
PM MODELING: CONTEXT, PRODUCTS, & PROGRESS

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

AGENDA: 4

Advisory Council Meeting July 11, 2022

Greg Nudd Deputy Air Pollution Control Officer gnudd@baaqmd.gov

Outline

- Larger context for PM modeling
- Summary of PM modeling work (what, how, why, and when)
- Progress on PM modeling products
- Measuring success

The Larger PM Context

North Star: Reduce PM exposure where it matters most.

Better Understand PM Impacts

Set Policy

Take Action

Health and equity.

Methods and Models: Local PM_{2.5} Risk Methodology and Combustion Analysis using InMap model and traditional, full-chemistry model.

Revise Priorities

Review current priorities and possibly revise considering what is learned about PM.

- Rules
- Permitting
 - Enforcement
 - Incentives

- Community-led actions
- CEQA thresholds & letters
- Advocacy
- Legislation

Assess Progress

- Determine metrics of success
- Assess and report progress

Four Recent Advisory Council Presentations

What

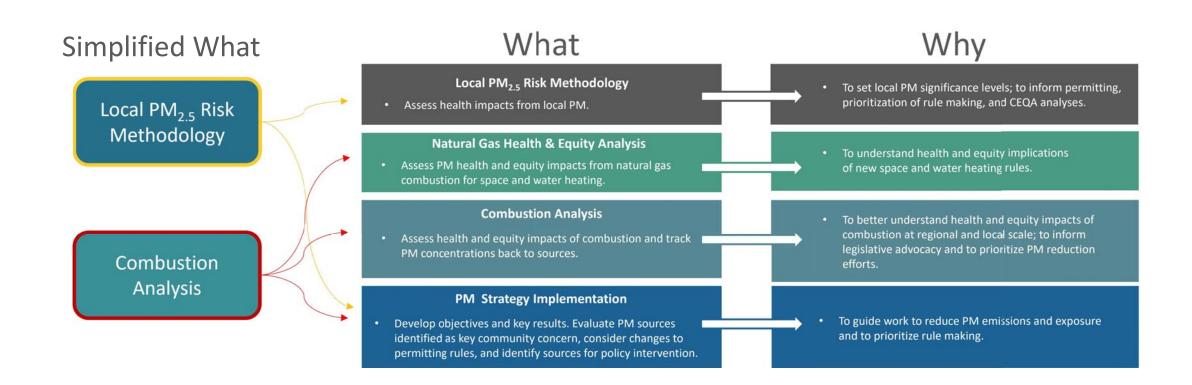
Local PM_{2.5} Risk Methodology

• Assess health impacts from local PM.

Natural Gas Health & Equity Analysis

• Assess PM health and equity impacts from natural gas combustion for space and water heating.

Combustion Analysis


• Assess health and equity impacts of combustion and track PM concentrations back to sources.

PM Strategy Implementation

• Develop objectives and key results. Evaluate PM sources identified as key community concern, consider changes to permitting rules, and identify sources for policy intervention.

Why

- To set local PM significance levels; to inform permitting, prioritization of rule making, and CEQA analyses.
- To understand health and equity implications of new space and water heating rules.
- To better understand health and equity impacts of combustion at regional and local scale; to inform legislative advocacy and to prioritize PM reduction efforts.
- To guide work to reduce PM emissions and exposure and to prioritize rule making.

The Takeaway

- Two major modeling efforts will inform regional and community strategies and prioritization:
 - o PM_{2.5} Local Risk Method
 - o Combustion Analysis

PM Modeling Efforts in Summary

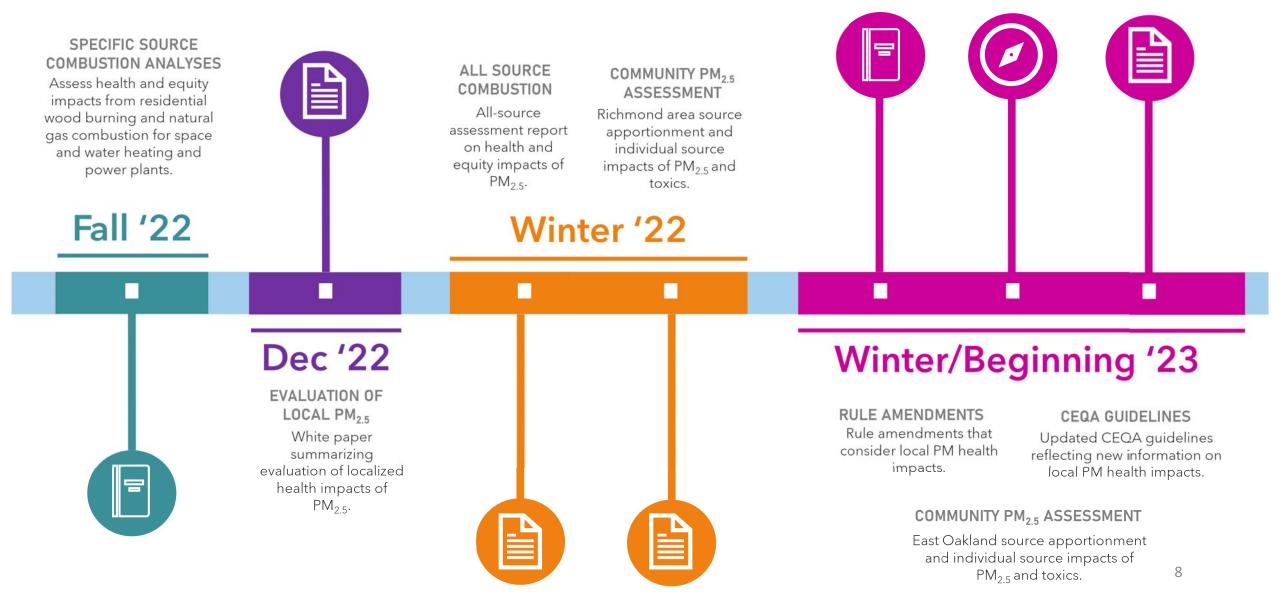
PM_{2.5} Local Risk Method

- What: A method to evaluate localized PM_{2.5} health impacts.
- How: Local-scale modeling of PM_{2.5} concentrations and exposures using a new method.
- Why: To allow consideration of local PM_{2.5} health impacts in new permitting and CEQA thresholds.

Combustion Analysis

- What: Assessments of health & equity impacts of PM_{2.5} at regional and local scales.
- How: Individual and combined PM sources, including combustion, analyzed using traditional models and reduced complexity InMap model.
- Why: To better understand combustion sources which will inform rules, prioritization, community impacts and emission reduction strategies.

Modeling Products & Timeline


PM_{2.5} Local Risk Method

- White paper summarizing evaluation of localized health impacts of PM_{2.5}. (Dec '22)
- Rule amendments that consider local PM health impacts. (Beginning 2023)
- Updated CEQA guidelines reflecting new information on local PM health impacts. (Beginning 2023)

Combustion Analysis

- Appendices in staff reports for residential wood burning (Sept '22) and building appliance (Oct '22) rules.
- All-source assessment report on health and equity impacts of PM_{2.5}. (Winter '22)
- Richmond-North Richmond-San Pablo community-wide source apportionment and individual source impacts of PM_{2.5} and toxics. (Winter '22)
- East Oakland community-wide source apportionment and individual source impacts of PM_{2.5} and toxics. (Winter '23)

Products Timeline

The Larger PM Context

North Star: Reduce PM exposure where it matters most.

Better Understand PM Impacts

Set Policy

Take Action

Health and equity.

Methods and Models: Local PM_{2.5} Risk Methodology and Combustion Analysis using InMap model and traditional, full-chemistry model.

Revise Priorities

Review current priorities and possibly revise considering what is learned about PM.

- Rules
- Permitting
 - Enforcement
 - Incentives

- Community-led actions
- CEQA thresholds & letters
- Advocacy
- Legislation

Assess Progress

- Determine metrics of success
- Assess and report progress

Combustion Analysis Progress: Building Appliances

- Modeling health impacts of emissions from power plants
 - Incorporating consultant work on potential additional electrical power demand
- Work 80% complete
- Draft rule to be presented to Air District Board Oct '22

Modeling Products & Timeline

PM_{2.5} Local Risk Method

- White paper summarizing evaluation of localized health impacts of PM_{2.5}. (Dec '22)
- Recommendations for local PM_{2.5} thresholds (uncertain)

Combustion Analysis

- Appendices in staff reports for residential wood burning (Sept: '22) and building appliance (Oct '22) rules.
- All-source assessment report on health and equity impacts of PM_{2.5}. (Winter '22)
- Richmond-North Richmond-San Pablo community-wide source apportionment and individual source impacts of PM_{2.5} and toxics. (Winter '22)
- East Oakland community-wide source apportionment and individual source impacts of PM_{2.5} and toxics. (Winter '23)

Combustion Analysis Progress: All Source Assessment: Application of InMAP

- Intervention Model for Air Pollution (InMAP)
- Links PM exposures to sources of PM and PM precursors
- Major outstanding task: data format translation → Air District regional modeling to InMAP
- About 30% complete, expect more progress this summer

Modeling Products & Timeline PM_{2.5} Local Risk Method **Combustion Analysis** White paper summarizing evaluation of localized health impacts of PM25. Recommendations for local PM_{2.5} thresholds (uncertain) Richmond-North Richmond-San Pablo East Oakland community-wide source

PM Modeling Next Steps

PM_{2.5} Local Risk Method

- Update Advisory Council on progress and key questions since April. (July '22)
- Finalize draft whitepaper with updates and circulate for comments. (Sept '22)
- Summarize and address comments received. (Nov '22)

Combustion Analysis

- Report to Advisory Council on wood burning impacts and on updates to building appliance rule assessments. (Nov '22).
- Report to Advisory Council on all-source assessment report on health and equity impacts of PM_{2.5}. (Dec '22)

AGENDA: 5

Fine Particulate Matter Local Risk Methodology: Update and Key Questions

Advisory Council Meeting July 11, 2022

David Holstius, PhD

Senior Advanced Projects Advisor

dholstius@baaqmd.gov

BAY AREA Air Quality

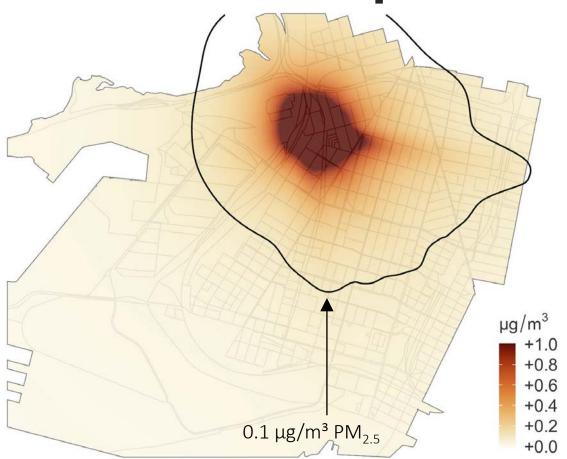
MANAGEMENT

DISTRICT

Overview

- Provide updates responsive to Council feedback
- Consider key questions concerning safety/uncertainty factors

Key Questions



In light of available evidence, is a safety/uncertainty factor of three (3x) justified/defensible for:

- 1. Premature mortality
 - a. Older seniors
 - b. Younger seniors
 - c. Workers
- 2. Asthma onset
 - a. Young children
 - b. Students

Recap: Average Annual Impact

	risk ratio $\approx \Delta c * \beta$			
	Exposure increment (Δ <i>c)</i>	+0.1 μg/m³ PM _{2.5}		
	Effect estimate (eta)	0.007 (0.7%)		
	Excess risk (multiplicative)	0.0007 (0.07%)		
		\checkmark		
	risk difference \approx baseline risk $*$ (risk ratio)			
	Baseline risk	9×10 ⁻³ death/yr		
	Excess risk (additive)	6×10 ⁻⁶ death/yr		

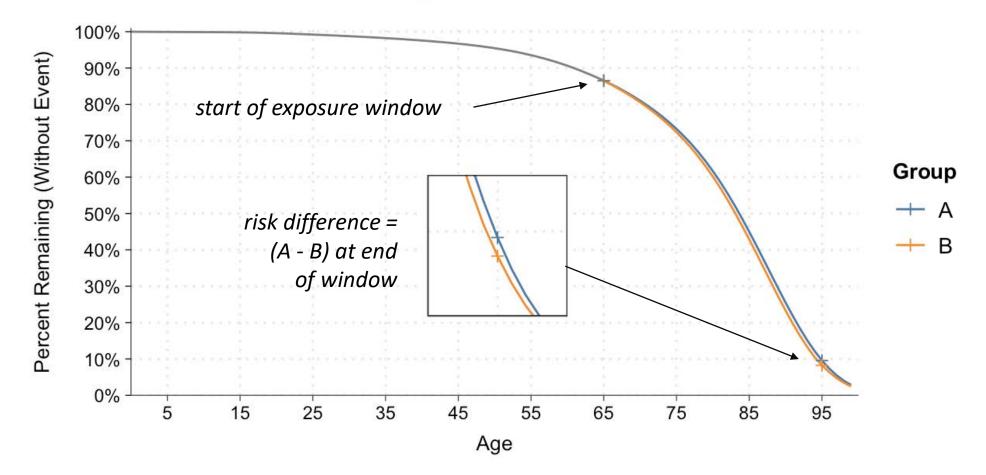
I. With assumptions, a long-term increment of +0.1 μ g/m³ PM_{2.5} \approx excess risk (multiplicative) of 0.07% II. For a "statistically average" Bay Area adult, this would be an excess risk (additive) of 6×10⁻⁶ death/yr

Advisory Council Meeting July 11, 2022

Advancements

- At-risk populations
 - ✓ Seniors, people of color, children
- Dimensions for safety/uncertainty factor(s)
 - ✓ Age, race/ethnicity
 - □ SES: low income, Medicaid eligible, ...
 - \Box Lower baseline concentrations (less than 10 or 12 μ g/m³)
- Chronic disease endpoint(s)
 - ✓ Asthma onset

Revised Approach



- Maximally exposed individual (MEI) receptor
- Multi-year exposure window
- Risk difference post-exposure
 - Population perspective = expected excess *incidence*
 - Individual perspective = excess *probability* of adverse event

Illustration

Group B is exposed to 10 μ g/m³ more PM_{2.5} than Group A. Relative risk = 1.07 per 10 μ g/m³.

Advisory Council Meeting July 11, 2022

Exposure Window

- Constraint: max 30 yr co-presence of source & receptor
 - OEHHA (2015) and BAAQMD (2020)
 - Worker: 25 yr; student: 13 yr; daycare: 5 yr
- Principle: select most health-protective window
 - Cancer: early life
 - Mortality: later life
 - Asthma: early life

Points of Reference

Table 1. Modeled $PM_{2.5}$ increments and corresponding risk scores for different receptor types and health endpoints.

	Asthma Onset		Adult Mortality	
Annual Average Concentration	Daycare (0-4)	Student (5-17)	Resident (65-94)	Worker (40-64)
3×10⁻¹ µg/m³	1×10 ⁻³	9×10 ⁻⁴	4×10 ⁻⁴	2×10 ⁻⁴
1×10 ⁻¹ µg/m³	5×10⁻⁴	3×10 ⁻⁴	1×10 ⁻⁴	6×10 ⁻⁵
3×10 ⁻² µg/m³	1×10 ⁻⁴	9×10 ⁻⁵	4×10⁻⁵	2×10 ⁻⁵
1×10 ⁻² µg/m³	5×10⁻⁵	3×10 ⁻⁵	1×10 ⁻⁵	6×10⁻⁵
3×10 ⁻³ µg/m ³	1×10 ⁻⁵	9×10⁻ ⁶	4×10 ⁻⁶	2×10 ⁻⁶

No safety/uncertainty factors applied

Advisory Council Meeting July 11, 2022

Safety/Uncertainty Considerations

Holding aside age, we have seen evidence of larger impacts on adult mortality—given the same increase in annual average $PM_{2.5}$ —depending on:

- **1. Attributes of individual/group** (race & ethnicity, Medicaid eligibility, low-income ZIP code, ...)
- 2. Baseline PM_{2.5} level (at or below current NAAQS)

- Medicare cohort
 - Age 65 and up
 - 460M person-years
- Relative risk = 1.073 per 10 ug/m³ $PM_{2.5}$
 - 1x for Medicaid-eligible
 - **3x** for African-American/Black
 - 2x for subset below 12 ug/m³

Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, Dominici F, Schwartz JD. Air pollution and mortality in the Medicare population. New England Journal of Medicine. 2017 Jun 29;376(26):2513-22.

- Subset of Medicare cohort
 - Always below 12 ug/m³
- 2x our provisional relative risk of 1.07 per 10 ug/m³
 - 4x for Medicaid-eligible
 - **0.8x** for African-American/Black
 - 5x for lowest income quartile

Yazdi MD, Wang Y, Di Q, Requia WJ, Wei Y, Shi L, Sabath MB, Dominici F, Coull B, Evans JS, Koutrakis P. Long-term effect of exposure to lower concentrations of air pollution on mortality among US Medicare participants and vulnerable subgroups: a doubly-robust approach. The Lancet Planetary Health. 2021 Oct 1;5(10):e689-97

Vodonos et al (2018)

- Meta-regression of 59 previous studies
 - Modeled relative risk parameter itself
 - As a smooth function of average exposure
 - Each study's main estimate was a data point
- Compared to our provisional relative risk:
 - 2x if estimated at 10 ug/m³ when relying on all studies
 - 4x when relying only on studies with average exposure < 10 ug/m^3

Vodonos A, Awad YA, Schwartz J. The concentration-response between long-term PM 2.5 exposure and mortality: a meta- regression approach. Environ Res 2018; 166: 677–89.

Safety/Uncertainty Factor(s)

- What should we do with the weight of available evidence?
- Is a generic factor appropriate?
- If so, how large should that factor be? (3x, 10x, ...)
- Should there be more than one factor?
- To what receptor(s) and endpoint(s) should factor(s) apply?

Receptors to Consider

- Senior at a residence (age 65+ or 55+)
- Worker at a workplace (age 40-65)
- Student at a school (age 5-17)
- Child at a daycare (age 0-4)

Senior at a Residence

- Provisionally: age 65-95
 - 30-year exposure window that conveniently aligns with Medicare cohort
- What if we shift the exposure window by 10 years?
 - To ages 55-85 instead
 - This age range seems more relatable to more people, particularly in communities with lower-than-average life expectancies
 - Increases the corresponding risk score

Worker at a Workplace

- On the one hand:
 - Healthy worker effect (HWE)—selection of vulnerable out of an exposed population—cited in arguments for "resilience" of workers
 - Empirical support for this age range (40-65)
- On the other:
 - Precautionary principle
 - Modeled worker receptor is offsite, may not be in "dusty trades"
 - HWE is actually what we want to prevent

Child at a School or Daycare

- Pediatric asthma onset
- To apply a safety/uncertainty factor, or not? On what basis?
- This is newer to us
- Guidance from Council?

Key Questions

In light of available evidence, is a safety/uncertainty factor of three (3x) justified/defensible for:

1. Premature mortality

- a. For older seniors (65-95)
- b. For younger seniors (55-85)
- c. For workers (40-65)
- 2. Asthma onset
 - a. For young children (0-4)
 - b. For students (5-17)