ENGINEERING EVALUATION REPORT SHELL OIL PRODUCTS PLANT NO. 11 APPLICATION NO. 25198

INTRODUCTION

This application is to bank Interchangeable Emission Reduction Credits (IERCs), in accordance with District Regulation 2, Rule 9, from the sources listed below at the Shell Martinez Refinery in Martinez, CA.

S-1507	CO Boiler #1
S-1509	CO Boiler #2
S-1512	CO Boiler #3

The emission reductions are the result of combustion modifications to CO Boilers No. 1, No. 2, and No. 3 that occurred on June 8, 1999, April 29, 1999, and October 28, 1998, respectively. Shell has already banked IERCs from these sources for the initial credit generation periods (CGP_1) immediately following the combustion modifications to each source. IERCs from CO Boilers 1, 2, and 3 have previously been banked under application numbers 27765, 439, 1820, 6979, 10368, 14858, 16772, and 21415.

This application is to bank IERCs from all three CO Boilers for the following credit generation periods:

```
July 1, 2009 through June 30, 2010
July 1, 2010 through June 30, 2011
July 1, 2011 through June 30, 2012
```

IERCs for this application are calculated using the same baseline periods that were used in the previous IERC banking applications.

IERC CALCULATIONS

The procedure for calculating IERCs is described in Regulation 2, Rule 9, Sections 602 and 603. The IERC calculations to follow are based on daily NOx CEM concentrations, NOx emissions, and steam production rates provided by Shell. Baseline data used in this application is the same data used in previous IERC applications from Shell. The data for each CGP was provided by Shell in this banking application. District staff audited this data by comparing it with data previously submitted by Shell as part of monthly emission reports for the CO Boilers, as required by the Clean Fuels Project permit conditions, for select months during the credit generation periods.

Determine Baseline Period:

The baseline periods were already determined in the original IERC banking applications for the CO Boilers. The baseline periods and credit generation periods (CGPs) for the CO Boilers are summarized in Table 1. *The credit generation periods for this current IERC banking application are highlighted in bold italics print.*

Table 1 - CO Boiler Baselines and Credit Generation Periods

	COB 1	COB 2	COB 3
Baseline	6/8/94 - 6/7/99	4/29/94 - 4/28/99	11/7/93 – 11/6/98
CGP₁	6/8/99 - 9/26/99	4/29/99 - 9/26/99	11/7/98 – 4/30/99
CGP ₂	9/27/99 – 8/27/00	9/27/99 - 8/27/00	5/1/99 - 4/30/00
CGP ₃	8/28/00 - 6/30/01	8/28/00 - 6/30/01	5/1/00 - 8/27/00
CGP₄	7/1/01 - 6/30/02	7/1/01 – 6/30/02	8/28/00 - 6/30/01
CGP ₅	7/1/02 - 6/30/03	7/1/02 - 6/30/03	7/1/01 – 6/30/02
CGP ₆	7/1/03 – 3/31/04	7/1/03 – 3/31/04	7/1/02 – 6/30/03
CGP ₇	4/1/04 - 6/30/04	4/1/04 - 6/30/04	7/1/03 – 3/31/04
CGP ₈	7/1/04 - 6/30/05	7/1/04 - 6/30/05	4/1/04 - 6/30/04
CGP ₉	7/1/05 - 6/30/06	7/1/05 - 6/30/06	7/1/04 - 6/30/05
CGP ₁₀	7/1/06 - 6/30/07	7/1/06 - 6/30/07	7/1/05 – 6/30/06
CGP ₁₁	7/1/07 - 6/30/08	7/1/07 – 6/30/08	7/1/06 – 6/30/07
CGP ₁₂	7/1/08 - 6/30/09	7/1/08 - 6/30/09	7/1/07 - 6/30/08
CGP ₁₃	7/1/09 – 6/30/10	7/1/09 – 6/30/10	7/1/08 – 6/30/09
CGP ₁₄	7/1/10 – 6/30/11	7/1/10 – 6/30/11	7/1/09 - 6/30/10
CGP ₁₅	7/1/11 – 6/30/12	7/1/11 – 6/30/12	7/1/10 – 6/30/11
CGP ₁₆			7/1/11 – 6/30/12

Per Regulation 2, Rule 9, Section 602 (Reg. 2-9-602), the baseline period for a source is the 5-year period immediately preceding the initial credit generation period. The initial credit generation period is determined by the completion date of the *first* IERC banking application. IERC banking applications 439 (CO Boilers 1 and 2) and 27765 (CO Boiler 3) were deemed complete on October 20, 1999, and September 3, 1999, respectively. Per Reg. 2-9-204, the initial credit generation period "shall not be more than 30 months prior to the submittal of the first complete IERC banking application for a particular emission reduction activity". The baseline and initial credit generation periods in Table 1 satisfy the requirements of Section 2-9-204.

Baseline Information:

The original baseline data is summarized in Table 2. This is the same baseline data that was used for all previous IERC banking applications for the CO Boilers.

Table 2 - Original IERC 5-Year Baseline Data

		CO Boiler 1 6/8/94 –6/7/99	CO Boiler 2 4/29/94 – 4/28/99	CO Boiler 3 11/7/93 – 1/6/98
Ave. NOx Emissions	lb/hr	84.96	84.31	80.46
Ave. Steam Production	klb/hr	122.88	124.11	126.37
NOx/Steam ratio	lb/klb	0.691	0.679	0.637

Determine Baseline Throughputs:

Baseline throughput is the lesser of actual throughput or permitted throughput during the baseline period. Since none of the CO Boilers has a permit condition that limits throughput, the actual throughput is used. Average NOx emissions and throughput rates are summarized for the baselines in Table 2 above.

Determine Baseline Emissions:

From Table 2, the average hourly NOx emission rates over the respective baseline periods are:

CO Boiler 1 84.96 lb/hr CO Boiler 2 84.31 lb/hr CO Boiler 3 80.46 lb/hr Baseline emissions are calculated by multiplying the hourly NOx emission rate by 8,760 hr/year.

```
CO Boiler 1 (84.96 \text{ lb/hr}) (8,760 \text{ hr/yr}) / (2,000 \text{ lb/ton}) = 372.1 \text{ tons/yr}
CO Boiler 2 (84.31 \text{ lb/hr}) (8,760 \text{ hr/yr}) / (2,000 \text{ lb/ton}) = 369.3 \text{ tons/yr}
CO Boiler 3 (80.46 \text{ lb/hr}) (8,760 \text{ hr/yr}) / (2,000 \text{ lb/ton}) = 352.4 \text{ tons/yr}
```

These are the baseline emissions used for previous IERC banking applications. However, these emissions must be reduced for this banking application, as discussed below.

Determine the Baseline-Adjusted Emissions (A):

The District cannot approve IERCs for an emission reduction that is required by a District rule, RACT, BARCT, etc. during a given credit generation period. To prevent this, the baseline emission rate must be adjusted (reduced) to reflect any rule or provision that is in effect during the credit generation period. Since requirements may change over time, it is possible to have different baseline adjusted emission rates for different credit generation periods.

CGPs of 7/1/09 - 6/30/10 (365 days) and CGP of 7/1/10 - 6/30/11 (365 days): Reg. 9-10-304 became effective on July 1, 2002. This Section limits NOx from CO Boilers to 150 ppm (at 3% O_2). This limit was in effect during each of the CGPs in this application. Therefore, we must adjust the baseline emission rate to account for the 150 ppm NOx standard.

To make the adjustment, the original CO Boiler baseline data was reviewed. For any day during the 5-year period baseline period when the average NOx concentration was greater than 150 ppm, staff adjusted (reduced) the daily NOx emissions. This was done by multiplying the actual emissions (lb/hr) by the ratio of the NOx concentrations. For example, if the actual daily NOx concentration was 185 ppm and the daily NOx emissions were 90 lb/hr, the adjusted NOx emissions were calculated as follows:

Example NOx adjustment to 150 ppm: (150 ppm/185 ppm) (90 lb/hr) = 73.0 lb/hr

This calculation was performed for each day during the baseline period that has a concentration greater than 150 ppm. Table 3 summarizes the revised baseline data, after adjusting for 150 ppm.

rer adjusting for 150 ppm.

Table 3 – Baseline Data Adjusted for 150 ppm NOx Standard

	Baseline Adjusted NOx Emissions (lb/hr average)					
	Year 1	Year 2	Year 3	Year 4	Year 5	5-Yr Ave.
COB 1	88.47	73.27	75.72	72.78	70.85	76.22
COB 2	86.79	76.69	74.75	64.62	77.21	76.01
COB 3	81.32	82.00	69.46	57.86	75.79	73.29
Average	<i>85.53</i>	77.32	73.31	65.09	74.62	

In addition to the NOx standard in Reg. 9-10, the CO Boilers are subject to a permit condition (ID# 12271, Part 85) limiting total emissions from all three boilers to 5,452 lb/day, annual average. This condition limit was reduced from the previous limit of 6,770 lb/day to account for the 150 ppm NOx standard for CO Boilers in Reg. 9-10-304, which became effective on 7/1/02. This new condition limit is equivalent to 75.72 lb/hr for each boiler [(5,452 lb/day / 24 hr/day) / 3]. Because this permit condition limit has been reduced, we must also adjust the IERC Baseline data to account for this lower limit. This adjustment is made as follows. In Table 3, for any year in which the average emissions for all 3 boilers was greater than 75.72 lb/hr, staff substituted 75.72 lb/hr for each CO Boiler for that year. This is the case for Years 1 and 2. Table 4 contains the adjusted baseline data.

Table 4 – Baseline Data Adjusted for 150 ppm NOx AND 5,452 lb/day NOx Limit

	Baseline Adjusted NOx Emissions (lb/hr average)					
	Year 1	Year 2	Year 3	Year 4	Year 5	5-Year Ave.
COB 1	75.72	75.72	75.72	72.78	70.85	74.16
COB 2	75.72	75.72	74.75	64.62	77.21	73.60
COB 3	75.72	75.72	69.46	57.86	75.79	70.91
Average	75.72	75.72	73.31	65.09	74.62	

Using the 5-year average emission rates from Table 4, the baseline-adjusted emissions $(A_x \text{ where } x \text{ represents the CGP number})$ for each CO Boiler are:

 $A_{13,14}$ (COB 1) (74.16 lb/hr) (8,760 hr/yr) / (2,000 lb/ton) = 324.8 tons NOx/yr

 $A_{13,14}$ (COB 2) (73.60 lb/hr) (8,760 hr/yr) / (2,000 lb/ton) = 322.4 tons NOx/yr

 $A_{14.15}$ (COB 3) (70.91 lb/hr) (8,760 hr/yr) / (2,000 lb/ton) = 310.6 tons NOx/yr

Note that the above calculation of baseline-adjusted emissions is identical to that used in previous applications.

CGP of 7/1/11 - 6/30/12 (366 days):

On May 22, 2012 the District approved Shell's application (number 22287) to add NOx concentration limits on each CO Boiler as required by Shell's EPA Consent Decree. The limits are specific to each CO Boiler, and there is a rolling 24 hour limit and a rolling 365 day limit on each boiler. The limits were approved as a minor revision to Shell's Title V Permit effective 5/22/12. The limits are expressed at 0% O_2 in the permit as shown in Table 5.

Table 5 – EPA Consent Decree Limits on CO Boilers at 0% O₂

CO Boiler	Rolling 24 hour NOx Limit (ppm at 0% O ₂)	Rolling 365 day NOx Limit (ppm at 0% O₂)
COB 1	168.4	130.6
COB 2	156.9	127.4
COB 3	142.7	113.1

To convert these limits to $3\% O_2$ (the same basis as the District limits), multiply the concentration at 0% by (20.95-3)/20.95 = 0.857. The converted limits are shown in Table 6.

Table 6 – EPA Consent Decree Limits Converted to 3% O₂

CO Boiler	Rolling 24 hour NOx Limit (ppm at 3% O₂)	Rolling 365 day NOx Limit (ppm at 3% O₂)
COB 1	144.3	111.9
COB 2	134.4	109.2
COB 3	122.3	96.9

The limits in Table 6 affect the baseline emissions for the CGP of this application covering the period from 7/1/11 - 6/30/12. The baseline emissions used for this CGP were adjusted to reflect the new limits. To make this adjustment the baseline data was reviewed on a daily basis and lowered for any day the actual emissions were greater

than the new daily limits. The annual average NOx for each year during the baseline was also lowered to the new annual average NOx limit. The 5-year average baseline adjusted data for IERC calculations based on these new limits over an entire credit generation period is summarized in Tables 7 and 8.

Table 7 – Baseline Data Adjusted for Rolling 24 hour NOx Limits in Table 6

	Baseline Adjusted NOx Emissions (lb/hr average)					
	Year 1	Year 2	Year 3	Year 4	Year 5	5-Yr Ave.
COB 1	85.22	72.14	74.96	70.69	68.78	74.36
COB 2	78.04	71.93	71.01	59.92	70.50	70.28
COB 3	66.73	67.75	64.22	54.05	65.07	63.56
Average	76.66	70.60	70.06	61.55	68.12	

Table 8 - Baseline Data Adjusted for Rolling 365 day NOx Limits in Table 6

	Baseline Adjusted NOx Emissions (lb/hr average)					
	Year 1	Year 2	Year 3	Year 4	Year 5	5-Yr Ave.
COB 1	66.17	62.89	64.69	61.61	59.65	63.00
COB 2	63.44	61.62	65.02	56.82	62.78	61.93
COB 3	56.58	53.94	54.10	53.36	54.38	54.47
Average	62.06	59.48	61.27	57.26	58.93	

Using the 5-year average emission rates from Table 8 (because using these rates will result in more conservative [lower] baseline-adjusted emissions than using those from Table 4 or 7), the baseline-adjusted emissions for each CO Boiler are:

COB 1	(63.00 lb/hr) (8,784 hr/yr) / (2,000 lb/ton) = 276.7 tons NOx/yr
COB 2	(61.93 lb/hr) (8,784 hr/yr) / (2,000 lb/ton) = 272.0 tons NOx/yr
COB 3	(54.47 lb/hr) (8,784 hr/yr) / (2,000 lb/ton) = 239.2 tons NOx/yr

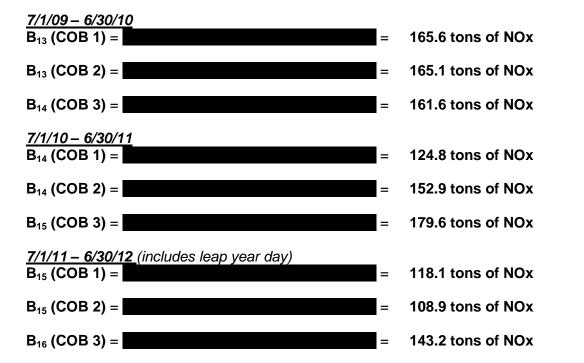
The limits in Table 6 were only effective for a portion of the CGP from 5/22/12 through 6/30/12 (40 days out of 366). Therefore, the final adjusted baseline emissions for the CGP of this application covering the period from 7/1/11 - 6/30/12 must be prorated to apply the new limits for 40 days (10.9 % of the period) and to use the pre-adjusted baseline emissions for the other 326 days.

Determine the Actual Emissions (B) During the Credit Generation Period:

Actual emissions during each CGP are determined by multiplying the hourly average NOx emissions for the particular CGP by the duration of that CGP. Average NOx emission rates during each CGP were provided by Shell. Staff compared this data with Shell's monthly reports required by the Clean Fuels Project permit conditions. The emissions in this application are consistent with the data previously submitted by Shell. Tables 9, 10, and 11 summarize the CO Boiler data for the credit generations periods covered by this application.

Table 9 - CO Boiler Data: (7/1/09 - 6/30/10)

		NOx Emissions	Steam Production	Em. rate (NOx/steam)
	CGP#	lb/hr	klb/hr	lb/klb
CO Boiler 1	13			
CO Boiler 2	13			
CO Boiler 3	14			


Table 10 - CO Boiler Data: (7/1/10 - 6/30/11)

		NOx Emissions	Steam Production	Em. rate (NOx/steam)
	CGP#	lb/hr	klb/hr	lb/klb
CO Boiler 1	14			
CO Boiler 2	14			
CO Boiler 3	15			

Table 11 - CO Boiler Data: (7/1/11 - 6/30/12)

		NOx Emissions	Steam Production	Em. rate (NOx/steam)
	CGP#	lb/hr	klb/hr	lb/klb
CO Boiler 1	15			
CO Boiler 2	15			
CO Boiler 3	16			

Actual emissions (B_x where x represents the CGP number) are:

Determine Credit Generation Period Non-Curtailment Emissions (C):

The non-curtailment emissions (C_x where x represents the CGP number) are calculated by multiplying the baseline throughput (steam production rate) by the emission rate (lb NOx / klb steam) for that CGP. Baseline throughputs are in Table 2, and CGP emission rates are in Tables 9, 10, and 11.

7/1/09 - 6/30/10 (365 days = 8,760 hrs)

 C_{13} (COB 1) =

(122.88 klb steam/hr)(0.342 lb NOx/klb steam)(8,760 hr) / (2,000 lb/ton) = 184.1 tons of NOx

 C_{13} (COB 2) =

(124.11 klb steam/hr)(0.329 lb NOx/klb steam)(8,760 hr) / (2,000 lb/ton) = 178.8 tons of NOx

 C_{14} (COB 3) =

(126.37 klb steam/hr)(0.362 lb NOx/klb steam)(8,760 hr) / (2,000 lb/ton) = 200.4 tons of NOx

7/1/10 - 6/30/11 (365 days = 8,760 hrs)

 C_{14} (COB 1) =

(122.88 klb steam/hr)(0.262 lb NOx/klb steam)(8,760 hr) / (2,000 lb/ton) = 141.0 tons of NOx

 C_{14} (COB 2) =

(124.11 klb steam/hr)(0.297 lb NOx/klb steam)(8,760 hr) / (2,000 lb/ton) = 161.4 tons of NOx

 C_{15} (COB 3) =

(126.37 klb steam/hr)(0.338 lb NOx/klb steam)(8,760 hr) / (2,000 lb/ton) = 187.1 tons of NOx

7/1/11 - 6/30/12 (366 days = 8,784 hrs)

 C_{15} (COB 1) =

(122.88 klb steam/hr)(0.256 lb NOx/klb steam)(8,784 hr) / (2,000 lb/ton) = 138.2 tons of NOx

 C_{15} (COB 2) =

(124.11 klb steam/hr)(0.250 lb NOx/klb steam)(8,784 hr) / (2,000 lb/ton) = 136.3 tons of NOx

 C_{16} (COB 3) =

(126.37 klb steam/hr)(0.289 lb NOx/klb steam)(8,784 hr) / (2,000 lb/ton) = 160.4 tons of NOx

Calculate IERCs for the Credit Generation Period:

For a given source and credit generation period, IERCs are calculated by subtracting the greater of either the actual emissions (B) or the non-curtailment emissions (C) from the baseline-adjusted emissions (A).

7/1/09 - 6/30/10

COB 1 (CGP₁₃): IERCs =
$$A_{13} - C_{13} = 324.8$$
 tons $- 184.1$ tons = **140.7** tons of **NOx**

COB 2 (CGP₁₃): IERCs =
$$A_{13} - C_{13} = 322.4$$
 tons - 178.8 tons = **143.6** tons of **NOx**

COB 3 (CGP₁₄): IERCs =
$$A_{14} - C_{14} = 310.6 \text{ tons} - 200.4 \text{ tons} = 110.2 \text{ tons of NOx}$$

7/1/10 - 6/30/11

COB 1 (CGP₁₄): IERCs =
$$A_{14} - C_{14} = 324.8 \text{ tons} - 141.0 \text{ tons} = 183.8 \text{ tons} \text{ NOx}$$

COB 2 (CGP₁₄): IERCs =
$$A_{14} - C_{14} = 322.4 \text{ tons} - 161.4 \text{ tons} = 161.0 tons NOx$$

COB 3 (CGP₁₅): IERCs =
$$A_{15} - C_{15} = 310.6 \text{ tons} - 187.1 \text{ tons} = 123.5 \text{ tons NOx}$$

<u>7/1/11 - 6/30/12</u>

COB 1 (CGP₁₅): IERCs =
$$A_{15} - C_{15} = 320.3 \text{ tons} - 138.2 \text{ tons} = 182.1 \text{ tons NOx}$$

COB 2 (CGP₁₅): IERCs = $A_{15} - C_{15} = 317.7 \text{ tons} - 136.3 \text{ tons} = 181.4 \text{ tons NOx}$

COB 3 (CGP₁₆): IERCs = $A_{16} - C_{16} = 303.5 \text{ tons} - 160.4 \text{ tons} = 143.1 \text{ tons NOx}$

IERC Banking Certificate

IERCs are valid for 5 years following the end of the credit generation period. In this banking application there are three time periods during which credit is generated. The IERCs generated in a given time period will be combined into a single IERC Banking Certificate.

IERC Banking Certificate #8-Q (effective 7/1/10, expires 6/30/15) 394.5 Tons of NOx

IERC Banking Certificate #8-R (effective 7/1/11, expires 6/30/16) 468.3 Tons of NOx

IERC Banking Certificate #8-S (effective 7/1/12, expires 6/30/17) 506.6 Tons of NOx

STATEMENT OF COMPLIANCE

For an emission reduction to be banked as an IERC, the reduction must be real, permanent, quantifiable, enforceable and surplus (Section 2-1-301.2).

Real: The emission reductions evaluated in this application are real. There was an actual decrease in emissions to the atmosphere, as is evident from continuous emission monitoring (CEM) data.

Permanent: As defined in Section 2-9-213, permanent means that the emission reduction exists for the duration of the credit generation period (CGP). Since the CGP in this application has already ended, the emission reductions have already occurred, and therefore, are permanent.

Quantifiable: These emission reductions are quantifiable. The emission calculations were performed using NOx CEM and emission data, and steam production data.

Enforceable: As defined in Section 2-9-209, enforceable means that there is credible evidence during the credit generation periods to verify compliance with Regulation 2, Rule 9. The evaluation of this banking application is based on actual steam production data and NOx CEM and emission data.

Surplus: As defined in Section 2-9-218, surplus means that the emission reductions are not required by Reasonably Available Control Technology (RACT), Best Available Retrofit Control Technology (BARCT), or any other rule in effect during the credit generation period. In addition, emissions reductions must exceed any reduction required by the most recent Clean Air Plan or Air Quality Management Plan.

The District is not aware of any EPA guidance on RACT for CO Boilers. In the absence of such guidance, the District considers the 150 ppm NOx limit in Regulation 9, Rule 10, Section 304 to constitute RACT/BARCT for CO Boilers during the credit generation periods of 7/1/09 - 6/30/10 and 7/1/10 - 6/30/11. Emissions during the baseline period the CO Boilers were reduced to reflect this 150 ppm limit.

On May 22, 2012 the District approved Shell's application (number 22287) to add NOx concentration limits on each CO Boiler as required by Shell's EPA Consent Decree. The limits are more stringent than the 150 ppm NOx limit in Regulation 9, Rule 10, Section 304 and are specific to each CO Boiler. The limits affect the baseline emissions for the credit generation period of this application covering the period from 7/1/11 - 6/30/12. Emissions during the baseline period the CO Boilers were reduced to reflect these limits.

The amount of IERCs generated in each calendar year from 2009 through 2011 exceeds the amount of IERCs used in each respective year. In 2012, the sum amount of IERCs in emission inventories exceeds the sum of actual emissions, the IERCs used, and the IERCs generated. Therefore, the IERCs requested in this application are surplus. The details are tabulated in the Appendix of this evaluation report.

PUBLIC COMMENT

The amount of IERCs exceeds 40 tons for at least one of the credit generation periods in this application. Therefore, this application is subject to the public comment provisions of Section 2-9-405. Before approving this banking application, the District must publish a notification of our preliminary decision to approve the IERCs. Following publication, there will be a 30-day public comment period, during which the District will accept written comments.

CEQA

The District will issue a Notice of Exemption for this application. Pursuant to Regulation 2-1-312.10, review of this application to bank emission reductions pursuant to Regulation 2, Rule 9 is exempt from CEQA review because it can been seen with clarity that review and approval of such applications have no potential for causing a significant environmental impact.

RECOMENDATION

Staff recommends the District issue a Notice of Exemption and a public notice for our preliminary decision to approve the following IERCs for emission reductions that occurred at Shell.

IERC Banking Certificate #8-Q	394.5 Tons of Nitrogen Oxides
-------------------------------	-------------------------------

Source #	Baseline Period	Credit Generation Period
S-1507 CO Boiler #1	6/8/94 – 6/7/99	7/1/09 — 6/30/10
S-1509 CO Boiler #2	4/29/94 - 4/28/99	7/1/09 — 6/30/10
S-1512 CO Boiler #3	11/7/93 – 11/6/98	7/1/09 — 6/30/10

Effective Date: July 1, 2010 Expiration Date: June 30, 2015

IERC Banking Certificate #8-R 468.3 Tons of Nitrogen Oxides

 Source #
 Baseline Period
 Credit Generation Period

 S-1507 CO Boiler #1
 6/8/94 - 6/7/99
 7/1/10 - 6/30/11

 S-1509 CO Boiler #2
 4/29/94 - 4/28/99
 7/1/10 - 6/30/11

 S-1512 CO Boiler #3
 11/7/93 - 11/6/98
 7/1/10 - 6/30/11

Effective Date: July 1, 2011 Expiration Date: June 30, 2016

IERC Banking Certificate #8-S 506.6 Tons of Nitrogen Oxides

 Source #
 Baseline Period
 Credit Generation Period

 S-1507 CO Boiler #1
 6/8/94 - 6/7/99
 7/1/11 - 6/30/12

 S-1509 CO Boiler #2
 4/29/94 - 4/28/99
 7/1/11 - 6/30/12

 S-1512 CO Boiler #3
 11/7/93 - 11/6/98
 7/1/11 - 6/30/12

Effective Date: July 1, 2012 Expiration Date: June 30, 2017

By: (Signed by Kevin Oei)

Air Quality Engineer

Date: 3/25/2013

_
0
Ť
a
_=
E
ė
a
ă
S
3
0
Sur
Sur
ည
×
ш
-
×
픙
Ĕ
ø
ō

				20	2000			2001	10			2002	72			20	2003	
			NOx Emission	Actual	ERCs	IERCs	"Adjusted"	Actual	IERCs	IERCs	NOX Emission	Actual	IERCs	IERCs	"Adjusted"	Actual	IERCs	IERCs
N	Name S#		(Tons)	(Tons) (Tons) (Tons)	Generated (Tons)	(Tons)	(Tons)	Emissions (Tons)	Generated (Tons)	(Tons)	(Tons)	Emissions (Tons)	Generated (Tons)	Used (Tons)	Inventory (Tons)	Emissions (Tons)	Generated (Tons)	Used
12626	Valero			1749.4	554.1	26.5		1019.3	1284.2	43.8		916,5	950.2	266.9		923.1	483.8	4213
	8-3		1152.7				948.2				587,3				512.2			
	\$		646.7				532.0				286.3				249.7			
=	Shell			6229	408.1	56.3		626.1	364.9	44.5		654.6	3548	290.1		712.1	189.5	368.5
	£-8	S-1507	193.5				159.2				229 4				200.1	i i		
	S-7-8	S-1509	207.3				170.5				2101				183.2			
	S-1	S-1512	214.0				176.1				237.8				74.2			
26	Mirant Potrero																	
	S.		454.1	399.3	6.07	0.0	494.2	447.1	94.2	00	142.2	94.8	34.3	0.0	81.9	199.3	0.0	0.0
24	PG&E Hunters Pt.	ž		272.2	125.2	0.0		170.0	124.5	00		99.5	0.0	0.0			00	0.0
	8-3	30	46.4				50.5				0.0				0.0			
	8-4	-	39.4				42.9				0.0				0.0			
	5-5		49.7				54.0				0.0				0.0			
	9-S	423	44.4				48.4				0.0				0.0			
	S-7		129.1				140.5				99.5				67.3	107.9		
16	ConocoPhilips	200																
	\$438	38																

			77	2004			2002	60			2006	90			2007	07	
		"Adjusted"	Actual	IERCs	IERCs	"Adjusted"	Actual	IERCs	IERCs	"Adjusted"	Actual (2)	IERCs	IERCs	"Adjusted"	Actual (2)	ERCs	ERCs
PN	Name S-#	Inventory (3) (Tons)	Emissions (Tons)	Generated (Tons)	Used (Tons)	Inventory (3) (Tons)	Emissions (Tons)	Generated (Tons)	Used (Tons)	Inventory (3) (Tons)	Emissions (Tons)	Generated (Tons)	Used (Tons)	Inventory (3)		Generated (Tons)	Used
12626	Valero		648.9	589.4	507.5		770.8	537.2	495.6		752	556	507.1		6883	RNR 7	453.2
	8-3	512.2				434.6				434 G				434 B			1
	S-4	249.7				2118				211.8				211.8			
+	Shell		738.5	180.9	157.2		698.6	129.0	157.3		546	316.2	132.3		8,6	3006	27.0
	S-1507	200.1				169.7				169.7				169 7			1
	S-1509	183.2				155.5				155.5				155.5			
	S-1512	207.4				176.0				176				176			
26	Mirant Potrero			0.0	12.8			0.0	15.5	no credits used	DE LIPSTER OF		1	no cracite usad	The second	September 1	0.00
	S-1	81.9	204.7			81.9	43.4										
24	PG&E Hunters Pt.			0.0	1.1		61.7	0.0	62.3	Shut down 5/15/06	90	STATE STATE	200000000000000000000000000000000000000	Shut down 5/15/08	90%	STATE OF THE PARTY	2000
	83	0.0				0.0											
	Z	0.0				0.0											
	8.8	0.0				0.0				TO CO							
	88	0.0				0.0				The state of							
	2-2	57.3	199.6			57.3											
16	ConocoPhilips			22	0.0			83	0.0			7.3	0.0			6.2	46
	S-438	49.9	14.1			42.4	15.3			42.4	15.3			42.4	15.4	ļ	!
	Totals	45.64 7	4805	77.0	670 6				440.							10000	

Appendix - IERC Surplus Determination

				20	2008			20	2009			2010	10			2011	11	
N.	Name	#5	"Adjusted" Actual Inventory (3) Emissions (Tons) (Tons)	Actual Emissions (Tons)	IERCs Generated (Tons)	IERCs Used (Tons)	"Adjusted" Inventory (3) (Tons)	Actual Emissions (Tons)	IERCs Generated	IERCs Used (Tons)	"Adjusted" Inventory (3) (Tons)	Actual (2) IERCs Emissions Generated (Tons)	IERCs Generated (Tons)	IERCs Used (Tons)	"Adjusted" Inventory (3) (Tons)	Actual (2) Emissions (Tons)	IERCs Generated (Tons)	IERCs Used (Tons)
12626	Valero			656.3	617.4	373.3		599.5	515.8	359.4		584	548.3	332.2	617.5	624.4	,	306.4
		8.3	434.6				434.6				459.4							
	-	S.4	211.8				211.8				224							
11	Shell			513.8	380.7	8,3		511.9	218.7	82.2		445.B		0	724 1	407.3	487.5	188
		S-1507	1.69.7				169.7				179.4					1	ì	
		S-1509	155.5				155.5				164.3							
		S-1512	176				176				196							
16	ConocoPhillips	lips		14.1	52	7.1		14.0	4	8 9		13.6		3.4	959	100		197
		S-438	42.4				42.4				44.8			ř		1		
		Totals:	Totals: 1190.0	1184.2	1003.3	386.2	1190.0	1125.4	735.9	450.5	1257.9	1043.4	548.3	335.6	1357.5	1040.3	487.5	3402

		- Free		20	2012			2013	13			2014	14			20	2015	
N.	Мате	#5	"Adjusted" Inventory (3) (Tons)	Actual Emissions (Tons)	"Adjusted" Actual IERCs Inventory (3) Emissions Generated (Tons) (Tons) (Tons)	IERCs Used (Tons)	"Adjusted" Inventory (3) (Tons)	"Adjusted" Actual IERCs Inventory (3) Emissions Generated (Tons)	IERCs Generated	JERCs Used (Tons)	"Adjusted" Inventory (3) (7)	Actual (2) Emissions (Tons)	IERCs Generated (Toos)	IERCs Used	"Adjusted" Actual (2) Inventory (3) Emissions	"Adjusted" Actual (2) Inventory (3) Emissions	IERCs Generated	ERCs Used
12626	Valero	S-3 5-4		Shut down Shut down		301.1							(case)			(eng.)		95
£	Shell	S-1507 S-1509 S-1512	749.6	345	253.3	2.32												
16	ConocoPhillips S-43	S-438	16.4	8 6		0.17												
		Totals;	Totals: 1405.3	353.6	253.3	303.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Appendix - IERC Surplus Determination

Mores.								
Ê	2000 NOx in	ventory from 20	301 Ozone A	2000 NOx inventory from 2001 Ozone Attainment Plan (OAP) inventory; 2002 NOx inventory from 2005 Ozone Strategy	ory from 2005 Ozone Str	ategy	(3)	Adjusted NOx inventories based ratios in subsequent years of respective "Plans"
								2001 Shell & Valero: ratio = 20.4/24.8 for refinery ext. combustion
(2)	Actual emiss	sions from the fo	allowing refer	Actual emissions from the following references for each facility				PGE/Mirant: ratio = 18.5/17.0 for power plants
	Valero: IER(C Banking AN 4	1398 (00-01);	Valero: IERC Banking AN 4398 (00-01); AN 11890 (02-03); AN 15662 (04-05); AN 18880 (07); AN 19792 (08); Data Bank (09-11)	07); AN 19792 (08); Da	ta Bank (09-11)		2002 No adjustment because emissions are based
	Shell: month	ly reports base	d on CEM da	Shell: monthly reports based on CEM data: Data Bank (2004-05)				the 2000 has used for the 2006 Office of
	Mirrort Dofror	O ICDC Booking	Old and and	Missel Detector ICD Control And No 0479 (2000 00), Date Don't Coop 049				
	Mildle Politi	O TENO DELIKE	ng App. No.	6473 (zoug-uz); Data Bank (zoug-u4)	The transfer of the transfer o			2003-04 Shell, Cononco-Phillips & Valero:
	PG&E Hunte	ars Pt.: IERC Ba	anking App.	PG&E Hunters Pt.: IERC Banking App. No. 7376 (2000-02), Data Bank (2003-04); 68,546,938 thermlyr x 0.018 IbMM BTU (2005)	5,938 therm/yr x 0.018 lb/	MM BTU (2005)		ratio = (16.5/18 92 for refinery ext, combustion) x (2002 Em, Inventory)
	ConocoPhilli	ConocoPhillips; Data Bank (2004-12)	(2004-12)					PGE/Mrant:
								ratio = $(2.8/4.86$ for power plants) × $(2002$ Em. Inventory)
								2005-09 Shell, Conoco-Phillips & Valero:
	Attainmer	Attainment Plan Banking Allowances	king Allow	vances	NOX ERC L	NOx ERC Use by Year		ratio = (14.0/18.92 for refinery ext. combustion) x (2002 Em. Inventory)
			ERC	Totals		ERCs Used Running Total	unning Total	PGEMirant:
	Year	À	ton/day	Ton/year	Year	(Ton/year) (Ton/year)	(on/year)	ratio = $(2.8/4.86$ for power plants) x $(2002 \text{ Em. Inventory})$
	2000	7.6	0	2774	2000	252.5	252.5	2010 Shell, Conoco-Philips & Valero:
	2001	7.6	4.7	5475	2001	278.7	531.2	ratio = (14.8/18.92 for refinery ext. combustion) x (2002 Em. Inventory)
	2002	8.1	3.5	4234	2002	462.3	993.5	Subsequent calculations based on 2010 CAP inventory, w/ 2005 Base Year
	2003	€.4	3.5	4234	2003	252.7	1246.2	2011 Shell, Conoco-Phillips & Valero
	2004	8.1	5,3	4891	2004	118.0	1364.2	ratio = (14.2/13.7 for refinery ext. combustion) x (2005 Em. Inventory)
	2002	8.1	7.2	5584.5	2005	322.0	1686.2	2012 Shell, Conoco-Phillips & Valero
	2006	8.1	7.2	5584.5	2006	123.0	1809.2	ratio = (14.7/13.7 for refinery ext. combustion) x (2005 Em. Inventory)
	2007	8.1	7.2	5584.5	2007	245.9	2055.1	
	2008	8.1	7.2	5584.5	2008	207.2	2262.3	
	2009	8.1	7.2	5584.5	2009	5.0	2267.3	
	2010	8,1	4.3	4526	2010	37.9	2305.2	
	2011	7.2	4.9	4416.5	2011	57.4	2362.6	
	2012	7.2	4.9	4416.5	2012	0.3	2362.9	
	SURPLUS	SURPLUS CALCULATIONS	TIONS					ī
	Year 2000	1-02, 2004, 21	006-11:	Year 2000-02, 2004, 2006-11: IERCs generated exceed IERCs used. Therefore, IERCs generated are surplus.	Therefore, IERCs ge	nerated are su	urplus.	
	Surplus Test:	est:		IERCs used exceeds IERCs generated (subject to change, based on future IERC banking applications) (Plan Emission Inventory + Banking Allowance in Emission Inventory > - (Actual Emissions + ERCs Used + IERCs Generated) >= 0	(subject to change, to wance in Emission I	sased on futur nventory) - (A	e IERC banking app ctual Emissions + E	ications) RCs Used + IERCs Generated) >= 0
	Year 2003:	4		(1358.6 + 4234 tons) - (1942.4 + 1246.2 + 673.3 tons) >= 0 ?	: + 673.3 tons) >= 0 °		True. Therefore, IERCs are surplus.	Os are surplus.
	Year 2005:	::		(1329.3 + 5584.5 tons) - (1589.8 + 1686.2 + 672.5 tons) >= 0?	3.2 + 672.5 tons) >= (True. Therefore, IERCs are surplus.	Os are surplus.
	Year 2012:	41		(1405.3 + 4416.5 tons) - (353.6 + 2362.9 + 253.3 tons) >= 0.7	9 + 253.3 tons) >= 0		True. Therefore, IERCs are surplus.	Cs are surplus.

Last revision: 3/13