AGENDA: 2A

### BLACK CARBON IN THE SF BAY AREA: TRENDS IN AMBIENT CONCENTRATIONS AND EMISSIONS

#### **Robert Harley (harley@ce.berkeley.edu)**

Department of Civil and Environmental Engineering University of California, Berkeley

**BAAQMD** Advisory Council

May 8, 2013

## Acknowledgments

- UC Berkeley: Tom Kirchstetter (also at LBNL), Tim Dallmann, George Ban-Weiss, Chelsea Preble
- **Aerosol Dynamics**: Susanne Hering, Nathan Kreisberg
- Aerodyne Research: Tim Onasch, Ed Fortner, Doug Worsnop
- BAAQMD: Eric Stevenson, David Fairley, Amir Fanai, Phil Martien, Gary Kendall

## **Black Carbon Introduction**

- BC = strong **absorber** of solar radiation
- BC correlated with adverse human health effects, more than other components of PM<sub>2.5</sub>
- BC is a product of incomplete combustion
  poor air-fuel mixing and/or very fuel-rich conditions
- Measurement methods include light absorption and thermal-optical analysis

# **Coefficient of Haze (COH) Sampler**

#### Measures light transmitted through particles collected on white paper filter

## Bay area COH data available for 1968-2003



Hemeon et al. (*Air Repair*, 1953). Determination of haze and smoke concentrations by filter paper samples

## **COH Highly Correlated with BC**



Kirchstetter et al. (Atmos Environ 2008)

#### Long-Term Trend in Ambient BC (Data from 11 Bay Area COH Monitors)



Kirchstetter et al. (Atmos Environ 2008)

## **Seasonality in Ambient BC**

(Bay Area Monthly BC Ratios to June; 1980-1990 Data)



#### Kirchstetter et al. (Atmos Environ 2008)

# **Bay Area Air Monitoring Network**

| Pollutant                        | Method                      | # of Sites | Averaging<br>Time | Sampling<br>Frequency |
|----------------------------------|-----------------------------|------------|-------------------|-----------------------|
| PM <sub>2.5</sub> mass           | $\beta$ -attenuation        | 14         | hourly            | Continuous            |
| PM <sub>2.5</sub><br>speciation* | Lab analysis of Q/T filters | 4          | 24 h              | 1/6 days**            |
| Light<br>absorption*             | Aethalometer                | 3          | hourly            | Continuous            |
| Light<br>scattering              | Nephelometer                | 2          | hourly            | Continuous            |
| Ultrafine<br>particles           | Water CPC                   | 4          | hourly            | Continuous            |
| PM <sub>10</sub> mass            | Weigh filters               | 8          | 24 h              | 1/6 days              |

\* BC reported explicitly using these techniques

\*\* More frequently (once every 3<sup>rd</sup> day) at San Jose

## BC, OC & PM by Filter Sampling



#### Sample Quartz Filter Thermogram (TOA = Thermal-Optical Analysis)



# **Thermal-Optical Analysis (TOA)**

Total Carbon = Elemental + Organic Carbon
 units of TC, EC & OC are µg C per m<sup>3</sup> of air

Vexing issues with EC & OC measurements:

- 1. OC can convert to EC during analysis ("charring")
- 2. Organic vapors can adsorb on quartz surfaces (positive sampling artifact for OC)
- Poorly defined conversion of OC (µg C) to OA (µg) (need to know H/C, O/C, N/C ratios in the OA)
  - secondary organic aerosol (SOA) is highly oxygenated

#### Ambient EC Data for the Bay Area (IMPROVE and BAAQMD Data)



#### Ambient BC at West Oakland (BAAQMD Data; Also Showing Livermore)



## **Ambient Monitoring Recommendations**

- Increase BC and speciated PM<sub>2.5</sub> monitoring
  - Improve understanding of sources that contribute to PM<sub>2.5</sub> problems
  - Track impact of emission control measures over next decade (big efforts on diesel control are underway)
- Align monitoring with former COH sites to extend existing long-term record of BC
  - Also continue BC monitoring at West Oakland
  - Use online measurement method for BC

## Vehicle Emissions at Caldecott Tunnel

On-road vehicle emissions measured here over last 30 years... Hering et al. (1984); Kirchstetter et al. (1999); Ban-Weiss et al. (2008); Dallmann et al. (2013)



## **Tunnel Fine Particle Mass and Speciation**



### Gasoline vs Diesel Emission Factors (Caldecott Tunnel – 2010)



## **SP-AMS Aerosol Mass Spectrometer**

#### (measures <u>refractory</u> & organic aerosol)



- Traditional tungsten vaporizer combined with laser to vaporize refractory aerosol (i.e., black carbon)
- Electron ionization (EI) following vaporization
- High-resolution time-of-flight mass spectrometer provides ion spectrum every second

### **Mass Spectrum for Diesel PM Emissions** (Composite of N=145 HD Diesel Truck Exhaust Plumes)



#### Gasoline and Diesel OA mass spectra are similar



#### Fine PM Emissions in the Bay Area (Winter Inventory – 2010)



#### **BC Fraction in Fine PM Emissions**

#### ce.

#### SOURCE

- (a) Distillate Oil-Fired Boilers
- (b) Catalyst-Equipped Automobiles
- (c) Noncatalyst Automobiles
- (d) Heavy-Duty Diesel Trucks
- (e) Fireplace Hard Wood
- (f) Fireplace Soft Wood
- (g) Fireplace Synthetic Log
- (h) Meat Cooking Operations
- (i) Natural Gas Home Appliances
- (j) Cigarette Smoke
- (k) Roofing Tar Pot Emissions
- (1) Paved Road Dust
- (m) Brake Dust
- (n) Tire Dust
- (o) Urban Vegetative Detritus



#### Fine PM and BC Emissions in the Bay Area (Winter Inventory – 2010)



# **BC Emission Controls**

- Major decreases in BC expected due to new diesel emission controls
  - Particle filters required nationwide on all new heavy-duty diesel engines (starting 2007)
    - Also pre-2007 engines must be replaced in California
- Other BC control efforts also underway:
  Goods movement (rail, ships, drayage trucks)
  Light-duty vehicles (gasoline direct injection)
  Wood-burning