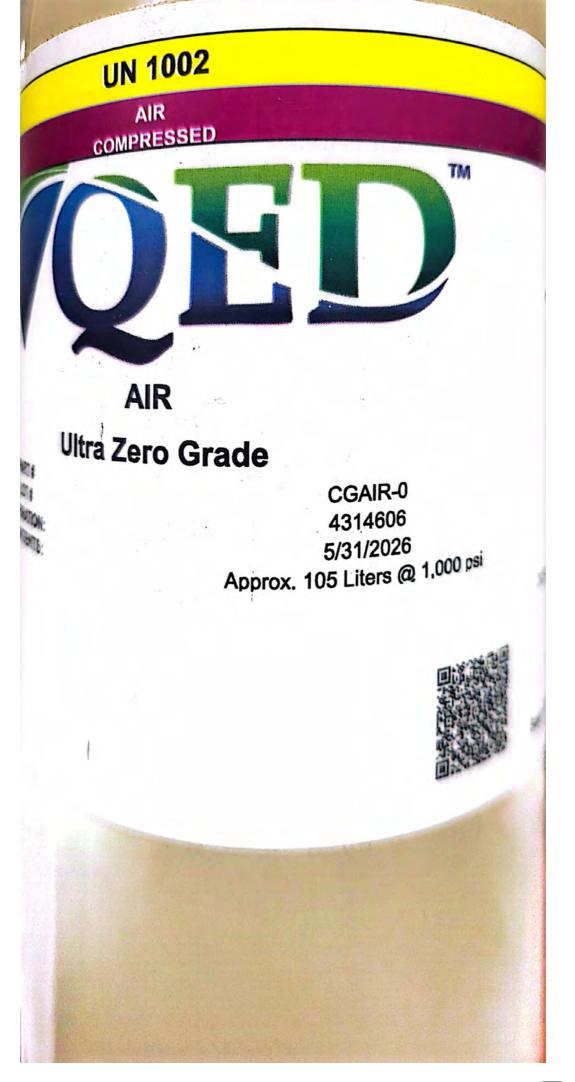
Air

国

3-340-62

Acturacy: +1- 5 %

J197125PA


etents: 103Liters-3.6Cu.Ft.,-1000psig

MFG Date: Exp. Date:

CALIBRATION CAS

25 ppm Balance

12/7/2023 12/2027





## COMPRESSED GAS, N.O.S (METHANE, Air)

UN1956

.

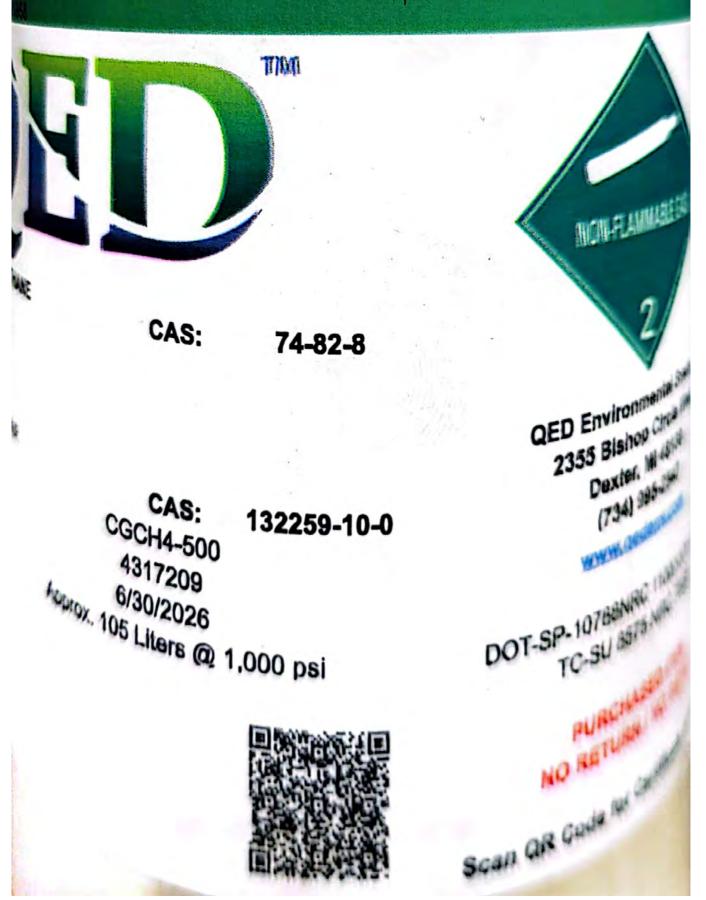
METHANE

CAS: 14

TM.

BALANCE PART # LOT # EXPIRATION: CONTENTS:

500 PPM


AIR

CAS: 1323 CGCH4-500 4317209 6/30/2026 Approx. 105 Liters @ 1,000



## DGAS, N.O.S









WASTE MANAGEMENT

172 98th Avenue Oakland, CA 94603 (510) 430-8509

May 15, 2024

Ms. Alisha McCutcheon Redwood Landfill, Inc. 8590 Redwood Highway Novato, California 94948

#### Re: March 2024 Surface Emissions Monitoring Report for Redwood Landfill, Inc.

Dear Ms. McCutcheon:

This monitoring report for "**Redwood Landfill, Inc. (RLI)**" contains the results of the March 2024 Surface Emissions Monitoring (SEM). Initial surface emissions monitoring was performed by Roberts Environmental Services, LLC. (RES).

#### **APPLICABLE REQUIREMENTS**

The monitoring discussed in this report was conducted in accordance with the following requirements:

#### Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection procedures).

#### PROCEDURES

#### General

Per NSPS and 8-34 rules, the entire surface of the landfill was monitored following a serpentine path with a 100-foot interval spacing. Active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by the NSPS and 8-34.

Field personnel walked the surface of the landfill using the gridlines normally used for monitoring required by AB32 (see Attachment A map). These grids typically have dimensions of 500' x 100'. A consistent 100' spacing was achieved by walking on the 500' long borderline shared by two grids. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and

Ms. Alisha McCutcheon Page 2

60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

#### Instantaneous Surface Emissions Monitoring

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume ( $ppm_v$ ) methane, which meets or exceeds all guidelines set forth in the NSPS and 8-34. The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements.

RES personnel walked the surface of the landfill with the wand tip held at 2 inches from the landfill surface. While sampling the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on the map included in Attachment A.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 500 ppmv (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Appendices of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
  - If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
  - If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed, and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.

If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Ms. Alisha McCutcheon Page 3

#### **MARCH 2024 SEM RESULTS**

The Instantaneous surface monitoring was performed on March 25, 2024, in accordance with the NSPS and BAAQMD 8-34. Results and data from the monitoring are presented in Attachment A.

#### Initial Monitoring Event Exceedances of 500 ppm_v

There were no exceedances of 500  $ppm_v$  as methane detected on March 25, 2024. Remonitoring was not required.

#### WEATHER CONDITIONS

#### Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. The chart data is scanned and included in Attachment B.

#### **EQUIPMENT CALIBRATION**

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25  $ppm_v$  in air for integrated sample analyses and 500  $ppm_v$  in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: Response time test record; Response factor determination for methane; Calibration Precision test records; and Daily Instrument Calibration and Background test records for each gas meter that was used during the monitoring event. The calibration log records are included in Attachment C.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at (510) 613-2852.

Thank you, Waste Management

Atchel Chan

Michael Chan Environmental Protection Specialist

Ms. Alisha McCutcheon Page 4

#### Attachment A – Instantaneous Surface Emission Monitoring Event Records

- SEM Map
- Monitoring Logs and Exceedances

#### Attachment B – Weather Station Data

• Strip Chart Data

#### Attachment C – Calibration Records

• Instrument and Gas Calibration Records

#### Attachment A

Surface Emission Monitoring Event Records

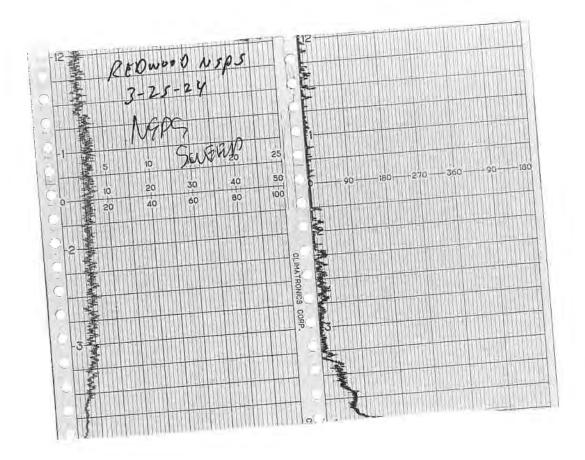


#### Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2024 Month: March INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: LANDFILL NAME: Redwood Landfill, Inc.

Initia	Initial Monitoring Event Corrective Action		1st 10-day Follow-Up		1st 30-day Follow-Up						
Flag	Monitoring	Reading	Repair	Action	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	ppm	Date	Taken	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
				No Exceeda	ances on Ma	rch 25, 2024	4				

#### Attachment B


Weather Station Data

	<u>16-POINT V</u>	VIND DIRECTION	N INDEX	
NO	DIRECTION		DEGREES	
		FROM	CENTER	<u>T0</u>
16	NORTH (N)	348.8	369.0	0.1.3
1	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033.8	045.0	056.3
3	EAST-NORTHEAST (ENE)	056.3	067.5	078.8
4	EAST (E)	078.8	<u>090.0</u>	101.3
5	EAST-SOUTHEAST (ESE)	101.3	112.5	123.8
6	SOUTHEAST (SE)	123.8	<u>135.0</u>	146.3
7	SOUTH-SOUTHEAST (SSE)	146.3	<u>157.5</u>	168.8
8	SOUTH (S)	168.8	180.0	191.3
9	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213.8
10	SOUTHWEST (SW)	213.8	225.0	230.3
11	WEST-SOUTHWEST (WSW)	236.3	247.5	258.8
12	WEST (W)	258.8	270.0	281.3
13	WEST-NORTHWEST (WNW)	281.3	292.5	303.8
14	NORTHWEST (NW)	30.2.8	315.0	326.3
15	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8

865 Via Lata = Colton, California 92324 = (909) 422-1001 Fax (909) 422-0707

## WIND SPEED & DIRECTION CHART ROLL

ė,



#### Attachment C

Calibration Records



#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME 1600 WWW			INSTRUMENT MAKE + Honmo				
MODEL FUALOUD	EQUIPMENT #:	10		SERIA	AL# 1\$36346773		
MONITORING DATE: 3-2	5-24		TIME:	1200			

#### Calibration Procedure.

1 Allow instrument to zero itself while introducing air

Allow instrument to zero itself while introducing air
 Introduce calibration gas into the probe Stabilized reading = _____ ppm

3 Adjust meter settings to read 500 ppm

#### Background Determination Procedure

Upwind Background	Downwind Background	Background Value:		
Reading:	Reading:	(Upwind + Downwind)		
(Highest in 30 seconds)	(Highest in 30 seconds)	2		
Z.8 ppm	3.2 ppm	3.0 ppm		

Background Value = 3.2 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readir Calibration Gas	90% of the Stabi Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	491	ppm	441	ppm	6	
#2	500	ppm	450	ppm	6	
#3	Sus	ppm	450	ppm	6	
	6	#DIV/0!				

#### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	Meter Reading Calibration Gas		Calculate Precision [STD – (B)]		
#1	0.10	ppm	491	ppm	9	
#2	0.05	ppm	560	ppm	0	
#3	0.04	ppm	505	ppm	0	
Calculate Precisio	n [STD-B1] + [S	TD-B2] + [5 3	<u>STD-B3]</u> X <u>1</u> X 500	<u>100</u> 1	0-60 Must be less tha	#DIV/0!

Performed By: LoishwAnt

Date/Time: 3-25-24 - 1200



#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME 2EDN000	INSTRUMENT MAKE + HEAN
MODEL: AVALUUS EQUIPMENT #:	11 SERIAL # 1036346772
MONITORING DATE: 3-25-24	TIME: 1200

#### Calibration Procedure:

1 Allow instrument to zero itself while introducing air

2. Introduce calibration gas into the probe Stabilized reading =  $\int \boldsymbol{D}^{\mathbf{D}}$  ppm

3 Adjust meter settings to read 500 ppm.

#### Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
2-8 ppm	3.2 рр	m <b>7.</b> 7 ppm

Background Value = 3.0 ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas			
#1	507	ppm	457	ppm	5		
#2	498	ppm	448	ppm	5		
#3	500	ppm	450	ppm	1		
	Calculate Response Time ( <u>1+2+3</u> ) 3						

#### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]		
#1	0.12	ppm	50>	ppm	7	
#2	0.08	ppm	498	ppm	Z	
#3	0.04	ppm	510	ppm	D	
Calculate Precision	n [STD-B1] + [ST	(D-B2) + [3 3	<u>51D-B3]</u> X <u>1</u> X 500	<u>100</u> 1	o c 6 6 Must be less tha	#DIV/0

Performed By: JUVANI AEDINS

Date/Time 7.25-24-1260

12135 

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

	ONOOO	INSTRUMENT MAKE + HER NO			
MODEL LUAIVON	EQUIPMENT #:	12	SERIAL #	1036246741	
MONITORING DATE:	3.25-24	TIME	1200		

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- Allow instrument to zero itself while introducing air
   Introduce calibration gas into the probe. Stabilized reading = _____ ppm
- 3. Adjust meter settings to read 500 ppm.

#### Background Determination Procedure

Upwind Background	Downwind Backg	1.	Background Value:		
Reading:	Reading:		( <u>Upwind + Downwind)</u>		
(Highest in 30 seconds)	(Highest in 30 seco		2		
2. 8 ppm	3.2	ppm	3.0	ppm	

Background Value =  $3c\partial$  ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	495	ppm	445	ppm	4	
#2	500	ppm	450	ppm	4	
#3	500	ppm	450	ppm	4	
	Calculate Response T	ime ( <u>1</u> - 3	<u>+2+3</u> )		Must be less than	#DIV/0!

#### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading Calibration Gas		Calculate Precision	[STD – (B)]
#1	0.16	ppm	481	ppm	ىمى	
#2	0.12	ppm	514	ppm	0	
#3	0.08	ppm	500	ppm	Q	
Calculate Precision	n <u>[STD-B1] + [S</u>	<u>TD-B2] + [</u> 5 3	<u>STD-B3]</u> X <u>1</u> X 500	<u>100</u> 1	B + 3 3 Must be less tha	#DIV/0

Performed By:

EDDIC DELING

Date/Time 3-25-24-1200

16.198 ironmental Inc.

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME _ REDNOUD		INSTRUMENT MAKE: +Hmm.		
MODEL LUAIOUS	EQUIPMENT #:	13	SERIAL #: 1/02746775	
MONITORING DATE:	3-25-24	TIME	1200	

#### Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = _____ ppm

3. Adjust meter settings to read 500 ppm.

#### Background Determination Procedure

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
2-8 ppr	1 3.2 ppm	3.0 ppm

Background Value =  $3^{\prime} \rho$  ppm

#### INSTRUMENT RESPONSE TIME RECORD

Measurement # Stabilized Reading Using Calibration Gas				Stabilized F		each 90% of Reading after from Zero Air to n Gas	
#1	489	ppm	439	ppm	7		
#2	502	ppm	452	ppm	7		
#3	500	ppm	450	ppm	7		
	Calculate Response Ti	ime ( <u>1-</u> 3	+2+3)		7	#DIV/0!	
					Must be less than	n 30 seconds	

#### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Gas		Calculate Precision [STD	– (B)]
#1	0.17	ppm	485	ppm	11	
#2	0.14	ppm	502	ppm	2	
#3	0.08	ppm	500	ppm	Ð	
Calculate Precision	[STD-B1] + [S]	7D-B2] + [5 3	<u>STD-B31</u> X <u>1</u> X 500	<u>100</u> 1		#DIV/0
					Must be less than 10%	_

Performed By: <u>Ly/En ANDERS</u>

Date/Time: 3-25-24-1200



#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME AUDING		INSTRUMENT MAKE + Her no		
MODEL: LUAIOOO	EQUIPMENT #:	16	SERIAL #:	1102746776
MONITORING DATE:	3-21-24	TIME:	1200	

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- Allow instrument to zero itself while introducing air.
   Introduce calibration gas into the probe. Stabilized reading = _____ ppm
- 3. Adjust meter settings to read 500 ppm.

#### **Background Determination Procedure**

Upwind Background	Downwind Background	Background Value:
Reading:	Reading:	(Upwind + Downwind)
(Highest in 30 seconds)	(Highest in 30 seconds)	2
2.8 ppm	3.2 ppm	۶۰۶ ppm

Background Value =  $\int \mathcal{J}$ ppm

#### **INSTRUMENT RESPONSE TIME RECORD**

Measurement #	Stabilized Reading U Calibration Gas	Jsing	90% of the Stabiliz Reading	zed	Time to Reach 9 Stabilized Read switching from Calibration Gas	ing after Zero Air to
#1	507	ppm	457	ppm	6	
#2	495	ppm	449	ppm	6	
#3	500	ppm	450	ppm	6	
	Calculate Response Tin	ne ( <u>1</u> . 3	+2+3)		6	#DIV/0!
					Must be less than	1 30 seconds

#### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Zei	ro Air (A)	Meter Reading Calibration Ga		Calculate Precision	[STD – (B)]
#1	0.15	ppm	507	ppm	2	
#2	0-10	ppm	425	ppm	j	
#3	0.07	ppm	500	ppm	D	
Calculate Precision	[STD-B1] + [S]	D-B2] + [3 3	<u>STD-B3]</u> X <u>1</u> X 500	<u>100</u> 1	O·JJ Must be less tha	#DIV/0! an 10%

Performed By: 6RE6 10102

Date/Time: 3-25-29-1200



Site:		
Purpose:		
Operator:M		
Date: 3-2-24	Time:	0930
Model #		
Serial # #10 1036346773		

INSTRUMENT INTEGRIT	INSTRUMENT CALIBRATION			
Battery test Reading following ignition	2 J ppm	CA Calibration Gas (ppm)	LIBRATION CHE Actual (ppm)	CK % Accuracy
Leak test	Pags / Fail / NA	200	500	100%
Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas, p		500
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pase / Fail / NA	90% of Calibration		ugo as ppm
Date of last factory calibration	1-5-24	2. (		
Factory calibration record w/instrument within 3 months	Pase / Fail	Average Equal to or less the Instrument calibra		Ø∕ N gas.

Comments:



Site:		
Purpose:		
Operator: Mu M		
Date: 3-2-2-4	Time:	0945
Model # 1000		
Serial # #11 103634774		

Y CHECKLIST	INSTR	UMENT CALIBRA	TION
Pass / Fail	CA Calibration Gas (ppm)	Actual	CK % Accuracy
Pass / Fail / NA	- 500	- 600	10014
ass / Fail / NA	Calibration Gas, pr	om	500
Pass / Fail / NA			<u>460</u> as ppm
1-5-29	2 3	5	
eass / Fail			G/N gas.
	Pass / Fail 2.7 ppm Pass / Fail / NA Pass / Fail / NA Pass / Fail / NA 1-S-2-9	Pass / FailCA $2.7$ ppmCalibration $2.7$ ppmGas (ppm) $2.7$ ppm $Gas (ppm)$ $ass / Fail / NA$ $Gas (ppm)$ $ass / Fail / NA$ Calibration Gas, pp $Pass / Fail / NA$ Calibration Gas, pp $Pass / Fail / NA$ Calibration Gas, pp $Pass / Fail / NA$ Calibration Gas, pp $fass / Fail / NA$ Calibration Gas, pp $fas$	Pass / FailCALIBRATION CHEC $2.7$ ppmCalibrationActual $2.7$ ppmGas (ppm)(ppm) $ass / Fail / NA$ $ass / Fail / NA$ $ass / Fail / NA$ Pass / Fail / NACalibration Gas, ppm $goo$ Pass / Fail / NACalibration Gas, ppm $goo$ Pass / Fail / NACalibration Gas, ppm $goo$ Pass / Fail / NACalibration Gas, ppmPass / Fail / NA $food food food food food food food food$



urpose:		
perator: Mu M	1	
te:	Time:	1000

INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	UMENT CALIBR	ATION
Battery test Reading following ignition	Pass / Fail	CA Calibration Gas (ppm)	LIBRATION CHE Actual (ppm)	CK % Accuracy
Leak test	Gass / Fail / NA	500	- 200	(00)
Clean system check (check valve chatter)	Pase / Fail / NA	Calibration Gas, p		500
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Time required to a 1.		<u>450</u> as ppm
Date of last factory calibration	1-5-24	2. <u>@</u> 3. [©]	2	
Factory calibration record w/instrument within 3 months	Rass Fail	Average Equal to or less the Instrument calibrat		G N gas.

Comments:

.



.

Site:		
Purpose:		
Operator:MMM		
Date: 3-2-2-4	Time:	1015
Model # 1000		
Serial # #13 1102746775		

INSTRUMENT INTEGRITY CHECKLIST		INSTR		TION
Battery test			LIBRATION CHE	СК
Battery test	Pass//Fail	Calibration Gas (ppm)	Actual	%
Reading following ignition	_2, 1 ppm	Cas (ppin)	(ppm)	Accuracy
Leak test	Garan	SOO	500	1004,
	Pass / Fail / NA		RESPONSE TIME	
Clean system check	Fass / Fail / NA			
check valve chatter)	U	Calibration Gas, p		500
H ₂ supply pressure gauge	Pass / Fail / NA	90% of Calibration		450_
(acceptable range 9.5 - 12)	ago / all / NA	1 ime required to a	attain 90% of Cal G	as ppm
	15.11	2.	6	
Date of last factory calibration	1-1-24	3.	6	
	Pase / Fail	Average 5	clo	
Factory calibration record			an 30 socondo?	Ŵ N
Factory calibration record w/instrument within 3 months		Equal to or less th	an ou securius :	
	Pass / Fail	Average 5		$\langle \rangle$



Г

## SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

Site:		
Purpose:		
Operator:	M	
Date: 3-2-24	Time:	
Model #		
Serial # <u>#16 (102)461</u> 76		

INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR		TION
Battery test	Pass / Fail	CA Calibration Gas (ppm)	LIBRATION CHEC Actual (ppm)	CK % Accuracy
Reading following ignition Leak test	ppm	500	\$00	(00 F1
Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas, p	RESPONSE TIME	S <i>uo</i>
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Gass / Fail / NA	90% of Calibration Time required to a	attain 90% of Cal G	450 as ppm
Date of last factory calibration	1-5-24	2. (	e e	
Factory calibration record w/instrument within 3 months	Pase / Fail	Average Equal to or less th Instrument calibra		S N gas.

CUSTOMER: RES UNIT 10 1036346773 SERIAL NUMBER: DATE: __/~S-24 TECHNICIAN:

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,004	+/- 2500
< 1	ZERO GAS	0,69	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

DES UNIT # 11 CUSTOMER: 036346774 **SERIAL NUMBER:** 1-5-24 **TECHNICIAN:** DATE:

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	600	+/- 125
10000	10000	19,001	+/- 2500
< 1	ZERO GAS	0,64	< 3
	Pli	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

CUSTOMER:	11 #12	
SERIAL NUMBER: (036246	741	
	DATE:	1-5-24

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0.59	< 3
	Pli	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

S UNIT#13 CUSTOMER: 1102746775 SERIAL NUMBER: TECHNICIAN: DATE:

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm) +/- 25
100	100	99	
500	500	603	+/- 125
10000	10000	10,200	+/- 2500
< 1	ZERO GAS	(2(6)	< 3
	Pli	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100 100		/	+/- 25
500 500		/	+/- 125
< 1 ZERO GAS			< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

357

P.O. Box 748 Colton, California 92324 (909) 422-1001 TOLL FREE (888) 325-1098 FAX (909) 422-0707 www.resenvironmental.com



S Vait # CUSTOMER: 102746776 SERIAL NUMBER: 1-5-24 **TECHNICIAN:** DATE:

## GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D		
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm) +/- 25	
100	100	99		
500	500	500	+/- 125	
10000	10000	10,000	+/- 2500	
< 1	ZERO GAS			
	Pli	D		
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
50		1	+/- 12.5	
100	100 100		+/- 25	
500	500		+/- 125	
< 1 ZERO GAS		/	< 3	

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.

### Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com



**CERTIFICATE OF ANALYSIS** Composition Certification Analytical Accuracy (+/-) 20.9 % 2% Oxygen Nitrogen Balance UHP Lot # 20-7421 Mfg. Date: 5/20/2020 Expiration Date: Transfill Date: see cylinder Parent Cylinder ID NY02268 Number: Method of Preparation: Gravimetric/Pressure Transfilled Method of Analysis: The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale. Analysis By: **Tony Janquart** Title: Quality Assurance Manager

Certificate Date:

5/20/2020





## INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

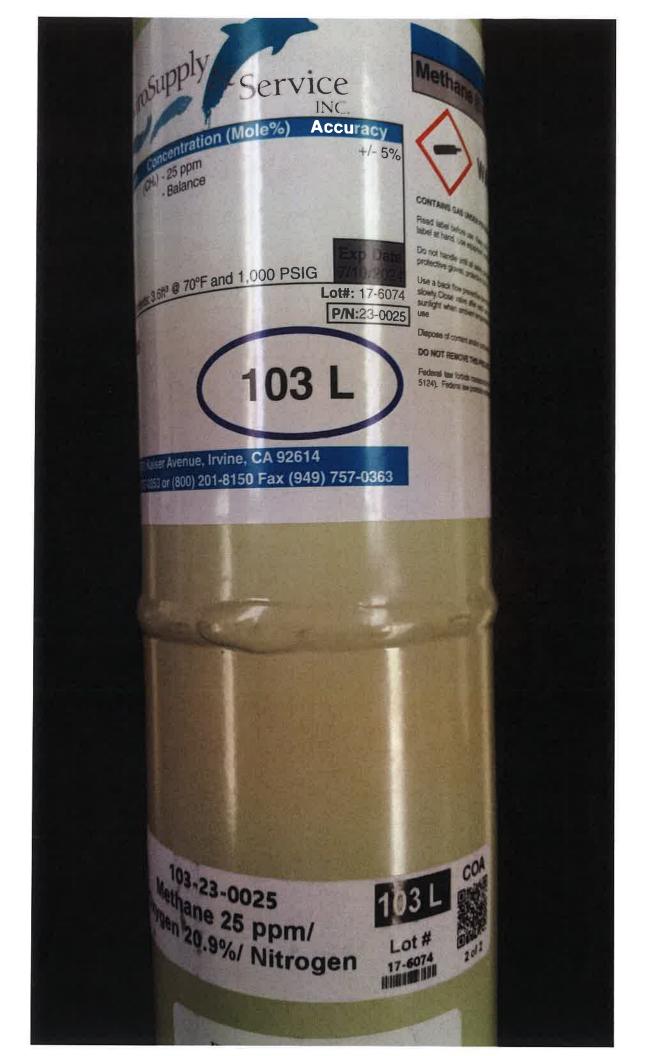
#### CERTIFICATE OF ANALYSIS

Composition Methane Air

Certification 25 ppm Balance Analytical Accuracy ± 5%

## Lot # 17-6074

Mfg. Date: 10/16/2017 Parent Cylinder ID Number: 17161


#### **Method of Preparation**:

Gravimetric/Pressure Transfilled

#### Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 10/16/2017





### INTERMOUNTAIN SPECIALITY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

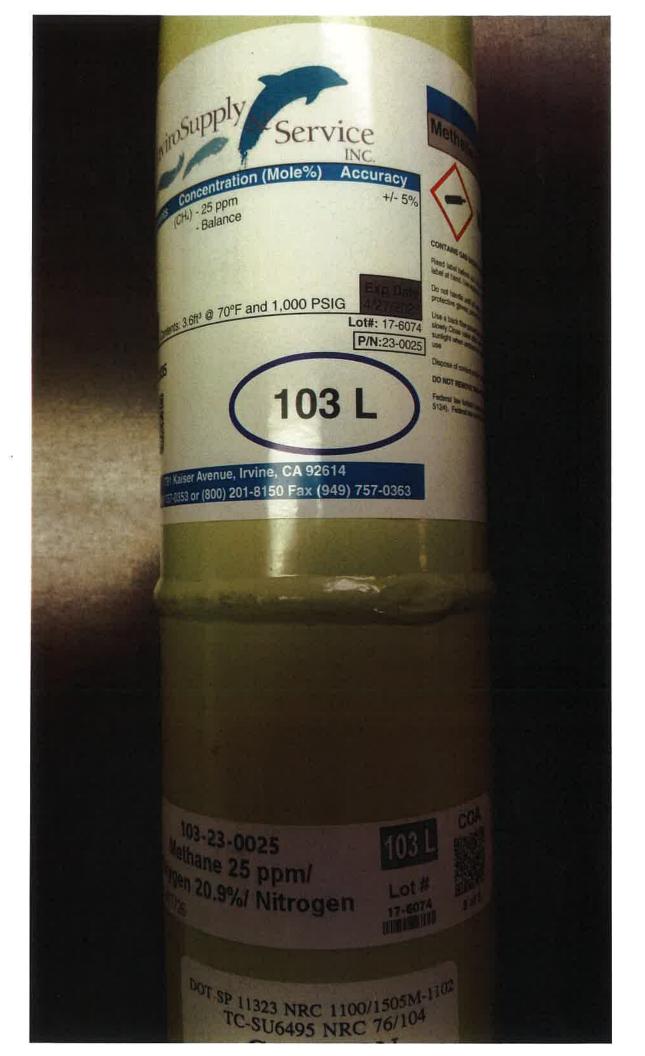
#### CERTIFICATE OF ANALYSIS

Composition Methane Air

Certification 25 ppm Balance Analytical Accuracy ± 5%

## Lot # 17-6074

Mfg. Date: 10/16/2017 Parent Cylinder ID Number: 17161


#### **Method of Preparation:**

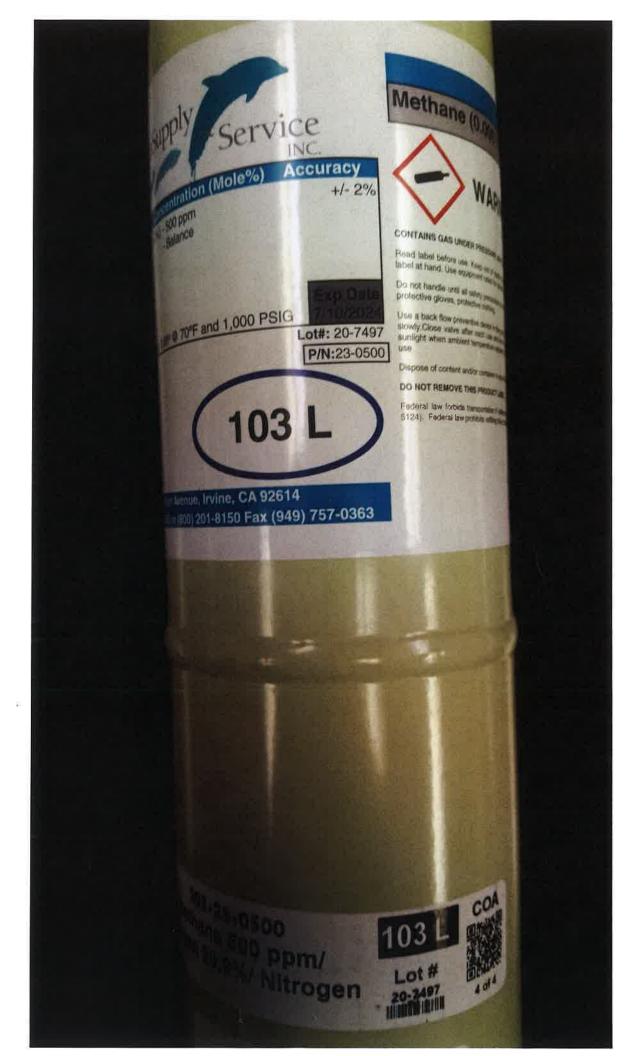
Gravimetric/Pressure Transfilled

#### Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager 800-552-5003 Certificate Date: 10/16/2017




## Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com



## **CERTIFICATE OF ANALYSIS**

Composition		Certification	Analytical	Accuracy (+/-)	
Methane		500 ppm		2%	
Oxygen Nitrogen			P	2%	
x + 0	AD FIDE				
Lot # Mfg. Date:	<b>20-7497</b> 7/10/2020				
Expiration Date:	//10/2020				
Transfill Date:	see cylinder				
Parent Cylinder ID Number:	TWC001763				
<b>Method of Prepar</b>	ation:				
Gravimetric/Pressu	re Transfilled				
Method of Analys					
The parent mix was		cally and is traceabl	e to the NIST by certi	ified weights (ID	
5		Analysis By: Title: Certificate Date:	Tony Janquart Quality Assurance N 7/10/2020	/lanager	





#### **CERTIFICATE OF ANALYSIS**

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number 2-108-80 Norlab Part# J1971500PA Cylinder Size 103 Liter Number of Cyl 1

Customer Part# N/A

Cust Number 07152 Order Number 69671309 PO Number 08361523

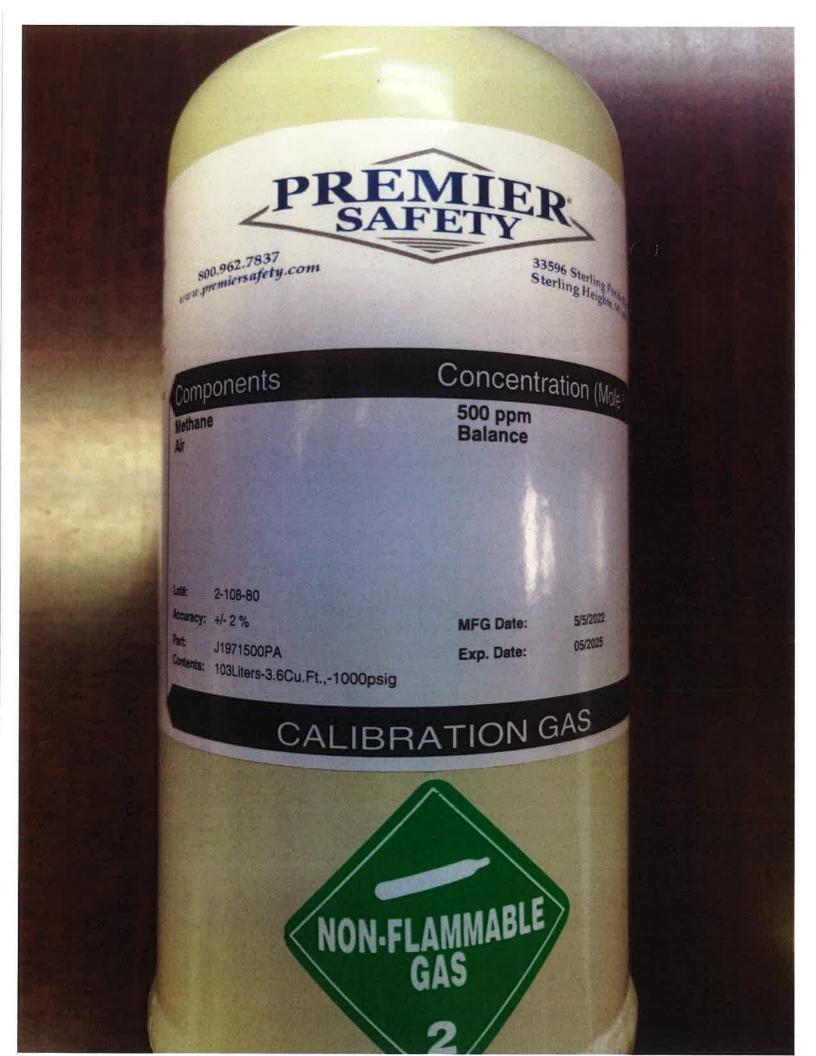
Date on Manufacture6/10/2022Expires06/2025Analytical Accuracy+/- 2 %

Component Methane Air Reported Concentration 500 ppm Balance Requested Concentration 500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.


Approved:

Dieners

Date Signed:

6/10/2022

David Reed Lab Technician





#### **CERTIFICATE OF ANALYSIS**

Norco, Inc Twin Falls Warehouse 203 S. Park Ave. West Twin Falls, ID 83301

Cust Number WH012 PO Number 04A35563

Lot Number	3-088-88
Norlab Part#	J1971500PA
Cylinder Size	103 Liter
Number of Cyl	5

Customer Part# N/A

Order Number 71846398

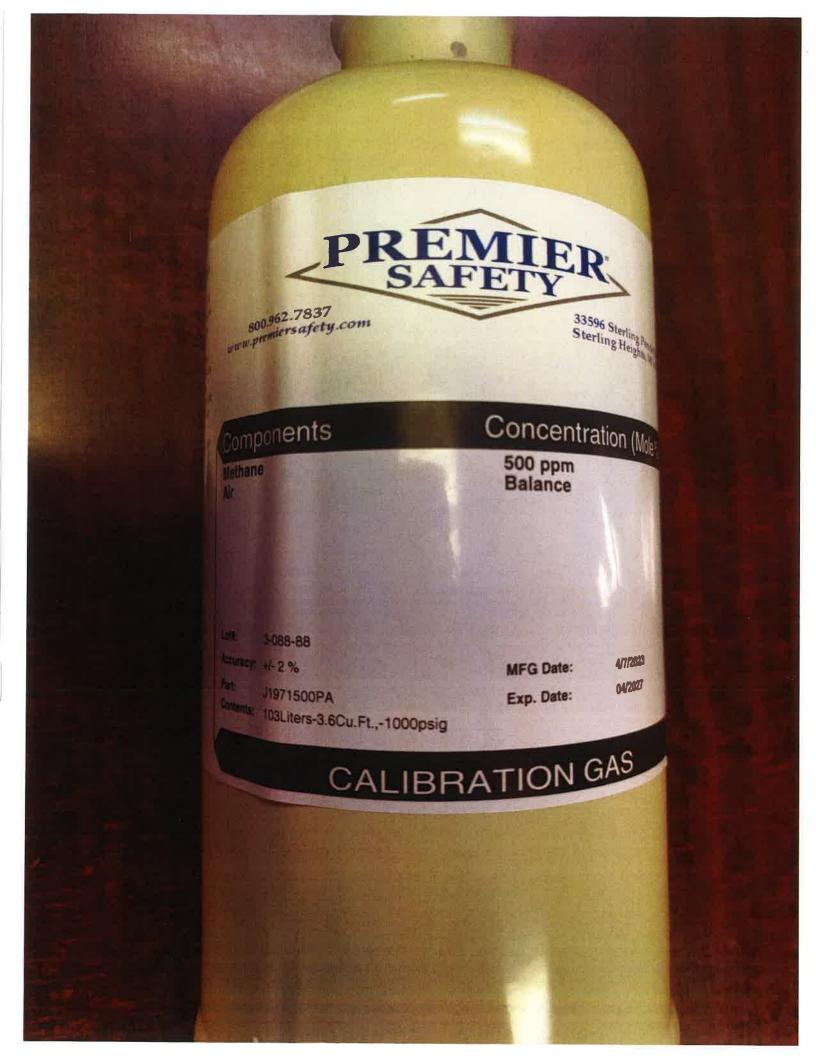
Date on Manufacture 4/7/2023 Expires 04/2027 +/- 2 % Analytical Accuracy

**Component** Methane Air

Reported Concentration 500 ppm Balance

Requested Concentration 500 ppm Balance

4/7/2023


Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Date Signed: Jeff Korn Lab Technician

Approved:





#### **CERTIFICATE OF ANALYSIS**

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number2-154-85Norlab Part#J1002Cylinder Size103 LiterNumber of Cyl1

Customer Part# N/A

Cust Number 07152 Order Number 69679439 PO Number 04906817

Date on Manufacture6/13/2022Expires06/2025Analytical AccuracyCertified

Component Air Oxygen T.H.C. (as Methane) Nitrogen Reported Concentration Zero Grade 20.9 % < 1.0 ppm Balance

Requested Concentration Zero Grade 20.9 % < 1.0 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

Minor constituents tested with standards traceable to NIST by mass or comparison to SRM's (Standard Reference Materials).

NIST Traceable Numbers are available upon request.

Approved:

Rul

Date Signed:

6/13/2022

David Reed Lab Technician

800.962.7837 premiersafety.com

components

THC. (as Methane)

ongen

Narogen

## Concentration (Mr)

PREMIER

Zero Grade 20.9 % < 1.0 ppm Balance

2-154-85 r: Certified J1002 103Liters-3.6Cu.Ft.,-1000psig

MFG Date: Exp. Date:

6/13/2022 06/2028

33596 Startings

## CALIBRATION GAS





#### **CERTIFICATE OF ANALYSIS**

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number3-340-61Norlab Part#J1971500PACylinder Size103 LiterNumber of Cyl5

Customer Part# N/A

Cust Number 07152 Order Number 73732858 PO Number 04B70733

 Date on Manufacture
 12/7/2023

 Expires
 12/2027

 Analytical Accuracy
 +/- 2 %

Component Methane Air Reported Concentration 500 ppm Balance Requested Concentration 500 ppm Balance

Storage: Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager Date Signed:

12/7/2023





#### **CERTIFICATE OF ANALYSIS**

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number3-340-62Norlab Part#J197125PACylinder Size103 LiterNumber of Cyl5

Customer Part# N/A

Cust Number 07152 Order Number 73732858 PO Number 04B70733

Date on Manufacture12/7/2023Expires12/2027Analytical Accuracy+/- 5 %

Component Methane Air **Reported Concentration** 25 ppm Balance Requested Concentration 25 ppm Balance

Storage: Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager Date Signed:

12/7/2023

# PREMIER

800.962.7837 au premiersafety.com 33596 Sterling Pandas Sterling Heights, Mile

Concentration (Mole

### Components

Methane

Air

国

3-340-62

Acturacy: +1- 5 %

J197125PA

etents: 103Liters-3.6Cu.Ft.,-1000psig

MFG Date: Exp. Date:

CALIBRATION CAS

25 ppm Balance

12/7/2023 12/2027

**APPENDIX I** 

WELLFIELD MONITORING LOGS

Wellfield Monitoring Report - November 2, 6, 7, 8, 9, 10, 13, 14, 16, 17, and 20, 2023

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	11/16/23 18:01	60.2	39.2	0	0.6	-0.3	98	-0.5	100
RLI00003	11/13/23 19:06	46.8	34.2	1.3	17.7	-4.2	73	-3.8	73
RLI00008	11/17/23 14:38	64.4	35.3	0.1	0.2	-16.8	82	-19.6	79
RLI00016	11/17/23 14:05	33.4	28.3	0	38.3	-16.6	71	-16.7	71
RLI00017	11/17/23 14:11	47.6	32.6	0.6	19.2	-14.4	73	-13.6	73
RLI00018	11/17/23 14:19	31.2	28.4	0.5	39.9	-14.7	72	-15	73
RLI00019	11/17/23 14:31	54.7	32.6	2	10.7	-20.1	68	-20.4	69
RLI00034	11/10/23 14:50	60	39.9	0	0.1	-17.1	80	-17.4	81
RLI00035	11/10/23 15:01	60.5	38.8	0	0.7	-18.8	76	-19	76
RLI00045	11/10/23 15:13	42.1	32.2	0	25.7	-1.3	74	-1.1	74
RLI00047	11/10/23 15:10	42.1	34	0	23.9	-2	79	-1.8	79
RLI00065	11/13/23 18:16	55.8	44.1	0	0.1	-9.1	96	-10.4	96
RLI00083	11/13/23 15:04	61.6	38.3	0	0.1	-31.2	92	-30.8	92
RLI00095	11/13/23 14:22	52.3	35.3	0	12.4	-1.6	102	-1.7	103
RLI00132	11/10/23 14:22	61.2	38.7	0	0.1	-19	90	-19.8	90
RLI00134	11/9/23 18:16	41.8	35.5	0	22.7	-5.6	126	-5.1	127
RLI00135	11/6/23 15:40	58.2	41.7	0	0.1	-4.9	109	-5.3	109
RLI00137	11/20/23 18:29	63	31	1.5	4.5	-24.2	86	-29	86
RLI00140	11/8/23 17:22	48	40	0	12	-12.5	112	-11.3	112
RLI00141	11/8/23 16:49	50.2	42.1	0	7.7	-0.3	35	-0.3	106
RLI00142	11/8/23 17:15	56.6	42.4	0	1	-19.8	102	-22	103
RLI00220	11/16/23 19:01	45	34.8	1.9	18.3	-25.6	81	-23	74
RLI00275	11/13/23 14:59	49.9	36.9	0	13.2	-20.6	94	-20.6	94
RLI00276	11/13/23 16:05	55	40.5	0	4.5	-33.2	95	-33.1	95
RLI00277	11/7/23 19:28	49.2	38.7	0	12.1	-0.8	109	-0.7	109
RLI00278	11/7/23 19:24	51.7	39.9	0	8.4	-3.1	107	-3.1	107
RLI00279	11/7/23 19:10	57.2	42.7	0	0.1	-0.9	127	-1.1	128
RLI00280	11/9/23 18:04	46.7	35.8	0	17.5	-7	110	-6.3	110
RLI00281	11/7/23 19:43	55.6	40.9	0	3.5	-2.1	113	-2.3	113
RLI00282	11/8/23 17:53	56.4	42.8	0	0.8	-10.4	110	-11.4	110
RLI00283	11/8/23 18:11	57.3	42.6	0	0.1	-6.2	116	-6.8	117
RLI00284	11/13/23 15:22	61.4	38.5	0	0.1	-30.6	75	-31.2	72
RLI00285	11/13/23 15:27	50.7	35.5	1	12.8	-36.4	69	-35.5	68
RLI00286	11/2/23 14:34	48.1	40.3	0	11.6	-0.2	98	-0.1	99
RLI00287	11/2/23 14:37	52.2	42.3	0	5.5	-17.1	104	-17.2	104
RLI0100C	11/10/23 14:39	59.2	38	0.7	2.1	-13	77	-14.3	77
RLI0102C RLI0103C	11/13/23 18:59	61.5	38.4	-	0.1	-13.7	91	-13.9	91
RLI0103C	11/6/23 15:30 11/7/23 18:56	58.8 49.1	41.1 39.7	0	0.1	-16.8 -5.5	94 75	-17.4 -5.5	95 75
RLI0105C	11/7/23 19:06	49.1 56.4	42.2	0.2	1.4	-5.5 -8.4	100	-5.5 -9.3	100
RLI0108C	11/17/23 15:51	53.5	39	0	7.5	-0.2	116	-9.3	117
RLI0107C	11/17/23 14:53	64.3	39	1	2.9	-0.2	75	-0.9	76
RLI0114A	11/9/23 14:08	63.8	35.9	0.1	0.2	-2.0	75	-2.3	70
RLI0115E	11/9/23 14:51	58	30.1	1.8	10.1	-4.5	73	-7.5	74
RLI0116E	11/14/23 18:58	50.4	32.1	2.7	14.8	-18.9	72	-19.5	74
RLI0117D	11/16/23 18:30	43.8	34	2.6	19.6	-27.4	70	-24.8	71
RLI0124G	11/2/23 14:08	61.8	38.1	0	0.1	-21.2	86	-20.5	86
RLI0126C	11/10/23 17:32	57.5	27	3.2	12.3	-8.5	89	-9.4	89
RLI0127B	11/9/23 18:34	56.1	36.3	0.1	7.5	-14.4	102	-14.8	102
RLI0128A	11/7/23 19:37	53.8	41.5	0	4.7	-1.2	115	-1.6	115
RLI0129E	11/14/23 15:41	70.9	28.2	0.5	0.4	-3.7	70	-3.6	70
RLI0130E	11/14/23 15:49	45.9	31.4	0	22.7	-10.4	73	-9.3	73
RLIHC101	11/2/23 13:48	59.1	40.8	0	0.1	-15.7	109	-15.5	109
RLIHC102	11/2/23 14:01	59.4	40.5	0	0.1	-26.4	109	-26.1	110
RLLC0176	11/6/23 14:09	35.4	32.3	0.9	31.4	-10.5	84	-10.5	82
RLLC0177	11/6/23 14:28	59.1	40.8	0	0.1	-12.9	108	-14.6	109

Wellfield Monitoring Report - November 2, 6, 7, 8, 9, 10, 13, 14, 16, 17, and 20, 2023

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	11/16/23 18:01	60.2	39.2	0	0.6	-0.3	98	-0.5	100
RLI00003	11/13/23 19:06	46.8	34.2	1.3	17.7	-4.2	73	-3.8	73
RLLC0179	11/13/23 14:49	55.6	35.8	0	8.6	-34.1	85	-34.1	85
RLLC0180	11/7/23 18:19	59.5	40.4	0	0.1	-19.5	107	-16.4	108
RLLC0181	11/7/23 18:44	59.9	40	0	0.1	-3.2	106	-3.8	106
RLLC0183	11/9/23 18:48	36.8	33.2	0	30	-1.5	83	-1.6	79
RLLC0184	11/9/23 18:24	60	38.6	0	1.4	-16.2	101	-17.8	101
RLLC0185	11/6/23 14:33	53	39.7	0	7.3	-0.6	111	-1.1	106
RLLC0186	11/6/23 14:58	60.4	39.3	0.2	0.1	-18.6	88	-16.9	88
RLLC0187	11/6/23 15:05	59.7	39.8	0.3	0.2	-19.9	88	-18	87
RLLC0188	11/6/23 15:09	58.3	41.6	0	0.1	-15.8	102	-16.6	102
RLLC0189	11/7/23 18:06	55.4	40.1	0	4.5	-2.7	115	-3.2	115
RLLC0190	11/7/23 18:16	56.6	41.7	0	1.7	-0.9	108	-1	109
RLLC0191	11/16/23 18:52	59.5	40.4	0	0.1	-31.4	94	-32.1	94
RLLC0193	11/9/23 14:25	58.3	38.6	0	3.1	-9	103	-9.4	99
RLLC0194	11/7/23 19:32	53.1	40.6	0	6.3	-3.8	106	-3.8	106
RLLC0195	11/7/23 19:18	56.6	43.3	0	0.1	-0.1	98	-0.4	103
RLLC0196	11/7/23 19:21	62.5	37.4	0	0.1	-2.1	92	-2.2	93
RLLC0198	11/17/23 16:42	51.4	44.1	4.3	0.2	-0.3	70	-0.3	69
RLLC0199	11/17/23 16:06	59.8	36.9	0	3.3	-3.8	106	-4.3	106
RLLC0200	11/17/23 16:13	63.7	36.2	0	0.1	-0.1	80	-0.3	81
RLLC0201	11/17/23 16:17	58.2	41.7	0	0.1	-3.7	87	-4.6	87
RLLC0202	11/10/23 18:04	62.5	37.4	0	0.1	-4.5	80	-4.7	81
RLLC0204	11/10/23 17:58	50.6	36.9	0	12.5	-1.7	104	-1.9	105
RLLC0205	11/10/23 17:49	33.1	30.9	0	36	-0.1	91	-0.1	90
RLLC0206	11/10/23 17:39	48.7	36.6	0	14.7	-5.5	95	-5.3	93
RLLC0209	11/10/23 17:43	46.3	34.9	0	18.8	-0.7	92	-0.7	93
RLLC0210	11/10/23 17:53	41.1	33.5	0	25.4	-0.4	91	-0.3	91
RLLC0212	11/2/23 15:00	43.3	35.6	0.5	20.6	-8.5	108	-7.2	109
RLLC0214	11/2/23 14:56	59.1	40.2	0	0.7	-14.2	103	-14.9	103
RLLC0215	11/2/23 14:51	60.7	39.2	0	0.1	-19.3	91	-20	92
RLLC0217	11/14/23 14:20	61.7	38.2	0	0.1	-25.8	87	-26.7	88
RLLC0221	11/17/23 15:57	60.2	35.9	0	3.9	-6.5	86	-5.8	87
RLLC0222	11/17/23 17:12	59.9	38.6	0.4	1.1	-16.7	70	-16	70
RLLC0223	11/17/23 16:28	54.8	45.1	0	0.1	-13	111	-14.3	111
RLLC0225	11/17/23 16:22	57.8	42.1	0	0.1	-2.4	87	-2.7	87
RLLC0226	11/2/23 15:04	57	38.3	0.6	4.1	-16	87	-15.6	87
RLLC0227	11/13/23 14:18	50	35.3	0	14.7	-7	85	-7	85
RLLC0229 RLLC0230	11/17/23 16:09 11/8/23 18:29	64.7 57.4	35.2 41.5	0	0.1	-0.2 -4.9	78 102	-0.3 -6.6	81 103
RLLC0231 RLLC0232	11/9/23 15:00 11/9/23 18:08	45.7 56	35.5 37.1	0	18.8 6.9	-6 -1.2	98 92	-5.4 -1.4	98 92
RLLC0232 RLLC0233	11/16/23 18:37	50 59.4	40.5	0	0.1	-1.2	92 104	-1.4	92
RLLC0233 RLLC0234	11/13/23 18:42	48.3	40.5 36.9	0	14.8	-14.4	104	-1.5	104
RLLC0235	11/13/23 18:42	40.3 51.2	39.1	0	9.7	-14.4	106	-8.4	106
RLLC0236	11/13/23 18:30	48.7	39.1	0	14.3	-0	100	-8.1	100
RLLC0237	11/16/23 18:32	53.3	40.7	0	6	-19.8	91	-20.6	91
RLLC0239	11/16/23 18:10	37.9	33.7	0	28.4	-0.2	91	-20.0	91
RLLC0240	11/16/23 18:06	48.7	36.9	0	14.4	-1.1	101	-0:1	102
RLLC0241	11/13/23 18:25	60.2	39.7	0	0.1	-34.8	97	-34.3	98
RLLC0242	11/13/23 18:20	58	41.9	0	0.1	-18.8	108	-20.8	109
RLLC0243	11/2/23 13:23	50.7	37.4	0	11.9	-0.4	110	-20.0	111
RLLC0244	11/2/23 13:27	52.1	38.4	0	9.5	-1.9	115	-2.3	115
RLLC0245	11/2/23 13:32	48	38.2	0	13.8	-1.5	110	-1.3	107
RLLC0246	11/8/23 17:07	52.2	42.8	0	5	-3.7	106	-4	107
RLLC0247	11/14/23 15:58	47.2	35.6	0	17.2	-4.2	99	-3.8	99

Wellfield Monitoring Report - November 2, 6, 7, 8, 9, 10, 13, 14, 16, 17, and 20, 2023

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	11/16/23 18:01	60.2	39.2	0	0.6	-0.3	98	-0.5	100
RLI00003	11/13/23 19:06	46.8	34.2	1.3	17.7	-4.2	73	-3.8	73
RLLC0248	11/14/23 16:03	52.2	39.8	0	8	-8.8	99	-9.3	100
RLLC0249	11/6/23 14:43	51.4	38.8	0	9.8	-12.7	116	-12.1	116
RLLC0250	11/6/23 13:57	47.4	38.6	0	14	-2.7	112	-2.2	113
RLLC0251	11/6/23 14:24	46.6	37.7	0.7	15	-1.5	109	-1.3	109
RLLC0252	11/13/23 16:01	53.2	41.6	0	5.2	-9.8	110	-10.7	110
RLLC0253	11/16/23 18:47	54.2	43	0	2.8	-21.4	107	-21.7	107
RLLC0254	11/13/23 15:55	55.1	42.1	0	2.8	-21.2	106	-21.3	107
RLLC0255	11/8/23 17:49	59	40.9	0	0.1	-6.3	101	-7.5	102
RLLC0256	11/8/23 17:42	57.2	39.6	0	3.2	-10.9	102	-12.2	102
RLLC0257	11/13/23 19:15	46.7	31.2	3.2	18.9	-10.9	70	-1.8	71
RLLC0258	11/13/23 19:20	70.6	25.2	0.5	3.7	-14.3	72	-15.3	72
RLLC0259	11/13/23 19:24	52.5	37.2	0	10.3	-10.3	82	-10.6	82
RLLC0260	11/10/23 17:19	50.8	39.3	0	9.9	-0.9	93	-0.9	93
RLLC0261	11/13/23 18:53	48.9	37	0	14.1	-2.6	98	-2.3	98
RLLC0262	11/10/23 14:33	43.9	34.9	0	21.2	-5.2	86	-4.5	86
RLLC0263	11/6/23 15:20	57	42.9	0	0.1	-7.2	114	-7.8	114
RLLC0263	11/7/23 17:59	57.3	42.5	0	0.2	-7.3	114	-8.1	114
RLLC0264	11/7/23 18:34	50.7	40.1	0	9.2	-6.4	108	-6.5	108
RLLC0265	11/8/23 17:04	55.7	43	0	1.3	-2.3	105	-2.5	105
RLLC0266	11/8/23 16:55	53.3	39.6	0.1	7	-0.8	96	-1	103
RLLC0266	11/8/23 18:07	55.6	44.3	0	0.1	-3.4	106	-3.8	107
RLLC0267	11/2/23 14:42	50.9	40.6	0.2	8.3	-11.3	109	-10.8	109
RLLC0268	11/8/23 16:59	56.3	41.8	0	1.9	-3.9	115	-4.3	115
RLLC0269	11/17/23 17:04	55.3	43.8	0	0.9	-3.7	109	-4.2	110
RLLC0270	11/8/23 18:01	56.3	43.6	0	0.1	-3.8	110	-4.3	110
RLLC0271	11/13/23 15:13	54.2	37.5	0	8.3	-18.1	97	-19.4	97
RLLC0272	11/8/23 17:32	37.4	35.8	0	26.8	-4.8	112	-4.3	113
RLLC0273	11/9/23 13:55	60.2	39.7	0	0.1	-26.7	107	-26.3	107
RLLC0274	11/7/23 18:59	52.4	41.1	0	6.5	-1.6	110	-1.8	111

There are 137 total collectors; 132 vertical wells and 5 horizontal collectors at RLI.

%= percent

°F= degrees Fahrenheit

"H2O = in. w.c.= inches in water column

Wellfield Monitoring Report - December 4, 6, 7, 8, 11, 12, 13, 14, 18, and 19, 2023

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	12/13/23 12:04	55.9	38.4	0	5.7	-0.59	101.3	-0.68	101.8
RLI00003	12/7/23 10:07	52.4	36.7	1.5	9.4	-4.29	65.3	-4.27	65.3
RLI00008	12/14/23 11:49	63.2	35.1	0.4	1.3	-26.15	75.6	-26.18	74.9
RLI00016	12/14/23 12:10	29.8	26	0.2	44	-18.3	66.6	-18.23	66.4
RLI00017	12/14/23 12:06	45.8	32.6	0.4	21.2	-18	69.1	-16.57	68.9
RLI00018	12/14/23 12:00	23.6	25.3	0.7	50.4	-19.83	67.3	-18.02	66.7
RLI00019	12/14/23 11:54	56.1	34	1	8.9	-25.52	64	-25.69	65.4
RLI00034	12/7/23 10:19	59.1	40.5	0	0.4	-26.47	80.5	-26.46	80.5
RLI00035	12/18/23 11:04	56.7	37.9	0	5.4	-24.21	73.5	-24.18	74.4
RLI00045	12/7/23 10:35	43.4	32.5	0	24.1	-1.28	69.2	-1.25	69.2
RLI00047	12/7/23 10:32	44.8	34.9	0	20.3	-1.95	78	-1.93	78.1
RLI00065	12/4/23 12:46	54	44.5	0	1.5	-5.8	97.2	-8.74	97.6
RLI00083	12/4/23 10:57	61.8	38.1	0	0.1	-24.24	94.3	-24.6	94.3
RLI00095	12/4/23 10:26	52.1	35	0	12.9	-1.37	104.4	-1.57	104.7
RLI00132	12/6/23 14:17	60.6	39.4	0	0	-24.98	84.2	-25	84.1
RLI00134	12/18/23 10:50	40.5	35.2	0	24.3	-5.5	126.8	-4.87	126.8
RLI00135	12/13/23 10:24	50.8	39.4	0	9.8	-4.28	107.3	-4.89	108
RLI00137	12/18/23 10:15	56.6	31.7	2.1	9.6	-26.88	57.8	-23.43	58.1
RLI00140	12/13/23 14:47	47.3	39.6	0	13.1	-17.94	107.3	-16.01	107.4
RLI00141	12/13/23 14:17	42.3	38.9	0.1	18.7	-0.46	101.1	-0.4	101.1
RLI00142	12/13/23 14:54	55.4	41	0	3.6	-16.79	101.3	-18.07	102.2
RLI00220	12/18/23 11:34	52.5	37.3	0.9	9.3	-9.1	83	-9.62	83.1
RLI00275	12/4/23 11:04	45.2	35.9	0	18.9	-16.14	96.7	-14.67	96.8
RLI00276	12/4/23 12:15	56.4	40.7	0	2.9	-26.01	89	-26.05	88.8
RLI00277	12/13/23 11:38	51.8	39.8	0	8.4	-0.66	110.1	-0.89	110.7
RLI00278	12/13/23 11:52	49.2	39.2	0	11.6	-3.24	109.3	-2.94	109.3
RLI00279	12/13/23 11:29	55.5	43	0	1.5	-1.21	130.3	-1.37	130.4
RLI00280	12/11/23 11:18	47.7	36.5	0	15.8	-5.17	111.4	-4.6	111.4
RLI00281	12/13/23 11:17	49.3 55.4	39.5 42.3	0	11.2 2.3	-3.29	115.1	-3.21	115.1
RLI00282	12/14/23 10:25			0		-15.56 -10.03	111.4	-16.4 -10.75	111.3
RLI00283 RLI00284	12/14/23 10:45 12/18/23 9:49	54.6 49.3	45.2 34.2	2.1	0.2	-30.82	118.5 54.3	-10.75	118.5 54.1
RL100284 RL100285	12/18/23 9:49	49.3 57.1	34.2	0.3	5.1	-30.82	78.4	-29.19	78.7
RLI00286	12/18/23 14:03	45.6	39.3	0.5	15.1	-0.29	97.8	-0.24	97.8
RLI00287	12/18/23 14:07	53	41.9	0	5.1	-20.22	102.2	-18.53	102.6
RLI0100C	12/7/23 10:14	58.7	39.5	0.3	1.5	-25.28	72.7	-25.32	72.8
RLI0102C	12/7/23 10:00	61.2	38.8	0	0	-14.15	88.2	-15.12	88.2
RLI0103C	12/13/23 10:19	56.6	40.5	0.1	2.8	-23.59	89.3	-23.75	89.6
RLI0105C	12/13/23 11:02	27.2	28.2	4.2	40.4	-1.13	60.9	-1.09	60.8
RLI0106C	12/13/23 11:12	54.8	42	0	3.2	-5.85	97.6	-6.37	97.8
RLI0107C	12/8/23 11:14	49.7	37.5	0.8	12	-0.22	113.3	-0.22	113.7
RLI0114A	12/18/23 10:22	61.7	32	1.4	4.9	-3.78	55	-4.52	55
RLI0115E	12/6/23 13:38	61.8	36	0.9	1.3	-17.41	87.6	-17.44	88.1
RLI0116E	12/18/23 10:03	56.2	35.1	1.6	7.1	-13.15	54.6	-15.6	54.7
RLI0117D	12/18/23 9:57	52.9	35	1.6	10.5	-24.64	51.8	-26.86	52
RLI0124G	12/8/23 14:36	61.2	38.2	0	0.6	-23.52	76.8	-23.6	77
RLI0126C	12/8/23 10:43	66.7	33.1	0.2	0	-1.21	86.4	-2.28	86.3
RLI0127B	12/6/23 14:07	53.6	36.8	0.2	9.4	-17.3	102.9	-17.31	102.8
RLI0128A	12/13/23 11:24	48.8	40.7	0	10.5	-2.13	115.5	-1.9	115.4
RLI0129E	12/7/23 11:46	53.6	20.6	4.9	20.9	-6.46	56.6	-5.84	56.6
RLI0130E	12/7/23 14:03	52.9	32.8	0.1	14.2	-12.39	72.4	-12.48	72.7
RLIHC101	12/8/23 14:26	59.1	40.8	0	0.1	-14.87	107.2	-15	107.6
RLIHC102	12/8/23 14:30	58.5	41	0	0.5	-24.63	107.3	-23.58	107.3
RLLC0176	12/12/23 14:31	33	32	0.2	34.8	-15.48	73.9	-12.43	71.8
RLLC0177	12/12/23 14:51	58.6	40.8	0	0.6	-18.94	106.1	-17.72	106.2
RLLC0179	12/4/23 10:37	60.3	36.9	0	2.8	-27.37	72.6	-27.4	72.5

Wellfield Monitoring Report - December 4, 6, 7, 8, 11, 12, 13, 14, 18, and 19, 2023

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	12/13/23 12:04	55.9	38.4	0	5.7	-0.59	101.3	-0.68	101.8
RLI00003	12/7/23 10:07	52.4	36.7	1.5	9.4	-4.29	65.3	-4.27	65.3
RLLC0180	12/13/23 10:47	56.6	39.7	0	3.7	-17.13	108.9	-21.88	108.9
RLLC0181	12/13/23 10:54	59.5	39.9	0	0.6	-6.38	93.8	-7.08	92.8
RLLC0183	12/6/23 14:13	43.1	33.4	0	23.5	-1.77	64.4	-1.78	64.4
RLLC0184	12/6/23 14:00	58.4	39.6	0	2	-20.17	101.9	-20.16	101.9
RLLC0185	12/12/23 14:46	53.8	40.4	0	5.8	-0.15	88.5	-1.69	102.6
RLLC0186	12/12/23 15:02	59.9	39.7	0	0.4	-20.94	62.4	-20.79	62.2
RLLC0187	12/12/23 15:09	58.5	39.8	0.2	1.5	-20.48	80.6	-21.2	81.1
RLLC0188	12/12/23 15:13	58	42	0	0	-18.48	99.9	-18.44	100
RLLC0189	12/13/23 10:33	37.4	33.7	1.1	27.8	-2.17	121.7	-1.56	121.6
RLLC0190	12/13/23 10:43	41.9	36.1	0.6	21.4	-16.37	116.5	-15.76	116.6
RLLC0191	12/8/23 14:06	60.8	39.2	0	0	-26.11	95.3	-25.96	95.3
RLLC0193	12/18/23 10:27	60.3	39.7	0	0	-7.74	101	-9.11	100.7
RLLC0194	12/13/23 11:33	49.1	39.7	0	11.2	-5.66	107.8	-5.72	107.6
RLLC0195	12/13/23 11:43	55.6	43.4	0	1	-0.91	102.3	-1.28	102.5
RLLC0196	12/13/23 11:47	62.2	37.2	0	0.6	-6.02	93.3	-5.68	93.4
RLLC0198	12/18/23 15:04	55.6	37.3	0	7.1	-2.38	82.6	-2.48	82.9
RLLC0199	12/8/23 11:35	58	36.7	0	5.3	-5.62	104.7	-6.37	105
RLLC0200	12/8/23 11:49	60.9	38.9	0	0.2	-1.93	76.2	-2.54	79.1
RLLC0201	12/18/23 14:53	42	56.1	0	1.9	-0.84	90	-0.7	89.8
RLLC0202	12/8/23 11:23	58.6	36.8	0.5	4.1	-5.94	60.2	-5.94	60.2
RLLC0204	12/8/23 11:08	53.7	37.8	0	8.5	-1.13	104.5	-1.26	104.5
RLLC0205	12/8/23 10:58	39.9	32	0	28.1	-0.07	83.8	-0.05	83.7
RLLC0206	12/8/23 10:38	56.3	37.4	0	6.3	-2.28	64.7	-2.44	63.3
RLLC0209	12/8/23 10:34	52.5	35.7	0	11.8	-0.48	85.7	-0.48	86.3
RLLC0210	12/8/23 11:03	42.1	33.4	0	24.5	-0.24	80.6	-0.19	80.2
RLLC0212	12/18/23 14:24	50.7	38.9	0	10.4	-6.18	110.5	-6.04	110.6
RLLC0214	12/18/23 14:19	57	39.9	0	3.1	-15.16	104.9	-15.82	104.9
RLLC0215	12/18/23 14:15	59.6	40.4	0	0	-24	55	-22.96	54.9
RLLC0217	12/4/23 11:59	61.7	38.3	0	0	-21.62	87.8	-23.05	87.8
RLLC0221	12/8/23 11:28	59.8	35.7	0	4.5	-5.99	79	-6.72	79.7
RLLC0223	12/18/23 14:42	56.9	43.1	0	0	-23.68	107.9	-23.4	107.9
RLLC0224 RLLC0225	12/18/23 14:47 12/18/23 14:58	58.1 62.3	41.9 37.7	0	0	-6.07 -2.14	102.9 74.9	-7.23 -2.3	102.8 74.9
RLLC0225 RLLC0226	12/18/23 14:30	53.1	36.9	1.7	8.3	-2.14	57.2	-2.5	54.5
RLLC0220 RLLC0227	12/4/23 10:18	50.3	30.9	0	14.7	-22.32	87	-24.00	87
RLLC0229	12/8/23 11:55	60.6	37.2	0	2.2	-1.54	83.2	-1.69	83.7
RLLC0230	12/14/23 10:50	48.9	48.7	0	2.2	-23.59	99.8	-21.37	99.3
RLLC0231	12/6/23 13:45	50.8	37.2	0	12	-4.64	98	-4.61	98
RLLC0232	12/6/23 13:53	54.1	37.4	0	8.5	-1.05	89.7	-1.24	90.3
RLLC0233	12/11/23 14:29	56.2	43.1	0.1	0.6	-0.63	101.2	-0.75	101.6
RLLC0233	12/18/23 11:06	56.1	38.5	0	5.4	-23.94	75.1	-23.96	74.9
RLLC0234	12/4/23 12:25	49.8	36.6	0	13.6	-11.96	112.1	-11.92	112.1
RLLC0235	12/4/23 12:30	48.5	38.8	0	12.7	-7.54	107.4	-7.55	107.4
RLLC0236	12/4/23 12:42	50.6	37.5	0	11.9	-6.8	105.7	-6.79	105.7
RLLC0237	12/18/23 10:09	49.1	44.5	0	6.4	-20.95	92.8	-17.88	92.8
RLLC0239	12/11/23 14:36	47.3	35.7	0	17	-0.19	91.7	-0.17	91.6
RLLC0240	12/11/23 14:32	49.2	39.9	0	10.9	-0.96	102.9	-0.89	102.9
RLLC0241	12/4/23 12:52	57	41.5	0	1.5	-17.45	110.5	-17.91	110.5
RLLC0242	12/4/23 12:57	59.4	39.4	0	1.2	-26.17	100.1	-26.15	100.1
RLLC0243	12/7/23 14:12	50.4	39.5	0	10.1	-11.16	100.5	-12.52	100.8
RLLC0243	12/8/23 14:11	46.2	36.2	0	17.6	-0.53	111.3	-0.47	111.7
RLLC0244	12/8/23 14:16	46	36.7	0	17.3	-3.21	115.6	-2.91	115.7
RLLC0245	12/8/23 14:20	44.1	36.7	0	19.2	-1.79	107.3	-1.79	107.3
RLLC0246	12/13/23 14:42	49.6	41.4	0	9	-5.84	106.1	-5.94	106

Wellfield Monitoring Report - December 4, 6, 7, 8, 11, 12, 13, 14, 18, and 19, 2023

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	12/13/23 12:04	55.9	38.4	0	5.7	-0.59	101.3	-0.68	101.8
RLI00003	12/7/23 10:07	52.4	36.7	1.5	9.4	-4.29	65.3	-4.27	65.3
RLLC0247	12/7/23 14:15	47.4	36.3	0	16.3	-4.63	100.2	-4.19	100.2
RLLC0248	12/19/23 10:15	49.6	39.1	0	11.3	-8.67	101.1	-10.6	101.1
RLLC0249	12/12/23 14:55	48.4	38.1	0	13.5	-15.91	116.4	-14.2	116.5
RLLC0250	12/12/23 14:23	50.1	39.5	0	10.4	-2.44	113.5	-2.4	113.5
RLLC0251	12/12/23 14:41	47.5	39.4	0	13.1	-1.66	111.6	-1.56	111.5
RLLC0252	12/4/23 12:11	52.5	41.2	0	6.3	-8.69	111.9	-9.12	111.8
RLLC0253	12/18/23 9:39	55.9	42.2	0	1.9	-20.63	107.4	-21.26	107.4
RLLC0255	12/14/23 11:02	59.2	40.8	0	0	-7.12	100.8	-8.57	101.1
RLLC0256	12/14/23 11:09	59.8	39.4	0	0.8	-26.41	87.2	-26.41	87.3
RLLC0257	12/4/23 12:05	54.2	42	0	3.8	-17.52	108.4	-17.53	108.4
RLLC0257	12/7/23 10:48	57.9	36.9	0	5.2	-18.56	62.4	-19	61.9
RLLC0258	12/7/23 10:52	69.5	25.7	0.8	4	-18.19	62.7	-18.79	62.6
RLLC0259	12/7/23 10:57	53.6	37.6	0	8.8	-12.07	82.9	-13.1	82.4
RLLC0260	12/8/23 10:47	47.6	38.5	0	13.9	-0.66	90.3	-0.63	90.4
RLLC0261	12/8/23 10:52	53.9	38	0	8.1	-2.83	97.3	-3.35	97.7
RLLC0262	12/18/23 10:58	49.5	35.2	0	15.3	-2.93	82.8	-2.53	82.5
RLLC0263	12/12/23 15:18	49.6	40.7	0	9.7	-8.66	115.8	-8.51	115.9
RLLC0264	12/13/23 10:37	41.8	37.8	0	20.4	-7.52	110.5	-6.29	110.5
RLLC0265	12/14/23 10:21	53.3	42.2	0	4.5	-3.78	105.2	-3.84	105.2
RLLC0266	12/13/23 14:24	35.2	29.3	4.9	30.6	-2.73	101.7	-1.96	101
RLLC0267	12/18/23 14:10	50.3	40.6	0	9.1	-14.33	109.5	-14.09	109.5
RLLC0268	12/13/23 14:28	53.6	40.9	0	5.5	-8.42	113.8	-9.15	113.7
RLLC0269	12/14/23 10:35	48.9	41.2	0.8	9.1	-5.44	113.9	-4.94	114.1
RLLC0270	12/14/23 10:30	55.2	43.8	0	1	-5.61	111	-6.13	111.1
RLLC0271	12/4/23 10:51	51	37.6	0	11.4	-17.35	99.1	-17.55	99.1
RLLC0272	12/13/23 14:51	46.4	38.1	0	15.5	-3.47	73.7	-3.53	73.4
RLLC0273	12/6/23 13:33	59.3	40.6	0.1	0	-16.64	108.7	-19.27	108.7
RLLC0274	12/13/23 11:06	52.5	40.9	0	6.6	-0.78	111.3	-1.31	111.4

There are 137 total collectors; 132 vertical wells and 5 horizontal collectors at RLI.

%= percent

°F= degrees Fahrenheit

"H2O = in. w.c.= inches in water column

Wellfield Monitoring Report - January 5, 8, 12, 16, 18, 19, 22, 23, and 24, 2024

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	1/12/24 14:22	53.3	37.7	0	9	-2.77	102.3	-2.78	102.4
RLI00003	1/18/24 12:25	52	34	2	12	-7.95	59.4	-7.92	59.5
RLI00008	1/12/24 10:56	52.9	30.5	3.1	13.5	-33.37	67.9	-32.75	68.8
RLI00016	1/23/24 14:19	66.9	32	0.5	0.6	-42.24	67.2	-42.97	66.8
RLI00017	1/12/24 11:16	62.1	35.1	0.4	2.4	-23.42	68.1	-25.01	68.4
RLI00018	1/12/24 11:10	51.8	31.5	1.3	15.4	-26.5	60.8	-26.52	60.9
RLI00019	1/12/24 11:04	51.8	30.8	2.3	15.1	-32.89	61.3	-33.19	61.4
RLI00034	1/18/24 11:37	59	39.8	0	1.2	-32.99	79.1	-33.04	79.1
RLI00035	1/18/24 11:42	57.9	38.4	0	3.7	-34.37	75.8	-34.37	75.8
RLI00045	1/18/24 11:52	51.3	33.6	0	15.1	-3.53	66	-3.52	66
RLI00047	1/18/24 11:48	47.3	34.3	0	18.4	-5.34	76.1	-5.33	76.2
RLI00065	1/5/24 14:23	56	43.4	0	0.6	-12.29	96	-14.6	96.1
RLI00083	1/5/24 11:38	61.5	38.5	0	0	-32.65	89.7	-33.55	89.8
RLI00095	1/5/24 10:54	52.5	34.5	0	13	-2.16	104.2	-2.57	104.3
RLI00132	1/22/24 11:24	60.8	39.1	0.1	0	-31.08	69.6	-34.64	69.9
RLI00134	1/24/24 10:17	31.8	32.3	0	35.9	-2.25	126.8	-0.99	126.2
RLI00135	1/16/24 10:09	54.6	39.6	0	5.8	-6.68	102.7	-7.29	103.4
RLI00137	1/23/24 12:05	47.8	25.5	4.8	21.9	-17.42	76.9	-17.97	76.9
RLI00140	1/8/24 11:52	54.4	42	0	3.6	-28.28	83.6	-27.68	83.7
RLI00141	1/8/24 10:17	47.9	41.3	0.2	10.6	-0.44	84.8	-0.4	84.8
RLI00142	1/8/24 11:45	57.1	42.6	0	0.3	-20.27	80.8	-20.61	81.3
RLI00220	1/23/24 11:04	46.8	33.6	3.1	16.5	-27.27	77.9	-23.72	77.9
RLI00275	1/5/24 11:34	43.2	35.1	0	21.7	-18.47	98.5	-17.53	98.4
RLI00276	1/5/24 13:50	52.1	40.3	0.1	7.5	-36.32	81.9	-37.15	82.2
RLI00277	1/12/24 14:06	50.2	39.6	0	10.2	-1	110.2	-0.88	110.1
RLI00278	1/12/24 14:11	48.1	38.9	0	13	-4.07	109.4	-2.79	108.9
RLI00279	1/12/24 14:38	56.2	42.9	0	0.9	-4.49	113.2	-4.88	113.8
RLI00280	1/12/24 10:39	46.7	35.7	0	17.6	-6.73	110.3	-5.27	110.3
RLI00281	1/16/24 9:26	49.3	39.7	0	11	-3.66	114.4	-2.75	114.3
RLI00282	1/8/24 13:42	57.6	42.3	0.1	0	-14.93	110.9	-15.31	110.8
RLI00283	1/8/24 14:13	56.7	43.3	0	0	-10.49	118.9	-11.46	118.8
RLI00284	1/5/24 11:47	48.3	31.6	1.8	18.3	-32.09	71.9	-31.09	72
RLI00285 RLI00286	1/5/24 11:29	57 47.5	35.1 40.4	1.1 0	6.8 12.1	-25.07 -0.43	82.4 98.6	-25.13	82.6 98.2
RL100286 RL100287	1/19/24 10:29	53.8	40.4	0	4.4	-0.43	103.7	-0.32 -34	103.9
RLI0100C	1/18/24 11:32	59	39.1	0.1	1.8	-32.39	71.8	-32.99	72.2
RLI0100C	1/18/24 11:22	60.1	37.4	0.1	2.5	-25.21	85.5	-25.64	85.5
RLI0102C	1/16/24 10:18	58.2	41.5	0	0.3	-31.81	82.6	-31.97	82.8
RLI0105C	1/16/24 9:33	29.4	31.1	0.8	38.7	-9.94	67.5	-8.96	67.3
RLI0106C	1/16/24 9:21	54.2	41.3	0.2	4.3	-14.51	91	-15.58	91.1
RLI0107C	1/18/24 10:38	39.1	29.9	3.6	27.4	-0.2	106.3	-0.11	104.9
RLI0114A	1/12/24 10:20	46.5	25.6	4.7	23.2	-37.25	55.2	-40.31	55.7
RLI0115E	1/12/24 10:05	60.3	35.5	0.8	3.4	-34.55	86.7	-36.82	86.4
RLI0116E	1/12/24 9:10	45.7	29.9	4.8	19.6	-21.45	44.4	-19.08	45
RLI0117D	1/23/24 12:21	60.1	37.8	0.1	2	-37.58	82.7	-38.41	82.6
RLI0124G	1/19/24 11:53	61.9	38.1	0	0	-40.07	63.1	-40.03	63.1
RLI0126C	1/18/24 11:11	64.5	32.1	0.1	3.3	-17.67	71.2	-18.29	70.1
RLI0127B	1/22/24 11:15	50.5	35.6	0.7	13.2	-25.65	103.1	-25.57	103.1
RLI0128A	1/12/24 13:55	51.5	41	0	7.5	-2	115.6	-1.99	115.7
RLI0129E	1/23/24 15:08	47.8	28.9	3.1	20.2	-19.48	60.8	-19.02	60.4
RLI0130E	1/18/24 12:49	72.4	27.6	0	0	-2.36	57	-3.87	60
RLIHC101	1/19/24 11:46	58.6	41.4	0	0	-35.19	106.6	-36.49	106.4
RLIHC102	1/19/24 11:49	58.5	41.5	0	0	-43.45	107.1	-40.56	107.1
RLLC0176	1/16/24 12:42	19.9	23.7	4.5	51.9	-2.57	53.8	-2.6	53.8
RLLC0177	1/16/24 12:08	59	41	0	0	-26.6	109.3	-28.05	109.3
RLLC0179	1/5/24 11:22	53.8	32	1	13.2	-35.05	68.4	-35.57	68.4

Wellfield Monitoring Report - January 5, 8, 12, 16, 18, 19, 22, 23, and 24, 2024

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	1/12/24 14:22	53.3	37.7	0	9	-2.77	102.3	-2.78	102.4
RLI00003	1/18/24 12:25	52	34	2	12	-7.95	59.4	-7.92	59.5
RLLC0180	1/16/24 9:55	55.2	40	0	4.8	-30.26	107.3	-24.51	107.3
RLLC0181	1/16/24 9:44	59.7	40.3	0	0	-11.47	106.9	-11.77	106.7
RLLC0183	1/22/24 11:08	42.2	32.4	0.1	25.3	-3	62.4	-2.6	61.9
RLLC0184	1/22/24 10:54	59.4	39.3	0.1	1.2	-25.77	101	-26.5	101.1
RLLC0185	1/16/24 12:13	49.3	38.3	0	12.4	-0.28	89.4	-0.14	85.8
RLLC0186	1/16/24 10:24	60.3	39.7	0	0	-31.88	65.4	-31.23	65.8
RLLC0187	1/16/24 11:50	60.6	39.4	0	0	-32.27	86.9	-32.39	86.7
RLLC0188	1/16/24 11:46	59.1	40.8	0	0.1	-27.62	102	-27.1	101.9
RLLC0189	1/16/24 12:00	36.1	32.7	1.5	29.7	-0.27	71	-0.27	70.9
RLLC0190	1/16/24 10:04	51.3	40.1	0	8.6	-24.88	117.4	-23.35	117.4
RLLC0191	1/8/24 10:12	60.7	39.3	0	0	-28.86	93.7	-28.94	93.8
RLLC0193	1/12/24 10:12	61.6	38.4	0	0	-39.98	80.4	-39.04	79.9
RLLC0194	1/12/24 14:00	50.1	39.6	0	10.3	-7.21	106.9	-5.24	106.9
RLLC0195	1/12/24 14:27	50.7	40.9	0.4	8	-4.23	103.4	-2.96	103.4
RLLC0196	1/12/24 14:14	61.3	37.4	0	1.3	-17.13	96.2	-17.29	96.2
RLLC0198	1/23/24 14:38	65.3	32.8	0.5	1.4	-11.01	62.5	-12.14	62.6
RLLC0199	1/18/24 9:45	62.3	37.7	0	0	-19.9	54.2	-19.17	55.1
RLLC0200	1/18/24 9:35	59.9	35.5	0	4.6	-19.3	63	-20.62	63.2
RLLC0201	1/22/24 10:29	49.2	50.7	0	0.1	-3.04	93.9	-1.49	93.6
RLLC0202	1/18/24 10:23	62.1	35.8	0.3	1.8	-18.02	53.8	-20.12	53.7
RLLC0204	1/18/24 10:28	38.4	32.6	0	29	-3.35	104.7	-2.89	104.6
RLLC0205	1/18/24 10:54	26.3	27.6	0	46.1	-0.26	88.3	-0.17	85.1
RLLC0206	1/18/24 11:04	41.2	33.9	0	24.9	-9.03	93.9	-7.38	90.2
RLLC0209	1/18/24 11:00	27.1	29.1	0	43.8	-1.91	89.5	-1.62	87.2
RLLC0210	1/18/24 10:46	34.9	31	0	34.1	-0.67	84.5	-0.38	81
RLLC0212	1/19/24 11:14	51.5 57.2	39.5 40.7	0	9 2.1	-9.25 -25.63	88.7	-6.81	88.7
RLLC0214 RLLC0215	1/19/24 11:10 1/19/24 11:04	57.2	40.7	0	0	-25.63	100.7 58.4	-25.01 -33.92	100.7 58.4
RLLC0215 RLLC0217	1/5/24 11:51	62.2	37.8	0	0	-33.88	83.9	-33.92	83.9
RLLC0221	1/23/24 14:43	65.4	25.2	1.7	7.7	-29.09	62.4	-20.02	62.3
RLLC0223	1/8/24 14:20	57.3	42.7	0	0	-19.88	108.1	-21.54	108.1
RLLC0224	1/8/24 14:25	58	42.1	0	0	-7.34	103.4	-7.87	103.4
RLLC0225	1/23/24 15:17	48.4	51.2	0.2	0.2	-1.29	91.8	-1.26	92.2
RLLC0226	1/19/24 11:21	49.4	35.8	2.9	11.9	-33.14	61.4	-32.91	61.4
RLLC0227	1/5/24 10:39	46.7	34.3	0	19	-8.54	85.9	-7.67	85.9
RLLC0229	1/18/24 9:39	35.4	32.6	0	32	-10.76	87.2	-7.79	83.1
RLLC0230	1/23/24 15:32	56.2	43.7	0.1	0	-17.68	118.5	-17.72	118.6
RLLC0231	1/12/24 10:35	53.5	37.4	0	9.1	-4.37	97.5	-3.69	97.5
RLLC0232	1/12/24 10:46	49.8	35.9	0	14.3	-2.29	90.9	-1.85	89.9
RLLC0234	1/5/24 13:56	50.6	35.6	0	13.8	-24.12	110	-23.41	110.1
RLLC0234	1/12/24 9:48	50.9	35.9	0	13.2	-25.89	109.6	-22.71	109.5
RLLC0235	1/5/24 14:03	46.9	37.8	0	15.3	-8.84	105.4	-8.13	107
RLLC0235	1/12/24 9:42	49.9	38.6	0	11.5	-8.03	106.1	-6.5	106.1
RLLC0236	1/5/24 14:08	51.8	38	0	10.2	-8.92	105.1	-9.21	105.1
RLLC0236	1/12/24 9:37	50.9	38.2	0	10.9	-10.54	104.7	-10.52	104.7
RLLC0237	1/23/24 12:07	52.3	45.8	0	1.9	-17.99	92	-19.84	92.1
RLLC0239	1/12/24 9:16	43.2	44.8	0	12	-0.21	88.3	-0.24	88.2
RLLC0240	1/12/24 9:21	49.9	46.5	0	3.6	-1.28	102.1	-0.82	101.9
RLLC0241	1/5/24 14:18	59.5	40.5	0	0	-36.87	96.5	-36.39	96.5
RLLC0242	1/5/24 14:27	56.8	42	0	1.2	-24.16	109.2	-26.71	109.1
RLLC0243	1/19/24 11:41	48.4	36.9	0	14.7	-1.25	110.7	-0.72	110.6
RLLC0244	1/19/24 11:35	43.7	35.6	0	20.7	-6.79	116.3	-4.17	115.8
RLLC0245	1/19/24 11:30	41.4	35.4	0	23.2	-2.22	104.8	-1.39	103.3
RLLC0246	1/8/24 11:40	54.3	42.1	0	3.6	-6.17	102.3	-6.86	102.3

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	1/12/24 14:22	53.3	37.7	0	9	-2.77	102.3	-2.78	102.4
RLI00003	1/18/24 12:25	52	34	2	12	-7.95	59.4	-7.92	59.5
RLLC0247	1/18/24 13:01	48.2	35.8	0	16	-5.17	99.3	-3.62	99.2
RLLC0248	1/18/24 12:56	48.2	38.5	0	13.3	-14.07	100.8	-8.05	101.1
RLLC0249	1/16/24 12:23	58.6	40.7	0	0.7	-35.18	112.1	-35.94	112.2
RLLC0250	1/16/24 12:35	52.4	39.9	0	7.7	-2.93	113.2	-2.9	113.3
RLLC0251	1/16/24 12:32	51.9	40.2	0	7.9	-1.47	111.3	-1.44	111.3
RLLC0252	1/5/24 13:46	52.8	41.4	0	5.8	-12.22	111.5	-12.86	111.5
RLLC0253	1/5/24 13:42	54.6	42.1	0.1	3.2	-23.19	107.6	-23.7	107.6
RLLC0255	1/23/24 11:13	59.4	40.6	0	0	-13.06	101.1	-16.04	101.3
RLLC0256	1/23/24 15:49	44.4	31.2	4.5	19.9	-45.39	66.7	-44.92	66.7
RLLC0257	1/18/24 12:30	58.4	36.5	0.2	4.9	-23.06	56.6	-24.16	56.6
RLLC0258	1/18/24 12:33	71.4	27.6	0	1	-30.77	57.4	-30.81	57.4
RLLC0259	1/18/24 12:36	53.2	36	0	10.8	-23.3	81.3	-23.28	81.3
RLLC0260	1/18/24 11:15	40.6	34.4	0	25	-2.28	94.6	-1.63	94.4
RLLC0261	1/18/24 11:18	50.1	35.7	0	14.2	-4.7	97.7	-4.06	97.7
RLLC0262	1/18/24 11:27	51	34.6	0	14.4	-4.6	84.2	-3.34	84
RLLC0263	1/16/24 11:43	52.5	39.5	0	8	-12	115.4	-11.15	115.5
RLLC0264	1/16/24 9:50	40.6	37.5	0	21.9	-9.03	110.5	-6.67	110.3
RLLC0265	1/8/24 13:48	56.6	42.8	0	0.6	-3.71	103.8	-3.76	104.6
RLLC0266	1/8/24 11:20	44	34.3	3.1	18.6	-2.8	96	-2.75	95.8
RLLC0267	1/19/24 10:58	52.1	41.9	0	6	-15.16	109.5	-15.07	109.5
RLLC0268	1/8/24 11:29	57.3	42.1	0	0.6	-10.03	112.5	-11	112.4
RLLC0269	1/8/24 13:56	54.8	43.1	0	2.1	-4.66	112.7	-5.13	112.6
RLLC0270	1/8/24 13:52	56	44	0	0	-4.54	109.5	-5.05	109.5
RLLC0271	1/5/24 11:42	49	37.1	0	13.9	-23.03	98.4	-22.08	98.4
RLLC0272	1/8/24 11:58	53.1	41.8	0	5.1	-5.18	106.2	-5.3	106.4
RLLC0273	1/12/24 9:58	59.8	39.6	0	0.6	-32.05	108.2	-29.87	108.2
RLLC0274	1/16/24 9:37	36.3	35	0	28.7	-3.9	112.7	-1.71	111.6

There are 137 total collectors; 132 vertical wells and 5 horizontal collectors at RLI.

%= percent

°F= degrees Fahrenheit

"H2O = in. w.c.= inches in water column

#### Wellfield Monitoring Report - February 5, 6, 9, 13, 15, 21, 22, and 23, 2024

		CH4	CO2	O2	Del	Initial Static	Initial	Adjusted Static	Adjusted
Device Name	Date Time	(Methane)	(Carbon Dioxide)	(Oxygen)	Balance	Pressure	Temperature	Pressure	Temperature
		(%)	(%)	(%)	Gas (%)	("H2O)	(°F)	("H2O)	(°F)
RLHC0153	2/13/24 10:12	61.4	36.6	0	2	-20.84	74.3	-22.12	74.4
RLI00003	2/15/24 12:09	53.8	33.9	1.7	10.6	-8.25	62.4	-9.64	62.2
RLI00008	2/23/24 10:28	46.6	26.5	4.6	22.3	-43.07	64.9	-37.05	64.4
RLI00016	2/23/24 11:07	60.5	29.2	1.4	8.9	-45.39	61.8	-46.64	61.6
RLI00017	2/23/24 11:03	58.4	32.6	1.8	7.2	-29.27	65.2	-32.59	65.4
RLI00018	2/23/24 10:56	61.6	32.9	1	4.5	-32.05	63.2	-34.26	63.5
RLI00019	2/23/24 10:54	51.4	26.6	3.5	18.5	-31.37	63	-31.34	62.9
RLI00034	2/23/24 11:47	59.9	40.1	0	0	-39.31	77.6	-39.07	77.6
RLI00035	2/23/24 11:51	60.4	38.6	0	1	-38.55	75.3	-39.42	75.2
RLI00045	2/23/24 12:03	43.9	32.7	0	23.4	-11.48	68.2	-10.77	66.5
RLI00047	2/23/24 12:00	53.9	35.8	0	10.3	-22.65	72.8	-23.34	74
RLI00065	2/6/24 11:47	56.1	43.3	0	0.6	-17.9	96.2	-20.92	96.3
RLI00083	2/22/24 12:37	61.9	38.1	0	0	-46.95	87	-46.21	87
RLI00095	2/5/24 10:19	53.5	34.6	0	11.9	-3.54	103.8	-3.91	103.8
RLI00132	2/9/24 11:04	61.9	38	0	0.1	-34.93	77.2	-37.77	77.6
RLI00134	2/9/24 10:38	48.7	45.1	0	6.2	-0.28	95.3	-0.35	99.2
RLI00135	2/13/24 15:11	58.2	39.3	0.2	2.3	-17.9	85.6	-21.38	85.7
RLI00137	2/6/24 12:22	63.8	31.6	0.8	3.8	-37.77	66.4	-41.03	66.4
RLI00140	2/21/24 11:24	50	39.7	0.6	9.7	-35.01	59.5	-39.15	59.4
RLI00141	2/5/24 10:26	53.6	45.2	0	1.2	-0.38	60.4	-0.6	60.3
RLI00142	2/21/24 11:16	57.5	41.9	0.2	0.4	-30.7	66	-31.38	66.1
RLI00220	2/13/24 14:39	48.6	33.2	3.2	15	-28.15	79.6	-27.49	79.3
RLI00275	2/22/24 12:31	58.9	39.2	0	1.9	-13.46	96	-15.77	96.4
RLI00276	2/6/24 11:32	57.4	40.7	0.2	1.7	-46.7	70.4	-47.77	70.7
RLI00277	2/13/24 9:57	46.4	38	0	15.6	-1.94	109.9	-1.39	109.1
RLI00278	2/13/24 10:03	56.3	40.2	0	3.5	-2.85	109.3	-3.31	109.8
RLI00279	2/13/24 9:47	51.9	40.4	0	7.7	-6.01	130.8	-6.15	130.8
RLI00280	2/9/24 10:27	56.9	36.9	0	6.2	-4.42	109.7	-5.29	109.8
RLI00281	2/13/24 10:28	54.1	41.8	0	4.1	-2.35	114.9	-2.62	114.9
RLI00282	2/21/24 11:50	56.8	41.8	0.1	1.3	-23.16	109.3	-23.79	109.3
RLI00283	2/22/24 11:56	55.6	44.3	0.1	0	-19.03	118.6	-20.85	118.5
RLI00284	2/22/24 12:57	62.1	37.9	0	0	-32.41	89.8	-35.99	89.9
RLI00285	2/22/24 12:27	62.9	37.1	0	0	-2.81	82.8	-2.99	82.7
RLI00286	2/5/24 10:39	54	44.1	0	1.9	-0.33	96.8	-0.38	97.5
RLI00287	2/5/24 10:42	55.1	41.9	0	3	-39.5	103.1	-34.09	102.8
RLI0100C	2/23/24 11:42	60.3	39.7	0	0	-34.39	76.3	-34.76	76.4
RLI0102C	2/9/24 11:19	61.1	36.9	0	2	-25.36	87	-25.75	87
RLI0103C	2/13/24 15:31	57.5	41.4	0	1.1	-30.98	78.5	-30.08	78.6
RLI0105C	2/23/24 12:15	55.7	33.3	1.3	9.7	-22.81	62.1	-27.13	62.2
RLI0106C	2/13/24 10:24	54.1	41.1	0.1	4.7	-24.01	71.1	-23.92	71.2
RLI0107C	2/15/24 10:54	45.6	34.6	1.1	18.7	-0.08	93.3	-0.12	94.1
RLI0114A	2/15/24 10:32	57.1	28.6	2.6	11.7	-21.44	62.2	-20.41	62.4
RLI0115E	2/15/24 10:15	54.8	34	1.6	9.6	-29.95	85	-38.26	85.2
RLI0116E	2/6/24 12:45	45.4	29.2	4.6	20.8	-30.06	64.4	-28.81	64.2
RLI0117D	2/6/24 12:25	55.3	36.6	0	8.1	-39	74	-41.31	74.5
RLI0124G	2/5/24 12:00	61.8	38.2	0	0	-41.76	63.6	-42.16	63.6
RLI0126C	2/9/24 11:38	53.8	28	2.4	15.8	-23.76	74.5	-24.43	74.8
RLI0127B	2/9/24 10:53	48.6	34	0.8	16.6	-24.33	101.6	-22.07	101.2
RLI0128A	2/13/24 9:42	52.1	40.7	0	7.2	-2.53	116	-2.7	116
RLI0129E	2/15/24 11:54	73.9	25.7	0	0.4	-21.72	63.2	-22.35	62.2
RLI0130E	2/15/24 11:47	59	30.4	0	10.6	-33.59	66.6	-33.59	66.6
RLIHC101	2/5/24 11:53	58.3	41.7	0	0	-44.1	99.5	-40.21	100.9
RLIHC102	2/5/24 11:56	57.4	42.6	0	0	-44.2	109.8	-43.32	109.9
RLLC0176	2/13/24 15:58	56.3	40	0	3.7	-5.56	62.5	-7.09	61
			39.9	0	0	-23.49	107.1	-25.34	107.2
RLLC0177	2/13/24 15:37	60.1	39.9	0	0	-20.40	107.1	-20.04	107.2

#### Wellfield Monitoring Report - February 5, 6, 9, 13, 15, 21, 22, and 23, 2024

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	2/13/24 10:12	61.4	36.6	0	2	-20.84	74.3	-22.12	74.4
RLI00003	2/15/24 12:09	53.8	33.9	1.7	10.6	-8.25	62.4	-9.64	62.2
RLLC0180	2/13/24 14:55	57.1	39	0	3.9	-33.38	104.7	-33.01	104.8
RLLC0181	2/13/24 14:52	57.6	38.7	0	3.7	-12.29	107.6	-13.3	106.8
RLLC0183	2/9/24 10:57	53.3	33.2	0	13.5	-2.35	64.8	-3.65	63
RLLC0184	2/9/24 10:44	59.6	38.9	0	1.5	-27.43	100.3	-27.4	100.3
RLLC0185	2/13/24 15:41	56.9	41.9	0	1.2	-0.61	68.1	-3.27	80.5
RLLC0186	2/13/24 15:26	61.3	38.6	0	0.1	-28.36	59.4	-28.37	59.5
RLLC0187	2/13/24 15:21	61.2	38.8	0	0	-28.1	75.9	-29.11	76.2
RLLC0188	2/13/24 15:18	58.7	40.3	0	1	-25.61	98.5	-25.08	98.6
RLLC0189	2/13/24 14:59	53.9	41.7	0	4.4	-0.03	69	-2.73	88.7
RLLC0190	2/13/24 15:07	55	41	0	4	-22.9	116	-23.51	116.1
RLLC0191	2/5/24 12:05	60	40	0	0	-44.51	90.9	-44.83	90.9
RLLC0193	2/15/24 10:22	48.4	31.3	2.8	17.5	-22.73	66.5	-20.58	66.1
RLLC0194	2/13/24 9:53	48.3	38.3	0	13.4	-4.79	105.5	-3.35	105.1
RLLC0195	2/13/24 10:18	56.4	41.5	0	2.1	-2.69	95.5	-3.37	95.8
RLLC0196	2/13/24 10:06	63.5	36.4	0	0.1	-20.41	86.9	-20.88	87.1
RLLC0198	2/15/24 11:18	70	25	0	5	-16.89	58.4	-17.39	58.4
RLLC0199	2/15/24 11:34	30.7	19.6	4.3	45.4	-3.59	76.5	-2.59	77.6
RLLC0200	2/15/24 11:40	29.5	27.5	2.6	40.4	-22.06	61.6	-15.72	61.6
RLLC0201	2/23/24 12:29	58.2	41.8	0	0	-21.05	75.1	-23.2	75.1
RLLC0202	2/15/24 11:09	61.8	34.3	0.6	3.3	-21.21	58.7	-21.84	58.8
RLLC0204	2/5/24 11:08	48.5	51.5	0	0	-0.78	89.6	-0.63	89.4
RLLC0204	2/15/24 11:01	32.7	29.6	0	37.7	-6.44	104.8	-5.82	104.8
RLLC0205	2/15/24 10:42	35.3	28.5	0	36.2	-0.15	78.8	-0.12	78.5
RLLC0206	2/9/24 11:32	53.4	35.7	0	10.9	-8.39	89.9	-9.09	89.9
RLLC0209	2/9/24 11:28	40	29.4	0	30.6	-1.73	88	-1.72	88
RLLC0210	2/15/24 10:47	55.4	36.6	0	8	-11.1	59.6	-16.49	59.7
RLLC0212	2/5/24 11:27	57.7	42.3	0	0	-6.49	88.5	-7.73	88.2
RLLC0214	2/5/24 11:23	57.6	42.4	0	0	-32.62	81.2	-31.91	81.2
RLLC0215	2/5/24 10:50	57.5	42.5	0	0	-39.81	64.4	-39.19	64.3
RLLC0217	2/22/24 13:13	62.2	36.9	0.6	0.3	-37.87	74	-45.88	74.4
RLLC0221	2/15/24 11:13	60.3	29	0	10.7	-2.2	60.6	-3.14	60.4
RLLC0223	2/5/24 10:59	56.1	43.9	0	0	-37.92	107.2	-27.41	107.3
RLLC0224	2/5/24 11:03	56.2	43.8	0	0	-12.34	103.4	-13.88	103.2
RLLC0225	2/5/24 11:36	49.6	35.7	2.1	12.6	-4.96	60	-5.41	60
RLLC0226	2/5/24 11:31	52.7	36.8	2.1	8.4	-33.49	62.7	-32.8	62.5
RLLC0227	2/5/24 10:13	58.1	35.7	0	6.2	-6.12	84.5	-7.6	84.5
RLLC0229	2/15/24 11:36	30.5	20.4	3.8	45.3	-2.02	78.9	-1.98	78.9
RLLC0230	2/22/24 12:00	53.6	43.9	2.5	0	-9.09	108.9	-9.55	109.8
RLLC0231	2/9/24 10:21	61.1	38.9	0	0	-3.64	97.1	-4.7	97.5
RLLC0232	2/9/24 10:31	61.1	38.3	0	0.6	-2.12	80.7	-3.07	81.1
RLLC0234	2/6/24 12:08	61.2	36.4	0	2.4	-43.41	102.7	-47.32	103.4
RLLC0235	2/6/24 12:04	58.7	40.5	0	0.8	-5.57	107.3	-6.85	107.4
RLLC0236	2/6/24 11:59	58.6	39.7	0	1.7	-25.99	102.9	-28.25	102.8
RLLC0237	2/6/24 12:15	55.1	44.2	0	0.7	-37.37	88.1	-38.75	88
RLLC0239	2/6/24 12:53	55.7	42.7	0	1.6	-0.01	93.6	-0.32	94.7
RLLC0240	2/6/24 12:56	51.7	47	0	1.3	-0.48	101.6	-0.47	101.7
RLLC0241	2/6/24 11:54	59	40.6	0	0.4	-47.02	90.4	-47.94	90.5
RLLC0242	2/6/24 11:50	57.6	41.8	0	0.6	-34.7	108.5	-37.26	108.5
RLLC0243	2/5/24 10:33	59.5	39.2	0	1.3	-33.18	75.1	-33.26	75.3
RLLC0244	2/5/24 11:48	56	40.7	0.1	3.2	-41.24	93.9	-42.39	103.3
RLLC0245	2/5/24 11:41	56.7	40	0	3.3	-1.61	102.2	-1.59	102.2
RLLC0246	2/21/24 10:42	56.7	43.3	0	0	-27.79	97.2	-30.22	97.1
RLLC0247	2/23/24 12:38	59.7	39.2	0	1.1	-3.61	99.8	-4.51	99.8
RLLC0248	2/23/24 12:35	59.1	39.9	0	1	-8.8	101.3	-9.98	101.3

Wellfield Monitoring Report -	February 5, 6, 9, 13, 15, 21, 22, and 23, 2024
g	· • • • • • • • • • • • • • • • • • • •

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	2/13/24 10:12	61.4	36.6	0	2	-20.84	74.3	-22.12	74.4
RLI00003	2/15/24 12:09	53.8	33.9	1.7	10.6	-8.25	62.4	-9.64	62.2
RLLC0249	2/13/24 15:46	58.2	41.2	0	0.6	-31.36	108.3	-32.07	108.3
RLLC0250	2/13/24 15:54	56.2	41.7	0	2.1	-3.3	112.4	-4.18	112.6
RLLC0251	2/13/24 15:51	54.8	43	0	2.2	-1.47	111.9	-1.73	112.2
RLLC0252	2/6/24 11:27	56.7	43.3	0	0	-8.48	110.7	-9.51	110.7
RLLC0253	2/6/24 11:38	57.1	42.4	0	0.5	-25.12	106.8	-26.01	106.8
RLLC0255	2/21/24 11:47	60.5	39.5	0.1	-0.1	-38.12	96.9	-42.08	97
RLLC0256	2/21/24 11:54	54.3	38.5	3	4.2	-30.3	93	-31.47	94.2
RLLC0257	2/15/24 12:05	57.9	38.1	0	4	-28.83	62.5	-29.25	62.4
RLLC0258	2/15/24 12:03	70.2	29.7	0	0.1	-34.92	60.6	-34.88	60.6
RLLC0259	2/15/24 11:59	49.8	33.3	2.1	14.8	-35.94	61.4	-35.39	61.3
RLLC0260	2/9/24 11:43	47.9	35.1	0	17	-1.27	93.1	-0.75	93
RLLC0261	2/9/24 11:23	55.5	36.4	0	8.1	-8.69	96.3	-9.83	96.5
RLLC0262	2/9/24 11:15	57	32.1	1	9.9	-12.45	61.5	-16.71	61.6
RLLC0263	2/13/24 15:15	53.9	41.5	0	4.6	-9.71	115.6	-10.5	115.6
RLLC0264	2/13/24 14:47	50.4	41.2	0	8.4	-6.23	110.4	-6.25	110.4
RLLC0265	2/21/24 10:47	56.8	43.2	0	0	-6.65	104.4	-6.64	104.5
RLLC0266	2/21/24 10:56	52.8	40.7	1	5.5	-2.79	60.2	-3.93	60.4
RLLC0267	2/5/24 10:45	54	45.5	0	0.5	-32.98	111.1	-33.28	111.1
RLLC0268	2/21/24 11:02	51.5	41.1	0.2	7.2	-13.94	98	-13.92	98
RLLC0269	2/22/24 11:10	56	44	0	0	-10.98	106.7	-11.91	106.7
RLLC0270	2/22/24 11:06	55.1	44.9	0	0	-7.93	109.4	-8.98	109.3
RLLC0271	2/22/24 12:49	60.2	39.1	0	0.7	-20.17	97.6	-23.86	98
RLLC0272	2/21/24 11:28	56.3	41.7	0	2	-9.48	92.9	-10.16	93
RLLC0273	2/15/24 10:34	60.9	39.1	0	0	-4.08	97.2	-5.32	97.3
RLLC0274	2/13/24 10:33	52.5	41.5	0	6	-4.1	111.1	-4.47	111.1

There are 137 total collectors; 132 vertical wells and 5 horizontal collectors at RLI.

%= percent

°F= degrees Fahrenheit

"H2O = in. w.c.= inches in water column

Wellfield Monitoring Report - March 5, 6, 8, 13, 14, 15, 26, 27, and 28, 2024

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	3/6/24 8:37	61.4	37.6	0.2	0.8	-13.22	60.2	-13.44	60.5
RLI00003	3/6/24 10:42	56.6	35.3	1.4	6.7	-12.41	64.1	-12.42	63.8
RLI00003	3/14/24 13:53	50.9	32.8	3	13.3	-8.96	69.9	-8.95	69.9
RLI00008	3/8/24 8:19	37.1	22.2	7.8	32.9	-40.04	60.3	-39.84	59.6
RLI00008	3/8/24 8:22	44.1	25.9	4.7	25.3	-37.83	58	-36.98	57.8
RLI00016	3/27/24 9:04	59.2	30.4	0.9	9.5	-40.63	58.3	-41.39	58.2
RLI00017	3/27/24 9:08	63	34.9	0.9	1.2	-28.41	65.5	-29.51	65.7
RLI00018	3/27/24 9:12	59.2	31.9	2	6.9	-27.39	60.3	-27.34	60.3
RLI00019	3/27/24 9:18	37.9	21.6	8.5	32	-34.57	55.4	-31.43	55.4
RLI00019	3/27/24 9:22	38.3	21.8	8.3	31.6	-31.05	55.3	-31.89	55.3
RLI00034	3/14/24 14:11	44.6	29.6	4.9	20.9	-33.4	75.4	-28.73	75.5
RLI00035	3/14/24 14:20	60.6	39.3	0.1	0	-40.18	75	-39.83	75.1
RLI00045	3/14/24 14:28	29.1	27.8	0.1	43	-6.56	71.5	-6.55	71.3
RLI00047	3/14/24 14:33	29.5	27.4	0.1	43	-11.75	76.5	-11.7	76.5
RLI00065	3/8/24 8:59	55.9	41.7	0.5	1.9	-15.75	92.5	-21.87	92.7
RLI00083	3/5/24 10:35	61.5	38.5	0	0	-39.08	85.8	-38.29	85.9
RLI00095	3/5/24 10:23	45.3	32.4	0.1	22.2	-4.89	104.4	-4.64	104.2
RLI00132	3/6/24 11:05	45.4	29.6	4.8	20.2	-35.71	66.5	-35.71	66.5
RLI00134	3/27/24 9:48	59.2	40.8	0	0	-0.1	95.8	-0.26	105.3
RLI00135	3/27/24 9:55	58.1	41.9	0	0	-12.28	83.6	-15.68	85.2
RLI00137	3/27/24 8:44	10.5	8.7	16.1	64.7	-34.95	61.1	-27.79	61.1
RLI00137	3/27/24 8:52	40.2	24.1	7.6	28.1	-30.08	60.3	-31.85	60.3
RLI00140	3/13/24 15:05	53.5	40.3	0.1	6.1	-45.51	67.3	-44.09	67.4
RLI00140	3/14/24 11:41	41.8	34.1	2	22.1	-43.73	65	-37.96	65.3
RLI00141	3/14/24 10:13	53.9	45.5	0	0.6	-0.29	80.8	-0.51	80.8
RLI00142	3/13/24 15:00	54.2	39.9	0.6	5.3	-14.13	73.8	-15.74	73.7
RLI00142 RLI00220	3/14/24 10:35 3/5/24 9:43	52.9 27.5	40 21.1	0.8 10.3	6.3 41.1	-21.29 -23.79	76 56.1	-21.34 -5.09	76 56
RLI00220	3/5/24 9:43	27.5	21.1	10.3	39.5	-2.96	55.8	-3.09	55.8
RLI00220	3/15/24 8:25	59.6	40.4	0	0	1.84	71.5	-1.59	74
RLI00275	3/5/24 10:30	57.9	41	0.1	1	-15.88	91.8	-18.57	93
RLI00276	3/14/24 15:08	56.2	42.3	0.6	0.9	-42.37	74	-43.51	74.1
RLI00277	3/6/24 13:28	57.4	41.7	0.1	0.8	-1.05	107.6	-1.42	108.3
RLI00278	3/26/24 16:09	58.2	41.8	0	0	-2.73	110.1	-2.9	110.3
RLI00279	3/6/24 13:18	54.9	41.8	0	3.3	-5.61	130	-5.62	130.2
RLI00280	3/8/24 7:51	57.6	38.8	0.2	3.4	-5.63	109.2	-7.31	109.5
RLI00281	3/6/24 13:03	55.7	42.6	0	1.7	-2.57	113.3	-2.81	113.4
RLI00282	3/8/24 9:22	55.9	41.8	0.1	2.2	-24.3	109.3	-24.33	109.3
RLI00283	3/26/24 15:20	56.1	43.9	0	0	-16.68	119.4	-17.88	119.4
RLI00284	3/5/24 11:01	61.9	38.1	0	0	-16.66	77.1	-20.02	77.6
RLI00285	3/5/24 10:52	61.5	38.4	0.1	0	-22.1	77.7	-22.05	77.7
RLI00286	3/27/24 13:35	56.3	43.7	0	0	-0.17	101.7	-0.19	101.9
RLI00287	3/27/24 13:32	56.7	42.9	0.3	0.1	-25	102.3	-30.7	102.5
RLI0100C	3/14/24 14:03	34.2	28.1	2.3	35.4	-40.79	72.1	-40.8	71.4
RLI0102C	3/6/24 10:46	62.7	37.2	0.1	0	-29.18	84.5	-29.22	84.5
RLI0103C	3/6/24 12:00	55.9	42.8	0.1	1.2	-31.81	78.1	-30.83	78.1
RLI0105C	3/6/24 12:45	56.1	43.8	0.1	0	-6.17	71.5	-6.03	71.4
RLI0106C	3/6/24 12:59	55.9	42.6	0.1	1.4	-17.8	68.3	-17.63	68.1
RLI0107C	3/6/24 9:37	58.4	40.8	0.1	0.7	-0.06	96.3	-0.06	96.1
RLI0114A	3/26/24 15:47	40.1	21.9	7.2	30.8	-27.37	77.6	-26.2	78.1
RLI0114A	3/26/24 15:49	38.5	21	7.8	32.7	-26.43	78.2	-26.28	78.2
RLI0115E	3/26/24 15:35	57.2	39	0.7	3.1	-6.57	89	-6.55	89
RLI0116E	3/6/24 8:12	61.2	38.5	0.3	0	-3.97	53	-3.96	53
RLI0117D	3/14/24 14:53	52.5	33.6	2.8	11.1	-36.18	80.7	-38.32	80.6
RLI0124G	3/14/24 10:03	58	32	1.6	8.4	-48.99	68.4	-49.65	68.6

Wellfield Monitoring Report - March 5, 6, 8, 13, 14, 15, 26, 27, and 28, 2024

Device Name	Date Time	CH4 (Methane)	CO2 (Carbon Dioxide)	O2 (Oxygen)	Balance Gas (%)	Initial Static Pressure	Initial Temperature	Adjusted Static Pressure	Adjusted Temperature
		(%)	(%)	(%)		("H2O)	(°F)	("H2O)	(°F)
RLHC0153	3/6/24 8:37	61.4	37.6	0.2	0.8	-13.22	60.2	-13.44	60.5
RLI00003	3/6/24 10:42	56.6	35.3	1.4	6.7	-12.41	64.1	-12.42	63.8
RLI0127B	3/6/24 11:18	53.1	36	0.7	10.2	-13.15	100.1	-13.32	101
RLI0128A	3/6/24 13:13	54.9	42.7	0	2.4	-3.3	115.1	-3.28	115.1
RLI0129E	3/14/24 13:22	0	0.5	20.4	79.1	-26.84	69.7	-26.3	70.5
RLI0129E	3/14/24 13:29	0	0.3	20.4	79.3	-26.04	73.9	-26.21	74.2
RLI0129E	3/27/24 14:52	0	0.2	20.9	78.9	-19.8	62.6	-19.34	63.1
RLI0129E	3/27/24 14:54	0	0.2	20.9	78.9	-19.81	63.8	-19.79	63.8
RLI0130E	3/14/24 12:51	66.9	31.8	0.1	1.2	-32.92	71.5	-32.86	71.5
RLIHC101	3/14/24 9:51	59.7	40.1	0	0.2	-41.31	103.8	-42.24	101.5
RLIHC102	3/14/24 9:57	58.9	40.8	0	0.3	-46.94	110	-46.72	110.2
RLLC0176	3/6/24 11:27	57.6	41.3	0.2	0.9	-2.33	70.1	-4.52	68.3
RLLC0177	3/6/24 11:50	59.1	40.4	0.1	0.4	-28.59	101.5	-28.53	101.5
RLLC0179	3/26/24 14:21	60.2	39.1	0.3	0.4	-7.37	71.9	-11.07	71.4
RLLC0180 RLLC0181	3/27/24 10:03	59.2	40.5	0.3	0	-29.95	95.3	-32.2	95.3
RLLC0181 RLLC0183	3/28/24 9:04 3/6/24 11:08	56.2 53.2	38.1 33.3	1.3 0	4.4 13.5	-12.84 -1.89	105.4 65.5	-11.97 -3.17	105.4 64.6
RLLC0183 RLLC0184	3/8/24 11:08	53.2	33.3	0	6	-1.89 -32.81	98	-3.17 -32.95	98.1
RLLC0184 RLLC0185	3/6/24 0.31	55.7	41.4	0.1	0.7	-32.01	96.3	-32.95	96.3
RLLC0186	3/6/24 12:13	55.1	44.3	0.1	0.7	-33.92	77.6	-34.04	77.6
RLLC0187	3/6/24 12:13	58.2	40.1	0.1	1.6	-34.18	75.7	-34.21	75.7
RLLC0188	3/6/24 12:22	57.9	40.1	0.1	1.0	-32.03	96.3	-34.21	96.2
RLLC0189	3/6/24 12:22	54.8	41.1	0.1	3.6	-32.05	112	-3.86	112.1
RLLC0190	3/27/24 9:59	57.3	42.7	0.1	0	-23.21	112	-24.49	115.9
RLLC0191	3/14/24 9:06	60.9	37.7	0.4	1	3.84	59	-22.99	66.6
RLLC0193	3/26/24 15:43	57.8	32.1	1.8	8.3	-26.89	76	-26.88	76
RLLC0194	3/6/24 13:22	57.1	41.4	0.1	1.4	-2.74	101.9	-2.88	101.9
RLLC0195	3/6/24 13:34	56.7	42.5	0.1	0.7	-3.1	92.3	-3.46	92.4
RLLC0196	3/6/24 13:39	61.6	38.4	0	0	-18.45	77.3	-18.82	77.2
RLLC0198	3/6/24 9:11	20.7	8.1	14.5	56.7	-8.58	57.1	-2.34	57.1
RLLC0198	3/6/24 9:15	21.4	8.4	14.2	56	-3.43	57.7	-1.54	57.6
RLLC0198	3/27/24 14:12	28.5	23.4	7.7	40.4	-14.29	64.4	-14.29	64.4
RLLC0198	3/27/24 14:15	17.2	13.7	12.9	56.2	-10.85	64.9	-10.85	64.9
RLLC0199	3/6/24 8:54	12.4	8.2	16.1	63.3	-13.28	56.3	-11.69	55.6
RLLC0199	3/6/24 9:04	10.8	7.1	16.7	65.4	-10.27	56.4	-7.87	56.7
RLLC0199	3/27/24 14:18	3.6	9.6	17.2	69.6	-20.56	65	-20.55	65
RLLC0199	3/27/24 14:20	2.8	7.8	18	71.4	-20.74	65.3	-20.74	65.3
RLLC0200	3/6/24 8:42	53.4	34.8	0.1	11.7	-9.96	57.2	-10.24	56.6
RLLC0201	3/27/24 14:29	22.5	10.3	18	49.2	-0.26	88.3	-0.12	87.7
RLLC0201	3/27/24 14:31	54.4	45.5	0.1	0	-0.16	86.7	-0.14	86.7
RLLC0202	3/6/24 9:25	64.7	34.9	0.3	0.1	-13.25	57.2	-13.26	57.2
RLLC0204	3/27/24 14:58	42.4	33.5	0.1	24	-4.43	105	-4.31	105
RLLC0205	3/6/24 9:53	55.1	36.4	0.1	8.4	-0.07	73	-0.06	73.6
RLLC0206	3/6/24 10:08	59.7	38.7	0.1	1.5	-18.25	87	-18.07	86.9
RLLC0209	3/6/24 10:04	56.7	33.8	0	9.5	-1.47	87.3	-1.5	87.2
RLLC0210	3/6/24 9:42	0.4	0.7	20.9	78	-26.47	58.8	-24.48	58.6
RLLC0210	3/6/24 9:48	61	38.8	0.1	0.1	-1.62	57.7	-2.22	57.5
RLLC0212	3/27/24 13:42	58.1	41.9	0	0	-4.81	101.8	-5.24	101.8
RLLC0214	3/14/24 11:22	58.1	41.6	0	0.3	-34.06	92	-34.41	92
RLLC0215	3/14/24 11:15	59.9	40.1	0	0	-36.84	72.8	-37.53	73.1
RLLC0217	3/26/24 14:30	69.1	30.9	0	0	-0.16	72.6	-1.41	72.6
RLLC0221	3/6/24 9:21	72.1	27	0.1	0.8	-8.34	57.5	-8.24	57.3
RLLC0223	3/27/24 14:36	57.9	42.1	0	0	-28.8	109.2	-29.77	109.3
RLLC0224	3/27/24 14:34	57.4	42.6	0	0	-11.52	104.7	-11.84	104.8
RLLC0225	3/27/24 14:25	16.7	13.3	13.8	56.2	-20.49	65	-20.43	65
RLLC0225	3/27/24 14:26	10.9	8.6	16.3	64.2	-20.64	64.9	-20.62	64.9

Wellfield Monitoring Report - March 5, 6, 8, 13, 14, 15, 26, 27, and 28, 2024

Device Name	Date Time	CH4 (Methane)	CO2 (Carbon	O2 (Oxygen)	Balance	Initial Static Pressure	Initial Temperature	Adjusted Static Pressure	Adjusted Temperature
Device Name	Date Time	(%)	Dioxide) (%)	(%)	Gas (%)	("H2O)	(°F)	("H2O)	(°F)
RLHC0153	3/6/24 8:37	61.4	37.6	0.2	0.8	-13.22	60.2	-13.44	60.5
RLI00003	3/6/24 10:42	56.6	35.3	1.4	6.7	-12.41	64.1	-12.42	63.8
RLLC0226	3/27/24 13:47	55.6	36.2	1.8	6.4	-27.79	71.1	-26.11	71.2
RLLC0227	3/5/24 9:56	58.5	36.7	0.1	4.7	-19.36	78.6	-20.44	78.7
RLLC0229	3/6/24 8:47	68.4	31.4	0.2	0	-0.21	58.1	-0.4	56.6
RLLC0230	3/26/24 15:14	9.7	7.3	17.3	65.7	-26.34	75.8	-26.86	76.1
RLLC0230	3/26/24 15:18	6	4.5	18.6	70.9	-26.93	78.3	-26.93	78.4
RLLC0231	3/8/24 7:45	60	39.8	0.2	0	-5.48	96.5	-8.16	97
RLLC0232	3/8/24 7:59	60.7	39.1	0.1	0.1	-3.47	87.1	-5.01	88.9
RLLC0232	3/8/24 8:05	59.1	38.3	0.4	2.2	-5.66	90.3	-5.73	90.4
RLLC0234	3/14/24 15:38	60	39.8	0.2	0	-46.96	92	-48.24	92.6
RLLC0235	3/26/24 14:51	59.3	40.7	0	0	-3.37	105.7	-3.97	105.9
RLLC0236	3/14/24 15:47	59.3	40.5	0.2	0	-30.69	100.5	-32.43	100.5
RLLC0237	3/26/24 14:59	56.2	41.4	0.6	1.8	-30.01	85.6	-30.69	85.6
RLLC0239	3/6/24 8:17	55	44.9	0.1	0	-0.71	93.6	-0.66	93.6
RLLC0240	3/6/24 8:23	54.9	45	0.1	0	-0.67	100.3	-0.71	100.5
RLLC0241	3/8/24 9:08	54.3	38.5	1.1	6.1	-44.22	83.6	-46.86	83.7
RLLC0242	3/8/24 9:04	58.2	41.1	0.1	0.6	-35.53	107.4	-38.42	107.3
RLLC0243	3/14/24 9:15	58.3	41.7	0	0	-33.6	78.4	-34.32	78.4
RLLC0244	3/14/24 9:30	53.7	36.1	1.1	9.1	-37.57	62.6	-42.83	65.7
RLLC0245	3/14/24 9:43	57.9	42.1	0	0	-0.73	104.4	-1.72	104.9
RLLC0246	3/14/24 10:24	53.7	41.7	0.6	4	-29.29	96.6	-28.86	96.6
RLLC0247	3/14/24 13:08	58.3	40	0	1.7	-5.35	99.3	-6	99.3
RLLC0248 RLLC0249	3/14/24 12:59	59 57.6	40.5	-	0.5	-10.44	100 103.3	-11.12	100
RLLC0249 RLLC0250	3/6/24 11:54	57.6	41.6 42.2	0.1	0.7	-37.93 -4.9	103.3	-37.9 -5.02	103.3 112.1
RLLC0250 RLLC0251	3/6/24 11:33 3/6/24 11:38	56.7	42.2	0.1	0.6	-4.9	112.1	-5.02	112.1
RLLC0252	3/14/24 15:13	56.3	43.7	0	0.0	-10.15	110.2	-12.06	110.4
RLLC0253	3/14/24 15:18	56.7	43.2	0.1	0	-24.53	106.5	-24.01	106.6
RLLC0255	3/8/24 9:16	60	39.5	0.1	0.5	-38.87	95.8	-40.01	96.3
RLLC0256	3/26/24 14:38	1.2	1.3	19.5	78	-41.62	73.2	-36.36	73.7
RLLC0256	3/26/24 14:43	0.7	0.7	20	78.6	-24.86	73.4	-24.86	73.4
RLLC0257	3/6/24 10:37	58.4	40.5	0	1.1	-28.69	63.4	-28.53	63.4
RLLC0258	3/6/24 10:33	60	39.1	0.1	0.8	-27.67	63.2	-27.72	63.2
RLLC0259	3/6/24 10:29	48.6	33.6	2.8	15	-33.71	67.7	-34.29	67.1
RLLC0260	3/6/24 10:18	56.8	37.9	0.3	5	-0.59	88.3	-0.93	89.5
RLLC0261	3/6/24 10:22	58.7	39	0	2.3	-9.58	96.7	-10.29	96.8
RLLC0262	3/6/24 10:52	55.7	34.1	1.6	8.6	-23.43	62.8	-23.34	62.8
RLLC0263	3/6/24 12:07	55.3	43.4	0.1	1.2	-12.1	114.9	-12.08	114.9
RLLC0264	3/6/24 12:36	53.7	42.7	0.4	3.2	-6.73	110.9	-6.72	110.9
RLLC0265	3/14/24 10:45	57.3	42.5	0	0.2	-6.85	104.5	-6.84	104.6
RLLC0265	3/14/24 10:58	57.2	42.7	0	0.1	-6.96	107	-7.29	107.1
RLLC0266	3/13/24 15:18	54.7	45.3	0	0	-2.69	72	-2.64	72
RLLC0266	3/14/24 11:37	54	44.8	0	1.2	-4.09	69.6	-4.05	69.6
RLLC0267	3/28/24 8:51	57.5	42.5	0	0	-26.94	103.7	-27.57	103.9
RLLC0268	3/8/24 9:40	50.6	40.5	0.2	8.7	-14.66	99.3	-14.67	99.3
RLLC0268	3/14/24 11:09	54.3	42.5	0	3.2	-15.07	100.7	-15.05	100.7
RLLC0269	3/8/24 9:33	56.2	42.5	0.1	1.2	-12.54	106.7	-13.94	106.7
RLLC0270	3/8/24 9:28	54.4	44.1	0.1	1.4	-9.91	110.9	-10.06	110.9
RLLC0271	3/5/24 10:43	60.4	39.5	0	0.1	-21.87	96	-21.73	96
RLLC0272	3/13/24 15:10	57.6	42.4	0	0	-9.63	93	-17.1	93.3
RLLC0272	3/14/24 11:46	54	41.1	0.1	4.8	-18.25	94	-19.56	94
RLLC0272	3/14/24 11:50	53.7	41.1	0	5.2	-18.91	93.9	-22.11	93.9
RLLC0273	3/26/24 15:29	5.1	3.7	18.5	72.7	-41.87	72.1	-43.24	72.4
RLLC0273	3/26/24 15:31	3.9	2.8	19	74.3	-43.54	72.5	-42.42	72.5
RLLC0274	3/6/24 12:49	55.5	42.6	0.1	1.8	-4.9	110.5	-5.23	110.5

#### Wellfield Monitoring Report - March 5, 6, 8, 13, 14, 15, 26, 27, and 28, 2024

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	3/6/24 8:37	61.4	37.6	0.2	0.8	-13.22	60.2	-13.44	60.5
RLI00003	3/6/24 10:42	56.6	35.3	1.4	6.7	-12.41	64.1	-12.42	63.8

There are 137 total collectors; 132 vertical wells and 5 horizontal collectors at RLI.

%= percent

°F= degrees Fahrenheit

"H2O = in. w.c.= inches in water column

#### Wellfield Monitoring Report - April 2, 3, 5, 10, 16, 17, and 18, 2024

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	4/3/24 15:08	58.5	(%) 38.5	0.3	2.7	-21.92	70.7	-21.95	70.7
RLI00003	4/2/24 14:30	51.6	33	2.8	12.6	-5.63	74.5	-5.62	74.4
RLI00008	4/2/24 13:08	61.4	34	1.1	3.5	-21.96	87.3	-23.99	88.2
RLI00016	4/5/24 9:59	61.7	30.6	0.9	6.8	-45.9	60.2	-45.88	60.3
RLI00017	4/5/24 10:06	62.6	34.7	0.5	2.2	-27.07	65.5	-27.3	65.6
RLI00018	4/5/24 10:00	52.3	29.2	3.4	15.1	-31.36	62.9	-31.36	62.9
RLI00019	4/5/24 10:13	53.3	26.2	2.4	18.1	-34.29	58.1	-33.65	58.1
RLI00034	4/2/24 14:02	60.1	39.8	0.1	0	-24.76	79.2	-24.83	78.6
RLI00035	4/2/24 14:11	61	38.8	0.2	0	-37.76	77.4	-36.9	77.3
RLI00045	4/2/24 14:18	31.5	27.1	0.1	41.3	-3.36	79.2	-3.34	79
RLI00047	4/2/24 14:23	28.1	26.8	0.1	45	-6.42	78.8	-6.38	78.6
RLI00065	4/5/24 9:16	55.5	41.4	0.5	2.6	-22.28	93.6	-25.5	94
RLI00083	4/3/24 11:37	61.5	37.5	0.1	0.9	-45.69	87	-45.14	87.2
RLI00095	4/3/24 9:50	46.6	31.9	0.4	21.1	-4.66	103.1	-4.32	103.1
RLI00132	4/2/24 13:36	52.5	33.6	2.7	11.2	-30.53	81.2	-32.85	81.4
RLI00134	4/16/24 14:10	50	42	0	8	-0.54	115.1	-0.56	115.4
RLI00135	4/16/24 11:48	55.9	41.1	0.2	2.8	-19.68	94.9	-22.56	95.3
RLI00137	4/16/24 10:19	13.7	9.1	15.3	61.9	-37.79	70.2	-39.09	70.2
RLI00137	4/16/24 10:25	37.4	22.3	7.5	32.8	-43.17	70.2	-38.88	70.2
RLI00137	4/16/24 12:16	57.4	42.5	0.1	0	-36.75	115.6	-35.06	115.6
RLI00140	4/3/24 12:25	40.5	33.8	2.3	23.4	-39.22	73.9	-44.6	73.8
RLI00141	4/3/24 12:11	54	43.3	0.2	2.5	-0.34	85	-0.37	85
RLI00142	4/3/24 12:17	54.8	41	0.4	3.8	-25.08	85.5	-27.55	85.5
RLI00220	4/2/24 9:20	60	39.9	0.1	0	0.13	82.8	-0.06	83
RLI00275	4/3/24 11:42	57.5	39.1	0.1	3.3	-23.49	96.7	-26.42	97.2
RLI00276	4/5/24 8:44	54.3	40.1	0.7	4.9	-47.29	62.9	-47.5	62.7
RLI00276	4/10/24 11:03	54.6	40	0.7	4.7	-56.86	80.7	-56.87	80.7
RLI00277	4/5/24 10:55	49.5	38.6	0.1	11.8	-2.41	109.9	-2.39	109.8
RLI00278	4/5/24 10:51	56.9	40.6	0.1	2.4	-4.37	109.7	-5.23	109.9
RLI00279	4/5/24 11:07	53.7	41.1	0.1	5.1	-6.72	129.7	-6.73	129.8
RLI00280	4/2/24 12:42	55.8	37.1	0.2	6.9	-7.73	109.9	-8.73	110
RLI00281	4/16/24 10:52	54.6	42.3	0.1	3	-4.02	113.8	-4.37	113.9
RLI00282	4/3/24 13:54	54.6	39.9	0.2	5.3	-21.74	108.8	-21.71	108.8
RLI00283	4/3/24 14:54	56.3	42	0.1	1.6	-18.92	118.1	-20.19	118.1
RLI00284	4/3/24 11:23	62.6	36.7	0.1	0.6	-24.54	84.7	-26.25	84.9
RLI00285	4/3/24 11:49	60.3	38.4	0.2	1.1	-21.5	78.8	-21.39	79.2
RLI00286	4/17/24 12:55	55	44.8	0.2	0	-0.55	104.4	-0.66	104.3
RLI00287	4/18/24 8:59	56.4	43.1	0.4	0.1	-42.15	103.2	-43.13	103.1
RLI0100C	4/2/24 13:55	7.6	19.8	1.8	70.8	-35.41	82.4	-38.5	82.1
RLI0102C	4/17/24 10:44	61.2	37.7	0	1.1	-41.95	85.2	-41.92	85.3
RLI0103C	4/16/24 13:02	57.1	42.9	0	0	-39.42	83	-41.88	83.4
RLI0103C	4/16/24 13:27	56.2	43.4	0.3	0.1	-46.7	87.1	-34.27	87.7
RLI0105C	4/16/24 11:07	48.6	40.7	0.8	9.9	-17.82	77.8	-18.57	78
RLI0106C	4/16/24 10:46	50.8	39.5	1.7	8	-24.21	84	-24.36	84
RLI0107C	4/17/24 12:25	54.6	39.5	0.1	5.8	-0.09	111.1	-0.08	111.3
RLI0114A	4/2/24 10:45	29.1	16.7	8.8	45.4	-46.74	71.4	-46.86	71.5
RLI0114A	4/2/24 10:50	36.3	19.4	7.7	36.6	-47.73	71.7	-47.73	71.7
RLI0115E	4/2/24 10:29	56.2	36.8	1	6	-8.66	84.7	-8.67	84.6
RLI0116E	4/2/24 9:45	46.2	30.4	4.2	19.2	-5.41	61.1	-5.33	60.9
RLI0117D	4/2/24 9:59	52.5	32.9	2.8	11.8	-42.99	68.7	-40.32	68.6
RLI0124G	4/3/24 10:45	54.9	32.3	2.5	10.3	-49.63	63.9	-48.47	64.1
RLI0126C	4/17/24 11:35	46.6	25.3	4.9	23.2	-30.91	87.9	-31.81	87.7
RLI0127B	4/2/24 13:26	54.6	35.7	1.1	8.6	-10.69	103.1	-10.99	103.3
RLI0128A	4/5/24 11:13	52.1	40.5	0	7.4	-3.83	115.3	-3.32	115.3
RLI0129E	4/2/24 14:52	0	7.6	13.1	79.3	-21.67	86.2	-21.52	86
RLI0129E	4/2/24 14:57	0	5.9	15.8	78.3	-21.74	85.8	-21.19	86.5

#### Wellfield Monitoring Report - April 2, 3, 5, 10, 16, 17, and 18, 2024

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
	4/2/24 15:09	. ,	(%)		0.7		. ,	. ,	
RLHC0153 RLI00003	4/3/24 15:08 4/2/24 14:30	58.5 51.6	38.5 33	0.3	2.7 12.6	-21.92 -5.63	70.7 74.5	-21.95 -5.62	70.7
RLI00003	4/2/24 14:30	52.6	31.8	0.1	12.0	-20.76	74.3	-20.63	73.3
RLIHC101	4/3/24 10:55	52.0	39.9	0.1	0.7	-20.76	102.8	-20.03	103.7
RLIHC102	4/3/24 10:50	57	41.1	0.2	1.7	-50.09	102.0	-47.5	103.3
RLLC0176	4/16/24 13:50	40.4	34.5	2.7	22.4	-11.34	84.9	-47.5	84.9
RLLC0177	4/16/24 14:21	58.6	41.4	0	0	-36.12	103.9	-39.48	104.7
RLLC0179	4/3/24 10:07	58.5	37.6	0.9	3	-11.09	58.8	-13.31	57.9
RLLC0180	4/16/24 11:26	57.8	40.3	0.5	1.4	-48.5	99.5	-50.2	99.8
RLLC0181	4/16/24 11:34	58	39.5	0.6	1.9	-19.49	105.9	-17.72	106
RLLC0183	4/2/24 13:30	54.5	33.5	0.1	11.9	-2.54	78	-4.13	77
RLLC0184	4/2/24 13:15	60	38.7	0.2	1.1	-26.29	100.4	-25.88	100.3
RLLC0185	4/16/24 14:06	52.2	39.9	0.2	7.7	-3.9	104.4	-3.65	104.4
RLLC0186	4/16/24 13:08	53.6	44.2	0.1	2.1	-38.35	86.6	-37.79	86.6
RLLC0187	4/16/24 13:14	43.8	38.1	0	18.1	-39.57	81.6	-39.78	81.8
RLLC0188	4/16/24 12:28	57.9	42	0.1	0	-37.15	91.4	-37.12	91.5
RLLC0189	4/16/24 12:24	41.1	37.1	0.7	21.1	-3.22	113.2	-3.08	113.2
RLLC0190	4/18/24 10:08	56.1	42.6	0.2	1.1	-36.78	115.7	-38.79	115.7
RLLC0191	4/3/24 10:36	0	0.2	20.4	79.4	-48.68	57.5	-51.97	57.5
RLLC0191	4/3/24 10:40	0	0.3	20.4	79.3	-50.7	58.4	-48.5	58
RLLC0193	4/2/24 10:36	46.6	26.2	4.9	22.3	-47.53	68.2	-47.38	68.3
RLLC0194	4/5/24 11:01	54.2	40.3	0.1	5.4	-2.93	100.8	-3.28	100.8
RLLC0195	4/5/24 10:42	51.1	39.3	0.6	9	-4.21	92.8	-3.76	92.7
RLLC0196	4/5/24 10:46	61	37.8	0.2	1	-23.11	67.1	-23.38	67.2
RLLC0198	4/17/24 9:43	42.2	26.6	4.8	26.4	-22.46	74.5	-22.31	74.6
RLLC0199	4/18/24 9:16	57.7	36.2	1	5.1	-26.94	71.3	-27.49	71.1
RLLC0200	4/10/24 10:37	30.4	25.9	3.7	40	-10.64	94.1	-18.11	94.6
RLLC0200	4/18/24 9:30	55.7	31	1.8	11.5	-31.2	91.7	-31.31	91.5
RLLC0201	4/10/24 10:40	56	44	0	0	-0.29	90.3	-0.49	91
RLLC0201	4/17/24 13:56	54.1	45.7	0.2	0	-1.12	92.5	-1.78	92.5
RLLC0201	4/18/24 9:38	54.8	45.1	0.2	-0.1	-2.25	91.9	-3.34	91.9
RLLC0202	4/18/24 9:54	59	33.2	1.6	6.2	-29.09	76	-31	75.9
RLLC0204	4/17/24 12:01	38.7	33.5	0	27.8	-3.9	105.5	-3.13	105.5
RLLC0205	4/17/24 11:47	41.3	33.9	0	24.8	-0.2	85.8	-0.2	85.8
RLLC0206	4/17/24 11:30	52.4	38.4	0.2	9	-18.23	96.2	-18.24	96.1
RLLC0209	4/17/24 11:41	43.4	34.5	0.1	22	-1.89	92.3	-1.9	92.7
RLLC0210	4/17/24 11:52	48.1	36.7	0.1	15.1	-4.87	79.6	-4.83	79.2
RLLC0212	4/17/24 13:03	57.1	42.9	0	0	-7.72	102.2	-8.53	102.2
RLLC0214	4/3/24 13:20	57.5	40.6	0	1.9	-30.37	96.7	-30.73	96.6
RLLC0214	4/17/24 13:22	57.3	42.5	0.2	0	-42.4	98.6	-42.17	98.6
RLLC0215	4/17/24 13:31	58.1	41.7	0.1	0.1	-47.43	89.4	-46.77	89.4
RLLC0217	4/17/24 14:35	57.2	29.4	2.7	10.7	-35.08	88	-32.65	88
RLLC0221	4/18/24 9:48	55.4	31.4	0.5	12.7	-2.5	76	-2.63	75.5
RLLC0223	4/17/24 14:09	56.8	43.1	0.1	0	-46.15	108.5	-46.64	108.5
RLLC0224	4/17/24 14:06	55.6	44.4	0.1	-0.1	-18.53	104.6	-8.93	105.9
RLLC0225	4/17/24 13:46	26.3	16.6	10.1	47	-26.73	85.2	-28.42	84.8
RLLC0225	4/17/24 13:50	16.5	11.1	14.5	57.9	-27.28	82.1	-27.45	81.9
RLLC0226	4/17/24 13:12	53.8	36.1	2.1	8	-40.12	82.8	-39.9	82.9
RLLC0227	4/3/24 9:42	61.9	38	0.2	-0.1	-33.3	74.7	-33.31	74.7
RLLC0229	4/10/24 10:50	53.1	31	0.5	15.4	-0.86	72.9	-2.66	73
RLLC0229	4/18/24 9:23	48.8	30.6	1.2	19.4	-8.08	74.7	-8.1	74.6
RLLC0230	4/3/24 14:44	1.1	1.2	20.2	77.5	-32.23	75	-32.1	74.8
RLLC0230	4/3/24 14:48	2.3	1.9	19.8	76	-32.02	72.9	-32.11	72.7
RLLC0231	4/2/24 10:57	59.9 61.4	38.3 38.5	0.1	1.7	-8.27	97.9	-8.99	98
RLLC0232	4/2/24 13:00	61.4	38.5	0.1	0	-7.24	95.1	-10.19	96.3
RLLC0234	4/5/24 8:52	59.1	38.7	0.1	2.1	-45.03	96.4	-45.16	97

Wellfield Monitoring Report - April 2, 3, 5, 10, 16, 17, and 18, 2024

Device Name	Date Time	CH4 (Methane) (%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas (%)	Initial Static Pressure ("H2O)	Initial Temperature (°F)	Adjusted Static Pressure ("H2O)	Adjusted Temperature (°F)
RLHC0153	4/3/24 15:08	58.5	38.5	0.3	2.7	-21.92	70.7	-21.95	70.7
RLI00003	4/2/24 14:30	51.6	33	2.8	12.6	-5.63	74.5	-5.62	74.4
RLLC0235	4/5/24 9:34	59.9	39.5	0.4	0.2	-3.97	105.5	-4.89	106.1
RLLC0236	4/2/24 10:07	55.1	38.5	0.1	6.3	-15.33	103.4	-16.19	103.4
RLLC0236	4/5/24 9:40	56.2	38.8	0.2	4.8	-22.3	102.9	-21.68	102.8
RLLC0237	4/2/24 9:52	57.6	40.5	0.2	1.6	-32.33	85.2	-31.28	85.3
RLLC0239	4/2/24 9:37	57.5	42.1	0.0	0.3	-1.03	93.9	-1.19	94
RLLC0240	4/2/24 9:29	52.3	38	1.9	7.8	-0.93	98.1	-1.01	98.3
RLLC0241	4/5/24 9:26	59.5	40	0.2	0.3	-46.91	94.5	-46.73	94.5
RLLC0241	4/10/24 10:56	59.6	40.4	0:2	0:0	-42.32	98	-42.32	98
RLLC0242	4/5/24 9:21	57.8	41.2	0.1	0.9	-37.38	107.3	-37.82	107.3
RLLC0243	4/3/24 11:12	58.2	40.3	0.1	1.4	-31.36	79.5	-31.87	79.5
RLLC0244	4/3/24 11:08	57.5	40.8	0.1	1.5	-39.07	63.6	-39.04	66.4
RLLC0244 RLLC0245	4/3/24 11:08	57.5	40.8	0.2	0.9	-39.07	104.1	-39.04	104.6
RLLC0245 RLLC0246	4/3/24 11:03	53.9	41.2	0.1	4.4	-29.05	98.7	-4.29	98.7
RLLC0240 RLLC0247	4/17/24 10:19	50.8	37.9	0.0	4.4	-29.03	90.7	-27.30	98.7
RLLC0248	4/17/24 10:19	50.8	39.8	0.2	9.3	-11.82	99.8	-0.70	99.8
RLLC0240		57.5	42.4	0.1	0.1		108.3	-50.32	108.2
RLLC0249 RLLC0250	4/16/24 13:36	57.5	42.4	0.1	1.5	-48.51 -5.64	112.1	-50.32	106.2
RLLC0250 RLLC0251	4/16/24 13:41 4/16/24 13:56	55.2	42.2	0.1	2.2	-5.64	112.1	-5.73	112.1
				-					
RLLC0252	4/5/24 8:38	58	42	0	0	-14.03	111.7	-15.5	111.7
RLLC0252	4/10/24 11:00	57.7	42.3	0	0	-15.79	112.3	-17.36	112.4
RLLC0253	4/5/24 8:29	57.8	42	0.2	0	-29.93	106.7	-29.96	106.7
RLLC0255	4/3/24 13:59	57.8	37.8	0.6	3.8	-37.87	95.8	-36.85	95.8
RLLC0256	4/3/24 14:06	0.4	0.6	20.2	78.8	-25.35	74.9	-25.4	74.9
RLLC0256	4/3/24 14:10	0.4	0.7	20	78.9	-25.22	74.3	-25.16	74.2
RLLC0257	4/2/24 14:36	60	39.7	0.3	0	-27.34	73.4	-27.27	73.4
RLLC0258	4/2/24 14:40	60.7	39.2	0.1	0	-27.2	72.3	-27.18	72.4
RLLC0259	4/2/24 14:44	65.2	34.6	0.2	0	-31.63	78.6	-31.62	78.4
RLLC0260	4/17/24 11:00	57.5	40.5	0.1	1.9	-1.32	91.9	-2.45	93
RLLC0261	4/17/24 10:51	49.1	37.7	1	12.2	-7.09	96.7	-7.1	96.7
RLLC0262	4/2/24 13:48	47.8	29.8	3.9	18.5	-30.54	78.2	-29.92	78
RLLC0263	4/16/24 12:37	56.4	43.6	0	0	-13.45	114.4	-13.75	114.6
RLLC0264	4/16/24 11:19	52.4	42.1	0.3	5.2	-8.39	110.6	-8.1	110.6
RLLC0265	4/3/24 12:45	55	41	0.3	3.7	-6.78	107.3	-7.41	108
RLLC0266	4/3/24 13:02	53.6	41.4	0.4	4.6	-20.16	98.6	-21.11	98.6
RLLC0266	4/10/24 10:20	53	40.6	1.1	5.3	-5.83	69.6	-8.4	69.5
RLLC0267	4/3/24 13:27	55.9	41.2	0.1	2.8	-31.7	103.8	-31.8	103.9
RLLC0267	4/10/24 10:34	57.6	42.2	0	0.2	-32.04	104.3	-33.04	104.6
RLLC0268	4/3/24 13:15	53.4	40.3	0.2	6.1	-20.64	104.4	-20.71	104.4
RLLC0268	4/10/24 10:26	51.4	40.1	0.2	8.3	-22.78	106.7	-23.42	106.7
RLLC0269	4/3/24 14:33	56.1	42.4	0	1.5	-13.16	106.8	-14.29	106.8
RLLC0270	4/3/24 14:19	54.4	43.7	0.2	1.7	-9.96	111	-10.19	111.1
RLLC0271	4/3/24 11:31	60	38.7	0.1	1.2	-29.39	95.4	-29.99	95.4
RLLC0272	4/3/24 12:21	52.8	39.8	0.5	6.9	-25.93	96.3	-26.34	96.3
RLLC0273	4/2/24 10:16	22.4	16.1	10.7	50.8	-46.64	65.2	-46.38	65.3
RLLC0273	4/2/24 10:21	4.9	3.9	18.1	73.1	-46.2	65.3	-46.9	65.5

There are 136 total collectors; 132 vertical wells and 4 horizontal collectors at RLI.

%= percent

°F= degrees Fahrenheit

"H2O = in. w.c.= inches in water column

#### APPENDIX J

#### WELLFIELD DEVIATION LOGS

#### REDWOOD LANDFILL, INC WELLFIELD DEVIATIONS AND 15-DAY REMONITORING REPORT

05/30/2
Landte

J. Dutra, R. Lindberg 05/30/24 Landtec GEM

Well ID	Time	CH₄ (%)	CO ₂ (%)	O ₂ (%)	Balance Gas (%)	Initial Static Pressure (" w.c.)	Initial Temperature (°F)	Adjusted Static Pressure (" w.c.)	Adjusted Temperature (°F)	Comments	Duration of Exceedance (Days)
						No	well exceedance	( )	023		
							well exceedance				
						N	o well exceedanc	es in January 20	24		
						No	well exceedance	es in February 20	24		
RLI00008	3/8/24 8:19	37.1	22.2	7.8	32.9	-40.04	60.3	-39.84	59.6	NSPS/EG CAI;Dec. Flow/Vac.	
RLI00008	3/8/24 8:22	44.1	25.9	4.7	25.3	-37.83	58	-36.98	57.8	No Adj. Made	
										d cleared on 3/8/24	0
RLI00019	3/27/24 9:18	37.9	21.6	8.5	32	-34.57	55.4	-31.43	55.4	NSPS/EG CAI;Dec. Flow/Vac.	
RLI00019 RLI00019	3/27/24 9:22 4/5/24 10:20	38.3 53.3	21.8 26.2	8.3 2.4	31.6 18.1	-31.05 -34.29	55.3 58.1	-31.89 -33.65	55.3 58.1	NSPS/EG CAI;No Adj. Made No Adj. Made	
										ind cleared on 4/5/24	9
RLI00137	3/27/24 8:44	10.5	8.7	16.1	64.7	-34.95	61.1	-27.79	61.1	NSPS/EG CAI;Dec. Flow/Vac.	
RLI00137	3/27/24 8:52	40.2	24.1	7.6	28.1	-30.08	60.3	-31.85	60.3	No Adj. Made	
RLI00137	4/16/24 10:19	13.7	9.1	15.3	61.9	-37.79	70.2	-39.09	70.2	NSPS/EG CAI;Dec. Flow/Vac.	
RLI00137 RLI00137	4/16/24 10:25 4/16/24 12:16	37.4 57.4	22.3 42.5	7.5 0.1	32.8 0	-43.17 -36.75	70.2 115.6	-38.88 -35.06	70.2 115.6	NSPS/EG CAI;Dec. Flow/Vac. Inc. Flow/Vac.	
				•					•		
										nd cleared on 4/16/24	20
RLI00220 RLI00220	3/5/24 9:43 3/5/24 9:48	27.5 28.5	21.1 21.9	10.3 10.1	41.1 39.5	-23.79 -2.96	56.1 55.8	-5.09 -3.06	56 55.8	NSPS/EG CAI;Dec. Flow/Vac. NSPS/EG CAI;Dec. Flow/Vac.	
RLI00220 RLI00220		28.5 59.6	21.9 40.4	10.1	39.5 0	-2.96	71.5	-3.06 -1.59	55.8	NSPS/EG CAI;Dec. Flow/Vac. NSPS/EG CAI;Inc. Flow/Vac.	
										d cleared on 3/15/24	10
1.LIUU220 W	as monitored on a		u was iouno	n to be in ex	Cecuance 10	Congen. Conect	ive actions were In	nateu. Trie well W	as re-monitored an	u oreared UII 3/13/24	10
RLI00220 w	as monitored on 3	3/15/2024 ai	nd was four	nd to be in e	xceedance f	or static pressure	Corrective actions	were initiated. Th	e well was re-mon	tored and cleared on 3/15/2024	
RLI0114A	3/26/24 15:47	40.1	21.9	7.2	30.8	-27.37	77.6	-26.2	78.1	NSPS/EG CAI;Dec. Flow/Vac.	
RLI0114A	3/26/24 15:49	38.5	21	7.8	32.7	-26.43	78.2	-26.28	78.2	NSPS/EG CAI	
RLI0114A	4/2/24 10:45	29.1	16.7	8.8	45.4	-46.74	71.4	-46.86	71.5	NSPS/EG CAI;Dec. Flow/Vac.	
RLI0114A	4/2/24 10:50	36.3	19.4	7.7	36.6	-47.73	71.7	-47.73	71.7	NSPS/EG CAI;Dec. Flow/Vac.	
RLI0114A w	vas monitored on	3/26/2024 a	nd was four	nd to be in e	xceedance	for Oxygen. Corre	ctive actions were i	nitiated. Repairs a	re in progress as	of 5/1/2024	35
RLI0129E	3/14/24 13:22	0	0.5	20.4	79.1	-26.84	69.7	-26.3	70.5	NSPS/EG CAI;Dec. Flow/Vac.	
RLI0129E	3/14/24 13:29	0	0.3	20.4	79.3	-26.04	73.9	-26.21	74.2	NSPS/EG CAI;Dec. Flow/Vac.	
RLI0129E	3/27/24 14:52	0	0.2	20.9	78.9	-19.8	62.6	-19.34	63.1	NSPS/EG CAI;Dec. Flow/Vac.	
RLI0129E	3/27/24 14:54	0	0.2	20.9	78.9	-19.81	63.8	-19.79 -21.52	63.8	NSPS/EG CAI;Barely Open	
RLI0129E	4/2/24 14:52	0	7.6	13.1	79.3	-21.67	86.2		86	NSPS/EG CAI;Inc. Flow/Vac.	
RLI0129E	4/2/24 14:57	0	5.9	15.8	78.3	-21.74	85.8	-21.19	86.5	NSPS/EG CAI;Barely Open;Dec. Flow/Vac.	
RLI0129E w RLLC0191				nd to be in e 0.4	xceedance	for Oxygen. Corre 3.84	ctive actions were i 59	nitiated. Repairs a -22.99	re in progress as		47
	3/14/24 9:06 was monitored on	60.9 3/14/2024 a	37.7 and was fou		exceedance					NSPS/EG CAI;Inc. Flow/Vac. hitored and cleared on 3/14/2024	
RLLC0198 RLLC0198	3/6/24 9:11 3/6/24 9:15	20.7	8.1 8.4	14.5 14.2	56.7 56	-8.58	57.1	-2.34	57.1 57.6	NSPS/EG CAI;Dec. Flow/Vac. NSPS/EG CAI;Dec. Flow/Vac.	
RLLC0198 RLLC0198	3/27/24 14:12 3/27/24 14:15	28.5 17.2	23.4 13.7	7.7 12.9	40.4 56.2	-14.29 -10.85	64.4 64.9	-14.29 -10.85	64.4 64.9	NSPS/EG CAI;Barely Open No Adj. Made;NSPS/EG CAI	
RLLC0198	4/17/24 9:43	42.2	26.6	4.8	26.4	-22.46	74.5	-22.31	74.6	Barely Open;No Adj. Made	
RLLC0198 v	was monitored on	3/6/2024 ar	nd was foun	d to be in e	xceedance f	or Oxygen. Correc	tive actions were in	nitiated. The well v	vas re-monitored a	nd cleared on 4/17/24	42
RLLC0199	3/6/24 8:54	12.4	8.2	16.1	63.3	-13.28	56.3	-11.69	55.6	NSPS/EG CAI;Dec. Flow/Vac.	
RLLC0199	3/6/24 9:04	10.8	7.1	16.7	65.4	-10.27	56.4	-7.87	56.7	NSPS/EG CAI;Dec. Flow/Vac.	
RLLC0199 RLLC0199		3.6 2.8	9.6 7.8	17.2 18	69.6 71.4	-20.56 -20.74	65 65.3	-20.55 -20.74	65 65.3	NSPS/EG CAI;Barely Open NSPS/EG CAI;No Adj. Made	
RLLC0199			36.2	1	5.1	-26.94	71.3	-27.49		Barely Open;No Adj. Made	
	4/18/24 0.16	57 7	JU.Z	1 1	0.1	-20.04			71 1		1
	4/18/24 9:16	57.7		al 4 a 1a - 1	*				71.1		
RLLC0199 v	was monitored on				xceedance f 49.2		tive actions were in	nitiated. The well v	vas re-monitored a	nd cleared on 4/17/24	43
	was monitored on 3/27/24 14:29	3/6/2024 ar	nd was foun 10.3 45.5	d to be in e 18 0.1		or Oxygen. Correc -0.26 -0.16					43
RLLC0199 v RLLC0201 RLLC0201	was monitored on 3/27/24 14:29 3/27/24 14:31	3/6/2024 ar 22.5 54.4	10.3 45.5	18 0.1	49.2 0	-0.26 -0.16	tive actions were in 88.3 86.7	nitiated. The well v -0.12 -0.14	vas re-monitored a 87.7 86.7	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac.	43
RLLC0199 v RLLC0201 RLLC0201 RLLC0201 v	was monitored on 3/27/24 14:29 3/27/24 14:31 was monitored on	3/6/2024 ar 22.5 54.4 3/27/2024 a	10.3 45.5 and was fou	18 0.1 nd to be in	49.2 0 exceedance	-0.26 -0.16 for Oxygen. Corre	tive actions were in 88.3 86.7 ective actions were	nitiated. The well v -0.12 -0.14 initiated. The well	vas re-monitored a 87.7 86.7 was re-monitored	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made and cleared on 3/27/24	
RLLC0199 v RLLC0201 RLLC0201	was monitored on 3/27/24 14:29 3/27/24 14:31	3/6/2024 ar 22.5 54.4	10.3 45.5	18 0.1	49.2 0	-0.26 -0.16	tive actions were in 88.3 86.7	nitiated. The well v -0.12 -0.14	vas re-monitored a 87.7 86.7	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made	
RLLC0199 v RLLC0201 RLLC0201 v RLLC0201 v RLLC0210 RLLC0210 v	was monitored on 3/27/24 14:29 3/27/24 14:31 was monitored on 3/6/24 9:42 3/6/24 9:48 was monitored on	3/6/2024 ar 22.5 54.4 3/27/2024 a 0.4 61 3/6/2024 ar	10.3 45.5 and was fou 0.7 38.8 nd was foun	18 0.1 nd to be in 20.9 0.1 d to be in e	49.2 0 exceedance 78 0.1 xceedance f	-0.26 -0.16 for Oxygen. Corre -26.47 -1.62 or Oxygen. Correc	tive actions were in 88.3 86.7 active actions were 58.8 57.7 tive actions were in	nitiated. The well v -0.12 -0.14 initiated. The well -24.48 -2.22 nitiated. The well v	vas re-monitored a 87.7 86.7 was re-monitored 58.6 57.5 vas re-monitored a	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made and cleared on 3/27/24 NSPS/EG CAI;Barely Open;Dec. Flow/Vac. nd cleared on 3/6/24	
RLLC0199 x RLLC0201 RLLC0201 x RLLC0210 RLLC0210 RLLC0210 x RLLC0210 x	was monitored on 3/27/24 14:29 3/27/24 14:21 was monitored on 3/6/24 9:42 3/6/24 9:48 was monitored on 3/27/24 14:25	3/6/2024 ar 22.5 54.4 3/27/2024 a 0.4 61 3/6/2024 ar 16.7	10.3 45.5 and was fou 0.7 38.8 nd was foun 13.3	18 0.1 nd to be in ( 20.9 0.1 d to be in e 13.8	49.2 0 exceedance 78 0.1 xceedance f 56.2	-0.26 -0.16 for Oxygen. Corre -26.47 -1.62 or Oxygen. Correo -20.49	tive actions were in	nitiated. The well v -0.12 -0.14 initiated. The well -24.48 -2.22 nitiated. The well v -20.43	vas re-monitored a 87.7 86.7 was re-monitored 58.6 57.5 vas re-monitored a 65	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made and cleared on 3/27/24 NSPS/EG CAI;Barely Open;Dec. Flow/Vac. nd cleared on 3/6/24 NSPS/EG CAI;Barely Open	0
RLLC0199 v RLLC0201 RLLC0201 v RLLC0201 v RLLC0210 RLLC0210 v	was monitored on 3/27/24 14:29 3/27/24 14:31 was monitored on 3/6/24 9:42 3/6/24 9:48 was monitored on 3/27/24 14:25 3/27/24 14:26	3/6/2024 ar 22.5 54.4 3/27/2024 a 0.4 61 3/6/2024 ar	10.3 45.5 and was fou 0.7 38.8 nd was foun	18 0.1 nd to be in 20.9 0.1 d to be in e	49.2 0 exceedance 78 0.1 xceedance f	-0.26 -0.16 for Oxygen. Corre -26.47 -1.62 or Oxygen. Correc	tive actions were in 88.3 86.7 active actions were 58.8 57.7 tive actions were in	nitiated. The well v -0.12 -0.14 initiated. The well -24.48 -2.22 nitiated. The well v	vas re-monitored a 87.7 86.7 was re-monitored 58.6 57.5 vas re-monitored a	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made and cleared on 3/27/24 NSPS/EG CAI;Barely Open;Dec. Flow/Vac. nd cleared on 3/6/24	0
RLLC0199 V RLLC0201 RLLC0201 V RLLC0201 V RLLC0210 RLLC0210 V RLLC0210 V RLLC0225 RLLC0225	was monitored on 3/27/24 14:29 3/27/24 14:31 was monitored on 3/6/24 9:42 3/6/24 9:48 was monitored on 3/27/24 14:25 3/27/24 14:26	3/6/2024 ar 22.5 54.4 3/27/2024 a 0.4 61 3/6/2024 ar 16.7 10.9	10.3 45.5 and was fou 0.7 38.8 nd was foun 13.3 8.6	18 0.1 nd to be in ( 20.9 0.1 d to be in e 13.8 16.3	49.2 0 exceedance 78 0.1 xceedance f 56.2 64.2	-0.26 -0.16 for Oxygen. Correc -26.47 -1.62 or Oxygen. Correc -20.49 -20.64	tive actions were in	nitiated. The well v -0.12 -0.14 initiated. The well -24.48 -2.22 nitiated. The well v -20.43 -20.62	vas re-monitored a 87.7 86.7 was re-monitored 58.6 57.5 vas re-monitored a 65 64.9	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made and cleared on 3/27/24 NSPS/EG CAI;Barely Open;Dec. Flow/Vac. nd cleared on 3/6/24 NSPS/EG CAI;Barely Open NSPS/EG CAI;No Adj. Made	0
RLLC0199 RLLC0201 RLLC0201 RLLC0201 RLLC0210 RLLC0210 RLLC0210 RLLC0225 RLLC0225 RLLC0225 RLLC0225	was monitored on 3/27/24 14:29 3/27/24 14:31 was monitored on 3/6/24 9:42 3/6/24 9:42 3/6/24 9:48 was monitored on 3/27/24 14:25 3/27/24 14:25 4/17/24 13:50	3/6/2024 ar 22.5 54.4 3/27/2024 a 0.4 61 3/6/2024 ar 16.7 10.9 26.3 16.5	10.3 45.5 and was fou 0.7 38.8 nd was foun 13.3 8.6 16.6 11.1	18           0.1           nd to be in 0           20.9           0.1           d to be in 0:           13.8           16.3           10.1           14.5	49.2 0 exceedance 78 0.1 xceedance f 56.2 64.2 47 57.9	-0.26 -0.16 for Oxygen. Correc -26.47 -1.62 or Oxygen. Correc -20.49 -20.64 -26.73 -27.28	tive actions were in 88.3 86.7 active actions were 58.8 57.7 tive actions were in 65 64.9 86.2 82.1	itilated. The well \ -0.12 -0.14 initiated. The well -24.48 -2.22 itilated. The well \ -20.43 -20.62 -28.42 -27.45	vas re-monitored a 87.7 86.7 was re-monitored 58.6 57.5 vas re-monitored a 65 64.9 84.8 81.9	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made and cleared on 3/27/24 NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open;Dec. Flow/Vac.	0
RLLC0199 RLLC0201 RLLC0201 RLLC0201 RLLC0210 RLLC0210 RLLC0210 RLLC0225 RLLC0225 RLLC0225 RLLC0225	was monitored on 3/27/24 14:29 3/27/24 14:31 was monitored on 3/6/24 9:42 3/6/24 9:42 3/6/24 9:48 was monitored on 3/27/24 14:25 3/27/24 14:25 4/17/24 13:50	3/6/2024 ar 22.5 54.4 3/27/2024 a 0.4 61 3/6/2024 ar 16.7 10.9 26.3 16.5	10.3 45.5 and was fou 0.7 38.8 nd was foun 13.3 8.6 16.6 11.1	18           0.1           nd to be in 0           20.9           0.1           d to be in 0:           13.8           16.3           10.1           14.5	49.2 0 exceedance 78 0.1 xceedance f 56.2 64.2 47 57.9	-0.26 -0.16 for Oxygen. Correc -26.47 -1.62 or Oxygen. Correc -20.49 -20.64 -26.73 -27.28	tive actions were in 88.3 86.7 active actions were 58.8 57.7 tive actions were in 65 64.9 85.2 82.1 active actions were 75.8	itilated. The well v -0.12 -0.14 initilated. The well -24.48 -2.22 hitilated. The well v -20.43 -20.62 -28.42 -27.45 initilated. Repairs -26.86	vas re-monitored a 87.7 86.7 was re-monitored 57.5 vas re-monitored a 65 65 64.9 84.8 81.9 are in progress as 76.1	nd cleared on 4/17/24 NSPS/EG CAI;Bac. Flow/Vac. No Adj. Made and cleared on 3/27/24 NSPS/EG CAI;Barely Open;Dec. Flow/Vac. nd cleared on 3/6/24 NSPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open;Dec. Flow/Vac. of 5/1/2024 NSPS/EG CAI;Barely Open	0
RLLC0199 v RLLC0201 RLLC0201 v RLLC0201 v RLLC0210 v RLLC0210 v RLLC0225 v RLLC0225 v RLLC0225 v RLLC0225 v RLLC0225 v RLLC0220 v	was monitored on 3/27/24 14:29 3/27/24 14:31 was monitored on 3/6/24 9:42 3/6/24 9:48 was monitored on 3/27/24 14:25 3/27/24 14:25 4/17/24 13:46 4/17/24 13:50 was monitored on 3/26/24 15:14 3/26/24 15:14	3/6/2024 ar 22.5 54.4 3/27/2024 a 0.4 61 3/6/2024 ar 16.7 10.9 26.3 16.5 3/27/2024 a 9.7 6	10.3 45.5 and was fou 0.7 38.8 nd was foun 13.3 8.6 16.6 11.1 and was fou 7.3 4.5	18 0.1 nd to be in 20.9 0.1 d to be in e 13.8 16.3 10.1 14.5 nd to be in 17.3 18.6	49.2 0 exceedance 78 0.1 xceedance f 56.2 64.2 47 57.9 exceedance 65.7 70.9	-0.26 -0.16 for Oxygen. Correc -26.47 -1.62 or Oxygen. Correc -20.49 -20.64 -26.73 -27.28 for Oxygen. Correc -26.34 -26.93	tive actions were in 88.3 86.7 active actions were 58.8 57.7 tive actions were in 65 64.9 85.2 82.1 active actions were 75.8 76.3	itilated. The well \ -0.12 -0.14 initiated. The well -24.48 -2.22 itilated. The well \ -20.43 -20.62 -28.42 -27.45 initilated. Repairs -26.86 -26.93	vas re-monitored a 87.7 86.7 was re-monitored 58.6 57.5 vas re-monitored a 65 64.9 84.8 81.9 are in progress as 76.1 78.4	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made and cleared on 3/27/24 NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open;Dec. Flow/Vac. SSPS/EG CAI;Barely Open;Dec. Flow/Vac. of 5/1/2024 NSPS/EG CAI;Barely Open NSPS/EG CAI	0
RLLC0199 ( RLLC0201 RLLC0201 ( RLLC0201 ( RLLC0210 ( RLLC0210 ( RLLC0225 ( RLLC0225 ( RLLC0225 ( RLLC0220 ( RLLC0220 ( RLLC0230 ( RLLC030 ( RL	was monitored on 3/27/24 14:29 3/27/24 14:31 was monitored on 3/6/24 9:42 3/6/24 9:48 was monitored on 3/27/24 14:25 3/27/24 14:25 4/17/24 13:46 4/17/24 13:50 was monitored on 3/26/24 15:14 3/26/24 15:14 4/3/24 15:14	3/6/2024 ar 22.5 54.4 3/27/2024 a 0.4 61 3/6/2024 ar 16.7 10.9 26.3 16.5 3/27/2024 a 9.7 6 1.1	10.3 45.5 and was fou 0.7 38.8 d was foun 13.3 8.6 16.6 11.1 and was fou 7.3 4.5 1.2	18 0.1 nd to be in 1 20.9 0.1 d to be in e 13.8 16.3 10.1 14.5 nd to be in 1 7.3 18.6 20.2	49.2 0 exceedance 78 0.1 xceedance f 56.2 64.2 47 57.9 exceedance 65.7 70.9 77.5	-0.26 -0.16 for Oxygen. Correc -26.47 -1.62 or Oxygen. Correc -20.49 -20.64 -26.73 -27.28 for Oxygen. Correc -26.34 -26.93 -32.23	tive actions were in 88.3 86.7 86.7 86.7 86.8 57.7 tive actions were in 65 64.9 86.2 82.1 82.1 82.1 82.1 82.1 82.1 82.3 75.8 76.3 75	itilated. The well \ -0.12 -0.14 initiated. The well -24.48 -2.22 itilated. The well \ -20.43 -20.62 -28.42 -27.45 initilated. Repairs -26.86 -26.93 -32.1	vas re-monitored a 87.7 86.7 was re-monitored 58.6 57.5 vas re-monitored a 65 64.9 84.8 81.9 are in progress as 76.1 78.4 74.8	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made and cleared on 3/27/24 NSPS/EG CAI;Barely Open;Dec. Flow/Vac. MSPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open;Dec. Flow/Vac. of 5/1/2024 NSPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open	0
RLLC0199 ( RLLC0201 RLLC0201 ( RLLC0201 ( RLLC0210 ( RLLC0210 ( RLLC0220 ( RLLC0225 ( RLLC0225 ( RLLC0225 ( RLLC0220 ( RLLC0230 ( RLLC030 ( RL	was monitored on 3/27/24 14:29 3/27/24 14:31 was monitored on 3/6/24 9:42 3/6/24 9:48 was monitored on 3/27/24 14:25 3/27/24 14:25 4/17/24 13:50 was monitored on 3/26/24 15:14 3/26/24 15:18 4/3/24 14:44 4/3/24 14:48	3/6/2024 ar 22.5 54.4 3/27/2024 a 0.4 61 3/6/2024 ar 16.7 10.9 26.3 16.5 3/27/2024 a 9.7 6 1.1 2.3	10.3 45.5 and was fou 0.7 38.8 10 was foun 13.3 8.6 16.6 11.1 and was foun 7.3 4.5 1.2 1.9	18         0.1           nd to be in .         20.9           0.1         0.1           d to be in .         13.8           16.3         10.1           14.5         nd to be in .           17.3         18.6           20.2         19.8	49.2 0 exceedance 78 0.1 xceedance 66.2 64.2 64.2 64.2 67.9 exceedance 65.7 70.9 77.5 76	-0.26 -0.16 for Oxygen. Correc -26.47 -1.62 or Oxygen. Correc -20.49 -20.64 -26.73 -27.28 for Oxygen. Correc -26.34 -26.93 -32.23 -32.02	tive actions were in 88.3 86.7 sctive actions were 58.8 57.7 tive actions were in 65 64.9 85.2 82.1 sctive actions were 75.8 75.3 75 72.9	itilated. The well \ -0.12 -0.14 initilated. The well -24.48 -2.22 itilated. The well \ -20.43 -20.62 -28.42 -27.45 initilated. Repairs -26.86 -26.93 -32.1 -32.11	vas re-monitored a 87.7 86.7 was re-monitored 58.6 57.5 vas re-monitored a 65 64.9 84.8 81.9 are in progress as 76.1 78.4 74.8 72.7	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made and cleared on 3/27/24 NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open;Dec. Flow/Vac. SPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open;Dec. Flow/Vac.	0
RLLC0199 ( RLLC0201 RLLC0201 ( RLLC0201 ( RLLC0210 ( RLLC0210 ( RLLC0210 ( RLLC0225 ( RLLC0225 ( RLLC0225 ( RLLC0220 ( RLLC0230 ( RLLC0230 ( RLLC0230 (	was monitored on 3/27/24 14:29 3/27/24 14:31 was monitored on 3/6/24 9:42 3/6/24 9:42 3/6/24 9:42 3/6/24 9:48 was monitored on 3/27/24 14:25 3/27/24 14:25 4/17/24 13:46 4/17/24 13:46 4/17/24 15:14 3/26/24 15:18 4/3/24 15:18 4/3/24 14:44 4/3/24 14:48 was monitored on	3/6/2024 ar 22.5 54.4 3/27/2024 a 0.4 61 3/6/2024 ar 16.5 3/27/2024 a 9.7 26.3 16.5 3/27/2024 a 9.7 6 1.1 2.3 3/26/2024 a	10.3 45.5 and was fou 0.7 38.8 10 was foun 13.3 8.6 16.6 11.1 and was foun 7.3 4.5 1.2 1.9 and was fou	18         0.1           nd to be in .         20.9           0.1         0.1           1 do be in .         13.8           16.3         10.1           14.5         nd to be in .           17.3         18.6           20.2         19.8           nd to be in .         19.8	49.2 0 exceedance 78 0.1 56.2 64.2 47 57.9 exceedance 65.7 70.9 77.5 76 exceedance	-0.26 -0.16 for Oxygen. Correc -26.47 -1.62 or Oxygen. Correc -20.64 -26.73 -27.28 for Oxygen. Correc -26.34 -26.93 -32.23 -32.02 for Oxygen. Correc	tive actions were in 88.3 86.7 active actions were 58.8 57.7 tive actions were in 65 64.9 85.2 82.1 active actions were 75.8 78.3 75 72.9 active actions were	itilated. The well \ -0.12 -0.14 initilated. The well -24.48 -2.22 itilated. The well \ -20.43 -20.62 -28.42 -27.45 initilated. Repairs -26.66 -26.93 -32.1 -32.11 initilated. Repairs	vas re-monitored a 87.7 86.7 was re-monitored 58.6 57.5 vas re-monitored a 65 64.9 84.8 81.9 are in progress as 76.1 78.4 74.8 72.7 are in progress as	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made and cleared on 3/27/24 NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open;Dec. Flow/Vac. of 5/1/2024 NSPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open;Dec. Flow/Vac. SPS/EG CAI;Barely Open;Dec. Flow/Vac.	0
RLLC0199 RLLC0201 RLLC0201 RLLC0201 RLLC0210 RLLC0210 RLLC0225 RLLC0225 RLLC0225 RLLC0225 RLLC0225 RLLC0230 RLLC0230 RLLC0230 RLLC0256	was monitored on 3/27/24 14:29 3/27/24 14:31 was monitored on 3/6/24 9:42 3/6/24 9:42 3/6/24 9:48 was monitored on 3/27/24 14:25 3/27/24 14:25 4/17/24 13:50 was monitored on 3/26/24 15:18 4/3/24 14:44 4/3/24 14:48 was monitored on 3/26/24 14:38	3/6/2024 ar 22.5 54.4 3/27/2024 a 0.4 61 3/6/2024 ar 16.7 10.9 26.3 16.5 3/27/2024 a 9.7 6 1.1 2.3 3/26/2024 a 1.2	10.3 45.5 and was fou 0.7 38.8 10 was foun 13.3 8.6 16.6 11.1 and was foun 7.3 4.5 1.2 1.9 and was fou 1.3	18           0.1           nd to be in .           20.9           0.1           d to be in e           13.8           10.1           14.5           nd to be in .           17.3           18.6           20.2           19.8           nd to be in .           19.5	49.2         0           exceedance         78           0.1         56.2           64.2         64.2           67.9         57.9           exceedance         65.7           70.9         77.5           76         exceedance           78         76           78         78	-0.26 -0.16 for Oxygen. Correc -26.47 -1.62 or Oxygen. Correc -20.49 -20.64 -26.73 -27.28 for Oxygen. Correc -26.93 -32.02 for Oxygen. Correc -41.62	tive actions were in 88.3 86.7 sctive actions were 58.8 57.7 tive actions were in 65 64.9 85.2 82.1 sctive actions were 75.8 75.3 75 72.9 sctive actions were 73.2	itilated. The well v -0.12 -0.14 initilated. The well -24.48 -2.22 itilated. The well v -20.43 -20.62 -28.42 -27.45 initilated. Repairs -26.69 -32.1 -32.11 initilated. Repairs -36.36	vas re-monitored a 87.7 86.7 was re-monitored 58.6 57.5 vas re-monitored a 65 64.9 84.8 81.9 are in progress as 76.4 74.8 72.7 are in progress as 73.7	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made and cleared on 3/27/24 NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open;Dec. Flow/Vac. of 5/1/2024 NSPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open;Dec. Flow/Vac. of 5/1/2024 NSPS/EG CAI;Barely Open;Dec. Flow/Vac.	0
RLLC0199 ( RLLC0201 RLLC0201 ( RLLC0201 ( RLLC0210 ( RLLC0210 ( RLLC0210 ( RLLC0225 ( RLLC0225 ( RLLC0225 ( RLLC0220 ( RLLC0230 ( RLLC0230 ( RLLC0230 (	was monitored on 3/27/24 14:29 3/27/24 14:31 was monitored on 3/6/24 9:42 3/6/24 9:42 3/6/24 9:42 3/6/24 9:48 was monitored on 3/27/24 14:25 3/27/24 14:25 4/17/24 13:46 4/17/24 13:46 4/17/24 15:14 3/26/24 15:18 4/3/24 15:18 4/3/24 14:44 4/3/24 14:48 was monitored on	3/6/2024 ar 22.5 54.4 3/27/2024 a 0.4 61 3/6/2024 ar 16.5 3/27/2024 a 9.7 26.3 16.5 3/27/2024 a 9.7 6 1.1 2.3 3/26/2024 a	10.3 45.5 and was fou 0.7 38.8 10 was foun 13.3 8.6 16.6 11.1 and was foun 7.3 4.5 1.2 1.9 and was fou	18         0.1           nd to be in .         20.9           0.1         0.1           1 do be in .         13.8           16.3         10.1           14.5         nd to be in .           17.3         18.6           20.2         19.8           nd to be in .         19.8	49.2 0 exceedance 78 0.1 56.2 64.2 47 57.9 exceedance 65.7 70.9 77.5 76 exceedance	-0.26 -0.16 for Oxygen. Correc -26.47 -1.62 or Oxygen. Correc -20.64 -26.73 -27.28 for Oxygen. Correc -26.34 -26.93 -32.23 -32.02 for Oxygen. Correc	tive actions were in 88.3 86.7 active actions were 58.8 57.7 tive actions were in 65 64.9 85.2 82.1 active actions were 75.8 78.3 75 72.9 active actions were	itilated. The well \ -0.12 -0.14 initilated. The well -24.48 -2.22 itilated. The well \ -20.43 -20.62 -28.42 -27.45 initilated. Repairs -26.66 -26.93 -32.1 -32.11 initilated. Repairs	vas re-monitored a 87.7 86.7 was re-monitored 58.6 57.5 vas re-monitored a 65 64.9 84.8 81.9 are in progress as 76.1 78.4 74.8 72.7 are in progress as	nd cleared on 4/17/24 NSPS/EG CAI;Dec. Flow/Vac. No Adj. Made and cleared on 3/27/24 NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open;Dec. Flow/Vac. of 5/1/2024 NSPS/EG CAI;Barely Open NSPS/EG CAI;Barely Open;Dec. Flow/Vac. NSPS/EG CAI;Barely Open;Dec. Flow/Vac. SPS/EG CAI;Barely Open;Dec. Flow/Vac.	0

ILC0273 3/26/24 15:29 5.1 3.7 18.5 7.2.7 -41.87 7.2.1 -43.24 72.4 NSPS/EG CAl-Barely Open											
RLLC0273	3/26/24 15:29	5.1	3.7	18.5	72.7	-41.87	72.1	-43.24	72.4		
RLLC0273	3/26/24 15:31	3.9	2.8	19	74.3	-43.54	72.5	-42.42	72.5	NSPS/EG CAI;Barely Open	
RLLC0273	4/2/24 10:16	22.4	16.1	10.7	50.8	-46.64	65.2	-46.38	65.3	NSPS/EG CAI;Dec. Flow/Vac.	
		10	3.9	18.1	73.1	-46.2	65.3	-46.9	65.5	NSPS/EG CAI;Dec. Flow/Vac.	
			and was fou			for Oxygen. Corre	ective actions were	initiated. Repairs a	are in progress	as of 5/1/2024	35
											35
RLLC0273 w RLI00220	vas monitored on 4/2/24 9:20	3/26/2024 a	and was fou 39.9	und to be in e	exceedance 0	for Oxygen. Corre	ective actions were 82.8	initiated. Repairs a	are in progress 83	as of 5/1/2024	35
RLLC0273 w RLI00220	vas monitored on 4/2/24 9:20	3/26/2024 a	and was fou 39.9	und to be in e	exceedance 0	for Oxygen. Corre	ective actions were 82.8	initiated. Repairs a	are in progress 83	as of 5/1/2024 NSPS/EG CAI;Inc. Flow/Vac.	35

#### **APPENDIX K**

#### MONTHLY LANDFILL GAS FLOW RATES

#### REDWOOD LANDFILL, INC.

Novato, CA

#### Yearly LFG for A-51 Flare, A-60 Flare, S-64 Engine (#1), and S-65 Engine (#2)

Month	A-51 Flare Total Flow Corrected to HHV of 500 BTU/scf (scf)	A-60 Flare Total Flow Corrected to HHV of 500 BTU/scf (scf)	S-64 Engine Total Flow Corrected to HHV of 500 BTU/scf (scf)	S-65 Engine Total Flow Corrected to HHV of 500 BTU/scf (scf)	Combined A-51, A-60, S64, and S65 Corrected to HHV of 500 BTU/scf (scf)	Consecutive 12- Month Corrected Total for A-51 Flare (scf)	Consecutive 12- Month Corrected Total for A-60 Flare (scf)	Consecutive 12- Month Corrected Total for S-64 Engine (#1) (scf)	Consecutive 12- Month Corrected Total for S-65 Engine (#2) (scf)	Combined A-51, A-60, S- 64, and S-65 Corrected 12-Month Throughput ¹
May-23	48,755,971	62,167,805	47,369	10,785,210	121,756,355	116,995,160	604,661,175	170,108,573	189,275,617	1,081,040,524
Jun-23	52,201,446	61,797,576	0	0	113,999,022	169,196,606	621,127,866	152,793,691	177,865,760	1,120,983,922
Jul-23	55,079,323	57,554,770	0	0	112,634,093	224,275,929	628,510,762	145,920,486	160,433,100	1,159,140,276
Aug-23	48,961,062	56,194,185	0	0	105,155,247	273,236,991	634,378,701	126,013,121	156,347,651	1,189,976,464
Sep-23	21,634,661	67,634,013	0	0	89,268,674	294,871,652	658,372,305	108,698,684	139,400,248	1,201,342,889
Oct-23	0	95,196,445	0	0	95,196,445	291,768,959	706,426,918	89,390,335	122,492,969	1,210,079,181
Nov-23	0	94,322,025	0	0	94,322,025	291,768,959	760,411,344	67,152,182	102,069,396	1,221,401,881
Dec-23	193,176	99,007,388	0	0	99,200,564	291,904,975	817,992,603	45,441,233	81,957,922	1,237,296,732
Jan-24	37,088,307	70,782,473	0	0	107,870,780	327,394,271	847,686,609	24,996,616	62,843,700	1,262,921,196
Feb-24	48,183,426	50,304,208	0	0	98,487,634	375,577,697	840,749,244	713,920	39,181,922	1,256,222,783
Mar-24	55,174,366	51,858,639	0	0	107,033,005	411,135,405	821,286,387	47,369	22,299,103	1,254,768,264
Apr-24	13,486,696	59,997,633	16,670,500	17,766,980	107,921,810	380,758,434	826,817,160	16,717,869	28,552,190	1,252,845,654

Notes:

¹Pursuant to Title V Permit Condition Number 19867 Part 20, as modified in renewal application dated September 22, 2016 to match BAAQMD Permit To Operate, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-51 and A-60 Landfill Gas Flares shall each not exceed 4,320,000 scf during any one day, and the combined throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-51 and A-60 Flares shall not exceed 2,625 million scf during any consecutive 12-month period.

HHV= higher heating value BTU = British Thermal Units scf= standard cubic feet

#### MONTHLY LFG Input to Flare (A-51) WM - REDWOOD LANDFILL, Novato, CA

#### A-51 (Flare)

Month	Total Available Runtime (hours)	Total Downtime (hours)	Total Runtime (hours)	Average Flow (scfm)	Average $CH_4 (\%)^1$	Total Flow LFG Volume (scf)	Total Flow LFG Volume Corrected to HHV of 500 BTU/scf	Total CH₄ Volume (scf)	Total Heat Input (MMBTU)	CO Emission Factor (Ib/MMBtu) ¹	CO Emissions (tons)	SO2 Emission Factor (lb/MMscf) ²	SO2 Emissions (tons) ²
November-23	721.00	721.00	0.00	0		0	0	0	0	0.071	0.00	55.53	0.00
December-23	744.00	740.37	3.63	843	51.9	183,680	193,176	95,348	97	0.071	0.00	55.53	0.01
January-24	744.00	201.37	542.63	1,083	51.9	35,265,215	37,088,307	18,306,173	18,544	0.071	0.66	55.04	0.97
February-24	696.00	0.00	696.00	1,097	51.9	45,814,949	48,183,426	23,782,540	24,092	0.071	0.86	55.04	1.26
March-24	743.00	2.73	740.27	1,176	52.1	52,232,734	55,174,366	27,233,152	27,587	0.008	0.11	55.04	1.44
April-24	720.00	542.40	177.60	1,197	52.2	12,752,509	13,486,696	6,656,810	6,743	0.008	0.03	TBD	TBD
TOTAL/ AVG:	4,368.00	2,207.87	2,160.13	1,128	52.0	146,249,087	154,125,971	76,074,023	77,062.99				

#### NOTES:

The A-51 Flare commenced operation on June 21, 2005.

¹CH₄ content and CO emission factor was determined from the January 12, 2023 (March 9, 2023 - March 7, 2024) and January 10, 2024 (March 8, 2024 - present) source tests.

²SO₂ emission factors are calculated on a quarterly basis and are derived from the average of all weekly samples and the quarterly lab sample (flare inlets only). SO2 Emissions are updated at the end of each quarter when the quarterly average emission factor is calculated.

Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-51 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,625 million scf combined with the A-60 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

 $CH_4$ = methane

HHV= higher heating value

#### A-51 Flare Heat Input Rate

Nov-23

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total Flow LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU) / Day	Total Flow LFG Volume Corrected to HHV of 500 BTU/scf
11/1/2023	0.00	51.9	0	0	0	1,013	0	0
11/2/2023	0.00	51.9	0	0	0	1,013	0	0
11/3/2023	0.00	51.9	0	0	0	1,013	0	0
11/4/2023	0.00	51.9	0	0	0	1,013	0	0
11/5/2023	0.00	51.9	0	0	0	1,013	0	0
11/6/2023	0.00	51.9	0	0	0	1,013	0	0
11/7/2023	0.00	51.9	0	0	0	1,013	0	0
11/8/2023	0.00	51.9	0	0	0	1,013	0	0
11/9/2023	0.00	51.9	0	0	0	1,013	0	0
11/10/2023	0.00	51.9	0	0	0	1,013	0	0
11/11/2023	0.00	51.9	0	0	0	1,013	0	0
11/12/2023	0.00	51.9	0	0	0	1,013	0	0
11/13/2023	0.00	51.9	0	0	0	1,013	0	0
11/14/2023	0.00	51.9	0	0	0	1,013	0	0
11/15/2023	0.00	51.9	0	0	0	1,013	0	0
11/16/2023	0.00	51.9	0	0	0	1,013	0	0
11/17/2023	0.00	51.9	0	0	0	1,013	0	0
11/18/2023	0.00	51.9	0	0	0	1,013	0	0
11/19/2023	0.00	51.9	0	0	0	1,013	0	0
11/20/2023	0.00	51.9	0	0	0	1,013	0	0
11/21/2023	0.00	51.9	0	0	0	1,013	0	0
11/22/2023	0.00	51.9	0	0	0	1,013	0	0
11/23/2023	0.00	51.9	0	0	0	1,013	0	0
11/24/2023	0.00	51.9	0	0	0	1,013	0	0
11/25/2023	0.00	51.9	0	0	0	1,013	0	0
11/26/2023	0.00	51.9	0	0	0	1,013	0	0
11/27/2023	0.00	51.9	0	0	0	1,013	0	0
11/28/2023	0.00	51.9	0	0	0	1,013	0	0
11/29/2023	0.00	51.9	0	0	0	1,013	0	0
11/30/2023	0.00	51.9	0	0	0	1,013	0	0
Totals/ Average:	0.00	#DIV/0!	#DIV/0!	0.0	0	1,013	0	0
Notes:						Maximum:	0	0

The A-51 Flare commenced operation on June 21, 2005.

*CH₄ content was determined from the January 12, 2022 (March 11, 2022 - March 8, 2023) and January 12, 2023 (March 9, 2023 - present) source tests. Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-51 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,625 million scf combined with the A-60 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

#### A-51 Flare Heat Input Rate

Dec-23

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total Flow LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU) / Day	Total Flow LFG Volume Corrected to HHV of 500 BTU/scf
12/1/2023	0.00	51.9	0	0	0	1,013	0	0
12/2/2023	0.00	51.9	0	0	0	1,013	0	0
12/3/2023	0.00	51.9	0	0	0	1,013	0	0
12/4/2023	0.00	51.9	0	0	0	1,013	0	0
12/5/2023	0.00	51.9	0	0	0	1,013	0	0
12/6/2023	0.00	51.9	0	0	0	1,013	0	0
12/7/2023	0.00	51.9	0	0	0	1,013	0	0
12/8/2023	0.00	51.9	0	0	0	1,013	0	0
12/9/2023	0.00	51.9	0	0	0	1,013	0	0
12/10/2023	0.00	51.9	0	0	0	1,013	0	0
12/11/2023	0.00	51.9	0	0	0	1,013	0	0
12/12/2023	0.00	51.9	0	0	0	1,013	0	0
12/13/2023	0.00	51.9	0	0	0	1,013	0	0
12/14/2023	0.00	51.9	0	0	0	1,013	0	0
12/15/2023	0.00	51.9	0	0	0	1,013	0	0
12/16/2023	0.00	51.9	0	0	0	1,013	0	0
12/17/2023	0.00	51.9	0	0	0	1,013	0	0
12/18/2023	0.00	51.9	0	0	0	1,013	0	0
12/19/2023	0.00	51.9	0	0	0	1,013	0	0
12/20/2023	0.00	51.9	0	0	0	1,013	0	0
12/21/2023	3.63	51.9	843	183,680	95,348	1,013	97	193,176
12/22/2023	0.00	51.9	0	0	0	1,013	0	0
12/23/2023	0.00	51.9	0	0	0	1,013	0	0
12/24/2023	0.00	51.9	0	0	0	1,013	0	0
12/25/2023	0.00	51.9	0	0	0	1,013	0	0
12/26/2023	0.00	51.9	0	0	0	1,013	0	0
12/27/2023	0.00	51.9	0	0	0	1,013	0	0
12/28/2023	0.00	51.9	0	0	0	1,013	0	0
12/29/2023	0.00	51.9	0	0	0	1,013	0	0
12/30/2023	0.00	51.9	0	0	0	1,013	0	0
12/31/2023	0.00	51.9	0	0	0	1,013	0	0
Totals/ Average:	3.63	51.9	843	183,680.0	95,348	1,013	97	193,176
Notes:						Maximum:	97	193,176

The A-51 Flare commenced operation on June 21, 2005.

*CH₄ content was determined from the January 12, 2022 (March 11, 2022 - March 8, 2023) and January 12, 2023 (March 9, 2023 - present) source tests. Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-51 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,625 million scf combined with the A-60 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

#### A-51 Flare Heat Input Rate

Jan-24

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total Flow LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU) / Day	Total Flow LFG Volume Corrected to HHV of 500 BTU/scf
1/1/2024	0.00	51.9	0	0	0	1,013	0	0
1/2/2024	0.00	51.9	0	0	0	1,013	0	0
1/3/2024	0.00	51.9	0	0	0	1,013	0	0
1/4/2024	0.00	51.9	0	0	0	1,013	0	0
1/5/2024	0.00	51.9	0	0	0	1,013	0	0
1/6/2024	0.00	51.9	0	0	0	1,013	0	0
1/7/2024	0.00	51.9	0	0	0	1,013	0	0
1/8/2024	0.03	51.9	835	1,669	866	1,013	1	1,755
1/9/2024	14.60	51.9	797	698,597	362,642	1,013	367	734,712
1/10/2024	24.00	51.9	958	1,379,799	716,254	1,013	726	1,451,130
1/11/2024	24.00	51.9	1,097	1,579,873	820,112	1,013	831	1,661,547
1/12/2024	24.00	51.9	1,096	1,577,581	818,922	1,013	830	1,659,137
1/13/2024	24.00	51.9	1,096	1,578,613	819,458	1,013	830	1,660,222
1/14/2024	24.00	51.9	1,097	1,579,081	819,701	1,013	830	1,660,714
1/15/2024	24.00	51.9	1,095	1,576,877	818,557	1,013	829	1,658,396
1/16/2024	24.00	51.9	1,097	1,579,726	820,036	1,013	831	1,661,392
1/17/2024	24.00	51.9	1,098	1,580,646	820,513	1,013	831	1,662,360
1/18/2024	24.00	51.9	1,098	1,581,642	821,030	1,013	832	1,663,408
1/19/2024	24.00	51.9	1,099	1,581,862	821,145	1,013	832	1,663,639
1/20/2024	24.00	51.9	1,098	1,581,748	821,085	1,013	832	1,663,519
1/21/2024	24.00	51.9	1,098	1,581,202	820,802	1,013	831	1,662,945
1/22/2024	24.00	51.9	1,098	1,580,487	820,431	1,013	831	1,662,193
1/23/2024	24.00	51.9	1,096	1,578,764	819,536	1,013	830	1,660,381
1/24/2024	24.00	51.9	1,099	1,581,904	821,166	1,013	832	1,663,683
1/25/2024	24.00	51.9	1,100	1,583,447	821,967	1,013	833	1,665,306
1/26/2024	24.00	51.9	1,098	1,581,415	820,913	1,013	832	1,663,169
1/27/2024	24.00	51.9	1,098	1,580,800	820,593	1,013	831	1,662,522
1/28/2024	24.00	51.9	1,097	1,580,236	820,301	1,013	831	1,661,929
1/29/2024	24.00	51.9	1,097	1,579,309	819,819	1,013	830	1,660,954
1/30/2024	24.00	51.9	1,097	1,579,256	819,792	1,013	830	1,660,898
1/31/2024	24.00	51.9	1,098	1,580,681	820,532	1,013	831	1,662,397
Totals/ Average:	542.63	51.9	1,083	35,265,215.0	18,306,173	1,013	18,544	37,088,307
Notes:						Maximum:	833	1,665,306

The A-51 Flare commenced operation on June 21, 2005.

*CH₄ content was determined from the January 12, 2022 (March 11, 2022 - March 8, 2023) and January 12, 2023 (March 9, 2023 - present) source tests. Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-51 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,625 million scf combined with the A-60 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

#### A-51 Flare Heat Input Rate

Feb-24

MONTH:

Date	Runtime (hours)	СН4 (%)*	Average Flow (scfm)	Total Flow LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU) / Day	Total Flow LFG Volume Corrected to HHV of 500 BTU/scf
2/1/2024	24.00	51.9	1,098	1,581,170	820,785	1,013	831	1,662,911
2/2/2024	24.00	51.9	1,097	1,579,884	820,118	1,013	831	1,661,559
2/3/2024	24.00	51.9	1,095	1,577,062	818,653	1,013	829	1,658,591
2/4/2024	24.00	51.9	1,095	1,577,087	818,666	1,013	829	1,658,617
2/5/2024	24.00	51.9	1,097	1,580,157	820,259	1,013	831	1,661,845
2/6/2024	24.00	51.9	1,098	1,580,682	820,532	1,013	831	1,662,398
2/7/2024	24.00	51.9	1,098	1,581,255	820,829	1,013	832	1,663,001
2/8/2024	24.00	51.9	1,098	1,580,872	820,631	1,013	831	1,662,598
2/9/2024	24.00	51.9	1,096	1,578,694	819,500	1,013	830	1,660,307
2/10/2024	24.00	51.9	1,097	1,579,210	819,768	1,013	830	1,660,850
2/11/2024	24.00	51.9	1,096	1,578,791	819,550	1,013	830	1,660,409
2/12/2024	24.00	51.9	1,096	1,578,200	819,244	1,013	830	1,659,788
2/13/2024	24.00	51.9	1,097	1,579,546	819,942	1,013	831	1,661,203
2/14/2024	24.00	51.9	1,098	1,581,227	820,815	1,013	831	1,662,971
2/15/2024	24.00	51.9	1,098	1,580,568	820,473	1,013	831	1,662,278
2/16/2024	24.00	51.9	1,098	1,580,784	820,585	1,013	831	1,662,505
2/17/2024	24.00	51.9	1,098	1,580,650	820,515	1,013	831	1,662,364
2/18/2024	24.00	51.9	1,097	1,578,960	819,638	1,013	830	1,660,587
2/19/2024	24.00	51.9	1,097	1,579,274	819,801	1,013	830	1,660,917
2/20/2024	24.00	51.9	1,098	1,580,674	820,528	1,013	831	1,662,389
2/21/2024	24.00	51.9	1,098	1,580,908	820,649	1,013	831	1,662,636
2/22/2024	24.00	51.9	1,098	1,580,907	820,649	1,013	831	1,662,635
2/23/2024	24.00	51.9	1,098	1,580,772	820,579	1,013	831	1,662,493
2/24/2024	24.00	51.9	1,096	1,578,470	819,384	1,013	830	1,660,072
2/25/2024	24.00	51.9	1,095	1,577,125	818,686	1,013	829	1,658,657
2/26/2024	24.00	51.9	1,098	1,581,163	820,782	1,013	831	1,662,904
2/27/2024	24.00	51.9	1,097	1,580,058	820,208	1,013	831	1,661,742
2/28/2024	24.00	51.9	1,098	1,580,692	820,537	1,013	831	1,662,408
2/29/2024	24.00	51.9	1,097	1,580,108	820,234	1,013	831	1,661,794
Totals/ Average:	696.00	51.9	1,097	45,814,949.0	23,782,540	1,013	24,092	48,183,426
lotes:			-			Maximum:	832	1,663,001

#### The A-51 Flare commenced operation on June 21, 2005.

*CH₄ content was determined from the January 12, 2022 (March 11, 2022 - March 8, 2023) and January 12, 2023 (March 9, 2023 - present) source tests. Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-51 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,625 million scf combined with the A-60 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

#### A-51 Flare Heat Input Rate

Mar-24

MONTH:

Date	Runtime (hours)	СН4 (%)*	Average Flow (scfm)	Total Flow LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU) / Day	Total Flow LFG Volume Corrected to HHV of 500 BTU/scf
3/1/2024	24.00	51.9	1,097	1,580,041	820,199	1,013	831	1,661,724
3/2/2024	24.00	51.9	1,097	1,579,305	819,817	1,013	830	1,660,950
3/3/2024	24.00	51.9	1,097	1,579,791	820,070	1,013	831	1,661,461
3/4/2024	24.00	51.9	1,098	1,580,420	820,396	1,013	831	1,662,122
3/5/2024	24.00	51.9	1,098	1,580,629	820,505	1,013	831	1,662,342
3/6/2024	24.00	51.9	1,097	1,580,135	820,248	1,013	831	1,661,823
3/7/2024	24.00	51.9	1,159	1,669,659	866,720	1,013	878	1,755,975
3/8/2024	24.00	52.2	1,197	1,723,224	899,523	1,013	911	1,822,433
3/9/2024	24.00	52.2	1,197	1,723,117	899,467	1,013	911	1,822,320
3/10/2024	23.00	52.2	1,195	1,649,594	861,088	1,013	872	1,744,564
3/11/2024	24.00	52.2	1,197	1,723,024	899,419	1,013	911	1,822,222
3/12/2024	24.00	52.2	1,198	1,725,166	900,537	1,013	912	1,824,487
3/13/2024	24.00	52.2	1,197	1,724,252	900,060	1,013	912	1,823,521
3/14/2024	24.00	52.2	1,197	1,723,080	899,448	1,013	911	1,822,281
3/15/2024	24.00	52.2	1,195	1,721,317	898,527	1,013	910	1,820,417
3/16/2024	24.00	52.2	1,196	1,722,407	899,096	1,013	911	1,821,569
3/17/2024	24.00	52.2	1,196	1,721,648	898,700	1,013	910	1,820,767
3/18/2024	24.00	52.2	1,196	1,722,126	898,950	1,013	911	1,821,272
3/19/2024	24.00	52.2	1,197	1,723,373	899,601	1,013	911	1,822,591
3/20/2024	24.00	52.2	1,196	1,722,902	899,355	1,013	911	1,822,093
3/21/2024	24.00	52.2	1,196	1,722,609	899,202	1,013	911	1,821,783
3/22/2024	24.00	52.2	1,197	1,723,318	899,572	1,013	911	1,822,533
3/23/2024	24.00	52.2	1,196	1,722,455	899,122	1,013	911	1,821,620
3/24/2024	24.00	52.2	1,195	1,721,457	898,601	1,013	910	1,820,565
3/25/2024	21.27	52.2	1,196	1,526,550	796,859	1,013	807	1,614,437
3/26/2024	24.00	52.2	1,196	1,722,434	899,111	1,013	911	1,821,598
3/27/2024	24.00	52.2	1,197	1,723,742	899,793	1,013	911	1,822,981
3/28/2024	24.00	52.2	1,196	1,722,782	899,292	1,013	911	1,821,966
3/29/2024	24.00	52.2	1,197	1,723,619	899,729	1,013	911	1,822,851
3/30/2024	24.00	52.2	1,197	1,724,337	900,104	1,013	912	1,823,611
3/31/2024	24.00	52.2	1,197	1,724,221	900,043	1,013	912	1,823,488
Totals/ Average:	740.27	52.1	1,176	52,232,734.0	27,233,152	1,013	27,587	55,174,366
Notes:						Maximum:	912	1,824,487

The A-51 Flare commenced operation on June 21, 2005.

*CH₄ content was determined from the January 12, 2023 (March 9, 2023 - March 7, 2024) and January 10, 2024 (March 8, 2024 - present) source tests. Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-51 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,625 million scf combined with the A-60 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

#### A-51 Flare Heat Input Rate

MONTH:

Apr-24

	Apr-24							
Date	Runtime (hours)	СН4 (%)*	Average Flow (scfm)	Total Flow LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU) / Day	Total Flow LFG Volume Corrected to HHV of 500 BTU/scf
4/1/2024	24.00	52.2	1,197	1,723,947	899,900	1,013	912	1,823,198
4/2/2024	24.00	52.2	1,197	1,723,776	899,811	1,013	912	1,823,017
4/3/2024	24.00	52.2	1,197	1,723,177	899,498	1,013	911	1,822,384
4/4/2024	24.00	52.2	1,197	1,723,019	899,416	1,013	911	1,822,217
4/5/2024	24.00	52.2	1,197	1,722,993	899,402	1,013	911	1,822,189
4/6/2024	24.00	52.2	1,197	1,723,662	899,752	1,013	911	1,822,897
4/7/2024	24.00	52.2	1,196	1,722,665	899,231	1,013	911	1,821,842
4/8/2024	9.60	52.2	1,197	689,270	359,799	1,013	364	728,953
4/9/2024	0.00	52.2	0	0	0	1,013	0	0
4/10/2024	0.00	52.2	0	0	0	1,013	0	0
4/11/2024	0.00	52.2	0	0	0	1,013	0	0
4/12/2024	0.00	52.2	0	0	0	1,013	0	0
4/13/2024	0.00	52.2	0	0	0	1,013	0	0
4/14/2024	0.00	52.2	0	0	0	1,013	0	0
4/15/2024	0.00	52.2	0	0	0	1,013	0	0
4/16/2024	0.00	52.2	0	0	0	1,013	0	0
4/17/2024	0.00	52.2	0	0	0	1,013	0	0
4/18/2024	0.00	52.2	0	0	0	1,013	0	0
4/19/2024	0.00	52.2	0	0	0	1,013	0	0
4/20/2024	0.00	52.2	0	0	0	1,013	0	0
4/21/2024	0.00	52.2	0	0	0	1,013	0	0
4/22/2024	0.00	52.2	0	0	0	1,013	0	0
4/23/2024	0.00	52.2	0	0	0	1,013	0	0
4/24/2024	0.00	52.2	0	0	0	1,013	0	0
4/25/2024	0.00	52.2	0	0	0	1,013	0	0
4/26/2024	0.00	52.2	0	0	0	1.013	0	0
4/27/2024	0.00	52.2	0	0	0	1.013	0	0
4/28/2024	0.00	52.2	0	0	0	1,013	0	0
4/29/2024	0.00	52.2	0	0	0	1,013	0	0
4/30/2024	0.00	52.2	0	0	0	1.013	0	0
Totals/ Average:	177.60	52.2	1,197	12,752,509.0	6,656,810	1,013	6,743	13,486,696
				, - ,		Maximum:	912	1,823,198

The A-51 Flare commenced operation on June 21, 2005.

*CH₄ content was determined from the January 12, 2023 (March 9, 2023 - March 7, 2024) and January 10, 2024 (March 8, 2024 - present) source tests. Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-51 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,625 million scf combined with the A-60 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

 $CH_4$  = methane

#### MONTHLY LFG Input to Flare (A-60) WM - REDWOOD LANDFILL, Novato, CA

#### A-60 (Flare)

Month	Total Available Runtime (hours)	Total Downtime (hours)	Total Runtime (hours)	Average Flow (scfm)	Average $CH_4 (\%)^1$	Total Flow LFG Volume (scf)	Total Flow LFG Volume Corrected to HHV of 500 BTU/scf	Total CH ₄ Volume (scf)	Total Heat Input (MMBTU)	CO Emission Factor (Ib/MMBtu) ¹	CO Emissions (tons)	SO2 Emission Factor (Ib/MMBtu) ²	SO2 Emissions (tons) ²
November-23	721.00	0.63	720.37	2,252	47.8	97,329,240	94,322,025	46,555,787	47,161	0.084	1.99	55.53	2.70
December-23	744.00	0.00	744.00	2,289	47.8	102,163,984	99,007,388	48,868,405	49,504	0.084	2.08	55.53	2.84
January-24	744.00	0.77	743.23	1,638	47.8	73,039,190	70,782,473	34,937,055	35,391	0.084	1.49	55.04	2.01
February-24	696.00	5.73	690.27	1,253	47.8	51,908,028	50,304,208	24,829,323	25,152	0.084	1.06	55.04	1.43
March-24	743.00	1.50	741.50	1,203	47.8	53,512,018	51,858,639	25,596,564	25,929	0.084	1.09	55.04	1.47
April-24	720.00	0.50	719.50	1,434	47.8	61,910,503	59,997,633	29,613,837	29,999	0.084	1.26	TBD	TBD
TOTAL/ AVG:	4,368.00	9.13	4,358.87	1,682	47.8	439,862,963	426,272,367	210,400,971	213,136.18				

#### NOTES:

The A-60 Flare commenced operation on April 1, 2009.

¹CH₄ content and CO emission factor was determined from the July 13, 2021 (9/10/21 - 9/10/22) and July 13, 2022 (9/11/22 - current) source tests.

²SO₂ emission factors are calculated on a quarterly basis and are derived from the average of all weekly samples and the quarterly lab sample (flare inlets only). SO2 Emissions are updated at the end of each quarter when the quarterly average emission factor is calculated.

Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-60 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,625 million scf combined with the A-51 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

#### A-60 Flare Heat Input Rate

Nov-23

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU) / Day	Total Flow Corrected to HHV of 500 BTU/scf
11/1/2023	24.00	47.8	2,200	3,167,706	1,515,218	1,013	1,535	3,069,832
11/2/2023	24.00	47.8	2,200	3,168,170	1,515,440	1,013	1,535	3,070,282
11/3/2023	24.00	47.8	2,203	3,172,197	1,517,367	1,013	1,537	3,074,185
11/4/2023	24.00	47.8	2,203	3,172,475	1,517,499	1,013	1,537	3,074,454
11/5/2023	25.00	47.8	2,203	3,304,648	1,580,722	1,013	1,601	3,202,543
11/6/2023	24.00	47.8	2,203	3,172,489	1,517,506	1,013	1,537	3,074,468
11/7/2023	24.00	47.8	2,226	3,205,665	1,533,375	1,013	1,553	3,106,618
11/8/2023	24.00	47.8	2,282	3,285,385	1,571,508	1,013	1,592	3,183,875
11/9/2023	24.00	47.8	2,298	3,309,272	1,582,934	1,013	1,604	3,207,024
11/10/2023	24.00	47.8	2,300	3,312,632	1,584,541	1,013	1,605	3,210,280
11/11/2023	24.00	47.8	2,303	3,315,810	1,586,061	1,013	1,607	3,213,360
11/12/2023	24.00	47.8	2,303	3,316,214	1,586,255	1,013	1,607	3,213,752
11/13/2023	24.00	47.8	2,302	3,314,940	1,585,645	1,013	1,606	3,212,517
11/14/2023	24.00	47.8	2,302	3,314,788	1,585,572	1,013	1,606	3,212,370
11/15/2023	23.90	47.8	2,298	3,294,946	1,576,081	1,013	1,597	3,193,141
11/16/2023	24.00	47.8	2,301	3,313,529	1,584,970	1,013	1,606	3,211,150
11/17/2023	24.00	47.8	2,301	3,314,019	1,585,205	1,013	1,606	3,211,625
11/18/2023	24.00	47.8	2,303	3,316,562	1,586,421	1,013	1,607	3,214,089
11/19/2023	24.00	47.8	2,305	3,318,580	1,587,386	1,013	1,608	3,216,045
11/20/2023	24.00	47.8	2,303	3,317,034	1,586,647	1,013	1,607	3,214,546
11/21/2023	23.47	47.8	2,305	3,245,128	1,552,252	1,013	1,572	3,144,862
11/22/2023	24.00	47.8	2,304	3,318,237	1,587,222	1,013	1,608	3,215,712
11/23/2023	24.00	47.8	2,302	3,315,241	1,585,789	1,013	1,606	3,212,809
11/24/2023	24.00	47.8	2,303	3,316,737	1,586,505	1,013	1,607	3,214,259
11/25/2023	24.00	47.8	2,304	3,317,939	1,587,080	1,013	1,608	3,215,424
11/26/2023	24.00	47.8	2,305	3,318,793	1,587,488	1,013	1,608	3,216,251
11/27/2023	24.00	47.8	2,305	3,318,548	1,587,371	1,013	1,608	3,216,014
11/28/2023	24.00	47.8	2,305	3,319,824	1,587,981	1,013	1,609	3,217,250
11/29/2023	24.00	47.8	1,985	2,857,858	1,367,008	1,013	1,385	2,769,558
11/30/2023	24.00	47.8	1,801	2,593,874	1,240,736	1,013	1,257	2,513,730
Totals/ Average:	720.37	47.8	2,252	97,329,240.0	46,555,787	1,013	47,161	94,322,025
otes:	1	1	,		-,,	Maximum:	1,609	3,217,250

#### The A-60 Flare commenced operation on April 1, 2009.

*CH₄ content was determined from the July 13, 2022 (9/11/22 - 9/7/23) and July 12, 2023 (9/8/23 - current) source tests.

Pursuant to Title V Permit Condition Number 19867 Part 30(g), the Annual Source Test at A-60 may be conducted while it is operating in either zone, providing that each operating zone is tested at least once every five years.

Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-60 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,207,520,000 scf combined with the A-51 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

#### A-60 Flare Heat Input Rate

Dec-23

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU) / Day	Total Flow Corrected to HHV of 500 BTU/scf
12/1/2023	24.00	47.8	2,009	2,892,935	1,383,786	1,013	1,402	2,803,551
12/2/2023	24.00	47.8	2,303	3,316,112	1,586,206	1,013	1,607	3,213,653
12/3/2023	24.00	47.8	2,303	3,316,392	1,586,340	1,013	1,607	3,213,924
12/4/2023	24.00	47.8	2,303	3,316,287	1,586,290	1,013	1,607	3,213,823
12/5/2023	24.00	47.8	2,303	3,316,469	1,586,377	1,013	1,607	3,213,999
12/6/2023	24.00	47.8	2,303	3,316,183	1,586,240	1,013	1,607	3,213,722
12/7/2023	24.00	47.8	2,303	3,316,195	1,586,246	1,013	1,607	3,213,733
12/8/2023	24.00	47.8	2,303	3,315,799	1,586,056	1,013	1,607	3,213,350
12/9/2023	24.00	47.8	2,303	3,315,617	1,585,969	1,013	1,607	3,213,173
12/10/2023	24.00	47.8	2,302	3,315,599	1,585,960	1,013	1,607	3,213,156
12/11/2023	24.00	47.8	2,302	3,315,467	1,585,897	1,013	1,607	3,213,028
12/12/2023	24.00	47.8	2,303	3,316,445	1,586,365	1,013	1,607	3,213,976
12/13/2023	24.00	47.8	2,303	3,315,966	1,586,136	1,013	1,607	3,213,511
12/14/2023	24.00	47.8	2,303	3,315,926	1,586,117	1,013	1,607	3,213,473
12/15/2023	24.00	47.8	2,303	3,316,027	1,586,165	1,013	1,607	3,213,571
12/16/2023	24.00	47.8	2,303	3,315,693	1,586,005	1,013	1,607	3,213,247
12/17/2023	24.00	47.8	2,303	3,315,974	1,586,140	1,013	1,607	3,213,519
12/18/2023	24.00	47.8	2,302	3,315,581	1,585,952	1,013	1,607	3,213,138
12/19/2023	24.00	47.8	2,301	3,313,010	1,584,722	1,013	1,605	3,210,647
12/20/2023	24.00	47.8	2,304	3,317,246	1,586,748	1,013	1,607	3,214,752
12/21/2023	24.00	47.8	2,151	3,097,206	1,481,496	1,013	1,501	3,001,511
12/22/2023	24.00	47.8	2,300	3,312,426	1,584,443	1,013	1,605	3,210,081
12/23/2023	24.00	47.8	2,304	3,317,169	1,586,711	1,013	1,607	3,214,677
12/24/2023	24.00	47.8	2,305	3,319,818	1,587,979	1,013	1,609	3,217,244
12/25/2023	24.00	47.8	2,303	3,316,366	1,586,327	1,013	1,607	3,213,899
12/26/2023	24.00	47.8	2,305	3,319,186	1,587,676	1,013	1,608	3,216,632
12/27/2023	24.00	47.8	2,305	3,319,447	1,587,801	1,013	1,608	3,216,885
12/28/2023	24.00	47.8	2,304	3,317,544	1,586,891	1,013	1,608	3,215,041
12/29/2023	24.00	47.8	2,303	3,316,523	1,586,402	1,013	1,607	3,214,051
12/30/2023	24.00	47.8	2,304	3,317,118	1,586,687	1,013	1,607	3,214,628
12/31/2023	24.00	47.8	2,303	3,316,258	1,586,276	1,013	1,607	3,213,794
otals/ Average:	744.00	47.8	2,289	102,163,984.0	48,868,405	1,013	49,504	99,007,388
otes:	•	•	· · ·	<u> </u>		Maximum:	1,609	3,217,244

The A-60 Flare commenced operation on April 1, 2009.

*CH₄ content was determined from the July 13, 2022 (9/11/22 - 9/7/23) and July 12, 2023 (9/8/23 - current) source tests.

Pursuant to Title V Permit Condition Number 19867 Part 30(g), the Annual Source Test at A-60 may be conducted while it is operating in either zone,

providing that each operating zone is tested at least once every five years.

Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-60 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,207,520,000 scf combined with the A-51 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill das

CH₄= methane

#### A-60 Flare Heat Input Rate

Jan-24

MONTH:

MONTH.	Jan-24							
Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU) / Day	Total Flow Corrected to HHV of 500 BTU/scf
1/1/2024	24.00	47.8	2,303	3,316,636	1,586,456	1,013	1.607	3,214,161
1/2/2024	24.00	47.8	2,304	3,317,135	1,586,695	1,013	1,607	3,214,644
1/3/2024	24.00	47.8	2,303	3,316,580	1,586,430	1,013	1,607	3,214,106
1/4/2024	24.00	47.8	2,302	3,315,226	1,585,782	1,013	1,606	3,212,794
1/5/2024	24.00	47.8	2,302	3,315,274	1,585,805	1,013	1,606	3,212,841
1/6/2024	24.00	47.8	2,307	3,321,980	1,589,013	1,013	1,610	3,219,340
1/7/2024	24.00	47.8	2,305	3,319,680	1,587,912	1,013	1,609	3,217,111
1/8/2024	24.00	47.8	2,301	3,313,610	1,585,009	1,013	1,606	3,211,228
1/9/2024	24.00	47.8	1,847	2,659,112	1,271,941	1,013	1,288	2,576,953
1/10/2024	24.00	47.8	1,584	2,281,340	1,091,240	1,013	1,105	2,210,853
1/11/2024	24.00	47.8	1,604	2,310,126	1,105,009	1,013	1,119	2,238,749
1/12/2024	24.00	47.8	1,572	2,263,958	1,082,926	1,013	1,097	2,194,008
1/13/2024	24.00	47.8	1,550	2,231,427	1,067,365	1,013	1,081	2,162,482
1/14/2024	24.00	47.8	1,500	2,160,281	1,033,334	1,013	1,047	2,093,534
1/15/2024	24.00	47.8	1,461	2,103,325	1,006,090	1,013	1,019	2,038,338
1/16/2024	24.00	47.8	1,500	2,160,032	1,033,215	1,013	1,047	2,093,293
1/17/2024	24.00	47.8	1,488	2,142,201	1,024,685	1,013	1,038	2,076,013
1/18/2024	24.00	47.8	1,479	2,130,053	1,018,875	1,013	1,032	2,064,240
1/19/2024	24.00	47.8	1,434	2,064,756	987,641	1,013	1,000	2,000,961
1/20/2024	24.00	47.8	1,385	1,994,781	954,170	1,013	967	1,933,148
1/21/2024	24.00	47.8	1,383	1,991,818	952,752	1,013	965	1,930,276
1/22/2024	24.00	47.8	1,365	1,966,291	940,542	1,013	953	1,905,538
1/23/2024	24.00	47.8	1,284	1,849,032	884,453	1,013	896	1,791,902
1/24/2024	24.00	47.8	1,225	1,763,769	843,669	1,013	855	1,709,273
1/25/2024	23.23	47.8	1,241	1,729,651	827,349	1,013	838	1,676,209
1/26/2024	24.00	47.8	1,253	1,804,199	863,008	1,013	874	1,748,454
1/27/2024	24.00	47.8	1,250	1,799,391	860,708	1,013	872	1,743,795
1/28/2024	24.00	47.8	1,237	1,781,667	852,230	1,013	863	1,726,618
1/29/2024	24.00	47.8	1,226	1,765,029	844,272	1,013	855	1,710,494
1/30/2024	24.00	47.8	1,234	1,777,425	850,201	1,013	861	1,722,507
1/31/2024	24.00	47.8	1,232	1,773,405	848,278	1,013	859	1,718,611
Totals/ Average:	743.23	47.8	1,638	73,039,190.0	34,937,055	1,013	35,391	70,782,473
Notes:						Maximum:	1,610	3,219,340

#### The A-60 Flare commenced operation on April 1, 2009.

*CH₄ content was determined from the July 13, 2022 (9/11/22 - 9/7/23) and July 12, 2023 (9/8/23 - current) source tests.

Pursuant to Title V Permit Condition Number 19867 Part 30(g), the Annual Source Test at A-60 may be conducted while it is operating in either zone,

providing that each operating zone is tested at least once every five years.

Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-60 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,207,520,000 scf combined with the A-51 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

#### A-60 Flare Heat Input Rate

Feb-24

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU) / Day	Total Flow Corrected to HHV of 500 BTU/scf
2/1/2024	22.67	47.8	1,234	1,678,128	802,704	1,013	813	1,626,278
2/2/2024	24.00	47.8	1,227	1,767,223	845,321	1,013	856	1,712,621
2/3/2024	24.00	47.8	1,193	1,718,486	822,009	1,013	833	1,665,389
2/4/2024	24.00	47.8	1,129	1,625,572	777,565	1,013	788	1,575,346
2/5/2024	23.63	47.8	1,154	1,637,067	783,063	1,013	793	1,586,486
2/6/2024	24.00	47.8	1,227	1,766,217	844,840	1,013	856	1,711,646
2/7/2024	24.00	47.8	1,184	1,704,482	815,310	1,013	826	1,651,818
2/8/2024	24.00	47.8	1,085	1,563,086	747,676	1,013	757	1,514,791
2/9/2024	24.00	47.8	1,080	1,554,728	743,678	1,013	753	1,506,691
2/10/2024	24.00	47.8	1,065	1,533,620	733,581	1,013	743	1,486,235
2/11/2024	24.00	47.8	1,078	1,552,081	742,412	1,013	752	1,504,126
2/12/2024	24.00	47.8	1,087	1,564,660	748,429	1,013	758	1,516,316
2/13/2024	24.00	47.8	1,090	1,569,340	750,667	1,013	760	1,520,852
2/14/2024	20.37	47.8	1,236	1,510,877	722,702	1,013	732	1,464,195
2/15/2024	24.00	47.8	1,283	1,846,868	883,418	1,013	895	1,789,805
2/16/2024	24.00	47.8	1,280	1,843,549	881,830	1,013	893	1,786,588
2/17/2024	24.00	47.8	1,260	1,814,508	867,939	1,013	879	1,758,445
2/18/2024	24.00	47.8	1,236	1,780,254	851,554	1,013	863	1,725,249
2/19/2024	24.00	47.8	1,226	1,764,748	844,137	1,013	855	1,710,222
2/20/2024	24.00	47.8	1,230	1,770,806	847,035	1,013	858	1,716,093
2/21/2024	24.00	47.8	1,224	1,762,733	843,173	1,013	854	1,708,269
2/22/2024	24.00	47.8	1,222	1,758,963	841,370	1,013	852	1,704,616
2/23/2024	24.00	47.8	1,219	1,755,316	839,626	1,013	851	1,701,081
2/24/2024	24.00	47.8	1,208	1,739,962	832,281	1,013	843	1,686,202
2/25/2024	24.00	47.8	1,178	1,696,363	811,426	1,013	822	1,643,950
2/26/2024	23.60	47.8	1,524	2,158,572	1,032,516	1,013	1,046	2,091,878
2/27/2024	24.00	47.8	1,722	2,479,495	1,186,024	1,013	1,201	2,402,885
2/28/2024	24.00	47.8	1,706	2,456,774	1,175,156	1,013	1,190	2,380,866
2/29/2024	24.00	47.8	1,759	2,533,550	1,211,881	1,013	1,228	2,455,270
Totals/ Average:	690.27	47.8	1,253	51,908,028.0	24,829,323	1,013	25,152	50,304,208
lotes:		•		<u> </u>		Maximum:	1,228	2,455,270

The A-60 Flare commenced operation on April 1, 2009.

*CH₄ content was determined from the July 13, 2022 (9/11/22 - 9/7/23) and July 12, 2023 (9/8/23 - current) source tests.

Pursuant to Title V Permit Condition Number 19867 Part 30(g), the Annual Source Test at A-60 may be conducted while it is operating in either zone, providing that each operating zone is tested at least once every five years.

Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-60 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,207,520,000 scf combined with the A-51 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

#### A-60 Flare Heat Input Rate

Mar-24

MONTH:

Date	Runtime (hours)	СН4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU) / Day	Total Flow Corrected to HHV of 500 BTU/scf
3/1/2024	24.00	47.8	1,813	2,610,230	1,248,559	1,013	1,265	2,529,581
3/2/2024	24.00	47.8	1,814	2,612,873	1,249,823	1,013	1,266	2,532,142
3/3/2024	24.00	47.8	1,809	2,605,308	1,246,205	1,013	1,262	2,524,811
3/4/2024	24.00	47.8	1,805	2,599,232	1,243,298	1,013	1,259	2,518,923
3/5/2024	24.00	47.8	1,846	2,657,953	1,271,387	1,013	1,288	2,575,829
3/6/2024	24.00	47.8	1,795	2,584,295	1,236,154	1,013	1,252	2,504,447
3/7/2024	24.00	47.8	1,573	2,265,385	1,083,608	1,013	1,098	2,195,391
3/8/2024	24.00	47.8	1,105	1,591,447	761,242	1,013	771	1,542,276
3/9/2024	24.00	47.8	1,130	1,627,508	778,491	1,013	789	1,577,222
3/10/2024	23.00	47.8	1,121	1,547,029	739,995	1,013	750	1,499,230
3/11/2024	23.67	47.8	1,147	1,628,153	778,799	1,013	789	1,577,847
3/12/2024	23.83	47.8	1,118	1,598,449	764,591	1,013	775	1,549,061
3/13/2024	24.00	47.8	1,134	1,632,471	780,865	1,013	791	1,582,032
3/14/2024	23.90	47.8	1,144	1,641,205	785,043	1,013	795	1,590,496
3/15/2024	23.87	47.8	1,101	1,576,908	754,287	1,013	764	1,528,186
3/16/2024	24.00	47.8	857	1,234,611	590,555	1,013	598	1,196,465
3/17/2024	24.00	47.8	767	1,104,868	528,495	1,013	535	1,070,731
3/18/2024	24.00	47.8	936	1,348,402	644,985	1,013	653	1,306,740
3/19/2024	23.87	47.8	1,011	1,447,777	692,520	1,013	702	1,403,045
3/20/2024	23.90	47.8	1,007	1,443,974	690,700	1,013	700	1,399,359
3/21/2024	24.00	47.8	1,014	1,460,124	698,425	1,013	708	1,415,010
3/22/2024	24.00	47.8	977	1,407,032	673,030	1,013	682	1,363,558
3/23/2024	24.00	47.8	847	1,219,741	583,442	1,013	591	1,182,054
3/24/2024	24.00	47.8	752	1,082,753	517,916	1,013	525	1,049,299
3/25/2024	24.00	47.8	917	1,320,176	631,484	1,013	640	1,279,386
3/26/2024	24.00	47.8	900	1,295,639	619,747	1,013	628	1,255,607
3/27/2024	24.00	47.8	981	1,412,820	675,798	1,013	685	1,369,168
3/28/2024	23.47	47.8	1,094	1,539,730	736,504	1,013	746	1,492,156
3/29/2024	24.00	47.8	1,222	1,760,395	842,055	1,013	853	1,706,003
3/30/2024	24.00	47.8	1,273	1,832,912	876,742	1,013	888	1,776,280
3/31/2024	24.00	47.8	1,266	1,822,618	871,818	1,013	883	1,766,304
Totals/ Average:	741.50	47.8	1,203	53,512,018.0	25,596,564	1,013	25,929	51,858,639
lotes:						Maximum:	1,288	2,575,829

#### The A-60 Flare commenced operation on April 1, 2009.

*CH₄ content was determined from the July 13, 2022 (9/11/22 - 9/7/23) and July 12, 2023 (9/8/23 - current) source tests.

Pursuant to Title V Permit Condition Number 19867 Part 30(g), the Annual Source Test at A-60 may be conducted while it is operating in either zone,

providing that each operating zone is tested at least once every five years.

Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-60 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,207,520,000 scf combined with the A-51 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

#### A-60 Flare Heat Input Rate

MONTH:

Apr-24

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU) / Day	Total Flow Corrected to HHV of 500 BTU/scf
4/1/2024	24.00	47.8	1,212	1,745,194	834,784	1,013	846	1,691,272
4/2/2024	24.00	47.8	1,196	1,722,256	823,812	1,013	835	1,669,043
4/3/2024	24.00	47.8	1,203	1,732,132	828,536	1,013	839	1,678,614
4/4/2024	24.00	47.8	1,184	1,705,286	815,695	1,013	826	1,652,597
4/5/2024	24.00	47.8	1,194	1,719,416	822,453	1,013	833	1,666,291
4/6/2024	24.00	47.8	1,209	1,740,787	832,676	1,013	844	1,687,001
4/7/2024	24.00	47.8	1,209	1,741,677	833,102	1,013	844	1,687,864
4/8/2024	23.90	47.8	1,312	1,882,089	900,265	1,013	912	1,823,937
4/9/2024	24.00	47.8	1,408	2,028,076	970,096	1,013	983	1,965,414
4/10/2024	23.87	47.8	1,384	1,982,339	948,218	1,013	961	1,921,090
4/11/2024	24.00	47.8	1,289	1,855,986	887,779	1,013	899	1,798,641
4/12/2024	23.73	47.8	1,444	2,055,865	983,388	1,013	996	1,992,344
4/13/2024	24.00	47.8	1,521	2,190,751	1,047,908	1,013	1,062	2,123,063
4/14/2024	24.00	47.8	1,531	2,204,097	1,054,292	1,013	1,068	2,135,996
4/15/2024	24.00	47.8	1,553	2,236,571	1,069,826	1,013	1,084	2,167,467
4/16/2024	24.00	47.8	1,571	2,262,019	1,081,998	1,013	1,096	2,192,129
4/17/2024	24.00	47.8	1,537	2,212,968	1,058,536	1,013	1,072	2,144,593
4/18/2024	24.00	47.8	1,558	2,244,022	1,073,390	1,013	1,087	2,174,688
4/19/2024	24.00	47.8	1,727	2,486,733	1,189,486	1,013	1,205	2,409,900
4/20/2024	24.00	47.8	1,597	2,299,739	1,100,041	1,013	1,114	2,228,683
4/21/2024	24.00	47.8	1,628	2,343,957	1,121,192	1,013	1,136	2,271,535
4/22/2024	24.00	47.8	1,625	2,339,466	1,119,044	1,013	1,134	2,267,183
4/23/2024	24.00	47.8	1,491	2,147,687	1,027,310	1,013	1,041	2,081,329
4/24/2024	24.00	47.8	1,508	2,172,179	1,039,025	1,013	1,053	2,105,064
4/25/2024	24.00	47.8	1,518	2,185,728	1,045,506	1,013	1,059	2,118,195
4/26/2024	24.00	47.8	1,455	2,095,844	1,002,511	1,013	1,016	2,031,088
4/27/2024	24.00	47.8	1,447	2,084,180	996,932	1,013	1,010	2,019,784
4/28/2024	24.00	47.8	1,450	2,088,689	999,089	1,013	1,012	2,024,154
4/29/2024	24.00	47.8	1,510	2,175,037	1,040,392	1,013	1,054	2,107,834
4/30/2024	24.00	47.8	1,548	2,229,733	1,066,555	1,013	1,080	2,160,840
Totals/ Average:	719.50	47.8	1,434	61,910,503.0	29,613,837	1,013	29,999	59,997,633
Notes:	1	1	,	, , ,	-,,	Maximum:	1,205	2,409,900

#### The A-60 Flare commenced operation on April 1, 2009.

*CH₄ content was determined from the July 13, 2022 (9/11/22 - 9/7/23) and July 12, 2023 (9/8/23 - current) source tests.

Pursuant to Title V Permit Condition Number 19867 Part 30(g), the Annual Source Test at A-60 may be conducted while it is operating in either zone, providing that each operating zone is tested at least once every five years.

Pursuant to Title V Permit Condition Number 19867 Part 20, as modified by Authority To Construct (ATC) 19098, the throughput of landfill gas (with an HHV of 500 BTU/scf) to the A-60 Landfill Gas Flare shall not exceed 4,320,000 scf during any one day, and shall not exceed 2,207,520,000 scf combined with the A-51 Landfill Gas Flare during any consecutive 12-month period.

scfm= standard cubic feet per minute

BTU/scf= British thermal unit per square cubic feet

scf= standard cubic feet

MMBTU= million British thermal units

LFG= landfill gas

CH₄= methane

#### MONTHLY LFG Input to Landfill Gas Engine (S-64) WM - REDWOOD LANDFILL, Novato, CA

#### S-64 (Engine #1)

Month	Total Available Runtime (hours)	Total Downtime (hours)	Total Runtime (hours)	Average Flow (scfm)	Average CH ₄ (%) ¹	Total Flow LFG Volume (scf)	Total Flow LFG Volume Corrected to HHV of 500 BTU/scf	Total CH₄ Volume (scf)	Total Heat Input (MMBTU)	CO Emission Factor (Ib/MMBtu) ¹	CO Emissions (tons)	SO2 Emission Factor (lb/MMBtu) ²	SO2 Emissions (tons) ²
November-23	721.00	721.00	0.00	0		0	0	0	0	0.111	0.00	0.50	0.00E+00
December-23	744.00	744.00	0.00	0		0	0	0	0	0.111	0.00	0.50	0.00E+00
January-24	744.00	744.00	0.00	0		0	0	0	0	0.111	0.00	0.50	0.00E+00
February-24	696.00	696.00	0.00	0		0	0	0	0	0.111	0.00	0.50	0.00E+00
March-24	743.00	743.00	0.00	0		0	0	0	0	0.111	0.00	0.50	0.00E+00
April-24	720.00	212.75	507.25	547	49.4	16,645,221	16,670,500	8,228,282	8,335	0.111	0.46	0.50	4.13E-03
TOTAL/ AVG:	4,368.00	3,860.75	507.25	547	49.4	16,645,221	16,670,500	8,228,282	8,335				

#### NOTES:

The S-64 Engine (#1) commenced operation on April 27, 2017.

¹CH₄, CO, and SO₂ content was determined from the July 14 & 15, 2021 (9/13/21 - 9/11/22) and July 14 & 15, 2022 (9/12/22 - current) source tests.

## S-64 Engine (#1) Heat Input Rate

Nov-23

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU)/Day	Total Flow Corrected to HHV of 500 BTU/scf
11/01/2023	0.00							
11/02/2023	0.00							
11/03/2023	0.00							
11/04/2023	0.00							
11/05/2023	0.00							
11/06/2023	0.00							
11/07/2023	0.00							
11/08/2023	0.00							
11/09/2023	0.00							
11/10/2023	0.00							
11/11/2023	0.00							
11/12/2023	0.00							
11/13/2023	0.00							
11/14/2023	0.00							
11/15/2023	0.00							
11/16/2023	0.00							
11/17/2023	0.00							
11/18/2023	0.00							
11/19/2023	0.00							
11/20/2023	0.00							
11/21/2023	0.00							
11/22/2023	0.00							
11/23/2023	0.00							
11/24/2023	0.00							
11/25/2023	0.00							
11/26/2023	0.00							
11/27/2023	0.00							
11/28/2023	0.00							
11/29/2023	0.00							
11/30/2023	0.00							
Totals/ Average:	0.00			0.0	0		0	0

 The S-64 Engine (#1) commenced operation on April 27, 2017.

 *Methane (CH₄) content was determined from the July 14 & 15, 2021 (9/13/21 - 9/11/22) and July 14 & 15, 2022 (9/12/22 - current) source tests.

## S-64 Engine (#1) Heat Input Rate

Dec-23

MONTH:

Date	Runtime (hours)	СН4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU)/Day	Total Flow Corrected to HHV of 500 BTU/scf
12/01/2023	0.00							
12/02/2023	0.00							
12/03/2023	0.00							
12/04/2023	0.00							
12/05/2023	0.00							
12/06/2023	0.00							
12/07/2023	0.00							
12/08/2023	0.00							
12/09/2023	0.00							
12/10/2023	0.00							
12/11/2023	0.00							
12/12/2023	0.00							
12/13/2023	0.00							
12/14/2023	0.00							
12/15/2023	0.00							
12/16/2023	0.00							
12/17/2023	0.00							
12/18/2023	0.00							
12/19/2023	0.00							
12/20/2023	0.00							
12/21/2023	0.00							
12/22/2023	0.00							
12/23/2023	0.00							
12/24/2023	0.00							
12/25/2023	0.00							
12/26/2023	0.00							
12/27/2023	0.00							
12/28/2023	0.00							
12/29/2023	0.00							
12/30/2023	0.00							
12/31/2023	0.00							
Totals/ Average:	0.00			0.0	0		0	0
Notes:						Maximum:	0	0

The S-64 Engine (#1) commenced operation on April 27, 2017.

## S-64 Engine (#1) Heat Input Rate

Jan-24

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU)/Day	Total Flow Corrected to HHV of 500 BTU/scf
1/01/2024	0.00							
1/02/2024	0.00							
1/03/2024	0.00							
1/04/2024	0.00							
1/05/2024	0.00							
1/06/2024	0.00							
1/07/2024	0.00							
1/08/2024	0.00							
1/09/2024	0.00							
1/10/2024	0.00							
1/11/2024	0.00							
1/12/2024	0.00							
1/13/2024	0.00							
1/14/2024	0.00							
1/15/2024	0.00							
1/16/2024	0.00							
1/17/2024	0.00							
1/18/2024	0.00							
1/19/2024	0.00							
1/20/2024	0.00							
1/21/2024	0.00							
1/22/2024	0.00							
1/23/2024	0.00							
1/24/2024	0.00							
1/25/2024	0.00							
1/26/2024	0.00							
1/27/2024	0.00							
1/28/2024	0.00							
1/29/2024	0.00							
1/30/2024	0.00							
1/31/2024	0.00							
Totals/ Average:	0.00			0.0	0		0	0
Notes:						Maximum:	0	0

The S-64 Engine (#1) commenced operation on April 27, 2017.

## S-64 Engine (#1) Heat Input Rate

Feb-24

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU)/Day	Total Flow Corrected to HHV of 500 BTU/scf
2/01/2024	0.00							
2/02/2024	0.00							
2/03/2024	0.00							
2/04/2024	0.00							
2/05/2024	0.00							
2/06/2024	0.00							
2/07/2024	0.00							
2/08/2024	0.00							
2/09/2024	0.00							
2/10/2024	0.00							
2/11/2024	0.00							
2/12/2024	0.00							
2/13/2024	0.00							
2/14/2024	0.00							
2/15/2024	0.00							
2/16/2024	0.00							
2/17/2024	0.00							
2/18/2024	0.00							
2/19/2024	0.00							
2/20/2024	0.00							
2/21/2024	0.00							
2/22/2024	0.00							
2/23/2024	0.00							
2/24/2024	0.00				1			
2/25/2024	0.00							
2/26/2024	0.00				1			
2/27/2024	0.00							
2/28/2024	0.00							
2/29/2024	0.00							
Fotals/ Average:	0.00			0.0	0		0	0
otes:						Maximum:	0	0

The S-64 Engine (#1) commenced operation on April 27, 2017.

## S-64 Engine (#1) Heat Input Rate

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU)/Day	Total Flow Corrected to HHV of 500 BTU/scf
3/01/2024	0.00							
3/02/2024	0.00							
3/03/2024	0.00							
3/04/2024	0.00							
3/05/2024	0.00							
3/06/2024	0.00							
3/07/2024	0.00							
3/08/2024	0.00							
3/09/2024	0.00							
3/10/2024	0.00							
3/11/2024	0.00							
3/12/2024	0.00							
3/13/2024	0.00							
3/14/2024	0.00							
3/15/2024	0.00							
3/16/2024	0.00							
3/17/2024	0.00							
3/18/2024	0.00							
3/19/2024	0.00							
3/20/2024	0.00							
3/21/2024	0.00							
3/22/2024	0.00							
3/23/2024	0.00							
3/24/2024	0.00							
3/25/2024	0.00							
3/26/2024	0.00							
3/27/2024	0.00							
3/28/2024	0.00							
3/29/2024	0.00					1		
3/30/2024	0.00					1		
3/31/2024	0.00					1		
otals/ Average:	0.00			0.0	0		0	0

 The S-64 Engine (#1) commenced operation on April 27, 2017.

 *Methane (CH₄) content was determined from the July 14 & 15, 2021 (9/13/21 - 9/11/22) and July 14 & 15, 2022 (9/12/22 - current) source tests.

## S-64 Engine (#1) Heat Input Rate

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU)/Day	Total Flow Corrected to HHV of 500 BTU/scf
4/01/2024	0.00							
4/02/2024	0.00							
4/03/2024	0.00							
4/04/2024	0.00							
4/05/2024	0.00							
4/06/2024	0.00							
4/07/2024	0.00							
4/08/2024	6.42	49.4	124	178,621	88,298	1,013	89	178,892
4/09/2024	20.92	49.4	428	616,894	304,951	1,013	309	617,831
4/10/2024	22.08	49.4	499	718,078	354,970	1,013	360	719,169
4/11/2024	24.00	49.4	570	821,268	405,980	1,013	411	822,515
4/12/2024	24.00	49.4	528	760,408	375,895	1,013	381	761,563
4/13/2024	23.25	49.4	497	715,884	353,885	1,013	358	716,971
4/14/2024	24.00	49.4	504	725,790	358,782	1,013	363	726,892
4/15/2024	23.08	49.4	482	693,623	342,881	1,013	347	694,676
4/16/2024	24.00	49.4	503	723,741	357,769	1,013	362	724,840
4/17/2024	24.00	49.4	504	725,279	358,529	1,013	363	726,380
4/18/2024	22.17	49.4	503	724,838	358,311	1,013	363	725,939
4/19/2024	15.83	49.4	413	595,082	294,169	1,013	298	595,986
4/20/2024	24.00	49.4	453	652,221	322,414	1,013	327	653,212
4/21/2024	24.00	49.4	398	573,540	283,520	1,013	287	574,411
4/22/2024	17.58	49.4	390	562,180	277,904	1,013	282	563,034
4/23/2024	23.83	49.4	644	927,670	458,578	1,013	465	929,079
4/24/2024	21.33	49.4	514	739,496	365,557	1,013	370	740,619
4/25/2024	23.58	49.4	542	780,207	385,682	1,013	391	781,392
4/26/2024	24.00	49.4	605	871,436	430,780	1,013	436	872,760
4/27/2024	24.00	49.4	627	902,588	446,179	1,013	452	903,959
4/28/2024	24.00	49.4	628	904,860	447,302	1,013	453	906,234
4/29/2024	23.17	49.4	604	869,527	429,836	1,013	435	870,847
4/30/2024	24.00	49.4	599	861,990	426,110	1,013	432	863,299
otals/ Average:	507.25	49.4	547	16,645,221.3	8,228,282	1,013	8,335	16,670,500
ites:		-	-	.,,	-,,	Maximum:	465	929,0

The S-64 Engine (#1) commenced operation on April 27, 2017. *Methane (CH₄) content was determined from the July 14 & 15, 2021 (9/13/21 - 9/11/22) and July 14 & 15, 2022 (9/12/22 - current) source tests.

#### MONTHLY LFG Input to Landfill Gas Engine (S-65) WM - REDWOOD LANDFILL, Novato, CA

#### S-65 (Engine #2)

Month	Total Available Runtime (hours)	Total Downtime (hours)	Total Runtime (hours)	Average Flow (scfm)	Average $CH_4 (\%)^1$	Total Flow LFG Volume (scf)	Total Flow LFG Volume Corrected to HHV of 500 BTU/scf	Total CH₄ Volume (scf)	Total Heat Input (MMBTU)	CO Emission Factor (lb/MMBtu) ¹	CO Emissions (tons)	SO2 Emission Factor (lb/MMBtu) ²	SO2 Emissions (tons) ²
November-23	721.00	721.00	0.00	0		0	0	0	0	0.049	0.00	0.4990	0.00E+00
December-23	744.00	744.00	0.00	0		0	0	0	0	0.049	0.00	0.4990	0.00E+00
January-24	744.00	744.00	0.00	0		0	0	0	0	0.049	0.00	0.4990	0.00E+00
February-24	696.00	696.00	0.00	0		0	0	0	0	0.049	0.00	0.4990	0.00E+00
March-24	743.00	743.00	0.00	0		0	0	0	0	0.049	0.00	0.4990	0.00E+00
April-24	720.00	194.17	525.83	559	49.7	17,644,843	17,766,980	8,769,487	8,883	0.049	0.22	0.4990	4.40E-03
TOTAL/ AVG:	4,368.00	3,842.17	525.83	559	49.7	17,644,843	17,766,980	8,769,487	8,883				

#### NOTES:

The S-65 Engine (#2) commenced operation on April 27, 2017.

¹CH₄, CO, and SO₂ content was determined from the July 14 & 15, 2021 (9/13/21 - 9/11/22) and July 14 & 15, 2022 (9/12/22 - current) source tests.

## S-65 Engine (#2) Heat Input Rate

Nov-23

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU)/Day	Total Flow Corrected to HHV of 500 BTU/scf
11/01/2023	0.00							
11/02/2023	0.00							
11/03/2023	0.00							
11/04/2023	0.00							
11/05/2023	0.00							
11/06/2023	0.00							
11/07/2023	0.00							
11/08/2023	0.00							
11/09/2023	0.00							
11/10/2023	0.00							
11/11/2023	0.00							
11/12/2023	0.00							
11/13/2023	0.00							
11/14/2023	0.00							
11/15/2023	0.00							
11/16/2023	0.00							
11/17/2023	0.00							
11/18/2023	0.00							
11/19/2023	0.00							
11/20/2023	0.00							
11/21/2023	0.00							
11/22/2023	0.00							
11/23/2023	0.00							
11/24/2023	0.00							
11/25/2023	0.00							
11/26/2023	0.00							
11/27/2023	0.00							
11/28/2023	0.00							
11/29/2023	0.00							
11/30/2023	0.00							
Totals/ Average:	0.00			0.0	0		0	0
Notes:			on Annil 07 0			Maximum:	0	0

 The S-65 Engine (#1) commenced operation on April 27, 2017.

 *Methane (CH₄) content was determined from the July 14 & 15, 2021 (9/13/21 - 9/11/22) and July 14 & 15, 2022 (9/12/22 - current) source tests.

## S-65 Engine (#2) Heat Input Rate

Dec-23

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU)/Day	Total Flow Corrected to HHV of 500 BTU/scf
12/01/2023	0.00							
12/02/2023	0.00							
12/03/2023	0.00							
12/04/2023	0.00							
12/05/2023	0.00							
12/06/2023	0.00							
12/07/2023	0.00							
12/08/2023	0.00							
12/09/2023	0.00							
12/10/2023	0.00							
12/11/2023	0.00							
12/12/2023	0.00							
12/13/2023	0.00							
12/14/2023	0.00							
12/15/2023	0.00							
12/16/2023	0.00							
12/17/2023	0.00							
12/18/2023	0.00							
12/19/2023	0.00							
12/20/2023	0.00							
12/21/2023	0.00							
12/22/2023	0.00							
12/23/2023	0.00							
12/24/2023	0.00							
12/25/2023	0.00							
12/26/2023	0.00							
12/27/2023	0.00							
12/28/2023	0.00							
12/29/2023	0.00							
12/30/2023	0.00							
12/31/2023	0.00							
Totals/ Average:	0.00			0.0	0		0	0

The S-65 Engine (#1) commenced operation on April 27, 2017.

## S-65 Engine (#2) Heat Input Rate

Jan-24

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU)/Day	Total Flow Corrected to HHV of 500 BTU/scf
1/01/2024	0.00							
1/02/2024	0.00							
1/03/2024	0.00							
1/04/2024	0.00							
1/05/2024	0.00							
1/06/2024	0.00							
1/07/2024	0.00							
1/08/2024	0.00							
1/09/2024	0.00							
1/10/2024	0.00							
1/11/2024	0.00							
1/12/2024	0.00							
1/13/2024	0.00							
1/14/2024	0.00							
1/15/2024	0.00							
1/16/2024	0.00							
1/17/2024	0.00							
1/18/2024	0.00							
1/19/2024	0.00							
1/20/2024	0.00							
1/21/2024	0.00							
1/22/2024	0.00							
1/23/2024	0.00							
1/24/2024	0.00							
1/25/2024	0.00							
1/26/2024	0.00							
1/27/2024	0.00							
1/28/2024	0.00							
1/29/2024	0.00							
1/30/2024	0.00							
1/31/2024	0.00							
Totals/ Average:	0.00			0.0	0		0	0

The S-65 Engine (#1) commenced operation on April 27, 2017. *Methane (CH₄) content was determined from the July 14 & 15, 2021 (9/13/21 - 9/11/22) and July 14 & 15, 2022 (9/12/22 - current) source tests.

## S-65 Engine (#2) Heat Input Rate

Feb-24

MONTH:

				1
	1			
		1		1
1	0.0	0	0	0
				Image: second

The S-65 Engine (#1) commenced operation on April 27, 2017.

## S-65 Engine (#2) Heat Input Rate

Mar-24

MONTH:

Date	Runtime (hours)	CH4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU)/Day	Total Flow Corrected to HHV of 500 BTU/scf
3/01/2024	0.00							
3/02/2024	0.00							
3/03/2024	0.00							
3/04/2024	0.00							
3/05/2024	0.00							
3/06/2024	0.00							
3/07/2024	0.00							
3/08/2024	0.00							
3/09/2024	0.00							
3/10/2024	0.00							
3/11/2024	0.00							
3/12/2024	0.00							
3/13/2024	0.00							
3/14/2024	0.00							
3/15/2024	0.00							
3/16/2024	0.00							
3/17/2024	0.00							
3/18/2024	0.00							
3/19/2024	0.00							
3/20/2024	0.00							
3/21/2024	0.00							
3/22/2024	0.00							
3/23/2024	0.00							
3/24/2024	0.00							
3/25/2024	0.00							
3/26/2024	0.00							
3/27/2024	0.00							
3/28/2024	0.00							
3/29/2024	0.00							
3/30/2024	0.00							
3/31/2024	0.00							
otals/ Average:	0.00			0.0	0		0	0
otes:		I			-	Maximum:	0	0

The S-65 Engine (#1) commenced operation on April 27, 2017.

## S-65 Engine (#2) Heat Input Rate

Date	Runtime (hours)	СН4 (%)*	Average Flow (scfm)	Total LFG Volume (scf)	CH4 Volume (scf)	Heating Value of CH4 (BTU/scf)	Heat Input (MMBTU)/Day	Total Flow Corrected to HHV of 500 BTU/scf
4/01/2024	0.00							
4/02/2024	0.00							
4/03/2024	0.00							
4/04/2024	0.00							
4/05/2024	0.00							
4/06/2024	0.00							
4/07/2024	0.00							
4/08/2024	14.08	49.7	262	377,025	187,382	1,013	190	379,635
4/09/2024	23.58	49.7	484	697,045	346,431	1,013	351	701,870
4/10/2024	24.00	49.7	523	752,551	374,018	1,013	379	757,760
4/11/2024	24.00	49.7	527	758,817	377,132	1,013	382	764,069
4/12/2024	24.00	49.7	548	789,194	392,229	1,013	397	794,657
4/13/2024	24.00	49.7	559	805,459	400,313	1,013	406	811,034
4/14/2024	24.00	49.7	570	820,876	407,975	1,013	413	826,558
4/15/2024	24.00	49.7	594	854,900	424,885	1,013	430	860,818
4/16/2024	23.17	49.7	578	831,662	413,336	1,013	419	837,419
4/17/2024	24.00	49.7	601	864,845	429,828	1,013	435	870,831
4/18/2024	22.17	49.7	546	786,802	391,041	1,013	396	792,248
4/19/2024	17.00	49.7	411	592,089	294,268	1,013	298	596,188
4/20/2024	24.00	49.7	613	882,886	438,794	1,013	444	888,997
4/21/2024	24.00	49.7	613	882,774	438,738	1,013	444	888,884
4/22/2024	24.00	49.7	612	881,274	437,993	1,013	444	887,375
4/23/2024	22.00	49.7	553	796,897	396,058	1,013	401	802,413
4/24/2024	22.83	49.7	583	839,826	417,394	1,013	423	845,639
4/25/2024	22.42	49.7	486	699,132	347,469	1,013	352	703,971
4/26/2024	24.00	49.7	523	753,302	374,391	1,013	379	758,517
4/27/2024	24.00	49.7	523	753,381	374,430	1,013	379	758,596
4/28/2024	24.00	49.7	525	755,531	375,499	1,013	380	760,761
4/29/2024	22.58	49.7	495	712,700	354,212	1,013	359	717,633
4/30/2024	24.00	49.7	525	755,876	375,670	1,013	381	761,108
otals/ Average:	525.83	49.7	559	17,644,842.8	8,769,487	1,013	8,883	17,766,980
tes:	•	•		•		Maximum:	444	888,997

The S-65 Engine (#1) commenced operation on April 27, 2017. *Methane (CH₄) content was determined from the July 14 & 15, 2021 (9/13/21 - 9/11/22) and July 14 & 15, 2022 (9/12/22 - current) source tests.

APPENDIX L

**VOC SOILS LOGS** 

## **Redwood Landfill**

Facility Number A1179 Title V Permit Condition Number 19867, Part 14

## VOC Laden Soil

Month	VOC Emission Rate (lbs/month)	12-Month Rolling Total (lbs)	
May-23	0.00	0.00	
June-23	0.00	0.00	
July-23	0.00	0.00	
August-23	0.00	0.00	
September-23	0.00	0.00	
October-23	0.00	0.00	
November-23	0.00	0.00	
December-23	0.00	0.00	
January-24	0.00	0.00	
February-24	0.00	0.00	
March-24	0.00	0.00	
April-24	0.00	0.00	
TOTALS:	0.00		

VOC Laden Soils is defined as soils containing concentrations of VOC less than 50 parts per million by weight (ppm_w).

## APPENDIX M

## $\rm H_2S$ TWICE WEEKLY AND QUARTERLY MONITORING

## REDWOOD LANDFILL, INC. Novato, CA

Date	$H_2S$ Reading (ppm _v )	Calculated TRS (ppm _v )
10/3/23 8:15	300	305
10/5/23 8:05	300	305
10/10/23 8:20	400	406
10/12/23 8:45	300	305
10/17/23 8:30	200	203
10/19/23 8:05	300	305
10/24/23 9:15	300	305
10/27/23 7:45	300	305
11/1/23 11:15	300	305
11/3/23 8:20	300	305
11/7/23 8:45	300	305
11/9/23 9:00	300	305
11/14/23 8:45	300	305
11/16/23 8:50	325	330
11/22/23 9:00	300	305
11/24/23 9:30	300	305
11/28/23 8:35	300	305
11/29/23 10:00	300	305
11/29/23*	220	222
12/5/23 14:55	450	457
12/8/23 8:30	500	508
12/13/23 8:20	500	508
12/15/23 10:50	300	305
12/18/23 8:35	300	305
12/21/23 10:00	475	482
12/27/23 9:55	250	254
12/28/23 10:05	325	330
Quarterly Average:	324	329

#### Total Reduced Sulfur (Post-treatment Site Average) - Quarter 4 - 2023

ppm_v= parts per million by volume

TRS= total reduced sulfur

* Quarterly LFG lab analysis

#### Title V Permit Condition Number 19867 Part 31b

As of March 31, 2005, the Permit Holder shall analyze the landfill gas for H2S concentration on a weekly basis. The landfill gas sample shall be drawn from the main landfill gas header using a Draeger/RAE tube. The TRS content of the landfill gas shall be calculated using the average ratio of TRS/H2S for this site according to the following equation: TRS=1.015*H2S measured by the Draeger/RAE Tube. The Permit Holder shall maintain records of all Draeger/RAE tube test dates and test results and shall summarize the average H2S concentrations and the calculated TRS content of the landfill gas on a quarterly basis. Each Draeger/RAE tube test result (after conversion to TRS content) and the quarterly laboratory analysis in Part 31a shall be compared to the Peak TRS Limit in Part 18c. The concentration of TRS in collected landfill gas shall not exceed a peak of 370 ppmv, and on a rolling quarterly basis, the Permit Holder shall determine the annual average TRS content for comparison to the Annual Average TRS Limit of 350 ppmv.

#### November 22, 2016 Compliance Agreement

Per Condition 2.1 of the Compliance Agreement, H2S sampling using Draeger/RAE tubes shall be twice per week. Analytical sampling shall remain on quarterly intervals.

## **REDWOOD LANDFILL, INC.** Novato, CA

Date	H₂S Reading (ppm _v )	Calculated TRS (ppm $_{v}$ )
1/4/24 8:50	300	305
1/5/24 8:45	300	305
1/9/24 8:30	250	254
1/10/24 11:20	269	273
1/17/24 8:40	243	247
1/19/24 8:45	242	246
1/22/24 14:15	243	247
1/25/24 7:50	244	248
1/30/24 8:00	245	249
2/1/24 9:00	445	452
2/7/24 13:45	249	253
2/9/24 2:00	246	250
2/12/24 8:20	248	252
2/14/24 8:45	249	252
2/20/24 7:45	248	252
2/23/24 8:00	248	251
2/26/24 8:00	343	349
2/28/24 11:00	248	252
3/5/24 16:25	437	444
3/8/24 13:55	261	265
3/13/24 10:30	369	374
3/15/24 13:45	250	254
3/20/24 15:00	486	494
3/21/24 14:00	686	696
3/26/24 15:00	778	790
3/29/24 10:20	249	253
3/29/24*	289	292
Quarterly Average:	321	326

#### Total Reduced Sulfur (Post-treatment Site Average) - Quarter 1 - 2024

#### Title V Permit Condition Number 19867 Part 31b

As of March 31, 2005, the Permit Holder shall analyze the landfill gas for H2S concentration on a weekly basis. The landfill gas sample shall be drawn from the main landfill gas header using a Draeger/RAE tube. The TRS content of the landfill gas shall be calculated using the average ratio of TRS/H2S for this site according to the following equation: TRS=1.015*H2S measured by the Draeger/RAE Tube. The Permit Holder shall maintain records of all Draeger/RAE tube test dates and test results and shall summarize the average H2S concentrations and the calculated TRS content of the landfill gas on a quarterly basis. Each Draeger/RAE tube test result (after conversion to TRS content) and the quarterly laboratory analysis in Part 31a shall be compared to the Peak TRS Limit in Part 18c. The concentration of TRS in collected landfill gas shall not exceed a peak of 370 ppmv, and on a rolling quarterly basis, the Permit Holder shall determine the annual average TRS content for comparison to the Annual Average TRS Limit of 350 ppmv.

#### November 22, 2016 Compliance Agreement

Per Condition 2.1 of the Compliance Agreement, H2S sampling using Draeger/RAE tubes shall be twice per week. Analytical sampling shall remain on quarterly intervals.

## REDWOOD LANDFILL, INC. Novato, CA

Date	H₂S Reading (ppm _v )	Calculated TRS (ppm _v )	
4/1/24 15:02	953	968	
4/4/24 14:15	792	804	
4/8/24 14:55	276	280	
4/9/24 14:00	175	178	
4/16/24 16:00	428	434	
4/18/24 15:40	453	460	
4/24/24 12:50	315	320	
4/26/24 9:05	443	450	
4/29/24 12:20	173	175	
4/30/2024	171	174	
Quarterly Average:	TBD	TBD	

## Total Reduced Sulfur (Post-treatment Site Average) - Quarter 2 - 2024

H₂S= hydrogen sulfide

ppm_v= parts per million by volume

TRS= total reduced sulfur

* Quarterly LFG lab analysis

#### Title V Permit Condition Number 19867 Part 31b

As of March 31, 2005, the Permit Holder shall analyze the landfill gas for H2S concentration on a weekly basis. The landfill gas sample shall be drawn from the main landfill gas header using a Draeger/RAE tube. The TRS content of the landfill gas shall be calculated using the average ratio of TRS/H2S for this site according to the following equation: TRS=1.015*H2S measured by the Draeger/RAE Tube. The Permit Holder shall maintain records of all Draeger/RAE tube test dates and test results and shall summarize the average H2S concentrations and the calculated TRS content of the landfill gas on a quarterly basis. Each Draeger/RAE tube test result (after conversion to TRS content) and the quarterly laboratory analysis in Part 31a shall be compared to the Peak TRS Limit in Part 18c. The concentration of TRS in collected landfill gas shall not exceed a peak of 370 ppmv, and on a rolling quarterly basis, the Permit Holder shall determine the annual average TRS content for comparison to the Annual Average TRS Limit of 350 ppmv.

#### November 22, 2016 Compliance Agreement

Per Condition 2.1 of the Compliance Agreement, H2S sampling using Draeger/RAE tubes shall be twice per week. Analytical sampling shall remain on quarterly intervals.

# REDWOOD LANDFILL, INC. Novato, CA

## **Rolling Quarterly Average Total Reduced Sulfur Content**

Year	Quarter	Calculated TRS (ppm _v )	Rolling Quarterly Average Annual TRS (ppm _v )	Quarterly SO ₂ Emission Factor (Ib/MMscf)
2023	2	1,598	1,133	270.0
2023	3	349	1,075	59.0
2023	4	329	992	55.5
2024	1	326	651	55.0
2023	2*	TBD	TBD	TBD

*Quarterly results will be calculated at the end of the quarter.

H₂S = hydrogen sulfide

ppm_v = parts per million by volume

TRS = total reduced sulfur

TBD = To Be Determined.

Quarterly SO2 Emission Factor based on TRS concentrations to Flares A-51 and A-60 only.

#### Title V Permit Condition Number 19867 Part 31b

As of March 31, 2005, the Permit Holder shall analyze the landfill gas for  $H_2S$  concentration on a weekly basis. The landfill gas sample shall be drawn from the main landfill gas header using a Draeger/RAE tube. The TRS content of the landfill gas shall be calculated using the average ratio of TRS/H₂S for this site according to the following equation: TRS=1.015*H₂S measured by the Draeger/RAE Tube. The Permit Holder shall maintain records of all Draeger/RAE tube test dates and test results and shall summarize the average H₂S concentrations and the calculated TRS content of the landfill gas on a quarterly basis. Each Draeger/RAE tube test result (after conversion to TRS content) and the quarterly laboratory analysis in Part 31a shall be compared to the Peak TRS Limit in Part 18c. On a rolling quarterly basis, the Permit Holder shall determine the annual average TRS content for comparison to the Annual Average TRS Limit of 350 ppm_v.

SO2 EF = Calculated TRS (ppmv) * 0.0283168 m3/scf * 1000 L/m3 * 1 mol/22.4 L * 64.06 g/mol * 1 lb/453.592 g * 273.15 K / 288.7 K

**APPENDIX N** 

PERFORMANCE TEST REPORT

Redwood Landfill, Inc.

BAAQMD Facility A1179 NST-8970

## Annual Compliance Emissions Test Report #24010 Landfill Gas Flare A-51

Located at: **Redwood Landfill, Inc.** 8950 Redwood Highway Novato, CA 94945

## Prepared for: SCS Engineers

3117 Fite Circle Suite 108 Sacramento, CA 95827 Attn: Maria Bowen mbowen@scsengineers.com

For Submittal to: **Bay Area Air Quality Management District** 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Gloria Espena and Marco Hernandez

gespena@baaqmd.gov / mhernandez@baaqmd.gov sourcetest@baaqmd.gov

> Testing Performed on: January 10, 2024

Final Report Submitted on: March 7, 2024

Submitted on March 8, 2024

Performed and Reported by: Blue Sky Environmental, Inc. 2273 Lobert Street Castro Valley, CA 94546

bluesky@blueskyenvironmental.com Office (510) 525-1261 / Cell (810) 923-3181



### **REVIEW AND CERTIFICATION**

#### Team Leader:

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report are authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for compliance purposes, it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (810) 923-3181.

1-lill

Jeramie Richardson Project Manager Blue Sky Environmental, Inc.



### **TABLE OF CONTENTS**

SECTIO	ON 1. INTRODUCTION	4
1.1.	SUMMARY	4
SECTIO	ON 2. SOURCE TEST PROGRAM	6
2.1.	Overview	
2.2.	Pollutants Tested	
2.3.	TEST DATE	
2.4.	SAMPLING AND OBSERVING PERSONNEL	
2.5.	SOURCE/PROCESS DESCRIPTION	
2.6.	SOURCE OPERATING CONDITIONS	7
SECTIO	ON 3. SAMPLING AND ANALYSIS PROCEDURES	8
3.1.	PORT LOCATION	
3.2.	POINT DESCRIPTION/LABELING – PORTS/STACK	
3.3.	SAMPLE TRAIN DESCRIPTION	
3.4.	SAMPLING PROCEDURE DESCRIPTION	
3.5.	INSTRUMENTATION AND ANALYTICAL PROCEDURES	
3.6.	System Performance Criteria	
3.7.	COMMENTS: LIMITATIONS AND DATA QUALIFICATIONS	
SECTIO	ON 4. APPENDICES	14
A.	Tabulated Results	
В.	Calculations	
С.	Laboratory Reports	

- D. Field Data Sheets
- Е. Process Information
- *F*. Calibration Gas Certificates
- G. Instrument Calibration Records
- Sample Train Configuration and Stack Diagrams Н.
- Ι. Related Correspondence (Source Test Plan)
- Permit to Operate J.



### **SECTION 1. INTRODUCTION**

#### 1.1. Summary

Blue Sky Environmental, Inc. was contracted by SCS Engineers to perform emissions testing for Waste Management of Alameda County, Inc. (WMAC) at the Redwood Landfill Inc. (RLI) in Novato, California. Testing was conducted to demonstrate that Landfill Gas Flare A-51 is operating in compliance with the Bay Area Air Quality Management District (BAAQMD) Permit to Operate for Facility 1179. Results of the test program are presented in this report.

The source test information is summarized in Table 1-1. Test results derived from the source test are summarized in Table 1-2. Results for individual test runs are provided in Appendix A. The flare met all compliance emission criteria.

Test Location:	Redwood Landfill Inc. 8950 Redwood Highway, Novato, CA 94945
Source Contact:	Maria Bowen, SCS Engineers (619) 455-9518
Source Tested:	Flare A-51 – 90 MMBtu/hr industrial landfill gas flare
Source Test Date:	January 10, 2024
Test Objective:	Determine compliance with conditions 19867 and 25634 of Bay Area Air Quality Management District (BAAQMD) permit to operate A1179
Test Performed by:	Blue Sky Environmental, Inc 2273 Lobert Street, Castro Valley, CA 94546 Jaime Rios (925) 482-4504 <u>bluesky@blueskyenvironmental.com</u>
Test Parameters:	Landfill Gas Fuel Analysis O ₂ , N ₂ , CO ₂ , BTU, THC, CH ₄ , NMOC, HHV, F-Factor, sulfur, toxic air contaminants and volumetric flow rate <u>Flare Emissions</u> THC, CH ₄ , NMOC, NO _x , CO, O ₂ , SO ₂ , volumetric flow rate and temperature

#### Table 1-1 Source Test Information



Emission Parameter	Average Results (Flare A-51)	Permit Limit	Compliance Status
NO _x , ppmvd @ 15% O ₂	13.9	15	In Compliance
NO _X , lb/MMBtu	0.0548	0.06	In Compliance
CO, ppmvd @ 15% O ₂	3.3	82	In Compliance
CO, lb/MMBtu	0.0079	0.20	In Compliance
NMOC, ppmvd @ 3% O ₂ as hexane (C ₆ H ₁₄ )	<0.91	360	In Compliance
NMOC, ppmvd @ 3% O ₂ as CH ₄	<5.5	30*	In Compliance
NMOC Destruction Efficiency, %	>87.99%	>98%*	
CH ₄ Destruction Efficiency, %	>99.97%	>99%	In Compliance
Total Reduced Sulfurs in Fuel, ppmv	388	370	Exceeds Limit ¹
SO ₂ , ppmvd	26.4	300	In Compliance
SO ₂ , lb/MMBtu	0.1245	1.69	In Compliance

### Table 1-2 Compliance Summary

*NMOC permit limits are 30 ppmvd @ 3% O₂ or DE >98% ¹On October 6, 2016, Redwood Landfill proposed a permit modification to increase the peak limit. This modification is still under review by BAAQMD.



#### SECTION 2. SOURCE TEST PROGRAM

#### 2.1. Overview

This annual source test was performed to demonstrate that landfill gas Flare A-51 is operating in compliance with conditions 19867 and 25634 of Bay Area Air Quality Management District (BAAQMD) Title V permit A1179.

#### 2.2. Pollutants Tested

The following U.S. Environmental Protection Agency (EPA), Bay Area Air Quality Management District (BAAQMD) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample and Traverse Point Determination
EPA Method 3A	O2 and CO2 Emissions, Stack Gas Molecular Weight
EPA Method 10	CO Emissions
EPA Method 7E	NO _x Emissions and NO ₂ Converter Check
EPA Method 4	Stack Moisture
EPA Method 19	Stack Gas Flow Rate Calculation
EPA Method 25C	Analysis of landfill gas for TNMHC (NMOC)
EPA Method ALT-097	THC, CH4 and NMOC Emissions
ASTM D-1945/3588	Fuel Analysis for BTU, F-Factors and Fixed Gases
ASTM D-5504	Total Reduced Sulfur Compounds (TRS) in Fuel
EPA Method TO-15	Toxic Organic Compounds in Fuel
BAAQMD ST-19A	SO ₂ calculated from TRS

#### 2.3. Test Date

Testing was conducted on January 9, 2024.

#### 2.4. Sampling and Observing Personnel

Testing was conducted by Jaime Rios and Timothy Eandi, representing Blue Sky Environmental, Inc.

Ben Tarver of Waste Management was on-site to oversee flare operations and assist in coordinating testing and the collection of process data to verify the accuracy of digitally recorded data collected during testing.

BAAQMD was notified of the scheduled source test in a source test protocol submitted by SCS Engineers on behalf of Waste Management on December 22, 2023. A Source Test Protocol acknowledgement (NST-8970) was received on December 28, 2023. No agency observers from the district were present during the test program. A copy of the source test protocol and email correspondence are provided in Appendix I.

#### 2.5. Source/Process Description

Redwood Landfill Inc. is a multi-material landfill with a gas collection system with a landfill gas treatment and desorption system (S-71) that is abated by two industrial landfill gas enclosed flares. Flare A-51 is a standby abatement devise that has a 90 MMBtu/hr multiple nozzle burner manufactured by Perennial Energy. The Flare shell is approximately 45 feet high and 136 inches



in diameter. Permit Condition 19867 Section 30 does not apply to Flare A-51. Flare A-51 is a standby abatement device that was never connected to the Gas Treatment System, S-71, and therefore was not tested with the desorption process.

#### 2.6. Source Operating Conditions

The flare was operated on landfill gas under normal operating conditions during testing with no condensate injection. The average exhaust temperature at normal operating condition was 1,497 °F. The operating exhaust temperature, and flow records are provided in Appendix F.

The fuel volumetric flow rate was continuously measured and recorded by the LFG flow meter at 2-minute intervals and averaged 800 SCFM.

Landfill gas samples collected at the head of the flare had an average methane content of 52.2%. Oxygen content of the fuel samples averaged 1.0%.



### SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

#### 3.1. Port Location

Sampling was conducted at the 136-inch diameter (ID) exhaust stack through ports that were accessed with a 40-foot boom lift. The four-inch flange ports on the flare were located approximately 35 feet above grade, approximately four stack diameters downstream from the burners and one stack diameter upstream from the exhaust.

#### 3.2. Point Description/Labeling – Ports/Stack

Blue Sky Environmental conducted two perpendicular 8-point traverses of the stack to check for the presence of stratification.  $O_2$  stratification was greater than 10%; therefore, subsequent CEM sampling was conducted using all traverse points. The traverse points for the 136-inch diameter stack with 4-inch ports were 4.4, 14.3, 26.4, 43.9, 92.1, 109.6, 121.7 and 131.6 inches.

#### 3.3. Sample Train Description

Sampling system diagrams are provided in Appendix H. Additional descriptive information is included in the following section.

#### 3.4. Sampling Procedure Description

Three consecutive thirty-minute gaseous emissions tests were performed for oxides of nitrogen  $(NO_x)$ , carbon monoxide (CO), carbon dioxide  $(CO_2)$ , oxygen  $(O_2)$ , methane  $(CH_4)$  and nonmethane organic compounds (NMOC) at the flare exhaust stack. The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. Any drift or bias was corrected using EPA Method 7E. A NOx analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky Environmental collected a total of three landfill gas samples (one per test run) in 6-liter Silco silanized SUMMA cannisters for analysis of fixed gases by ASTM D-1945. The sampling times and cannister pressures are provided on the laboratory chain-of-custody. The molar composition was used to determine the HHV and F-factor by ASTM D-3588. The samples were also analyzed for non-methane organic compounds (NMOC) by EPA Method 25C and sulfur compounds by ASTM D-5504. Total reduced sulfur (TRS) results were used to calculate the SO₂ emission concentration of the stack gas. The samples were analyzed for volatile organic compounds by EPA Method TO-15. All samples were analyzed by Atmospheric Analysis & Consulting, Inc (AAC) in Ventura, California.



The sampling and analysis methods are described below:

#### EPA Method 1 – Sample and Velocity Traverses for Stationary Sources

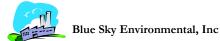
This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

# EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. A small portion of the sample is passed through a fuel cell type paramagnetic oxygen analyzer which measures the electrical current generated by the oxidation reaction at the gas/fuel cell interface. Carbon dioxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon dioxide absorbs infrared radiation.

# EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Nitric oxide is determined by passing the sample through a chemiluminescent analyzer. The chemiluminescent process is based on the light given off when nitric oxide and ozone react. Nitrogen dioxide (NO₂) concentrations are determined by passing the sample through a catalyst which reduces the NO₂ to NO. The total oxides of nitrogen concentration (NO₂ + NO) is then determined by chemiluminescence.


Section 16.2.2 of the method is used to determine the  $NO_X$  analyzer  $NO_2$  to NO conversion efficiency.

# EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide in stationary source emissions using a continuous instrumental analyzer. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Carbon monoxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon monoxide absorbs infrared radiation.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless-steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 psi is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run.



System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

#### EPA Method 4 – Determination of Moisture Content in Stack Gas

This method is used to determine the moisture content of stack gas. The sample is extracted and condensed in Greenburg-Smith impingers immersed in an ice bath and in a final impinger silica gel trap. The moisture is condensed in a solution of de-ionized water, or solutions of another type of sampling train if the moisture is being determined as part of another sampling method, such as EPA Method 5, SCAQMD Method 201.7 or BAAQMD ST-32. The moisture gain in the impinger solutions and silica gel is determined volumetrically and gravimetrically respectively.

<u>QA/QC</u> procedures require that a minimum of 21 cubic feet of sample is pulled using a leak tight pump. The sample volume is measured with a calibrated dry gas meter. The impingers are immersed in an ice bath to maintain a gas outlet temperature of less than 68°F. Pre-test leak checks are performed for each run using a minimum of 15 inches of mercury vacuum. Post-test leak checks are performed at the highest sample vacuum or greater. The leak test is acceptable if the leak rate is less than 0.02 cubic feet per minute or 4% of the average sampling rate, whichever is less. If the final leak check exceeds the criteria, either the volume is corrected based on the leak rate or the run is voided and repeated.

# EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D-1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates.

# EPA Method 25C – Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. The method is written for evacuated tank sampling but is adaptable to Tedlar bag sampling procedures. The sampling equipment consists of a stainless steel or glass lined probe with a short stainless-steel or Teflon transfer line to a Tedlar bag housed in a sealed chamber. The chamber is evacuated by pump at a prescribed rate for the test duration and the Tedlar bag capacity, so the sample is integrated over the test period. The sample is injected into a GC column where the methane and  $CO_2$  are flushed through and removed then the NMOC (ROC) fraction is oxidized to form  $CO_2$  then reduced to methane and analyzed.

## EPA Method ALT-097 Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This is an acceptable alternative to EPA Method 25A for the determination of total hydrocarbons, methane, and non-methane organic compounds in stationary source emissions. The test uses TECO 55C GC/FID methane/non-methane analyzer. Heated Teflon sample gas



transfer lines are used to provide a continuous sample to the analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to incorporate any system bias that may exist. A system linearity check is performed prior to testing and during testing and calibration drift checks are performed after every run. All data is corrected according to EPA Method 25A.

# EPA Compendium Method TO-15 – Determination of Toxic Organic Compounds in Ambient Air

This method is used to measure volatile organic compounds that are included in the hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990 by GC/MS (gas chromatography/mass spectroscopy). Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75hrs.

#### ASTM D-1945 – Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

# ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

# ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed within 7 days.

#### BAAQMD Source Test Procedure ST-19 - Sulfur Dioxide, Continuous Sampling

This method is used to quantify sulfur dioxide emissions and determine compliance with Regulations 9-1-302, 9-1-304 through 310, and 10-1-301.



#### 3.5. Instrumentation and Analytical Procedures

The following continuous emissions analyzers were used:

Instrumentation	Parameter	Principle
TECO Model 42C	NO/NO ₂ /NO _X	Chemiluminescence
TECO Model 48C	СО	Gas Filter Correlation (GFC)/IR
TECO Model 55C	CH ₄ /NMOC/THC	Flame Ionization (FID)
Servomex Model 1440	CO ₂	Infrared (IR)
Servomex Model 1440	O ₂	Paramagnetic

#### 3.6. System Performance Criteria

The analyzer data recording system consists of a Honeywell DPR300 strip chart recorder supported by a data acquisition system (DAS). The instrument response is recorded on strip charts and DAS. The averages are corrected for drift using BAAQMD and EPA Method 7E equations.

Instrument Linearity	≤2% Full Scale
Instrument Bias	≤5% Full Scale
System Response Time	≤± 2 minutes
NO _X Converter Efficiency (EPA Method 7E)	$\geq 90\%$
Instrument Zero Drift	≤± 3% Full Scale
Instrument Span Drift	≤± 3% Full Scale

#### 3.7. Comments: Limitations and Data Qualifications

This source test was performed in accordance with the protocol submitted to BAAQMD. No deviations from the protocol or anomalies were observed during testing. The flare did not meet the Total Reduced Sulfurs permit limit, all over measured emissions from the flare comply with the permit limits.

On October 6, 2016, Redwood Landfill proposed a permit modification to increase the peak limit for this compound. This modification is still under review by BAAQMD. Per the November 2016 Compliance Agreement between Redwood Landfill and BAAQMD, enforcement actions are not expected if the Agreement is complied with.

Blue Sky Environmental has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text Review of calculations Review of CEMS data Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.



Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to this, and do not warranty the accuracy of information supplied by others.



#### **SECTION 4. APPENDICES**

- A. Tabulated Results
- B. Calculations
- C. Laboratory Reports
- D. Field Data Sheets
- E. Process Information
- F. Calibration Gas Certificates
- G. Instrument Calibration Records
- H. Sample Train Configuration and Stack Diagrams
- I. Related Correspondence (Source Test Plan)
- J. Permit to Operate



A Tabulated Results

#### TABLE #1

#### Redwood Landfill, Inc.

Flare A-51

1,497°F

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	1/10/24	1/10/24	1/10/24		
Test Time	0841-0917	0935-1013	1030-1106		
Standard Temperature, °F	70	70	70		
Process Parameters:					
Flare Temperature, °F	1,497	1,499	1,496	1,497	>1,400
Fuel:	•	•			
Fuel Flow Rate, SCFM	799	801	800	800	
Fuel Heat Input, MMBtu/hr	24.7	25.1	24.6	24.8	
Total Reduced Sulfurs as H ₂ S, ppmv in Fuel	362	413	390	388	370
Stack Gas:	•	•			
Exhaust Flow Rate, DSCFM (EPA Method 19)	11,602	12,029	11,698	11,776	
Oxygen (O ₂ ), % volume dry	13.9	14.1	14.0	14.0	
Carbon Dioxide (CO ₂ ), % volume dry	6.1	6.1	6.1	6.1	
Water Vapor (H2O), % volume (EPA Method 4)	11.8	13.4	5.4	10.2	
NO _x Emissions (reported as NO ₂ ):					
NOx, ppmvd	15.7	16.4	16.4	16.2	
NOx, ppmvd @ 15% O ₂	13.3	14.2	14.1	13.9	15
NOx, lb/hr	1.30	1.41	1.37	1.36	
NOx, lb/MMBtu	0.0527	0.0560	0.0559	0.0548	0.06
CO Emissions:					
CO, ppmvd	4.9	3.3	3.3	3.8	
CO, ppmvd @ 15% O ₂	4.2	2.8	2.8	3.3	82
CO, lb/hr	0.25	0.17	0.17	0.20	
CO, lb/MMBtu	0.0101	0.0068	0.0068	0.0079	0.20
SO ₂ Emissions:					
SO ₂ , ppmvd (calculated)	24.9	27.5	26.7	26.4	300
SO ₂ , ppmvd @ 15% O ₂	21.1	23.8	22.9	22.6	
SO ₂ , ppmvd @ 3% O ₂	64.1	72.2	69.5	68.6	
SO ₂ , lb/hr	2.88	3.29	3.10	3.09	
SO ₂ , lb/MMBtu	0.1163	0.1309	0.1263	0.1245	1.69
THC Emissions (reported as CH ₄ ):					
THC, ppmv wet (EPA Method ALT-097)	<10.0	<10.0	<10.0	<10.0	
THC, ppmvd	<11.3	<11.5	<10.6	<11.2	
THC, lb/hr	< 0.33	< 0.34	< 0.31	< 0.33	
Methane (CH ₄ ) Emissions:		0.01	0.00		
CH ₄ , ppmvd (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , lb/hr	<0.288	<0.299	<0.290	<0.292	
NMOC Emissions (reported as CH ₄ ):					
NMOC, ppmvd (EPA Method 25A)	<1.0	<1.0	4.3	<2.1	
NMOC, lb/hr	< 0.029	< 0.030	0.125	< 0.061	
NMOC, ppmvd @ 3% O ₂ as CH ₄	<2.6	<2.6	11.2	<5.5	30*
NMOC, ppmvd @ $3\%$ O ₂ as hexane (C ₆ H ₁₄ )	<0.43	< 0.44	1.87	< 0.91	360
Inlet Hydrocarbons (reported as CH ₄ ):	· · ·				
Inlet NMOC, ppmvd (EPA Method 25C)	267	262	253	261	
Inlet NMOC, lb/hr	0.53	0.52	0.50	0.52	
NMOC Destruction Efficiency, %	>94.56%	>94.27%	>75.15%	>87.99%	>98%*
Inlet CH ₄ , % (ASTM D-1945)	521,000	528,000	517,000	522,000	. 2070
Inlet CH ₄ , v ^a (John D 1999)	1,033	1,050	1,027	1,037	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>99%
Inlet THC (TOC), %	521,267	528,262	517,253	522,261	- 7770
Inlet THC (TOC), b/hr	1,033.9	1,050.4	1,027.2	1,037.2	
THC (TOC) Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>98%

* NMOC permit limits are 30 ppmvd @ 3% O 2 or DE >98% ¹ On October 6, 2016, Redwood Landfill proposed a permit modification to increase the peak limit. This modification is still under review by BAAQMD.

#### **DEFINITIONS:**

ppmvd = parts per million concentration by volume expressed on a dry gas basis lb/hr = pound per hour emission rate Tstd. = standard temperature (°R = °F+460) MW = molecular weight DSCFM = dry standard cubic feet per minute  $NO_X = oxides of nitrogen, reported as NO_2 (MW = 46)$ CO = carbon monoxide (MW = 28) TOC = THC = total organic compounds as  $CH_4$ , including  $CH_4$  (MW = 16)  $\mathrm{THC}$  = total hydrocarbons, reported as  $\mathrm{CH}_4~(\mathrm{MW}$  = 16)  $\rm NMOC$  = total non-methane organic compounds, reported as  $\rm CH_4~(MW$  = 16)  $SO_2 = Sulfur dioxide (MW = 64.1)$ 

#### CALCULATIONS:

ppm @ 15%  $\mathrm{O_2}$  = ppm  $\cdot$  5.9 / (20.9 - % \mathrm{O_2}) ppm @ 3%  $\mathrm{O_2}$  = ppm  $\cdot$  17.9 / (20.9 - %  $\mathrm{O_2})$ lb/hr = ppm  $\cdot$  8.223 E-05  $\cdot$  DSCFM  $\cdot$  MW / Tstd. °R lb/MMBtu = lb/hr / fuel heat input, MMBtu/hr Destruction Efficiency (DE) = (inlet, lb/hr- outlet, lb/hr) / inlet, lb/hr NMOC, ppm as CH₄ = THC - CH₄ NMOC, ppm as hexane = NMOC, ppm as CH₄ / 6 < Value = 2% of Analyzer Range  $SO_2$ , calculated =  $H_2S \cdot inlet$ , DSCFM / exhaust, DSCFM

#### TABLE # 2

#### Landfill Gas Characterization

#### Redwood Landfill, Inc.

Flare A-51

Parameter		Run 1	Run 2	Run 3	Average Results	Permit Limits
Sample ID		1-LFG-Flare A-51	2-LFG-Flare A-51	3-LFG-Flare A-51		
Sample Date		1/10/24	1/10/24	1/10/24		
Acrylonitrile	ppb	<44.7	<45.6	<42.8	<45.2	300
Benzene	ppb	93.8	68.4	66.7	81.1	1,500
Benzyl Chloride (Chloromethylbenzene)	ppb	<44.7	<45.6	<42.8	<45.2	500
Carbon Tetrachloride (Tetrachloromethane)	ppb	<44.7	<45.6	<42.8	<45.2	200
Chlorobenzene	ppb	<44.7	<45.6	<42.8	<45.2	200
Chloroethane	ppb	<44.7	<45.6	<42.8	<45.2	500
Chloroform	ppb	<44.7	<45.6	<42.8	<45.2	200
1,1 Dichloroethane (Ethylidene Dichloride)	ppb	<44.7	<45.6	<42.8	<45.2	500
1,1 Dichloroethene (Vinylidene Chloride)	ppb	<44.7	<45.6	<42.8	<45.2	500
1,2 Dichloroethane (Ethylene Dichloride)	ppb	<44.7	<45.6	<42.8	<45.2	200
1,4 Dichlorobenzene	ppb	<44.7	<45.6	<42.8	<45.2	1,000
Ethylbenzene	ppb	322	266	262	294	4,000
Ethlyene Dibromide (1,2 Dibromoethane)	ppb	<44.7	<45.6	<42.8	<45.2	200
Hexane	ppb	50.0	<45.6	<42.8	<47.8	2,000
Isop <del>r</del> opyl Alcohol (IPA)	ppb	383	225	216	304	10,000
Methyl Alcohol (Methanol)	ppb	765	725	814	745	300,000
2-Butanone (Methyl Ethyl Ketone) (MEK)	ppb	866	578	577	722	15,000
Methylene Chloride	ppb	<89.3	<91.2	<355.0	<90.3	1,000
Methyl tert Butyl Ether (MTBE)	ppb	<44.7	<45.6	<42.8	<45.2	500
Perchloroethylene (Tetrachloroethene)	ppb	<44.7	<45.6	<42.8	<45.2	1,000
Styrene	ppb	<44.7	<45.6	<42.8	<45.2	500
Toluene	ppb	858	720	737	789	20,000
1,1,1 Trichlororethane	ppb	<44.7	<45.6	<42.8	<45.2	200
1,1,2,2 Tetrachloroethane	ppb	<44.7	<45.6	<42.8	<45.2	200
Trichloroethylene (Trichloroethene)	ppb	<44.7	<45.6	<42.8	<45.2	500
Vinyl Chloride	ppb	<44.7	<45.6	<42.8	<45.2	2,000
Xylenes	ppb	755	641	615	698	20,000
Carbon Disulfide	ppm	< 0.089	< 0.091	< 0.086	< 0.089	
Carbonyl Sulfide (COS/SO ₂ )	ppm	< 0.089	< 0.091	< 0.086	< 0.089	
Dimethyl Sulfide	ppm	< 0.089	< 0.091	< 0.086	< 0.089	
Ethyl Mercaptan	ppm	< 0.089	< 0.091	< 0.086	< 0.089	
Methyl Mercaptan	ppm	0.819	0.749	0.947	0.838	
Hydrogen Sulfide	ppm	359	410	386	385	
Total Reduced Sulfurs as H ₂ S	ppm	362	413	390	388	370

#### Redwood Landfill, Inc

#### **BAAQMD** Facility # A1179

### Annual Compliance Emissions Test Report #22192 Landfill Gas Flare A-60(A) and Gas Treatment System S-71

Located at: **Redwood Landfill** 8950 Redwood Highway Novato, California 94948

#### Prepared for: SCS Engineers

3117 Fite Circle Suite 108 Sacramento, CA 95827 Attn: Patrick S. Sullivan psullivan@scsengineers.com

For Submittal to: Bay Area Air Quality Management District Source Test Division 375 Beale Street, Suite 600

San Francisco, CA 94105 Attn: Marco Hernandez and Gloria Espena mhernandez@baaqmd.gov / gespena@baaqmd.gov

sourcetest@baaqmd.gov

Testing Performed on: July 13, 2022

Final Report Submitted on: September 11, 2022

Performed and Reported by: Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706 Office (510) 525 1261/Cell (810) 923 3181 bluesky@blueskyenvironmental.com



### REVIEW AND CERTIFICATION

#### Team Leader:

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report are authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (810) 923-3181.

1-ll

Jeramie Richardson Project Manager Blue Sky Environmental, Inc.



### **TABLE OF CONTENTS**

1. INTRODUCTION	5
SUMMARY	3
2. SOURCE TEST PROGRAM	5
OVERVIEW	5
POLLUTANTS TESTED	5
TEST DATE(S)	5
SOURCE/PROCESS DESCRIPTION	5
SOURCE OPERATING CONDITIONS	5
3. SAMPLING AND ANALYSIS PROCEDURES	7
PORT LOCATION	7
4. APPENDICES12	2
Tabulated Results	
Calculations	
Laboratory Reports	
Field Data Sheets	
Process Information	
Related Correspondence (Source Test Plan)	
Permit to Operate	
Willexa Purge Gas Characterization Results	
ſ	SUMMARY       3         2. SOURCE TEST PROGRAM       5         OVERVIEW       5         POLLUTANTS TESTED       5         TEST DATE(S)       5         SAMPLING AND OBSERVING PERSONNEL       5         SOURCE OPERATING CONDITIONS       6         SAMPLING AND ANALYSIS PROCEDURES       7         PORT LOCATION       7         POINT DESCRIPTION/LABELING - PORTS/STACK       7         SAMPLING PROCEDURE DESCRIPTION       7         SAMPLING PROCEDURE DESCRIPTION       7         NSTRUMENTATION AND ANALYTICAL PROCEDURES       11         SUMMARY AND COMMENTS       11         4. APPENDICES       12         Tabulated Results       12         Calulatousous

- J-1. J-2. J-3. J-4. Summary Tables Calculations
- Flow Measurements, Field Data Sheets & Calibrations
- Lab Reports



#### **SECTION 1. INTRODUCTION**

#### 1.1. Summary

Blue Sky Environmental, Inc was contracted by Waste Management to perform compliance emissions testing at Redwood Landfill, Inc. located in Novato, California. Testing was conducted to demonstrate that the facility's Landfill Gas Flare A-60 (A) and Willexa Gas Treatment and Desorption System (S-71) are operating in compliance with their associated Bay Area Air Quality Management District's (BAAQMD) air contaminant discharge permit. The source test information is summarized in Table 1.1. Test results derived from the source test are summarized in Tables 1.2 and 1.3. Results for individual test runs are included in Appendix A.

Test Location:	Redwood Landfill, Inc. 8950 Redwood Highway, Novato, California 94948		
Source Contact:	Michael Chan (510) 613-2852		
Source Tested:	Enclosed Landfill Gas Flare A-60 (A) and LFG Treatment & Desorption System (S-71)		
Source Test Dates:	July 12 and 13, 2022		
Test Objective:	Determine compliance with Bay Area Air Quality Management District (BAAQMD) Title V Permit A1179, condition 19867 and condition 25635, part 13, and BAAQMD Regulation 8, Rule 34		
Test Performed by:	Blue Sky Environmental, Inc 624 San Gabriel Avenue, Albany, CA 94706 Jeramie Richardson (810) 923 -3181 jrichardson@blueskyenvironmental.com		
Test Parameters:	Landfill Gas O ₂ , N ₂ , CO ₂ , BTU, THC, CH ₄ , NMOC, HHV, F-Factor, Sulfur & VOC Species, Volumetric Flow Rate, Landfill Gas <u>Flare Emissions</u> THC, CH ₄ , NMOC, NOx, CO, O ₂ , SO ₂ , Volumetric Flow Rate, Temperature		

#### **Table 1.1 Source Test Information**



Emission Parameter	Average Test Result	Permit Limit	Compliance Status
NOx, lb/MMBtu	0.0484	0.06	In Compliance
NOx, ppmvd @ 15% O ₂	12.2	15	In Compliance
CO, lb/MMBtu	0.0842	0.20	In Compliance
CO, ppmvd @ 15% O ₂	34.7	82	In Compliance
SO ₂ , ppmvd	0.86	300	In Compliance
SO ₂ , lb/MMBtu	0.0042	1.69	In Compliance
NMOC, ppmvd @ 3% O ₂ as CH ₄	<2.9	30 or	In Compliance
NMOC Destruction Efficiency, %	>98.7%	>98%	In Compliance
CH4 Destruction Efficiency %	>99.97%	>99%	In Compliance

Table 1.2Enclosed Landfill Gas Flare A-60 (A) Compliance Summary



### SECTION 2. SOURCE TEST PROGRAM

#### 2.1. Overview

This performance test was conducted to demonstrate compliance of Enclosed Landfill Gas Flare A-60 (A) with the emission limits specified in Bay Area Air Quality Management District (BAAQMD) Title V Permit A1179, Permit Condition 19867, Part 30 and Permit Condition 25636, Part 4. This testing also satisfies the compliance requirements of BAAQMD Regulation 8 Rule 34.

This report also includes results of fuel gas samples collected from the Willexa Waste Gas Treatment System S-71. There are no compliance limits associated with the results of this system.

#### 2.2. Pollutants Tested

The following U.S. Environmental Protection Agency (EPA) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample and Velocity Traverses
EPA Method 3A	$O_2$ , $CO_2$
EPA Method 10	СО
EPA Method 25A/ALT-097	THC/CH ₄ /NMOC
EPA Method 7E	NOx
EPA Method 6C	SO ₂
EPA Method 4	Moisture
EPA Method 19	Flow Rate Calculation, DSCFM
EPA Method 25C	LFG Gas analysis for NMOC by GC
EPA Method TO-15	VOC Species
ASTM D-1945/3588	LFG Gas analysis for BTU and F-Factor
ASTM D-5504	Sulfur Species, H ₂ S and TRS in fuel

#### 2.3. Test Date(s)

Testing was conducted on the Willexa Waste Gas Treatment System S-71 on July 12 . Enclosed Landfill Gas Flare A60 (A) was tested on July 13, 2022.

### 2.4. Sampling and Observing Personnel

Testing was performed by Jeramie Richardson, Wesley Alder, Timothy Eandi and Jeff Mesloh representing Blue Sky Environmental, Inc.

Charles Johnson (WMRE Plant Manager) and Ben Tarver and James Dutra (Operators) of Waste Management, and Jonathan Silva of SCS Engineers was present to operate and oversee flare operations and assist in coordinating testing and the collection of process data during testing.

BAAQMD was notified of the scheduled testing in a plan submitted by SCS Engineers on June 9, 2022 (revised June 17, 2022). A Source Test Protocol acknowledgement was requested and received by SCS Engineers (NST 7487 and 7488); however, no agency observers were on site during the test program. A copy of the source test protocol and agency correspondence are provided in Appendix I.



### 2.5. Source/Process Description

Redwood Landfill and Recycling Center is a multi-material landfill with gas collection system treated by a Willexa landfill gas treatment system-desorption process (S-71) and abated by a landfill gas enclosed flare (A-60). Flare A-60 is divided into two discreet zones, A and B. Zone A is the large zone, with 4 sampling ports that requteire unique (not perpendicular) traverses of 133-inches in length. The Willexa treatment system is designed to remove non-methane organics, sulfurs, siloxanes and chlorinated compounds from up to 1,875 SCFM of landfill gas prior to its use as a fuel in the facility's engines. The Willexa treatment system has four cycles, Depress Cycle #1, Regen Cycle, Depress Cycle #2 and Stabilization. The treated waste gas is vented at separate times through 1-inch and 12-inch diameter pipes to zone A of Flare A60.

#### 2.6. Source Operating Conditions

The A60 (A) flare was operated on landfill gas fuel at an average of 1,582 °F during the test program. Process data collected by the facility (LFG and waste gas flow rate records) are provided in Appendix F. There was no condensate injection. LFG flow rate averaged 951 SCFM with an average methane content of 47.3%. The Willexa (S-71) was not purging to the flare during this test.

The Willexa treatment system has main four stages (cycles) consisting of multiple steps that are generally described below:

- 1 Depress Cycle #1 1" line, ~100 SCFM initially for a few minutes. This cycle removes the landfill gas from the vessel and sends it to the Flare and introduces O₂ before the regen cycle starts.
- 2. Regen Cycle 12" line from Willexa to the Flare.
  - a. Starts at 300 SCFM and ramps up to ~2000 SCFM ~25 minutes.
  - b. Once at 2000 SCFM system then starts the heating cycle.
  - c. Heats media for an extended time  $\sim 10-12$  hours.
  - d. Heat Off, while blower continues to cool down media to 170 degrees or for approximately 6 hours.
  - e. Blower ramps down from ~2000 SCFM to 0 SCFM in a few minutes.
  - f. Shuts down blower.
- 3. Depress Cycle  $#2 O_2$  Purge 1" line, for  $\sim 30-45$  minutes at  $\sim 60$  SCFM.
- 4. Stabilization Cycle Shuts off valve to flare to stabilize methane.



### SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

#### 3.1. Port Location

The two unequal stack segments (A and B) in Flare A-60 flare present a unique sampling configuration, as the cross-section is neither round, square, rectangular, or oval. The A-60 (A) Flare sampling was conducted via adjacent flange ports, both with a 133-inch traverse path length. The 4-inch flange port was located 35 feet above grade, approximately four stack diameters downstream from the burners and one stack diameter upstream from the exhaust exit. The port was accessed by a 40-foot boom-lift.

#### 3.2. Point Description/Labeling - Ports/Stack

Blue Sky Environmental conducted sampling at the mid-point of the Flare A60 (A) stack. The stack was traversed during all three runs. Sampling points for the 12-inch diameter stack were 4.3, 14.0, 25.8, 43.0, 90.0, 107.2, 119.0 and 128.7 inches.

The Willexa (S-71) stack was also traversed during all three runs. Sampling points for the 12-inch diameter stack were 0.5, 1.3, 2.3, 3.9, 8.1, 9.7, 10.7 and 11.6 inches.

#### 3.3. Sample Train Description

Sampling system diagrams are provided in Appendix H. Additional descriptive information is included in the following section.

#### 3.4. Sampling Procedure Description

Three 32-minute test runs were performed for oxides of nitrogen (NO_x), carbon monoxide (CO), carbon dioxide (CO₂), oxygen (O₂), methane (CH₄), and non-methane organic compounds (NMOC) at the flare exhaust.

The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. A NOx analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky collected a total of ten integrated 6-liter summa canister samples. Three LFG samples were collected from the Flare A60-A exhaust and analyzed for M18. An additional three LFG samples were collected from the A-60-A Flare One sample of the Willexa 1" purge line was collected. Three samples of the Willexa 12-inch purge gas were sampled. The samples were collected using Teflon tubing connections that were filled and purged prior to sampling. All the samples were analyzed for NMOC, HHV, F-Factor, Fixed Gases and Sulfur Species (incl. H₂S and TRS) and VOC Compounds.

Waste gas testing occurred over an approximate 5 hour period on July 12th, 2022. Testing was performed during the period of highest concentrations of emissions from the Willexa treatment system. The first event is the LFG purge of the 1-inch line to the Flare. The second and third events were integrated samples taken a period spanning Steps 6,7,8 and 9. During this period the



flows were recorded using an Shortridge AIRFOIL pitot fixed in the center of the duct approximately every 15 seconds, additional flows were performed using EPA Method 2 using a standard pitot tube.

The sampling and analysis methods are summarized below:

#### EPA Method 1 – Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

#### EPA Method 3 – Gas Analysis for the Determination of Dry Molecular Weight

This method is used to determine the dry molecular weight of stack gas. Measurements of gas constituents %  $O_2$  and %  $CO_2$  were made by BAAQMD Methods ST-14 and ST-5.

## EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas.

# EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. Section 16.2.2 of the method is used to determine the  $NO_X$  analyzer  $NO_2$  to NO conversion efficiency.

### **EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources** This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of a a Data Acquisition System (DAS).



### System Performance Criteria

Instrument Linearity	$\leq$ 2% Full Scale (checked)
Instrument Bias	$\leq$ 5% Full Scale (checked)
System Response Time	$\leq \pm 2$ minutes (checked)
NOx Converter Efficiency (EPA Method 7E)	$\geq 90\%$ (checked)

# EPA Method ALT-097 Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This is an acceptable alternative to EPA Method 25A for the determination of total hydrocarbons, methane, and non-methane organic compounds in stationary source emissions. The test uses TECO 55C GC/FID methane/non-methane analyzer. Heated Teflon sample gas transfer lines are used to provide a continuous sample to the analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to incorporate any system bias that may exist. A system linearity check is performed prior to testing and during testing and calibration drift checks are performed after every run. All data is corrected according to EPA Method 25A.

### EPA Method 4 – Determination of Moisture Content in Stack Gas

This method is used to determine the moisture content of stack gas. The sample is extracted and condensed in Greenburg-Smith impingers immersed in an ice bath and in a final impinger silica gel trap. The moisture is condensed in a solution of de-ionized water, or solutions of another type of sampling train if the moisture is being determined as part of another sampling method, such as EPA Method 5, SCAQMD Method 201.7 or BAAQMD ST-32. The moisture gain in the impinger solutions and silica gel is determined volumetrically and gravimetrically respectively. <u>QA/QC</u> procedures require that a minimum of 21 cubic feet of sample is pulled using a leak tight pump. The sample volume is measured with a calibrated dry gas meter. The impingers are immersed in an ice bath to maintain a gas outlet temperature of less than 68°F. Pre-test leak checks are performed for each run using a minimum 15 inches of mercury vacuum. Post-test leak checks are performed at the highest sample vacuum or greater. The leak test is acceptable if the leak rate is less than 0.02 cubic feet per minute or 4% of the average sampling rate, whichever is less. If the final leak check exceeds the criteria, either the volume is corrected based on the leak rate or the run is voided and repeated.

# EPA Compendium Method TO-15 – Determination of Toxic Organic Compounds in Ambient Air

This method is used to measure volatile organic compounds that are included in the hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990 by GC/MS (gas chromatography/mass spectroscopy). Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75 hrs.



#### ASTM D1945 - Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

# ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed within 7 days.

# EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates.

Willexa Gas Samples							
07/12/22	LFG Gas Sample	Willexa Purge Gas Sample 12"	Willexa Purge Gas Sample 1"				
Run 1-Stage 4 1315 - 1330	-		1"-2				
Run 2 Stage 6-7-8 1345 - 1545	-	12" - 1	-				
Run 3 Stage 9 1545 - 1745	-	12" - 2	-				
	LFG	Gas Samples					
07/13/22	-	-	-				
Run 1 0917-1004	R1 LFG	-	-				
Run 2 1033-1120	R2 LFG	_	_				
Run 3 1145-1231	R3 LFG	-	-				

The inlet volumetric Flow Rate and Flare Temperature was continuously measured and recorded by the facility Yokogawa monitors.



#### 3.5. Instrumentation and Analytical Procedures

The following continuous emissions analyzers were used:

Instrumentation	Parameter	Principle
TECO 43C	$SO_2$	Pulsed Fluorescence
TECO 42C	NO _x	Chemiluminescence
TECO 48C	СО	GFC/IR
TECO 55C	THC/CH ₄ /NMOC	FID
Servomex 1440	CO ₂	IR
Servomex 1440	$O_2$	Paramagnetic

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of a Data Acquisition System (DAS), which can be supported by strip chart recorders.

The instrument response was recorded on DAS and some data is manually reduced. The averages were corrected for drift using BAAQMD & EPA Method 7E equations.

#### 3.6. Summary and Comments

This source test was performed in accordance with the protocol submitted to BAAQMD. No deviations from the protocol or anomalies were observed during testing.

Blue Sky Environmental has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text Review of calculations Review of CEMS data Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk. Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations, subsequent to this, and do not warranty the accuracy of information supplied by others.



#### **SECTION 4. APPENDICES**

- A. Tabulated Results
- **B.** Calculations
- C. Laboratory Reports
- **D.** Field Data Sheets
- **E.** Process Information
- F. Calibration Gas Certificates & Equipment Calibrations
- G. Sample Train Configuration and Stack Diagrams
- H. Related Correspondence (Source Test Plan)
- I. Permit to Operate
- J. Willexa Purge Gas Characterization Results
  - J-1. Summary Tables
  - J-2. Calculations
  - J-3. Flow Measurements, Field Data Sheets & Calibrations
  - J-4. Lab Reports



A Tabulated Results

#### TABLE #1

#### Redwood Landfill, Inc Flare A-60 (A)

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	7/13/22	7/13/22	7/13/22		
Test Time	0917-1004	1033-1120	1145-1231		
Standard Temperature, °F	70	70	70		
Process Parameters:	-				
Flare Temperature, °F	1,582	1,583	1,582	1,582	
Fuel Gas:					
LFG Fuel Flow Rate, SCFM	947	950	955	951	
Total Fuel Heat Input, MMBtu/hr	25.3	27.6	27.5	26.8	
Total Reduced Sulfur Compounds as H ₂ S, ppmv	399	469	384	417	410
Inlet CH4, ppmv	448,000	488,000	483,000	473,000	
Inlet CH ₄ , lb/hr	1,053	1,150	1,145	1,116	
Inlet NMOC, ppmv as CH4 (EPA Method 25C)	1,138	1,156	1,220	1,171	
Inlet NMOC, lb/hr as CH ₄	2.68	2.73	2.89	2.76	
Inlet THC, ppmv as CH4	1,056	1,153	1,148	1,119	
Stack Gas:	•	· · · ·			
Exhaust Flow Rate, DSCFM (EPA Method 19)	12,230	13,450	13,181	12,954	
Oxygen (O ₂ ), % volume dry	14.1	14.1	14.0	14.1	
Carbon Dioxide (CO ₂ ), % volume dry	6.18	6.09	6.14	6.14	
Moisture (H ₂ O), % volume dry	8.04	7.42	8.21	7.89	
NO _x Emissions (reported as NO ₂ ):					
NOx, ppmvd	14.7	13.4	14.1	14.0	
NOx, ppmvd @ 15% O ₂	12.7	11.7	12.1	12.2	15
NOx, lb/hr	1.28	1.28	1.33	1.30	
NOx, lb/MMBtu	0.0506	0.0465	0.0482	0.0484	0.06
NO, ppmvd	12.6	10.0	11.3	11.3	
NO ₂ , ppmvd	2.09	3.41	2.80	2.77	
CO Emissions:					
CO, ppmvd	28.3	51.5	40.4	40.1	
CO, ppmvd @ 15% O ₂	24.5	44.9	34.7	34.7	82
CO, lb/hr	1.51	3.01	2.31	2.28	
CO, lb/MMBtu	0.0595	0.109	0.0841	0.0842	0.20
Sulfur Dioxide (SO ₂ ) Emissions:			0.00075	0.0001	0.20
SO ₂ , ppmvd (calculated)	0.83	0.96	0.80	0.86	300
SO ₂ , lb/hr	0.10	0.13	0.11	0.11	
SO ₂ , lb/MMBtu	0.0040	0.0047	0.0038	0.0042	1.69
THC Emissions (reported as CH ₄ ):					,
THC, ppmvd (EPA Method ALT 097)	<12.0	<11.9	<12.0	<11.9	
THC, lb/hr	< 0.363	< 0.397	<0.392	< 0.384	
THC Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	
Methane (CH ₄ ) Emissions:	- >>.>1/0		- 22.2170	- >>.>170	
CH ₄ , ppmv wet <i>(EPA Method ALT 097)</i>	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd	<10.9	<10.8	<10.9	<10.9	
CH ₄ , lb/hr	<0.330	<0.361	<0.356	<0.349	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	> 99%
NMOC Emissions (reported as CH ₄ ):		22.2170			, ,,,,,
NMOC, ppmv wet (EPA Method ALT 097)	<1.0	<1.0	<1.0	<1.0	
NMOC, ppmvd	<1.0	<1.0	<1.0	<1.0	
NMOC, ppmvd @ 3% O ₂	<1.1 <2.9	<1.1 <2.9	<1.1 <2.8	<2.9	30
NMOC, lb/hr					30
NMOC, ID/ hr NMOC Destruction Efficiency, %	<0.033	<0.036 >98.7%	<0.036 >98.8%	<0.035 >98.7%	>98%

Results meet the requirements of the "Compliance Agreement" between the BAAQMD and RLI, which was renewed through January 15, 2023 on June 10, 2022. WHERE, CALCULATIONS,

ppm = parts per million concentration by volume expressed on a dry gas basis lb/hr = pound per hour emission rate Tstd. = standard temperature (°R = °F+460)

MW = molecular weight

DSCFM = dry standard cubic foot per minute

 $NO_X = oxides of nitrogen, reported as NO_2 (MW = 46)$ 

CO = carbon monoxide (MW = 28)

THC = total hydrocarbons reported as methane (MW = 16)

NMOC = non-methane organic compounds, reported as methane

 $SO_2 = sulfur dioxide (MW = 64.1)$ 

PPM @ 15%  $O_2 = ppm \cdot 5.9 / (20.9 - %O_2)$ PPM @ 3%  $O_2 = ppm \cdot 17.9 / (20.9 - %O_2)$ lb/hr = ppm  $\cdot$  8.223 E-05  $\cdot$  DSCFM  $\cdot$  MW / Tstd. °R

 $\begin{array}{l} & \label{eq:logithty} Primer (b/hr)/(MBtu/hr) \\ & \mbox{ppm dry = ppm wet \cdot 100 / (100 - \%H_20) } \\ & \mbox{SO}_2 \mbox{ emission ppm = } H_2 S \mbox{ in } uel \ \mbox{fuel flow rate } / \mbox{ stack gas flow rate } \end{array}$ 

Destruction Efficiency, % = (inlet lb/hr- outlet lb/hr) / inlet lb/hr

<Value = 2% of Analyzer Range

#### TABLE #2

#### Redwood Landfill, Inc

#### Landfill Gas Characterization

Parameter		Units	R1 LFG	R2 LFG	R3 LFG	Permit Limits
Test Date			7/13/22	7/13/22	7/13/22	
Average NMOC as Hexane		ppm	190	193	203	
EPA TO-15 Results:						
Acrylonitrile		ppb	<85.0	<86.7	<104	300
Benzene		ppb	609	609	456	1,500
Benzyl Chloride	Chloromethylbenzene	ppb	<42.5	<43.4	<52.1	500
Carbon Tetrachloride		ppb	<42.5	<43.4	<52.1	200
Chlorobenzene		ppb	<42.5	<43.4	<52.1	200
Chloroethane		ppb	127	150.0	110	500
Chloroform		ppb	<42.5	<43.4	<52.1	200
1,1 Dichloroethane	Ethylidene Dichloride	ppb	<42.5	<43.4	<52.1	500
1,1 Dichloroethene	Vinylidene Chloride	ppb	<42.5	<43.4	<52.1	500
1,2 Dichloroethane	Ethylene Dichloride	ppb	168	171	173	200
1,4 Dichlorobenzene		ppb	178	199	203	1,000
Ethylbenzene		ppb	1,980	2,080	2,200	4,000
Ethlyene Dibromide	1,2 Dibromoethane	ppb	<42.5	<43.4	<52.1	200
Hexane		ppb	521	535	531	2,000
Isopropyl Alcohol	IPA	ppb	2,530	3,040	3,590	10,000
Methyl Alcohol	Methanol	ppb	5,380	6,200	7,110	300,000
Methyl Ethyl Ketone	MEK	ppb	4,960	5,660	6,350	15,000
Methylene Chloride		ppb	<85.0	<86.7	55.22	1,000
Methyl tert Butyl Ether	MTBE	ppb	<42.5	<43.4	<52.1	500
Perchloroethylene	Tetrachloroethylene	ppb	99.4	104	104	1,000
Styrene	•	ppb	135	145	148	500
Toluene		ppb	3,640	3,820	3,880	20,000
1,1,1 Trichlororethane		ppb	<42.5	<43.4	<52.1	200
1,1,2,2 Tetrachloroethane		ppb	<42.50	<43.4	<52.1	200
Trichloroethylene	Trichloroethene	ppb	80.7	79.8	85.4	500
Vinyl Chloride		ppb	61.2	62.4	64.6	2,000
Xylenes		ppb	4,520	4,740	4,890	20,000
ASTM D-5504 Results:						
Carbon Disulfide		ppm	0.144	0.023	0.171	
Carbonyl Sulfide	COS	ppm	< 0.017	< 0.017	< 0.021	
Dimethyl Sulfide		ppm	0.303	0.439	0.348	
Ethyl Mercaptan		ppm	< 0.112	0.147	0.133	
Methyl Mercaptan		ppm	0.643	0.872	0.758	
Hydrogen Sulfide		ppm	395	463	377	
Total Reduced Sulfur Compo	ounds as H ₂ S	ppm	399	469	384	410

Results meet the requirements of the "Compliance Agreement" between the BAAQMD and RLI, which was renewed through January 15, 2023 on June 10, 2022.



## J Willexa Purge Gas Characterization Results

#### TABLE # 3

#### REDWOOD LANDFILL

7/13/22

#### S-71 Willexa Waste Gas Characterization (Permit Condition 30)

RUN			1"	12-1	12-2
SOURCE			1"	12"	12"
PROCESS STEP			1	6/7/8	9
Test Date			7/13/22	7/13/22	7/13/22
Test Time			1315-1330	1345-1545	1545-1745
GAS FLOW VELOCITY, SFPM			2,403	2,046	2,400
GAS MOISTURE, % (WB/DB)			5.2	5.1	5.3
GAS FLOW RATE, SCFM			13	1,607	1,885
GAS FLOW RATE, DSCFM			12	1,525	1,785
O ₂		%	0.9	21.8	22.0
N ₂		%	11.1	77.5	78.0
CO ₂		%	38.9	0.5	< 0.2
CH ₄		%	49.2%	0.2%	0.005%
TRS as H2S		ppm	0.399	1.46	0.959
NMOC (as Carbon)		ppm	1,154	1,693	1,455
NMOC (as Hexane)		ppm	192	282	243
Acrylonitrile		ppb	<81.2	<92.7	<81.9
Benzene		ppb	498	<46.4	<41.0
Benzyl Chloride	Chloromethylbenzene	ppb	<40.6	<46.4	<41.0
Carbon Tetrachloride		ppb	<40.6	<46.4	<41.0
Chlorobenzene		ppb	44.7	<46.4	<41.0
Chloroethane		ppb	124	<46.4	<41.0
Chloroform		ppb	<40.6	<46.4	<41.0
1,1 Dichloroethane	Ethylidene Dichloride	ppb	<40.6	<46.4	<41.0
1,1 Dichloroethene	Vinylidene Chloride	ppb	<40.6	<46.4	<41.0
1,2 Dichloroethane	Ethylene Dichloride	ppb	127	<46.4	<41.0
1,4 Dichlorobenzene		ppb	49.6	92.7	<41.0
Ethylbenzene		ppb	2,090	1,960	208
Ethlyene Dibromide	1,2 Dibromoethane	ppb	<40.6	<46.4	<41.0
Hexane		ppb	522	<46.4	<41.0
Isopropyl Alcohol	2-propanol(IPA)	ppb	2,500	7,270	6,980
Methyl Alcohol	Methanol	ppb	5,520	12,100	7,130
Methyl Ethyl Ketone	MEK	ppb	3,950	8,780	5,220
Methylene Chloride		ppb	<81.2	<92.7	<81.9
Methyl tert Butyl Ether	MTBE	ppb	<40.6	<46.4	<41.0
Perchloroethylene (PCE)	Tetrachloroethylene	ppb	78.8	<46.4	<41.0
Styrene		ppb	<40.6	<46.4	<41.0
Toluene		ppb	3,500	1,130	53.3
1,1,1 Trichlororethane		ppb	<40.6	<46.4	<41.0
1,1,2,2 Tetrachloroethane		ppb	<40.6	<46.4	<41.0
Trichloroethylene (TCE)	Trichloroethene	ppb	59.3	<46.4	<41.0
Vinyl Chloride		ppb	53.6	<46.4	<41.0
Xylenes		ppb	4,710	5,380	634
Carbon Disulfide		ppm	0.656	0.046	0.016
Carbonyl Sulfide		ppm	0.585	0.026	< 0.016
Dimethyl Sulfide		ppm	< 0.437	0.028	< 0.016
Ethyl Mercaptan		ppm	< 0.016	< 0.019	< 0.016
Methyl Mercaptan		ppm	0.179	0.035	< 0.016
Hydrogen Sulfide		ppm	0.093	1.16	0.369
TRS as H2S		ppm	2.29	3.06	1.43



**REDWOOD LANDFILL, INC.** 

8950 Redwood Highway P.O. Box 793 Novato, CA 94948 (415) 892-2851 (855) 242-0798 Fax

September 7, 2023

Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

### Re: Annual Compliance Emissions Source Test of Flare A60(B) Title V Permit Condition Number 19867, Part 18, Facility A1179 Redwood Landfill, Inc., Novato, California

On behalf of Redwood Landfill, Inc. (RLI), this letter acknowledges that the July 12, 2023 source test of flare A60(B) shows that the inlet landfill gas exceeded the Total Reduced Sulfur (TRS) permit limit of 370 ppm H₂S. Since July 17, 2023, RLI has established sulfur treatment for the A60 flare and subsequent sulfur inlet concentrations have been below the TRS limit.

If you have any questions regarding this notification, please contact me at (510) 613-2852 or Alisha McCutcheon, Redwood Landfill Technical Manager, at (415) 373-8033.

Thank you, **Redwood Landfill, Inc.** 

Auchael Chan

Michael Chan Environmental Protection Specialist

### Redwood Landfill, Inc.

#### **BAAQMD** Facility # A1179

### Annual Compliance Emissions Test Report #23204 Landfill Gas Flare A-60(B)

Located at: **Redwood Landfill, Inc.** 8950 Redwood Highway Novato, California 94945

### Prepared for:

SCS Engineers 3117 Fite Circle Suite 108 Sacramento, CA 95827

Attn: Maria Bowen mbowen@scsengineers.com

For Submittal to: Bay Area Air Quality Management District Source Test Division 375 Beale Street, Suite 600 San Francisco, CA 94105

Attn: Marco Hernandez and Gloria Espena mhernandez@baaqmd.gov / gespena@baaqmd.gov sourcetest@baaqmd.gov

> Testing Performed on: July 12, 2023

Final Report Submitted on: September 8, 2023

Performed and Reported by: Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706 Office (510) 525 1261/Cell (810) 923 3181 bluesky@blueskyenvironmental.com



#### **TABLE OF CONTENTS**

SECTION	1.	INTRODUCTION	3
1.1.	SUM	MARY	3
SECTION	2.	SOURCE TEST PROGRAM	6
2.1.		RVIEW	
2.2.	POLL	UTANTS TESTED	6
2.3.	TEST	DATE(S)	6
2.4.	SAM	PLING AND OBSERVING PERSONNEL	6
2.5.	SOUR	RCE/PROCESS DESCRIPTION	7
2.6.		RCE OPERATING CONDITIONS	
SECTION	3.	SAMPLING AND ANALYSIS PROCEDURES	8
3.1.	Port	LOCATION	8
3.2.	POIN	T DESCRIPTION/LABELING – PORTS/STACK	8
3.3.	SAME	PLE TRAIN DESCRIPTION	8
3.4.	SAM	PLING PROCEDURE DESCRIPTION	8
3.5.	INSTE	RUMENTATION AND ANALYTICAL PROCEDURES	11
3.6.	SUMM	MARY AND COMMENTS	12
SECTION	4.	APPENDICES	13
	А.	Tabulated Results	
	В.	Calculations	
	С.	Laboratory Reports	

- D. Field Data Sheets
- Ε. Process Information
- F.
- Gas Certificates & Equipment Calibrations Sample Train Configuration and Stack Diagrams Related Correspondence (Source Test Plan) Permit to Operate *G*.
- Н.
- Ι.



#### **SECTION 1. INTRODUCTION**

#### 1.1. Summary

Blue Sky Environmental, Inc. was contracted by Waste Management to perform compliance emissions testing at Redwood Landfill, Inc. located in Novato, California. Testing was conducted to demonstrate that the facility's Landfill Gas Flare A-60 (B) is operating in compliance with their associated Bay Area Air Quality Management District's (BAAQMD) air contaminant discharge permit. The source test information is summarized in Table 1.1. Test results derived from the source test are summarized in Table 1.2 and Table 1.3. Results for individual test runs are included in Appendix A.

Test Location:	Redwood Landfill, Inc. 8950 Redwood Highway, Novato, California 94945
Source Contact:	Maria Bowen, SCS Engineers (619) 455-9518
Source Tested:	Enclosed Landfill Gas Flare A-60 (B)
Source Test Dates:	July 12, 2023
Test Objective:	Determine compliance with Bay Area Air Quality Management District (BAAQMD) permit condition 19687 and BAAQMD Regulation 8, Rule 34
Test Performed by:	Blue Sky Environmental, Inc. 2273 Lobert Street, Castro Valley, CA 94546 Jeramie Richardson (810) 923 -3181 jrichardson@blueskyenvironmental.com
Test Parameters:	Landfill Gas O ₂ , N ₂ , CO ₂ , BTU, THC, CH ₄ , NMOC, HHV, F-Factor, Sulfur & VOC Species, Volumetric Flow Rate, Landfill Gas Flare Emissions THC, CH ₄ , NMOC, NOx, CO, O ₂ , SO ₂ , Volumetric Flow Rate, Temperature

#### Table 1.1 Source Test Information



Emission Parameter	Average Test Result	Permit Limit	Compliance Status
NOx, lb/MMBtu	0.030	0.06	In Compliance
NOx, ppmvd @ 15% O ₂	7.6	15	In Compliance
CO, lb/MMBtu	0.051	0.20	In Compliance
CO, ppmvd @ 15% O ₂	21.0	82	In Compliance
SO ₂ , ppmvd	118.0	300	In Compliance
SO ₂ , lb/MMBtu	0.5938	1.69	In Compliance
NMOC, ppmvd @ 3% O ₂ as CH ₄	<3.1	$30^{*}$	In Compliance
NMOC Destruction Efficiency, %	>97.969%	>98%	In Compnance
CH4 Destruction Efficiency %	>99.966%	>99%	In Compliance
NMOC, ppmvd @ 3% O ₂ as hexane	<1.1	360	In Compliance

Table 1.2Enclosed Landfill Gas Flare A-60 (B) Compliance Summary

*>98% NMOC Destruction Efficiency or 30 ppmvd NMOC as CH4 @ 3% O2



	Average	Permit	
Emission Parameter	Test Result	Limit	Compliance Status
Acrylonitrile	<42.9	300	In Compliance
Benzene	372	1,500	In Compliance
Benzyl Chloride, Chloromethylbenzene	<42.9	500	In Compliance
Carbon Tetrachloride	<42.9	200	In Compliance
Chlorobenzene	<42.9	200	In Compliance
Chloroethane	80.1	500	In Compliance
Chloroform	<42.9	200	In Compliance
1,1 Dichloroethane, Ethylidene Dichloride	<42.9	500	In Compliance
1,1 Dichloroethene, Vinylidene Chloride	<42.9	500	In Compliance
1,2 Dichloroethane, Ethylene Dichloride	59.5	200	In Compliance
1,4 Dichlorobenzene	216	1,000	In Compliance
Ethylbenzene	2,037	4,000	In Compliance
Ethlyene Dibromide, 1,2 Dibromoethane	<42.9	200	In Compliance
Hexane	289	2,000	In Compliance
Isopropyl Alcohol (IPA)	1,052	10,000	In Compliance
Methyl Alcohol, Methanol	1,487	300,000	In Compliance
Methyl Ethyl Ketone MEK	3,053	15,000	In Compliance
Methylene Chloride	<85.8	1,000	In Compliance
Methyl tert Butyl Ether MTBE	<42.9	500	In Compliance
Perchloroethylene, Tetrachloroethylene	47.8	1,000	In Compliance
Styrene	97.0	500	In Compliance
Toluene	3,533	20,000	In Compliance
1,1,1 Trichlororethane	<42.9	200	In Compliance
1,1,2,2 Tetrachloroethane	<42.9	200	In Compliance
Trichloroethylene, Trichloroethene	<44.4	500	In Compliance
Vinyl Chloride	<44.4	2,000	In Compliance
Xylenes	4,463	20,000	In Compliance
Total Reduced Sulfur Compounds as H2S	1,728	370	Exceeds Limit

Table 1.3Enclosed Landfill Gas Flare A-60 (B) Landfill Gas Characterization



#### SECTION 2. SOURCE TEST PROGRAM

#### 2.1. Overview

This performance test was conducted to demonstrate compliance of Enclosed Landfill Gas Flare A-60 (B) with the emission limits specified in Bay Area Air Quality Management District (BAAQMD) Permit Condition 19867. This testing also satisfies the compliance requirements of BAAQMD Regulation 8 Rule 34. The Willexa landfill gas treatment system (S-71) was not in operation at the time of the source test due to PG&E's direction to not operate the landfill gas engines until the landslide/power poles have been repaired by Caltrans/PG&E.

#### 2.2. Pollutants Tested

The following U.S. Environmental Protection Agency (EPA) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample and Velocity Traverses
EPA Method 3A	$O_2$ , $CO_2$
EPA Method 10	СО
EPA Method 25A/ALT-097	THC/CH ₄ /NMOC
EPA Method 7E	NOx
EPA Method 6C	$SO_2$
EPA Method 4	Moisture
EPA Method 19	Flow Rate Calculation, DSCFM
EPA Method 25C	LFG Gas analysis for NMOC by GC
EPA Method TO-15	VOC Species
ASTM D-1945/3588	LFG Gas analysis for BTU and F-Factor
ASTM D-5504	Sulfur Species, H ₂ S and TRS in fuel

#### 2.3. Test Date(s)

Testing was conducted on July 12, 2023.

#### 2.4. Sampling and Observing Personnel

Testing was performed by Jamie Rios and Timothy Eandi representing Blue Sky Environmental, Inc.

Riley Lindberg of Waste Management, and Michael Flanagan of SCS Engineers were present to operate and oversee flare operations and assist in coordinating testing and the collection of process data during testing.

BAAQMD was notified of the scheduled testing in a plan submitted by SCS Engineers on June 16, 2023. A Source Test Protocol acknowledgement was requested and received by SCS Engineers (NST 8446); Marco Hernadez was to witness the test program. A copy of the source test protocol and agency correspondence are provided in Appendix I.



#### 2.5. Source/Process Description

Redwood Landfill and Recycling Center is a multi-material landfill abated by a landfill gas enclosed flare (A-60). Flare A-60 is divided into two discreet zones, A and B. Zone A is the large zone, with 4 sampling ports that require unique (not perpendicular) traverses of 133-inches in length.

#### 2.6. Source Operating Conditions

The A60 (B) flare was operated on landfill gas fuel at an average of 1,618 °F during the test program. Process data collected by the facility (LFG and waste gas flow rate records) are provided in Appendix F. There was no condensate injection. LFG flow rate averaged 204 SCFM with an average methane content of 47.8%.



#### SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

#### 3.1. Port Location

The two unequal stack segments (A and B) in Flare A-60 flare present a unique sampling configuration, as the cross-section is neither round, square, rectangular, or oval. The A-60 (B) Flare sampling was conducted via adjacent flange ports, both with a 133-inch traverse path length. The 4-inch flange port was located 35 feet above grade, approximately four stack diameters downstream from the burners and one stack diameter upstream from the exhaust exit. The port was accessed by a 40-foot boom-lift.

#### 3.2. Point Description/Labeling - Ports/Stack

Blue Sky Environmental conducted sampling at the mid-point of the Flare A60 (B) stack. The stack was traversed during all three runs. Sampling points for the 12-inch diameter stack were 4.3, 14.0, 25.8, 43.0, 90.0, 107.2, 119.0 and 128.7 inches.

#### 3.3. Sample Train Description

Sampling system diagrams are provided in Appendix H. Additional descriptive information is included in the following section.

#### 3.4. Sampling Procedure Description

Three 32-minute test runs were performed for oxides of nitrogen (NO_x), carbon monoxide (CO), carbon dioxide (CO₂), oxygen (O₂), methane (CH₄), and non-methane organic compounds (NMOC) at the flare exhaust.

The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. A NOx analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky collected a total of ten integrated 6-liter summa canister samples. Three LFG samples were collected from the Flare A60-A exhaust and analyzed for M18. An additional three LFG samples were collected from the A-60-A Flare One sample of the Willexa 1" purge line was collected. Three samples of the Willexa 12-inch purge gas were sampled. The samples were collected using Teflon tubing connections that were filled and purged prior to sampling. All the samples were analyzed for NMOC, HHV, F-Factor, Fixed Gases and Sulfur Species (incl.  $H_2S$  and TRS) and VOC Compounds.

The sampling and analysis methods are summarized below:

#### EPA Method 1 - Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.



#### EPA Method 3 - Gas Analysis for the Determination of Dry Molecular Weight

This method is used to determine the dry molecular weight of stack gas. Measurements of gas constituents %  $O_2$  and %  $CO_2$  were made by BAAQMD Methods ST-14 and ST-5.

### EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas.

### EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. Section 16.2.2 of the method is used to determine the  $NO_X$  analyzer  $NO_2$  to NO conversion efficiency.

#### EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of a a Data Acquisition System (DAS).

System Performance Criteria					
Instrument Linearity	$\leq 2\%$ Full Scale (checked)				
Instrument Bias	$\leq$ 5% Full Scale (checked)				
System Response Time	$\leq \pm 2$ minutes (checked)				
NOx Converter Efficiency (EPA Method 7E)	$\geq 90\%$ (checked)				

### EPA Method ALT-097 Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This is an acceptable alternative to EPA Method 25A for the determination of total hydrocarbons, methane, and non-methane organic compounds in stationary source emissions. The test uses TECO



55C GC/FID methane/non-methane analyzer. Heated Teflon sample gas transfer lines are used to provide a continuous sample to the analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to incorporate any system bias that may exist. A system linearity check is performed prior to testing and during testing and calibration drift checks are performed after every run. All data is corrected according to EPA Method 25A.

#### EPA Method 4 - Determination of Moisture Content in Stack Gas

This method is used to determine the moisture content of stack gas. The sample is extracted and condensed in Greenburg-Smith impingers immersed in an ice bath and in a final impinger silica gel trap. The moisture is condensed in a solution of de-ionized water, or solutions of another type of sampling train if the moisture is being determined as part of another sampling method, such as EPA Method 5, SCAQMD Method 201.7 or BAAQMD ST-32. The moisture gain in the impinger solutions and silica gel is determined volumetrically and gravimetrically respectively. <u>QA/QC</u> procedures require that a minimum of 21 cubic feet of sample is pulled using a leak tight pump. The sample volume is measured with a calibrated dry gas meter. The impingers are immersed in an ice bath to maintain a gas outlet temperature of less than 68°F. Pre-test leak checks are performed for each run using a minimum 15 inches of mercury vacuum. Post-test leak checks are performed at the highest sample vacuum or greater. The leak test is acceptable if the leak rate is less than 0.02 cubic feet per minute or 4% of the average sampling rate, whichever is less. If the final leak check exceeds the criteria, either the volume is corrected based on the leak rate or the run is voided and repeated.

### EPA Compendium Method TO-15 – Determination of Toxic Organic Compounds in Ambient Air

This method is used to measure volatile organic compounds that are included in the hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990 by GC/MS (gas chromatography/mass spectroscopy). Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75 hrs.



#### ASTM D1945 - Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

### ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed within 7 days.

## EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates.

Instrumentation	Parameter	Principle	
TECO 43C	$SO_2$	Pulsed Fluorescence	
TECO 42C	NO _x	Chemiluminescence	
TECO 48C	СО	GFC/IR	
TECO 55C	THC/CH ₄ /NMOC	FID	
Servomex 1440	CO ₂	IR	
Servomex 1440	$O_2$	Paramagnetic	

**3.5. Instrumentation and Analytical Procedures** The following continuous emissions analyzers were used:

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of a Data Acquisition System (DAS), which can be supported by strip chart recorders.

The instrument response was recorded on DAS and some data is manually reduced. The averages were corrected for drift using BAAQMD & EPA Method 7E equations.



#### 3.6. Summary and Comments

This source test was performed in accordance with the protocol submitted to BAAQMD. No deviations from the protocol or anomalies were observed during testing. The total reduced sulfur compounds as  $H_2S$  ppm did not meet the permit required limit. All other limits were met.

Blue Sky Environmental has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text Review of calculations Review of CEMS data Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk. Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations, subsequent to this, and do not warranty the accuracy of information supplied by others.



#### **SECTION 4. APPENDICES**

- A. Tabulated Results
- **B.** Calculations
- C. Laboratory Reports
- **D.** Field Data Sheets
- E. Process Information
- F. Gas Certificates & Equipment Calibrations
- G. Sample Train Configuration and Stack Diagrams
- H. Related Correspondence (Source Test Plan)
- I. Permit to Operate



### A Tabulated Results

#### TABLE #1

#### Redwood Landfill, Inc. Flare A-60 (B)

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	7/12/23	7/12/23	7/12/23		
Test Time	1037-1113	1146-1221	1240-1316		
Standard Temperature, °F	70	70	70		
Process Parameters:					
Flare Temperature, °F	1,618	1,618	1,617	1,618	
Fuel Gas:		-	-		
LFG Fuel Flow Rate, SCFM	204	205	202	204	
Total Fuel Heat Input, MMBtu/hr	5.8	5.9	5.9	5.9	
Total Reduced Sulfur Compounds as H2S, ppm (ASTM D-5504)	1,667	1,687	1,829	1,728	370
Inlet CH ₄ , ppm (ASTM D-1945)	472,000	480,000	483,000	478,333	
Inlet CH ₄ , lb/hr	239	244	242	242	
Inlet NMOC, ppm as CH4 (EPA Method 25C)	703	698	717	706	
Inlet NMOC, lb/hr as CH ₄	0.36	0.36	0.36	0.36	
Inlet THC, ppm as CH4	472,703	480,698	483,717	479,039	
Inlet THC, lb/hr as CH4	239.4	244.6	242.6	242.2	
Stack Gas:					
Exhaust Flow Rate, DSCFM (EPA Method 19)	2,671	3,099	3,211	2,994	
Oxygen (O ₂ ), % volume dry	13.7	14.6	14.9	14.4	
Carbon Dioxide (CO ₂ ), % volume dry	5.3	5.3	5.2	5.3	
Moisture (H ₂ O), % volume dry	10.7	11.9	6.3	9.6	
NO _X Emissions (reported as NO ₂ ):	•				
NOx, ppmvd	9.2	8.8	7.2	8.4	
NOx, ppmvd @ 15% O ₂	7.6	8.2	7.0	7.6	15
NOx, lb/hr	0.18	0.19	0.16	0.18	
NOx, lb/MMBtu	0.030	0.033	0.028	0.030	0.06
CO Emissions:				•	
CO, ppmvd	24.5	23.3	21.6	23.1	
CO, ppmvd @ 15% O ₂	20.1	21.7	21.1	21.0	82
CO, lb/hr	0.28	0.31	0.30	0.30	
CO, lb/MMBtu	0.049	0.053	0.051	0.051	0.20
Sulfur Dioxide (SO ₂ ) Emissions:				•	
SO ₂ , ppm (calculated)	127.3	111.6	115.0	118.0	300
SO ₂ , lb/hr	3.38	3.44	3.67	3.50	
SO ₂ , lb/MMBtu	0.5804	0.5791	0.6219	0.5938	1.69
THC Emissions (reported as CH ₄ ):					
THC, ppmvd (EPA Method ALT 097)	<11.2	<11.4	<10.7	<11.1	
THC, lb/hr	< 0.074	< 0.088	< 0.085	< 0.082	
THC Destruction Efficiency, %	100.000%	100.000%	100.000%	100.000%	
Methane (CH ₄ ) Emissions:	•				
CH ₄ , ppm wet (EPA Method ALT 097)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd	<11.2	<11.4	<10.7	<11.1	
CH ₄ , lb/hr	< 0.074	< 0.087	< 0.085	< 0.082	
CH ₄ Destruction Efficiency, %	99.969%	99.964%	99.965%	99.966%	> 99%
NMOC Emissions (reported as CH ₄ ):	*	•	•	•	
NMOC, ppm wet (EPA Method ALT 097)	<1.0	<1.0	<1.0	<1.0	
NMOC, ppmvd dry	<1.1	<1.1	<1.1	<1.1	
NMOC, lb/hr as CH ₄	< 0.007	< 0.009	< 0.009	< 0.008	
NMOC, ppmvd @ 3% O ₂	<2.8	<3.2	<3.2	<3.1	30*
NMOC, ppmvd @ $3\%$ O ₂ as hexane (C ₆ H ₁₄ )	<0.466	< 0.537	< 0.527	< 0.510	360

 $*>\!98\%$  NMOC destruction efficiency or  $<\!30$  ppm NMOC (a) 3%  $O_2$ 

#### WHERE,

ppm = parts per million concentration by volume expressed on a dry gas basis lb/hr = pound per hour emission rateTstd. = standard temperature ( $^{\circ}R = ^{\circ}F+460$ ) MW = molecular weight DSCFM = dry standard cubic foot per minute  $NO_X = oxides of nitrogen, reported as NO_2 (MW = 46)$ CO = carbon monoxide (MW = 28)THC = total hydrocarbons reported as methane (MW = 16) NMOC = non-methane organic compounds, reported as methane

 $SO_2 = sulfur dioxide (MW = 64.1)$ 

#### CALCULATIONS,

 $PPM @ 15\% O_2 = ppm \cdot 5.9 / (20.9 - \%O_2)$ PPM @  $3\% O_2 = ppm \cdot 17.9 / (20.9 - \%O_2)$ lb/hr = ppm · 8.223 E-05 · DSCFM · MW / Tstd. °R lb/MMBtu = (lb/hr)/(MMBtu/hr) $lb/day = lb/hr \cdot 24$ Destruction Efficiency = (inlet lb/hr- outlet lb/hr) / inlet lb/hr <Value = <2% of Analyzer Range ppm dry = ppm wet  $\cdot$  100 / (100 - %H₂0) 15  $SO_2$  emission ppm = H₂S in fuel * fuel flow rate / stack gas flow rate NMOC, ppm as hexane = NMOC, ppm as  $CH_4 / 6$ 

#### TABLE #2

#### Redwood Landfill, Inc. Landfill Gas Characterization

Parameter		Units	1-LFG-Flare A-60 (B)	2-LFG-Flare A-60 (B)	3-LFG-Flare A-60 (B)	Average Results	Permit Limits
Test Date			7/12/23	7/12/23	7/12/23		
Average NMOC as Hexane		ppm	117	116	120		
EPA TO-15 Results:							
Acrylonitrile		ppb	<43.9	<36.7	<48.2	<42.9	300
Benzene		ppb	353	385	377	372	1,500
Benzyl Chloride	Chloromethylbenzene	ppb	<43.9	<36.7	<48.2	<42.9	500
Carbon Tetrachloride		ppb	<43.9	<36.7	<48.2	<42.9	200
Chlorobenzene		ppb	<43.9	<36.7	<48.2	<42.9	200
Chloroethane		ppb	80.8	85.2	74.2	80.1	500
Chloroform		ppb	<43.9	<36.7	<48.2	<42.9	200
1,1 Dichloroethane	Ethylidene Dichloride	ppb	<43.9	<36.7	<48.2	<42.9	500
1,1 Dichloroethene	Vinylidene Chloride	ppb	<43.9	<36.7	<48.2	<42.9	500
1,2 Dichloroethane	Ethylene Dichloride	ppb	58.0	61.7	58.7	59.5	200
1,4 Dichlorobenzene		ppb	195	232	222	216	1,000
Ethylbenzene		ppb	1,930	2,100	2,080	2,037	4,000
Ethlyene Dibromide	1,2 Dibromoethane	ppb	<43.9	<36.7	<48.2	<42.9	200
Hexane		ppb	285	295	288	289	2,000
Isopropyl Alcohol	IPA	ppb	836	1,090	1,230	1,052	10,000
Methyl Alcohol	Methanol	ppb	1,160	1,580	1,720	1,487	300,000
Methyl Ethyl Ketone	MEK	ppb	2,760	3,220	3,180	3,053	15,000
Methylene Chloride		ppb	<87.8	<73.4	<96.3	<85.8	1,000
Methyl tert Butyl Ether	MTBE	ppb	<43.9	<36.7	<48.2	<42.9	500
Perchloroethylene	Tetrachloroethylene	ppb	45.7	47.7	50.1	47.8	1,000
Styrene		ppb	86.9	104.0	100.0	97.0	500
Toluene		ppb	3,470	3,530	3,600	3,533	20,000
1,1,1 Trichlororethane		ppb	<43.9	<36.7	<48.2	<42.9	200
1,1,2,2 Tetrachloroethane		ppb	<43.9	<36.7	<48.2	<42.9	200
Trichloroethylene	Trichloroethene	ppb	<43.9	41.1	<48.2	<44.4	500
Vinyl Chloride		ppb	<43.9	41.1	<48.2	<44.4	2,000
Xylenes		ppb	4,230	4,620	4,540	4,463	20,000
ASTM D-5504 Results:							
Carbon Disulfide		ppm	0.177	0.184	0.235	0.199	
Carbonyl Sulfide	COS	ppm	< 0.088	< 0.073	< 0.096	< 0.086	
Dimethyl Sulfide		ppm	0.647	0.244	0.362	0.418	
Ethyl Mercaptan		ppm	0.258	0.390	0.274	0.307	
Methyl Mercaptan		ppm	1.10	0.839	0.919	0.953	
Hydrogen Sulfide		ppm	1,655	1,675	1,815	1,715	
Total Reduced Sulfur Compo	ounds as H ₂ S	ppm	1,667	1,687	1,829	1,728*	370

*Total Reduced Sulfur Compounds as  $\mathrm{H}_2S$  did not meet the permit limit

### Redwood Landfill, Inc. BAAQMD Facility #1179

#### Annual Compliance Emissions Test Report #22194 Landfill Gas Engines-Source S-64 and S-65

Located at: **Redwood Landfill** 8950 Redwood Highway Novato, California 94948

#### Prepared for:

SCS Engineers 3117 Fite Circle, Suite 108 Sacramento, California 95827 Michael O'Connor moconnor@scsengineers.com

#### For Submittal to: Bay Area Air Quality Management District Compliance & Enforcement Division 375 Beale Street, Suite 600 San Francisco, California 94105

Attn: Gloria Espena and Marco Hernandez gespena@baaqmd.gov and mhernandez@baaqmd.gov sourcetest@baaqmd.gov

> Testing Performed on: July 14 - 15, 2022

Final Report Submitted on: September 12, 2022

Performed and Reported by: Blue Sky Environmental, Inc. 624 San Gabriel Avenue Albany, CA 94706 Office (510) 525 1261/Cell (810) 923 3181 bluesky@blueskyenvironmental.com



#### **REVIEW AND CERTIFICATION**

#### Team Leader:

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report are authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (810) 923 - 3181.

1-11

Jeramie Richardson Project Manager Blue Sky Environmental, Inc.



#### TABLE of CONTENTS

SECTION	N 1. INTRODUCTION	4
1.1.	SUMMARY	4
SECTION	N 2. SOURCE TEST PROGRAM	6
2.1.	OVERVIEW	6
2.2.	Pollutants Tested	6
2.3.	TEST DATE(S)	
2.4.	SAMPLING AND OBSERVING PERSONNEL	
2.5.	SOURCE/PROCESS DESCRIPTION	7
2.6.	SOURCE OPERATING CONDITIONS	7
SECTION	N 3. SAMPLING AND ANALYSIS PROCEDURES	8
3.1.	PORT LOCATION	
3.2.	POINT DESCRIPTION/LABELING – PORTS/STACK	8
3.3.	SAMPLE TRAIN DESCRIPTIONS	8
3.4.	SAMPLING PROCEDURE DESCRIPTIONS	8
3.5.	INSTRUMENTATION AND ANALYTICAL PROCEDURES	
3.6.	System Performance Criteria	13
3.7.	COMMENTS: LIMITATIONS AND DATA QUALIFICATIONS	14
SECTION	N 4. APPENDICES	15
A.	Tabulated Results	
В.	Calculations	
С.	Laboratory Reports	
<i>D</i> .	Field Data Sheets	

- F.
- *G*.
- Н.
- Calibration Certificates and Quality Assurance Records Sample Train Configuration and Stack Diagrams Related Correspondence (Source Test Plan) Bay Area Air Quality Management District (BAAQMD) PTO Ι.



#### **SECTION 1. INTRODUCTION**

#### 1.1. Summary

Blue Sky Environmental, Inc. was contracted by SCS Engineers to perform annual emissions testing for Waste Management at Redwood Landfill, Inc. located in Novato, California. Testing was conducted to demonstrate that the facility's two 2,739 BHP landfill gas-fired lean-burn IC engines are operating in compliance with their associated Bay Area Air Quality Management District's (BAAQMD) air contaminant discharge permit. The source test information is summarized in Table 1.1. Test results derived from the source test are summarized in Tables 1.2 and 1.3. Results for individual test runs are included in Appendix A. The engines met all compliance emission criteria.

Test Location:	Redwood Landfill, Inc. 8950 Redwood Highway, Novato, California 94948			
Source Contact:	Alisha McCutcheon (415) 892-2851			
Source Tested:	Engine #1 (S-64) – 2,739 BHp Caterpillar model G3502C landfill gas-fired IC engine equipped with oxidation catalyst and SCR with urea injection (S/N LGS00188). Engine #2 (S-65) – 2,739 BHp Caterpillar model G3502C landfill gas-fired IC engine equipped with oxidation catalyst and SCR with urea injection (S/N LGS0189).			
Source Test Date:	July 14 th – 15 th , 2022			
Test Objective:	Determine compliance with Bay Area Air Quality Management District (BAAQMD) air contaminant discharge permit for Facility #1179, Condition 25635, Part 13, and 40 CFR 60 Subpart JJJJ			
Test Performed by:	Blue Sky Environmental, Inc. 624 San Gabriel Avenue, Albany, California 94706 Jeramie Richardson (810) 923 - 3181 jrichardson@blueskyenvironmental.com			
Test Parameters:	Landfill Gas O ₂ , CO ₂ , BTU, THC, NMOC, HHV, F-Factor, Sulfur & Volumetric Flow Rate Engine Emissions THC, NMOC, CH ₄ , NO _x , CO, O ₂ , SO ₂ , PM ₁₀ (S-64), NH ₃ , Formaldehyde (S-64) & Volumetric Flow Rate.			

Emission Parameter	Average Test Result	Permit Limit	Compliance Status
NO _x , g/BHp-hr	0.0119	0.15	In Compliance
CO, g/BHp-hr	0.402	1.8	In Compliance
SO ₂ , ppm @ 15% O ₂	< 0.1795	9	In Compliance
SO ₂ , g/BHp-hr	< 0.00358	0.18	In Compliance
Ammonia, ppm @ 15% O ₂	0.04	10	In Compliance
CH4, ppm @ 15% O2	933.4	3,000	In Compliance
NMOC, ppm @ 15% O ₂ as CH ₄	4.1	32	In Compliance
NMOC, g/BHp-hr as CH4	0.021	0.16	In Compliance
Formaldehyde, lb/hr	0.0373	0.51	In Compliance
Total Particulate, as PM ₁₀ , g/BHp	0.047	0.10	In Compliance
TRS in fuel, ppm as H ₂ S	2.99	150	In Compliance

Table 1.2Engine #1 (S-64) Compliance Summary

Table 1.3
Engine #2 (S-65) Compliance Summary

Emission Parameter	Average Test Result	Permit Limit	Compliance Status
NO _x , g/BHp-hr	0.086	0.15	In Compliance
CO, g/BHp-hr	0.168	1.8	In Compliance
SO ₂ , ppm @ 15% O ₂	< 0.1796	9	In Compliance
SO ₂ , g/BHp-hr	< 0.00342	0.18	In Compliance
Ammonia, ppm @ 15% O ₂	0.47	10	In Compliance
CH4, ppm @ 15% O2	781.0	3,000	In Compliance
NMOC, ppm @ 15% O ₂ as CH ₄	3.4	32	In Compliance
NMOC, g/BHp-hr as CH ₄	0.016	0.16	In Compliance
TRS in fuel, ppm as H ₂ S	3.01	150	In Compliance



#### SECTION 2. SOURCE TEST PROGRAM

#### 2.1. Overview

This annual test was performed to demonstrate compliance of Engine #1 (S-64) and Engine #2 (S-65) with the emission limits specified in Bay Area Air Quality Management District (BAAQMD) Permit to Operate (PTO) for Facility 1179, Permit Condition 25635, Part 13. This testing also satisfies compliance requirements of 40 CFR 60, Subpart JJJJ – New Source Performance Standards for Spark Ignition Internal Combustion Engines

#### 2.2. Pollutants Tested

The following U.S. Environmental Protection Agency (EPA), Bay Area Air Quality Management District (BAAQMD), California Air Resources Board (CARB) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample and Velocity Traverses
EPA Method 2	Flow Rate Calculation, DSCFM
EPA Method 3A	$O_2$ , $CO_2$
EPA Method 10	СО
EPA Method ALT-078	NMOC, CH ₄
EPA Method 7E	NO _X
EPA Method 19	Flow Rate Calculation, DSCFM
EPA Method 25C	LFG Gas analysis for NMOC by GC
ASTM D-1945/3588	LFG Gas analysis for BTU and F-Factor
ASTM D-5504	Sulfur Species, H ₂ S and TRS
CARB Method 430	Formaldehyde
BAAQMD ST-1B/1A	NH ₃
EPA Method 5/202	Particulate Matter (PM ₁₀ as total PM)

#### 2.3. Test Date(s)

Testing was conducted on July 14th – 15th, 2022.

#### 2.4. Sampling and Observing Personnel

Testing was performed by Jeramie Richardson, Wesley Alder, Zach Sales, Anthony Bomprezzi and Timothy Eandi representing Blue Sky Environmental, Inc.

Jon Silva of SCS Engineers and Michael Chan of Waste Management, were present to operate and oversee the Engine operations and assist in coordinating testing and the collection of process data during testing.

EPA and BAAQMD were notified of the scheduled testing in a plan submitted on June 14th, 2022 and revised June 17th, 2022. Source Test Protocol acknowledgements were received by Blue Sky Environmental (NST #7501 S-64 and NST #7502 S-65). No agency observers were on site during the test program. A copy of the source test protocol and BAAQMD acknowledgments are provided in Appendix I.



#### 2.5. Source/Process Description

Redwood Landfill and Recycling Center generates clean renewable electricity from landfill gas produced from decomposing organic materials received at the site. The facility operates two identical 2,739 Bhp-hr Caterpillar G3502C, landfill gas engines equipped with oxidation catalysts and SCR with urea injection. Engine #1 (S-64) and Engine #2 (S-65) emissions vent through 30-inch diameter stacks (inner diameter approx. 28.5 inches).

#### 2.6. Source Operating Conditions

The engines were operated on biogas fuel under normal conditions during the test program. Process data provided by the facility was recorded at 5-minute intervals. The operating kilowatt (kW) and fuel flow rate records are provided in Appendix F.

The average values are listed below.

Parameter	Engine #1 (S-64)	Engine #2 (S-65)
Generator Load, kW	1,197	1,201
Fuel Consumption Rate, SCFM	442.1	421.2

LFG samples collected at the header of Engine #1 (S-64) showed that the methane quality averaged 49.4% and the Oxygen content was 1.03%. LFG samples collected at the header of Engine #2 (S-65) showed that the Methane quality averaged 49.7% and the Oxygen content was 0.93%. Additional LFG data is provided in Appendix C.

Engine serial numbers and hours of operation at time of test

Engine #1 (S-64), SN: LGS00188, Hours of Operation: 41,123

Engine #2 (S-65), SN: LGS00189, Hours of Operation: 40,510



#### SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

#### 3.1. Port Location

Sampling was conducted at the 30-inch diameter exhaust stack of each engine through 4-inch ports that were accessible from ground-level. Sampling ports were located approximately four stack diameters downstream from the nearest disturbance and approximately 1  $\frac{1}{2}$  stack diameters upstream of nearest disturbance or exhaust.

#### 3.2. Point Description/Labeling – Ports/Stack

Blue Sky Environmental, Inc. conducted two perpendicular 12-point traverses of each stack to check for the presence of cyclonic flow. The traverse points for the 30-inch diameter stacks with 4-inch deep ports were 0.6, 1.9, 3.4, 5.1, 7.3, 10.3, 18.7, 21.8, 23.9, 25.6, 27.1 and 28.4 inches from the stack wall. Stratification was less than 10%; however, subsequent CEM and PM sampling was conducted using a full traverse across two axis of the stack. Ammonia and formaldehyde samples were collected from a point mid-stack.

#### 3.3. Sample Train Descriptions

Sampling system diagrams are included in the Appendix G. Additional descriptive information is included in the following section.

#### 3.4. Sampling Procedure Descriptions

Three consecutive 60-minute gaseous emissions tests were performed for oxides of nitrogen  $(NO_x)$ , carbon monoxide (CO), carbon dioxide  $(CO_2)$ , oxygen  $(O_2)$ , ammonia  $(NH_3)$ , methane  $(CH_4)$ , and non-methane organic compounds (NMOC) at each engine exhaust stack.

The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. A NOx analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Three 60-minute tests for particulate matter (PM) and three 30-minute test runs for formaldehyde were performed on Engine #1 (S-64).

Concurrent with the exhaust sampling, Blue Sky Environmental collected a total of six digester gas samples (three per engine) to determine the average Btu value by ASTM D-1945, and sulfur content by ASTM D-5504. The samples were collected in 6-liter SUMMA cannisters and analyzed by Atmospheric Analysis & Consulting, Inc (AAC) in Ventura, CA. Laboratory test results are provided in Appendix C.



The sampling and analysis methods are summarized below:

#### EPA Method 1 - Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

## CARB/EPA Method 2 – Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)

This method is used to determine the average velocity and the volumetric flow rate of stack gas using a standard S-type pitot tube and inclined manometer. Temperature is monitored using a K-type thermocouple and calibrated Omega temperature meter. The entire sampling system is leak checked prior to and at the end of the sampling program. Thermometer calibrations are performed using an Omega Model CL-601K simulator. Geometric calibrations of S-type pitot tubes are performed every 6 months or according to the guidelines outlined in California Air Resources Board (CARB) QA/QC Volume VI, Table 3.

### EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas.

### EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. Section 16.2.2 of the method is used to determine the  $NO_x$  analyzer  $NO_2$  to NO conversion efficiency.

### EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.



EPA Method 5 – Determination of Particulate Matter Emissions from Stationary Sources This method is used to determine filterable particulate matter (PM) emissions from stationary sources. Particulate matter is withdrawn isokinetically from the source and collected on a glass fiber filter maintained at 248  $\pm$  25°F. The sampling equipment consists of a stainless steel or glass nozzle, a heated probe, heated filter box and filter holder with glass fiber filter, followed by a Teflon line and umbilical to four Greenburg-Smith impingers, a pump and a meter control module. Filterable particulate is determined gravimetrically from the probe/nozzle acetone rinse and filter, following evaporation and desiccation of these fractions. The first two impingers contain 100ml of de-ionized water each, a third short-stem impinger is left empty and the fourth impinger contains silica gel desiccant to dry the gas before the pump and gas meter. Moisture is condensed in the solution of de-ionized water and absorbed in the silica gel. The moisture gain in the impinger solutions and silica gel is determined volumetrically and gravimetrically respectively.

QA/QC: consists of pitot leak checks performed by pressurizing each leg of the pitot separately to a pressure greater than 3" H2O. The leak check is passed when no movement in the manometer fluid occurs over 15 seconds. Sampling system leak checks are performed before and after each test run by capping the nozzle, then pulling a vacuum greater than 15 inches of mercury and observing the meter rate. The leak check is passed, when the leak rate is less than 0.02 CFM or 4% of the average sample rate, whichever is less. The final leak check is performed at a vacuum at least as high as the highest vacuum pulled during the run. The impingers are kept in ice to maintain the temperature of the gas exiting the last impinger to below 68°F. No silicone grease is used on the components of the sampling train. The dry gas meter, pitot, thermocouples, gauges, and nozzles are all calibrated according to the methods and with a frequency of between 6 to 12 months as specified in CARB QA/QC Volume VI, Table 3. Nozzles are calibrated in the field to within 0.001" diameter and are inspected for damage prior to each test. Acetone rinse blanks are collected using equipment, reagents, proportions, and techniques that are identical to the test samples.

#### EPA Method 202 - Dry Impinger Method for Determining Condensable Particulate **Emissions from Stationary Sources**

This method is used to measure condensable particulate matter (CPM) emissions from stationary sources after filterable particulate matter (PM) has been removed. The concentrations and emission rates of PM10 are measured using a combination of EPA Methods 5 and EPA Method 202. The CPM is collected in dry impingers followed by a nitrogen purge after filterable PM has been collected. Test runs are  $\geq 60$  minutes in duration to collect sufficient sample volume to provide detection limits low enough to determine compliance with the permit conditions.

The apparatus includes a Pyrex/quartz sampling nozzle and Pyrex/quartz probe liner attached to a glass filter holder with glass-fiber filter heated to  $248 \pm 25^{\circ}$ F. The filter holder is mounted to the end of the probe liner, which is attached to a length of heated Teflon tubing to connect the filter holder to the impinger train. The impinger train is connected to the control box, which contains the sampling pump and dry gas meter. A nozzle size is chosen to allow isokinetic sampling (i.e., within 10%) at all the traverse points at the calculated sampling rate.

The filterable "front-half' PM10 is recovered from the sampling apparatus as described in EPA Method 5. The sample fractions include the rinses of the internal sections of the nozzle, probe liner, the front-half of the filter holder, and the filter. The sample fractions are analyzed gravimetrically to determine the concentration of filterable PM10.

The "back-half" contents are recovered and analyzed for condensable PM10 as described in EPA Method 202. The probe extension, condenser and first impinger contents are rinsed with water into the second impinger. Water is added as necessary for the subsequent purge. The condenser



and first impinger are reattached to the second impinger and the condenser, and the impingers and CPM filter are purged with nitrogen for one hour.

After the purge, the sample is recovered in three fractions: 1) the CPM filter, 2) the water contents and rinses of the condenser, impingers, and filter holder, and 3) the acetone/hexane rinses of the condenser, impingers, and filter holder. The sample containers are transported to an environmental testing laboratory for analysis.

## CARB Method 430 – Determination of Formaldehyde and Acetaldehyde in Emissions from Stationary Sources

This method is used to determine emissions of aldehydes and ketone compounds from stationary sources. Gaseous emissions are drawn through a short 1/8 inch Teflon sample line and two midget impingers in series, each containing a 10 ml aqueous acidic solution of 2,4-dinitrophenyl-hydrazine (DNPH). Ice is used to cool the impingers during sampling. The sample is drawn at a rate of 0.1 to 0.5 liters per minute for 12 to 60 minutes. After organic solvent extraction, the samples are analyzed using reverse phase HPLC with an ultraviolet (UV) absorption detector operated at 360 nm. Each impinger is analyzed separately.

**EPA Method 25A/ALT-078:** Sampling for Total Hydrocarbons, Methane and Non-Methane Hydrocarbons. EPA Method 25A (FID/GC Method) employs a heated TECO 55C FID with GC column, heated Teflon sample gas transfer lines to provide a continuous sample to the heated FID/GC Hydrocarbon Analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation. Methane is determined by the calibrated GC method in the TECO 55C NMHC/CH₄/THC Analyzer. Calibration gases are selected to fall within 25-35%, 45-55% and 80-90% of Range for Methane, Total Hydrocarbon and Non-Methane Hydrocarbons

## EPA Method 25C – Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. Gases are collected in a pre-evacuated 6-Liter SUMMA canister with pre-set flow controller set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consists of capillary orifice tubing designed to sample for a pre-set duration of 0.5 hrs. The sample is injected into a GC column where the methane and  $CO_2$  are flushed through and removed then the NMOC (ROC) fraction is oxidized to form  $CO_2$  then reduced to methane and analyzed.

### EPA Method 18 – Measurement of Gaseous Organic Compound Emissions by Gas Chromatography

This method is used to determine emissions of volatile organics by gas chromatograph/mass spectroscopy (GC/MS). Gaseous emissions are drawn through a Teflon sample transfer line to a Tedlar bag held in a rigid leak proof bag container. The sample is drawn into the bag by evacuating the container to stack gas pressure to allow sample flow without using a pump to avoid contamination. Negative pressure is adjusted to maintain an integrated sample flow for the collection time. The bag samples are taken to a laboratory and analyzed within 72 hours.

### EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates



This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates.

#### BAAQMD Source Test Procedure ST-1B – Ammonia Integrated Sampling

This method is used to quantify ammonia emissions and determine compliance with Regulation 7-303. The sample is extracted from the gas stream using a Teflon or stainless-steel probe and the ammonia is condensed/adsorbed in two Greenburg-Smith impingers containing 200ml of 0.1N HCl, followed by an empty knock-out impinger, and a fourth impinger containing 200g of pre-weighed silica gel. The moisture gained is determined volumetrically and gravimetrically. A minimum of 20 cubic feet of sample is pulled using a leak tight pump and sampling assembly and the volume is measured with a calibrated dry gas meter. Ammonia is analyzed according to BAAQMD Analytical Procedure Lab-1 with a Specific Ion Electrode, or Nessler's reagent and a spectrophotometer. Results are recorded on the field data sheet. The entire sampling system is leak checked prior to and at the end of each test run. All the sampling equipment is calibrated according to CARB schedules and this documentation is included in the final report. Reagent blanks are collected. Analytical QA/QC includes testing a reagent blank, laboratory blanks, and sample duplicates.

### BAAQMD Method 1A – Determination of Ammonia in Effluents Collected in Acid Media using the Specific Ion Electrode

This method is used to determine the ammonia content in effluents absorbed in a dilute HCl solution according to BAAQMD Source Test Procedure ST-1B. A 49ml aliquot of sample is placed into a clean polypropylene beaker and made alkaline with the addition of an ammonia pH adjusting solution. This releases the ammonia for determination by the specific ion electrode method. The sample is placed on top of a magnetic stirrer and a clean Teflon coated magnetic stirring bar is added. The ammonia-specific ion electrode is placed into the sample and a concentration of ammonia (as  $N_2$ ) is displayed on the meter.

An Orion 920A pH/Concentration/ISE meter with an Orion #95-11 ion-specific electrode is calibrated with 1mg/ml and 10mg/ml ammonia (NH₃) as nitrogen (N₂). The ammonia working standards are produced by diluting 100mg/ml ammonia as nitrogen with 0.1N HCl in 100:1 and 10:1 ratios, respectively. The standards are enhanced with a pH adjusting ionic strength adjuster to help the electrode read the nitrogen more effectively. Once the calibration is completed, the meter will calculate a standard curve for the electrode. The standard curve is acceptable between -54mv (millivolts) and -60mv.

#### ASTM D1945 - Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

### ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.



#### ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed within 7 days.

#### 3.5. Instrumentation and Analytical Procedures

The following continuous emissions analyzers were used

Instrumentation	Parameter	Principle
TECO Model 42C	$NO_X/NO/NO_2$	Chemiluminescence
TECO Model 48C	СО	GFC/IR
Servomex Model 1440	CO ₂	Infrared (IR)
Servomex Model 1440	O ₂	Paramagnetic
TECO Model 43C	SO ₂	Pulsed Fluorescence
TECO Model 55C	THC/CH ₄ /NMOC	Flame Ionization (FID)

#### 3.6. System Performance Criteria

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of a Honeywell DPR 3000 chart recorder, supported by a Data Acquisition System (DAS). The instrument response is recorded on strip charts and DAS. The averages are corrected for drift and bias using EPA Method 7E equations. All system performance criteria were met.

Instrument Linearity	≤2% Full Scale
Instrument Bias	≤5% Full Scale
System Response Time	≤± 2 minutes
$NO_X$ Converter Efficiency (EPA Method 7E)	$\geq 90\%$
Instrument Zero Drift	$\leq \pm 3\%$ Full Scale
Instrument Span Drift	$\leq \pm 3\%$ Full Scale



#### 3.7. Comments: Limitations and Data Qualifications

This source test was performed in accordance with the protocol submitted to BAAQMD. No deviations from the protocol or anomalies were observed during testing. The measured emissions comply with the permitted limits.

Blue Sky Environmental has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text Review of calculations Review of CEMS data Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations, subsequent to this, and do not warranty the accuracy of information supplied by others.



#### **SECTION 4.** <u>APPENDICES</u>

- A. Tabulated Results
- **B.** Calculations
- C. Laboratory Reports
- **D.** Field Data Sheets
- E. Process Information
- F. Calibration Certificates and Quality Assurance Records
- G. Sample Train Configuration and Stack Diagrams
- H. Related Correspondence (Source Test Plan)
- I. Bay Area Air Quality Management District (BAAQMD) PTO



A Tabulated Results

#### TABLE #1

#### Redwood Landfill, Inc Engine #1 (S-64)

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	7/15/22	7/15/22	7/15/22		
Test Time	0943-1124	1256-1419	1520-1644		
Standard Temperature, °F	70	70	70		
Process Parameters:					
Generator, kW	1,190	1,194	1,206	1,197	
Engine, BHp	1,658	1,664	1,680	1,667	
Urea Injection Rate, gph	1.2	1.2	1.2	1.2	
Fuel:					
Fuel Flow Rate, SCFM	442.0	443.1	441.2	442.1	
Fuel Gross Calorific Value, Btu/cf @ 68°F	494.6	491.6	492.6	493.0	
Fuel Fd-Factor, DSCF/MMBtu @ 68°F	9,546	9,548	9,554	9,550	
Inlet NMOC, ppmv as CH4 (EPA Method 25C)	732	749	596	692	
Inlet NMOC, lb/hr as CH ₄	0.8	0.8	0.7	0.8	
Inlet CH ₄ , ppmv	496,000	493,000	494,000	494,333	
Inlet CH ₄ , lb/hr	544.2	542.3	541.1	542.6	
H ₂ S, ppm (ASTM D5504)	0.450	0.222	0.237	0.303	
TRS as $H_2S$ , ppm (ASTM D5504)	2.87	3.16	2.95	2.99	150
Stack Gas:	2.07				100
SCR Temperature, °F	825	825	825	825	
Exhaust Flow Rate, DSCFM (EPA Method 19)	3,765	3,754	3,760	3,760	
Oxygen (O ₂ ), % volume dry	9.3	9.3	9.4	9.3	
Carbon Dioxide (CO ₂ ), % volume dry	9.5	9.3	10.3	9.5	
Moisture (H ₂ O), % volume dry	10.5	15.4	11.4	12.5	
NO _X Emissions (reported as NO ₂ ):	10.0	15.4	11.4	12.3	
	177	15.4	1(0	16.4	
NO _X , ppm	17.7	15.4	16.0	16.4	
$NO_X$ , ppm @ 15% $O_2$	9.0	7.9	8.2	8.3	
NOx, lb/hr	0.48	0.41	0.43	0.44	
NOx, g/BHp-hr	0.130	0.113	0.116	0.119	0.15
CO Emissions:					
CO, ppm	94.8	89.5	86.9	90.4	
CO, ppm @ 15% O ₂	48.3	45.6	44.4	46.1	
CO, lb/hr	1.55	1.46	1.42	1.48	
CO, g/BHp-hr	0.424	0.398	0.383	0.402	1.8
SO ₂ Emissions:					
SO ₂ , ppm (calculated emission)	< 0.337	< 0.373	< 0.346	< 0.352	
SO ₂ , ppm @ 15% O ₂	< 0.1716	< 0.1900	< 0.1769	< 0.1795	9
SO ₂ , lb/hr	< 0.01262	< 0.01393	< 0.01295	< 0.01316	
SO ₂ , g/BHp-hr	< 0.00345	< 0.00380	< 0.00350	< 0.00358	0.18
Ammonia Emissions:					
Ammonia, ppm	0.05	0.04	0.13	0.07	
Ammonia, ppm @ 15% O ₂	0.03	0.02	0.07	0.04	10
Methane (CH ₄ ) Emissions:					
CH ₄ , ppm wet (EPA Method ALT 078)	1,605.1	1,639.3	1,555.3	1,599.9	
CH ₄ , ppm	1,799.5	1,936.9	1,754.9	1,830.4	
CH ₄ , ppm @ 15% O ₂	916.5	986.8	897.0	933.4	3,000
CH ₄ , lb/hr	16.82	18.05	16.38	17.1	-,
CH ₄ , g/BHp-hr	4.60	4.92	4.42	4.65	
NMOC Emissions (reported as CH ₄ ):	1.00	1.74	1.14	1.05	
NMOC, ppm wet (EPA Method ALT 078)	7.0	7.5	6.8	7.1	
NMOC, ppm	7.9	8.8	7.6	8.1	
NMOC, ppm @ 15% O ₂	4.0	4.5	3.9	4.1	32
NMOC, lb/hr	0.07	0.08	0.07	0.08	54
NMOC, 10/ nr NMOC, g/BHp-hr	0.07				0.17
THC Emissions (reported as CH ₄ ):	0.020	0.022	0.019	0.021	0.16
	1.007.4	10457	1 7/2 5	1.020 5	
THC, ppm	1,807.4	1,945.7	1,762.5	1,838.5	
THC, lb/hr	16.89	18.13	16.45	17.16	
THC g/BHp-hr	4.62	4.94	4.44	4.67	
CH ₄ Destruction Efficiency, %	96.9%	96.7%	97.0%	96.9%	
NMOC Destruction Efficiency, %	>95.5%	>89.9%	>91.9%	>92.4%	
WHERE:			<b>CALCULATIONS:</b> PPM @ $15\% \Omega_{*} = ppm$		

ppm = parts per million concentration by volume expressed on a dry gas basis lb/hr = pound per hour emission rate

lb/MMBtu = pound per million Btu Tstd. = standard temperature (°R = °F+460)

MW = molecular weight

 $\begin{array}{l} MW = molecular weight \\ DSCFM = dry standard cubic foot per minute \\ NO_x = oxides of nitrogen, reported as NO_2 (MW = 46) \\ CO = carbon monoxide (MW = 28) \\ CH_4 = methane (MW = 16) \\ SO_2 = sulfur dioxide (MW = 64.1) \\ NMOC = non-methane organic compounds = POC \end{array}$ 

 $\begin{array}{l} \text{CALCOLATIONS:} \\ \text{PPM} (@ 15\% \text{ O}_2 = \text{ppm} \cdot 5.9 \ / \ (20.9 - \%\text{O}_2) \\ \text{lb/hr} = \text{ppm} \cdot 8.223 \text{ E-05} \cdot \text{ DSCFM} \cdot \text{ MW} \ / \text{ Tstd. }^{\circ}\text{R} \\ \text{g/BHp-hr} = \text{lb/hr} \cdot 453.6/\text{BHp-hr} \\ \text{Engine BHp} = \text{Engine } \text{kW} \cdot 1.3932 \text{ hp/kW} \\ \text{ppm dry} = \text{ppm wet} \cdot 100 \ / \ (100 - \%\text{H}_20) \end{array}$ 

#### Table #2

#### **Total Particulate Results**

#### Redwood Landfill, Inc Engine #1 (S-64)

Parameter	Run #1	Run #2	Run #3	Average Results	Permit Limits
Test Date	07/15/22	07/15/22	07/15/22		
Test Time	0943-1124	1256-1418	1520-1643		
Engine kW	1,190	1,194	1,206	1,197	
Engine BHp	1,658	1,664	1,680	1,667	
Sample Volume, DSCF	31.51	32.58	32.57	32.22	
Isokinetic, %	99.3	99.4	109.1	102.6	
Duct Temperature, °F	911.0	917.7	919.3	916.0	
Stack Gas:					
Velocity, ft/sec	39.2	40.9	41.0	40.4	
Flow Rate, ACFM	10,788	11,259	11,292	11,113	
Flow Rate, DSCFM	3,716	3,839	3,885	3,813	
Water Vapor (H ₂ O), %	11.00	11.58	10.68	11.08	
Oxygen (O ₂ ), %	9.32	9.32	9.36	9.33	
Carbon Dioxide (CO ₂ ), %	10.29	10.40	10.32	10.34	
Filterable Particulate Emissions:	·	•	·		
Filterable Particulate, mg	22.64	0.72	0.05	7.80	
Filterable Particulate, gr/DSCF	0.01109	0.00034	0.00002	0.00382	
Filterable Particulate, lb/hr	0.3531	0.0112	0.0008	0.1217	
Condensable Particulate Emissions:					
Condensable Particulate, mg	3.37	4.03	2.50	3.30	
Condensable Particulate, gr/DSCF	0.00165	0.00073	0.00080	0.00106	
Condensable Particulate, lb/hr	0.0526	0.0241	0.0265	0.0344	
Total Particulate Emissions:					
Total Particulate as $PM_{10}$ , mg	26.01	4.75	2.55	11.10	
Total Particulate as PM ₁₀ , gr/DSCF	0.0127	0.00225	0.0012	0.0054	
Total Particulate as $PM_{10}$ , lb/hr	0.406	0.074	0.040	0.173	
Total Particulate as PM ₁₀ , g/BHp-hr	0.111	0.020	0.011	0.047	0.10

#### WHERE

$$\begin{split} DSCF &= \text{sample volume in dry standard cubic foot} \\ DSCFM &= \text{dry standard cubic foot per minute} \\ ACFM &= \text{actual cubic foot per minute} \\ H_2O, volume \% &= \text{stack gas percent water vapor} \\ gr/DSCF &= \text{particulate concentration in grains per DSCF} \\ Total Particulate &= \text{filterable and condensable particulate matter} \\ Filterable (F/H) \\ Condensible (B/H) \end{split}$$

#### CALCULATIONS

$$\label{eq:lb/hr} \begin{split} lb/hr \ Emission \ Rate &= 0.00857 \cdot gr/DSCF \cdot DSCFM \\ 12\% \ CO_2 \ Correction &= gr/DSCF \cdot 12\% \ / \ Actual \ CO_2\% \\ Engine \ BHp &= Engine \ kW \cdot \ 1.3932 \ hp/kW \end{split}$$

#### Table #3

#### Formaldehyde Method CARB 323

#### Redwood Landfill, Inc Engine #1 (S-64)

Parameter	Run 1	Run 2 B	Run 3	Average Results	Permit Limits
Test Date	7/15/22	7/15/22	7/15/22		
Test Time	0943-1124	1256-1419	1520-1644		
Sample Duration, minutes	60	60	60	60	
Standard Temperature, °F	70	70	70	70	
Exhaust Flow Rate, DSCFM (EPA Method 5/202)	3,716	3,839	3,885	3,813	
Test Parameters:					
Meter Yd	1.0696	1.0696	1.0696	1.0696	
Average Meter Temperature, °C	26.1	32.5	36.1	31.6	
Average Meter Temperature, °F	79.0	90.5	97.0	88.8	
Meter Volume, L	9.372	9.756	9.848	9.659	
Total Corrected Volume, L	9.857	10.046	10.023	9.975	
Formaldehyde Emissions:					
Formaldehyde, ug/sample	13.6	31.5	32.8	26.0	
Formaldehyde, ug/DSCM	1,380	3,135	3,273	2,596	
Formaldehyde, ppb	1,110	2,523	2,633	2,089	
Formaldehyde, g/hr	8.7	20.46	21.6	16.9	
Formaldehyde, lb/hr	0.0192	0.0451	0.0476	0.0373	0.51

#### WHERE:

ml = milliliter g = gram ug = microgram DSCFM = dry standard cubic feet per minute DSCM = dry standard cubic meter L = Liters

#### CALCULATIONS:

$$\label{eq:source} \begin{split} & Formaldehyde, ppb = 1,000 \cdot (ug/sample) \cdot 24.14 \ / \ (30.0 \ MW \cdot Vm \ std \ liters) \\ & ug/DSCM = (1,000 \ L/DSCM) \cdot (ug/sample) \ / \ (sample \ volume, \ L) \\ & g/hr = ug/DSCM \cdot (DSCFM \cdot 60 \ min-hr \ / \ 35.3) / (1,000,000 \ g/ug) \\ & lb/hr = (g/hr) \ / \ 453.6 \end{split}$$

#### TABLE #4

Redwood Landfill, Inc Engine #2 (S-65)

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	7/14/22	7/14/22	7/14/22		
Test Time	0837-0940	0958-1102	1119-1227		
Standard Temperature, °F	70	70	70		
Process Parameters:					
Generator, kW	1,199	1,203	1,200	1,201	
Engine, BHp	1,671	1,676	1,672	1,673	
Urea Injection Rate, gph	1.2	1.2	1.2	1.2	
Fuel:		r	r.		
Fuel Flow Rate, SCFM	421.0	420.0	422.6	421.2	
Fuel Gross Calorific Value, Btu/cf @ 68°F	490.6	499.6	496.6	495.6	
Fuel Fd-Factor, DSCF/MMBtu @ 68°F	9,553	9,539	9,548	9,547	
Inlet NMOC, ppmv as CH ₄ ( <i>EPA Method 25C</i> )	536	570	582	563	
Inlet NMOC, lb/hr as CH ₄	0.6	0.6	0.6	0.6	
Inlet CH ₄ , ppmv	492,000	501,000	498,000	497,000	
Inlet CH ₄ , lb/hr	514.2	522.4	522.4	519.7	
H ₂ S, ppm (ASTM D5504) TRS as H ₂ S, ppm (ASTM D5504)	1.32	0.662	0.488	0.823	150
Stack Gas:	3.22	3.19	2.62	3.01	150
SCR Temperature, °F	825	825	825	825	
Exhaust Flow Rate, DSCFM (EPA Method 19)	4,126	4,214	4,232	4,191	
Oxygen (O ₂ ), % volume dry	4,126	4,214	4,232	4,191	
Carbon Dioxide (CO ₂ ), % volume dry	8.9	8.9	8.9	8.9	
Moisture (H ₂ O), $\%$ volume dry	10.0	10.4	10.1	10.2	
NO _x Emissions (reported as NO ₂ ):	10.0	10.4	10.1	10.2	
NO _x , ppm	10.9	10.6	10.5	10.7	
NO _x , ppm @ 15% O ₂	6.4	6.3	6.3	6.3	
NOx, lb/hr	0.32	0.32	0.32	0.32	
NOx, g/BHp-hr	0.087	0.086	0.086	0.086	0.15
CO Emissions:	0.007	0.000	0.000	0.000	0.15
CO, ppm	32.9	33.4	36.0	34.1	
CO, ppm @ 15% O ₂	19.4	19.9	21.5	20.3	
CO, lb/hr	0.59	0.61	0.66	0.62	
CO, g/BHp-hr	0.160	0.166	0.180	0.168	1.8
SO ₂ Emissions:	01100	0.100	01100	01100	110
SO ₂ , ppm (calculated emission)	< 0.329	< 0.318	< 0.262	< 0.303	
SO ₂ , ppm @ 15% O ₂	<0.1939	<0.1890	<0.1560	< 0.1796	9
SO ₂ , lb/hr	< 0.01348	< 0.01333	< 0.01101	< 0.01261	
SO ₂ , g/BHp-hr	< 0.00366	< 0.00361	< 0.00299	< 0.00342	0.18
Ammonia Emissions:				· · · · · · · · · · · · · · · · · · ·	
Ammonia, ppm	0.64	1.28	0.47	0.80	
Ammonia, ppm @ 15% O ₂	0.38	0.76	0.28	0.47	10
Methane (CH ₄ ) Emissions:		•	•		
CH ₄ , ppm wet (EPA Method ALT 078)	1,095.2	1,083.7	1,366.4	1,181.8	
CH ₄ , ppm	1,216.7	1,209.9	1,519.5	1,315.4	
CH ₄ , ppm @ 15% O ₂	718.2	719.0	905.9	781.0	3,000
CH ₄ , lb/hr	12.46	12.66	15.96	13.7	
CH ₄ , g/BHp-hr	3.38	3.42	4.33	3.71	
NMOC Emissions (reported as CH ₄ ):		-	-		
NMOC, ppm wet (EPA Method ALT 078)	4.8	4.6	5.8	5.1	
NMOC, ppm	5.4	5.2	6.5	5.7	
NMOC, ppm @ 15% O ₂	3.2	3.1	3.9	3.4	32
NMOC, lb/hr	0.05	0.05	0.07	0.06	
NMOC, g/BHp-hr	0.015	0.015	0.018	0.016	0.16
THC Emissions (reported as CH ₄ ):		I	I	[	
THC, ppm	1,222.1	1,215.1	1,526.0	1,321.0	
THC, lb/hr	12.52	12.71	16.03	13.75	
THC g/BHp-hr	3.40	3.44	4.35	3.73	
CH ₄ Destruction Efficiency, %	97.6%	97.6%	96.9%	97.4%	
NMOC Destruction Efficiency, %	>98.9%	>97.8%	>96.2%	>97.6%	
WHERE:			CALCULATIONS:	50/(200 %(O))	

ppm = parts per million concentration by volume expressed on a dry gas basis

ppm = parts per million concentration by volume express lb/hr = pound per hour emission rate lb/MtBtu = pound per million Btu Tstd. = standard temperature (°R = °F+460) MW = molecular weight DSCFM = dry standard cubic foot per minute NO_X = oxides of nitrogen, reported as NO₂ (MW = 46) CO = carbon monoxide (MW = 28) CH₄ = methane (MW = 16) SO₂ = sulfur dioxide (MW = 64.1) NMOC = non-methage organic compounds = POC

NMOC = non-methane organic compounds = POC

PPM @  $15\% O_2 = ppm \cdot 5.9 / (20.9 - \%O_2)$  $\begin{array}{l} \text{In } M_{W} = 1570 \ \text{G}_{2} - ppnl^{-5}.5^{-7} (20.9 - 700_{2}) \\ \text{Ib/hr} = ppm \cdot 8.223 \ \text{E} \cdot 05 \cdot \text{DSCFM} \cdot \text{MW} / \text{Tstd. }^{\circ}\text{R} \\ \text{g/BHp-hr} = \text{Ib/hr} \cdot 453.6/\text{BHp-hr} \\ \text{Engine BHp} = \text{Engine } \text{kW} \cdot 1.3932 \ \text{hp/kW} \\ \text{ppm } \text{dry} = \text{ppm } \text{wet} \cdot 100 / (100 - \%\text{H}_{2}0) \\ \end{array}$ 

### APPENDIX O

### S-55 STATIC PRESSURE PERFORMANCE TEST (LEAK TEST)

# $MB_{\text{SERVICES}}$

P.O. Box 1299 Suisun City, CA 94585

707-290-7716 Mbservices1@yahoo.com

### Letter of Transmittal

Date 03/16/2023

To: REDWOOD LANDFILL 8950 REDWOOD HIGHWAY NOVATO, CA 94945	RE: Testing Results GDF# 8573

Enclosed are copies of the Air Quality test results for your location for test performed Please	
see below for brief summary.	

Test	Passed	Failed	Notes	
Air Quality	✓			
Air Quality TP-206.3	✓			
		-		

State law requires that you keep a copy of these test results at your location. For you convenience the test results were submitted to your local agency.

If you have any question please feel free to contact us at: 707-290-7716 707-439-3778 <u>becauce liggration.com</u>

Thank you, MB Services

### TP-206.3 AST Static Pressure Performance Test Report Form

Permit Number: GDF# 8573		Test Company: MB Services				
Site Name: Redwood Landfill		Technician: Brian Dunahay				
Site Address: 8950 Redwood Highway		Certification Number	Expiration Date			
City: Novato CA Zip: 94945		ICC: 8021436	08/03/2023			
Date of Test: 3/16/2023						

#### **TEST INFORMATION**

			or and the set		
Total number of nozzles: 1			Are the tanks manifolded?	P 🗋 Yes 🛛 No	
Phase I vapor recovery system e	xecutive order			VR-101	
Phase I vapor recovery system c	onfiguration	Direct-	fill Remote-fill		
Phase II vapor recovery system	executive order				
Nitrogen introduction point	X Phase I vapo	or coupler	Phase I vent line	Phase II vapor riser	
Pressure measuring device	X digital manc	ometer			
Calibration date for pressure me	asuring device (m	ust be within 1	80 days of the test)	01/10/2023	
Ending value for digital manom	eter drift test if ap	plicable (must	be 0.01 in. w.c. or less)	0.00wc	
Nitrogen introduction flow rate,	F (must be betwe	en 1 and 5 CFI	M)	2 CFM	
Number of hoses with over 100	ml (balance hoses	must be drain	ed prior to testing)	0	

TANK INFORMATION							
Tank No.	1	2	3	4	ALL		
Product grade	87						
Actual tank capacity (gallons)	1,000				1,000		
Gasoline volume (gallons)	733				733		
Ullage (gallons) ¹	267				267		
If tanks are not manifolded, number of nozzles	1				1		

2 IN. W.C. STATIC PRESSURE TEST								
Test No.	1	2	3	4	5			
Start time	2:45 pm							
Initial Pressure, inches of water column (in. w.c.)	2.00							
Pressure at one minute, in. w.c.	2.03							
Pressure at two minutes, in. w.c.	2.06							
Pressure at three minutes, in. w.c.	2.11							
Pressure at four minutes, in. w.c.	2.16							
Pressure at five minutes. in. w.c.	2.19							
Allowable minimum pressure. in. w.c.	88							
Pass / Fail	Pass							

**NOTE:** 'The minimum ullage shall be 25 percent and the maximum shall be 75% of the tank capacity.

I declare, under penalty of perjury under the laws of the state of California that based on information and belief formed after reasonable inquiry, the statements and information provided in this document are true, accurate, and complete.

Signature of Technician: <u>Brian Dunahay</u> ____ Date: _____03/16/2023

TABLE 1 TP-206.3

#### Leak Rate Criteria

ULLAGE (GALLONS)	MINIMUM PRESSURE AFTER 5 MINUTES, (INCHES OF WATER COLUMN)
100	0.21
150	0.45
200	0.65
250	0.82
300	0.95
350	1.05
400	1.14
450	1.22
500	1.28
550	1.33
600	1.38
650	1.42
700	1.45
750	1.48
800	1.51
850	1.54
900	1.56
950	1.58
1,000	1.60
1,200	1.66
1,400	1.70
1.600	1.74
1,800	1.77
2,000	1.79
2,200	1.81
2,400	1.82
2,600	1.83
2,800	1.85
3,000	1.86
3,500	1.88
4,000	1.89
4,500	1.90
5,000	1.91
6,000	1.93
7,000	1.94
8.000	1.94
9,000	<b>1.95</b> 1.96
10,000	
15,000	<b>1.9</b> 7 1.98
20,000	1.98

**NOTE:** ¹The minimum ullage shall be 25 percent and the maximum shall be 75% of the tank capacity.

# $MB_{\text{SERVICES}}$

P.O. Box 1299 Suisun City, CA 94585

707-290-7716 Mbservices1@yahoo.com

### **Letter of Transmittal**

Date 03/07/2024

To:	RE:	
REDWOOD LANDFILL 8950 REDWOOD HIGHWAY NOVATO, CA 94945	Testing Results GDF# 8573	

Enclosed are copies of the Air Quality test results for your location for test performed Please see below for brief summary.

Test	Passed	Failed	Notes
Air Quality	✓		
Air Quality TP-206.3	✓		
			······································

State law requires that you keep a copy of these test results at your location. For you convenience the test results were submitted to your local agency.

If you have any question please feel free to contact us at: 707-290-7716 707-439-3778 mbservices1@yahoo.com

Thank you, MB Services

### TP-206.3 AST Static Pressure Performance Test Report Form

Permit Number: GDF# 8573		Test Company: MB Services				
Site Name: Redwood Landfill		Technician: Brian Dunahay				
Site Address: 8950 Redwood Highway		Certification Number	Expiration Date			
City: Novato CA	Zip: 94945	ICC: 8021436	08/16/2025			
Date of Test:0 3/07/2024						

	Т	<b>EST INFO</b>	ORMATION		
Total number of nozzles: 1			Are the tanks manifolde	:d? □ Yes	🛛 No
Phase I vapor recovery system	executive order				VR-101
Phase I vapor recovery system	configuration	🛛 Direct-f	ill Remote-fill		Ann
Phase II vapor recovery system	executive order				N/A
Nitrogen introduction point	X Phase I vapor of	coupler	□ Phase I vent line		Phase II vapor riser
Pressure measuring device	X digital manome	eter	· · · · ·		
Calibration date for pressure m	easuring device (mus	t be within 1	80 days of the test)	•	01/10/2024
Ending value for digital manon	neter drift test if appli	cable (must b	be 0.01 in. w.c. or less)		0.00wc
Nitrogen introduction flow rate	, F (must be between	1 and 5 CFM	1)		2 CFM
Number of hoses with over 100	ml (balance hoses m	ust be draine	d prior to testing)		0

TANK INFORMATION						
Tank No.	1	2	3	4	ALL	
Product grade	Unleaded					
Actual tank capacity (gallons)	1,000				1,000	
Gasoline volume (gallons)	500				500	
Ullage (gallons) ¹	500				500	
If tanks are not manifolded, number of nozzles	1				1	

2 IN. W.C. STATIC PRESSURE TEST							
Test No.	1	2	3	4	5		
Start time	2:30 pm						
Initial Pressure, inches of water column (in. w.c.)	2.00						
Pressure at one minute, in. w.c.	2.05						
Pressure at two minutes, in. w.c.	2.09						
Pressure at three minutes, in. w.c.	2.19						
Pressure at four minutes, in. w.c.	2.16						
Pressure at five minutes, in. w.c.	2.18						
Allowable minimum pressure, in. w.c.	1.28						
Pass / Fail	Pass						

**NOTE:** ¹The minimum ullage shall be 25 percent and the maximum shall be 75% of the tank capacity.

I declare, under penalty of perjury under the laws of the state of California that based on information and belief formed after reasonable inquiry, the statements and information provided in this document are true, accurate, and complete.

Signature of Technician:	Brian Dunahay	Date:	03/07/2024	
C C				

TABLE 1 TP-206.3

#### Leak Rate Criteria

ULLAGE (GALLONS)	MINIMUM PRESSURE AFTER 5 MINUTES, (INCHES OF WATER COLUMN)	
100	0.21	
150	0.45	
200	0.65	
250	0.82	
300	0.95	
350	1.05	
400	1.14	
450	1.22	
500	1.28	
550	1.33	
600	1.38	
650	1.42	
700	1.45	
750	1.48	
800	1.51	
850	1.54	
900	1.56	
950	1.58	
1,000	1.60	
1,200	1.66	
1,400	1.70	
1,600	1.74	
1,800	1.77	
2,000	1.79	
2,200	1.81	
2,400	1.82	
2,600	1.83	
2,800	1.85	
3,000	1.86	
3,500	1.88	
4,000	1.89	
4,500	1.90	
5,000	1.91	
6,000	1.93	
7,000	1.94	
8,000	1.94	
<b>9,000</b> 10,000	<b>1.95</b> 1.96	
15,000	1.97	
20,000	1.98	
-0,000	1.20	

NOTE: ¹The minimum ullage shall be 25 percent and the maximum shall be 75% of the tank capacity.

#### Chan, Michael

From:	McCutcheon, Alisha
Sent:	Tuesday, March 26, 2024 8:40 AM
То:	Chan, Michael
Subject:	FW: [EXTERNAL] Redwood Landfill Annual Air Quality Test Results
Attachments:	Redwood Landfill AQ 3-7-24 Results.pdf

From: Byron Melendez <mbservices1@yahoo.com>
Sent: Monday, March 25, 2024 7:06 PM
To: GDFResults <gdfresults@baaqmd.gov>
Cc: McCutcheon, Alisha <amccutch@wm.com>
Subject: [EXTERNAL] Redwood Landfill Annual Air Quality Test Results

Hi, please open attachment to view the Annual Air Quality Test Results for Redwood Landfill at: 8950 Redwood Highway Novato, CA 94945, if you have any question please let us know. Thank you, have a great day.

Sincerely, MB Services 707-290-7716 707-290-1536 APPENDIX P

ROLLING QUARTERLY LFG INPUT, CO, & SO2 EMISSIONS

#### **QUARTERLY LFG Input to all LFG-Fired Combustion Equipment** WM - REDWOOD LANDFILL, Novato, CA

Quarter Month		Total	LFG Thro	ughput (N	lMscf)	Monthly	Quarterly Total	Rolling 4-Qtr
Quarter	WOITT	A-51	A-60	S-64	S-65	Total (MMscf)	(MMscf)	Total (MMscf)
	April	41.71	56.84	0.00	11.43	109.98		
2023 Q2	May	46.36	64.87	0.05	10.71	121.99	346.09	1,147
	June	49.64	64.49	0.00	0.00	114.12		
	July	52.37	60.06	0.00	0.00	112.43	308.18	1,214
2023 Q3	August	46.55	58.64	0.00	0.00	105.19		
	September	20.57	69.98	0.00	0.00	90.55		
	October	0.00	98.23	0.00	0.00	98.23		
2023 Q4	November	0.00	97.33	0.00	0.00	97.33	297.91	1,254
	December	0.18	102.16	0.00	0.00	102.35		
	January	35.27	73.04	0.00	0.00	108.30		
2024 Q1	February	45.81	51.91	0.00	0.00	97.72	311.77	1,264
	March	52.23	53.51	0.00	0.00	105.74		
	April	12.75	61.91	16.65	17.64	108.95		
2024 Q2	May	0.00	0.00	0.00	0.00	0.00	108.95	1,027
	June	0.00	0.00	0.00	0.00	0.00		

Pursuant to Title V Permit Condition Number 25634 Part 1, the total landfill gas throughput to the landfill gas combustion equipment at Plant #1179 shall not exceed 2,625 million scf of landfill gas during any consecutive rolling 4-quarter period.

S-66, and S-67 have not been installed.

#### **QUARTERLY CO EMISSIONS From All LFG-Fired Combustion Equipment** WM - REDWOOD LANDFILL, Novato, CA

Quarter Month		Tota	al CO Emi	issions (te	ons)	Monthly	Quarterly Total	Rolling 4-Qtr
Quarter	wonth	A-51	A-60	S-64	S-65	Total (tons)	(tons)	Total (tons)
	April	0.783	1.15	0.00	0.14	2.07		
2023 Q2	May	0.870	1.31	0.00	0.13	2.31	6.61	22.0
	June	0.932	1.30	0.00	0.00	2.23		
	July	0.983	1.21	0.00	0.00	2.19	6.06	23.9
2023 Q3	August	0.874	1.18	0.00	0.00	2.06		
	September	0.386	1.42	0.00	0.00	1.81		
	October	0.000	2.00	0.00	0.00	2.00	6.08	24.7
2023 Q4	November	0.000	1.99	0.00	0.00	1.99		
	December	0.003	2.08	0.00	0.00	2.09		
	January	0.662	1.49	0.00	0.00	2.15		
2024 Q1	February	0.860	1.06	0.00	0.00	1.92	5.27	24.0
	March	0.109	1.09	0.00	0.00	1.20		
	April	0.027	1.26	0.46	0.22	1.97		
2024 Q2	May	0.000	0.00			0.00	1.97	19.4
	June	0.000	0.00			0.00	<u> </u>	

Pursuant to Title V Permit Condition Number 25634 Part 2, the total CO emissions from all landfill gas combustion

equipment at Plant #1179 shall not exceed 237.5 tons during any consecutive rolling 4-quarter period.

S-66, and S-67 have not been installed.

### **QUARTERLY SO₂ EMISSIONS From All LFG-Fired Combustion Equipment**

WM - REDWOOD LANDFILL, Novato, CA

Quarter Month		Tota	al SO ₂ Em	issions (t	ons)	Monthly	Quarterly Total	Rolling 4-Qtr
Quarter	WOITIN	A-51	A-60	S-64	S-65	Total (tons)	(tons)	Total (tons)
	April	5.63	7.67	0.00	0.00	13.30		
2023 Q2	May	6.26	8.76	0.00	0.00	15.02	43.73	87.3
	June	6.70	8.70	0.00	0.00	15.40		
	July	1.55	1.77	0.00	0.00	3.32	9.10	88.8
2023 Q3	August	1.37	1.73	0.00	0.00	3.11		
	September	0.61	2.07	0.00	0.00	2.67		
	October	0.00	2.73	0.00	0.00	2.73		
2023 Q4	November	0.00	2.70	0.00	0.00	2.70	8.27	89.3
	December	0.01	2.84	0.00	0.00	2.84		
	January	0.97	2.01	0.00	0.00	2.98		
2024 Q1	February	1.26	1.43	0.00	0.00	2.69	8.58	69.7
	March	1.44	1.47	0.00	0.00	2.91		
	April	TBD	TBD	0.00	0.00	TBD		
2024 Q2	May	0.00	0.00			0.00	TBD	TBD
	June	0.00	0.00			0.00		

Pursuant to Title V Permit Condition Number 25634 Part 3, the total SO2 emissions from all landfill gas combustion equipment at Plant #1179 shall not exceed 99 tons during any consecutive rolling 4-quarter period.

TBD=To Be Determined.

SO2 emissions from flares are updated at the end of each quarter when the quarterly average emission factor is calculated.