Attachment 2 ConocoPhillips Letter of February 18, 2008

February 18, 2008

ConocoPhillips Company San Francisco Refinery 1380 San Pablo Avenue Rodeo, CA 94572-1354

> ESDR-074-08 03-001-02-A

CERTIFIED MAIL - 7006 0810 0003 4487 4864

Mr. Barry Young Bay Area Air Quality Management District 939 Ellis Street San Francisco, CA 94109

Subject: Comments on Significant Revision to Major Facility Review Permit – Application #10994 ConocoPhillips San Francisco Refinery – Facility A0016

Mr. Young:

As part of the significant revision to the Title V Permit pursuant to Application #10994, a permit condition has been added which requires particulate matter (PM) source testing at the Sulfur Recovery Units (SRUs) to verify compliance with Regulation 6-310 and 6-311. The new permit condition, 19278 Part 5, will require the installation of a second testing port on each tail gas incinerator stack because each stack currently has only one test port. EPA Method 5 requires two ports for particulate analysis. ConocoPhillips requests that this condition be revised.

Attached is a copy of an e-mail sent to Brenda Cabral on November 8, 2007 detailing ConocoPhillips' rationale for not requiring PM source testing at the SRUs. Part of the basis for the analysis used to define ConocoPhillips' position was a conversation with Tim Underwood in the BAAQMD Source Testing Division. The conclusion of the e-mail is that Regulations 6-310 and 6-311 can not be violated without a visible plume being present and that the current visual observation required by Permit Condition 19278 Part 4 provides monitoring for Regulation 6-310 and 6-311.

ConocoPhillips proposes that a one time source test be conducted at each SRU to verify compliance with the limits in Regulations 6-310 and 6-311 using the single testing port currently available on each stack. If results of the testing are significantly less than the standard the proposed permit condition 19278 Part 5 would be removed. Compliance with Regulation 6-310 and 6-311 would then be demonstrated through the visual observations required by Condition 19278 Part 4.

Please contact Brent Eastep at (510) 245-4672 if you have questions or require further information.

Sincerely,

Philip C. (Stern, Manager Health, Safety and Environment

Enclosures

cc: Barry Young (via e-mail: BYoung@baaqmd.gov) Brian Bateman (via e-mail: BBateman@baaqmd.gov) Brenda Cabral (via e-mail: <u>BCabral@baaqmd.gov</u>) Sanjeev Kamboj (via e-mail: SKamboj@baaqmd.gov)

Eastep, Brent P

From:	Eastep, Brent P
Sent:	Thursday, November 08, 2007 2:20 PM
To:	'Brenda Cabral'
Cc:	Sanieev Kamboi: 'Tim Underwood': Stern, Philip: Ahlskog, Jennifer:
Subject:	63 UUU Application - SRU and Reg 6-301/311 Applicability
Attachments:	U238 BAAQMD Misc 08_09_05.pdf; U234 BAAQMD Misc 08_26_05.pdf; U236 BAAQMD Misc 06_29_05 pdf: SBLLBM Estimate vis
	Misc 00_23_00.put, DRQ FM Estimate.Als

Brenda -- After our conversation yesterday I spoke with Tim Underwood at the BAAQMD Source Testing Division. Tim stated that in his experience, the Reg 6-310 limit of 0.15 gr/dscf would roughly equate to a Ringlemann 1.0 visible plume. Based on this observation and the fact that there are not visible plumes observed at the SRUs pursuant to compliance with the visible monitoring provision in Condition 19278 Part 4 of the Title V Permit, we believe that compliance with Condition 19278 Part 4 demonstrates compliance with the Reg 6-310 0.15 gr/dscf limit.

Tim and I also talked through the following logic and calculations that show we would not violate the Reg 6-311 limit without producing a visible emission. A spreadsheet is attached with the calculations. BAAQMD source test summaries for the SRUs are also attached. Assuming that the SRUs had a visible plume at the maximum allowable limit of 0.15 gr/dscf, the PM emission rate in lb/hr can be calculated using data obtained from BAAQMD source testing. Using acid gas process rate information for each SRU, the Reg 6-311 PM emission limit can also be calculated. These calculations show that even assuming a visible plume with maximum allowable emissions, the calculated PM emissions are at or below the Reg 6-311 PM limits. For instance, U234 would have a 0.15 gr/dscf PM emission rate of 7.7 lb/hr and a Reg 6-311 PM limit of 10.5 lb/hr. Again, we believe that compliance with Condition 19278 Part 4 visible emission observation demonstrates compliance with the Reg 6-311 PM emission rate limit.

In addition, installing ports on the SRU stacks would involve putting holes through 3 inches of refractory for stacks that operate at exhaust temperatures of 1000 F (see source test results).

Please contact Tim Underwood regarding his understanding of the issues I have summarized here.

Please give me a call if you have any questions.

Thanks,

Brent P. Eastep ConocoPhillips - San Francisco Refinery Environmental Services Department (510) 245-4672 (510) 245-4476 (fax)

J238 BAAQMD MiscJ234 BAAQMD MiscJ236 BAAQMD Misc SRU PM 08_09_05.pdf ... 08_26_05.pdf ... 06_29_05.pdf ... Estimate.xls (23 KB)

Distribution:	BAY AREA AIR OUALITY MANAGEMENT DISTRICT	Report I Test Da	No. 06036 tte: 08/09/05
Permit Services Requester	939 Ellis Street San Francisco, California 94109 (415) 771-6000	Test Tim Run A :	es: 1138-1208 30 min
	SOURCE TEST RESULTS	Run B : Run C :	1311-1341 30 min
	Source Information	BAAQ	MD Representatives

Source	nformation	Drucetario i to proportenti to
Firm Name and Address: ConocoPhillins – San Francisco Refinery	Firm Representative and Title: Jennifer Ahlskog	Source Test Team: M. Hernandez
1380 San Pablo Avenue	Environmental Services Department	M. Wiley L. Rath
	Source: Sulfur Plant Unit #238 (S-1003)	Permit Services/Enforcement Division: B Cabral
Parmit Condition: 10 No.'s: 19278, 20620 & 20989	abated by Alterburier (A-9)	Test Requested by:
	Plant No. A0016 Permit No. 11293	B. Cabral, (Request)
	Operates 24 hrs/day & 365 days/year Continuous	

Operating Parameters: H_2S gas flow rate = 2,072 Million SCFD. NH₃ flow rate = 2,052 Million SCFD. Absorber total flow = 1,740 GPM of Stretford solution. Tail gas combustor (afterburner) doesn't have a dedicated fuel meter. The combustor is fired with refinery fuel gas.

Applicabl	a Regulations 2-1-307	7		VN Rec	commended:	NO
Source Tes	at Results and Comments:					
METHOD	PARAMETER	<u>RUN A</u>	RUN B	RUN C	AVERAGE	LIMIT
ST-17	Volume Flowrate, SDCFM	8,902	8,756	8,771	8,810	
	Stack Temperature, °F	1145	1165	1180	1163	
	Water Content, volume %	8.0	7.8	8.2	8.0	
ST-14	Oxvaen, dry volume %	3.1	3.0	3.0	3.0	
ST-5	Carbon Dioxide, dry volume %	5.4	5.4	5.4	5.4	
	Carbon Monoxide, dry ppmv Carbon Monoxide, lbs/hr	802 31.2	680 26.0	462 17.7	648 25.0	
	Total Organic Carbon (includes methane), ppmv as C ₁ Total Organic Carbon, lbs/hr as Carbon	38 0.6	34 0.6	13 0.2	28 0.5	
ST-13A	Nitrogen Dioxides, dry ppmv Nitrogen Dioxides, Ibs/hr	27 1.7	27 1.7	26 1.6	27 1.7	
ST-19A	Sulfur Dioxide, dry ppmv Sulfur Dioxide, Corrected to 0% O ₂ , ppmv Sulfur Dioxide, Ibs/hr	17 20 1.5	20 23 1.7	22 26 2.0	20 23 1.7	250
	Ammonia, ppmv Ammonia, Correct to 15% O ₂ , ppmv	4.2 1.4	5.4 1.8	2.9 1.0	4.2 1.4	

	NO COMMERCIAL USE OF THESE R	ESULTS IS AUTHORIZED	
Date Sept/20/05	Supervising Air Quality Enginer Da	Approved by Air Quality Engineeri K. Kunaniec	9 22 05
MS-LEEGHEN GOZ	C. MCOLLIE		

Distribution: Firm Permit Services Requester	AIR QUAI	BAY AREA LITY MANAGEMENT DISTRICT 939 Ellis Street San Francisco, California 94109 (415) 771-6000 SUMMARY OF DURCE TEST RESULTS	Report No. 06038 Test Date:
	Source	Information	BAAOMD Representatives
Firm Name and Address: ConocoPhillips - San Franc	isco Refinery	Firm Representative and Title: Jennifer Ahlskoo	Source Test Team: M. Hernandez
1380 San Pablo Avenue Rodeo, CA 94572		Environmental Services Department Phone No. (510) 245-4429	M. Wiley L. Rath
Permit Condition: ID No.'s: 20620 & 20989		source: Sulfur Plant Unit #234 (S-1001) abated by Afterburner (A-1)	Permit Sarvices/Enforcement Division: B. Cabral Test Requested by:
		Plant No. A0016 Permit No. 11293 Operates 24 hrs/day & 365 days/year Continuous	B. Cabral, (Request)

Operating Parameters: H_2S gas flow rate = 1,455 Million SCFD. NH₃ flow rate = 1,292 Million SCFD. Absorber total flow = 1,875 GPM of Stretford solution. Tail gas combustor (afterburner) doesn't have a dedicated fuel meter. The combustor is fired with refinery fuel gas.

Applicabl	e Regulations:	2-1-307			VN Rec	ommended:	NO
Source Tes	st Results and Comments:			· · · · · · · · · · · · · · · · · · ·			
METHOD	PARAMETER		RUN A	RUN B	RUN C	AVERAGE	LIMIT
ST-17	Volume Flowrate, SDCFM		5,950	6,304	5,770	6,008	
	Stack Temperature, °F		1008	1000	978	995	
	Water Content, volume %		6.1	6.3	6.4	6.2	
ST-14	Oxygen, dry volume %		7.4	7.3	7.3	7.3	
ST-5	Carbon Dioxide, dry volume %		3.7	3.7	3.8	3.7	
	Carbon Monoxide, dry ppmv Carbon Monoxide, Ibs/hr		186 4.8	166 4.6	157 4.0	170 4.5	
	Total Organic Carbon (includes methane), ppmv Total Organic Carbon, Ibs/hr as Carbon	as C ₁	77 0.9	61 0.7	53 0.6	64 0.7	
	Nitrogen Dioxides, dry ppmv Nitrogen Dioxides, Ibs/hr		17 0.7	18 0.8	19 0.8	18 0.8	
ST-19A	Sulfur Dioxide, dry ppmv Sulfur Dioxide, Corrected to 0% O ₂ , ppmv Sulfur Dioxide, Ibs/hr		8 12 0.5	9 14 0.6	10 15 0.6	9 13 0.5	250
	Ammonia, ppmv Ammonia, Correct to 15% O ₂ , ppmv		7.9 3. 4	3.5 1.5	3.5 1.5	5.0 2.2	

	NO COMMERCIAL USE OF THESE RESU	LTS IS AUTHORIZED
Mul Quality Engineer Date M. Hambrodez	Supervising Air Quality Engineer Date C. McClure 9/20/05 C. McClure	Approved by Air Quality Engineering Manager Date K. Kurnaniec 9/22/05 K. Kunaniec
, นายา หรือสามารถอานารเอานารกระบบบัววิธี เวอร		

Distribution: Firm Permit Services Requester	AIR QUAL	BAY AREA ITY MANAGEMENT DIS 939 Ellis Street San Francisco, California 94109 (415) 771-6000 SUMMARY OF DURCE TEST RESULTS	TRICT	Report Test Di <u>Test Tim</u> Run A : Run B : Run C :	No. 05231 ate: 1214-1404 110 min 1536-1725 110 min 1810-1909 59 min
Firm Name and Address:	Source	nformation Firm Representative and Title:		BAAQ Source Te	MD Representatives
ConocoPhillips – San Franc 1380 San Pablo Avenue Rodeo, CA 94572	ISCO RETINERY	Jennifer Aniskog Environmental Services D Phone No. (510) 245-4429 Source: Sulfur Plant Unit #23	epartment	M. Herni M. Wiley L. Rath Permit Ser	andez / rvices/Enforcement Division:
Permit Condition: ID No.'s: 19278, 20620 & 2	0989	abated by Afterburn Plant No. A0016 Permit No Operates 24 brs/day & 365 d	ner (A-2) . 11293 avs/vear	B. Cabra Test Regu	al ested by:

Operating Parameters:

Total gas flow rate ($H_2S \& NH_3$) = 2,238 Million SCFD. Absorber total flow = 1,712 GPM of Stretford solution. Tail gas combustor (afterburner) doesn't have a dedicated fuel meter. The combustor is fired with refinery fuel gas.

Continuous

Applicable	Regulations:	2-1-307		VN F	Recommended:	NO
Source Test	Results and Comments:					
METHOD	PARAMETER	<u>RUN A</u>	RUN B	RUN C	AVERAGE	<u>LIMIT</u>
ST-17	Volume Flowrate, SDCFM	6,436	7,272	7,618	7,109	
	Stack Temperature, [®] F	1163	1180	1173	1172	
ST-23	Water Content, volume %	7.4	8.1	8.0	7.8	
ST-14	Oxygen, dry volume %	6.9	6.5	6.6	6.7	
ST-1B	Ammonia, ppmv	1.1	0.5	2.7	1.4	
	Ammonia, Correct to 15% O ₂ , ppmv	0.4	0.2	1.1	0.6	
ST-20	Sulfur Dioxide, ppmv	1.5	0.5	4.4	2.1	
	Sulfur Dioxide, Corrected to 0% O ₂ , ppmv	2.3	0.7	6.4	3.1	250
	Sulfur Dioxide, Ib/hr	0.10	0.04	0.33	0.15	
	Total Acid, gr/SDCF	0.023	0.009	0.003	0.012	0.08

Note: *Oxygen concentration was obtained from facility CEM unit.

and the second s	NO COMMERCIAL USE OF THESE RES	ULTS IS AUTHORIZED
Air Quality Engineer Date	Supervising Air Quality Engineer Date	Approved by Air Quality Engineering Manager Date
Curs-29.05	C. Micard 8/29/0	K Kunanier 8/31/05
IV. HETTIN USEZ		

Estimate of PM Emissions from ConocoPhillips SRUs, Units 234, 236 and 238 (S-1001, S-1002, S-1003) <u>Assumptions</u>

Ringlemann 1.0 assumed to be approximately 0.15 gr/dscf (6-310 limit) (conversation with Tim Underwood, BAAQMD Source Testing, 11/7/07)

PM Concentration	0.15	gr/dscf
	2.14E-05	lb/dscf

Exhaust Flow	6,000 dcsfm, min. (U234)
	7,100 dcsfm, min. (U236)
	8,800 dscfm, max (U238)

These flows encompass the range of exhaust flow for the 3 SRUs based on BAAQMD source test results from June and August of 2005.

PM Emission Calculation

PM (lb/hr) = PM Conc.(lb/dscf) * Exhaust flow (dscfm) * 60 min./hr

PM Emission U234 =	7.7 lb/hr
PM Emission U236 =	9.1 lb/hr
PM Emission U238 =	11.3 lb/hr

Reg 6-311 Limit

Molar Volume	385	ft3/lb-mol
Process Weight Acid Gas	Flows	
Acid Gas Flow U234	1.455	mmscfd, H2S
	1.292	mmscfd, NH3
	7,731	lb/hr
Acid Gas Flow, U236	1.186	mmscfd, H2S
	1.052	mmscfd, NH3
	6,300	lb/hr
Acid Gas Flow U238	2.072	mmscfd, H2S
	2.052	mmscfd, NH3
	11,400	lb/hr
6-311 Limit U234	10.5	lb/hr
6-311 Limit U236	9.1	ib/hr
6-311 Limit U238	13.6	lb/hr

(Note that the acid gas flows in the source test results were too large by a factor of 1,000)