

#### **Community Emission Reduction Plan (CERP) Community Steering Committee Meeting #12**

March 21, 2022

# Welcome!



# Today's Agenda

- 1. Roll Call
- 2. Welcome and Timeline Review
- 3. Approval of February 28, 2022, Meeting Minutes
- 4. Updates from Ad Hoc Groups
- 5. Technical Assessment Insights: Part I
- 6. Compliance & Enforcement Data Findings from 2019 2021
- 7. Environmental Justice Updates
- 8. Public Comment on Non-agenda Items and Next Steps



# **Timeline: Where are We Today?**

|               |                                                        |                                                                                                                     | 2021 |     |     | 2022 |        |        |       |     |     |     |     |     |     |     |                 |     |
|---------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|-----|-----|------|--------|--------|-------|-----|-----|-----|-----|-----|-----|-----|-----------------|-----|
|               | PHASE                                                  | WORK PRODUCT                                                                                                        | APR  | MAY | JUN | JUL  | AUG SI | PT OCT | r nov | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL             | AUG |
|               | SCOPE AND<br>ORGANIZE<br>PARTNERSHIP WITH<br>COMMUNITY | Steering Committee<br>Plan Process<br>Vision and Principles<br>Plan Boundary                                        |      |     | Ê   |      | 3      | C      |       | ~   | )   |     |     |     |     |     |                 |     |
| Q,            | ASSESS<br>THE CHALLENGES<br>WE FACE                    | Community Description<br>Technical Assessment                                                                       |      |     |     |      | G      | C      | -     | -   | -   | -   | -   | -   |     | -   | -<br>-<br>-<br> |     |
| - <u>\$</u> - | PLAN<br>OUR SOLUTIONS                                  | Key Issues<br>Goals and Targets<br>Strategies                                                                       |      |     |     |      |        | C      |       |     |     | 1   | 8   |     |     |     |                 |     |
|               | REVIEW &<br>ADOPTION                                   | Environmental Assessment<br>Plan Adoption – Steering<br>Committee<br>Plan Adoption – BAAQMD<br>Plan Adoption – CARB |      |     |     |      |        |        |       |     |     |     |     |     |     | 0   |                 |     |
| ¢             | IMPLEMENT                                              | Implementation Plan<br>Enforcement Plan<br>Metrics to Track Progress<br>Ongoing Reporting                           |      |     |     |      |        |        |       |     |     |     |     |     |     |     |                 |     |

# Approval of February 28, 2022 Meeting Minutes



# **Public Comment**



# Update from Community Description and Technical Assessment Ad Hocs

Community Description Ad Hoc co-leads: Nancy Aguirre

Technical Assessment Ad Hoc co-leads: Jeff Kilbreth

Town Hall Update: Alfredo Angulo



# **Public Comment**



# Technical Assessment Insights: Part I

Steve Reid, Senior Advanced Projects Advisor

sreid@baaqmd.gov

Daniel Alrick, Principal Air and Meteorological Monitoring Specialist <u>dalrick@baaqmd.gov</u>



# **Topics for this Presentation**

- Insights from emissions inventory information and air quality modeling and monitoring
- Air quality overview for the CERP area
- Information organized around categories of community concerns
  - Fuel refining, support facilities, storage, and distribution

## **Informing Key Issues**

**Technical Community-Identified** Assessment for **Air Pollution Concerns** a Key Issue Information from Insights **Measurements** Information from on key air issues Modeling Social Pinpoint **Strategies** Inform to Reduce Pollution Monitoring Plan Development **Emissions and Exposure** Air Quality Complaints Setting targets and tracking progress **Air Pollution Issue of Concern** 

Air Quality Overview for the CERP Area

## **Categories of Pollutants**

|                                | Criteria Air Pol                                                      | llutants (CAPs)                                                        | Toxic Air Contaminants (TACs)                                                                                                                       |  |
|--------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Description                    | Six common air pollut<br>health and have Natior<br>Standards (NAAQS)  | ants that harm human<br>nal Ambient Air Quality<br>set by the U.S. EPA | Pollutants that are known or suspected to cause<br>cancer or other serious health effects<br>Includes U.S. EPA Hazardous Air Pollutants<br>(HAPs)   |  |
|                                | Ozone (O <sub>3</sub> )                                               | Particulate matter ( $PM_{2.5}$ and $PM_{10}$ )                        | Examples of TACs:<br><u>Benzene, toluene, ethylbenzene, xylene (BTEX)</u> ,<br>volatile organic compounds (VOCs), found in                          |  |
| Pollutants in this<br>Category | Pollutants in this Carbon monoxide Nitrogen (NO)   Category (CO) (NO) | Nitrogen dioxide<br>(NO <sub>2</sub> )                                 | gasoline and released through combustion of<br>fossil fuels<br><u>Diesel particulate matter (DPM)</u> , resulting from<br>combustion of diesel fuel |  |
|                                | Sulfur dioxide (SO <sub>2</sub> )                                     | Lead (Pb)                                                              | Certain <u>metals</u> such as mercury, chromium, and arsenic                                                                                        |  |

More info: Criteria air pollutants: <u>https://www.epa.gov/criteria-air-pollutants</u> Toxic air contaminants: <u>https://oehha.ca.gov/air/toxic-air-contaminants</u>

# Fine Particulate Matter (PM<sub>2.5</sub>)

- Fine inhalable particles with diameters of 2.5 micrometers or smaller
- These small particles can travel deep into the lungs and into the bloodstream
- Examples of sources:
  - Combustion of fuels or other materials (industrial operations, cars and trucks, trains, ships, off-road equipment, wildfires)
  - Dust from unpaved surfaces, vehicle brakes, construction, sand and gravel facilities
  - Natural sources such as wind-blown dust and sea salt
  - Formation in the atmosphere through complex reactions of other pollutants



https://www.epa.gov/pm-pollution/particulate-matter-pm-basics

#### Annual Average PM<sub>2.5</sub> Levels



- Variability over time driven by changes in emissions, meteorology, wildfires
- Peak site varies from year to year; San Pablo is often one of the higher sites
- In recent years, annual averages at San Pablo have ranged from about 8 μg/m<sup>3</sup> to over 12 μg/m<sup>3</sup>

#### Annual Average PM<sub>2.5</sub> Levels

16



- The current standard for annual average PM<sub>2.5</sub> is not health protective and EPA is reconsidering the current standard
- There are health benefits for additional reductions in PM<sub>2.5</sub> even at levels below the standard

#### Daily Average PM<sub>2.5</sub> Levels at San Pablo, 2013-2020



- Highest daily levels recently have been during wildfires
- Day-to-day air quality can be quite variable, due to changes in meteorology and emissions

#### Daily Average PM<sub>2.5</sub> Levels at San Pablo, 2013-2020



Higher  $PM_{2.5}$  levels also occur during wintertime episodes, when meteorological conditions allow pollution to build up and bring additional pollutants into the area from outside regions

# **Questions?**



## **Air Quality Overview**

#### **Emissions and Modeled Exposures**



# **Emissions: What is included?**

- Inventories for all stationary and mobile sources for which data are available to support estimates
- Criteria air pollutants (CAPs) and associated compounds: fine particulate matter (PM<sub>2.5</sub>), oxides of nitrogen (NO<sub>x</sub>), reactive organic gases (ROG), etc.
- Toxic air contaminants (TACs): 158 compounds included in the R-NR-SP inventory
  - TAC emissions weighted by toxicity (cancer, chronic, acute)

# **Emissions: How are they organized?**

#### **Source Sectors**

#### Stationary Point Sources w/Permits



Refineries, power plants, gas stations, autobody shops

#### Stationary Area Sources



Fireplaces, water heaters, consumer products

#### **Emission "Buckets"**

- Petroleum Refining
- On-road/Freeway
- Auto Body



#### **On-Road Mobile**



Cars, trucks, buses

#### **Off-Road Mobile**



Ships, aircraft, rail, construction equipment

- Port
- Rail
- Etc.

#### **Emissions Overview: Criteria Pollutants** By Source Sector

## Source Contributions to 2019 Criteria Pollutant Emissions for the Path to Clean Air Project Area

| SECTOR          | NOx   | TOG   | ROG   | SOx | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> |
|-----------------|-------|-------|-------|-----|-------------------------|-------------------|
| Point           | 19%   | 47%   | 26%   | 83% | 49%                     | 67%               |
| Area            | 12%   | 37%   | 43%   | 9%  | 23%                     | 19%               |
| Off-road        | 49%   | 9%    | 18%   | 7%  | 5%                      | 7%                |
| On-road         | 20%   | 7%    | 13%   | 1%  | 23%                     | 7%                |
| Total Emissions |       |       |       |     |                         |                   |
| (tons/year)     | 2,982 | 6,009 | 2,834 | 587 | 1,135                   | 756               |



Permitted (point) sources contributions to total emissions range from 19% to 83% for the pollutants shown

## **Emissions Overview: Toxic Air Contaminants**

#### Toxicity Weighted Emissions (TWE)

- TAC emissions weighted by OEHHA health values
- These calculations provide assessments of the relative toxicity of each compound
- Toxicity weighting is also applied to modeled pollutant concentrations

TAC Rankings from the 2019 the Path to Clean Air Project Area Inventory

|      |                      | Toxicity                           | Weighted Emissions                     |                                      |  |  |
|------|----------------------|------------------------------------|----------------------------------------|--------------------------------------|--|--|
| Rank | Emissions by<br>mass | Cancer Score                       | Non-Cancer<br>Chronic Effects<br>Score | Non-Cancer<br>Acute Effects<br>Score |  |  |
| 1    | Ammonia              | Diesel Particulate<br>Matter (DPM) | Manganese                              | Benzene                              |  |  |
| 2    | Toluene              | Benzene                            | Nickel                                 | Acrolein                             |  |  |
| 3    | Ethylene             | Chromium<br>(hexavalent)           | Benzene                                | Formaldehyde                         |  |  |
| 4    | Formaldehyde         | 1,3-butadiene                      | Acrolein                               | Nickel                               |  |  |
| 5    | Propylene            | Acrylonitrile                      | Sulfuric acid                          | Arsenic                              |  |  |

The Top 5 pollutants under each TWE category account for:

- 92% of the total cancer score
- 66% of the total chronic effects score
- 90% of the total acute effects score

#### **Emissions Overview: Toxic Air Contaminants** By Source Sector

## Source Contributions to 2019 Emissions of Selected TACs for the Path to Clean Air Project Area

|                 |       | Hex   |              |           | Hydrogen |
|-----------------|-------|-------|--------------|-----------|----------|
| SECTOR          | DPM   | Chrom | Formaldehyde | Manganese | Sulfide  |
| Point           | 1%    | 93%   | 18%          | 77%       | 100%     |
| Area            | 1%    | 0%    | 27%          | 9%        | 0%       |
| Off-road        | 81%   | 6%    | 43%          | 0%        | 0%       |
| On-road         | 17%   | 1%    | 12%          | 13%       | 0%       |
| Total Emissions |       |       |              |           |          |
| (tons/year)     | 35.23 | 0.01  | 60.13        | 1.49      | 4.36     |

- For TACs, we must consider both mass and toxicity
  - Permitted (point) sources contributions to total emissions range from 1% to 100% for the TACs shown



49%

Cancer Score

80,000

## **Community Comparisons** Permitted Sources

| Metric                            | R-NR-SP | San Rafael | Concord |
|-----------------------------------|---------|------------|---------|
| Population                        | 159,000 | 61,000     | 125,000 |
| Permitted Sources                 | 303     | 146        | 153     |
| TACs in Inventory                 | 79      | 33         | 23      |
| TAC Emissions (tpy)               | 284.1   | 7.1        | 7.3     |
| PM <sub>2.5</sub> Emissions (tpy) | 502.8   | 7.6        | 0.7     |

Note: all emissions shown in the table above are for permitted sources only.

#### **Permitted Sources**

- Total TAC emissions in San Rafael and Concord are comparable
- Total TAC emissions in R-NR-SP ~40x higher



## **Community Comparisons** Permitted Sources

|      |                   | Emissions (lbs/year) |            |         |  |
|------|-------------------|----------------------|------------|---------|--|
| Rank | Pollutant         | R-NR-SP              | San Rafael | Concord |  |
| 1    | Manganese         | 2,282.87             | 0.07       | 0.04    |  |
| 2    | Nickel Compounds  | 300.44               | 0.80       | 0.51    |  |
| 3    | Sulfuric Acid     | 18,134.12            | N/A        | 7.03    |  |
| 4    | Hydrogen Cyanide  | 91,667.17            | N/A        | N/A     |  |
| 5    | Hydrochloric Acid | 33,846.32            | 7.06       | N/A     |  |
| 6    | Formaldehyde      | 21,920.19            | 145.15     | 158.34  |  |
| 7    | Benzene           | 7,001.52             | 138.57     | 241.35  |  |
| 8    | Arsenic           | 32.25                | 0.02       | 0.01    |  |
| 9    | Diethanolamine    | 2,994.27             | N/A        | N/A     |  |
| 10   | Hydrogen Sulfide  | 8,716.54             | N/A        | N/A     |  |

For permitted sources, formaldehyde emissions in R-NR-SR are **150x** higher than in San Rafael and **140x** higher than in Concord

 Similar or much larger differences can be seen across all pollutants

RICHMOND - NORTH RICHMOND - SAN PABLO COMMUNITY

Note: the 10 compounds shown above account for **97%** of the chronic TWE from permitted sources in R-NR-SP (the top 5 compounds account for 87%)

#### Modeling & Exposure Assessment

- Modeling estimates pollutant concentrations at 50 m spacing
- Concentrations combined with population data to evaluate exposures
- Source contributions to concentrations/exposures also calculated



# How Much is Local?



#### **Modeled PM<sub>2.5</sub> Impacts from Local Sources**





## **Technical Assessment Insights:** Air Quality Overview

- San Pablo is often one of the higher monitoring sites for annual average PM<sub>2.5</sub> in the Bay Area
- Trends in  $PM_{2.5}$  levels influenced by fires in recent years
- There are health benefits for additional reductions in  $PM_{2.5}$  even at levels below air quality standards
- Concentrations of air pollutants change over time and place, and different areas can be higher for different pollutants on different days

## **Technical Assessment Insights:** Air Quality Overview

- Both local and non-local sources impact air quality in the Path to Clean Air Project Area; on average local sources contribute more to TAC impacts than to PM<sub>2.5</sub> impacts
- Local source contributions to the Path to Clean Air Project Area community emissions inventory vary by pollutant
  - For PM<sub>2.5</sub>, permitted sources are the largest contributor
  - For cancer TWE, offroad mobile sources are the largest contributor
- Modeled pollutant concentrations and exposures may tell different stories

# **Questions?**



**Community Concern:** Fuel refining, support facilities, storage, and distribution

# **Community Concern:** Fuel refining, support facilities, storage, and distribution

- We shared some initial technical insights around Chevron at the January CSC meeting
- Different types of monitoring systems in place
  - Emissions monitoring
  - Ambient monitoring
- How emissions data are estimated and categorized
- Modeled annual average  $\mathrm{PM}_{\mathrm{2.5}}$  levels from individual facilities or sources

# **Fuel Refining: What is included?**

| Permitted Facility                | Mobile Sources       |
|-----------------------------------|----------------------|
| Chevron                           | OGV at-berth         |
| Chemtrade                         |                      |
| Kinder Morgan                     |                      |
| Phillips 66                       | OGV at-berth; trucks |
| Transmontaigne                    |                      |
| IMTT                              | OGV at-berth         |
| <b>Richmond Products Terminal</b> |                      |
| Qualawash Holdings LLC            |                      |
| Gas Stations                      |                      |

Emissions from mobile source activities at each facility were quantified where data were available

#### **Fuel Refining Emissions: Criteria Pollutants**



#### \*Includes OGV berthing emissions





#### **Fuel Refining: Emissions vs. Exposure**



- Source contributions to emissions and exposures often vary
- For example, *Fuel Refining* accounts for 64% of local PM<sub>2.5</sub> emissions and 32% of average residential PM<sub>2.5</sub> concentrations\*
- Similarly, *Fuel Refining* accounts for 14% of local cancer TWE and 6% of average residential cancer risk\*

\*These average values are based on impacts from local sources only

## **Fuel Refining: Modeled PM<sub>2.5</sub> Concentrations**





#### 24-hr Integrated Benzene Levels, 2016-2020



- Benzene has many sources, including fossil fuel burning, wildfires and other biomass burning, oil and gas processing and refining, and evaporation of gasoline, solvents, and paints
- While most measurements are below reference exposure levels for chronic impacts, benzene is the most toxic of the BTEX compounds

#### 24-hr Integrated Toluene Levels, 2016-2020



- Some occurrences of higher levels at San Pablo compared to other locations, including on non-fire days, possibly indicating local sources of toluene
- Reference exposure level for chronic health impacts is 110 ppb

## **Air Toxics Monitoring Project**

- Community Air Monitoring Plan project to collect data to inform on several areas with community concerns
- Data collected over the past several months
- Data review and analysis are underway
- Report and insights expected mid-2022



# **Technical Assessment Insights:** Fuel refining, support facilities, storage, and distribution

- Many of the highest measured benzene levels were during wildfire periods, but other occurrences may be attributable to local sources, in addition to occurrences of higher levels of other TACs such as toluene
- Exposures are influenced not only by emission levels, but by release characteristics and other factors
- Process-level contributions to emissions and exposure levels are available to help develop strategies

## **Next Steps for the Technical Assessment**

- The TA Ad Hoc will continue to work to refine analyses and communication to inform key issues and support action to reduce pollution emissions and exposure
- In April and May, we will bring insights for additional categories of community concerns
- We can send out additional materials for air quality concepts and expanded information on what was presented today

# **Public Comment**



# Steering Committee Questions and Discussions



# Compliance & Enforcement Data Findings from 2019 - 2021

Ying Yu, Air Quality Specialist yyu@baaqmd.gov Linda Duca, Supervising AQ Specialist Iduca@baaqmd.gov



#### **Types of Compliance & Enforcement Activities**

• Review site/facility operations for compliance. Compliance • Investigate Reportable Compliance Activities Inspections and (RCAs), flaring events, and Title V deviations. Investigations • Identify source specific issues/concerns. • Investigate complaints to identify source of Air Quality emissions. Complaints • Determine magnitude of impact. Enforcement Ensure corrective actions are taken. Actions (Notice of Violation or

Resolve violation.

Notice to Comply)



# Summary of Inspections and Investigations (Jan 2019 – Dec 2021)

- Number of permitted facilities: approx. 303
- **Types of facilities**: oil refinery, bulk terminals, gas stations, landfills, wastewater treatment facilities, metal recycling, food manufacturers, transfer stations, autobody shops, coating operations, and others
- Number of source inspections conducted: 878
- Number of Title V Deviations: 621
  - <u>Chevron Refinery</u>: 592
  - <u>West Contra Costa County Landfill</u>: 22
  - <u>Chemtrade</u>: 6
  - Kinder Morgan Terminal: 1



# Summary of Inspections and Investigations (cont'd, Jan 2019 – Dec 2021)

#### **Reportable Compliance Activities (RCA) Data**

| Туре                     | 2019 | 2020 | 2021 | Total |
|--------------------------|------|------|------|-------|
| Excess                   | 115  | 162  | 166  | 443   |
| Breakdown                | 12   | 10   | 15   | 37    |
| Inoperative<br>Monitor   | 98   | 108  | 117  | 323   |
| Pressure Relief<br>Valve | 1    | 0    | 1    | 2     |
| Total                    | 226  | 280  | 299  | 805   |





#### **Reportable Flaring Events Data**

| Month/Year | 2019 | 2020 | 2021 |
|------------|------|------|------|
| January    | 3    | -    | 2    |
| February   | 4    | 3    | 1    |
| March      | 4    | -    | 1    |
| April      | 3    | -    | -    |
| May        | 7    | -    | 3    |
| June       | 4    | -    | -    |
| July       | 3    | -    | 1    |
| August     | 5    | 1    | 4    |
| September  | 1    | -    | -    |
| October    | 2    | -    | 5    |
| November   | -    | 5    | 5    |
| December   | 3    | 2    | 2    |
| Total      | 39   | 11   | 24   |

Reportable Flaring Event: >500,000 scf /day or >500 lbs of SO<sub>2</sub>/day

### **Air Quality Complaints Summary**







Complaint Confirmation Rate: 19.2%

# Alleged Sites of Odor Complaints in Richmond/San Pablo







## **Chevron Refinery**

841 Chevron Way, Richmond, CA 94801

- Petroleum refinery processing approximately 240,000 barrels a day of oil
- Flaring (with or without visible emissions), Fluid Catalytic Cracker (FCC) visible emissions and sulfur dioxide emissions, Bioreactor wastewater treatment pond odors





## **Gold Bond Building Products**

1040 Canal Blvd, Richmond, CA 94804

- Wallboard manufacturing facility
- Particulate emissions from vessel offloading of raw gypsum, manufacturing and storage stockpiles, nitrogen oxide and carbon monoxide emissions from combustion sources





## **City of Richmond Water Pollution Control District**

601 Canal Blvd, Richmond, CA 94804

- Municipal wastewater treatment plant serving about 2/3 of Richmond, owned by City of Richmond and operated by Veolia under longterm contract with the city.
- Periodic H<sub>2</sub>S emissions and odor complaints





# West Contra Costa County Landfill

1 Parr Blvd, Richmond, CA 94804

- Closed landfill with active transfer station and composting operation, accepting green waste and food waste from surrounding communities.
- Compost odors and operations, landfill gas collection system downtime







### **Chemtrade West US LLC**

525 Castro St, Richmond, CA 94801

- A sulfuric acid production facility that supports the Chevron Refinery
- An audit of the Continuous Emissions Monitoring System (CEMS) at the facility in March 2021 led to discovery of multiple violations and a more in-depth investigation of the CEMS
- ~350 lb/day of under reported SO2
- Air District will bring Chemtrade violations to the Hearing Board on 4/12/22 - Materials associated with the case with be posted online and public participation is welcomed
- Facility will be required to come into compliance by 4/15/22 and conduct source testing by 5/2/22





#### AAK OII 1145 Harbor Way South, Richmond, CA 94804

- Plant oil refining to supply the food and health & beauty industries
- Odors, combustion sources





### **Summary of Enforcement Actions**

• Notice of Violation:

| Туре           | 2019 | 2020 | 2021 | Total | Percentage |
|----------------|------|------|------|-------|------------|
| Permits        | 9    | 0    | 0    | 9     | 2.8%       |
| Administrative | 10   | 7    | 25   | 42    | 13.3%      |
| Operational    | 73   | 51   | 141  | 265   | 83.9%      |
| Total          | 92   | 58   | 166  | 316   | 100%       |

#### • Notice to Comply:

- Total number issued for the 3-year period: 24
  - Chevron Products Company: 8
  - Gas Stations: 5
  - Others: 11

| Calendar<br>Year | Number<br>of NTCs |
|------------------|-------------------|
| 2019             | 18                |
| 2020             | 0                 |
| 2021             | 6                 |



#### **Notice of Violation Summary**



Sites/Facilities with more than 1 NOV (1/1/2019 - 12/31/2021)

■ 2019 **■** 2020 **■** 2021



#### **Notices of Violation based on Regulations**



# **Public Comment**



# Steering Committee Questions and Discussions



# Standing Environmental Justice Updates Item



# **Public Comment**



# **Next Meeting**

- Our next Steering Committee meeting will be on Monday, April 25, 2022 from 5:30 p.m. to 8:00 p.m. Agenda topics will include:
  - The Technical Assessment findings presentation #2



# Public Comment on Non-Agenda Matters

