AGENDA: 2A

Atmospheric Monitoring of Ultrafine Particles

Philip M. Fine, Ph.D. Planning and Rules Manager South Coast Air Quality Management District

Bay Area AQMD Advisory Council Meeting: Ultrafine Particles February 8,2012

Ultrafine Monitoring Outline

- •Why should we monitor Ultrafines?
- •What should we be measuring?
- How should we monitor for Ultrafines?
- •Where do Ultrafines come from?
- •Where should we monitor for Ultrafines?
- •What do we find when we monitor?
- •What should we do about it?

Why should we monitor Ultrafines?

Ultrafine Particles

Why should we monitor Ultrafines?

Ultrafine Particle Health Impacts

Ultrafine Particle Health Impacts

- Ultrafine particulate material is more toxic than PM2.5 material
- Ultrafine particles can cross cell membranes and can move into the circulatory system, brain, and other organs
- Ultrafine particles have been shown to cause adverse health effects related to stroke, systemic inflammation, vascular effects on diabetics, airway development, and asthma exacerbation
- Suspected as one of the causative pollutants in neartraffic epidemiology studies

Why should we monitor Ultrafines?

Ultrafine Particle Health Impacts

Mag. x 6000 Mag. x 21000 Р RAW 267.4 M

Li et al., 2003

Why should we monitor Ultrafines?

Ultrafine Particle Health Impacts

Promotes oxidative stress and allergic Inflammation in the lung

Li et al., 2008

Promotion of atherosclerosis

Araujo et al., 2008

What Characteristics of Ultrafines Should We Measure?

•Mass?

•PM mass measurements similar to PM10 or PM2.5 methods •Time-integrated filter-based methods Continuous methods (TEOM, BAM) •Size-selective inlet to remove larger particles •Ultrafine size-cut leads to higher pressure drops across inlet device •Still feasible down to 150-180 nm •Demonstrated for 150 nm inlet on BAM (Chakrabarti et al., AS&T 38(S1), 2004) •What is the upper size cut? •50 nm, 100 nm, 150 nm, 180 nm, 250 nm

What should we be measuring?

Size Cut (Source Aerosol)

Size Distribution - Long Beach Morning -October, 2002

100 nm 150 nm 180 nm 250 nm

What should we be measuring?

Size Cut (Aged Aerosol)

Average Size Distribution - Riverside May 2001 (6AM-10AM)

Size Cut

For the previous size distributions and upper size cuts, **80% of the measured particle mass** would be found in the following size ranges, thus biasing measurements towards the upper end of the measured ranges

<u>Riverside</u>

Long Beach

Upper Size Cut	80% of Mass Is Within	Upper Size Cut	80% of Mass Is Within
100 nm	61-100 nm	100 nm	55-100 nm
150 nm	94-150 nm	150 nm	73-150 nm
180 nm	109-180 nm	180 nm	82-180 nm
250 nm	141-250 nm	250 nm	98-250 nm

What should we be measuring?

AQMD

Number vs. Mass

Little or no correlation between PM number and PM mass

What Characteristics of Ultrafines Do We Measure?

•Counting Particles

- •Full or Partial Size Distributions
 - •Expensive, some are semi-continuous
- Total Particle
- •Relatively easy continuous measurements with CPCs •Lower size cut of the type and model of CPC •Potential composition effects •Single counting vs. photometric modes •Non-Volatile Particles Only •Adapt PMP Protocol to ambient measurements Thermal denuder or heater upstream •Possibly more consistent measurements Lose the majority of particles

What Characteristics of Ultrafines Do We Measure?

- The Ultrafine characteristics measured by any ambient monitoring program should reflect the latest health effects data
 - Volatile vs. Solid Particles
 - Mass vs. Number
 - Specific size ranges
- Evidence exists for adverse health effects for all of the above.

Instrumentation

 Condensation Particle Counters (CPCs)(\$12K-\$30K) •Particle number only •Scanning Mobility Particle Sizers (up to \$70K) •Full size distributions •Number and mass (with assumptions) •Semi-continuous Fast Mobility Particle Sizer (up to \$120K) •Solid state •Continuous •Filter-based techniques with inlet (\$5K-\$25K) Mass only, speciation, toxicology possible Time-integrated or continuous

How should we monitor for Ultrafines?

Condensation Particle Counters

Condensation Particle Counters (1)

Table 1: CPC Specification Comparison									
	8525	3007	3783	3772	3787	3775	3790	3776	3788
Specifications	ð	Ð			Contraction of the second seco				
D ₅₀ Min. Size (nm)	20	10	7	10	5	4	20	2.5	2.5
Max. Concentration (particles/cm ³)	500,000	100,000	1,000,000	10,000	250,000	50,000 <10 ⁷ *	10,000	300,000	400,000
Concentration Accuracy (%)	N/A	±20	±10	±10	±10	±10 ±20*	±10	±10	±10
Response - T95 (s)	~3	<~3	<3	~3	~0.7	~4	~3	~0.8	~0.25
Sample Flow (LPM)	0.1	0.1	0.12	1.0	0.6	0.3	1.0	0.05	0.3
Total Inlet Flow	0.7	0.7	0.6/1.5	1.0	0.6/1.5	0.3/1.5	1.0	0.3/1.5	0.6/1.5
Flow Source	Internal	Internal	External	External	Internal	Internal	External	Internal	Internal
Working Fluid	Isopropanol	Isopropanol	Water	Butanol	Water	Butanol	Butanol	Butanol	Water
Weight	1.7 kg (3.8 lbs)	1.7 kg (3.8 lbs)	9.9 kg (22 lbs)	5.5 kg (12 lbs)	8.2 kg (18 lbs)	9.9 kg (22 lbs)	5.5 kg (12 lbs)	9.9 kg (22 lbs)	8.2 kg (18 lbs)
Display	Digital LCD	Digital LCD	Touch w/graph	Digital LCD	Touch w/graph	LCD w/graph	Digital LCD	LCD w/graph	Touch w/graph
Data Logging/ Storage	On- board	On- board	Flash drive	N/A	Flash drive	Memory Card	N/A	Memory Card	Flash drive
SMPS Compatibility	No	No	No	Yes	Yes	Yes	No	Yes	Yes
Price	\$	\$	<mark>\$\$</mark>	\$\$	\$\$	<mark>\$\$\$</mark>	\$\$\$\$	\$\$\$\$	\$\$\$\$

Condensation Particle Counters (2)

GRIMM CPC line-up

	Mobile	Stationary CPC Line						
	Grosswarter Port of Course		La Mar Andrea					
Grimm Model	5.403	5.410	5.412	5.414	5.416	5.420	5.430	
Short description	All-inclusive portable CPC	Counter only for external pumps	Counter only with pump	Counter and SMPS with sample pump	All-inclusive stationary CPC	All-inclusive CPC for 19" racks	PMP-CPC for automotive applications	
Max Conc. [1/ccm] Single count mode	20,000	100,000	100,000	150,000 (0.3 lpm) 100,000 (0.6 lpm)	150,000	150,000	70,000	
Max Conc. [1/ccm] Photometric mode	10^7	10^7	10^7	10^7	10^7	10^7	-	
D50 [nm]	4.5 (1)	4.1 (1)	4.1 (1)	4.1 (1)	4.1 (1)	4.1 (1)	23 (2)	
Sample Flow [lpm]	0.3	0.6	0.6	0.3 & 0.6	0.3	0.3	0.6	
SMPS option	yes	-	-	yes	yes	yes	-	
Battery	yes	-	-	-	_	_	-	
Internal pumps	yes	-	yes	yes (sample air)	yes	yes	-	
Internal tank	yes	_	_	_	_	_	_	
Netbook included	-	yes	yes	yes	yes	yes	-	
Port for external sensors	yes	-	-	yes	yes	yes	-	
Size (h x w x d) [cm]	22 x 26 x 30	23 x 25 x 29	23 x 25 x 29	23 x 25 x 29	40 x 25 x 29	19"	23 x 25 x 29	

(1) Measured with Ag particles (2) Measured with soot particles

How should we monitor for Ultrafines?

Condensation Particle Counters (3)

aerosol solutions

CPC COMPARISON

Specifications	Model 3781	Model 3783	Model 3785
Detectable Particle Diameter Range	6 nm to 3 μm	7 nm to 3 µm	5 nm to 3 µm
Maximum Detectable Particle Concentration (cm⁻³)	5 x 10 ⁵	1 x 10 ⁶	1 x 10 ⁷
Particle Counting Errors	± 10 % at 5x10 ⁵ cm ⁻³	± 10 % at 1x10 ⁶ cm ⁻³	± 10 % at 2x10 ⁴ cm ⁻³
Aerosol Flow Rates (L/min)	0.12 ± 0.012	0.12 ± 0.012	1.0 ± 0.1
Inlet Flow Rates (L/min)	0.6 ± 0.12	3 ± 0.3	1.035

How should we monitor for Ultrafines?

CPC COMPARISON

CPC COMPARISON - Precision

CPC COMPARISON - Accuracy

CPC COMPARISON – Averaging Time

How should we monitor for Ultrafines?

CPC COMPARISON – Particle Size

Size Distribution Measurements (\$\$\$)

Sources of Ultrafine Particles

Combustion Sources

Atmospheric Nucleation

Laaksonen, Univ. of Kuopio

Zhu, JAWMA, 2002

Other Non-Combustion Sources

Balasubramanian, National University of Singapore

Monitoring Locations

Choosing monitoring locations always depends on the objective Source characterization •Very near the source – upwind/downwind •At the tailpipe/stack •Atmospheric behavior and fate •Multiple locations downwind from source •Human Exposure •Where human exposures are highest Differential exposures for health studies Potential regulatory monitoring for ambient standards •Representative locations •Proper scale

Typical Ultrafine Concentrations

- Clean backgound:
- Typical urban air:

500 – 2,000 p/cc

5000 – 30,000 p/cc

- Freeway: 50,000 – 200,000 p/cc
- Jet exhaust: up to 6,000,000 p/cc

Network Sites - Spatial Scale

Meteorological Effects

Near Freeway

Jet Aircraft

Short-term Fluctuations

Santa Monica Airport

Dependence on Source and Activity

Median

25%

10%

5%

NORTHEAST

RUN-UP AREA

BLAST FENCE

NORTHEAST

HANGARS AND

PARKING

Santa Monica Airport

At The Tailpipe - Volatility

•European tailpipe standards (PMP) use thermal denuder and thus ignore nuclei mode

Outstanding Issues

Measurements

Standardize methods - accuracy
Lower cost, more precise and more reliable instruments
Studies

Instruments
Health
Atmospheric

Mitigation

Policy/Regulation

- •Ambient Standards
- •Tailpipe standards PMP
- •Criteria Pollutant / Air Toxic

South Coast AQMD Activities

Multiple Air Toxics Exposure Studies (MATES)

MATES I: 1986

Identified benzene, 1,3 butadiene, hexavalent chromium as most important air toxics

MATES II: 1998-1999

Demonstrated diesel PM as the major toxic risk driver

MATES III: 2004-2006

Better estimates of diesel risk, micro-scale sites, identified hexavalent

chromium from cement plants

All had major impacts on air toxics policy and regulation

MATES IV: 2012-2013

New focus on the local impacts of mobile sources on <u>ultrafine</u> and diesel PM exposure

What should we do about it?

South Coast AQMD Activities Mitigation – Filtration at Schools

a)

ALL CLASSROOMS AT ALL SCHOOLS

* From gravimetric / filter measurements

× The PM₁₀ concentration was higher indoors than outdoors due to indoor sources

South Coast AQMD Activities Mitigation – Near Road

•Funding three current research projects on nearfreeway mitigation of pollutants

•Trees, sound walls, elevation, active measures

Adapted from Isakov, EPA. CRC MSAT Conference, 2008

South Coast AQMD Activities Policy / Regulation

•2007 Air Quality Management Plan

•Chapter on Ultrafine Particles as an emerging issue

•2012 Air Quality Management Plan

•Chapter on Near Roadway Exposures and Ultrafine Particles

Potential Policy Recommendations

South Coast Air Quality Management District Geaning the air that we breathe

Questions?