AGENDA: 4

BAY AREA AIR QUALITY MANAGEMENT

Bay Area Consumption-Based Greenhouse Gas Emissions Inventory

Climate Protection Committee November 19, 2015

David Burch Principal Environmental Planner

Overview

- Description of consumption-based GHG inventory
- Methodology
- Results / Findings
- Potential uses
- Policy implications

What is a Consumption-Based Inventory?

- Conventional emissions inventory focuses on economic output: emissions from goods & services produced in a given area
- Consumption-based emissions inventory (CBEI) estimates GHG emissions embedded in goods & services <u>consumed</u> by people residing within a given area
- CBEI attributes all emissions to the end user/consumer
 Regardless of where goods & services are produced
- CBEI includes full life-cycle emissions for each product or service:
 Production: extraction, processing, production & shipping
 - Use
 - Disposal / recycling
- Deliverables: inventory tables & graphs at regional & city scale
 Maps showing GHG footprint at fine-grained local scale

Why develop a CBEI?

- Production-based inventory does not tell the whole story
- Modern economy is highly integrated, national & global in scale
- Major portion of goods & services are imported to region
- Quantify and account for (indirect) emissions that we generate beyond our boundaries
- Provide a more complete analysis of our true GHG footprint
- Especially relevant in affluent areas (like Bay Area) where:
 - High consumption of goods & services
 - Economic output is dominated by service & information sectors
 - Limited production of heavy-duty goods with high GHG content

Potential Uses of CBEI

- Inform our Regional Climate Protection Strategy
- Identify potential GHG reduction policies
- Assist climate planning in local cities
- Help Bay Area residents reduce their GHG footprint
- Compare Bay Area GHG footprint to other areas

CBEI Methodology

- Collaboration with UC Berkeley Energy Resources Group:
 - Cool Climate Network Chris Jones, PhD. <u>http://coolclimate.berkeley.edu/</u>
- Bottom-up approach: Start at household level & scale up
- Follow the money: Develop an expenditure profile for average household in each US Census Block Group in the Bay Area
- Apply appropriate emissions factor for each type of good or service:
 \$\$ (by expenditure type) x GHG emission factor = GHG emissions
- Emission factors include full life-cycle emissions for each product:
 - Key source: Comprehensive Environmental Data Archive
 - Used Bay Area-specific data & emissions factors whenever available

Major Expenditure Categories

Transportation:

- Motor vehicle production
- Vehicle maintenance
- Motor vehicle fuel consumption
- Public transportation
- Air travel

Housing:

- Construction
- Maintenance
- Residential energy use
- Water
- Waste

Food:

- Grains & cereals
- Fruits & vegetables
- Dairy
- Meat
- Other

Goods:

- Clothing
- Furniture & appliances
- Personal care products
- Books, newspapers, CDs

Services:

- Health care
- Education
- Financial services
- Communication
- Entertainment

Example for Automobile

Upstream

Individual Parts

Production, including upstream emissions for each part

Fuel Consumption

In-Use

- Fuel economy
- •Fuel type
- Driving conditions

Vehicle Assembly

Upstream emissions from refining gasoline

Shipping to Dealer

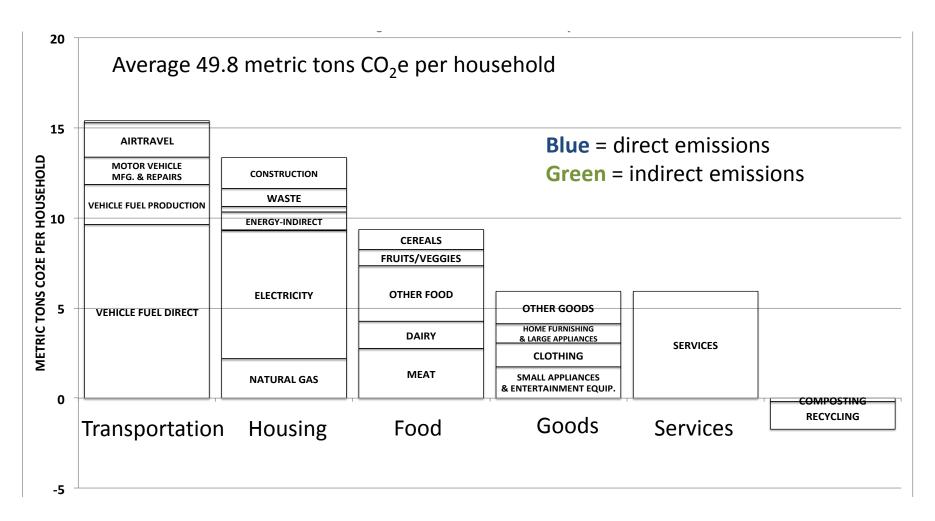
Vehicle Maintenance

Downstream

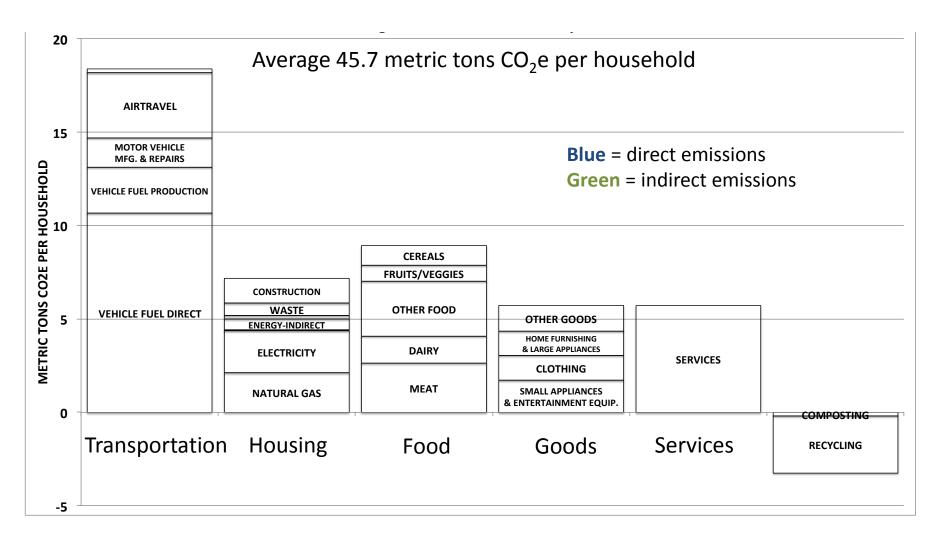
Recycling / re-use (credit)

Key Factors

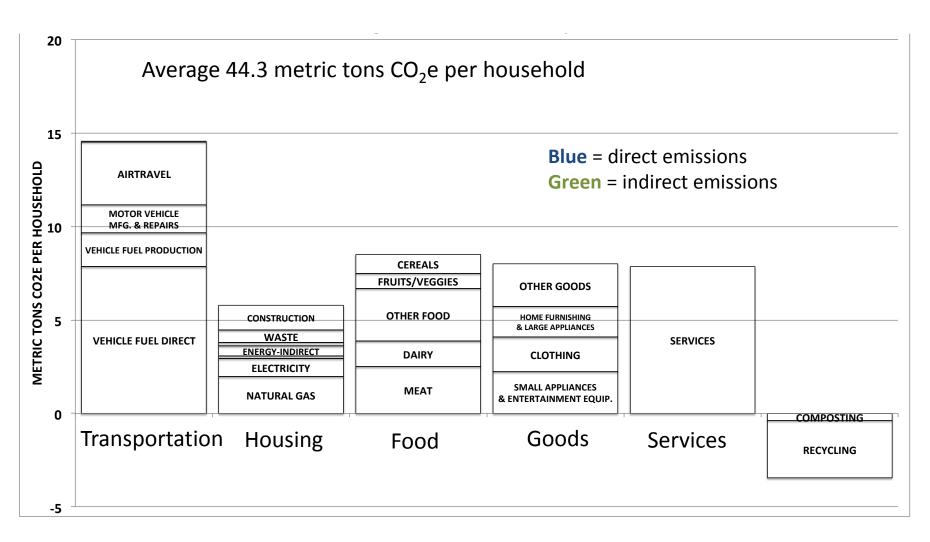
Cool Climate Network model includes 30+ factors


But six factors account for 92% of variation in GHG footprint:

- household size (# people)
- size of home (square footage of dwelling unit)
- population density of neighborhood
- carbon intensity of electricity
- vehicle ownership rate
- household income

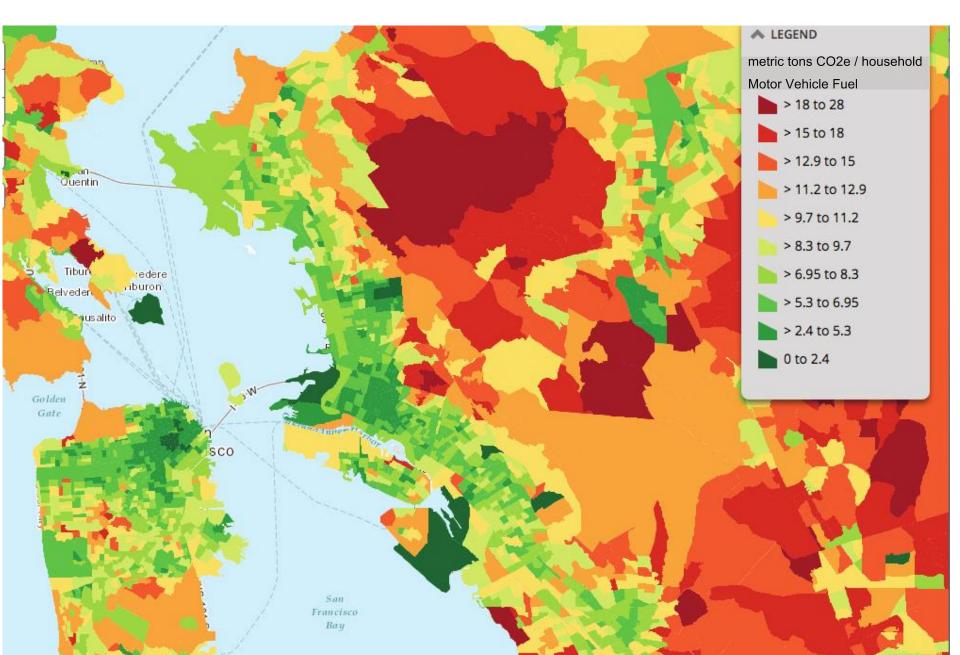

GHG Emissions and HH Income

- Household income has strong influence on emissions related to transportation, goods, and services
- Lower income households spend larger portion of income on basics of food & shelter (housing)
- As income increases, people spend more on discretionary goods & services


US Average Household GHG Footprint

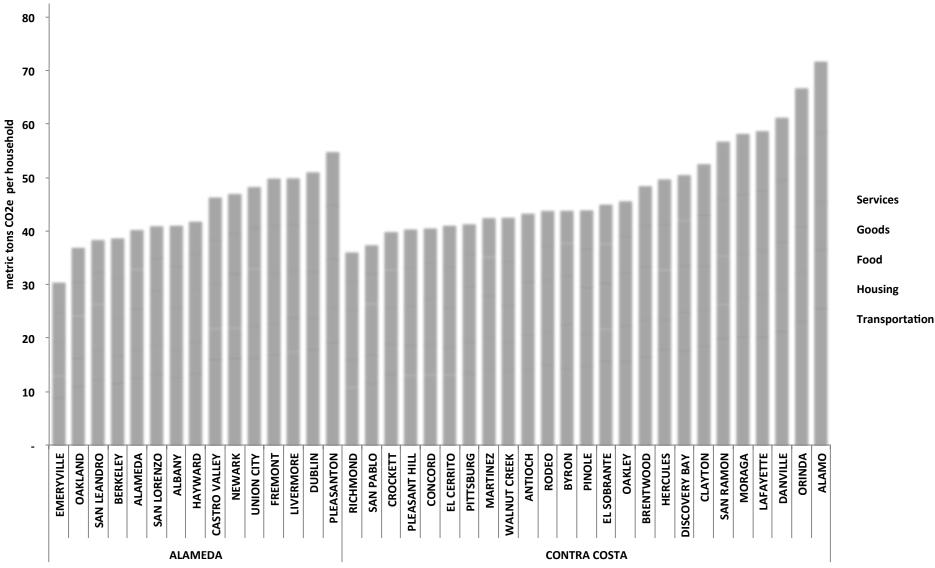
California Average Household GHG Footprint

SF Bay Area Average Household GHG Footprint


Example: Transportation Emissions

• Motor vehicle travel accounts for the largest slice of GHG footprint

Key Factors:	Residential location		Vehicle ownership rate	
	Household size	\rightarrow	Trip length	
	Household income		Mode choice	
	Access to transit		Discretionary travel	


- Need to reduce vehicle emissions, decarbonize transportation sector
- To reduce motor vehicle travel, residential density is *necessary, but not sufficient*. Housing must be well-served by transit & close to shopping & services
- Reducing motor vehicle travel will also reduce upstream emissions from oil refining
- Air travel is also a major contributor to transportation GHG
 air travel is directly correlated with household income

Household GHG Emissions from Transportation by Block Group

Bay Area GHG Footprint

- CBEI is ~ 35% larger than production-based inventory
- GHG footprint is generally lower in urban core areas - smaller homes, lower vehicle ownership rate, better transit
- Variation between block groups: ratio of seven to one
- Variation between cities: ratio of three to one
- Less variation between counties:
 - average annual GHG footprint ranges from 39 to 49 metric tons per household

Average Carbon Footprint for Cities in Alameda & Contra Costa Counties

Key Points

- Consumption-based inventory complements production-based inventory; provides a more complete picture of our GHG impact
- GHG inventory larger when analyzed from consumption perspective
- CBEI can help to inform climate planning at regional & local scale
 identify most promising opportunities for GHG reduction
- Should consider local variation in size & composition of GHG footprint in designing GHG reduction strategies
- CBEI findings may be most useful for public education

Questions or Comments?

CBEI Examples

Entity	Year	Scale / Resolution
Kings County, WA (Seattle)	2008	County-wide
State of Oregon, Dept of Environmental Quality	2010	Statewide
City & County of San Francisco	2011	City-wide
New York City	2013	Zip code

ICLEI GHG Inventory Protocol:

Appendix I: Consumption-Based Emissions (October 2012)

Agenda: 5

BAY AREA AIR QUALITY MANAGEMENT

DISTRICT

California Air Resources Board Draft Short-Lived Climate Pollutant Strategy

Climate Protection Committee November 19, 2015

Abby Young Manager, Climate Protection Program

Background

The California Air Resources Board (ARB) is preparing a strategy to significantly reduce emissions of "short-lived climate pollutants" (SLCPs):

- One of Governor Brown's five "Pillars" for achieving 80% reduction in greenhouse gas emissions (GHGs) by 2050
- SB 605 (Lara, 2014) directs ARB to develop a SLCP reduction strategy by the end of 2015
- Coordination with Air District's own process to develop a strategy addressing SLCPs in the Regional Climate Protection Strategy

What Are Short-lived Climate Pollutants?

Characteristics:

- Remain in atmosphere much less time than other climate pollutants like CO₂
- Have high heat-trapping ability (global warming potential, or GWP)

Pollutants:

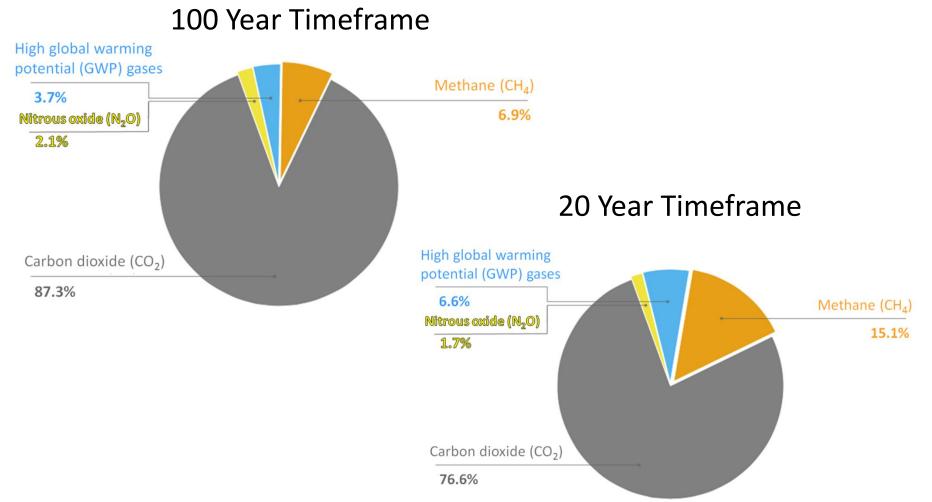
- Methane
- Black carbon
- Fluorinated gases
 - Human-made (no natural sources)
 - Some were introduced as substitutes for ozone-depleting substances

Why SLCPs are Important

According to the Air Resources Board, significantly reducing emissions of SLCPs by 2030 can:

- Cut global warming in half by 2050
- Reduce warming in the Arctic by two-thirds by 2040
- Slow the rate of sea level rise by 24 50%
- Increase the chances of keeping average warming below 2°C to greater than 90% by 2050

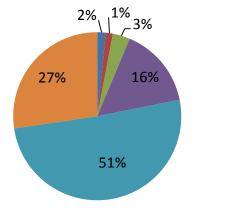
Reducing statewide emissions of SLCPs is one of Governor Brown's five "Pillars" of climate action.

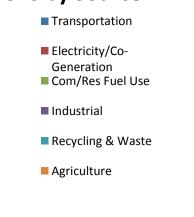

The Climate Warming Impact of SLCPs

From ARB's Draft Short-lived Climate Pollutant Strategy, 2015:

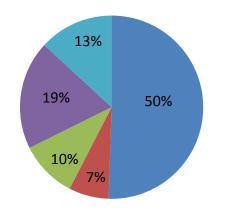
Pollutant	Lifetime (years)	20-year GWP*	100-year GWP
Carbon Dioxide	~100	1	1
Methane	12	72	34
Fluorinated Gases	1.4 – 52	437 – 6,350	124 – 3,500
Black Carbon	Days to weeks	3,200	900

*The use of a 20-year GWP time horizon better captures the importance of SLCPs and gives a better perspective on the speed at which SLCP emission controls will impact the atmosphere relative to CO_2 emission controls.


SLCPs in the Bay Area GHG Inventory

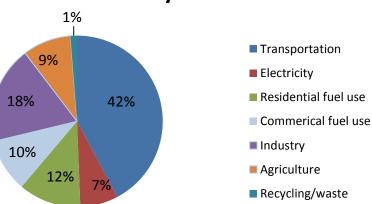


Sources in the Bay Area


Bay Area Methane Emissions by Source

AUSTRALIA STATE

Bay Area HFC Emissions by Source


Refrigerants/AC in commercial bldgs

Refrigerants/AC in residential bldgs

Refrigerants/AC in industry

- Refrigerants/AC in transportation
- Aerosol propellants

Bay Area Black Carbon Emissions by Source

ARB and Air District Efforts to Date

Reducing Methane:

- California has strongest standards in the nation for limiting emissions from landfills; Air District assists ARB with enforcement
- Cap-and-Trade offset protocols to encourage methane reduction
- Rule-making underway to limit methane leaks from the natural gas pipeline system and oil & gas wells

Reducing Black Carbon:

- California human-caused emissions have been reduced 90% since 1960
- Regulations & incentives addressing diesel fuel and engines
- Air District wood smoke rule

Reducing Fluorinated Gases:

- Current ARB regulations will cut emissions 25% below projected levels by 2020
- Air District collaborating with ARB to enforce regulations on semi-conductor manufacturing and non-motor vehicle air-conditioning

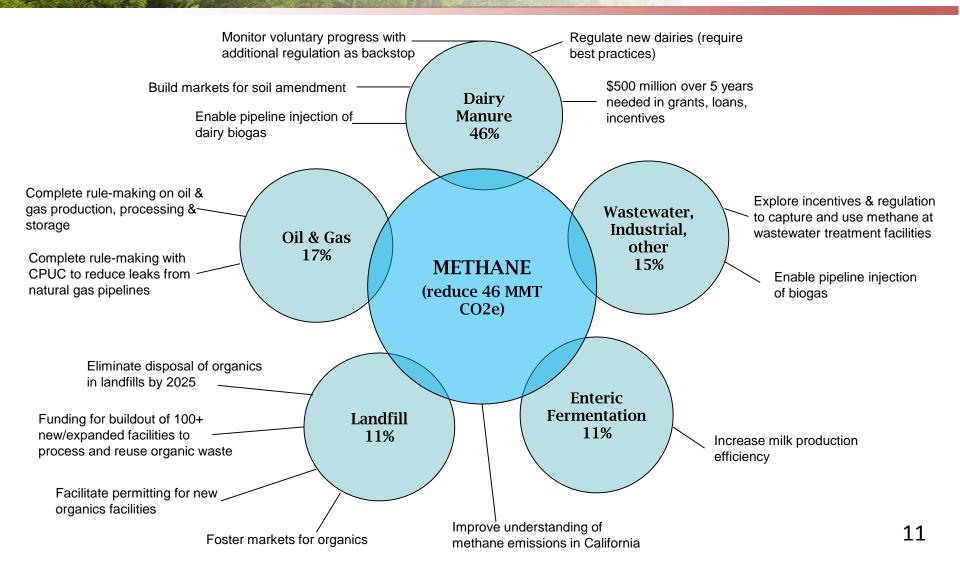
ARB's SLCP Reduction Targets

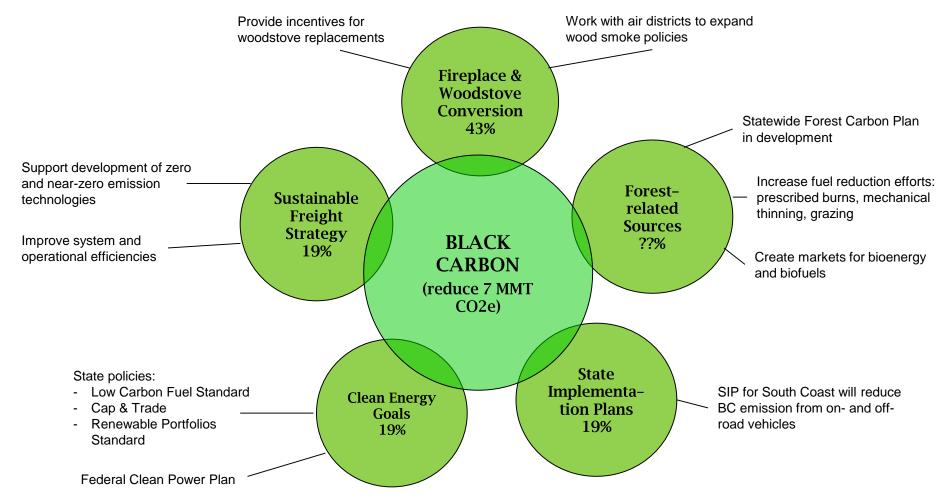
California SLCP Emissions & Proposed Reduction Targets

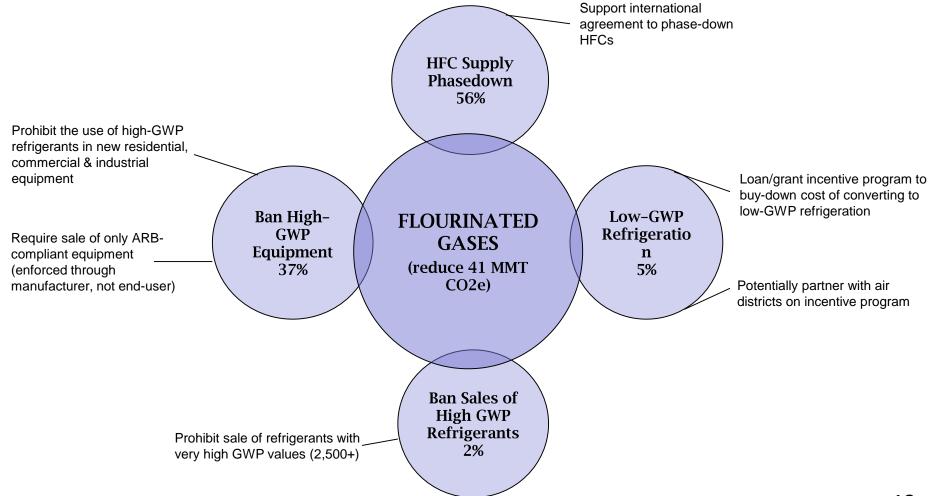
Pollutant	Baseline	Forecast	Year 2030 Targets	
	Year 2013	Year 2030	Tons	% Reduction
Black Carbon	38	26	19	50%
Methane	118	117	71	40%
F-gases	40	65	24	40%

- In MMT CO₂e based on 20-year GWP

- "Forecast" includes anticipated reductions from implementation of current regulations


"The science unequivocally underscores the need to immediately reduce emissions of Short-lived Climate Pollutants (SLCPs)...cutting emissions of SLCPs can immediately slow global warming and reduce the impacts of climate change."


-- ARB's Draft Short-lived Climate Pollutant Reduction Strategy


Driving Principles:

CONSIGNOUS .

- Prioritize actions with diverse benefits
- Put organic waste to beneficial use
- Identify practical solutions to overcome barriers
- Invest in SLCP emission reductions and communities
- Advance the science of SLCP sources and emissions

Collaboration Moving Forward

"Local Air Districts have a key role to play ... "

- Continue collaboration with ARB in rule development and enforcement
- Work with local governments to include measurement, tracking and policies for reducing SLCPs in local climate action plans
- Include specific SLCP reduction measures in the 2016 Clean Air Plan / Regional Climate Protection Strategy
- Explore new source categories, approaches and partnerships for reducing SLCPs in the Bay Area
 - Soil carbon sequestration in rangelands