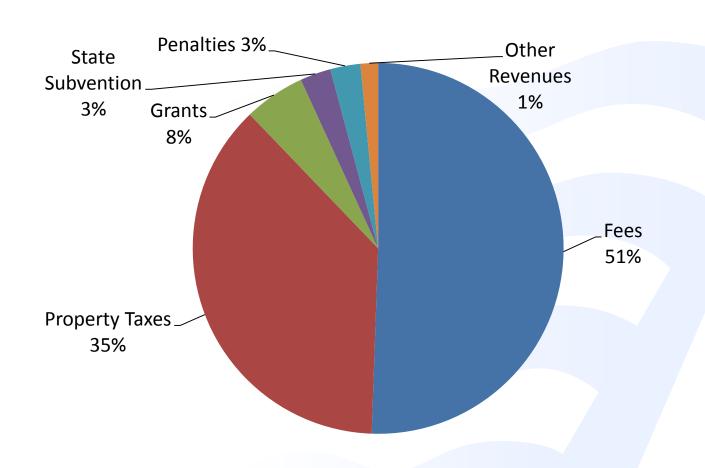


DISTRICT

Proposed Amendmentsto Regulation 3: Fees

Board of Directors Regular Meeting April 16, 2014


Jeff McKay Deputy Air Pollution Control Officer

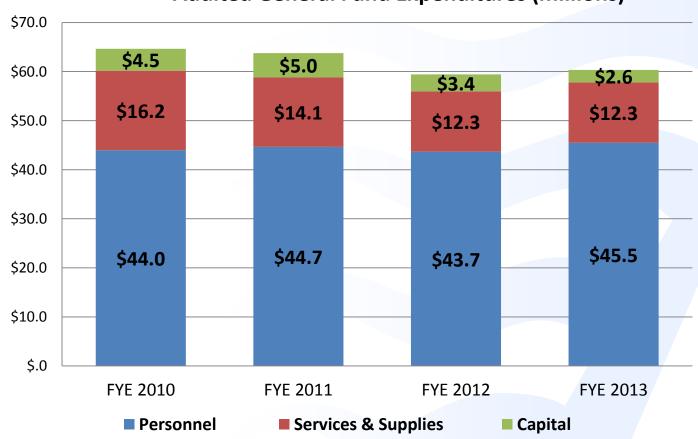
Presentation Outline

- 1. Cost Recovery Background
- 2. Draft Fee Amendments
- 3. Public Comments Received
- 4. Rule Development Schedule

Revenue Sources - FYE 2013

Cost Recovery Background

- ➤ Air District has authority to assess fees to recover the reasonable costs of regulating stationary sources
- Fee revenue falls short of overall full cost recovery
 - FYE 2010: Cost recovery = 64%
 - FYE 2011: Cost recovery = 67%
 - FYE 2012: Cost recovery = 76%
 - FYE 2013: Cost recovery = 80%
- > Cost recovery gap is filled by county tax revenue


Cost Recovery Policy

- > Sets goal of increasing cost recovery to 85% by FYE 2016
- Fee amendments are made in consideration of cost recovery analyses conducted at the fee schedule-level
- ➤ Air District implements feasible cost containment measures

Trends in Cost Cutting

Audited General Fund Expenditures (millions)

Revenue from Fee Schedule	Change in Fees	Fee Schedules	
Exceeds 95% of costs	2% increase (CPI)	C, G-5, M, N, Q,U,V	
85 – 95% of costs	7% increase	B, D, I	
75 – 84% of costs	8% increase	F, G-4	
Less than 75% of costs	9% increase	A, E, G-1, G-2, G-3, H, K, L, P, R, S	

Fee Schedules with 2% increase

• Schedule C: Stationary Containers for the Storage of Organic

Liquids

• Schedule G-5: Petroleum Refinery Flares

Schedule M: Major Stationary Source Fees

• Schedule N: Toxic Inventory Fees

Schedule Q: Contaminated Soil & Removal of Underground

Storage Tanks

• Schedule U: Indirect Source Fees

• Schedule V: Open Burning Fees

Fee Schedules with 7% increase

• Schedule B: Combustion of Fuel

• Schedule D: Gasoline Transfer at Gasoline Dispensing

Facilities, Bulk Plants & Terminals

• Schedule I: Dry Cleaners

Fee Schedules with 8% increase

• Schedule F: Misc. Sources (storage silos, abrasive blasting)

• Schedule G-4: Misc. Sources (cement kilns, sulfur removal &

coking units, acid manufacturing)

Fee Schedules with 9% increase

• Schedule A: Hearing Board Fees

• Schedule E: Solvent Evaporating Sources

• Schedule G-1: Misc. Sources (glass manufacturing, soil

remediation)

• Schedule G-2: Misc. Sources (asphaltic concrete, furnaces)

• Schedule G-3: Misc. Sources (metal melting, cracking units)

• Schedule H: Semiconductor and Related Operations

• Schedule K: Solid Waste Disposal Sites

• Schedule L: Asbestos Operations

• Schedule P: Major Facility Review Fees

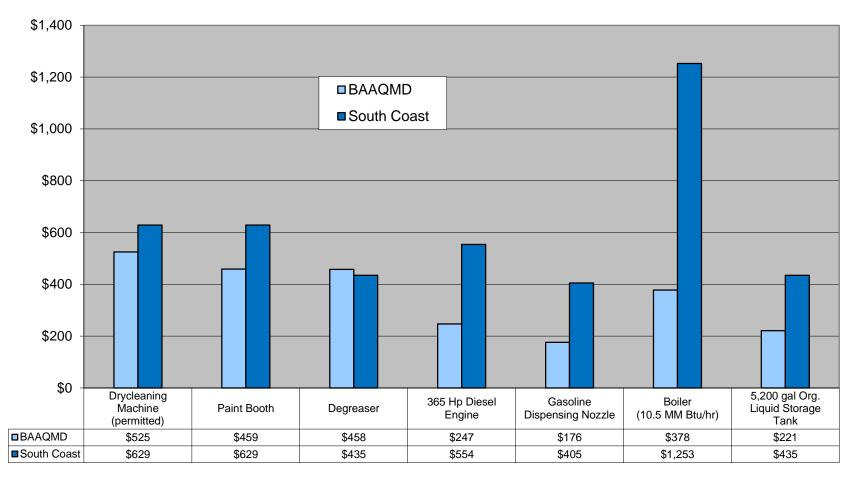
• Schedule R: Equipment Registration Fees

• Schedule S: Naturally Occurring Asbestos Operations

Greenhouse Gas Fees

- ➤ Increase from \$0.048 to \$0.09 per metric ton of carbon dioxide equivalent emissions
- ➤ Necessary to implement Board's Climate Protection Resolution
- ➤ Increase in revenue expected to be \$800,000
- ➤ 4 to 15% overall increase in permit fees
- > 500 facilities impacted

Impact on Small Businesses


➤ Proposed FYE 2015 fee increases:

Facility Type	Facility Description	Fee Increase	Total Fee
Gas Station	10 multi-product gasoline nozzles	\$186	\$2,932
Dry Cleaner (permitted)	One machine: 1,400 lb/yr Perc emissions	\$31	\$556
Dry Cleaner (registered)	One machine: 800 lb/yr VOC emissions	\$14	\$173
Auto Body Shop	One spray booth: 400 gal/yr paint	\$37	\$495
Back-up Generator	One 300 hp engine	\$15	\$262

Bay Area/South Coast AQMD Fee Comparison - FYE 2014

Public Comments

- Feb. 18, 2014 Public workshop
 - Two attendees plus webcast audience
- > No written comments received to date

Rule Development Schedule

- > February 18, 2014
 - Public workshop
- > April 16, 2014
 - Board of Directors first public hearing to receive testimony only
- > June 4, 2014
 - Board of Directors second public hearing to consider adoption
- > July 1, 2014
 - Proposed effective date of fee amendments

Report on the Community Air Risk Evaluation (CARE) Program

Board of Directors Regular Meeting April 16, 2014

Phil Martien, Ph.D. Air Quality Engineering Manager

Community Air Risk Evaluation (CARE) Program

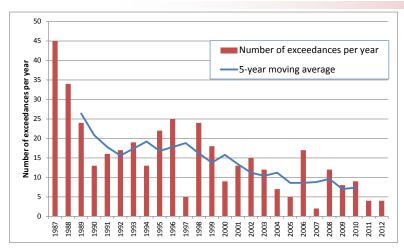
- Background
- Goals
- Accomplishments
- Key Findings
- Next steps

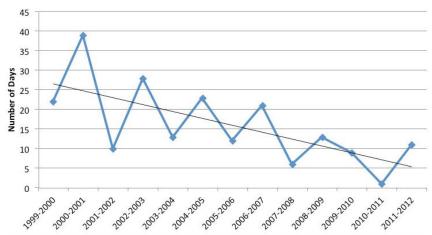
IMPROVING AIR QUALITY & HEALTH IN BAY AREA COMMUNITIES

Community Air Risk Evaluation Program Retrospective & Path Forward (2004 - 2013)

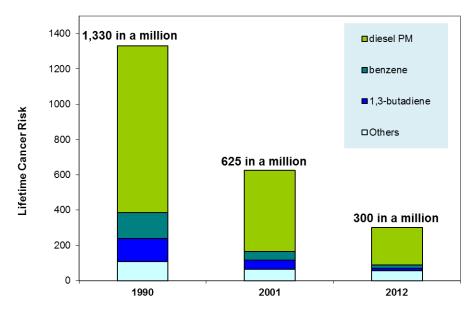
HEALTHY NEIGHBORHOODS | EXPOSURE ASSESSMENTS | SCIENTIFIC STUDIES

April 2014

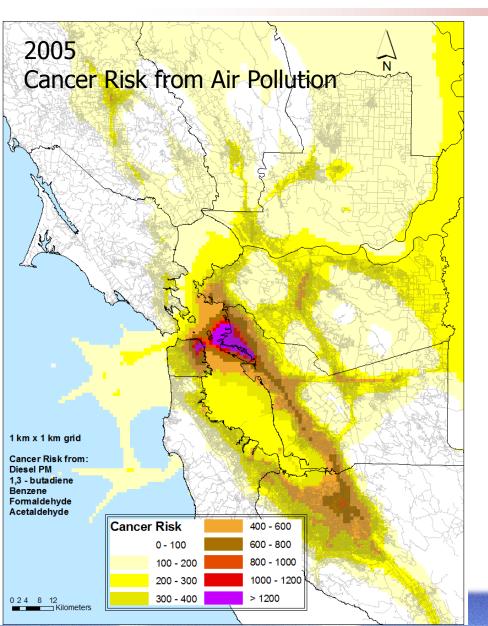

Collaborations with the Public, Researchers, and Health & Planning Departments


BAY AREA AIR QUALITY MANAGEMENT DISTRICT

Slide 2


Air Quality is Improving in the Bay Area

Days/year over national 8-hour ozone standard



Winter days over national 24-hour PM_{2.5} standard

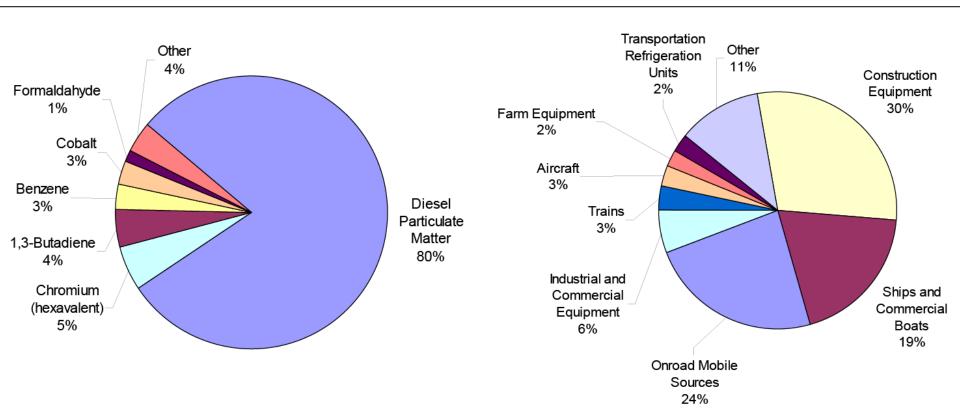
Lifetime cancer risk from air pollutants

But Air Quality Challenges Remain

- Some communities have higher air pollution exposures and health impacts
- Near-source exposures, especially particles and toxic air contaminants
- Episodes with higher levels of fine particles and ozone

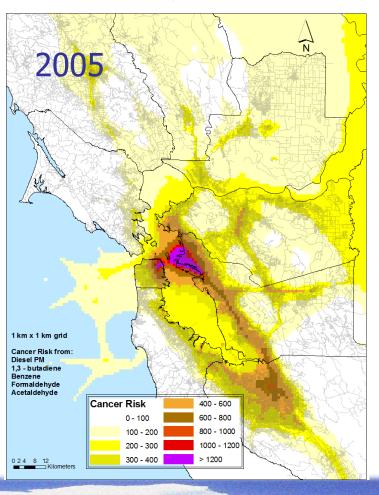
CARE Program Goals

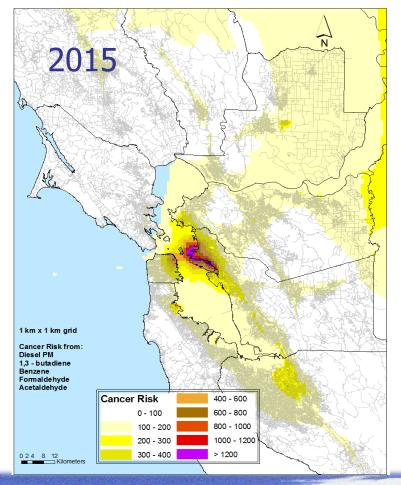
- Evaluate regional and community health impacts from outdoor air pollution
- Identify sensitive populations
- Focus health risk mitigation measures on locations with higher impacts and sensitive populations


CARE Program Accomplishments

- Regional-scale studies
- Mapping impacted areas
- Local-scale studies
- Helping to prioritize Air District actions to support healthy communities
- Productive CARE Task Force meetings
- CARE Summary Report documents program accomplishments and future direction

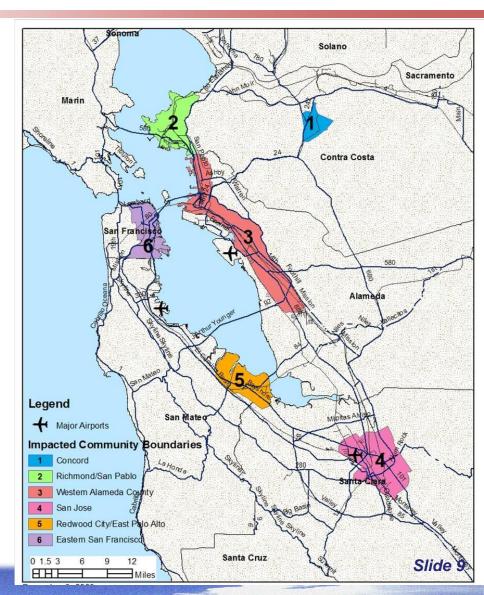
Cancer Toxicity-Weighted Emissions: Bay Area (2015)


By Pollutant


By Source Category

Regional-Scale Studies

Developed regional toxics modeling: emissions, concentrations, risk



First Identified Cumulative Impact Areas (2009)

Based on

- Elevated cancer risk
- High emissions of toxic air contaminants (TAC)
- Vulnerable populations
 - Youth
 - Seniors
 - Low-income families

Why Update Maps?

- Same goal as current maps:
 - Focus actions/engagement where most needed
- Use latest data
- Consider additional air pollutants
 - In addition to toxics: fine particles and ozone
- Use new methods
 - Estimate health outcomes from air pollution
 - Use health records to reflect vulnerability
- Consider different types of impacts
 - Cumulative impacts: multi-pollutant, vulnerable populations
 - Exceedances: particles, ozone above standards

New Method for Identifying Cumulative Impacts

Considers air pollution levels and community health

Inputs

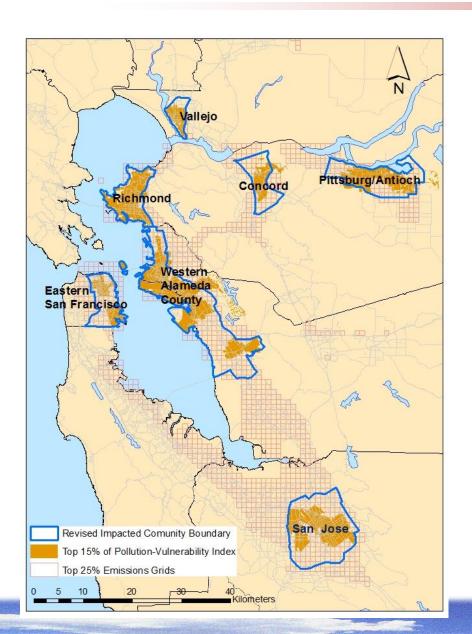
Air Pollution

- TAC
- PM_{2.5}
- Ozone

Health Records

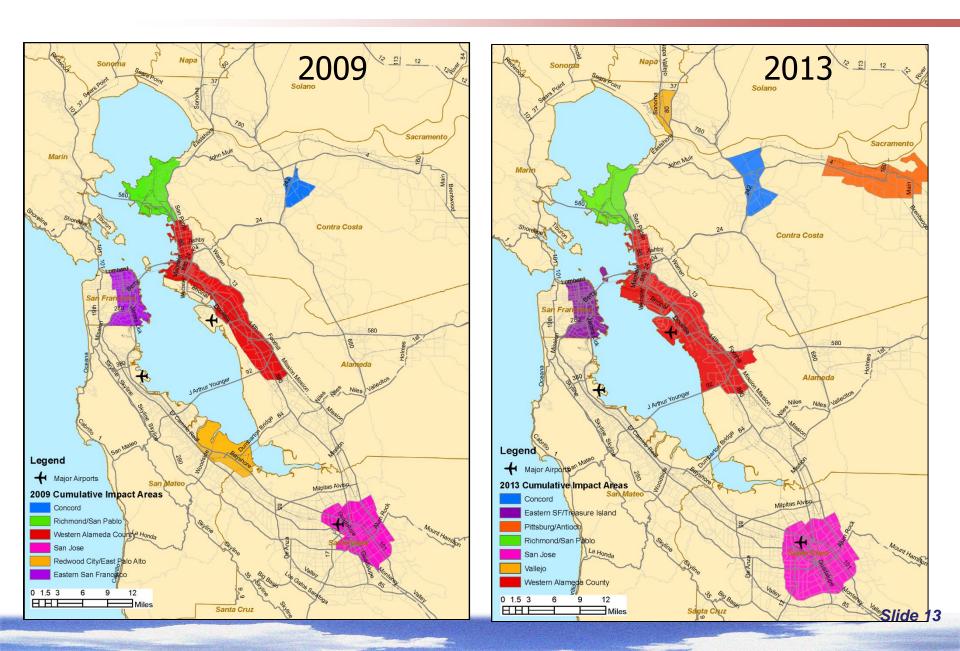
- Death rates
- Hospital admissions
- ER visits

Method


Models from US EPA and Cal/EPA

Health Impacts

- Increased cancer risk
- Increased death rate
- Increased costs from hospitalizations and ER visits

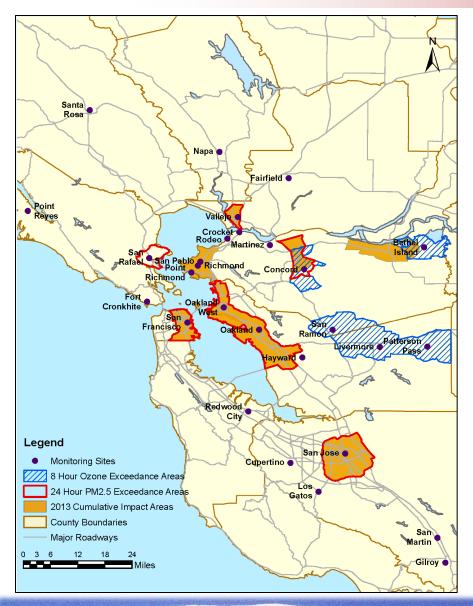

Cumulative Impacts

Revised Cumulative Impact Areas

- Map areas with greatest impact
- Develop boundaries to encompass areas with highest impacts
- Consider where emissions are also high
- Use major roadways, geographical features to form boundaries

Update to Cumulative Impact Areas

Episodic PM_{2.5} and Ozone Exceedance Areas


PM_{2.5} Exceedance Areas

Ozone Exceedance Areas

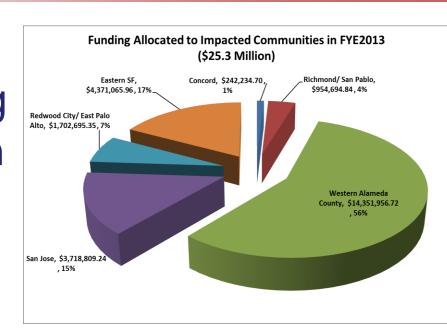
Uses of Maps

- Cumulative impact maps support and focus localized mitigation activities
 - Clean Air Communities Initiative
- Exceedance maps support and focus regional mitigation activities
 - Clean Air Plan policies and programs
 - Identify and reduce upwind sources of precursor emissions
 - Public outreach

Reducing Health Impacts

- Prioritize grant funding
- Focus outreach and education
- Focus enforcement activities
- Coordinate planning efforts
- Develop regulations targeted to source categories
- Prioritize local-scale measurement and modeling studies

Clean Air Communities Initiative


Clean Air Communities Initiative: Examples

Grants

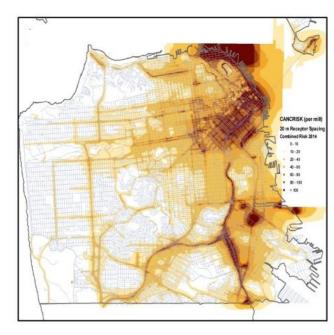
Prioritize grant funding to reduce emissions in impacted areas

Enforcement

Focus enforcement of CARB's diesel rules for sources in impacted areas

Clean Air Communities Initiative: Examples

Regulations


Develop regulations targeting pollutants and sources of concern in impacted areas

- New Source Review
- Source-specific regulations

Planning

Support infill development and minimize exposure to air pollution

- CEQA guidelines
- Technical assistance to local staff
- Community Risk Reduction Plans

Local-Scale Studies

- Goal: Develop information to understand and reduce health impacts from exposure to local sources of air pollution
 - West Oakland Case Studies
 - Diesel Particulate Matter Health Risk Assessment
 - West Oakland Truck Survey
 - Drayage Truck Plume Measurements
 - West Oakland Monitoring Study
 - Measurement studies Near Industrial Facilities and Near Roadways
- Studies indicate that grant funding, new regulations, focused enforcement have been effective
- But higher air pollution continues along freeways, near diesel activity

Technical Assistance to Local Government

- Assist local staff in reducing exposures and health impacts
- Stationary source screening tool
 - Locates permitted sources
 - Estimates of risk and PM levels
- Roadway screening for highways and surface streets
 - Estimates of risk and PM levels
- Technical guidance
- Community Risk Reduction Plans

Key Findings of the CARE Program

- Diesel PM is a significant contributor to cancer risk from toxic air contaminants
- Fine PM of all types is linked to poor health outcomes and mortality
- The updated method for identifying cumulative impact areas did not use socio-economic information. But, high impact areas have
 - lower household incomes
 - lower education levels
 - higher percentages of non-white residents

Key Findings of the CARE Program

- Grants, regulatory programs, and enforcement efforts are resulting in significant health benefits
- Exposures to local air pollution sources are important factors in determining health risks, even in impacted areas
- Infill development can safely proceed in areas identified as impacted, if localized air pollution sources are avoided or mitigated
- Maps of episodic exceedance areas complement maps of cumulative impact areas
- Collaboration is a key element of success

Next Steps, Near-Term

- Use updated cumulative impact maps to prioritize Air District local-source measures
- Use exceedance maps to inform regional programs and policies
- Continue to engage other agencies, build cooperative relations to support communities
- Prioritize the development of improved datasets, tools, and guidance to support healthy infill development

Next Steps, Longer-Term

- Conduct studies to assess mitigations for nearroadway exposures
 - Filtration, tightening building envelopes, vegetation and sound walls
- Track personal exposures to air pollution
- Consider climate change in
 - Assessing community impacts
 - Identifying locations of impacted areas
 - Evaluating co-benefits of reducing pollutants